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ABSTRACT

A natural generalisation of A-tuple colourings are (p,q)-ov,eflap colourings where p distinct
colours are assigned to each vertex such that adjacent vertices share exactly g colours. The
(p,q)-chromatic number is the smallest number of colours needed for a (p,g)-overlap

colouring. Inequalities of the (p,g)-chromatic number are obtained together with analogues

of the Attainment and Periodicity theorems of Hilton, Rado & Scott [9].

Classes of subgraphs of the Kneser graphs G are introduced, by identifying the

underlying n-set with Z,, giving it a circular metric, and considering subgraphs induced by
vertices whose k colours are pairwise at least a given distance, d apart. These Schrijver

graphs ;8 are investigated and their fractional chromatic number is computed. A

conjecture that generalises the Erdos-Ko-Rado Theorem t4] in the context of Schrijver

graphs is given. The conjecture is proved to be true for the Schrijver graphs ,§; with

d=k=2and ford= [-:—J where 7 < (k+1)d.

The concept of displacement sequence is introduced together with the graphs they induce,
the rotation subgraphs. Their independence and fractional chromatic numbers are found. In

particular where the colours at each vertex are as far apart as possible and evenly

distributed, the resulting rotation subgraph of G ; , which has vertices, is shown

_n__
ged(n, k)



to have the same fractional chromatic number as G Z . It is also shown to be star extremal

and vertex critical with respect to both the fractional and circular chromatic numbers.

Circular chromatic numbers of the Kneser graphs G for n=2k+1 and for n =2k+2 is -
computed.

The relation between n-chromatic number for Z, -colouring (introduced by Vince [17])

and the " chromatic number for A-tuple colouring (discussed by Stahl and by Hilton, Rado
and Scott) is investigated. These two types of colouring are combined into a single

colouring ( Z,, ; -colouring). Inequalities of its respective chromatic number are obtained
and a generalisation of Theorem 1 of [17] is given.
The circular distance graph is considered and shown to be isomorphic to a family of

rotation subgraphs of G . Its ¥ chromatic number is derived.
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CHAPTER 1
Definitions & Introduction

Throughout this thesis, a graph is assumed to be finite and simple.

Let I" = {xeZ': x<n},and I} denote the family of subsets of 1" of

cardinality £. For k£ >1 and n 22k we define the graph GZ whose vertex set is /7, ,

and two vertices are adjacent iff they are disjoint as subsets. These graphs are more

widely known as Kneser graphs (see [12]).

An k-tuple colouring of G is an assignment of & distinct colours to each vertex such
that no two adjacent vertices share a colour. The k* chromatic number of G, denoted

by %% (G), is the least number of colours needed for an 4-tuple colouring of G (see

[16]): Thus %;(G) is the ordinary chromatic number.

Hilton, Rado & Scott [9] studied the fractional chromatic number (previously known

as the multichromatic number) of G, defined as

xf(G) = inf{————x'" ©) :meZ*}.
m .



It was shown in [9] that this is also equal to lim,,_yo [x”’ (G)J , and furthermore that
m

it is equal to (ka(G)J for some k. This in conjunction with Corollary to Theorem 9 of
[16] gives the following result.

Lemma 1.1 xr(Gp) = (n,ke Z', n>2k).

N

A graph homomorphism, ,is a mapping 6:G — H such that 8(x)and 6(v) are
adjacent in H whenever » and v are adjacent in G. This leads to a reformulation of the
concept of a k-tuple crolouring of G with n colours as a homomorphism 6:G — GZ'
This is definition AF1 of [16].

A k-tuple colouring demands that no two adjacent vertices share a colour. In contrast to
this we define for non-negative integers p and ¢ (p>9q) a (p,q)-overlap colouring as an

assignment of p distinct colours to each vertex so that any pair of adjacent vertices

share exactly g colours. The (p,q)-chromatic number of G, denoted by x , ,(G), is
the smallest number of cologrs needed'for a (p,q)-overlap colouring. Thus X p,0 (G)ilé
the p"'nchromatic number ¥, ,(G) as defined by. Hilton, Rado. & Scott [9]. In particular,
x1,0(G) is, once again, the ordinary chomaﬁc number.

We begin Chapter 2 by investigating (p,g)-overlap colourings, in particular we shall

concentrate on the case where p = mq for some integer m > 1, and use the notation:

mXg(G) = Xmg,q(G). These (mq, q)-overlap colourings distribute the colours at each



vertex of G such that the ratio of the number of colours assigned to each vertex to
that shared by adjacent vertices is m:1. In analogy to the fractional chromatic number

we define the overlap fractional chromatic number as

mXf(G) = inf{ﬂq—((-}—) : qu+}.
mq

In Chapter 3 we investigate subgraphs of Kneser graphs and consider their factional

chromatic numbers. To define these subgraphs we make use of the cifcular norm

|x|nintroduced by Bondy & Hell [3] and Vince [17]. Let Z, denote the set of integers

modulo n. If xe Z,, we denote by I',,(x) the integer representative of x belonging to

I" ;ifxe Z, we abbreviate I}, (x(modn))to T}, (x). Thus the circular norm on I” (or

Z, ) may be conveniently characterised as:

|, = min {T, (x),n T, (%)} .
The circular distance between two elements x, y of I" (or Z, ) is Ix - yln .
qu 1<d < I%J, we define the the d * Scﬁnﬁer graph, denoted by ;5 Z , to be
the subgraph of G induced by the vertex set

V(aSg)={vely :|i-jl;2d (ijev)}.

(Note that if d > %, the vertex set would be empty).



In 1977 Lovasz [13], showed that

x(Gy) =n—2k+2.
In 1978 Schrijver [15], showed that the 2" Schrijver graph , » S: , is a vertex-critical
subgraph of G also of chromatic number n — 2k+2.

It is worth pointing out that Schrijver graphs have some relevance to problems arising
from radio communications. For example the problem of allocating sets of channels to
mobile telephone providers covering different areas. (For example of recent work on the

channel assignment problem, see [2]). Each provider i should be allocated a set S; of

channels with enough mutual separation, say d, to avoid signal interference between

their own users that may be physically close, while the sets .§;, §; allocated to

providers i and j respectively should be such that
\s,'—sjl 2 ¢y (si€ §;, s; € §;) for some parameters c;;

that depend on the separation of the areas. Simplifying this model by setting ¢;; equal

to unity if the corresponding areas are adjacent and imposing no restriction otherwise,
" the problem reduces to finding a homomorphism from the adjacency graph of the

providers to the relevant Schrijver graph. That is we model the channel assignment

problem under the assumption tha;t each provider must be allocated £ channels with

required mutual separation d. Now, since a graph homomorphism does not decrease

chromatic number, we require the chromatic number of 4§ Z to be at least equal to that



of the adjacency graph of providers. Thus investigation of chromatic properties of
Schrijver graphs has a practical application.
I-n Cﬁapter 4 we introduce graph colourings together with their respective chromatic
numbers that involve the use of the circular norm.
Foranyn € Z*,a Z,-colouring of a graph is a function 8 : ¥(G) - Z,,. Assuming
G is non-null, i.é. has at least one edge, v;'e define
1(0)=min|6@)-6(V)|,,

where the minimum is taken over all pairs %, v of adjacent vertices.
For any n,d e Z*withn > 2d, a (n,d)-colouring of a non-null graph G is a
Z, -colouring 8 such that p(8) = d. Let n be such that there exists at least one proper
colouring of G (i.e. % (G) < n). Let

d= max{ §: G has a (n, 3 )-colouring}.

Then tlie n-chromatic number of G is defined as
n
MNn (&) d

This number was introduced by Vince [17] where it was denoted by %, (G)..

Vince also introduced the circular chromatic number %,.(G) (known in [17] and 3]

as the star chromatic number and denoted there by %" (G) ), which is defined as

Xc(G), = inf {n,(G):ne Z+}~



It is shown in [17] that %, (G) = n, (G) for some n < | V(G)| (Theorem 3) and that it-
is also equal to lim,_,,, N, (G) (Corollary 2).

We define tﬁe circular distance graph, denoted by H';, whose vertex set fs Z, and
vertices x and y are adjacent iff | x-y |n > d. In this context a (n,d)-colouring of G is

simply a homomorphism G — H.

We investigate the relation between n-chromatic numbers for (7,d)-colourings and K
chromatic number for A-tuple colourings. We compute the circular chromatic numbers
of certain Kneser graphs of low order. By considering different methods, alternative

insight into the circular colouring of Kneser graphs is offered. The circular chromatic

numbers of classes of Kneser graphs of the type G,fk *land G§k+2 is obtained.

In Chapter 5 we investigate when both -tuple colourings and Zj, -colourings are

combined into a single colouring. Forn > 2k, a Zy, i -colouring of a non-null graph

G is a k-tuple colouring of G using colours from Zj, .

We define two distance functions of the colouring 0 ; one related to adjacent vertices

‘and the other to single vertices, as follows:

u1(9)=min{|u,!vj In: u; € 8@), v; € 68(v), weE(G)}

My (8) = min{|u; —u; |n: u, uje 0@), i = j,ucVG)).



Let C,, j, denote the set of all Z,, j -colourings of G. Assume that 2k. < % (G) < n;

so that C,,  contains at least one k-tuple colouring:

max
Let My 1 (G) = 0eC, p1(0). Then the n¥ -chromatic number of a non-null g;aph

G is defined as

We note that 1y, 1(G) = n, (G).

xZ’ (G), the kpy,- chromatic number is the smallest value of » such that G can be
Znk -coloured with p;(6) = m. Thus x}c (G) is the k™ chromatic number, %z (G)
and x{ (G) is the ordinary chromatic number, ¥ (G).

We generalise (7,d)-colourings. Forn > 2d k, a (n, dq ,d ,k)-colouring of a non-null

graphis a Znk -colouring 6, such that uy(0) > dj and py(8) 2 d,.

In Chapter 6 we consider the circular distance graph, A ,’c' and show it is always a
subgraph of the Kneser graph, G,': . We explore certain types of subgraphs of Kneser

and in particular we show.that there is, in general, a family of subgraphs that are

isomorphic to H Z We study the graph A ,'C' further and find certain properties,

including its m"™ _chromatic number.



CHAPTER 2

Overlap Colourings

2.1 General Properties of Overlap Coloilrings‘.

Stahl [16], established that ¥ , (G)is a sublinear function; that is for all n, p, » € Z’, .
%np+r(G) £n% 5(G)+ %, (G) . In analogy we show that (mgq,g)-overlap colourings

have a similar sublinearity property in this constant ratio sense.

Lemma 2.1 mXng+r(G) Snp¥Xg(G)+px,(G) forallmn g reZ"

Proof
Let G be (mg,q)-overlap coloured with ,,%,(G) colours aﬂd (mr,r)-overlap coloured

with ,,%,(G) colours disjoint from the other colour set. Then G can be (m(g+7),q+7)-

overlap coloured by using the union of the ,,%4(G) and %, (G) colours. Thus,

qu+r(G) Smiq (G)*+mxr(G).

The result now readily follows. u



Lemma 2.2

Let G be a graph with £ edges and of maximum vertex degree D. Let ¢ > max (E,m)
and m > D. Then any (mq,q)-overlap colouring of G contains an (m, 1)-overlap

colouring.
Proof
Consider an (mg,g)-overlap colouring utilising ,,% 4 (G) colours. Let {Cv :veV(G)}

be the family of colour sets involved in this colouring. For each vertex v, let S, be the

set of colours involved in the overlap with its adjacent vertices; then

S, c C,and |S,| < deg(v)g < Dgq.
It follows that for each vertex v;

Co-8[2(m-D)g 2g2m 4
In view that ¢ > E, there exists a set of £ distinct colours {ce ; eeE(G)} such that
¢, €Cy NC, for each edge e = uv.
Now for each vertex v, let T, - {c.: e is incident to v}. Then

|Tv| = deg(v) < D <m. (2)

It follows from (1) and (2) that there exists, for each vertex v, a subset U, c C,, — §,,
of cardinality m — |T;,|. Let R,= T,, U U,, then IR,| =m, and it immediately follows

that {Rv: veV(G)} constitutes an (m, 1)-overlé,p.colouring.'



Theorem 2.1

Let G be a graph with £ edges and of maximum vertex degree D.

Letq > max (E— 1,m—1)and m>D. Then ,,%441(G) 2 nxq(G).

Proof
Let G be (m(g+1),q+1)-overlap coloured with ,,% 4,1(G) colours. By Lemma 2.2, this

colouring contains an (m, 1)-overlap colouring. At each vertex we remove the colour set
involved in the (m, 1)-overlap colouring. It is clear the remaining colours give G an
(mgq,q)-overlap colouring using at most as many colours as the original colouring . The

result immediately follows.

Stahl [16], in Theorem 2, established that x ,41(G)> % ,(G) . Below we give a slight

weakened analogue to this result for (p,q)-overlap colourings to non-strict inequaiity.

Theorem 2.2

Let G be a graph of maximum vertex degree D. If p > gD, then

Xp+l,q'(G) 2 xp,q(G)-

10



Proof
Let G be (p+1,g)-overlap coloured using ¥ ,41,4(G) colours. Now for each vertex v,

the number of colours involved in the overlap of colours with its adjacent vertices is at

most gD. It follows that the number of colours not involved in the overlap is at least

ptl-qD 2qD+1-gD =1.

It follows we can remove one colour from each vertex that is not involved in an overlap
of colours with its adjacent vertices and so giving G a (p,q)-overlap colouring using at

most ¥ ,41,4(G) colours. The result immediately follows. .

Theorem 2.2 gives the following corollary with regards to (mgq,g)-overlap colourings.

Corollary If m2 D, then Y pg41,4(G) 2 m¥Aq(G).

Both inequalities of Theorems 2.1 and 2.2 are dependent on reasonably large vertex
colour sets. Indeed, a counter example given in [11] shows these inequalities are not
true in full generality. This raises a question as to what are the smallest values of m and

p that satisfy these two inequalities.

11



2.2 The Attainment and Periodicity Theorems

As previously pointed out, Hilton, Rado & Scott [9] showed that the fractional

chromatic number is equal to (x—k;@] for some k. This, in essence is the Attainment

Theorem for &-tuple colourings. Also for such colourings, it was shown in [9] that there
exists a positive integer k; such that the sequence
{xx(G) - kxs(G)}: k=ki, ki +1, .. }isperiodic. This isthe Periodicity

Theorem. In this section we show that both Theorems can be extended to (mq,q)-

overlap colourings. The proofs themselves are closely analogous to that of [9].

Letr= ZlV(G)l — landlet { V;:i=1,2,...., r } be the family of all non-empty subsets
of V(G). Consider an (mgq,q)-colouring using J colours. For 1 < i < r, let C; be the set
of colours which are received by each vertexin V; and by no other vertex, and let

yi= |C,-| . Then it is clear that each colour belongs to exactly one C; and it follows that:

y; 20 (lﬁiSr)_ 3)
i=1
Sy = mg (ve MO) | ©
i:vel; ’
Zyi =q (uwv e E(G)) (6)
iu,veV;

12



Theorem 2.3 (The Attainment Theorem).

There exists a positive integer go such that
mXq, (G)

x1r(G) =
mif mqq

Proof
There exists an an (mgq,q)-overlap colouring of G with J colours if and only if there isa

sequence (V1,V2,....... Yo of non-negative integers satisfying (3) — (6).

. G r
Letz,= 2- (i=1,2,....,7). Then m_Xqu is the smallest value of ) z; which

q q i=1
satisfies:
z; 20 (1<i<r) )
| vze:V.Zi =m (ve VG) ®
 le/,-=1 (we E@G)). ©)

r
and each z; is an integer multiple of . Let p(m,G) be the minimum value of Dz
9 i=1

such that (7) - (9j are satisfied without this last restriction. Then u(m,G) is the

smallest value of ¢ for which the hyperplane

13



meets the convex polytope defined by (7) — (9). At least one vertex P = (p1,pa,......0r)

of the polytope meets the hyperplane

r

> z;= u(mG).

i=1

It follows that the point P = @, P2 , Dr) satisfies 7 linearly independent
simultaneous equations, each with coefficients 0, 1 or m. By Cramer’s Rule all the
solutions are rational with denominator equal to the determinant of a non-singular

matrix of 0’s and 1’s. Let go be the modulus of the determinant. ‘Then each solution p;,

is of the form p, = 2L for some integer y;. It follows that with J= g p.(m, G) and
90

q = qo, the sequence (V1,a,....... ,yr) is a sequence of non-negative integers satisfying
(3) - (6). Hence the y; define an (mqo ,qo)-overlap colouring of G using gq u(m,G)
colours. (Note that 1(m,G) neced not be an integer). By tﬁe' minimality of p,(m, G),
q0 ﬁ(m, G) is the smallest number of colours needed for a (o ,go)-overlap colouring

of G. But by definition, this is precisely ,, %4, (G). Also since ;% ¢ (G)is alower

mXgq G)

bound of {
mq

qeZ +} it follows that

u(m,G) _ mXqg ©) 2 n%r(G). (10)

m mqgo
r .
Further, since u(m, G) is the smallest value of Z z; such that (7) — (9) are satisfied
i-1 :

without the restriction that each z; is a multiple of L it follows that
q

14



| G
ﬁx;—() > u(m,G) for all integers g € Z* .

G :
Hence, E(mm’—Gl is a lower bound of {%() qeZ +}. The fact that ,,x r(G) 1s
_ q

the greatest lower bound gives

7@ = H0)

mXgq, G)
mqo

This together with (10) gives ,% s (G) = as required.

Theorem 2.4 (The Periodicity Theorem).

There exists a positive integer g; such that the sequence
{mxg(G) - mg mxr(G)}: q=q1, 1+ 1, ...}
is periodic with period at most go (where gy is as in Theorem 2.3).

Proof

Let q be any positive integer, and let » and » be the non-negative integers such that
q=nqo+r where r<gq.

mXq, G)

Now by Theorem 2.3 ,,,xf(G) =
mqo

, and by Lemma 2.1

'mX(n+1)qo+r(G) < mX nq0+r(G) * mX g, G).

15



Thus,
mx(n+1)qo+r(G) - (n+1) mx 90 G) £ mx nqo+r'(G) —n mX q, @G).

Letting, ‘
Spr = mano+r(G) —h quo(G) = mX nq°+r(G) = nmqo mX f(G)

Then,

Sn+ 1r < Sn,r

Further, by definition % g, +(G) 2 m(ngg +1) mX 7(G) 2 nmqo mX r(@G).
Thus, S,, 2 O and so for eachr < gqo, the sequence {(S..: n € Z'}isamonotone

decreasing sequence of non-negative integers.
It follows that for each such 7 there is an integer p, and a constant A, such that
Snr= A, foraln 2 p:.

Letting K, =4, — mr % 7 (G), and noting that it is also independent of n, gives
anqo+r(G) _m(nq0+r) mxf(G)=Kr foralln 2 pr.
Recalling that q=ngo+r,let
Do = max{p,: 0<1 <qo },
q1 = (Pmax+ 1) 9o,

and A= mX nq°+r(G) — m(ngo +1) mX. f(G)

16



Then,
A9 =K .forall q2q (=n> Prax 2 Pr)

and
Rg+ 40) = m% (n+1)g, +r(G) ~ m((n+1)go +7) m% f(G)=K = R4,
thus proving the Theorem.
u
G
Corollary ,,,'x,f(G)= lim _m_Xg_(_Z.
g mq
Proof
Let Koo = max{K,: 07 <qo }. Then
qu(G) - mq 'me(G)SKmax forall g 2 q1.
Thus,
%q(G) K
0s L= - uxs@)< @2 )

mq m

and since Kn is independent of g, the result follows.

17



CHAPTER 3

'The Schrijver Graphs and the

Theorem of Erdos-Ko-Rado

In this chapter we concentrate on Schrijver graphs, introduced on page 3. We define
and introduce the concept of the displacement sequence of a vertex of G,'c' and the
subgraphs they induce, the rotation subgraphs.

For any graph G, we define the independence number, o.(G), to be the size of the

largest independent set of vertices of G. Now let G be any induced subgraph of the

Kneser graph GZ . Throughout this chapter, for each i € I” we denote by V; (G) the

(independent) set of vertices of G containing the element ;. Where no confusion can

arise, we abbreviate the notation to V;.

We begin by giving a possible extension to the Erd 6 s-Ko-Rado Theorem [4] and

discuss its implications.

3.1 The Theorem of Erdos-Ko-Rado
Adopting similar notation to [4], let S(1,n,k) denote the family of subsets

{a1,a;,..,ap} of I} that are pairwise non-disjoint. That is they have the iritersecting

property (see [4]).

18



Erdo s-Ko-Rado (EKR) Theorem

Let {a),a;3,..,an}€ S(1,nk)and n > 2k. Then
n-1
m< ‘ .

The EKR Theorem does in effect give the size of the largest possible independent set of
vertices of G;, (= 1S}, ). We state this below in the context of Kneser graphs.

Erd o s-Ko-Rado (EKR) Theorem for Kneser Graphs

If n> 2k, then

a(Gl)= (Z:i)

Hilton and Milner [8] showed that the maximum iqdependeﬁt .sets of vertices of GZ
(that is, the indépendent sets of maximum size) are exactly the V, (G,'c' ). That is, they

are the sets ¥; = {v € V(Gy) :i € v} (i=1.2,...., n). A natural way to try to extend
the EKR theorem and the result in [8] is to investigate the independence numbers of the

Schrijver graphs 4 S,;' and, in particular, the question of whether the maximum

independent sets are again exactly the V; (45 ,:' ). Investigation suggests that this is so,

resulting in the following conjecture:

19



Conjecture

Let n> 2k. Then, for all 1<d< [%j :

’

. n —kd+k-1
® a(aSP)= (” o )

(i) the maximum independent vertex sets of 5§ ,’: are exactly the V; (i=1,2,...., n).
Now by proposition 3.1.1 of [14] the EKR Theorem immediately gives ¥, 7 (G,'c' )= %
Hence % s (4§ ,’: ) is bounded above by % Thus, if the above EKR analogue (ii) is true

for each Schrijver graph, then ¥ r (4§ ,’;) = L]:- would follow easily (see also Lemmas

3.1&3.2).

We shall prove the conjecture is true for d=k =2 and for d = [%J when n < (k+1)d
(Lemma 3.3 and Theorem 3.5).

We explore subgraphs of ;8§ z and observe that the more that can be discovered about

their independence numbers, the closer we are to establishing both the chromatic

properties of the Schrijver graphs themselves and whether they obey the conjecture.

20



We start by introducing and defining displacement sequences and using them to show

that the number of vertices. of 5§ ,’c' containing a particular element is as given in

Conjecture (i) above. We also establish the size of ’ V(gS g )

3.2 Displacement Sequences

Let v={a,a;,...,a;} be a vertex of G ,'c' We use the convention that its elements are

listed such that they are in the same cyclic order as the cyclic order obtained when they
are written in monotone increasing order. (Thatis, for some p, the list

ap,Ap 41y 8k,a1 5@ p-] 18 in monotone increasing order.) -

Now let v be any vertex of G,? . Given any a € v, let us list the elements of v starting
from a as a;,a,,...,a; where a; =aand define the displacement sequence of v starting

from a as the sequence d ={d;,d),....dy}where d; =T}, (a;y1 —a;) (1<i<k-1)

and dy =T, (a; —ay). Foreachd=12,..., ng, let ;D be the set of all

displacement sequences of vertices of ;.S ,’: , that is, the set of all sequences
d ={d,,....dy} where ‘

) k.
d<d;<n-d (1<i<k) and ) d;=n
i=1
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Given any a e /"and any d € 4D, we denote by v, 4 the vertex of 4§ ; whose
d a,d d° g

displacement sequence starting from a is d.

Lefnma 3.1

'|V(dS,'c') = % [V,| for any ae I".

Proof
By symmetery, each set ¥, (a € I") contains the same fiumber, say c, of vertices. -

Moreover each vertex v of 4§ ,': is contained in exactly k of these sets. Thus,

ne =‘k|V(dS,2')

Lemma 3.2

Va(dSZ)

(n—kd+k—1

) forany aeI”.
k-1
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Proof

For each ae I", V, is just the set of all v, 4 such that d € ;D . Thus the number of
vertices of 4§ Z containing the element a is equal to the number of displacement

sequences of ;D.

Now any displacement sequence d = {d},...,d} } can be written as

d={{d-1)+e,[d-D+ey,....,(d-1)+ey}

i=1
displacement sequences of ;D is also equal to the number of displacement sequences
k .
of the form {{e;,e3,....ex }: Ze,- =n-(d- 1)k, e; > 1}. But these are precisely the set
i=1

of displacement sequences of the vertices of G ,'c'_(d_l)k , and so the number of vertices

of 487 containing a is equal to the number of vertices of G Z_(d_l)k containing a

-1k

particular element of (note that we are allowing for the case

n—(d - 1)k < 2k; that is when G Z_(d-l)k is a null graph).

23



—(d— -(d-Dk
Since \V(G]::l @ l)k)\ = (n (a; )

v, - k n—(d-Dk\ _(n—-(d-Dk-1
@ p-d-1k k k-1 '

J, it follows from Lemma 3.1 that .

Lemmas 3.1 and 3.2 immediately give the size of the vertex set of Schrijver graphs;

_n n—{d-1k-1
- k( k-1 )

‘V(dS;?)

We now focus on the Schrijver graphs, , S; (n > 2), and find their independence

numbers. By making use of linear programming duality we compute their fractional

chromatic numbers.

3.3 The Graphs ,S;

We show below that ¥; (8 ) are the largest possible independent sets.

Lemma 3.3
Let C be an independent set of vertices of 2S£’ of largest possible size. Then C = V;

for somei € I";indeed, a (85 )=n-13
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Proof

The cases for n =4, 5 and 6 can be readily verified. We shall consider the case where

n>17.

Assume by way of contradiction that no element of /” is contained in‘all the vertices
of C . It follows that C must contain three vertices, say », v and w all of which are

pairwise non-disjoint and that N vw= &.

Letu = {a,b} and v = {a,c}. Now since both the intersections »[1w and v[1w are non-
empty, it follows that w = {5,c}. But any other vertex cannot simultaneously have a

non-empty intersection with the vertices %, v and w respectively and so [C | = 3. In view

of the fact that |V;| =n—3 > 4 foreachi e I"; this gives a contradiction and the

result follows.

From this it follows that every vertex of , S;' is contained in an independent set of

lérgest possible size; an observation we now use.
For a general graph G, and a vertex v of G, let A, (G) be the size of the largest
independent set containing v. We define a graph parameter, p(G), that relates to these
sets, namely

L
My (G)

M@= X

vel (G)
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Lemma 3.4  p(;87)=

NN

Proof This follows from Lemmas 3.1 and 3.3.

Our next task is to show that u(zSg ) <% f(zS; ). We achieve this through the use

of linear programming and the duality theorem.

3.4 Linear Programming and Duality

Let G be a graph with m vertices. Following Hilton, Rado & Scott [9], let

{C1,C3,...,C; } be the set of all the independent sets of vertices of G. Let A be the m ki
matrix with 1 in the (7, ) entry if vertex v; belongs in the set C;, otherwise 0. Let ¢ be

the #x1column vector with all entries 1 and b the m x 1 column vector, also with all
entries 1. Then the problem of colouring G with £ colours at each vertex using the

minimum number of colours can be restated as the integer programming problem:
minimize ¢! y subject to Ay > kb, y >0,
where y is a £ x1column vector and each y; is required to be a non-negative integer.

Ji

Also following [9], let z; = L ; then the problem becomes:

T

minimize ¢” zsubjectto Az>b, z >0,

where each z; is now required to be a multiple of 4}:
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[9] further shows that ,  (G)is the value of an optimal solution to this linear

programming problem, without the restriction that each z, is a multiple of’ -,1; A

The dual problem to this linear programming problem is:

maximize b’ x subject to ATx< ¢, x >0, where x is an m x 1 vector.

Now x may be considered as a non-negative weighting function on the vertices of G:
m

x(v;) = x; (v; € V(G)), which maximises the sum ) x; subject to
i=1

D> x; <1 forall C€{C,,Cy,..Ct}.

iv,eC
Now consider the weighting function:

1
Ay(G)

x(v)=

For any independent set C, all the vertices in C have a weight at most —

l -
el

Hence, for any such C,

in Sl,

ivieC
and x is a ‘feasible' weighting function.

But b x = i (G), where L is the graph parameter introduced in Section 3.3. This

immediately leads to:
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Lemma 3.5  For any gra.ph G,
KG) <x7(G).
Proof.
By the above, u(G) is the value of a feasible solution of the linear programming to

maximize bTx, while by the duality theorem of linear programming, , 7 (G) is the

value of an optimal solution.
i‘ L]
Theorem 3.1 xr(287) = g—
Proof-
By Lemma§ 1.1,3.4 and 3.5 we have,
= kGSD <1rGS)) Su,G = T
n

We investigate the Schrijver graphs 4§ ;. further and obtain an upper bound for their

independence numbers. We introduce subgraphs induced by a given displacement

sequence of 4§ ,'c' . We consider Schrijver subgraphs with certain ‘types’ of

-displacement sequence and find their independence number.
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3.5 Rotation Graphs

Given any ae I"and any d € 4D, we recall that Vaq isthe vertex of dSZ whose
displacement sequence starting from a is d. Clearly, if v, 4, =Vq, 4, then d; has the

same elements as d; in the same cyclic.order; that is, d;and d, are cyclically

equivalent.

Let Q={xe Z"':xlnand x|k}. For each x € Q, let

4Dy ={d € 4D dis periodic with period L }.
x

Then 4D = U 4Dy, since if x|k and d is periodic with period k then

xeQ x
k klx.
n=Yd;=xY d;, andso x|n.
i=1 i=1

Given any displacement sequence d € 4D, we define the rotation subgraph, dR,;’ ,to

be the subgraph of ;4§ Z induced by the vertices of the form v, q for some ae/ ",

Lemma 3.6 Let de 4D, . Then |V(dR,2') = -’1; indeed, V(dRZ)= {voq:a eI”/x}.
x bl
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Proof. By definition, V(qRy)={vaq :acI"}. Clearly v, q = v} g if and only if b is
the (p+1)™ element of V,d (starting from @) where p = mk for some non-negative
X

integer m. Therefore,

klx
b—a=mZd,~.
i=1

: ki/x
Thus there are Zd,- = — distinct vertices with displacement sequence d, characterised
i=1

as in the statement of the lemma.

3.6 Independence Numbers of Schrijver Graphs

Lemma 3.7 Letde D, Then a(qR;) < %

Proof
Let d € 4D, and consider the rotation subgraph dR,’; of 48 Z Let v, gand v gbe

two distinct vertices. Now the elements of vy g are those of v, 4 displaced by

Iy (b - @). 1t follows that if | b —a| <d then every element of vy, 4 is distant less than d

from the corresponding element of v, g and vice-versa. But as these are vertices of

dsS ,'c' , then they must be disjoint and so cannot be independent.
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independence implies that a;,; —a; 2 dfori=1,2,...., p— 1. Furthermore, by

s . n .
periodiCity V4 4 = Va +n/x,d and so by independence a; + 2 ap 2 d. Finally,

adding these p inequalities gives p < % as required.

Theorem3.2 o (4S;) < z > |—dD—X|
- d v ¥

. Proof

Let V' be an independent set of vertices of 4§ ,:' . By Lemma 3.7, for each de 4 D there

are at most %'vertices of V with displacement sequence d. The result now follows.

Lemma 3.7 gives an upper bound for the rotation subgraphs in general. The previous
theorem demonstrates that finding the independence numbers of rotation subgraphs can

play an important role towards finding the independence number of Schrijver graphs.
We consider the displacement sequences of the type s = {3§,3,......,6,D }, where

8 # D and the rotation subgraphs they induce, 4 R,? . We find their independence

numbers, and consequently their fractional chromatic numbers.
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3.7 The Rotation Subgraphs (R; wheres={35,....5,D}

Every vertex of 4R, can be written in the form

vas={a I,(a+d) I,(a+25),..., F,,(a+(k-1)6')}for somea €l”.

Using this representation we say that {a, I,(a+8), I, (a+28),...,I,(a+(@-1)6 ) }
and {T}, (a+(*-p)3),....,I, (a+(k-1)8 ) } are the first and last p elements of v, ¢

respectively (1 < p < k-1).

Lemma 3.8
Lets={$,9,.....,0,D }, where 8§ / D and ¥V'= {v;:1<i<q } be an independent set of q

(22) vertices of 4Ry such that

q
B= n"i 2, |B| = p. Then B occurs as the first p elements of some v; and the lastp -
i=1

elements of another v;, (1 <4 j < q).

Proof
Let v, ¢ be a vertex belonging to V. Since B < v, ¢, then B can be expressed in the

form

B={(T,(a+ 18) I,(a+f8),..., [,(a+ f, 8 )} where the elements f;

(1 < i < p) are in monotone increasing order.
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Now let v ¢ be any other vertex of V. Then,
B={T,(b+d) I,(b+teyd )., T,,(b+e, )} where
I,(a+f;8)=T,(b+e;d) (0< ¢, f; < k-1,1<i<p) 1)

We first show that the elements {¢;: 1 <7 < p) are also in monotone increasing

order.

Now (1) gives

I (( e}+1 - ¢;)8)=T(( fin - f;)8)=(F;11 — f;)0 (I<j<sp-1)
Ifej; ej41,then(ejy — €;)8 +n=(fjn - f;)5.

In view of the fact that n= (k—1)8 + D, it follows that

D=(fin-fj+ e—ein —k+t1)d = 3|D; giving.aéonnadicﬁon.

Hence ¢;,; > e; forj=12,..,p-1

We next show that the elements f;(1 < i < p) are indeed éonsecutive. ‘Suppose by way

of contradiction there is some positive integer, 7 ( <p) suchthat f, < f,+1< f,.,;.

Again invoking (1) gives I, (( ¢,41 — €,)8)=T,(( fr+1 — f»)0) and since both

the e¢; and f; are strictly in monotone increasing order it follows that
€01 — € = fr41 — fp 22 fromwhiche, < e,+1 <e, ;) <k-1.

Hence,

Ty (a+(f,41)8 )= T (e +1)B ) € Wi,
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By the arbitrary choice of the vertex vj, ¢ of ¥, we conclude that

[, (a+(f,+1)8 ) € B, giving a contradiction.

Thus f;(1 < i < p) are consecutive integers.

Finally, letting ¢ = T}, (a+ £} 8 ), we can express B in the form

B={c, I,(ct+d), I)( c'+26 )-sTn(ct (p-1)8 ) } for somep < k- 1.

Now ¢ must necessarily be the first element of some v; (otherwise I',(¢—8) € B)

and similarly T, (c¢+ (p—1)8 ) must be the last element of some v ;.

Lemma 3.9

Lets={§,3,......,6,D}, whcréﬁ | D and V= {v;: 1<i<t } be an independent set of

t
vertices of ¢Ry . Then [(|v; = J.
i=1

Proof

t
Suppose by way of contradiction that n v; = &, then there is an integer g such that
i=1
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. .
B= nv,- # @, and that Bvg 1= & (1 <g<t). Letting'IB|=p, then by Lemma 3.8
i=1 '

B occurs as the first p elements of some vertex v; and the last p elements of another
vertex v;.

Let B={b, [,,(5+5), [, (5+28 ),...T,(b+(p—1)5 )} (@ < k—1), then

Vi = vpgand v;j=v, s wherea=I,(b+(p-1)5+D).

Consider the intersection, v; [1v4) and let lv,- N vq+1|= m. Now since B does not
contain any element of v, then by Lemma 3.8 the lasf m elements of v; occur as the -
first m elements of v,.;. In particular the las’g élement of v;,. T, (.b.-l-(k— 1)8) e vgyr.
Considering thé intersection v; (1v4.1, and by a s@u argument, the first element of;
Vi, Tn(b+(-1)3+D) € vgy.

Hence, I}, (b+(@-1)8+D)and I,,(b+(k—1)8) both belong to v, and so their

difference is a multiple of & . Thatis (k—p)& —D =ud for some integer u, from

which it immediately follows that & | D; giving a contradiction.

Theorem 3.3

by s.
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(@ If3)Dthen a(4R;)= k.

k+m if m<k

(i) If 8| D,sayD=(m+1)$, then a(sRy) ~ { b i mek

°

Every vertex in both cases is contained in a maximum independent set.

Proof

‘ t
For (i), let C = {v;: 1<i<t }be an independent set, then by Lemma 3.9 ﬂvi 2.
ci=1

t
Leta e ()v; bethe p” and m" elements of v; and v; respectively, then i#; iff
i=1

m=#p. 1t follows that since each vertex has £ elements, the number of vertices cannot

exceed k.

Now given-any vertex, say v, ¢ (@ €/ ™), we can construct an independent set

containing v, ¢ of size k as follows.

Let v; = {[,(a+(1-10)8), I, (a+(2-1)95),...., I, (a+(k-1)3d ) }.

Then it is clear that { v;: 1 < i < &} is a set of k vertices containing v, ¢ and that this
is indeed equal to ¥, (s Ry ). This completes £he proof of.' @). |

For (ii), we first assume m < k. Since | 0| D, the minimum circula:z distanceA between two

elements of a vertex in ¢ Ry is §. Lemma 3.7 gives
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a(sRy) <

Now any vertex with displacement sequence s = {3§,3J,......,5, (m +1)d }, will have all its
elements in the same congruence class modulo & . There are £ + m distinct elements of
I" that belong to the same congruence class modulo §, and since m < k, the majority
of these are contained in every vertex. It follows that any two vertices using the same

congruence class modulo 8 must necessary have an element in common and so be

independent. Thus we get k£ + m independent vertices.

Let m > k and ¥ be an independent set of vertices. Let X={ x € v:veV }. By
symmetry and without loss of generality assume & to be the smallest element of X.

Then the largest element of X must be less than or equal to

(2k—1)8 < (k+m—1)6<n and the elements of every vertex of V are ordered as
consecutive multiples of &, all of which lie between & and (2k — 1) . Clearly you

cannot ‘squeeze’ more than k vertices = [V/|< k. Given any vertex, an independent set

of size k containing the vertex can be constructed in a similar way to (i).
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Theorem 3.3 shows that the maximum independent sets of the rotation graph RZ are

either of size k or k + m.

Lemma 3.10

Lets={3,5,.....,5,D}, where %D and ¢R; be the rotation subgraph of G;

induced by s.

(i) Ifd)D then “(sR;:) =

x>~

‘ S if m<k
. _ ny —
() If 8|D,sayD=(m+1)3,then n(sR7)={ n if m2k
Proof

This follows from Lemma 3.6 and Theorem 3.3.

Lemma 3.11

Let sRIEk'l'm)s and tRl(c]i";nm)a be the rotation Subgl'aphs Of Glgk+m)8 a.nd G’Eﬁ'l;nm)a
induced by the displacement sequences s = {3,35,......,5,(m+1)8 } and t = {3,5,......,5 }

respectively. If m <k then there exist a homomorphism
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Proof
(k+m)d .
For each vertex v, gof g Ry, , we define the mapping

k o)
® (Vas) = Vat € VRS ).

Let uv be an edge of sR,(ckJ'”')8 ,thenunv=>.

It is sufficient to show that @ (u) N @ (v) = . Suppose by way of contradiction that

there is an element b € @ (1) N @ (v) . Now each vertex of ¢ R,g:_;m)s contains all the

available k + m elements of / (k+m)8 41+ are in the same congruence class modulo 5.
1t follows that ® (1) = @ (v) and in particular the elements of u a_nd v belong to the
same congruence class modulo 8 . Since m < k, the majority 6f the above k + m
elements are contained in each of the vertices u and v and so must necessary have an

element in common; giving a contradiction.

Theorem 3.4

Lets = {3,5,......,5,D }, where 8#D and sR,;' be the rotation subgraph of G,'c'

induced by s.
() IfofDthen xs(sRy)= %

5 if m<k
(i) - If6|D,sayD=(m+l)6,thenxf(sR,';‘)={ % i m2k
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Proof
Lemmas 1.1, 3.5 and 3.10 applied to case (i) and case (ii) with m > k give

n

= u(RY Sxs (RS x7(G) = 2

r
k k

Finally, we consider case (ii) with m < k.

Now by Lemma 3.11 and Theorem 3 of [16], %, (s R;) <X p (¢Ry,,,) forallp > 1

+m

from which it follows that % ¢ (sR}) <% s (¢ Ry, ,,)- This together with Lemmas 3.5

| m

and 3.10 gives

8= pGRY) < xrGRY) < xr (R, ) S %7 (Gpyp)=8.

For the Schrijver graph dS,? to have any vertices, the maximum value of dis {%J

Whend takes this value we denote dS;: simply by § ,:' , so that n = kd +r, where

0<r<k.
3.8 The Graphs §

k
We first consider the graph, S,’:d"'l (the case r = 1). Since Zd,- = kd+land d; 2d

=l

for all 1<i<k it follows that every vertex of S ,fd *1 has displacement sequence
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CHAPTER 3

q={dd,.....,dd+1}. Thatis S,’:d+1= qR,fd*'l. Invoking Theorems 3.3 and 3 4

gives the following result which we state as a corollary.

Corollary 3.1 a(S,de) =k and Xs (S,"‘d+1)= EE_I

It is worth noting that § ,fd *isin general a significantly smaller graph than G,’:d“ ,

also of the same fractional chromatic number. The contrast of their differences in size is

illustrated by the example in Figures 3.1 and 3.2 withk=2 and d=3. This raises the

question whether we can reduce the number of vertices of § ,fd *1 while maintaining the

same fractional chromatic number. The answer to this, as will be shown later in section

6.2, is no.
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Lemma 3.7 enables us to obtain an equality for the independence number of the graphs

S,':whenr<d.

Theorem 3.5

Let n=kd+r where 0 <7 < min(k,d). Then:

. n D, +k-1

(ii) Every vertex is contained in a maximum independent set.

Proof
Consider the subgraph ¢ R;’ of S, .

Now by Lemma 3.7, for each displacement sequence, d = {d;,d,,...,dy} € 4D,

(feucrith

a(qR?) < §=§+—x’3<§+1 = a(gRl) < %
Thus,
D
a(SH < kY l4Ds|
xeQ x

D
Finally, for each vertex we shall exhibit an independent set of size k ) u
x
: xeQ

For this we shall use the convention that
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r—i i-r r—i
>dj=- ) d;if r<iandthat . d;=0ifr=i
j=1 j=1 Jj=1

In/x

Now, given any element a € , and thereby any vertex, we construct the

independent sets of vertices ¥, (¢ Ry ) and V,(Sy ) as follows:

For each de dDx,

1-i 2-i k/x-i

 k

Va(dR,;’) = {{Tp/x(a+ Zdj ), Tn/x(@+ Zdj), ....... Jhn/x(@+ Zdj )}: 1< zs;
j=1 Jj=1 J=1

Thus we can express the independent set ¥, (S} ) as:

Va(Sp) ={Va(aRp):d e D= J4Dy}.
xeQ

Clearly, ‘ V(S 2)

| D
=k, Id—il and by Lemma 3.2 this is also equal to
xeQ x

n—-kd+k-1 _ r+k-1
k-1 k-1 )

We now consider the rotation subgraphs of § ,: induced by a displacement sequence

that spaces out the & ‘colours’ at each vertex as evenly as possible round / " These

special rotation subgraphs, denoted by SP ,:' , will be referred to as spaced subgraphs

and their properties will be investigated. For these subgraphs, as will be proved, the
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independence number is k , where g = gcd (k,n) (=gcd (k,7)). Ultimately, this will lead
q

to the fractional chromatic number for all the Schrijver graphs 4§ Z (1 sds [%J )

thereby generalising the results of Theorem 3.1 and Corollary 3.1.

3.9 Spaced Subgraphs SP;
Letting n = kd + r where r <k, we define the displacement sequence s as follows:

$={dy,...dy), where d = dﬂ“—?—’J -Vﬂ G=1,....h).

That is,

= {I‘n(a+jd+_j;rD:j=l, ..... ,k} .V )

_

Throughout the remainder of this section, we set 7’ =2 and k== (q = ged(n,k)).
' q q

Recall that given any displacement sequence d € 4D, the rotation subgraph, g Ry , is

a subgraph of 4§ Z induced by the vertices of the form v, ¢ for some ae / " The
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rotation subgraph induced by this displacement sequence, s is referred to as

spaced subgraph and denoted by SP ,:' .

Lemma 3.12 The period of sis &’ , thatiss € 4D, .

Proof. Recall that s ={d},...,d},}. From the definition of the d j

o= 4y = (| ]) - ([ 2]

= 0, as k'ris a multiple of .

Thus the period is a divisor of k’. Suppose that s has period i Then this period is
qx

repeated gx times, so the number of values of j (j=1, ..., k) suchthat d j=d+lisa

multiple of gx. But this number is also equal to 7, so that gx is a common divisor of 7

and & Thus, x=1.

It follows from Lemma 3 6 that SP ,;’ ' has n' vertices and that

V(SP)') = {vgs:acl™}.
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Now let 7’ =L, and assume 7’ >1 (thatis, »#0). Let X ={v, 4 :1<i<x} beaset
q "

of independent vertices of SPI;x LetY = {vb]_’s 1< j<r'} beasetof ' vertices of

SP,:' such that X nY = .

Since the a;, b; may be assumed to belong to / " ’, we now proceed modulo »’. Thus,

denote the sequence of clockwise displacements between consecutive 'first' elements

{b;}of Y by
8 =1{81,...0,}
where 8 ; =b;,1—b; (j=1..r'-1)and &, =T —-b,.r)=n’+b1l—b,r.

(For the case »'= 1, thereis just one 'first' element, b,. We take its corresponding

+r

displacement &1 Lo be the ‘full circle’ distance n'= kd = k'd+1).

Now set [51 =1 [EJ =g, and suppose that, for each j such that 1 < j<r,
r r

6j=ld+lor 6j =sd +1.

(We refer to these displacement lengths, where they differ, as long and short

respectively.)

Then Y is said to be an interlace for X, and X is said to possess an interlace, Y.
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Examplé

For the graph SP922 wehaved=2r=4,q=1, [k-‘ = 3. A maximal independent set

r

X={v, ..., v} and its interlace Y = {w,, ..., w4} are shown below, with {v;} in fine

type and {w;} in bold.

s 2 3 2 3 2 3 2 3 2
v o1 3 6 8 11 13 16 18 21
v, 3 5 10 13 15 18 20 1
vi 5 7 10 12 15 17 20 22 3
w7 9 12 14 17 19 22 2 5
ve 8 10 13 15 18 20 1 3 6
vs 10 12 15 17 20 22 3 5 8
w, 12 14 17 19 22 2 5 7 10
ve 13 15 18 20 1 3 6 8 11
v; 15 17 20 22 3 5 8 10 13
ws 17 19 22 2 5 7 10 12 15
vg 18 20 1 3 6 8 11 13 16
ve 20 22 3 5 8 10 13 15 18
we 22 2 5 7 10 12 15 17 20

Lemma 3.13 Let r 21, g =gcd(k,7), and let X be an independent subset of V(SP k" )-

If X possesses an interlace, then

x| < £.
q
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Proof. Let r' =T and let z be the number of long displacements of & = {J1,...,8,'}.
q

(Where r| k , there is no distinction between long and short displacements, and the value
of z is arbitrary.)
Now since X NY =, then {a;}n{b;} = S.Tt follows that every a;must strictly lie

between two consecutive b j’s. But, as the displacements of s are all at least d, a

necessary condition for v, ¢ and Va,,s to be independent is that 'a,- -a j' , 2d . Thus
L] J . n
the number of a;’s between two b ’s is at most / for a long displacement and at most s

for a short displacement. (In the case »’ = 1, the single ‘displacement’ may be taken as

long or short.) It follows that the number of g;’s, and hence the number of vertices in

X, is bounded above by

|X| < r's+z(l- s).

Now if r | k,then/=sand r's = k, giving the required result. Thus, assume the
q

contrary, so that

x| < #s+z | 3)

[

+r'.

,
Recall that we are working modulo »', so that 3 8;= n' = kd+r _ kd

Thus,

2(d+1)+(r' - 2)(sd+1)= —kqd- +7r.
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Sincel — s=1,

zd= L2 +r - ri(sd+1)

K
q

- r'sd,

sothat z = E_ r's, and the result follows immediately from (3).
q9

Our next aim is to show the existence of an interlace. To do this we shall make use of

the following Lemma.

Lemma 3.14

Let 1<sm<r. Letvgg,vpg€ V(SPk") besuchthatb - a= Pnﬁ-ld+m— L.
b b r

Then v, g "y ¢ =@. (That is, these vertices are adjacent in SP ,:' )

- Proof. Assume the contrary. By (2), there exist i, j (1<, j <k) such that

r,,(zmm[ﬂ] - r,,(a+jd+u—’D;

that is (choosing a suitably):

50



R

We now have two cases.

Case 1 Suppose that

FﬁWd +m-1+id+ \\%J < n,

r

and also

Thus from (5),
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e e 1-m

which is absurd.

Hence
0<j-i<™=

from which

os[£]-[5] o

It follows, again from (5), that
["’—k]d <(j-id+ m+1-m
r

=(G-ipd+1

Therefore,

[2hope

But (6) also impﬁes j-i< "ﬂ-l , so that
r

o<([2]-g-aes

(6)

But since 7 > 2k for a Kneser graph, it follows that d > 2, giving a contradiction.
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Case 2 Suppose that "’—n—]-‘—-‘d +m-1+id+ \\LI:_J > n. Then (4) becomes
r

mk d+ m- 1+id+ LZJ = jd + V—rJ + (kd + r);
r k k

ﬂk_ d=0+k—i)d+[MJ— {ZJ +1_m,

r k k

and by substituting j + & for j in (5), the argument follows as before.

Corollary 3.2 Let X be an independent set of vertices of SPk"' such that

andlet ¥ ={vp_:1<m<r'} where

b, = [m—k1d+m (1<m<r').
r

Then Y is an interlace for X.
Proof. By Lemma3.14, vig vy =@ (Ism <r’). Since the point sets
constituting the vertices in X all have non-empty intersection with vy 4, it follows that

X NnY =C. Moreover,
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bms1 —bm {M]d - {m—k"d+l

r r

= [E-’d+1 or [EJd+ 1.
r r

Thus Y is an interlace, as required.

Theorem 3.6

k

B a(SPy) = 7

ii) Every vertex of SP,” is contained in a maximum independent set.
k
Proof.

Now forl <r<k, Lemma 3.13 and Corollary 3.2 give a(SPk") < &
. o q

Also, given any ae I” ’ , we can construct the independent set of vertices, ¥, (SP,:' ) of

size k in a similar way to that given for the subgraph dRZ on page 44. Namely the set
q :

1-i 2-i k/q-i -
Va(SPMY= ({Tnsq(a+ 32d; ), Tnglat Xd),....Tasgla+ 2d;)}: 1s;‘s;}.
J=1 j=1 j=1
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Alternatively,
Va(SP,') = {vq, : tis cyclically equivalent to s}.

.1

V4 (SP,)

Since the period of s is k , it follows that
q

The case » = 0 is trivial because SP Ifd is isomorphic to the complete graph K ;.

Lemma 3.15 w(SP;)= %

Proof. This follows immediately from Lemmas 3.6, 3.12 and Theorem 3.6.

Theorem 3.7 For 1<d< {%J s

%r(aSE)=%s(SPF) = %
Proaf.

By Lemmas 1.1, 3.5 and 3.15 and in view of the fact that SP,' ¢ 4§} (1<ds EJ ),

I

wehave — = W(SPL) <xs(SP) < xs(aSE) Sxs(GF) = —.

=

L
k
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In section 3.2 we defined displacement sequences and in section 3.7 we investigated the

rotation subgraphs induced by a displacement sequence of the form s = {3,$,......,5,D },
where & # D . We shall generalise these sequences and consider the subgraphs they

induce.

Definition Let € (n), the Euler set, be the set of positive integers that are less than »

and relatively prime to n. For each de € (n) let we define the k-element sequence

S={x; :dee(@) }

Givenany ael” and x; €S, let

Vo, x, = aTy(@+d),T,(a+2d),......Th(a+(k-1Dd)}.

Any two elements of v, , are distinct. To see this, consider two such elements, say
I,(a+pd)and T, (a+qd) with 08q<p <k-1.

Suppose by way of contradiction that T, (a+ pd) = T,,(a+qd).

Then a + pd =a + qd + mn.
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Since ged(n,d) = 1, it follows that | (p - g), giving a contradiction. Thus, v, x _ is
indeed a vertex of Gy -

Note that the sum of elements of x; is equal to a multiple of 7 but not necessarily to 7.

To distinguish this from the displacement sequence, d defined on page 21, we shall refer

to x, as the difference sequence for the vertex v, . Also, in analogy to the rotation
subgraphs we make the following definition.

Given any difference sequence x; € S, we define the cansiant-step subgraph,

x, Cg » to be the subgraph of Gy induced by the vertices of the form v, , for some
acl”.

We now investigate the constant-step subgraphs.

3.10 Constant-Step Subgraphs , Cj

Lemma3.16 If x; €8, then‘V(xd Cy)|=n.
| Proof

It is sufficient to show that, for @ be I”, v, x = Vp x, = a=b.

Let vy x,= Vp x,,thena I, (a+(k-1)d) Vb, x, - It follows that there are integers

0<p,q<k-lsuchthat a= T,(b+pd) and T,(a+(k-1d) = T,(6+qd).
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Hence,
T, ((k-1)d) = T,,((g-p)d), and so (k- 1)d=(q-p)d+xn for some
integer x. /7
Therefore,
(k-1+p-g)d=xn and n|(k—1+p-q)d.

Since gcd(n,d)=1, it follows that n| (k— 1+ p—¢q). But 0 < k—1+p—g <n, from

which the only possible conclusion is that k- 1+p—-¢q=0.

Hence, g—p=k-1with 0<p,q<k-1,andso g=%k-1 and p =0. Thus,

a= T,(b) =b.

Theorem 3.8

Let 7 and & be positive integers such that k>1,n>2k and ged(n,k) = 1.

Then there exists x5 € S such that , C} is a subgraph of § -
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- Proof

Let § =T, (k $(n)-1 ) where ¢ is Euler’s function. Then by the Euler-Fermat
Theorem, (Theorem 5.17 page 113 of [1]) I, (k5 ) =1 and so ged (1, §) =1.
Cc;nsider the difference sequence x5 = {5,5,......... ,8, T ( (n'—k+l)8)} and the

constant-step subgraph ., Cy it induces.

By symmetry it is enough to consider just one vertex of xg CZ , say

Vs x. = 18,1,(25),T, (38).......... ,T,,(k8)} and show the ‘cyclic distance’ between
>v8

any two of its elements is at least {%J That is, we need to show | I, ( P 6) |n 2 {%J

forall 1<p<k-1.

We consider I, (p 0 ) . Let g be the the non-negative integer such that

T,(p8)=pd~gn el".

Now k(pd—qn)= pkd —qnk = p(1 + mn)—qnk = (pm—qgk)n + p

As 1 < pdb—gqn < n itfollows that,
k s (pm-qgk)n +p < nk
Hence,

1 < k-p < pm-gk)n < nk—p < nk-1
and so,
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0 <

k(d—gn)=pm-qgk)n +p2n+p

nk— k(pd—-qn)= nk—(pm—-qk)n — p

n(k—(m- gk))-p

n(k-(k-1)-p

< pm—-gk < k- — <k

n-p

n-—k

That is
1 < pm—gk < k-1
Thus,
-giving pd—gn > 2 2
k k
Thus,
giving

n- @s-gn) > 7 -1

Finally combining (7) and (8) gives

|

k

|

0

@®

[T, (p8)|, = min{pd—gn,n-(ps-qn)} = EJ forall 1<p<k-1.
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The following lemma extends Theorem 3.8 and shows that a constant-step subgraph of

S does exist without the restriction ged(n,k) = 1.

Lemma 3.17

For any positive integer ¢ > 2and 1<d < [%J, dsS ,’c' is isomorphic to a subgraph of

cn
dYck -

Proof

Using the convention established on page 21, let v ={a;,a,,....; } be a vertex of 4 S,’c' .

We define a mﬁpping eV (d Sy ) >V (d Sg,;') as follows:

For v={ay,...a;} € V(dS;? )

0(v)={a,..ax, a+n,..ap+n, ... yaq+(c-Dn,.,ap+(c-Dn}.

We first show that 8 maps V(dSz) into V(dScc,:'-).

That is we show that Ia,- +pn-(a; +qn)|cn = |a,- —a;+(P-qn lcn >d for all

1<i, j<kand0 < p,q <c-1 such that not both 7 =jand p=gq.

We consider two cases, for i =j and i#j.
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Casel.i=j

In this case p cannot equal g. Thus, ,a,- —-aj+ (p —9)n |cn=|(p -q)n |cn >n>d.

Case2.i # j
LetxeZ,then Ip(x) =y +pn for some integers 0< p<c-1, yel™. It follows
that
T,(x)=y<Ten (x) and that
en - T,y (x)=cn—y—pn=(c-pn-y 2n-y =n=I, ).
Thus, |
b, = min {Ten(x), en = Ten ()} 2 min{Ty (), =Ty )} =ld,, - |
In particular,

|a,-—aj+(p -q)n Ln Z\ai—aj+ (p-9)n ln =|a,-—aj |n2d.

We next establish that 6 is an isomorphism by showing that:

() 0 is an homomorphism.

(i1) 0 is injective.

(i) Letuve V(d Sy ) If O(u)B(v)is an edge of 4 S¢r, then uv is an edge of

n
dSk.
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For part (i) we need to show that if unv=(, then 6(w) NO(v)=L .
'By way of contradiction suppose 6(u) "6(v)# D, then

a;+m=b; +m for some integers 0 < 7,1< c-1
where a;and b; are the i" and j* elements of the vertices » and v respectively.

Without loss of generality suppose a; > b; . It follows immediately that

(t-rn < n-1 with > r, giving a contradiction.

To prove (ii), we need to show that if 8(u) = 6(v), then u = v. But if 8(u) = 0(v),

then a;=b; for 1 < i< k,andso u =v.

Finally, for part (iii), suppose 6(u) N0(v) = &. As u and v are subsets of 6 ( u) and

0 ( v) respectively, it immediately follows that unv=>.

In view of Theorem 3.8 and Lemma 3.17, every Kneser graph, G, , contains a

constant-step subgraph such that the ‘colours’ at every vertex are of maximum distance

apart.

We now focus our attention on the Kneser graphs, G2k+l , letting T stand for Toz for
k 2k+1

the remainder of the section, and show that every rotation subgraph has independence
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number always either equal to &k or 2k + 1. We further show that in the case when it is

equal to k, the rotation subgraph is equal to some constant-step subgraph.

But first we make the following definitions:

Let x= {dl,dz, .......... ,dy } € 4D, be given. We define its difference set , X, as
ptq

X= Zdrk(i)ZISpSk,OSqSk—l.
i=p .

Thus, given' any vertex v of G,%’“'l whose displacement sequence 1s x, with dufference

set X, we have X = {I'(x-y):x,y € v}.

For example forx={ 1,3, 1,4} of G5, X={1,3, 4, 5,6, 8,9} whilst for

x={1,1,2,5};,X=1°.

If X = I", we say that the displacement sequence, x, spans I". Thus, x = {1, 1, 2, 5}

spans I’

It is readily seen that if a¢ X, then 2k+ 1- a ¢ X. Thatis, X is invariant under

complementation modulo 24+1. For example, the displacement sequence

x=1{1,3,1,4}, has 2,7 ¢ X,

Now if x is a displacement sequence of G,fk *1 then it either spans / 2k+1 o1 it does

not.
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12k+1

For any £ there are displacement sequences that span and displacement sequences

that do not, as demonstrated below.

For the displacement sequence, x={1,1,1,....... ,1, 1, 2, k+1}, it is readily seen that
X= J2+1

By contrast, for the sequence, x= {1, 1, 1,....... , 1, 1, k+2}, the elements £, k+1 ¢ X.

We proceed with the following Theorem.

Theorem 3.9

Let x be a displacement sequence of G2kl w1th difference set X and R2k Hpe the
q k x i

rotation subgfaph it induces.
@  1X=1I2%" then a(R¥*)=2k+1. Indeed,  RZ**! is anull
graph.

() X2 1% then a( R =k

Proof

For (i),letu, v e V(XR,?“L1 ), where u = '{bl,bz, .......... ,by } and
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v={c1,c0, ... ,Ck } and where the elements of both the vertices are written in the

order defined by the displacement sequence x. That is

d,'= I"(b,-.,_l _bi) = I"(c,-+1 —Ci) for 1<i<k-1and

dp=T(b-br) =T(c;—cx).

I 2k+1

Now there is an integer a € which does not depend on i, such that

1 2k+1

foreach 1<i<k, I'(d;+a)=c;. Also, since X = , it follows there are

elements b;,b; € v where I'(b; - b; ) =a . Hence,

L(bj+a)=b; andso¢;= b;. Thus,unv # & and.the result follows.

For (ii), let a € I 2k+1 _ % and Q be an independent set of 5 zk *1 with s vertices.

R2k+1

Given any vertex of y R, ", say v= {bl,bz, .......... , b } , we define the vertex,

denoted by v+a as :
y+a= {T (B +a),[(b; +a),........T (b +a) }

Clearly, v+a € V(xR,EkH).
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Now, since a ¢ X, it follows that I'(d; + a) # b, forall 1 <i,j <k (i #j)and
i J

hence the elements of v and v+a are disjoint. That is, v and v+a are adjacent.

Consider the set of vertices
T = {v+ta:v € Q} and

note that via =u+a < v=u. Inview of the fact that Q contains s vertices, then so

does T.

We next show that Q and T are disjoint.
By way of contradiction suppose Q N'T # @.
Then there are vertices v and u+a of Q and T respectively such that v = u+a.

But u+a is adjacent to u, and so » and v are adjacent vertices of Q; contradicting

that Q is an independent set. Thus, Q " T = &.

Finally, since Q and T each contain s vertices and are disjoint then,

2 < ]V(XR,';) = 2kHl,

and so,
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Moreover, since a maximum independent set of szkH has size at least %, the result

follows.

Theorem 3.9 shows that the independence number of xR,ka is always either equal to

k or 2k+1.

However, our goal is to also show in the case when X # / 2k+1 , that given a vertex , v
of ngk + , its elements can be re-ordered so that the undérlying difference sequence -

belongs to S. That is every vertex can be written in the form

Va,x, = @&T(@+d),T(@+2d),.....T(a+(k-1d)}.

for some positive integer de € (2k+1). This shows that the rotation subgraph, lefk"’l

is equal to the constant-step subgraph, , C ,fk +

Theorem 3.10

Let x be a displacement sequence of G ,fk *! with difference set X. IfX = 72F+ , then

szk - x, C ]3'”1 for some positive i_nteger, d, less than 2k+1.
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Proof

I 2k+1

Let a € — X. Inview of the fact that a¢ X = 2k+1-a ¢ X ; we assume

without loss of generality that a < £.

Let v= {by,by,......... ,by, } be a vertex of xR,fk *1 and consider the vertex

vta= {T(b +a),[(by +a),........,T(b; +a)} .
It was noted that v and v+a are disjoint.

Similarly, the vertices v+a and v+2a (= {T'(8; +2a),I'(by +2a),........,T' (b +2a)} )

are also disjoint.

For example, the difference sequence x = {1, 2, 3, 3, 2} of G%l ,has 4 ¢ X.

Considering the vertex
v={1,2,4,7,10} € V(yRs"), it induces the vertices v+4 = {5, 6, 8, 11, 3} and

v+8={9, 10, 1,4, 7}; withv nv+4 = vi4 N v+8 = .

Now, since v+2a contains & integers, none of which are contained in v+a, it follows that
at least k— 1 of these must belong to v. That is v and v+2a must share at least k-1

integers.

We now show that in fact they share precisely k— 1 integers.
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By way of contradiction suppose they share & integers.

Then v = v+2a and so it follows that

k k k k k
F(Zb,-)= L(Q (b +2a))= I‘(Zb,-+ > 2a)= I'(Zb,- + 2ak)
i=1 i=1

i=1 i=1 i=1
Hence,
2k+1 = f(O) =I"(2ak)
and so 2k+1|2ak

But since gcd(2k+1,k) = 1, it follows that 2k+1| 2a with @ < & ; which is impossible

and so giving the required contradiction.

Thus v and v+2a share exactly £ — 1 integers. Now, let b be the only element of v that is

not contained in v+2a and similarly let x be the only element of v+2a not contained in v.
We label b as b and for eachi=2,3,..... .k, welet b; = F(bl +(-1)2a).

We show that {4y, 5,,........ , b } is indeed the vertex v. First we esfablish that these

b are all distinct. Assume to the contrary that b;= b; for some 1 < i<j < k.

Then I'(b; +(—-1)2a) = T'(5;+(j—1)2a) and so I'((j—i)2a)=TI(0)=2k+1.

Thus 2k+1| (j — i)2a and so (as gcd(2k+1,2) = 1) 2k+1| (j— )awhere 1 < j—i < k—1.
Now let / (< j—i) be the smallest positive integer such that 2k+1| /a. Then / must be

odd, say/=2t+1. Thus b,y = T (b +t2a)belongs to v, so I' (41 +a) belongs to
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vta. But T'(b;1+a)= T(b+(@2t+1)a) = I'(b+la)= I'(s)= b € v, and so
I'(b;, +a) € vAv+a; giving a contradiction.

Next, let us show that each b actually belongs to v. Suppose otherwise. Thus for some

Jj <kwehave by,b,.....,0; € v but b1 & v, sothat b, is the unique element of

v+2a not in v, namely x. But then there is some other element, say c, of v that is not one
of by,b;,.....,b;, and since {c,T(c+a), T'(ct2a), I'(ct+4a),...... } can only get
out of v througp one of these being the b ; that we have already used, it must follow that

these ‘cycle’; but we have already contradicted this possibility.

Thus {b1,b5,........ ,by } are the elements of v and by is the element of v such that

I (b +2a)=xand T (b +3a)= b;.

That is, vertex v can be written as

v="_{b1,by,......... b ) with clockwise differences
di= T'(bjg-b;) = I'(2a) for 1<i<k-1and

d, = T(b-b;) = T(3a).

k
Finally we note that, I’ (Zd,- )= T (2a(k-1) +3a)= T (a(2k+1)) =2k+1.

i=1
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It follows we can express any vertex of xR,%k 1 with an underlying difference sequence

x; = {dd . d,T,((n-k+1)d)} = {2a,2a,......... ,2a,T'(3a) } where d=2a.

We note that d € € (2k + 1). To see this let g = gcd (2k+1,2a), and assume by way of

contradiction that g > 1.

Now, 2k+1 = pg and 2a = mg for some positive integers p and m.
Thus, 2k+1 =pg < 2ap < 2pkandsop 2 1+ Zlk Therefore p > 2.

2k+1

Similarly,2k+1=pg22p andsop < =k+%;givingpsk.

That is
2<p<k
Also 2a =mg= T'(2ap)= I'(mpg)= T (m(2k+1))=2k+1.

Thus, considering the element 5, € v, we have

b,= T'(5; +2a(p-1))

T'(b - 24)

I'(by +a) € v+a; giving a contradiction.

It follows that, xRIEkH = x,C ng+l where 4= 2a.
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Corollary 3.3
Let x be a displacement sequence of G,fk * and XR,ng be the induced rotation

subgraph. If o ( xR,fk +l) = k then szk o x, C ,fk *1 for some positive integer, d,
less than 2k+1.
Proof

This follows from Theorems 3.9 and 3.10.

3.11 The Rotation Subgraphs -, R>* J(1<g<k-1)

Let g be an integer, 1< g < k-1 . Given a displacement sequence x of the graph

2k+1
Gk_ q

R2k+1

we investigate the induced subgraphs , R;” 7 The maximum possible size of

independent set of the induced subgraph, szk +1 , 18 2k+1. It is clear that for some

2k+1

value of g, the subgraph, y R}~ q will no longer contain an indépendent set of size

2k+1, for any displacement sequence x. There seems to be a critical value, say ¢, such

2k+1

thatif g > c, the size of a maximum independent set of y R}~ q drops down to & or

less.
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In what follows we find a value, b, such that if ¢ > b, then the size of a maximum

independent set of xR,%’_‘ *1 is at most k, but such that for certain values of %, the size is

q
2k+1 wheng=5.
Definitions.
Given a displacement sequence , x = {dl,dz,.........:,dk } € 4D, of the general

Schrijver graph 48 ,': , we define a subsequence of x to be a sequence of cyclically

‘consecutive’ elements of x, that is a sequence of
the form {drk(,-),drk(,-+l), .......... ,drk.(,-,,j) }, forsome 1<i<kand 0< j<k-1.

-We denote the set of subsequences by S:

s = {{drk(i)' drk(.i""l)’ ....... ,drk(i+j) }ZlSiSk, OSjSk—l} .

It is readily seen that there are k subsequences each of size 1, 2, 3,...... ,k—1 and one of
size k (x itself). |
It follows that |S| = k(k-1)+ 1. )

For example the displacement sequence x = {1,2,3,4} of G}to has subsequence set
S=

{{l}’{2}’{3}’{4}’{1’2}’{2!3}’{3’4}’{4’1}’{ 1’2’3}’{2’3’4}’{3’451}’{4’1,2}’{1’2’3’4}}' .

74



We now investigate the rotation subgraphs, xR,f’f ;l and their independence numbers.

t

We shall use the following result.

Lemma 3.18

Let g be a positive integer less than & such that gcd(2k+1,k ~ g) = 1 and x be any

displacement sequence of G,?’_‘;l with difference set X.
Then .,

X I o k-gs aRE <k
Proof

The proof that o ( xR,%’f ;1) < k is similar to that of Theorem 3.9(ii) with & replaced

by k£ — q. The fact that the size of the maximum independent set is at least k — g

completes = .

Finally, using a similar argument as in the proof of Theorem 3.9(i) proves the case <.
|

Theorem 3.11

Let k and g be positive integers withk > 3, g <kand gcd(2k+1,k—g)=1. Let xbe

any displacement sequence of G,f’_‘;l )

| 2k-1-4 8k +1
If q> [__Z—J then k—g< a(xR,f’f;'l) <k.
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Proof

Now each element of X is a result of summing all the integers of some subsequence

se€§ . Thus from statement (9) above, it follows there are most

(k—q-1)k-q)+ 1 elements of X.

It follows that if (k—¢q—1)(k—q)+ 1< 2k+ 1, then the set X is a proper subset of

1% and so X = 1%
This reduces to the quadratic inequality,

q2 +(l—’2k)q+k2 -3k<0
which gives

2k-1—-4 8k +1
z 2

Thus,

S 2k-1-+/8k+1
q 2

The result now follows from Lemma 3.18.
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EXAMPLES.

Consider the rotation subgraph 31 of Gg !induced by the displacement sequence

x={1,3,2,7,8, 10} with =9, k= 15. It can be seen that X = I2¥*1 = 13! and 5o

the size of its maximum independent set is 31. However, from Theorem 3.11 if ¢ >

2k—-1-4/ 8k+1 . . . :
{—2’*_‘ =9, the size of a maximum independent set of xR1351_ q falls down to at

most 15 for any displacement sequence x.

Similarly the Kneser graphs G§7 and GP also have the property that

c= {Z—ka is the critical value of ¢q in the sense that rotation subgraphs

xR,%f"q'l exist (for example those induced by displacement sequences x = {1, 2, 3, 4, 7}

and x = {1, 3, 2, 7} respectively) that have independence number 24+1 with g = ¢, and

that this falls to & or less for all rotation subgraphs xR,%’f ;l when g > c.

77



CHAPTER 4

Circular Colourings

and Kneser Graphs

Theorem 1 of [17] shows that if » = y; (G) then m, (G) = n and so establishes a link
between these two types of colouring. Furthermore, if G is bipartite theny; (G) = 2k
(Theorem 5 of [16]), while clearly ¢ (G) = 2, and trivially % (K , )= kp while

Nkp (Kp) =k. That is:

if n= %1 (G)then n,(G) = 4y

E

when G is bipartite or a complete graph. This poses a question whether, as an extension

to this, there is a more general link between the #* chromatic number of G, x (G) for
k-tuple colourings and the n-chromatic numbers, n,, (G) for Z, -.colourings where

n= y%x(G) . The following section establishes a necessary and sufficient condition for
such a link in context of homomorphisms.. Section 4.2 asserts this link for the odd
cycles, Cpp41-

Remark. If G is bipartite, an odd cycle or a complete graph, then Theorems 5 and

Corollary 1 of [17], together with Theorems 4, 5 and 6 of [16], give the result

xf(G) = x(G).
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Graphs having this property are said to be star-extremal (see [5]).

Indeed any graph which satisfies (1) above is star-extemal. Abbreviating % (G) as %%
and y (G) asy,, we note that {n, =%: n=yr,k=12,...} is a subsequence of

{n, :n=1y,x+1, x+2,...}. Hence, by Corollary to Theorel%l 2 of [9] and Corollary 2

of [17] %7 = limp_yeo| XE | = limp_ye0p = e
k

4.1 Homomorphisms
We begin by showing that statement (1) above is equivalent to. existence of
homomorphisms (see Chapter 1 for a reminder of the definitions of n-tuple and (k,d)-

colourings in the context of homomorphisms). We give this result as a lemma.

Lemma 4.1

Let n= %;(G) and m, (G) = z where n, kand ¢ € Z* withn > 2kand n > 2q. Then
q

@D MG < % & there exists a homomorphism G — H r

G m,G =2 -;—:— <> there exists a homomorphism G — Gy .
Proof

I~
Now the existence of a homomorphism G - H ,:' defines a (n,k)-colouring and so

M (G) < % Now consider =>. Let 1,(G) = —:-, then % < —:—~, and so by Proposition 1
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of [3] G has a (n,k)-colouring and hence a homomorphism G — H ; thus establishing

assertion (i).

To prove (ii) we proceed as follows:

The existence of a homomorphism G — GZ defines a g-tuple colouring of G with n

colours and 50-% 4 (G) < n=%;(G). By Theorem 2 of [16], ¥ (G) is a strictly

increasing function on k; thus k> g, giving m,(G)= — 2

N
AL

Conversely if m,(G) 2 %, then k> g and n 2 ,(G). But this defines a g-tuple

colouring of G with » colours, and hence a homomorphism G — G;' :

I am indebted to my supervisor for the following result that asserts the existence of such

a homomorphism.

Lemma 4.2

Let n,(G)= % whered € Z*and n > 2d. Then there is a homomorphism G —» G;.

Proof
Define the mapping ¢ : H; — G as follows: for eachu € Z,, (= V(H}))
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¢ ()= { 4, T (utl), T, (ut2),......., Ty (u+d—1)}. Itis clear that, if |[u-v| >4,
then ¢ () and ¢ (v) are disjoint subsets of /" | and ¢ is therefore a homomorphism.

Now 1,(G) = % defines a homomorphism G — H;. Composing this with the

homomorphism ¢ : H; — G, we obtain a homomorphism G — Gy.

Corollary 4.1

x|

@)  If n=xz(G) then 1, (G) 2

@  x/G) < %(G).

Proof

The proof of (i) follows from Lemmas 4.1(ii) and 4.2.

As regards (ii), we have by Theorem 3 of [17], %, (G) = n, (G) for some

n < |V(G)|, and thus by Lemma 4.2 there exists a homomorphism G — GZ where

xC(G)=% . It follows that % 4(G) < nandso ¥ r(G) < %’S g = %x.(G).
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4.2 Odd Cycles
We now show that the property of statement (1) does hold for odd cycles. Namely,

Theorem 4.1
n
I n=%x(Cyp41) then My(Cypy1) = R

Proof

Now N, (Czp41) = % where d is the largest integer for which Cp, 1 has a (n,d)-

colouring. By definition ¥, (Cpp41) < % But by Corollary 1 of [17],

xe(C 2é+1) = 2p+l and so d must be the greatest integer such that d < P
p 2p+1
Therefore,
|
d= . ~ 2
‘\2p+lJ , ' @
k-1 '
Letg= {—J , then by Theorem 6 of [16],
p
n= xp(Cop41)=2k+1+ ¢ NE)
Now k - 1=gp+r (0 <r<p) @)
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and so it follows from (3) and (4) that,

np=p(2k+1+q)
=2pk+p+(k-1-7)

=2p+1k+p-1-r

np -k + p—-1-r
2p+1 2p+1

SO

Since 0 < r <p, then 0< P 2_ 1+—1r <1, from which it follows that,
p

Ly
2p+1

Finally, statement (2) gives d = &, from which the result follows.

4.3 Kneser Graphs of Low Order
So far we have asserted that if n = y; (G) then m,, (G) = % when G is bipartite, a

complete graph or an odd cycle. At the beginning of the chapter we posed the question
as to whether this is generally true for all graphs. The following counter example shows

that this is not the case.
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Theorem 4.2

n

() Letk>2 andn=x;(G;); then n, (G;)> -

@ %7(G3) < %:(G3).
The proof relies on the following lemma.

Lemma 4.3

There does not exist a homomorphism G; - H g )

Broof

By way of contradictiqn sﬁppose such a homomorphism, 9., gxists. Since Gg and

H g have 10 and 8 vertices respectively, 6 must map two non-adjacent vertices of G;
to the same vertex of H g . We may assume without loss of generality that

0({1,2}) = 6({1,3}) = 1. Then the five vertices of G; adjacent to {1,2} or {1,3}
(namely {2,4},{2,5},{3,4},{3,5} and {4,5}) must map to the vertices 4, 5 and 6 of H3 .
But {2,5} and {3,4} are adjacent in Gg, and so 0({2,5}) and 0 ({3,4}) must be

adjacent in H 38 ; giving a contradiction.
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Proof of Theorem 4.2

Now by Theorem 7 of [16],n=2k+ 1 + {%J from which it follows that

< g forall k > 2,

N

By Corollary 4.1, 'q,,(Gg) 2 —z Suppose ‘n,,(G;) = %; then Gghas a (nk)-

<

w | oo

colouring with

Ll

and so by Proposition 1 of [3] has a (8,3)-colouring. Lemma
4.3 gives a contradiction and completes the proof of (i).

Theorem 7 of [16] also asserts that ¥ ¢ (Gg) = ?52- . In view of the fact that %<§; then

once again invoking Lemma 4.3 and Proposition 1 of [3] gives . (Gg) > % .

Lemma 4.3 and Proposition 1 show that the circular chromatic number of Gg is greater

than g However, by Theorem 7 of [16] ¥ (Gg) =3. Thus Theorem 4 of [17]

gives ¥, (Gg) < 3. But the largest rational number < 3 with numerator

< ‘ V(G; )| =10is g, and so Theorem 3 of [17] gives the following result:

Corollary 4.2

1c(G3) = 3.
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We shall next consider the graph G; and compute its circular chromatic number.

Theorem 4.3

%(G7) = 3.

We know from Theorem 7 of [16] and Theorem 4 of [17] that . (G;) < 3, and since

G37 has 35 vertices and i’; is the largest rational number < 3 with numerator < 35, it is.

sufficient to prove the non-existence of a homomorphism from G; to H 1325 .

We proceed by assuming that such a homomorphism, 8, doesexist and deduce a

number of results given as Lemmas that are needed to prove Theorem 4.3.

But first we introduce the following two functions, ® and d. Let », v € V( G; ), then
urvisa subset of 77 and we defineo (4, v) = ']urw].

Assuming the existence of a homomorphism 6 : G; - H 13 25 , we also define

du, v) = |6(u)-6(v)|,s.

Lemma 4.4
If o(u,v)=2, thend(u,v) < 11.
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Proof
Without loss of generality let # = {1,2,3} and v = {2,3,4}. Let x = {5,6,7}, then since 6

is 2 homomorphism d(x,x) = 12 and d(v,x) > 12. But there cannot be three vertices

mutually of distance 212 in Z35, and so d(u, v) < 11.

We now define a sector in Z35to be a proper subset of Z35 of the form

[a, ats] = {a+i:.0 < i < s}, where s <34. Then a and a+s are the left and right ends

respectively of [a, a+s]. The length of the sector is s.

For any pair P of elements of / 7 , we define Gp to be the set of five vertices

{v;:1<i<5} of G; such that the triple defining v; contains P. Thus the image set
8(Gp)is, by Lemma 4.4 , contained in some sector of Z35 of length at most < 11.

We denote by S(P) the minimal such sector. Thus, although it is not necessarily true

that every point in S(P) is the image of some vertex in Gp, it is the case that the left
and right ends of S(P) belong to 6 (Gp) . We denote these by A (P) and p (P)

respectively.

Lemma 4.5

Given any pair P of elements of [ 7 thereisa pair Q disjoint from P, such that

SP) N S(Q)=92.

87



Proof
Without loss of generality let P = {1,2}. Also let A ({1,2}) = 0 ({1,2,w}),
p ({12}))=06({1,2,x})andlety,z € 7 be distinct from each other and from

1, 2, w, x. We shall show that S({1,2}) n S({y,z})= 9.

By way of contradiction suppose the sectors S({1,2}) and S({y,z}) intersect. Then all

the elements of S({y,z}) must be of distance <11 from one of the ends of S({1,2}).

Now 0 ({w.y,z}), 8 ({x),2}) € S({»,2}). But d({1,2,w}, {x,y,z}) > 12 and

d({1,2,x}, {wy,z}) 2 12; giving a contradiction.

Lemma 4.6
The sectors {S({1,x}):x €/ 7 _{1}} mutually intersect non-trivially.
Proof

We merely note that if 1, x and y are distinct, then 6 ({1,xy}) € S({1,x}) n S({1y}).

It follows that the union of the sectors S({1,x}) must be a sector of length at most 22,
and must indeed be the union of two particular sectors, say S({1,w}) and S({1,z}). We

denote this sector by S(1) =[A(1),p (1)].

Lemma 4.7
There exist distinct elements a, b,c,d € I 7 such that A().=06({1,a,0}),

p(D)=0({Lecad}).
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Proof

Now, there are at least two values of x such that A (1) = A({1,x}). Let a be that value
that maximises the length of S({1,x}). Similarly, of all the values of x such that

p (1) = p ({1,x}), let d be that which maximises the length of S({1,x}). It follows that
5(1) = S({1.a}) U S({1.4}).

And so there are vertices {1,4,b}, {1,c,d} of G; such that A (1) = 0 ({1,a,b}) and
p(1) = 0 ({1,c,d}); thus a= b and c #d. By Lemma 4.5, there is some pair {x,y}such
that S({x,y}) N S({1,a}) = J; but. 6 ({1,x,y}) € S(1) N S({x,y}), and so S({1,d})
cannot be a subset of S({1,a}). In particular, 0 ({1,¢c,d}) ¢ S({1,a}). Also, by our |

maximising choice of a, 8 ({1,¢,d}) ¢ S({1,b}). Thus, ¢ and d are distinct from a and b.

Proof of Theorem 4.3

Let a, b, c, d be as in Lemma 4.7, and consider the éector S({ef}) where e and f are
distinct from 1, a, b, ¢, d. Now the vertex{a, e, f} is adjacent to {1, c, d}and {d, ¢, f}is
adjacent to {1, @, b}. Thus S({e,f}) contains a point of distance at least 12 from A (1)
and also a point of distance at least 12 from p (1). Since its length is at most 11, it
follows that neither A (1) nor p (1) can belong to S({e.f}).

Now 0 ({1,e,/}) € S(1) n S({e,}) and so it follows that S({e,f}) lies wholly within

S(1). But 8 ({La,d})e S({1,a}) ~ S({1,d}) and 6 ({c,e,f}) is a point of S({e,}) that
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must be of distance of at least 12 from 6 ({1,a,d}). This is clearly impossible and gives

the required contradiction.

Corollary 4.2 and Theorem 4.3 show the circular chromatic numbers of the graphs G25

and G; are equal to 3. This raises the question whether the circular chromatic numbers

2k+1
Gk

of all the Kneser graphs of this form, namely , are also equal to 3. The following

section shows this to be the case. The proofs give further insight into these types of

graphs. The circular chromatic number of the Kneser graphs G,? k+2is also computed.

4.4 The Graphs G7**'and GZ*+2

The following Theorem and proof have been included in [10].

Theorem 4.4
Forallk > 1

O x(GF™MH=3.

() x(GH*?)=a.
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Proof

As already observed, Theorem 4 of [17] gives an upper bound for . (G,fk"'r) as
% (G,fk" ). However, as pointed out in the introduction Lovasz [13], showed that

x(Gg)=n-2k+2, giving x(G,fk+r)=r+ 2. We shall denote this number by .

Suppose that » =1 or 2 and that %, (G,?’”r ) < x; then there is a homomorphism

0: G,f’”r — Hfor somen, d € Z" such that -27< x.

For any directed edge we define e = (u,v) of G,fk *r we define

8(8) - rn (e(vzl—e(u)) '

Now since 0 is a homomorphism, then I',, (6 (v) — 0 (¥)) lies between d and n — d and

hence:
Lese< 2 ©®
X X

Moreover, if ¢’ = (v,u), then
5(e) + 8(e)=1. (6)
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For any directed cycle C of G,fk 7 we define the winding number

w(C)= > 5(e).
eeC

Clearly w(C) €Z* and , denoting the order of C by |C|, (5) implies:

C -DC
b cwey < @24 )
X.
Moreover, if C'is the cycle C traversed in the reverse direction, then by (6):
w(C)+w(C") = |C]. ®) -

For ease of notation we shall use I" to mean Iy, ;.
Let p= (p1,p2,........ »D2k+1) be any ordering of the elements of 72%*1 (in the case

r=1), or of all but one of the elements of 72¥+2 (in the case = 2). Then p defines a

directed cycle C(p) in G,fk” of order 2k+1, the vertices of which are in order:
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) = {Pl,Pz,----_----vpk}>V2(P)= {Pk+1,Pk+2, -------- ,sz},
v3(®) = {Poks1, P1,Poevveee ,Pk-l}:"4(P)= {Pk:Pk+1, -------- vpzk—l}:-----"-'--"
vi(p) = {pl"((i—l)k+1)’PI"((i—l)k+2); ---------------- ,Pr(fk)}, ----------- )

vor ) = {P2, P3.coovnne ,Pin} > Vo () = Prss Prazsooons Pacit} -
The argument now splits into two cases, depending on the value of 7.
Case (i).r=1.

In this case x =3. Let the ordering q differ from p by a transposition; that is for some
s, we have:

4s= Psn> 9sn= Ps, While g; = p; otherwise.
Assume (as we may do without loss of generality) that s = Zk. Then C(p) and C(q)

differ as follows:

vi(p)=vi(q) G =23)
all other vertices being in common to both cycles. Thus, C(p) has directed edges

e = m@v20) = (P, P2y 2Pk} APk41, Pra2s oo Pok1s P2k })
ey = (vp(P),v3(P) = (\Pr+1 Prt2rom 2Pk} s AP2ka1, P1s P2 Pia})

e3 = (v3(0),v4®) = ({Paks1, Pr. Paecocer Pia} » Pies Pieatseovos P21} )
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while C(q) has directed edges

A = @ @) = ({p,pase....... 2Pk} APk Pt »P2k-1, Pk} )
J2 = (v2@,v3(@) = ({Br1, Petas o Pokt> Pagsi ) Avk, PPy P 1))

f3 = (v3(q),v4(q)) = (@2k:P1:P2------1--,Pk-1}»{Pk:P@+1, --------- ,D2k-1})

all other directed edges being in common.

An example, with £ =3 and with p = (7,5,4,1,2,3,6) and q= (7,5,4,1,2,6,3), is shown in

Figure 4.1.

{7,5,4}

{1,2,6}
{236}

{5,4,1} {3,7,5}

Figure 4.1

{3,6,7} {4,1,2}
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Thus,
3 3
w(C(P))-wC@) = >.8(e;) - 2.8(f)-
i=1

i=1

3 3
But as %, =3, (5) implies that the sums Zﬁ(e,-) and 25( f;).each lie strictly between

i=1 i=1
1 and 2. As w(C(p)) and w(C(q)) are integers, the only possible conclusion is that
w(C(p)) = w(C(q)).
The above argument is valid for any pair p, q of orderings of / 2k+1 ¢hat differ by a
transposition; but any ordering can be converted into any other by a succession of
transpositions, and so w(C(p)) is independent of p. In particular,
| W(C(p)) = WC(p"))

where p’ is the reversal of p. Thus, by (8)

@= k+l

wlCp) = =~ =k+ -,

contradicting the fact that w(C(p)) is an integer. Thus our supposition that

y (G,fk"'l) <y =3 isfalse.

Case (ii). r =2.

12k+2

In this case % = 4. Let  be the element of not involved in the ordering p, and let

q differ from p by a switch; that is, for some s we have

qs= t, while q; = D; otherwise.
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Assume (as we may do without loss of generality) that s = 24+].

Comparing the vertices of the cycles C(p) and C(q), we note that

vi(p) = vi(q)
2i41(P) # vairi (@ (i =12, k)

v2i (P) = v5;(q) (i =1,2,.. k)

Thus, C(p) and C(q) have only one edge in common. An example with £ = 3 and with

[1=6,p= (8,3,5,4,7,1,2) and q = (8,3,5,4,7,1,6), is Vshown_iﬁ Figure 4.2,

{8,3,5}

{7,1,6}

(3,5.4) {6,8,3}

Figure 4.2

{1,6,8}
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We may define a sequence (C;,Cs,........ ,Cr41) of (2k+1)-cycles, with C; = C(p) and
Cr+1= C(q) and each cycle differing from its predecessor by a switch, as follows:

All the cycles have the vertices v; (p) and v,;(p) (i = 1,2,....,k) in common, while

C; has directed edges
ep = (vo; (P, v2j1(P)) €2 = (v2j11(®); V242 (P)
while C,,has directed edges

S = () Va1 @), f5 = (5 j+1(Q), v j+2 (P)):

But as x =4, .(5) implies that 8(e;) + 8(e;) and 6(f))+ S(fzj each lie strictly
between -;— and —32- . Arguing as in Case (i), we conclude that w(C;) =w(Cj,;), and -

hence,

w(C(p)) = w(C(q)).

12k+2

Now any ordering of any (2k+1)-sets of may be converted to any other by a

succession of switches, and so arguing as in Case (i),
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1
wCE) = k+ =,
giving the same contradiction as in Case (i) and showing that the supposition

xc(G,fk+2)< x =4 is false.

I am thankful to my supervisor for the elegant proof of case (1) which I have extended

to prove case (ii).

Conclusion

It is shown in [8] that that %, (G5 )= x =n -2, and this together with Theorem 4.2
shows that the circular chromatic numbers of the Kneser graphs G,fk + s G,fk +2

(k= 1),and Gg (k 2> 4) are equal to their respective chromatic numbers. We

conjecture this to be the case for any Kneser graph, namely that:

Conjecture
For every Kneser Graph, G (k > 1, n 2 2k),

%c(Gy) = x(Gg)=n-2k+2.
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CHAPTER §

Combined k-Tuple and Z,-Colourings

In Chapter 4 we posed the question whether, as an extension to Theorem 1 of [17], that

ifn= 94 (G)then n,(G) = % (statement 1). This was found to be true for bipartite,

complete graphs and odd cycles. However, it was found that it did not apply in general

to any graph (Theorem 4.2).

In this Chapter we shall show that by combining both &-tuple colourings and

Z, -colourings into a single colouring (Z nk -colouring), a generalisation to Theorem 1

of [17] is obtainable:

Theorem 5.1

X )

Letkm e Z* andn= x} (G), then 0, 1 (G) =

The proof of this Theorem relies on the following Lemma.

Lemma 5.1

Let M, ; (G) 2 2,then

Mp1k(@ 2 Mpp(G)-1..
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Proof
For some Zj, i -colouring, 0, u1(6) =M, ¢ (G).
Define the Z,,_ f -colouring 6" as follows:

Foru € V(G),

O(u) if ne0(u)

o) = {(G(u) -n)u{r} if neB(w)

where r ¢ 0 (u) such that |r—s|n= 1 for some se 6 (u).

We show that uj(6') 2 My (G)- 1.

Consider

w1 (8)=|x-y| _, forsomexe8'(u),ye 8 (v)and v € E(G).

There are two cases to consider depending whether neither x nor y is equal to 7, or one
of x or y=r. Note that it is impossible for both x and yto edual r, since at most one of
u and v can have 7 as a colour.

Suppose neither x nor y is equal to 7. In this case x € 8 (¥) and y € 6 (v). Thus,
w(8")=|x-yp| _, =min{ |x-y[,n-1- |x-y|} 2 w1 (8)-1=M,;(G)-1
Ifone of xory=r, sayy=rthen3cee(u)andn € 6 (v). Thus,

w0y =|x-r| _, =min{ |x-r|,n-1- |x-r|}.
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Now |x—r| 2 |x-s| = |r—s|=|x-s| - 12 pn(8)-1=M, (G -1

Next considern— 1 - |x—r|. |

Now if x <7 then |x—7| < |n-x| andson—1-|x-r| 2u1(0)-1=My;(G)-1,
whereas if x > 7 then |x—7| < |x| andson—1-|x-7| 2pu1(8) - 1=M, £ (G)- 1.
Thus both cases yield uj(8') 2 My, £ (G) - L.

Finally, we have M1 £ (G) 2 11(6") 2 My, £ (G) - 1, from which the result

follows.

Proof of Theorem 5.1

Recalling thaty ;' (G) is the smallest value of  such that G can Z n, k -coloured with

B1(8) 2 m, we have n,  (G) = ——— s - = 2L
k

We now proceed and establish the reverse inequality. Assume to the contrary that there

is some Zy, f -colouring, 6 such that

n - n
m® My G

<2 Then M, 1 (G) > m and so by Lemma 5.1 M,,_ 1 (G) 2 m.
m ’ ,

It follows that there is some Z;,_| j -colouring, 8 such that p;(6') 2 m. Thus,

% (G) < n—1; giving a contradiction.

The case m =1 gives the following corollary.
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Corollary 5.1

Ifn =y (G), then M, 1 (G) = %k (G).

k kth

Thus n" -chromatic numbers, , & (G), generalise the k™" -chromatic numbers, x ;, (G).

Theorem 5.2

Letn, kand m € Z¥ suchthat, n 2%%(G)andm < k-~ 1. Then,

Nn,m (€Y MNn,m+1 @)

Proof

For some Z; y,1-colouring, 8, u1(8)=Mpp1(G) = |x—y|n for some x € 6 (u),

y € 6 (v) and uv € E(G). Removing any one of the colours of 6 from each vertex
defines a Z;, p, -colouring, say 6. Thus,

() = | x—y|n < u1(8") < My, (G) from which the result follows.

In Chapter 1 we defined (k, 4y, d, ,n)-colouring of a graph to be a Z nk -colouring 6,

such that 1) (8) 2 d) and puy(0) 2 d,. A (k 1, 1 ,m)-colouring of a graph is simply

a k-tuple colouring ( 7 > % (G)). Using the alternative reformulation (AF1 of [16]), it
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isa homomorphism 0:G-> G,?. Similarly a (, 1, d ,k)-colouring of G is a

homomorphism 6:G — ;8 ,';

Let_—n- < L and x, y eZ,,.Iflx—y]n 2 d then

5]

> d'.
!

n

Proof

The proof is analogous to that of Proposition 1 of [3].

Leta=[g—xJ andb=[lyJ.
n n

Without loss of generality assume x > Y;thend <x-y<n-d

Therefore,

b+d = [lyJ +d < F—yJ+ [ldJ < [l(y+d)Js [n—xJ= a
n n n n

Also,

nl 14 nl , ! 7
a=[— Js [—-—(y+n—d)J < l—y+n’—dJ= [—yJ tn-d'=b+n-q.

n n

Combining the inequalities gives
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CHAPTER 5

b+ 4d < asb+n -g
and so

d<a-b< n-g, giving]a—bln, 2 g

We now give an analogue to Proposition  of [3] in this more general footing of
(n, dy,d,, k)-colourings.

Theorem 5.3
Letn, dy,dy, n', d), dj, andk e Z* such that G hasa (n, dj,d,, b)-colouring, 6|

where 2 < i, and = < i,; then G also has a(n, d{,d:?, k)-colouring.
dl dl d2 d2

Proof
Let © bea (n, dj,d,, k)-colouring of G. Define the mapping

0": (G) > k-element subsets of Z,,:
, ’ nl ’
o' (u) = ([%ul J [;uz J e : l—uk J ) (u; € 6(w))

Now [iu,-Js [inj =nforalll <i<k As will be shownlaterp.z(e’) > d;.
n n .

. And so the elements of 6 (u) are distinct. Thus, 0’ is indeed a mapping into £-element

subsets of Z,, .
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We next show that u,(8') 2 dI' and py(0') 2 d'z.

For the former we have for some x € 8 (¥), y € 0 (v) and uv € E(G),
o[z
n n

by Lemma 5.2 that p;(8') 2 d1'. Similarly, for the latter we have for some

By definition [x~y| 2p;(6) 2 djand it follows

n

and since |e—f|n > d,,

!
n

e,fe0@)andu € V(G), uy(0') = H%eJ—BT'fJ

the result again follows by Lemma 5.2.

In a similar way as with the circular chromatic number, . (G) for (n,d)-colourings, we

define the k-circular chromatic number, i 4. % (G), for (n, dy,d;, k)-colourings :

k,d, % ¢ (G) = inf{ ﬂn,k(G) ‘ne Z+} =inf{Adl: G hasa(n, d},d,, k)-cblouring }.
1

Finding analogues to Theorem 3 of [17] and Corollary 2 of 3] for these numbers is

complex in this general form. However, if d) = d such an analogue is obtainable.

For these (n, d, d, k)-colourings, we define the k1-circular chiromatic number,

% (G),

#xc (G) = inf{ %: G hasa(n, d,d, k)-colouring }.
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Let G[ K}, ] be the lexicographic product of G with Ky, . That is, G[ K, ] is the graph
obtained by replacing each vertex of the graph G with the complete graph K, such that

whenever vertices # and v are adjacent in G, then every vertex.of each of the two copies

of K} are adjacent (see [S] and [6]).

Lemma 5.3

Let b= |V(G)|, then

min n

L, ()= o
i Xc(G) 1$nskb{ r G hasa(n,>d,d,k) colouring }.

Proof

Clearly G has a (n, d, d, k)-colouring iff G[ K, ] has a (n,d)-colouring. Now G[ K ]

has kb vertices and the result immediately follows from Corélléry 2 of [3].

We generalise (n, d, d, k)-colourings and consider (n, pd, d, k)-colourings (p= 1).
For these (n, pd, d, k)-colourings, wé similarly define kp-circular chromatic number,
]I;Xc (G))

Py (G) = inf{ %: G hasa (n, pd, d , k)-colouring }.

Pc(G) = inf{ %: G has a(n, pd, d , k)-colouring }.
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Theorem 5.4
Let G be a connected graph. If G has a (n, pd, d, k)-colouring then G[ K . ,-1] hasa

(n,d)-colouring.

Proof

Let u be a vertex of G and K ,’r‘ be the corresponding complete graph in

+p-1
G[Ky4p-1] Similar to the construction on page 87 of section 4.4, we define a sector
of Z,to be a proper subset of 1" of the form [a, T,,(a+s)] = {T,(at)): 0<i<s},

where ae I” and s <n. Then a and T, (a+s) are the left and right ends respectively of

[a, T, (a+s)] and the length of the sector is s.

Now let8 be a (, pd, d , k)-colouring of G. Let { 7,0, 7)., T} (where ¢
depends on u) be the set of all maximal sectors of length at least 2(pd — 1) and
containing no element of O (). (That is, each such sector is long enough to contain at
least one element distant > pd from any point in 6 («)). Since G does not contain an

isolated vertex, then there must always be at least one such sector, or the colouring

can’t be done. Assuming that Tu(l) , Tu(z) yeerinnn , T, ,,(Q) are in cyclic order, then there are

unique sectors in between, s®O s> . ,89  such that:
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0 (7O, 5P 1P D, ... T Sy in cyclic order, are a set of sectors
that partition Z,.

@)  EBach SO =[a®,bP7is such that af’, 5P e 6 ().

L

@iii) No [d,S") , b,Si )] contains any element of © (v) for any v adjacent to u.

Define a Z, -colouring 0, of G[ K 4 ,—1] as follows:

We take any one of the S,Si) , say S,Sl) , and colour £ vertices of K}: + p_lwith those of
0 (u), and the remaining p — 1 vertices with

00 +d), T,(6P+24),....... T, 00+ @ - 1)a).
We need to establish that |8'(x)— 6'(y)|, 2 dforallxy € E(G[Kg+p-1]).

By construction of @ it is sufficient to show that | 8'(x)— 8'(y) |’2 > dforall

xe V(K;c‘+p_1),ye V(K,‘;+p_1) and uv € E(G).

Since all the sectors {S,Si) } and {Sg) }must be of distance > pd from each other, we

only need to consider the sectors

S,= SO U L,(60+ad), T,(6P+ @ - D] =[P, T, (6P + (o - 1)d)]
and

S,= SO U [T, (6P +d), T3P+ @ - D] =12, T, (6 + (- 1)d)]
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where we have chosen a‘(,D to be the first element contained in© (v) and to the right of
the sector S, . (Clearly, since v is adjacent to u the sector S,, does not contain any

elements of 0 (v)).

By symmetry it is enough to consider the distance between the right end of .S, and the

_ left end of §,. That is we need to prove that 'a‘(,l) -T, (b,sl-) +(p-Dd)| =2 d
n

Without loss of generality we may assume,

a2 L (60 + (- ) =5+ (b~
In view of the fact that 6 is a (n, pd, d, k)-colouring and u and v are adjacent then
pd < a\(,l) - b,sl) < n-pd
It follows that

d < aV-P+@-Dd)< n-@2p-1)d<n-d
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Investigation into examples of (n,d)-colourings of G[ Ky 1 ,-1] suggest the converse to
Theorem 5.4, namely ‘If G[ Ky 4 ,1] hasa (n,d)-colouring then G has a (n, pd, d , k)-

colouring’ does also hold. This together with Corollary 2 of [3] gives the following

conjecture.

Conjecture

Let b=|V(G)

, then

o { 2. G hasa (n, pd, d , k)-colouring }.

Py ()=
@ o pwrpon la

Indeed Lemma 5.3 asserts this to be the case for p = 1.
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CHAPTER 6

Circular Distance Graphs

and Subgraphs of Kneser Graphs

We begin this Chapter by showing that the circular distance graph, H ,:' is a subgraph of

the Kneser graph Gy .

Lemma 6.1

Forallk > 1,n 2 2k H} C G]’c'.

Proof

Consider the constant-step subgraph , C; , induced by the displacement sequence
1k

x; = {LL1,....... ,n—k+1}e S (see section 3.10 for a remirider of constant-step

subgraphs). Now two vertices v, , and vy , (b > a) are adjacent if and only if b —a is
at least k and at most n — k. Hence , C ,;' is isomorphic to the graph formed by its

“first’ elements where two such elements a,b € I” are adjacent according to adjacency

: n n n
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6.1 Relation Between , Cy, SP; and Hy

In section 3.9 we defined and studicd spaced subgraphs, SPk" . The following result

asserts that these subgraphs are in fact isomorphic to the c;ircular distance graph, H Z.'

xR~

(where from section 3.9 »’ =z , k'=— and g = gcd(n,k))..
q

Q

Theorem 6.1

Forallk > 1,n > 2k, SP" = H", .

Before giving the proof, we introduce the mapping 6:V (SP,: ) - V(H,:',' ) defined as

follows:

v | y
for each u = {a},a;,...ar}e V(SP; ) ={v, s :acl"}, 0(u)=T, [Za,-] .
i=1

The proof relies mostly on the following two Lemmas.

Lemma 6.2

The mapping, 0, is a homomorphism.
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Proof

Let u and v be adjacent in SP,'. We need to show that 0(u) and 6(v)are adjacent in
HY . Thatisif uMv=0 then |8(v) - 8(u)| , 2"

Without loss of generality let # and v be distance ‘a’ apart, u = { x;, x5, ..., x; } where

Then 0(x) =T, [f;x,-] and 0(v) T, [k’a + ‘Ex,-] , and so
i=1 i=1
8(v) —6(u)=T, (k'a) . Now let p be the non-negative integer such that
K a-pn' el”. Then,
T, (k'a)=Ka-pn', and [8(v)-0()| . = min{(k'a-pn'), n'~(k'a-pn')}.
Now since k'a—pn’'el” and a#n’ (by Lemma 3.12, a= n’ would implyu¥y),

it follows that:

) p<£€<£andsopsk'—l.
n q

(i)  ka> pn=kpd+pr and so a>pd+£;c£ .

(i) ka-pn<nandso, ka<(p+1)n:(p%1)kd+(p+l)r

giving a < (p+1)d + (p+l)% :
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Now % = i—’,‘is not an integer because ged (%'’ )= 1and from @O p<k. ()

By way of contradiction, suppose that lo(v) -0 () ln, < k', then either

k'a-pn' < k' or n' - (k'—pn')<k’.That is ka — pn <'Iforn—(ka—pn)<k.
Case 1. Ifka-pn<k.

This gives ka < k+pn = k+ kpd + pr and so a < 1+pd+%. Combining this with
(i), gives

pr

d +
paty

< a < 1+pd+£kl.

But from (1), —il is not an integer. Hence, a = 1 + pd+ [%J :
Consider the element xj/_ ptaofvertex v, where 1< p <k’ -1,

wpta =(k-pd +| EoBX ;P)’J+1+pd+[% |

=k'd-pd + [r'—%’—'J+ 1+pd+ [%J

=pn - [-le -1+1+ [%J ' (since % is not an integer)
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But n'=xpy=Fk ' element of u. It follows that xy € u[1v and so giving the

required contradiction.
Case2. If n-(ka-pn)<k
This giveska>pn+n—-k =(p+ 1)kd + (p+ 1)r —k, and so _

(p+1)d+(p+l)% —1 < a. Combining this with (iii), gives
(p+l)d+(p+l)i -1< a < (p+1)d +(p+l)%
from which it follows that

(p+Dd+ {(;;H)ﬂ <as<(p+1)d+ [(p+l)ﬂ-

Hencea=(p + 1)d + [(p+1)%J =Xp41,wWhere 0< p<k'-1.

Consider the " element , T}, (x; +a) of vertex v. Now
L,(x +a) = F,,(n+xp+1)= Xp4l -

That is the & element of v is precisely the (p+1)" element of u. Hence,

Xp41 € u[1v, giving the required contradiction.
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Lemma 6.3

() The mapping, 8 , is injective. ’

() Letwu,v eV(SP,?). If ()0 (v) s an edge of H;:,' . then uv is an edge of SP; .

Proof

Without loss of generality, let 4 and v be as in the proof of Lemma 6.2. To prove (i), we

need to show that if 6 (#)=6(v)thenu =v. Now8(v) - 8(u) =Ty (k'a) = k'a-pn'.
.It follows that since Q(u)=6(v) ,then k'a= pn'and so .ﬁ']k'a. But gcd(n’,k’)=1,
hence n'|a . In view that ael™ itfollowsthata =n' and sou=v.

For part (ii) we need to show that if |6‘(v) - G(u)ln, > k'then u\v=0. .

Assume the contrary. Then there exist i, j (17, j <k)such that x; =I, (; +a).

There are two cases to consider.

Casel. If x; +a<n.

A Ljﬂ‘ T @
> (j-id+ [(j—i)—;—J, | )
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Combining (3) with that of inequality (iii), gives
(j—i)d’+ {(j—i)}:-J <as<(p+)d+ [(p+l)%J. @)
Hence, j.—is pt L
Nowif j—i = p+ 1, then from (4),
a=@+1)d+ [(p+l)%J > @P+ld+(p+ 1)% — 1, giving

ka>(p+1)d+ @+ 1)r—k= pn +n—k. Thus n— (ka-pn) <k, and
Ie(v)—e(u)ln, = min{(k'a-pn') n'-(k'a-pn')} <n'- (k'a-pn') <k,

giving a contradiction.

It follows that
j-i g p ' : ®)
Now,
g2
< (-id + [(j—i)% +1
and from (5) this gives

aépd+l-‘2—rJ+1
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< pd + %+ 1 (since % is not an integer).

This gives
ka-pn <k
Thus
|9(v)—9(u)|n, = min{{k'a-pn’) n'~(K'a-pn')} < Ka-pn' <k,
giving a contradiction.

Case2. If x; +a > n then (2) becomes

a= kd+r+ (j—i)d+[%J-{%J

(k+j—i)d+ {(k+j)%J _ EJ

and by substituting j + & for j in (4), the argument follows as before.

Proof of Theorem 6.1

In view of the fact that both the graphs SP,:’ and H g,’ contain the same number of

vertices, the result follows from Lemmas 6.2 and 6.3.
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In the proof of Lemma 6.1 we showed that the constant-step subgraph, , C ,:' is
isomorphic to H ,’c' . This raises a question whether all constant-step subgraphs are

likewise isomorphic to H ,'c' The following confirms this to be the case.

Theorem 6.2
x,Cy = HY forall x; € 8.
Proof

We first show {T,(ad):1<a<n} = I". Let T, (ad)= [,(bd) with 1 < a<b< n.

Then bd= ad + mn (m <d). Since gcd(n,d) = 1, it follows that n\ b - a and so b =a.

In view of this we let Wa= VI (ad),x, SO that {wg:12a < n} =V(x, CZ ).

We assume the vertices are placed around the circle in this cyclic order.

We next show for each 1<a<n, the set of vertices adjacent to w, are.:

X = {wa+,-:ksi3n—k} = {Waiks> Watk+l seeeeeerem s Wasn—k }

From this it would follow that , Cp =H/.
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By symmetry it is enough to consider one vertex , say w, and show that its

‘neighbours’ are precisely the vertices of X.

By way of contradiction suppose w, N w,,; # & for some k <i <n-k.
Then I‘,,(ad+pd) = I",,(ad+id+qd) for some 0< p,q<k-1, (p#gq).

It follows that T, (pd) = T,,(id +qd). .

Now
p<i+qs<n-k+k-l<n.

Hence

pd + mn =id + qd  forsomem<d,
from which

nm=(i +q-p)d
and so d|nm.

But since ged(n,d) - 1, then d|m; giving a contradiction.

Thus w, is adjacent to each of the n-2k+1 vertices of X.

Now for 1 < b <k—1, the (k+1-b)" element of W, 44—k is [,(ad) , the first
element of w,, whilst the (k— )" element of w,,; is I,((a + k~1)d ), the last

element of w,.
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It follows that for 1+n—k <i<n-landfor1<i<k-1 that w, nw,,; #J,

and so the vertices in X are the only ‘neighbours’ of w, .

Theorems 6.1, 6.2 and 3.8 show that , C; (of Theorem 3.8) and SP;’ are both

isomorphic to the circular distance graph H Z, , whilst their ‘colours’ at every vertex are

of maximum distance apart; that is they are also subgraphs of the Schrijver graph S,? :

On the strength of this and consideration of examples we make the following

conjecture.

Conjecture

() Thereexistsa xs€ S suchthat , Cy = SP;.
(ii) Let H be a subgraph of G, isomorphic to H ; then H = x, Cy for some x; € 8.
(iii) The size of the family of subgraphs of G; isomorphic to H? is ()

k k 2

(where ¢ is Euler’s function).
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Example

Figure 6.1 shows 3 ‘copies’ of H Z contained in GZ together with their fespective

difference sequences.

{3,6} 2.4}
{7,3} {6,2} ’
2 A\\ {4.6)
4.7 - {2,5} {57} 6.1
(1,4) .0 L 3.,5) 13
_ an
x;= {3,4} | {2,3} %= {2,5)
{6,7} {3,4}
Figure 6.1
X = {1,6} -

{5,6} {4,5}
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6.2 Properties of H;

Since H = SP;", Theorem 3.6 shows the independence mumber of H " is also equal

e

to k’. This result readily extends to all integers k > 1, n > 2k.

Theorem 6.3 Forallk > 1,n 2 2k,
@ aHp)=k
(ii) Every vertex of H ,': is contained in a maximum independent set.

Proof.
Let X be an independent set, and a and b be the smallest and largest elements of X

1espectively. Now, since ¢ and b are independent vertices of H?, it follows that
|b - a|n < k . By symmetry, we can assume without loss of generality that

b - a|n =|b-a| = b-a. Since all the vertices must lie between a and b, it follows

there cannot be more than k vertices.

Finally, let a be any vertex of H ,f ,then ¥V, = {1‘,, (a +i):OSi <k- 1} 18 an independent

set containing a of cardinality k.
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Since H Z has n vertices, Theorem 6.3 immediately gives the following result.

Corollary 6. 1 u(HZ) = %

Theorem 6.4 Forallk > 1, n 2> 2k,
n
Xy (Hp)= 7

Proof

By Lemmas 1.1, 3.5, 6.1 and Corollary 6.1, we have

= WHPSAFHD <%7(Gy) =

=N

n
k
|
By Theorem 6 of [17], the circular chromatic number of H ,’c' is also % Recalling that

a graph G is star extremal if ¥ f (G) = %.(G), it follows that:

Corollary 6.2 The graphs Hy, ., C; andSP are star extremal.

Theorem 6.5

Let n and k be positive integers such that k21, n> 2k . Then, ¥, (H}) = Ir%_l .
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Proof

For convenience, we write ), to mean ¥,,, (H g ), and similarly for % f-
The method of proof'is to show that y,, > ‘V%] and then exhibit an m-tuple colouring

. mn
using [7] colours.

By way of contradiction suppose %, < (%1 .

Now if k divides mn, then ¥, < % . In view of the fact that ¥ f= %, it follows that

Lo Xf < Xm < @_ =2 ; giving a contradiction. WHilst, if £ does not divide mmn,
k m km k
then
mn mn mn n Xm mn _n .
<s|—|-1=|—|<—,andso — = < == < — = —; again
Xm S 17 {ka kM S T im0

giving a contradiction.

Thus we conclude ¥, > [—’iﬁ—‘

To complete the proofit is sufficient to demonstrate an m-tuple colouring of H ,2' using

mn
— | colours.
[ k ]
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To achieve this we use the reformulation of an m-tuple colouring given as definition

AF1 of [16]. Letting p = [%’-’--l , we show the existence of a homomorphism.

¢: H - Gi.

< 2 and so by Proposition 1 of [3] there is a homomorphism from H z to

Now n
k m

HE . Composing this with the homomorphism H to GPE constructed in the proof of

Lemma 4.2 gives us the required homomorphism ¢ .

Of course, the result that the subgraphs , C l? and SPk” also possess this

m™ -chromatic number follows immediately.

Criticality

We next show that when gcd(n,k) = 1, then H ,:’ is both ¥ g-critical and ¥, -critical in

the sense that removing any vertex and its incident edges reduces their respective

chromatic numbers.
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Theorem 6.6

Let » and % be positive integers such that » > 2k and gcd (n,k) = 1, then the graph H ,2'
is y -critical.
Proof

Let H be the subgraph of H , obtained by removing a vertex v € V (H ,:') =1" and its

incident edges.
’ n n .
Now by remark 5 of [3] %, (H) <%e (Hk )= e Also as H has n — 1 vertices, then

there exist positive integers a and b, such that

xc (H) =% where a < n-1

Suppose that . (H) = . But since gcd (n,k) = 1, then @ 2 m; giving a
[+

contradiction.

Corollary 6.3

Let » and k be positive integers such that 7 > 2k and ged (n,k) = 1, then the graph H Z

is ¥ s -critical.
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Proof

By Corollary 4.1(ii) ¥ r(H z) Sxc(H Z ), and so the result immediately follows from

Theorem 6.6.

Note that if ged (n,k) > 1, then H ,'c' contains a subgraph isomorphic to ,Z,' . It follows

that the condition ged (7,4) — 1 in Theorem 6.6 and its Corollary 1s essential.

The subgraph of Figure 6.1 induced by the difference sequence x3= {3,4}, is also the
* subgraph SP27 and that of Sg of section 3.8. In that section we posed the question

whether we can reduce the number of vertices of § ,’:d (= x, Cfd = SP,fd + )

while maintaining the same fractional number. As this graph-isisomorphic to H ,’:d +l,

then Corollary 6.3 indeed asserts the answer is no.
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GLOSSARY

GLOSSARY

circular chromatic number is defined asy, . (G) = inf {n,(G) : n e Z* }
circular distance between two elements x, y of / m is |x - y[n )

circular distance graph denoted by H ", has vertex set Z,, and vertices x and y are

adjacent iff |x—y|n >d.

circular norm - Givenxe Z,, we denote by I',,(x) the integer representative of x
belonging to I" (= {xec Z': x < n});ifxc Z, we abbreviate I, (x(modn))to T[},(x).

The circular norm is then defined as |x|n = min {F,, (x),n-T, (x)} :

constant-step subgraph — Given a difference sequence x; , the constant-step subgraph

x, Cg » is the subgraph of Gy induced by the vertices of the form v, ., for some

aecl”.
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cyclically equivalent — Given any a € I"and any d € ;D, we recall that v, 4 is the
vertex of dS; whose displacement sequencé starting from g is d. If

Va4 d. =Va, d,,then d, has the same elements as d; in the same cyclic order; that is,
a;,a, a,,4;> 2

d;and d, are cyclically equivalent.

difference sequence is the k-sequencex; = {d,d,......... ,d,T,((n-k+1)d)} where

de g(n).

difference set - Let x={d;,d;,......... ,dy } be a displacement sequence. Its difference

ptq :
set is defined as X = { Ddr). 1sp<k 0<gs kfl}
i=p

displacement sequence - Let v ={a,a,,...,a;} be a vertex of G,'c' . We use the

convention that its elements are listed such that they are in the same cyclic order as the

cyclic order obtained when they are written in monotone increasing order. Given any
a v, list the elements of v € V[ G,': ), starting from a as ay,a;,...,a; where a; =a. The

displacement sequence of v starting from a is defined as the sequence

d={d.d;,....dy}where d; =T,(a;41 —a;) (1<i<k-1) and dy =T, (a; —ay).
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Euler set € (n) is the set of positive integers that are less than 7 and relatively prime to »n.
fractional chromatic number of G, denoted by x 7 (G) is the inf {M@ :meZ +} )
m .

graph homomorphism, 6,is a mapping 6:G — H such that 8(«)and 6(v) are adjacent

in H whenever u and v are adjacent in G.

independence number, o.(G), is the size of the largest independent set of vertices of G.

K* chromatic number of G, denoted by 7y (G), is the least number of colours needed

for an k-tuple colouring of G.

k-circular chromatic number for (n, dy,d,, k)-colourings is defined as

kd, Xc (G) =inf{ Nnx(G):ne Z"} =inf{ dl: G has a(n, dy,d;, k)-colouring }.
1

kl1-circular chromatic number is defined as ,:xc (G) = inf{ %: G hasa(n,d, d, k)-

colouring }
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k- chromatic number xf (G), is the smallest value of 7 such that G can be Z nk-
coloured with p;(8) > m, where pu;(8) =min{| up—v; ’n: uj € 6(u), vj € 6(v),

uve E(G)}.

Kneser graphs -Let 1" = {xeZ': x<n},and I} denote the family of subsets of

I" of cardinality . For k >1 and n >2k we define the Kneser graph, G,: whose

vertex set is / Z , and two vertices are adjacent iff they are disjoint as subsets.
kp-circular chromatic number is defined as ixc (G) = inf{ % : G hasa(n, pd, d, k)-
colouring }

k-tuple colouring of G is an assignment of k distinct colours to each vertex such that no

two adjacent vertices share a colour.

n-chromatic number of G - Let n be such that there exists at least one proper colouring

of G (i.e. 4 (G) < n) and d= max{ & : G has a (n, § )-colouring}. Then the n-chromatic

number is defined as N, (G) = %
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(n,d)-colouring of G is a Z,,-colouring 6 such that p(8) = min|6@)-6()| = d

(where the minimum is taken over all pairs u, v of adjacent vertices).

(n, dy,d k)-colouring of a graphis a Z, ; -colouring 6, such that p; (0) > d; and
My () 2 dy, where 1 (8)=min{|u;-v; |n; uj € 0), vj € 0(), uweE(G)),
u2(6)=min{|u,-—uj In: uj, uje O(), i # j,ueV(G)}and

n 22d;k

n¥ _chromatic number of G - Let C nk denote the set of all Z,, x -colourings of G.

Assume that 2k < % (G) < n, so that C,, ; contains at least one -tuple colouring. Let

ui(6)=min{|9(u,-)—6(vj)ln: u; € O(u), v; € 6(v), uweE(G)}and

max
My (G)= 0eCp 11(0). The n¥ -chromatic number of G is defined as

n

Npk(G) = m

overlap fractional chromatic number for (mq,q)-overlap colourings (for some integer

mXgq G)
m

m> 1) is defined as X £ (G) =z‘rgf{ :qu*} where
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m%q(G) = Xmg,q(G), the smallest number of colours needed for a (mgq,q)-overlap

colouring.

(p,9)-chromatic number of G, denoted by  , ,(G), is the smallest number of colours

needed for a (p,g)-overlap colouring.

(p,q)-overlap colouring is an assignment of p distinct colours to each vertex so that any

pair of adjacent vertices share exactly g colours.

rotation subgraph - Given any displacement sequence, d Qf a vertex of the Schrijver

graph, 487, the rotation subgraph, q Ry, is defined to be the subgraph of 4§ ;

induced by the vertices of the form v, g for some ae€ n,

Schrijver graph — For 1<d S[%J , we define the d ™ Schrijver graph as the induced

subgraph, 48 ; of G whose vertex set is

VaSg)={vel; :Ii—jlnzd (i,j ev)}
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spaced subgraph , SP k" is the rotation subgraph induced by the displacement sequence,

s={d,,..dy}, where dj=d+ [@J - [%J (J=1,....,k).

star-extremal — A graph, G is star-extremal if its fractional and circular chromatic

numbers are equal: % r(@G) = %:.(G)

subsequence of a displacement sequence, x = {dh dy,n... ,dy }is a sequence of

clockwise and ‘consecutive’ elements of x. That is a sequence of the form

{dr(,-),dr(,-+1), .......... >4 (it j) } , forsome 1<i<kand 0< j < k-1 .Here I is taken

to mean I .

Zn-colouring of a graph is a function 6: V(@) » 7,

zZ n, k -colouring of a non-null graph G is a k-tuple colouring of G using colours from

Zy (n > 2k).
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