
Open Research Online
The Open University’s repository of research publications
and other research outputs

An empirically-based debugging system for noviceprogrammers
Thesis
How to cite:

Hasemer, Tony (1983). An empirically-based debugging system for novice programmers. PhD thesis The
Open University.

For guidance on citations see FAQs.

c© 1983 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

D 5 I 2 S 5 M if

UlN/B>eSTRlCTED

An Empirically-Based Debugging System

for Novice Programmers.

Tony Hasemer, B.A., M.A.

This thesis is submitted in fulfilment
of the requirements for Ph.D. in Psychology,

30th September 1983.

ProQ uest Number: 27777203

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27777203

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

ACKNOWLEDGEMENTS.

I would like to thank the following for their help:

Marc Eisenstadt, whose enthusiasm, encouragement, and
common sense gave me the strength to carry on.

Danny Waite, who built the equipment which recorded my
student subjects' interactions with MacSOLO/AUEAC. His
machine is a mathematical impossibility, and works
perfectly.

Hank Kahney, whose experience with detailed protocols helped
me turn hours of recorded speech into a sensible
chapter 3.

Alexander Kahney, who monitored the "experts" experiments,
transcribed all the data, and drew some very elegant
diagrams.

Tony Steyger, experimental subject extraordinaire, who
caught obsessive hacking from MacSOLO/AURAC and asthma
from my cat.

Ann Jones, who shared the traumas of running two series of
experiments and who never took the slightest notice of
my grumbling.

Martin Levoi, whose willingness to interrupt his own
research in order to massage the PDF-11/VAX—750
operating systems saved me many a long hour of
frustration.

ABSTRACT

The research described here concerns the design and

construction of an empirically-based debugging aid for

first-time computer users, integrated into the Open

University's SOLO programming environment. Its basis is an

account of the processes involved as human experts debug

faulty code, which account was later found to be supported

by empirical tests on human experts. The account implies

that an understanding of the intentions of the programmer is

not essential to successful debugging of a certain class of

programs. That class comprises programs written in a

database-dependent language by users who are initially

completely computer-naive and who during their course become

competent to write simple programs which embody one or more

basic AI techniques such as recursive inference. The

debugging system, called AURAC, incorporates an explicit

model of the debugging strategies used by human experts.

Its understanding, therefore, is of programming in general

and of the SOLO environment in particular. We present in

the process a broad taxonomy of naive users' errors, showing

that they can be divided into types, each type requiring a

different debugging approach and indicating a different

degree of expertise on the part of the perpetrator. SOLO is

a conveniently delimited though nonetheless rich problem

Page 2

domain.

Also described is a new version of SOLO itself (MacSOLO)

which incorporates a large number of traps for the simple

errors which plague novices, thus enabling AURAC to

concentrate on the more interesting programming mistakes.

AURAC is intended to operate after the event rather than

whilst a program is actually being written, and is able via

analysis of programming cliches and of data flows to isolate

errors in the user's code. Where AURAC cannot analyse, or

where its analysis yields nothing useful, it describes the

corresponding section of code instead, so that the user

receives a coherent output.

MacSOLO and AURAC together form a unified system, based

upon the principles of Simplicity, Consistency and

Transparency. We show how these principles were applied

during the design and construction phases.

CHAPTER 1 INTRODUCTION AND OVERVIEW

1.1 THE PROBLEM............1-1
1.2 THE APPROACH.................................... 1-5
1.2.1 Philosophy................... 1-5
1.2.2 System Organisation 1-10
1.3 SYSTEM HICHLICHTS 1-14
1.3.1 The SOLO Context............................. 1-14
1.3.2 MacSOLO.....................................1-21
1.3.3 Debugging: AURAC 1-25
1.4 RELATED RESEARCH 1-31
1.5 OVERVIEW OF REMAININC CHAPTERS 1-42

CHAPTER 2 MACSOLO

2.1 THE SOLO K E R N E L 2-1
2.2^ DESICN PRINCIPLES................. 2-8
2.3 EXTENSIONS.....................................2-13
2.3.1 The Editor................................... 2-24
2.3.2 Error Traps And HELP......................... 2-26
2.3.3 Scope Of Variables And System Switches 2-30

CHAPTER 3 EMPIRICAL OBSERVATIONS

3.1 ERROR TAXONOMY...................... 3-1
3 .1 .1 Simple Syntactic Errors 3-4
3 .1 .2 Higher-Level Syntactic Errors 3-5
3 .1 .3 Breakdown Of MacSOLO/AURAC Users' Actual Errors 3-6
3 .1 .4 Cliche E r r o r s............................... 3-12
3 .1 .5....... Data Flow Errors.......................... 3-14
3.2 EXPERT DEBUCCINC STYLE 3-15
3 .2 .1 The Sample Program............................3-15
3 .2 .2 Program Specification................. 3-18
3 .2 .3 Program Errors............................... 3-23
3 .2 .4 The Protocols 3-29
3 .2 .5 Results, And Comparison Of Them With The

Methods Of AURAC............................. 3-44

CHAPTER 4 AURAC

4.1 ERROR FRAMES................... 4-2
4.2 MODULE 1: HICHER-LEVEL SYNTACTIC ANALYSER . . . 4-11
4.3 MODULE 2: CLICHE ANALYSIS 4-27
4.4 MODULE 3: DATA FLOW ANALYSIS.................... 4-42
4.5 CANONICAL ALCORITHMS........................... 4-48
4.6 THE LIBRARIES................................. 4-54
4.6.1 Subtraction................................. 4-54
4.6.2 Collins & Quillian............................4-61
4.6.3 Schema Matching............................. 4-62
4.7 PRESENTATION OF RESULTS: IN F O R M................ 4-66

Page 2

CHAPTER 5 AURAC AND MACSOLO IN USE: A SESSION TRANSCRIPT

CHAPTER 6

6.1
6 . 2
6 .2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.3

A CRITICAL APPRAISAL OF AURAC

THE ACHIEVEMENTS................................6-1
AREAS FOR FURTHER IMPROVEMENT.................. 6-5

Inability To Cope With Certain Projects 6-5
Inability To Discriminate Among Certain Cliches 6-6
False Alarms..................................6-9
More Sophisticated Reporting Of Analyses . . . 6-12
Alternative Test Inputs 6-17
Data Flow Anomalies................... 6-17
Algorithm Variants 6-18

FUTURE DEVELOPMENTS AND EXTENSIONS TO OTHER AREAS 6-20

APPENDIX A REFERENCES

APPENDIX B TWO SUBTRACTION PROGRAMS

APPENDIX C EXERPT FROM EXPERIMENTAL SUBJECT NOTES

APPENDIX D SELECTION FROM AURAC CODE

APPENDIX E THE REMAINING PROTOCOLS

APPENDIX F THE SPELLING CORRECTOR

APPENDIX G SIMPLE SYNTACTIC ERRORS,

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 THE PROBLEM

When computer programmers write programs, it is often the

case that the programs do not work as expected. Experienced

programmers have their own personal techniques, often

involving the use of special facilities in the programming

language concerned, for finding and curing these "bugs".

Previous research (see below) has concentrated largely on

assisting relatively experienced programmers to produce

completely bug-free programs as rapidly as possible: by

constraining them to write programs in an approved style;

by providing an automated assistant which can derive a

representation ("understanding") of the intended purpose or

function of the program itself; or by exhaustive

demonstration that the completed program will operate as

expected under all possible circumstances.

Page 1-2

These attempts have not so far been fully successful.

Automatic debugging strategies which involve knowing or

predicting the behaviour of a program under all possible

input conditions can rapidly become very expensive - a

combinatorial explosion of possibilities is all too likely

to occur. Where use of the system has to be learned, or

where it has to be informed of its user's programming

intentions via some special meta-language, the load on the

programmer can actually be increased rather than eased.

Debuggers which derive a representation of the user's

intentions for themselves are essentially trying to infer

something correct from something (the program) which is

known to be incorrect. This is again expensive, and also

error-prone.

This thesis reports on the design, construction and

behaviour of an automatic debugging system intended for

naive users, rather than for relative experts. The system,

called AURAC, operates within a new implementation of the

Open University's SOLO programming environment, this new

implementation being an integral part of the design

philosophy behind AURAC itself. AURAC does not attempt,

except at the very end of its analysis of a faulty program,

to derive any internal representation of the purpose of the

program. Instead, it mimics the methods of human experts.

As will be seen in chapter 3, human experts can derive very

Page 1-3

large amounts of debugging information from the program code

alone, and only express a need to know its purpose once a

quite high level of debugging has already been achieved.

AURAC embodies our own account of the human debugging

process. This is that if the human has no access to the

machine, debugging takes place in essentially three stages

1) "Skim" the faulty code in much the same way as
one might "skim" a newspaper article, looking
for salient points. In this case the saliences
are syntactic errors, including missing data;

2) Recheck the code looking for errors in
higher-level segments of it, here identified as
programming cliches;

3) Check the code again, attempting to follow data
flows in order to establish that these "make
sense", and identify the effect of sections of
the code in terms of the program's overall
purpose, if known.

These steps are not necessarily carried out in the order

given, nor are they necessarily applied to the whole of the

faulty code at once.

Page 1-4

The account was developed from personal experience and

observation, and was tested in two ways: (1) via its

implementation as the AURAC system, and (2) via empirical

work discussed in chapter 3.

An important point is our contention that expert

programmers will examine faulty code in terms of its natural

flow of control, rather than purely lexically. That is,

they consider the individual lines of the main program in

their order of execution by the machine, and where one of

these lines embodies a call to a subroutine, the lines of

the subroutine are investigated at that point. This is

contrasted with an approach which would treat the main

routine and its subroutines as distinct "units" which could

be examined separately. AURAC does the same as the experts,

and has modules corresponding to each of the above three

steps.

Being an intelligent machine empirically based upon

intelligent behaviour by human beings, AURAC claims to be an

Artificial Intelligence project whose inspiration comes from

psychology. We hope that it also offers lessons for

software engineering and some valuable insights for Computer

Aided Instruction. The interrelation between the four

influences on AURAC is discussed in more detail at the end

of chapter 6.

Page 1-5

1.2 THE APPROACH

1.2.1 Philosophy

MacSOLO/AURAC can conveniently be regarded as two systems

working together. MacSOLO provides the SOLO language itself

and supports a comprehensive HELP facility. It also

contains a large number of traps for individual low-level

errors such as typing mistakes or unbalanced quote-marks.

The intention behind its design was that where it is

possible for an error to be detected at its time of entry

from the keyboard, there should be a trap provided to

obviate it, and an available explanation of the mistake.

MacSOLO (which term includes the SOLO editor) thus removes

from a user's code all the "silly" and uninteresting errors,

all of which by their very nature are syntactic, leaving

AURAC to handle progressive levels of semantic bugs. AURAC

comes into play when the program has been written but fails

to work. It consists of three modules each of which looks

for a specific type of error rather than for individual

errors : Higher Level Syntactic Errors ; Cliche Errors ; and

Algorithmic or Data Flow Errors, (see below.)

Page 1-6

The/whole system is based on the principles of

Compatibility (with existing SOLO implemetations),

Consistency, Simplicity and Transparency. These criteria

will be discussed further in chapter 2.

Ideally, of course, we too would like our students to be

able to write error-free programs in the shortest possible

time. There are four broad areas in which we might seek to

assist them:

1) Via the language itself. The ideas of
Structured Programming (Dijkstra 1972), of
Top-Down Design (Mills 1971) and of Development
Via Stepwise Refinement (Wirth 1974), were all
present in the original version of SOLO, but as
the language has evolved these desirable
criteria have been to a greater or lesser extent
sacrificed in the interests of greater
flexibility or of compatibility with other
versions.

2) Via program development aids along the lines of
the Spadee system (Goldstein and Miller 1976,
Miller and Goldstein 1977). We decided against
this kind of approach because of its
steamroller-like effect : the user is obliged to
decompose his/her overall objective in a
predetermined way. As will be seen, AURAC
allows its users to work upon sub-parts of a
program in any order.

3) Via rigorous proof of the correctness of users'
programs. The now-classic method originally
formalised by Floyd (1969) involves
demonstrating, usually with the aid of a general
theorem-prover, that the program will validly
transform a set of assertions which completely
describe its input into a set of assertions
which completely describe its desired output.
It is difficult to obtain a full and correct set
of assertions, especially where a large program
must be broken into simpler sections - perhaps
requiring the derivation of further assertions
(e.g. 'loop invariants' - see Waters 1979).

Page 1-7

This has meant in practical terms that proving a
program to be correct can be substantially more
difficult and expensive than normal,
hand-operated debugging processes - although
this is not to deny its considerable theoretical
potential.

4) Via exhaustive testing of the program in all
applicable environment and input modes. This is
a alternative to (2) - see the discussion of
Persch and Winterstein (1978), below. Chapman
(1981) has developed an interesting variant of
this idea for programs written in LISP code,
which relies on simple interactions with the
user to establish a set of tests which can
automatically be modified and re-run as the
program itself is developed.

AURAC's approach is radically different from all of

these: it attempts to simulate the activities of a human

expert debugging the faulty code in isolation - that is,

without access to normal debugging aids such as steppers or

tracers - and in accordance with the above debugging

account. In other words, AURAC is in the same position as

an actual Open University SOLO tutor. Unlike (3), AURAC

generates no rigorous proofs. Its most interesting

theoretical result is the extent to which its almost

entirely syntactic analysis can detect what would normally

be thought of as semantic errors. Many researchers (e.g.

Rich, Shrobe and Waters 1979) have commented on the

usefulness of a less theoretical and more "human" approach

to the problems of debugging; such an approach is here

applied in full, to a simple programming environment in

which the kinds of bugs which human experts tend to miss

Page 1-8

(such as hidden side-effects) are reduced to a minimum.

A large part of the research described here has been to

see how much debugging information could, at reasonable

cost, be derived from an existing (buggy) program without

knowing the program's overall purpose. AURAC therefore does

not make a specific attempt to understand the programs on

which it works - by translating them into some other

representation as, say. Waters (1981) does in his

Programmer's Apprentice. Instead, more or less stylised

forms of actual SOLO code are stored in AURAC's two

libraries (this has the advantage of making it easy and

straightforward to augment the libraries), and the process

of matching these to the buggy program - the process of

mapping superior knowledge onto it - is one of recogniton.

Where the recognition only just fails, AURAC assumes that

the difference represents an error on the part of the user.

As will be seen, user errors can be divided into a hierarchy

of types, and this recognition process can be applied at

each level in order to detect mistakes of increasing

"semantic" content.

Page 1-9

A system using Waters' idea of Plan Diagrams and

generating a symbolic evaluation of the effects of the user

code on a global database has been tried for SOLO

(Eisenstadt and Laubsch 1980, Laubsch and Eisenstadt 1981).

One of its problems was that the multiple-nested loops

permitted in SOLO syntax tended to generate an explosive

number of possible cases to be tested; and where the loops

themselves contained errors, it was likely that no

effect-description - and hence no "understanding" of the

user code - could be generated. AURAC employs the following

heuristics instead. If the innermost instruction in the

nest of loops is not a conditional (CHECK or TEST), and if

at least one valid path can be found through the tree of

possible cases, then the loops are assumed to be correctly

constructed, and alternative paths can be ignored. If the

innermost instruction is a conditional test, the nodes of

the tree of possible cases are examined in depth-first

sequence until such time as the test has both succeeded and

failed at least once, or until the cases are exhausted.

These heuristics avoid any combinatorial explosion and in

practice can spot the bugs of co-operative users.

Page 1-10

1.2.2 System Organisation

Broadly, the system operates as follows. MacSOLO

processes the user's input line by line as it is entered,

auto-correcting or rejecting any line which is not

syntactically correct. If the resulting program does not

perform as expected, the user may summon AURAC. AURAC

examines the faulty code (behind the scenes) in a way

analogous to that of a human expert, and is capable of

detecting an indeterminate number of errors at three levels

of semantic content, in terms of (a) "higher-level"

syntactic errors; (b) SOLO cliches; and (c) data flow

errors. The underlying taxonomy of novice users' errors

will be presented in chapter 3.

Page 1-11

code

internal data

User Code stored knowledge---------

Higher Leve[
Syntactic

i Analyser

Data-flow
L Analyser

Cliche__
flecogniser

Library

Error-frame
Generators

Algorithm
Recogniser —I library j

X

IVIesMge
Generators

Terminal

Fig. 1.1

Page 1-12

AURAC consists of three modules, based upon our account

of human debugging tactics. The original idea was that

AURAC should whenever necessary be able to replace the human

tutor and, via dialogue with the user if appropriate,

perform the same debugging service for the student as the

tutor would. In this context it should be stressed that in

the experiments the tutors were given a printed listing of

the faulty code, together with the statement (if

appropriate) that there was a run-time error when the code

was executed by SOLO. This is all the information that

AURAC has at the start of its analysis, and although in real

life the tutor would be able to find out a great deal more

by watching the execution, asking questions of the student,

or using STEP and TRACE, it was decided that this "cold

start" had the advantage of being the most interesting form

of the problem from the point of view of debugging

algorithms. Furthermore, this approach avoids the need to

have natural language parsers to understand the users'

comments. Chapter 6 discusses the extent to which AURAC in

its current form fulfils the original dream.

Page 1-13

The structure of the AURAC system is as follows. The

original user code is run through Module 1, the Skimmer,

which uses the knowledge in its own production memory plus

that of the MacSOLO interpreter to detect Higher Level

Syntactic errors. Analysis proceeds line by line, which is

a suitable thing for SOLO; there is no inherent reason why

it should not proceed differently. Any errors found are

stored for later explanation to the user. The lines of code

are also passed to Module 2, the Cliche Recogniser, which

uses a library of cliche forms to seek out errors at the

"word" level. Finally Module 3, the Data Flow Analyser uses

a considerable amount of knowledge specific to SOLO syntax

in order to find data flow errors. This last module is also

in specific cases able to use a second library, of

algorithms, to detect algorithmic errors. All four kinds of

errors are explained via a selection of canned messages;

the selection of these also involves knowledge of SOLO

syntax. Lines which contain no errors are "described" in a

similar manner.

MacSOLO and all of the modules of AURAC are fully

implemented and have been used by a total of thirty-six

students and experimental subjects. The range of errors

detectable by the Cliche Recogniser and by algorithmic

analysis is entirely dependent upon the contents of AURAC's

libraries. Since, as will be seen in chapter 4, evolving

Page 1-14

full and complete libraries would be a long-term undertaking

in itself, AURAC's libraries are limited; but they are

sufficient to demonstrate AURAC's power.

1.3 SYSTEM HIGHLIGHTS

There follow some simple examples of the MacSOLO/AURAC

system in use.

1.3.1 The SOLO Context

SOLO is a database-dependent language which has been used

in the Open University's D303 cognitive psychology course

over the last six years. Its purpose in this context is to

allow students very rapidly to gain sufficient programming

expertise to demonstrate to themselves one of the main

points of the course: that computer models of human

cognitive processes can be viable and useful. SOLO was

therefore designed from the outset (Eisenstadt 1983) to be

as simple as possible from the user's point of view, and to

be embedded in a very user-friendly environment.

Page 1-15

SOLO has strong affinities with LOGO and with a small

subset of PROLOG. The user asserts one-way relational

triples into a database, and then writes functions which,

depending upon the contents of the database, can generate

conditional, iterative or recursive inferences. The

functions can also, of course, modify the database as they

go along. User-defined functions in SOLO are LISP-like, in

the sense that they can pass arguments to one another and

that the bindings of these arguments are dynamic. SOLO

itself handles all the complexities of file input and

output; the user types HELLO or BYE in order to load or

save his/her entire environment, including the current

database.

SOLO is extraordinarily simple to use. It has only eight

basic system instructions: NOTE, FORGET, DESCRIBE, CHECK,

FOR EACH CASE OF, PRINT, TO and LIST. There is also a

syntax-directed editor with its own small set of

instructions. SOLO has no numerical primitives.

Page 1-16

NOTE and FORGET, as might be expected, assert triples

into the database and delete them respectively. These

triples are of the form

NODE-- RELATION— >NODE

the arrow signifying the one-way nature of the relation.

The first "word" in any SOLO instruction is always a

function-call of some sort (inbuilt or user-defined), so

that the instruction

NOTE FIDO ISA DOG

inserts the triple which follows the word NOTE into the

database. Similarly, the instruction

FORGET FIDO ISA DOG

deletes that triple. Several triples may be "hung" from the

same first node, as above. The instruction DESCRIBE FIDO

will then list all these triples in the standard SOLO

format. By analogy with a NOTEpad, the most recent entry is

displayed last.

FIDO

— HAS— >FLEAS

— LIKES— >BEER

 ISA— >DOG

It is permissible to have two or more triples involving the

same relation hanging from the same node.

Page 1-17

CHECK searches the database for a triple corresponding to

that given as its arguments. SOLO functions do not "return"

any values as in Lisp, but CHECK used from top level prints

PRESENT or ABSENT as appropriate. When used within a

user-defined function, CHECK is also an IF-THEN-ELSE

conditional construct, taking sublines which specify the

further actions to be taken in either case. Each subline

includes, as well as the action itself, a CONTROL STATEMENT

which has essentially two alternatives: to EXIT from the

current user-defined function, or to CONTINUE to its next

line. CHECK instructions may not be nested within one

another. Here is a simple CHECK line as used within a

user-defined function. It DESCRIBES FIDO if the triple FIDO

ISA DOG is present in the database; if not, it prints a

message:

20 CHECK FIDO ISA DOG
A If Present: DESCRIBE FIDO ; CONTINUE
B If Absent : PRINT "Nothing Found" ; EXIT

The line-number, the subline prefixes A and B, and the

cosmetic "If Present" and "If Absent" are printed

automatically when the user-defined function is being

defined via TO, EDITed or LISTed. It is up to the user to

insert the semicolon separators and appropriate control

statements. The "action" part of a subline (DESCRIBE or

PRINT in this example) can be left blank, but the

control-statements are obligatory. In fact SOLO's editor

will not allow CHECK lines or sublines to be written (or

Page 1-18

edited so as to be) in an incorrect format.

FOR EACH CASE OF allows iteration through the triples of

a single node, where these triples have a common relation.

For this purpose it needs a "wildcard" chosen by the user in

order to represent the non-specific third item in each

matching triple. This wildcard must have a question-mark as

its first character, and a corresponding variable-name

beginning with an asterisk is bound to the result of each

"case". For example,

10 FOR EACH CASE OF FIDO ISA 7WHAT
A PRINT "FIDO ISA" *WHAT

is a FOR EACH line with its obligatory subline, the overall

effect of which is to print out every database triple which

begins "FIDO ISA ...". FOR EACH instructions may be nested

up to five deep, and it is permissible to nest a CHECK

instruction within a FOR EACH. However, it is not

permissible to nest a FOR EACH within a CHECK.

Wildcards are also permitted in CHECK instructions, and

the corresponding ^-variables are similarly bound. Where

there are several possible matches to a wildcard triple, the

most recent entry is selected. The bindings in both kinds

of instruction are dynamic.

Page 1-19

Here is a simple recursive SOLO program which propagates

the inference "so-and-so HAS FLU" through a suitable

database. The database is shown beneath the program

listing:

TO INFECT /X/

10 NOTE /X/ HAS FLU

20 CHECK /X/ KISSES ?P
A If Present: INFECT *P ; EXIT
B If Absent : EXIT

JOHN-- KISSES— >MARY
MARY— KIS SE S— > ANDY
ANDY-- KISSES— >MAUD
MAUD— KI S SE S— >FRED
FRED— KISSES— > JOAN

The top-level call is INFECT JOHN, whereupon the triple

JOHN HAS— >FLU is added to the database by line 10. On

line 20 the CHECK instruction gives the value MARY to the

variable *P, so that on subline 20A (executed rather than

20B because the CHECK search succeeded) INFECT is

recursively called again with MARY as its new argument. The

triple MARY HAS— >FLU is then added to the database. This

sequence continues until JOAN is the current argument to

INFECT, whereupon the CHECK search fails. Subline 20B is

then executed and recursion halts.

Page 1-20

The D303 course notes require the student to carry out a

few simple experiments which demonstrate the above, and to

undertake a number of assignments in which they write simple

programs to give them experience of the use of the

conditional CHECK form and of recursion. The FOR EACH loop

is included only as an appendix to the notes, which students

are free to ignore until a later stage if they wish. For

all of these exercises Higher Level Syntactic analysis is

sufficient to reveal any errors. Beyond that, for the

students, comes Summer School.

At Summer School they are offered a choice of four

projects each of which is intended to involve them in

building a computer model of some aspect of human cognitive

activity. The projects reflect areas of psychology which

the same students will be studying at other times during the

Summer School course, namely Memory, Perception, or

Thinking. Students are free to choose some other SOLO

project if they wish, but they almost never do so.

Page 1-21

1.3.2 MacSOLO

Macsolo's error traps are a series of fifty-seven demons

each of which inspects a single word or line of user input

so as to check it for the presence of a specific error. The

demons are spread amongst the various modules comprising

MacSOLO.

The input-reader is permanently in "line mode". It

rejects all characters other than the basic alphanumeric set

plus seven SOLO-specific punctuation signs (RH and LH

parenthesis, semicolon, double-quote, slash, space and

apostrophe). If any other characters appear in the input

they are converted into spaces (see below), and extra spaces

are auto-inserted if necessary to disambiguate the

punctuation, e.g. to convert ISA*D to its only legal SOLO

form ISA *D, or to convert lOABFOO to lOAB FOO. The reader

also checks for other auto-correctable errors such as

unbalanced quotes or parentheses. However, the design

philosophy of MacSOLO (chapter 2) prohibits full

auto-correction of these; instead the user is forced to

make the correction him/herself before the line will be

accepted.

Page 1-22

The parser comprises the spelling corrector, the spacing

corrector, and the traps for incorrect numbers of arguments.

The spelling corrector is semi-automatic, requiring

confirmation from the user before the correction is made;

the spacing corrector is fully automatic but announces its

actions if any; and if the wrong number of arguments is

entered, the user is forced to retype that input line.

Each SOLO primitive in MacSOLO is a LISP function

containing at least one demon; for example the function

PNOTE, executed whenever a NOTE instruction successfully

passes through the reader and the parser, always checks that

the triple to be NOTEd is not already present in the

database (multiple copies of the same triple are not

permitted). Other traps occur in the MacSOLO interpreter,

for such errors as calls to unknown procedures, or endless

recursion.

Finally, a substantial number of the 57 demons mentioned

occur in the MacSOLO editor, catering for such

editor-specific mistakes as missing line-numbers or missing

control-statements. There follows a transcripts condensed

from several user sessions in order to demonstrate some of

the error-traps in action. Sections in square brackets are

annotations. User input is shown in bold face.
SOLO; NOTE FIOD BROTHER ROVER

Page 1-23

[The user types a NOTE instruction to the SOLO prompt,
followed by a RETURN. MacSOLO queries the spelling
of one of the input words.]

When you typed FIOD, did you mean FIDO? (Y or N) Y

[The user replies with Y, so the corrected version
is accepted. The normal database description of
the node FIDO results.]

OK...

FIDO

'-- ISA— >DOG

'-- BROTHER— >ROVER

[Next, the user tries a PRINT instruction.]

SOLO: PRINT "FIDO ISA DOG

[The RETURN key will not work, and a warning
message is issued:]

Brackets don't balance!

[This message appears either as a flash across
the top of the terminal screen, returning the
cursor to the end of the word DOG, or - on
printing terminals - as a new line, after
which the user's incomplete input is retyped.
Once the correct quotes have been entered,
the RETURN key will function normally.]

[Now a FORGET instruction:]

SOLO : FORGET FIDO ISADOG

Space error(s) assumed.

Corrected input line:

FORGET FIDO ISA DOG

OK...

FIDO

'-- BROTHER— >ROVER

[Full auto-correction was possible here because

Page 1-24

the words FIDO, ISA and DOG, being parts of
the database, must also be in the user's
dictionary, A similar mistake involving as yet
unknown words would have the following result:]

SOLO: NOTE FIDO NASFLEAS

Wrong format. Type HELP if you don't understand.

SOLO: HELP

The proper way to use NOTE is :

NOTE nodel relation— >node2

See HELP NOTE.

[The user now LISTs and then tries to edit FOO,
an existing user-defined procedure:]

SOLO: LIST FOO

TO FOO /Y/

10 CHECK /Y/ ISA DOG
A If Present: PRINT /Y/ "IS A DOG" ; CONTINUE
B If Absent : EXIT

SOLO: EDIT FOO

edit line...#

[This is the edit prompt, to which the user
types :]

NOTE /X/ HAS FLEAS
Missing line number!

[The input is ignored and the prompt returns.]

edit line...# 20 NOTE /X/ HAS FLEAS

Undeclared parameter!

[This is because the current definition of FOO
does not include a declaration of /X/. As
above, HELP would generate this explanation.]

edit line...# 20 NOTE /Y/ HAS FLEAS

[This time, the input is accepted as syntactically

Page 1-25

correct, and the user types DONE so as to exit
from the editor.]

edit line...# DONE

Other features of MacSOLO, such as the tracer,

single-stepper, spelling corrector and part-word recogniser,

are discussed in section 2.3.

1.3.3 Debugging: AURAC

Given that all very simple errors have been removed from

the user's code, AURAC applies its three-stage analysis to

what remains. Two examples follow. The first uses the

INFECT program described earlier in section 1.3.1, but in a

buggy version such as might be produced by a student:

TO INFECT /X/

10 NOTE /X/ HAS FLU

20 CHECK /X/ KISSES ?P
A If Present: INFECT /X/ ; EXIT
B If Absent : EXIT

JOHN— KISSES~>MARY
MARY— KI S SE S— > ANDY
ANDY— KI S SES— >MAUD
MAUD— KISSES— > JOHN

Page 1-26

The program as shown contains an error: on line 20A the

student has arranged for the recursive call to INFECT to

have /X/ as its parameter, rather than (as it ahould be) *P.

Naturally, if the top-level call to INFECT is e.g. INFECT

JOHN, such that the CHECK on line 20 succeeds, the resulting

recursion will not terminate. After twenty levels of

recursion, MacSOLO halts and delivers the run-time error

message "Recursion limit exceeded." It is expected that the

user will then summon AURAC to debug the program.

The first stage of AURAC's analysis of the buggy INFECT

is a "skim" of the code, using a production system to look

for errors such as faulty conditional exits, unreached code,

non-existent but referenced data triples - and

non-terminating recursion. When the above error is

detected, AURAC informs the user:

"Your procedure INFECT repeatedly calls itself with the
same parameters :

INFECT JOHN

This caused your run-time error."

(The question of the suitability of AURAC's messages will be

returned to later). But, assuming that the student manages
/

to correct line 20A, he/she will still have problems because

there is a loop in the accompanying database:

Page 1-27

-JOHN

MARY MAUD

ANDY-

This also results in endless recursion of the program. A

second call to AURAC will now result in the message:

"There is a loop in your database via:

JOHN MARY ANDY MAUD JOHN

This caused your run-time error."

The skimmer stage of AURAC's analysis is all that is

required to find the two bugs in INFECT.

Fig. 1.2 shows a second simple example. TRY is not a

genuine SOLO procedure, and is invented solely for our

current purposes. If put through the SOLO interpreter, it

would achieve nothing of interest; but discussion of it as

below (and in chapter 4) will give a useful "feel" for

AURAC's operations.

Page 1-28

Line 10 of TRY ascertains whether or not a certain triple

is currently present in the database. If so, it FORGETs it ;

if not, it NOTEs it. Line 20 again checks for the presence

of a certain triple, but does nothing with the result of its

search. Line 30 is a simple PRINT statement:

TO TRY /X/

10 CHECK /X/ IS UP
A If Present : FORGET /X/ IS UP ; CONTINUE
B If Absent : NOTE /X/ ISA UP ; CONTINUE

20 CHECK AURAC LOVES TONY
A If Present: EXIT
B If Absent : EXIT

30 PRINT /X/ "IS UP."

Fig. 1.2

AURAC's skimmer would notice the double EXIT on sublines 20A

and 20B, plus the fact that this prevents line 30 from being

executed at all. If it happened that either of the

referenced triples /X/ IS UP or AURAC LOVES TONY were absent

from the database, this fact too would be noted. As a

result of this stage of analysis, AURAC reports to the user:

Line 10: CHECK-triple does not exist in your database.
Line 20: CHECK-triple does not exist in your database.
Line 20 : Double-Exit — > Line 30 not reached.

Page 1-29

The second stage is an inspection of larger "chunks" of

code, here identified as programming cliches. Where these

can be detected, they can yield data about errors which

would otherwise be difficult to detect. For example, line

10 of TRY is a cliche (called FLIP-FLOP) which FORGETs a

given triple if it is present in the database, and NOTEs it

if not; but it contains an error: ISA instead of IS on

subline lOB. (It is assumed that both IS and ISA appear

correctly elsewhere in the user's database, so that

MacSOLO's spelling corrector could not resolve the problem.)

When AURAC detects the cliche itself it can also point out

the error :

Line 10 seems to be intended to FORGET the triple /X/ IS UP
if it exists, and to NOTE it otherwise
but on line lOB of TRY you have written ISA
when perhaps you meant to write IS.

On line 20, TRY looks in the database to see if the flag
AURAC LOVES TONY is Present, and if so EXITs
Otherwise, it EXITS.

On line 30, TRY prints a message.

Notice that AURAC distinguishes between a TRIPLE, which

may contain a wildcard, and a FLAG, which is composed

entirely of constants.

Page 1-30

As can be seen, the printout attempts to explain the

discovered cliche without mentioning the fact that it is a

cliche. Lines 20 and 30 are merely described, since they

contain no cliches at all.

The third stage of analysis is an attempt to follow the

flow of input data through the program, in order to be able

to say whether or not all data is correctly used (that is,

that bound variables and parameters are referred to, that

any NOTEd triples are at some point CHECKed and later

FORGOTten). This results in the following two messages to

the user :

..and also the triple NOTEd on line lOB TRY
is never CHECKed.

..and also the triple NOTEd on line lOB TRY
is never FORGOTten.

As will be described later, the final module of AURAC is

also able to check each code line against sample lines from

a library of algorithms. When all lines of a given

algorithm are found, AURAC states that the program will

perform according to that algorithm. This analysis is

covered in more detail, along with the other two modules, in

chapter 4.

Page 1-31

1.4 RELATED RESEARCH

As has already been mentioned, and as will be described

in detail in chapters 2 and 3, the design philosophy behind

the MacSOLO/AURAC system involves the division of the

spectrum of novice errors into four broad categories or

"levels".

Wertz's PHENARETE system (1979) also employs a division

of error types. He refers to spelling errors, unbalanced

parentheses, wrong number of arguments supplied to

functions, and the like as "surface" errors. At what he

calls a "meta" level of analysis, PHENARETE seeks out such

problems in the user's program as unintentional loops,

endless recursion, and unreachable code. Unlike most

automatic debuggers, PHENARETE requires no knowledge of the

programmer's intentions, and is - disregarding the fact that

the two systems are designed to operate in different

language domains - precisely analogous to Mac SOLO/AURAC's

first two levels of syntactic analysis. Interestingly,

PHENARETE uses

"a set of pragmatic rules describing general
program constructs and stereotyped methods to
repair inconsistencies. These rules formalise
and express explicitly the knowledge activated
by every programmer when he is reading a
program." (Wertz 1979, p.953)

Page 1-32

The difference between this and AURAC's approach is one

of scale. Wertz's rules concern for example the correct

form and operation of loops, and are language specific.

They are similar to the production rules used in AURAC's

Higher Level syntactic analysis. In other words, they

represent just one aspect of the knowledge which a human

debugger applies to the task. AURAC introduces two other

aspects : knowledge of programming cliches and understanding

of data flow.

The assumption that only trivial debugging information

can be derived in the absence of "understanding" is common

to many debugging systems. Ruth (1976) actually defines

"understanding" as the system's ability to map an

algorithmic description of a process onto the corresponding

code. The algorithm in his case is supplied by the user;

the mapping ability is inbuilt. Ruth says :

"The basis for analysis of the type presented
here lies in the simple observation that in
writing a program the student is guided by a
general plan of attack or strategy for effecting
the desired purpose. As the usual computational
environment admits only the sequential and
deterministic execution of operations, such a
plan must take the form of a finite set of
well-defined steps with unambiguous rules at
every point in the execution for determining
which step is to be performed next. That is,
the plan must be an algorithm." (Ruth 1976,
p. 66)

Page 1-33

Our Summer School students do not come to the terminal

with their algorithms ready. Rather, we expect them to

discover the process of designing an algorithm by practical

experiment and by discussion with their tutors.

Kahney (1983) has produced an in-depth study of the

behaviour of novice programmers. He concludes that raw

novices will often acquire a knowledge of programming

terminology before acquiring any knowledge of how or why the

corresponding programming techniques are used. He calls

this state of affairs the possession of "empty concepts".

Lacking any knowledge of techniques, novices will then use

their own world experience to provide meaning for the

programming terms. Which of course tends to lead them away

from, rather than towards, the construction of a correct

algorithm. Sleeman (1977), discussing a similar point as it

arises in Computer Assisted Instruction techniques, says:

"The main problem...is deciding whether or not
the answer given by the student is equivalent to
that generated by the algorithm." (Sleeman 1977,
p.780)

and he concludes that the only satisfactory way of talking

about algorithms is via some purposely-designed formal

language. The trouble with this approach from our point of

view is that our students would then have two formal

languages standing between them and the understanding (of

artificial intelligence) which we want them to gain.

Page 1-34

AURAC's approach is to derive as much debugging

information as possible in the absence of any algorithmic

criteria - which in the terms described here means in the

absence of any "understanding" of the buggy program. Only

in the very final stages of analysis does it engage in a

(simple) dialogue with the user in order to establish an

understanding of the variables used in the program, and

hence to decide whether or not the program's code embodies

some expected algorithm.

Ruth again :

"The algorithm description given to the program
analyser should be general enough to cover the
broadest possible range of programs. But it
must be sufficiently specific so that there is
no ambiguity concerning the intended procedures
and effects." (Ruth 1976, p.67).

Ruth is thinking here of algorithms written in terms of

what he calls "universal" constructs and which are in fact

programming constructs - loops, conditionals, flags and the

like - of which our students are usually quite unaware.

There is an added complication in that our students may well

(they are encouraged to) add arbitrary print-statements to

their code for cosmetic or debugging purposes. Since

provision of data for these printouts may incur temporary

alterations to the database (a NOTE followed later by a

CHECK in which the PRINT instruction is embedded) they can.

Page 1-35

if not coded correctly, cause apparent errors on subséquent

runs of the same program. However, there is no sense in

which they are part of the algorithm for the task in hand

(that is, for the program minus its cosmetic printouts), and

AURAC must be able to check them separately. It is not

safe, as it would be in the LISP-like language used by

Ruth's students, simply to ignore them.

Ruth's system uses a "generative semantic grammar", which

may be regarded as a set of rules whereby an algorithm is

"translated" into code. The translation process is assumed

to be perfect, so that if a given algorithm cannot be

translated into the program submitted by the student, the

latter is said to be incorrect. AURAC, by contrast, does

not generate any code at all. Its method is one of

recognition: if the steps of the algorithm can be

recognised in the user's code, AURAC assumes that the

program is doing the correct thing as far as the algorithm

is concerned (see section 4.6). As Ruth himself says, the

number of possible variations on any given algorithmic theme

is not great, so that in AURAC's present limited context it

is satisfactory merely to store any possible variants.

Page 1-36

However, at some point in the analysis both Ruth's system

and AURAC have to ask "is this section of user code (perhaps

a variable, perhaps a construct such as a formalised loop or

conditional form) equivalent or non-equivalent to my derived

or stored version?". SOLO is not flexible enough to allow

its formal constructs CHECK and FOR EACH CASE OF to be

rewritten in alternative SOLO code, as one might, for

example, rewrite the LISP conditional COND construct as an

IF-THEN—ELSE. So for AURAC the problem of recognising a

sequence of lines as being equivalent to an existing

construct does not arise (although its cliche-recognition

module does something similar). But the differences between

the two methods of ensuring variable-equivalence are

interesting. Ruth's analysis proceeds in the context of a

current environment, and variables are assumed to be the

same variable (one in the user code, one in the model) if

their VALUES are the same. AURAC's test for equivalence is

in terms of data flow: a variable deep inside a subroutine

can be traced back, despite any changes of name, to the

point at which it entered the program - usually as an

argument in the top-level call. AURAC ascertains by simple

yes/no dialogue with the user the SIGNIFICANCE ("meaning")

of the value associated with that datum. The stored

algorithms are written in terms of significances, so that

AURAC is able to recognise a line of user code as being

equivalent to a step in the algorithm. In practice, of

course, the stored "significance" is merely a special token.

Page 1-37

and AURAC associates the corresponding user token (variable

name) with it.

Goldstein (1975) also requires from the user an input of

"description of intent". This description is written in a

special declarative language, which describes the program's

intended result - i.e. it is not an algorithm. Goldstein

is dealing with LOGO programs designed to operate a turtle

(Papert 1971) so that specific pictures are drawn. It is

thus, given a complete knowledge of the task domain,

possible to infer the intended algorithm from a faulty

program.

But this early work of Goldstein's is useful in AURAC's

context for the notion of "clearing up". It is desirable

that on completion of a subpart of a drawing (corresponding

to a subroutine in the program) the turtle be moved if

necessary from wherever it has stopped to the start-point of

the next subpart; and that at the end of the whole program

it be returned to some standard rest position ready for the

next program. These interfacing sections are referred to by

Goldstein as "preparatory steps", and are analogous in SOLO

to such operations as clearing the database of temporary

flags, resetting counters to zero, and so on. The principle

that overall a program should make no difference to the

position or orientation of the turtle is directly applicable

Page 1-38

to solo's database: if a SOLO program is allowed to leave

permanent data changes behind it, it is unlikely that any

two runs of the same program will behave in the same way,

and as may be imagined such apparent inconsistencies can

play havoc with a raw beginner's conceptual model of the

SOLO machine.

Persch and Winterstein (1978) have worked on the idea of

proving a program by running it under all possible

conditions, ensuring that the various supplied sets of input

data cause every possible program path to be executed at

least once. Such an approach is unsuitable for raw novices,

since a mass of data about the behaviour of their programs

under input conditions other than those they themselves

supply is liable to increase, rather than to reduce, their

confusion. In this context a "stepwise" approach is

preferable: allowing the user to specify the input

conditions and restricting the debugging mechanisms to

evaluating the program's performance within that

environment.

Page 1-39

Osterwell and Fosdick (1976) concerned themselves with

analysis of FORTRAN programs. Their handling of variables

is interesting. They say that:

"1. No variable will be used in a computation
(referenced) until it has previously been
assigned a value (been defined).

2. A variable, once defined, will subsequently be
referenced before the variable is redefined or
the program terminates." (Osterwell and Fosdick
1976, p.910)

Their analyser, called DAVE, determines whether or not

either of these rules would be violated for "any sequence of

statement executions". (The precise meaning of this last

phrase is not made clear). Instead of following the flow of

control during some kind of re-execution of the faulty

program, DAVE constructs for each "unit" of the program a

"labelled flow graph" reminiscent of a Plan Diagram (Waters

1976), which carries information concerning any variables

referred to or defined within that unit, plus data

concerning the unit's position in the overall program.

These graphs are then assembled into a higher-order graph so

that the interrelations between program units and

subroutines can be seen. This larger graph is then explored

bottom-up, i.e. from the lowest-level subroutines upwards,

so that each lower-order graph is examined exactly once.

Anomalies can be detected during this process where they

violate one of the above two rules.

Page 1-40

Coincidentally, AURAC relies upon the same two rules

during its data flow analysis of the progress of variables -

though it does so lexically rather than by value - and it

detects essentially the same errors. However, AURAC's

system of expectations and satisfactions (see section 4.5)

is far simpler than the above complex build-and-search

method - without, apparently, any loss of useful

information.

A somewhat similar, though more comprehensive, approach

is adopted by Adam and Laurent (1980). They comment:

"Often the program, though syntactically
correct, still contains semantic errors."

Whilst this is true, it highlights one of AURAC's a

priori assumptions: that an error classified in this way as

a "semantic" error (for example, the use of a wrong but

syntactically correct variable name) may not indicate

semantic confusion on the part of the programmer. In trying

to work as far as possible without any knowledge of the

programmer's intentions, AURAC avoids imputing to the

programmer any intentions which he/she did not have. In

other words, AURAC does not generate long explanations of

ASSUMED semantic misunderstandings, but confines itself to

pointing out the coding error (e.g. the wrongly-named

variable). AURAC, like LAURA, analyses the surface code of

Page 1-41

the buggy program, rather than first converting it into some

stylised internal representation.

Lukey (1980) describes a system called PUDSY which

embodies his own theory of program understanding and

debugging. PUDSY compares a program specification with the

program's actual achievement (both described by means of

assertions) in order to detect bugs. Unlike AURAC, it

cannot handle more than one subroutine at a time, it does

not cope with syntax errors, and it cannot deal with

recursive programs. (It also cannot handle C0T.0 statements,

but neither can AURAC, since these do not occur in SOLO

code). PUDSY's approach is first to "segment" the buggy

program into "chunks". This pre-analysis stage is quite

elegant, but is not required for SOLO programs since SOLO is

designed so that each of Lukey's "chunks" would be a single

line of SOLO code, with attached sublines. In other words,

SOLO itself performs the "chunking".

Beyond this point, PUDSY and AURAC diverge quite sharply

in their analytical methods, but the most obvious difference

is that AURAC does not require the provision of an assertion

describing the program's specification. As mentioned

already, such assertions can be very difficult to generate.

Page 1-42

Thus, AURAC attempts to provide the simple explanations

of errors which naive users require. In order to do so, it

uses the kinds of knowledge, and the debugging techniques,

used by tutors who are themselves accustomed to dealing with

the work of those same novices. It does not, like some

systems designed for novices, require the user to know what

he/she is doing at any specific level - for example it does

not, as Chapman's system does, demand that user-defined

tests be supplied for sections of the program. As will be

seen in chapter 6, one possible future for AURAC sees it as

the essential kernel element in a larger and more rigourous

program-proving system: an element which can very

substantially reduce the amount of work required from more

theoretically-based debuggers. In SOLO terms alone, to

obviate the combinatorial explosion of "cases" referred to

above is a considerable achievement.

1.5 OVERVIEW OF REMAININC CHAPTERS

Chapter 2 introduces MacSOLO as an advanced dialect of

the original SOLO language: the common kernel of

instructions, MacSOLO's design principles, and its

advantages over other versions are described. Chapter 3

presents some empirical observations. It gives the

frequencies of various error-types as found by MacSOLO/AURAC

under practical conditions, and compares them with results

found by other researchers in similar studies. It also

Page 1-43

describes experiments designed to shed light on expert

debugging style, and considers the implications of this for

the design of AURAC. Chapter 4 discusses AURAC itself: its

organisation, debugging methods, and its results. Chapter 5

comprises a complete session transcript in which a novice

tackles a Summer School project using the MacSOLO/AURAC

combination. Finally, Chapter 6 offers a critical appraisal

of AURAC and describes its future potential.

CHAPTER 2

MACSOLO

2.1 THE SOLO KERNEL

There have so far been four main versions of SOLO. The

original, mainframe-only version was implemented in BASIC

and is the one from which most of the available data about

user response to SOLO has been derived (Eisenstadt 1978).

This version was in universal use by our students from

1978-1981. In 1981 Summer School users were offered an

improved and microcomputer-based version implemented in UCSD

PASCAL (Gawronski and Eisenstadt 1982) and in 1982 a new

mainframe version, also written in PASCAL (Eisenstadt 1983)

was produced. The latter is now in general use, although it

is still not in its final form. The version described in

this thesis (Hasemer 1982) is implemented in MacLISP, and is

therefore called MacSOLO. It has been used at Summer

Schools by nineteen students and at other times in

twenty-seven experiments of between one and four days'

duration each, involving both OU students and non-students.

Page 2-2

It is tempting, but facile, to regard SOLO as a "toy"

language, merely because any function or program written in

it must inevitably be an extremely simplified version of

what could be achieved in, say, PROLOG, LISP or PASCAL. But

this simplicity is in fact SOLO's major asset. SOLO

instructions and their effects are for the most part direct,

straightforward and obvious. Anyone whose first programming

language was one such as LISP will remember how difficult it

was to understand how to operate the language itself - let

alone how to build bug-proof models with it. And in forcing

its users to construct very basic models of whatever

cognitive ability they are studying, SOLO helps to clarify

their thoughts and to improve their understanding. Although

it is possible to write quite sophisticated programs in SOLO

(we have seen on the one hand a production system, and on

the other a model of the Pavlovian responses of a rat),

these are in an important sense MIS-uses of the language:

it was designed, and operates best, not as a general purpose

simulation language but as a means to practical

demonstration of elementary AI principles. In this sense

SOLO is more akin to an elegant statistics or graphics

package: it is not intended to do anything other than what

it does, and it does that superlatively well. The SOLO

segment of the Summer School course is always enormously

popular and heavily over-subscribed.

Page 2-3

solo's basic instruction set is as follows:

1) NOTE takes three arguments: a "node", roughly

equivalent to a noun in English, a one-way "relation" such

as ISA, and a second node. NOTE asserts this triple into

the database.
For example :

NOTE FIDO-- ISA— >DOG

Users are not required to type the arrow, which is printed

by SOLO merely as a reminder of the unidirectional nature of

the relationship expressed. When NOTE is used from top

level, an automatic DESCRIBE (see below) of its effect on

the database occurs.

2) FORGET takes similar arguments and deletes the triple

from the database. For example :

FORGET FIDO-- HAS— >FOURLEGS

FORGET is also followed by an automatic DESCRIBE when used

from top level.

Page 2-4

3) CHECK takes similar arguments and searches the

database to see if the triple represented by those arguments

is there. The search is essentially a pattern-match on the

triple:

CHECK FIDO— ISA— >DOG

prints "Present" if the triple is found, "Absent" if it is

not. When used within a user-defined procedure, CHECK may

be given as its third argument a wildcard (a question-mark

followed by zero or more characters forming together a

single "word"). If the search succeeds a variable,

lexically equal to the wildcard but with the question-mark

replaced by a star, is assigned a value which is the result

of the search. For example, if the triple FIDO ISA DOG is

present in the database, the instruction CHECK FIDO ISA

ÎWHAT results in the value DOG being bound to the variable

*WHAT:

10 CHECK FIDO— ISA— >?WHAT
A If Present: PRINT *WHAT ; CONTINUE
B If Absent : ; EXIT

Within a user-defined procedure, the CHECK instruction has

two obligatory sublines, labelled "If Present" and "If

Absent", so that CHECK forms a conditional construct. On

each subline appears an optional further instruction,

followed by a "control statement" which essentially permits

EXIT from the current procedure or CONTINUE to its next

line. CHECK instructions are not permitted on CHECK

sublines.

Page 2-5

4) FOR EACH CASE OF is the loop construct, and again

takes a triple as its three arguments. It must be given a

wildcard as its third argument. The loop iterates until all

matching database patterns are exhausted (and allows the

operation within the loop to add new such patterns), or

until a conditional CHECK within the loop orders an exit.

FOR EACH CASE OF takes just one obligatory subline (the

"body" of the loop) which may be another FOR EACH CASE OF

instruction, up to five deep, or any other legal SOLO line,

or a call to a user-defined procedure ;

10 FOR EACH CASE OF FIDO-- ISA— >?WHAT
A PRINT "Fido isa" *WHAT

5) PRINT prints any quoted string or strings. Unquoted

items are assumed by PRINT to be either variables or

formally-declared parameters whose values are to be printed.

6) BYE causes logout, and writes the user's current

data-base to disk.

Page 2-6

7) TO summons the editor for definition of a new

user-defined procedure.

8) EDIT permits editing of an existing user-defined

procedure. The prompts and other formatting during TO or

EDIT sessions vary from dialect to dialect of SOLO.

9) DESCRIBE prints a standardised SOLO formatting of the

triples which in the current database are associated with a

single node, that node being given by the user as DESCRIBE's

single argument :

DESCRIBE FIDO causes a printout such as :

FIDO
'—— ISA— ^DOG

' HAS— >FLEAS

10) LIST also takes a single argument, the name of a

user-defined procedure, and prints out a listing of that

definition in a standard indented format including cosmetic

additions such as "If Present" and "If Absent" on CHECK

sublines.

Page 2-7

11) DUMP prints out the entire database, including any

user-defined procedures. This is mainly of use for students

who wish to take home a hard copy of their work.

SOLO users do not have to concern themselves with any of

the complexities of login/logout or of file handling. SOLO

responds to the instruction HELLO with a prompt for the

user's personal identifier - usually the user's student

number, although MacSOLO permits the use of alphabetic login

names. If the user has logged into SOLO before, his/her

individual database file is found by means of the personal

identifier, and contains any database the user may

previously have created, plus any previously-defined

procedures. BYE writes the user's database and current

procedure definitions to the same file. The user thus has

at his/her disposal a personal SOLO machine, and is

encouraged by the course notes to think of "the computer" in

those terms.

Users are also encouraged to view the database as a

manipulable, rather than a sacrosanct, object. The

instructions SAVE (which does the same as BYE without

logging out) and RESTORE (which does the same as HELLO

without logging in) allow them to experiment with

non-standard databases, subsequently returning to their

original version.

Page 2-8

2.2 DESIGN PRINCIPLES

As with the earlier versions of SOLO, MacSOLO is more

than merely a language: it is a complete programming

environment. Within this environment are embedded the

intelligent auto-debugging aids which are the main subject

of this thesis. Thus, whilst the basic MacSOLO system with

its static error-traps will be referred to simply as

MacSOLO, the auto-debuggers will be treated separately under

their generic name AURAC. The main advantage of MacSOLO

from the points of view of the Course Team and of

researchers is its flexibility: it is usually a simple

matter to make semi-permanent changes to or additions to

existing SOLO facilities, in order to try out new ideas.

During the design and implementation of MacSOLO/AURAC,

five principles were kept in mind:

1) Compatibility. Radical changes to the original design

philosophy were not practicable. In other words, the

"model" of the SOLO machine as presented to students in the

various course notes had to remain clearly recognisable in

any new version of the language. There were two reasons for

this restriction: first, it would be unfair to the students

themselves, who under OU regulations are allowed to take as

many years as they wish to complete a course; and second it

Page 2-9

was hoped to be able to compare users' progress using

MacSOLO with those using one or other of the other dialects.

2) Consistency. This and the two following principles

are drawn from the work of duBoulay, O'Shea and Monk (1981).

Consistency implies that any instruction within a

programming language should always do the "same" thing. A

glance back at section 2.1 will show that the CHECK

instruction is poorly consistent, since it behaves

differently according to whether or not its triple contains

a wildcard, according to whether it is used from top level

or from within a user-defined procedure, and (in older

dialects of SOLO) according to any prior use of FOR EACH

CASE OF. However, the Consistency principle does not

prohibit modification of an instruction's effect via

optional arguments (as in HELP).

We add a further important dimension to the principle,

not mentioned by DuBoulay et al. This is the requirement

that where an English word is used to effect a system

instruction, the word and any companion words should reflect

as far as possible their normal English usage. In this

respect NOTE and FORGET are inconsistent: the instructions

should be for example NOTE and ERASE. (REMEMBER and FORGET

Page 2-10

would not be suitable since the normal usage of "remember"

can imply that the remembered item had been PREVIOUSLY

stored - in other words there would be likely semantic

confusion between REMEMBER and CHECK)•

3) Simplicity. This principle asserts that a language

instruction should have just one conceptually integral

action — as for example BYE and FOR EACH CASE OF do. And

again NOTE (in older dialects) and CHECK are offenders in

this respect - see below. However, Simplicity does not

forbid an instruction from working on different types of

datum, as will be seen in the later description of MacSOLO's

Recogniser.

4) Transparency. This is the degree to which the user is

able to "see what is going on" inside the SOLO machine as he

or she operates it. It has a high importance for beginners,

who often find the whole computing environment extremely

confusing: it offers reassurance that the user's model of

the machine is the correct one. In many cases (as with

FORGET, say) this reassurance is given by the machine's own

automatic response to the user's input. But there are other

occasions - e.g. during the execution of long programs -

where continual printouts of each and every database change

can be more confusing and irritating than no printouts at

all. In the latter case it is preferable to provide a

Page 2-11

simple means (e.g. TRACE and STEP) whereby the user can see

the detailed machine response only if he or she wishes to do

so.

5) It was desirable that MacSOLO be usable in all the

contexts in which the other SOLO dialects were used. Since

it would evidently differ from them in many respects, it

needed a simple method whereby its users could find out what

these differences were. This led to the design of the HELP

system, which when used from top level is in effect an

on-line SOLO manual. It was also desirable that MacSOLO

itself - as distinct from AURAC - should trap all those

errors which it is possible to trap at their time of entry,

so that the success or otherwise of the more intelligent

debugging systems could be judged apart from the mass of

simple, typing-mistake level errors to which novices are

inevitably prone. As will be seen, this led to the design

of a number of error traps and aids which are in themselves

novel.

Page 2-12

Since there is no clear dividing line between the status

of novice and that of expert - the one fades into the other

- there was from the design point of view a problem

concerning the corresponding error messages. Other SOLO

systems are verbose with their messages, and students have

been seen at Summer School, hard pressed for time and so

making lots of "silly" mistakes, brought to screaming point

by the machine's relentless and extended explanation of

each. MacSOLO's solution to this difficulty is given below,

in section 2.3.2.

There is also a problem here related to the Consistency

of the user's model of SOLO. If the messages refer (as in

other systems they do) to SOLO in the first person, this

suggests to a novice user that the machine is far more

intelligent than in fact it is. Its failure to behave as

intelligently in other contexts can look like mere

cantankerousness. MacSOLO/AURAC's messages refer to the

SOLO machine in the third person.

Page 2-13

2.3 EXTENSIONS

The remainder of this chapter concerns MacSOLO: the

changes made to the SOLO machine in the light of Lewis's

(1980) work and of subsequent experience, and in the light

of the above five criteria.

solo's original NOTE instruction prohibited overwriting

For example, if the database already contained the triples

FIDO

' —— ISA— ^DOG

'-- HAS— > FLEAS

then an attempt to NOTE the new triple FIDO HAS FOURLEGS

would fail, and would elicit from SOLO an error message to

the effect that "FIDO HAS FLEAS already". That is, the

triple FIDO HAS— >FLEAS, which had two elements in common

with the new triple, would prevent insertion of the latter.

This was thought to be better from the raw novice's point

of view since it prevented him/her from amassing a huge

database full of largely redundant data. However, this

restriction also prevented any meaningful use being made of

the FOR EACH loop. So, once a student had written a

procedure using FOR EACH, the NOTE instruction automatically

Page 2-14

went into a "multiples permitted" mode, so that databases

suitable for the new procedure could then be constructed.

In a later version of SOLO, that change was brought under

the direct control of the user. But either way it was a

flagrant violation of the principle of Simplicity.

It turned out in practice that students do not in fact

create the feared huge databases; a "no-multiples" NOTE is

therefore unnecessary. MacSOLO's NOTE allows any triple to

be entered into the database at any time - provided, of

course, that no identical triple is already there. As our

students progress, it soon becomes a trivial matter for them

to write an overwriting procedure should they need one (i.e.

CHECK for the triple, and FORGET it if present). MacSOLO's

NOTE is permanently in non-overwrite mode, and is unaffected

by any use of FOR EACH.

A somewhat similar problem arose with CHECK. If the

database contained more than one triple each of which had

two identical elements :

FIDO

' HAS“ >FOURLEGS

'--HAS— >FLEAS

as it would have to have if FOR EACH were to operate upon

it, then the instruction

Page 2-15

CHECK FIDO HAS ?WHAT

would have no single result. The original SOLO

(automatically) prohibited the use of wildcards in CHECK

once FOR EACH had been used in a user-defined procedure, and

students produced some extraordinarily tortuous code in

their attempts to get round the restriction. A later

version of SOLO again brought this change under the user's

control (it was Lewis's suggestion in both cases), but

MacSOLO's more elegant solution is to allow wildcards in any

use of CHECK; if more than one result is possible, that

most recently entered is chosen. This is Consistent with

the idea of a NOTEpad, on which the most recent entry is the

last (and lexically the lowest, as it is when MacSOLO prints

out portions of the database as above).

As a convenience for users, FORGET is allowed to take a

wildcard in its third-argument position. And after many

requests for such a facility from users, an additional

control-statement STOP has been included. In contrast to

EXIT, which returns control to the next-higher recursive

level, STOP returns control immediately to top level. All

of the other SOLO instructions mentioned in section 2.1 have

been implemented just as they were. For Summer School users

a number of extra system instructions are provided. The

following are also found in the micro-computer dialect of

SOLO:

Page 2-16

1) LET used within a user-defined procedure, takes two

arguments separated by an "=" sign and assigns a given value

to a given variable-name. e.g. LET *X = FIDO. MacSOLO

does not normally permit global variables - these can

produce weird-looking run-time errors which can baffle even

an expert - hence the restriction of LET to use within

user-defined procedures.

2) INPUT is again only usable from within user-defined

procedures, and for the same reason. It takes any number of

arguments, each of which is the name of a variable, e.g.

INPUT *A *B *C. At run-time, INPUT causes execution to halt

whilst the user inputs one or more values to be bound to

these variables. This allows students to write simple

interactive procedures.

3) TEST operates like a mini-CHECK. It takes similar

sublines, labelled "If Yes" and "If No", and merely

ascertains whether or not a given variable has a given

value :

10 TEST /X/ = FIDO
A If Yes: PRINT "OK" ; CONTINUE
B If No : EXIT

The alternative of asserting a suitable triple into the

database and then retrieving it with CHECK is long-winded

and time-consuming.

Page 2-17

4) There is also an even faster database-retrieval

mechanism involving the apostrophe. If, for example, the

database contains the triple FIDO BESTFRIEND ROVER, an

instruction such as

NOTE (FIDO'S BESTFRIEND) ISA DOG

will evaluate the parenthesised phrase before making the

database assertion, so that the intuitively correct thing

happens. In three years' experience we have never known an

unaided student to use this construct, and we suspect that

this is partly because it violates the principle of

Consistency; the necessity in other contexts to write such

odd-looking instructions as

NOTE (FIDO'S HAS) ARE INSECTS

lessens the usefulness to naive users of the original good

idea.

5) DIR is short for DIRECTORY, and gives a brief listing

of all the primary nodes currently held in the database,

plus a listing of the names of any user-defined procedures.

Page 2-18

6) KILL deletes the definition of a named user-defined

function.

The following additions are not found on the micro

version of SOLO, and are except for UNDO all facilities for

use within SOLO's editor:

7) UNDO operates from either top level or in EDIT mode to

nullify the effect on the global database (if any) of the

user's most recent action. This latter may be (a) a

top-level call to a system primitive; (b) a top-level call

to a user-defined procedure; or (c) the editing of one line

of a procedure. UNDO will not "undo" its own actions. If

there is nothing in UNDO's temporary memory, MacSOLO

announces "Nothing to UNDO".

8) RENUMBER. MacSOLO's editor, when summoned via TO

rather than via EDIT, supplies automatic line-numbering in

multiples of 10. The user is then free to insert additional

lines after, before or between any lines already written.

RENUMBER simply restores the interval of ten between any two

adjacent lines. Although this may seem so trivial a

refinement as to be virtually pointless, users do appreciate

Page 2-19

it as something which removes one more source of potential

confusion from the listings of their programs.

9) RENAME allows, as its own name implies, the name of

any user-defined procedure to be changed. Via a brief

dialogue with the user, it also allows the formal parameters

to be changed if desired. RENAME actually creates a new

copy of the original procedure, and gives it the new name

and parameters. As the relevant HELP entry (summoned by

HELP RENAME or HELP COPY) explains, that fact can be made

deliberate use of in cases where the user needs to create

several near-identical versions of the same program. This

need arises most frequently in the two-column subtraction

project.

10) SHOW. Occasionally, students want to insert the

normal top-level instructions DESCRIBE or LIST into their

programs. In accordance with the principle of simplicity,

the best way to accomodate that need is to restrict those

instructions to the top level/runtime interpreter, and to

provide a separate means of database inspection for use from

within the editor. In order not to have two

differently-named instructions which do conceptually the

"same" thing, SHOW has been made to perform either a LIST or

a DESCRIBE of any node or procedure-definition, depending

upon the contents of the database at the time.

Page 2-20

There follow now brief descriptions of the various

user-aids offered by MacSOLO. Unless otherwise stated,

there is no directly equivalent facility in any other

version of the language.

11) SPELLING CORRECTOR. This was designed largely on the

basis of Lewis's (1980)observations concerning the failures

of the original mainframe dialect. Its hit-rate measured as

a percentage and using an average dictionary is 88%, and its

details are discussed in Appendix F.

12) RECOGNISER. This is intended to reduce rather than

to correct user errors. Under different conditions, it does

conceptually the "same" thing, in accordance with the

principle of Consistency. When the user has typed in only

part of a word - usually two or three letters are sufficient

- depression of the ESCAPE key will cause the word, if it is

known and if the typed substring is enough uniquely to

identify it, to be filled out automatically. If there is

more than one possible match, the recogniser fills out that

part common to all of them, and displays the alternatives at

the top of the terminal screen (or on a new line). If there

is no possible match, it does nothing. A similar facility

is found in the TOPS-20 operating system. Another related

feature of the MacSOLO recogniser is that when the user is

Page 2-21

partway through the typing not of a word but of a complete

instruction (i.e. is between words) depression of the

ESCAPE key prints out the current state of the syntax-filter

- that is, it suggests what type of word (procedure-name,

node, relation etc.) should come next.

13) TRACE. The current mainframe dialect of SOLO offers

a rudimentary TRACE facility which prints the name of each

procedure within a program as control enters it. The

microcomputer dialect has a similar arrangement out of the

user's control but restricted to the top line of the

terminal.

Neither of them has a stepper, and experience has shown

that in the letter's absence a much more elaborate tracer is

desirable. Given a stepper, a simple tracer is sufficient.

MacSOLO's tracer prints the name of the procedure entered

plus the values of its formal parameters if any, and prints

a note when control exits from that procedure.

Announcements concerning subroutines are suitably indented.

For example, the recursive INFECT procedure from section

1.3.1 would, when traced, produce the following printout:

Page 2-22

SOLO: INFECT JOHN

Enter INFECT JOHN
Enter INFECT MARY
Enter INFECT FRED
Enter INFECT JANE
Exit INFECT
Exit INFECT
Exit INFECT
Exit INFECT

SOLO:

The tracer is intended only as a means of finding out in

which subroutine a procedure failed - it is not, as STEP is,

meant to be used as a diagnostic tool. It is put into

operation by the single-word instruction TRACE, and switched

off again by the instruction UNTRACE. There is no provision

for tracing individual procedures, since again it is

intended that STEP be used for this purpose.

14) STEP. It is expected that STEP will be summoned if

and when a user's program has failed at run-time. At such

times the single instruction STEP will put MacSOLO into

stepping mode, and will re-run the same procedure using the

same input data. At other times (no student has used the

stepper in this way yet) the stepper can be activated by

giving it the full procedure call as arguments :

STEP CONFIRM FIDO ISA DOG

steps the procedure CONFIRM with its normal triplet of

Page 2-23

arguments. STEP uses the normal MacSOLO interpreter to

re-run the faulty procedure line by line. As throughout the

rest of MacSOLO, progress from one line to the next is

effected by depression of the RETURN key. At each step, the

original user code from the corresponding procedure is

printed out, with all variables and parameters evaluated as

far as is possible at that stage of execution. Any

messages, such as automatic DESCRIBE after NOTE, occur as

they would from top level; and where the line assigns a

value to a variable (i.e. where it contains a wildcard

CHECK) that variable and its new value are explicitly shown.

FOR EACH nests are printed out in a top-down fashion, in

the same sequence as their evaluation by SOLO.

It is thus genuinely possible to watch as MacSOLO

executes a procedure or program in slow motion. STEP is the

most Transparent of MacSOLO's facilities, and on several

occasions formerly bemused students have suddenly grasped

what is going on as they used the stepper (presumably they

suddenly acquire a viable model of the SOLO machine). The

stepper is as much a didactic as a debugging tool. On the

other hand, as mentioned earlier, to have this degree of

transparency constantly available would seriously slow down

those users who did not need it. An example of STEP in

action is given in chapter 5.

Page 2-24

15) UNDO cancels the effect on the database of the user's

most recent action. This action may be a top-level call to

a system primitive, or a top-level call to a user-defined

procedure (which may have any number of subprocedures).

UNDO is also available within the editor, where it cancels

all edits done during the current editing session.

16) AURAC has three commands: DEBUG, HOLES and INFORM.

DEBUG initiates the full analysis as described in chapter 4,

and is expected to be used in the same way as the STEP

instruction. Analysis terminates with the issuing of the

message or messages from the final, algorithmic, section of

AURAC. INFORM followed by a procedure name then gives the

more detailed results of AURAC's analysis of that particular

procedure; and HOLES prints a list of any data triples

referred to during execution of the program but absent from

the database.

2.3.1 The Editor

As already mentioned, the editor can be summoned in

either of two modes : via the instruction TO in order to

define a procedure from scratch, or via EDIT in order to

modify an existing definition. This is a case where the

principle of Consistency requires what is essentially the

same underlying suite of (LISP) programs - the editor - to

be presented to the user as two separate environments. It

Page 2-25

is not at all obvious to a naive programmer that the two

operations are the same. In the former mode MacSOLO prints

as prompts appropriate line-numbers in multiples of 10,

leaving the user free to insert additional lines between

existing ones as definition proceeds. In the latter mode

the prompt is "edit line... " to remind the user to specifiy

which line of the existing procedure is to be modified

(probably, for British users, the abbreviation "no." for

"number" would be better here than the American hash-sign

equivalent).

Where sublines are required (i.e. after CHECK, TEST or

FOR EACH CASE OF plus its arguments has been entered) these

are automatically prompted for in either mode, with standard

cosmetic printouts such as "If Present:". If any necessary

control statements are omitted, these are also prompted for:

this latter omission counts as an error in all versions of

SOLO.

Supplying a line-number followed by a carriage-return

deletes the corresponding line, plus its sublines if any.

Sublines can be modified independently, but cannot be

completely deleted without deletion of the whole of the main

line on which they occur.

Page 2-26

All of the relevant error traps, plus a number of

editor-specific ones, operate during either editing mode, as

does the full HELP system. Overall, it actually becomes

quite difficult to enter a syntactically incorrect line into

SOLO.

2.3.2 Error Traps And HELP

We will not list here all the errors which MacSOLO can

trap at their time of entry (for those interested, the

errors listed as Simple Syntactic in section 3.1.1 are the

ones), but will merely point out that MacSOLO can currently

issue a total of some 120 error messages, corresponding to

perhaps sixty distinct errors (the 2:1 ratio is explained

below). This is a very considerable advance over any other

implementation of SOLO, and may approach the full set of

Simple Syntactic errors possible in SOLO. In this section

we describe how these traps are integrated into MacSOLO's

ubiquitous HELP system.

In accordance with the principles of Simplicity and

Consistency, the single word HELP summons help from MacSOLO

at all times: from top level, whilst editing, whilst

stepping and so on. Under non-error conditions, this

simplest use of the HELP system will generate something

appropriate - such as the information that the user is at

top level, or is using the editor - together with pointers

Page 2-27

to other and potentially useful pages of the HELP file. If

a particular page of HELP is likely to be needed when HELP

is typed (for example, when defining a procedure and after

typing the semicolon on a CHECK subline, the user probably

wants to know about control-statements) that page is printed

out. One very important message which is often omitted from

HELP systems is that of how to escape from the current

environment - e.g. the user might not want to know about

control-statements at all, but how to get back from the

editor to top level. In MacSOLO this message is always the

same, since control-A is its universal escape-to-top-level

interrupt, and where appropriate MacSOLO's HELP messages

carry this information.

As far as the user is concerned, each page of HELP is

identified by the one-word name of its topic, so that a

second way to use the system is by giving HELP an argument

specifying the page-name: HELP EDIT, HELP NOTE, HELP

APOSTROPHE. MacSOLO is able to recognise all the

commonly-used synonyms for any HELP page-name; in this

context HELP HELP (or HELP ME) generates a list of topics

and carries the simple advice "Type HELP folowed by

whichever of these seems closest to the help you need and

let SOLO guide you from there.". When MacSOLO signals an

error, its error message is designed to be as brief as

possible consistently with providing enough information

Page 2-28

about the error itself. For example, giving one of SOLO's

major instructions other than three arguments will result in

the simple comment "Wrong format". The point of the

emphasis on brevity is that, as already mentioned, the kind

of error which MacSOLO without its debugger is designed to

trap is the kind which could well be the equivalent of a

slip of the pen, and relentless explanations of these are

usually counterproductive.

However, the longer explanation is available (which is

why the number of possible error messages is roughly twice

the number of trappable errors), and as usual carries

pointers where appropriate to other potentially useful HELP

pages. When one of these Simple Syntactic errors does

occur, the HELP system consults a record which it secretly

keeps in the user's own database file. The record tells the

system whether or not this user has ever read the longer -

and more explanatory - version of the message. If not, a

reverse-video flash across the top of the terminal (a new

line on printing terminals) advertises the existence of the

additional HELP: "Type HELP if you don't understand". In

this way the HELP system is what we call "ostensive", and

this is a useful attribute because novices do not yet have

the expert's habit of consulting the machine itself when

things go wrong. Changing HELP from a passive to a

semi-intrusive format made a very substantial difference to

Page 2-29

the amount of use it received. Raw beginners find

themselves being constantly reminded about the existence of

HELP; as their expertise grows the facility fades into

relative obscurity.

There are a few error messages whose meaning is so

self-evident that no extended version is required. For

example, unbalanced quotes on a string following PRINT cause

MacSOLO to refuse to accept the input line (that is, the

RETURN key refuses to work) and the announcement at the top

of the terminal that "Quotes don't balance". Once the

necessary correction has been made, using the RUBOUT if

appropriate, the line will be accepted.

MacSOLO's run-time error messages are of necessity

somewhat longer, since "enough information about the error"

then becomes a larger amount ; e.g:

"Unbound variable - *A has no value on line 30 of

MATCH"

The longer version is still there, if the user types HELP,

but in these cases the pointers to other HELP pages include

advice to use the debugging aids described above, such as;

"Use the stepper - HELP STEP tells you how"

Page 2-30

2.3.3 Scope Of Variables And System Switches

The scope of variables - this term to include both

locally-bound variables and formal parameters - is currently

dynamic in MacSOLO as it is in LISP. That is, once a

variable has been bound it retains that value during any

subroutines, but is unbound once control returns to a higher

routine. This decision cannot be justified with any

concrete evidence - rather, the evidence points to students

having extreme difficulty with the concept of binding

itself, never mind its scope. The microcomputer dialect of

SOLO uses strictly local binding (i.e. lexical rather than

dynamic scope) so that local values must be explicitly

passed to subroutines as the values of formal parameters if

required. So far, this difference has not been noticed in

practice, but - in case it ever should be - one of a series

of system switches available only to tutors allows selection

of local or global binding as alternatives to the default

dynamic.

Other switches allow the tutor to alter such system

parameters as the number of permissible lines in a single

procedure, the maximum depth of the run-time stack (= depth

of recursion), or to turn off the spelling corrector. In

other words, to tailor the environment to suit exceptional

programming needs. There are also a number of minor

modifications, such as improving the readability of SOLO

Page 2-31

code by allowing the names of nodes, variables and formal

parameters to be of arbitrary length, but these are not

important here.

CHAPTER 3

EMPIRICAL OBSERVATIONS

This chapter concerns two things. First we present an

error taxonomy for novices' errors, based upon AURAC's

actual and achievable results; and second we report on a

series of experiments to observe the debugging behaviour of

human SOLO experts.

3.1 ERROR TAXONOMY

This is a broad categorisation of the errors which SOLO

users actually do make. It is not of course intended as a

complete classification of the behaviour of novices, but

merely as a useful way of talking about "kinds" of errors.

The four categories are: Simple Syntactic Errors,

Higher-Level Syntactic Errors, Cliche Errors, and Data Flow

Errors.

Page 3-2

However, the traditional dichotomy between "syntactic"

and "semantic" errors - the former being trappable at

compile-time whilst the latter only show up at run-time -

does not map perfectly onto AURAC's categories. There are

three reasons for this. Firstly, there is a type of error

which, although it would normally be classed as semantic,

can certainly be trapped at compile-time (in SOLO's case, at

its time of entry from the keyboard). As a hypothetical

example, consider a FORTRAN user whose program contains

Y = X/0

in an attempt to assign to Y the result of dividing X by

zero. The "divide-by-zero" pattern could certainly be

detected by a simple demon long before run-time. This type

of error is considered by AURAC to belong in the Simple

Syntactic category.

Secondly, there is another type of error (for example,

giving the wrong number of arguments to a system primitive

or to a user-defined procedure) which can also be detected

and explained via simple demons. Whether such errors are

trapped at or before run-time depends upon the particular

implementation of the error-signalling mechanism in use.

But in either case they do not merit the attentions of an

intelligent debugging system. This type of error, too, is

classed as Simple Syntactic.

Page 3-3

Thirdly, it does not seem psychologically plausible to

apply the term "semantic" to an error when considered in

isolation. Whether or not the error represents any degree

of semantic confusion depends entirely upon the degree of

understanding of the individual who made it. A novice

making the above divide-by-zero mistake might genuinely not

understand that dividing by zero is an unreasonable

operation to attempt. Conversely an expert would presumably

know perfectly well what he/she intended to do, and would

type the zero, if at all, merely by accident.

In other words, what may be a "semantic" mistake on the

part of a beginner might not indicate any semantic confusion

at all on the part of an expert. Therefore we prefer not to

classify the errors themselves within a syntactic/semantic

spectrum, but to consider instead the expertise or otherwise

of the person making them. The four categories presented

here are ordered along this dimension. That is to say,

errors other than Simple Syntactic are considered to be in

themselves some evidence of increasing expertise on the part

of their perpetrators. We believe that this gives a more

useful way of talking about errors from the point of view of

intelligent debugging systems.

Page 3-4

3.1.1 Simple Syntactic Errors

Experience during the design and initial evaluation

stages of MacSOLO, later confirmed by a reading of Wertz

(1979), indicated two subsets of what are normally classed

as syntactic errors. The first, which we call Simple

Syntactic errors, are characterised by being highly

language-specific: such things as unbalanced quotes on

printable strings, unbalanced parentheses where these are

required, reference whilst defining a procedure to formal

parameters which have not been declared, spelling mistakes

and so on. All of these can be trapped as they are entered.

Although any given one may be entirely language-specific, it

is clear that similarly simple traps or demons could be

constructed to find analogous errors in other languages.

There is nothing here that requires intelligence on the part

of the machine. The full list of Simple Syntactic errors

trappable by MacSOLO is given in Appendix G.

Simple Syntactic errors arise through misuse of the

language's syntax at an elementary level - usually involving

single tokens or "words". Above them, and for the most part

after them on the average learning curve, come Higher Level

syntactic errors, which are specific not to the word-level

syntax of the language but to its syntax at the level of

programming constructs. Where a construct such as a

conditional form or a formalised loop, or a comparable

Page 3-5

programming technique such as recursion, is misused, a

Higher Level syntactic error can occur.

3.1.2 Higher-Level Syntactic Errors

Higher Level syntactic errors are mistakes which could

still be mere slips of the expert's attention, but which

from a novice might well betoken a much more serious lack of

understanding. For example, faulty exits from a conditional

causing non-execution of subsequent code, unbound variables,

undefined procedures, and endless recursion. These errors

will usually not show up during any "static" analysis of the

code, but will reveal themselves only at run-time. And

again although the means of automatically detecting them may

be language-specific in any given implementation, there is

no reason in principle why the same detection algorithms

should not be transportable to any other language. As

described in chapter 4, AURAC employs a production-system as

a substitute SOLO interpreter to re-run the faulty code and

to find the following kinds of error in it :

Failure or success of conditional form leaves unreached code.
Faulty conditional exits (four types in SOLO).
Reference to non-existent data triple.
Loop containing ineffective test (two types in SOLO).

Unbound variable - parhaps chained to earlier error.
Endless recursion (five types in SOLO).
Undefined procedure
Incomplete database chain.

Page 3-6

The first of the latter group is not necessarily

indicative of an error - whether it is or not depends upon

the particular input data - and hence is expressed by AURAC

as a "possible" error. It was felt desirable to point out

the unreached code in any case. Since AURAC's Higher Level

syntactic analyser calls upon the normal SOLO interpreter

during its simulation of run-time effects, and since MacSOLO

is also a stand-alone system, there is a degree of crossover

between the two levels of syntactic analysis. That is, the

final four errors in the above list can be detected by

either module. The difference is that AURAC's explanations

of them are potentially richer. For example, there are five

causes of endless recursion in SOLO (this will be further

explained in chapter 4). These are all the same error in

MacSOLO alone; five distinct errors if AURAC is used.

3.1.3 Breakdown Of MacSOLO/AURAC Users' Actual Errors

Matthew Lewis (1980) produced an exhaustive analysis of

one year's use of the original SOLO, using a

behind-the-scenes computer log of each student's

moment-by-moment interactions with the machine. He

evaluated the then-existing error traps and made many

suggestions for improvement (particularly of the spelling

corrector) most of which, where appropriate, have been

incorporated into MacSOLO.

Page 3-7

MacSOLO has collected data on 3643 user entries, each

line of SOLO (plus its sublines if any) being considered a

separate entry. Amongst these lines 784 (21.5%) were

recorded as "error lines"; as well as genuine user errors,

they included lines which invoked some error-related

facility such as HELP. MacSOLO's list of potential errors

(given above) is substantially longer than Lewis's, but for

the sake of comparison only those errors whose frequencies

were found to be above two percent are listed again here.

The resulting table of frequencies is as follows :

Page 3-8

Actual Percent

All "errors" 784 100.0

Word recogniser used 266 33.9

Attempt to NOTE existing triple 178 22.7

Unbound variable 98 12.5

Spelling corrector 90 11.5

Missing control statement 76 9.7

Stepper used 75 9.6

Wrong number of arguments 71 9.1

Undefined procedure invoked 61 7.8

HELP system used 60 7.7

Parameter slash error 48 6.1

Attempt to redefine existing procedure 46 5.9

Missing line-number 28 3.6

Attempt to DESCRIBE non-existent node 23 2.9

Attempt to FORGET non-existent node 15 2.3

For comparison, there follows a similar table of the error

frequencies found by Lewis. The percentage of error lines

he found in his whole sample was 26.1, broken down as

follows :

Page 3-9

All errors 100.0

Spelling or quotes error 34.4

Wrong number of arguments 25.4

Undefined procedure invoked 9.5

Missing line-number 7.5

Missing control statement 4.8

Non-terminating recursion 2.6

Attempt to redefine existing procedure 2.6

Unbound variable 2.4

Closer comparison is difficult because of the large

differences between the original SOLO used by Lewis and

MacSOLO. The original version had a rather complicated

means of access to such things as its HELP facility, and

this contributed a substantial quota of errors. Similarly,

such things as illegal characters or spurious control

characters were counted as errors - MacSOLO simply ignores

them and adjusts inter-word spacings if necessary. In all,

roughly one third of the errors noted by Lewis either cannot

happen or are auto-corrected in MacSOLO. It is interesting,

however, to see from the above tables that whilst the

overall proportion of errors remains about the same,

(21-26%) their distribution is very different. For example,

the "unbound variable" error moves from the bottom of

Lewis's list to near the top of MacSOLO's. This error in

Page 3-10

itself suggests some degree of progress on the part of the

novice, since it implies an attempt on his/her part to make

use of a general programming technique - rather than, as

Lewis's listed errors do, an attempt to get to grips with

the basic SOLO machine. Notice also the considerable use of

MacSOLO's recogniser (which is intended to obviate spelling

errors) and the much lower incidence of spelling errors in

MacSOLO's list.

DuBoulay (1979) made a similar analysis of novice users

of LOGO, which has strong similarities with SOLO. His

figures are as follows :

ERROR PERCENTAGE

Call undefined procedure 28

Insufficient arguments 16

No line number 11

Extra text 10

Turtle off drawing area 10

Variables misused 6

Wrong type of argument 4

Command leaves a value 3

Device claiming violation 3

Number too large 3

Stack overflow 2

Page 3-11

A direct comparison between the four most common errors

in SOLO and LOGO has been produced by Eisenstadt and Lewis

(1982), making allowances for differences between the two

systems. Their table is reproduced below, with the

equivalent MacSOLO figures added:

SYMPTOM % OF ALL ERRORS

LOGO SOLO MACSOLO

1. Spelling/typing/misquoting 28 34 19.6

2. Wrong number of arguments
passed 18 18 9.1

3. No line number 12 9 8.2

4. Call to undefined procedure 12 9 7.8

The interesting points to notice here are (1) that

MacSOLO sharply reduces the incidence of the first two types

of error - errors which are not implementation-specific -

and (2) that MacSOLO's own four most common errors are:

1. Attempt to NOTE an existing triple 22.7

2. Unbound variable 12.5

3. Spelling corrector 11.5

4. Missing control statement 9.7

That is to say, a user making mistakes in MacSOLO is likely

to be making more interesting mistakes than do users of the

other two languages. More interesting in the sense that

(apart from the ubiquitous spelling error, which plagues

Page 3-12

even experts) they have a higher semantic content.

MacSOLO's aim of obviating "silly" errors appears to have

been achieved. It is unfortunate that there is no

equivalent system against which to compare AURAC's more

intelligent debugging modules.

3.1.4 Cliche Errors

Thirdly come errors which concern conceptual "chunks" of

code, and which we have identified (cf. Brotsky 1981) as

programming CLICHES. A cliche is a line or group of lines

of code - not necessarily contiguous - which is found

repeatedly when large quantities of code are analysed, and

which is always used to effect essentially the same purpose.

A cliche can be regarded as a programming CONSTRUCT which

has not yet been formalised in the host language. For

example, a group of SOLO lines which together have the

effect of deleting one triple from the database and

replacing it with a similar but different one (such as might

be required in a program which accumulated some kind of

numeric total) is one of the cliches which we have so far

identified. Cliches are, naturally, not only highly

language specific but also domain-specific - and could even

be user-specific; so it is not to be imagined that the set

given in chapter 4 is anything like the full set, even for

SOLO.

Page 3-13

Brotsky's work on cliches was done for LISP code.

Although ours was done on SOLO code, our ability to detect

and to make use of them is broadly in line with his. AURAC

uses a library of cliche "skeletons" (naturally, the library

is known as the Cupboard) which it matches one by one

against sections of user code in order to detect cliches.

It then looks for a mismatch between the code details and an

"example" from the same library in order to pinpoint errors.

There are nine cliches in AURAC's cliche library, and

AURAC allows a maximum of two errors per cliche line (see

chapter 4). The commonest SOLO line is probably the CHECK

line, which typically contains between six and fourteen

distinguishable elements (atoms). So in some sense the

number of errors potentially detectable via cliche analysis

is very large, although in practice they are almost

invariably errors in control-statements or in

variable-names. Our hypothesis from this is that the data

triple is a much more solid concept in our students' minds

than either flow of control or variable binding. We have

not listed all possible cliche errors because they would be

tedious and because they can be inferred immediately by

inspection of the cliche library (section 4.3).

Page 3-14

3.1.5 Data Flow Errors

Fourthly come data flow errors : errors of control-flow

having been analysed as Higher Level Syntactic errors or

Cliche errors as above. There is firstly the question of

the flow of data into and out of the database. Deriving

from Goldstein's idea of "preparatory steps" (section 1.4,

above), AURAC expects this flow overall to be nil.

Secondly, an error occurs in the flow of data through a

procedure when a piece of code is syntactically correct in

all respects but is given the wrong data to work upon. This

can alternatively be regarded as an algorithm error, and

AURAC adopts this approach because of its potential for

offering a richer or more comprehensible explanation to the

naive user. Data flow analysis also concerns itself with

such matters as the presetting of database flags into some

known condition, and ensuring by means of clear-up routines

that one run of a program does not leave unwanted data in

the database which could affect future runs. Data flow

analysis involves the use of substantial amounts of

knowledge which is specific both to the language and to the

problem domain, but it has proved possible to restrict this

knowledge to a small number of (LISP) routines within AURAC.

The main principle of data flow analysis as described here -

the system of balanced "expectations" and "satisfactions" -

should be applicable to other database-assertive languages,

and as will be described in chapter 6 it is hoped soon to

Page 3-15

have the opportunity to test this assumption. Data flow

analysis reveals the presence of only a small number of

errors: a NOTE instruction not accompanied by a CHECK

instruction or not accompanied by a FORGET instruction; a

FORGET not accompanied by a NOTE; or a bound but

unreferenced variable. (Referenced but unbound variables

are trapped elsewhere, as above). Where the algorithm

library can be used - i.e. when it contains the appropriate

algorithm - this number is potentially increased by the

number of steps in the algorithm.

3.2 EXPERT DEBUGGING STYLE

3.2.1 The Sample Program

The following report concerns a series of experiments to

observe the debugging behaviour of human SOLO experts, and

to find evidence in support of (or against) the account

given in chapter 1. For convenience we reprint the account

here. It is that if the human expert has no access to the

machine, debugging takes place in essentially three stages:

1) "Skim" the faulty code in much the same way as
one might "skim" a newspaper article, looking
for salient points. In this case the saliences
are syntactic errors, including missing data;

2) Recheck the code looking for errors in
higher-level segments of it, here identified as
programming cliches;

3) Check the code again, attempting to follow data
flows in order to establish that these "make

- sense", and identify the effect of sections of

Page 3-16

the code in terms of the program's overall
purpose, if known.

Five expert SOLO programmers, all of whom had tutored

SOLO at Summer School, were asked to debug the genuine

faulty program shown in fig. 3.1, where each line and

subline has been separately numbered for the purposes of

explication. The program was originally written by a

student for an assignment as mentioned in chapter 1. The

student's database which accompanied the program is also

shown, as fig. 3.2.

1. TO IMPLICATE /X/

2. 10 PRINT /X/ "IS A CRIMINAL"

3. 20 FOR EACH CASE OF /X/ FRIENDLY ?A
4. A CHECK *A HAS POLICERECORD
5. AA If Present : IMPLICATE *A ; EXIT
6. AB If Absent : NEXTCASE

7. 30 FOR EACH CASE OF /X/ PAYS ?B
8. A CHECK *B HAS POLICERECORD
9. AA If Present : IMPLICATE *B ; EXIT
10. AB If Absent : NEXTCASE

11. 40 B CHECK *C PAYS

12. 50 PRINT "THAT SEEMS TO BE THE WHOLE

13. DONE

Fig. 3..1.

Page 3-17

FRED

—— ISA— ^MAN

 LOVES— >MARY

 PAIDBY— >BRIAN

’--PAYS— > COLIN

ADAM

 HAS— >POLICERE CORD

 FRIENDLY— > COLIN

 FRIENDLY— >FRED

’--PAIDBY— >BRIAN

BRIAN

 HAS— >POLICERECORD

— PAYS— >ERIC

 PAYS— >ADAM

’--PAYS— >FRED

COLIN

 HAS— >POLICERECORD

 FRIENDLY— >ADAM

'--PAIDBY— >FRED

DAVID

'--FRIENDLY— >ADAM

ERIC

' — PAIDBY— >BRIAN

'— ISA— ^GARDENER

Fig 3.2

Page 3-18

3.2.2 Program Specification

The experts were not told the purpose of the program, but

for reasons of clarity here we will describe it. The

problem statement as supplied to the student was as follows :

1) This option asks you to explore the notion of
'propagating' inferences through a database (see
Units 3-4, pp 78-82).

2) Suppose that SOLO had the following descriptions
stored in its database;

LIDDY

'--ISA— >BURGLAR

'--WORKSFOR— >MITCHELL

MITCHELL

'-- ISA— >BIGLAWYER

'--WORKSFOR— >NIXON

NIXON

'--1S A— >PRE SIDENT

3) Given the above descriptions, can you define a
procedure called 'IMPLICATE' which makes the
following inference: if someone is found to be
guilty, then whoever that person works for is
also guilty.

Page 3-19

4) Here is how that procedure might work:

SOLO: IMPLICATE LIDDY

AHA! I'VE CAUGHT LIDDY, SO:

LIDDY

 ISA— >BURGLAR

 WORKSFOR— >MITCHELL

’--IS— >GUILTY

NOW, DOES LIDDY WORK FOR ANYONE?

AHA! I'VE CAUGHT MITCHELL, SO:

MITCHELL

 ISA— >BIGLAWYER

 WORKSFOR— >NIXON

' IS— >GUILTY

NOW, DOES MITCHELL WORK FOR ANYONE?

AHA! I'VE CAUGHT NIXON, SO:

NIXON

' ISA— >PRES IDENT

' IS— >GUILTY

NOW, DOES NIXON WORK FOR ANYONE?

NO, SO I GUESS THAT'S ALL.

5) That's just a simple example. You may want to
do something more elaborate - for instance, you
may want to include extra CHECKs to see if other
conditions are met before someone is IMPLICATED
(e.g. is that person a known criminal? etc.).
You should feel free to focus on some problem
other than the Watergate scandal. As you are
writing your IMPLICATE procedure, you should ask
yourself: do people really reason this way? If
not, can you devise a better model?

Page 3-20

Discussing this problem statement, Kahney (1983) says:

"The problem model which the author of the
problem statement intended that the student
should abstract is graphically represented
in Fig. 3.3:

worksfor worksfor
LIDDY— — — >MITCHELL— — — — — >NIXON

IS IS IS

— — > GUILTY <— -— ------------

Fig. 3.3

The problem was meant to be isomorphic with the
INFECT problem...Note that the first line of the
problem statement contains a pointer to the
INFECT program, and it was expected that
students would use that procedure as a model for
writing their program for this problem." (Kahney
1983, p2-23).

The INFECT program referred to is as follows :

TO INFECT /X/

10 NOTE /X/ HAS FLU

20 CHECK /X/ KISSES ?S
A INFECT *S ; EXIT
B EXIT

And is expected to be used with a database like this :

JOHN-- KISSES— >MARY

MARY-- KIS SE S— >FRED

FRED--KISSES— >JOAN ...and so on.

Page 3-21

The isomorphic IMPLICATE program referred to by Kahney is

as follows. With it is reprinted the database suggested in

the problem statement :

TO IMPLICATE /X/

10 NOTE /X/ IS GUILTY

20 CHECK /X/ WORKSFOR ?S
A IMPLICATE *S ; EXIT
B EXIT

LIDDY

'-- ISA— >BURGLAR

'--WORKSFOR— >MITCHELL

MITCHELL

'-- ISA— >BIGLAWYER

'-- WORKSFOR— >NIXON

NIXON

' ISA— >PRESIDENT

Suppose that the top level call to this program is

IMPLICATE LIDDY

Line 10 of IMPLICATE establishes the GUILT of LIDDY by

NOTEing the fact as a normal SOLO database triple. Line 20

CHECKS in the database to see if LIDDY WORKSFOR anybody - in

this case he does: he works for MITCHELL. A new recursive

call to IMPLICATE is then set up by subline 20A, to

Page 3-22

IMPLICATE MITCHELL. Since MITCHELL WORKSFOR NIXON, the

latter too will be recursively IMPLICATEd, before the

program finally halts at line 2OB because NIXON is not

recorded as working for anybody.

The student who wrote the program in fig. 3.1 appears to

be attempting a more sophisticated inference than is

accomplished by this simple isomorph to INFECT. Presumably

he/she was motivated by paragraph 5 of the problem statement

(page 3-20). In the student's version of IMPLICATE (fig.

3.1) line 1 carries a PRINT statement; PRINT /X/ "IS A

CRIMINAL", in place of the NOTE instruction on line 10 of

the isomorph. In the student's database (fig. 3.2) the

relation FRIENDLY replaces the relation WORKSFOR, but any

given person is allowed to be FRIENDLY with more than one

other person:

ADAM

 HAS— >POLICERE CORD

 FRIENDLY— >COLIN

 FRIENDLY— >FRED

 PAIDBY— >BRIAN

Page 3-23

It is as though in the problem statement LIDDY (say)

worked for several people at once. The student has

correctly placed a FOR EACH loop (line 3 in fig. 3.1)

around the basic test- nd-recurse section, (lines 4, 5 and

6) which latter remains directly comparable with the INFECT

program. If this section of the student's program works

correctly, there should be a recursive call to IMPLICATE for

each person with whom a given /X/ is recorded as being

FRIENDLY. The program will thus propagate the "IS A

CRIMINAL" inference through a tree-structure of database

triples, rather than merely along a chain of them as does

the isomorph. Furthermore, the student has repeated that

whole exercise (lines 7-10) using another equivalent of

WORKSFOR: this time it is PAYS, giving an alternative link

along which the inference may be propagated.

3.2.3 Program Errors

The student's program will be discussed in terms of

"segments", each being directly equatable with a SOLO line

together with its sublines if any.

Page 3-24

The first segment is the line numbered 2 in fig. 3.1.

This line is a PRINT statement intended to signal the result

of the inference by printing e.g. ADAM IS A CRIMINAL, COLIN

IS A CRIMINAL. It contains a possible error, because some

SOLO experts regard SOLO as a purely database-manipulative

language. By the standards of these experts the result of

the inference should be NOTEd into the database as in INFECT

or its isomorph: a simple PRINT is not sufficient. The

fact that this student uses PRINT is a sign of a possible

misconception on his/her part: occasionally, (and

presumably before their model of the SOLO machine is

anywhere near complete) students will imagine that what

appears on the terminal is somehow "in" the computer. They

are then unable to grasp the difference between NOTE and

PRINT. On the other hand, the problem statement only

implies - it does not specify - that guilt is to be effected

by the NOTEing of a triple. A correct IMPLICATE program

will work in the same way whether its final results are

NOTEd or merely printed on the terminal. This possible

error is referred to as the PRINT COMMAND error.

Page 3-25

The second segment comprises lines 3-6 of fig 3.1, and

will be referred to as the FRIENDLY LOOP segment. Via a FOR

EACH loop on line 3, it binds *A to, successively, all those

database nodes whose triples match the pattern

/X/ FRIENDLY ?A

and then proceeds to apply the test-and-recurse operation

(lines 4-6) to each of them. The first occasion on which

the test succeeds will result in an eventual EXIT from the

program (line 5).

The FRIENDLY LOOP segment is syntactically perfect.

However, there is a possible case (which does not arise with

this student's particular database) where it will not

produce all of the desired results. For example, if:

ADAM

'-- FRIENDLY— > COLIN

'-- FRIENDLY— >FRED

COLIN

'-- HAS— >POLICERECORD

FRED

'-- HAS— >POLICERECORD

and if the top level call is IMPLICATE ADAM, only ADAM and

COLIN, and not FRED, will be announced as criminals. This

is because COLIN is the first matching CASE of

Page 3-26

/X/--FRIENDLY~>?A. Therefore COLIN gets IMPLICATEd, after

which the program EXITs. AURAC would have trapped this

error, had it been available to the student, since it

regards the code for the FRIENDLY LOOP as a cliche (see

IMPLICATE, section 4.3). This error is the SCOPE error.

The third segment comprises lines 7-10 of fig. 3.1, and

is identical to the FRIENDLY LOOP except that the FRIENDLY

relation is replaced by PAYS. It is referred to as the PAYS

LOOP, and is executed if no successful test-and-recurse

occurs during execution of the earlier FRIENDLY LOOP. The

same database query arises with the PAYS LOOP as with the

FRIENDLY LOOP, although again no problems arise in this

context with the student's database. Since every expert who

detected the SCOPE error in this segment also detected the

identical error in the FRIENDLY LOOP, we do not distinguish

between the two examples of the same error.

There is also the question of the PAIDBY relations to be

seen in the database. These may be no more than hangovers

from an earlier attempt at IMPLICATE by the same student, or

they may indicate a misunderstanding: students frequently

have difficulty in grasping the strictly one-way nature of

the relations within SOLO triples. But one can say no more

in this individual case without consulting the student

him/herself.

Page 3-27

The fourth segment consists of line 11 of fig. 3.1. It

is syntactic nonsense, and in fact could not have occurred

had the student been using the Mac SOLO/AURAC system. It

seems likely that a slip of the typing finger entered the

extraneous B, which then prevented SOLO from seeing the

remainder of the line as an incorrect CHECK statement. As

it stands, it would certainly cause a run-time error if

executed (i.e. if in the database some /X/ was found not to

have either of the relations FRIENDLY or PAYS), and SOLO

would complain that "the procedure B is undefined". This is

the UNDEFINED PROCEDURE error. If set to work on the

program as it stands, AURAC would detect the error.

The fifth and final segment consists of line 12 of fig.

3.1. Analogously to the PRINT COMMAND segment, its effect

is to print a quoted string on every call to IMPLICATE. It

has no syntactic errors, but there will be as many PRINTed

statements "THAT SEEMS TO BE THE WHOLE GROUP IDENTIFIED" as

there are that /X/ "IS A CRIMINAL". This is referred to as

the REPEATING STRING error, although of course it is only

classifiable as an error because the subjects know what the

words of the string mean. If the line had been

50 PRINT "FINISHED IMPLICATING" /X/

it is unlikely that anyone would have thought it an error.

Page 3-28

Line 13 of fig. 3.1 is not strictly part of the program

at all, but is merely a standard token signifying in some

SOLO dialects the end of a program or listing.

There remain problems with the student's database.

Considering lines 1-6 of the program, and assuming that ADAM

is /X/ in this case, the person to be IMPLICATEd via the

FRIENDLY LOOP will be COLIN, because in the database ADAM is

FRIENDLY with him. On the recursive call, COLIN becomes

/X/. And COLIN is described in the database as being

FRIENDLY with ADAM. So a third recursive call is set up,

with ADAM being /X/ again. This is a database (as opposed

to a procedural) loop, and can in fact be entered via more

than one route. For example, if the initial call is

IMPLICATE FRED, he PAYS COLIN, so that COLIN will be

IMPLICATEd via the PAYS LOOP. Whereupon the looping as just

described will commence. Again, AURAC could trap this error

and inform the student accordingly. This error is referred

to as LOOPl. The various relations among the database nodes

are shown diagrammatically in fig. 3.4:

Page 3-29

friendly paldby - - - - - - - pays

FRED

D A V ID

A D A M
BRIAN

ERIC

C O L IN /

Fig. 3.4

3.2.4 The Protocols

The five experts were tested individually, and asked to

think aloud during the process of debugging the program.

The experimenter contributed nothing, other than an

occasional encouragement to speak up. The subjects'

comments were recorded on a Superscope CO-330 cassette tape

recorder. Each was given the following instructions:

"In front of you there is a SOLO program written by a D303
student. You should imagine that the student has complained
that the program does not work, and that he doesn't
understand what is wrong with it. He asks you to tell him
what is wrong with it.

I want you to debug the program for the student. Please

Page 3-30

speak out loud while you debug the program. I want you to
let me know everything you are thinking while you work on
the problem. If you actually look at or read anything on
the problem page, read it out loud. If you re-read
anything, read it out loud. I want to know what information
you are using at any particular point in time. So, if I see
you looking at the problem, I will assume you are reading
something, so always tell me what it is. Also try to tell
me why you are doing whatever you do."

The resulting protocols were subsequently transcribed

from the tapes, and analysed. Two distinct methods of

analysing such data are possible (see Breuker, 1981): Where

there is no prior hypothesis concerning what information may

be found in the protocols, a bottom-up approach is

preferred. This involves searching the protocol to see what

information it actually does contain. The other method is

top-down and is designed to confirm or disconfirm an

existing theory or model, by comparing its predictions with

the events recorded in the protocols.

In actual practice a combination of the two is necessary

- a bottom-up pass to discover what information the

protocols contain, and a series of top-down passes used to

ensure that the results of the first are applied

consistently, both within a single subject's protocol and

also across subjects. The protocols were therefore analysed

in the following ways :

(1) One protocol, now referred to as that from subject
S2, was split into separate sentences/phrases, each

Page 3-31

being given a LABEL to indicate the stated or
inferred corresponding mental process on the part
of the subject. Over the course of several passes
through the protocol these labels were refined and
reduced to a manageable number. After the analysis
of S2 was completed, the remainder of the protocols
(see Appendix E) were analysed using the same labels

(2) In a similar manner, each protocol was then divided
on a larger scale into sections representing
different phases of the debugging process. These
sections are often based upon the subject's
analysis of SEGMENTS of code as specified above.

The significance of the labels used is as follows.

Firstly, there are three "levels" of analysis, as predicted

by our account :

READ is the label applied when the subject reads lines of

code or sections of the database exactly as they were taken

from the student (figs. 3.1 and 3.2). The assumption is

that one of the things going on in the subject's mind during

READ lines is that he/she is on the lookout for obvious

(i.e. simple) syntactic errors. It is notable that all

subjects (see for example lines 1-14 of the protocol from

subject S2, fig. 3.5, below) first notice the UNDEFINED

PROCEDURE error on line 11 of the buggy IMPLICATE program

during a READ phase of analysis. In order to say that

anything more than syntactic analysis is going on at such

times, one would expect to find evidence on surrounding

lines of other levels of analysis (see below).

Page 3-32

ABSTRACT is the label given to protocol lines in which

the subject replaces individual items of code - normally

SOLO variables - with generalised values. An example is

S2's use of "someone" on line 37 of the protocol below.

During analysis of line 3 of fig. 3.1 (FOR EACH CASE OF /X/

FRIENDLY ?A"), The subject says: "FOR EACH CASE OF /X/

FRIENDLY with someone", whereas he could have said "FOR EACH

CASE OF /X/ FRIENDLY QUESTION-MARK A" (syntactic analysis:

READ) or "FOR EACH CASE OF ADAM FRIENDLY COLIN" (SIMULATION:

see next). The ABSTRACT level of analysis corresponds to

AURAC's cliche analysis.

SIMULATE. Here the mental process involves simulation of

a "trace" or "step through" of sections of the program. The

subject normally uses actual database items with which to

replace items in the code. For example (from S2):

59. So if you start off with Fred you SIMULATE
IMPLICATE Colin and Colin will IMPLICATE...

60. Will have POLICERECORD. SIMULATE
61. Yeah ?
62. He's FRIENDLY with ADAM, he'll IMPLICATE SIMULATE

ADAM.
63. ADAM'11 'HAVE POLICERECORD'. SIMULATE
64. He's 'FRIENDLY with COLIN'. SIMULATE
65. You're going to get, er, by the looks of SPECIFY

it something of a loop between Adam and
Colin...

66. Because Adam'11 always get picked up by SIMULATE
being FRIENDLY with Colin and vice versa.

67. So you're gonna be in a recursive loop SPECIFY
there between Adam and Colin

Page 3-33

Here, the subject assumes FRED as the initial value of

/X/ in a call to IMPLICATE (line 59). Since FRED PAYS COLIN

in the database, COLIN will be IMPLICATED via the PAYS LOOP.

The subject then makes sure that COLIN has the necessary

POLICERECORD (lines 60-61), and so visualises a new

recursive call to IMPLICATE with COLIN as the new value for

/X/. This call will in turn IMPLICATE ADAM (line 62). He

then realises that because ADAM also has the POLICERECORD

and is FRIENDLY with COLIN (lines 63-64), the next recursive

call to IMPLICATE will have COLIN as the value of /X/ again:

that in fact the program will loop between ADAM and COLIN

(lines 65-67) due to a database error.

The SIMULATE level of analysis corresponds to AURAC's

Data Flow analysis. However, it should be pointed out that

what we have called "levels" of analysis are levels only in

terms of the categories described in the first half of this

chapter: one level is "higher" than another because the

kind of errors it detects are liable to be made by a more

experienced user. There is no sense in which, say, a

syntactic error will necessarily be detected temporally

sooner than a data flow error, if both appear in the same

program. As will be seen, this is true of human debuggers.

AURAC's three modules are all driven by the same production

system, which works through the program code in run-time

order. The order in which the three modules are applied to

Page 3-34

any given section of code is arbitrary and trivially easy to

change; but errors will be detected in essentially

line-number order.

Early passes through the protocols revealed the need for

six labels representing the results of analysis and the

suggestions for curing any bugs found. The corresponding

processes occurring in AURAC are indicated for each label.

CERTIFY. The subject states that some part of the

program or database is error-free, perhaps after suggesting

changes to it. This corresponds to AURAC's message which

announces "no errors" for a particular procedure.

IDENTIFY occurs when the subject indicates the presence

or probable presence of a bug in the program without stating

its precise nature. In the protocols, such lines are (as

one would expect) usually closely followed by SPECIFY lines

(see next). Where they are not, they correspond to AURAC's

"a possible error on ..." message.

Page 3-35

SPECIFY is the label given when the subject attempts to

state the precise nature of a bug. Within AURAC, as will be

seen in chapter 4, detection of a higher-level syntactic or

cliche error causes the creation of a stylised "frame" which

describes the error in detail. In chapter 6 is mentioned

how it is hoped that these frames will eventually permit

AURAC to drive a much more sophisticated message generating

system than it has at present. For the moment, and from the

user's point of view, AURAC SPECIFYs bugs via a series of

canned message segments. Data flow errors are not described

via frames, but directly via the canned messages.

ADVISE. The subject talks about possible patches or

repairs to sections of the code or the database without

making specific recommendations. This corresponds to the

generalised advice offered by AURAC when it detects, say,

endless recursion errors : "You have a loop in your database

via JOHN, MARY, FRED, JOAN, JOHN".

PATCH. The subject makes specific suggestions for curing

a bug, as AURAC does for cliche errors in particular, e.g.

"On line 20 you have written *X when perhaps you meant to

write *P".

Page 3-36

REFUSE. The subject states that no further analysis of a

given section is possible without additional information

from the original programmer.

And finally we needed five additional labels, not

predicted for by our account of debugging behaviour:

CLASSIFY. Two subjects (SI and S5) immediately recognise

the program as belonging to a class with which they are

familiar.

META. Some subjects (for example S5) are practised at

giving verbal protocols and so are able to offer specific

comments on their own mental processes - in particular to

describe their own internal monitoring of their behaviour.

In particular, experts sometimes make FALSE STARTS :

following a train of thought about the program which they

later realise to be wrong. AURAC is not capable of this

kind of introspection, in which the experts appear to

monitor their own progress at some meta-level of

consciousness. However, it should be stressed that AURAC is

not intended as a complete or accurate model of experts'

behaviour: it is a debugging system whose methods are

empirically based on those of experts. This same argument

could, of course, be adduced to the discussion of the exact

Page 3-37

order in which bugs are detected.

ERROR. Even experts make mistakes during their analyses,

and such lines are labelled. Where the errors are also

numbered (e.g. ERROR1, ERR0R2), this signifies that the

subject has made the same error more than once.

FALSE START. Sometimes a subject (see line 45 below)

will follow a train of thought for a while but then realise

that it is based on a misconception. He then generally

retraces an earlier section of analysis (lines 46-50).

LOOPTEST. Subject S5 undertook an extended session of

database analysis. This point will be returned to later.

On some 17% of the protocol lines, given the above

framework, it is difficult to assign a precise label. The

subject often appears to be making comments or partial

comments regarding his own progress (see lines 10, 34, and

74 of S2). These lines should perhaps be labelled META

lines, but sometimes they look more like temporary

embarassment, or mere time-filling whilst some unspecified

mental process takes place. Other lines (e.g. lines 76, 92

and 98 of S2) seem to be examples of the subject drawing

logical conclusions from his progress so far. All such

Page 3-38

lines have been given a question-mark as a label, since it

is clearly safer to ignore them than to assign a possibly

incorrect label.

The labels eventually arrived at give a good account of

the subjects' behaviour, particularly when considered via

the larger-scale SEGMENT divisions to be found in the

protocols. On an individual level, line labels are often

confirmed by their surrounding context rather than by

precise correspondence to the label-descriptions given

above. As an illustration, here is another short section

from Subject S2's protocol:

19. What does that line 4 mean? IDENTIFY
20. 'B' CHECK *C PAYS. READ (11)
21. There must be a typing error there. SPECIFY
22. Or printing error there. SPECIFY
23. There must be something missed out there. SPECIFY
24. On line 4. SPECIFY
25. It looks like a CHECK statement, but it's SPECIFY

got some unknown piece of whatsit before
the CHECK command.. i.e. the 'B'.

26. And it's got no 'IF PRESENT','IF ABSENT'. SPECIFY
27. So it obviously didn't recognise it as a SPECIFY

CHECK statement.
28. But I can't see what else it can be. SPECIFY
29. So that CHECK statement is wrong. SPECIFY

One might feel, for example, that line 23 should have been

labelled IDENTIFY, since the subject is making no attempt to

describe the bug precisely. Or that line 28 should have

been labelled REFUSE, since the subject is expressing a lack

of sufficient information. But it is clear from the large

number of surrounding SPECIFY lines that the subject is

Page 3-39

engaged in trying to state precisely what the problem is at

this point. Therefore any dubious lines within the

immediate vicinity are labelled SPECIFY,

We present now the sample protocol referred to during the

above explanation of the labels. It is from Subject S2.

The remaining protocols can be found in Appendix E. Numbers

in parentheses refer to program lines as shown in fig. 3.1.

This protocol, like those in Appendix E, is divided into

sections. These help to clarify what the subject is doing

in more general terms. For example. Subject S2 first READs

through the entire program (lines 1-14), in the course of

which he IDENTIFYs (lines 8-12) a probable error in the

program. (This error can be seen on line 11 of fig. 3.1.

The number given to this line by SOLO is 40, and this is

referred to as segment 4). He then focusses his attention

upon segment 4 (at line 19 of the protocol) and goes through

a further process of SPECIFICATION (lines 20-29) and ADVICE

(lines 30-31), leading to a final REFUSAL (line 32), before

returning his attention to the start of the program at line

34 of his protocol.

Subject S2.

SYNTACTIC ANALYSIS & IDENTIFICATION (WHOLE PROGRAM):

1. TO IMPLICATE 'X' PRINT 'X' IS A CRIMINAL. READ (1) (2)

Page 3-40

2. FOR EACH CASE OF 'X FRIENDLY ?A' CHECK *A
HAS POLICERECORD.

READ (3) (4)

3. 'IF PRESENT: IMPLICATE A'. READ (5)
4. 'IF ABSENT: NEXTCASE'. READ (6)
5. 'FOR EACH CASE OF 'X PAYS ?B' CHECK *B

HAS POLICERECORD.
READ (7) (8)

6. 'IF PRESENT: IMPLICATE 'B'. READ (9)
7. 'IF ABSENT: NEXTCASE'. READ (10)
8. 'B CHECK'. READ (11)
9. 'B CHECK *C PAYS'. READ (11)
10. Hmmm... ?
11. 'Not too sure what that last bit of code IDENTIFY

means.
12. 'B' CHECK *C PAYS. READ (11)
13. PRINT "THAT SEEMS TO BE THE WHOLE GROUP

IDENTIFIED".
READ (12)

14. DONE. READ (13)

IDENTIFICATION & SPECIFICATION (4TH SEGMENT):

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.
29.

'FRED ISA MAN', Da, Da, Da.
TO IMPLICATE 'X'.
This program doesn't work.
Why doesn't it work?
What does that line 4 mean?....
'B' CHECK *C PAYS.
There must be a typing error there.
Or printing error there.
There must be something missed out there.
On line 4.
It looks like a CHECK statement, but it's
got some unknown piece of whatsit before
the CHECK command.. i.e. the 'B'.
And it's got no 'IF PRESENT','IF ABSENT'.
So it obviously didn't recognise it as a
CHECK statement.
But I can't see what else it can be.
So that CHECK statement is wrong.

READ (DB)
READ (1)
?
?
IDENTIFY
READ (11)
SPECIFY
SPECIFY
SPECIFY
SPECIFY
SPECIFY

SPECIFY
SPECIFY

SPECIFY
SPECIFY

ADVICE & REFUSAL (4TH SEGMENT):

30. It looks as if what the student wants to ADVISE
have is CHECK *B PAYS ?C.

31. IF PRESENT: IMPLICATE *C or something of ADVISE
that form, but I'm not sure....

32. I would have to find out from the student REFUSE
what exactly he meant to do with...
with... Er.. line 4, because it's
certainly not obvious.

33. Just looks a big mess. IDENTIFY

Page 3-41

READ & CERTIFICATION (1ST SEGMENT):

34. What do the other preceding lines do? META
35. TO IMPLICATE 'X' PRINT 'X' IS A CRIMINAL. READ (1) (2)
36. O.K.... CERTIFY

ABSTRACTION & CERTIFICATION (2ND SEGMENT):

37. FOR EACH CASE OF 'X' FRIENDLY with
someone; CHECK that that someone HAS
a POLICERECORD.

38. Now if that someone does have a
POLICERECORD.

39. Yeah... that IMPLICATES that someone.

40. That goes back there and takes the
new [indecipherable].

41. O.K.
42. EXIT.
43. IF ABSENT then CHECK with the NEXT CASE

of 'X' being FRIENDLY with someone, so
that should work O.K.

44. So then all people that 'X' is FRIENDLY
that are going to be IMPLICATED.

45. Oh., if they....
46. If they have a POLICERECORD.

ABSTRACT
(3) (4)

ABSTRACT
(3) (4)
ABSTRACT
(3) (4)
ABSTRACT (5)

CERTIFY
READ (5)
ABSTRACT (6)

ABSTRACT (5)
ERRORl
META
ABSTRACT
(5) (6)

ABSTRACTION & CERTIFICATION (2ND & 3RD SEGMENTS):

47. O.K., FOR EACH CASE OF 'X PAYS B' READ (7)
48. Oh I see, [indecipherable]. ?
49. FOR EACH CASE OF 'X' PAYS ?B CHECK *B HAS READ (7)
POLICERECORD.
50. Uh-huh. CERTIFY
51. IF PRESENT then IMPLICATE B also. READ (9)
52. EXIT, NEXTCASE. READ (9)
53. So you're implicating all people that... ABSTRACT

have POLICERECORDS and are either FRIENDLY (4)
with or are PAIDBY 'X', according to (6)
statements 2 & 3., commands 2 & 3. (8) (9)

ERRORl

(8)

(10)
(3)
(5)
(7)
(10)

REFUSAL (4TH SEGMENT):

54. Now 4. META
55. 4 just seems to be a complete waste of IDENTIFY

time.
56. 4 doesn't fit in anywhere. IDENTIFY
57. It's hard to.... ?

Page 3-42

58. It's really hard to debug this without
knowing what the person actually wanted
to do beyond implicating all the people
with records who are FRIENDLY and are
PAIDBY 'X'.

REFUSE
ERRORl

SIMULATION, SPECIFICATION & ADVICE (2ND SEGMENT):

59. So if you start off with Fred you SIMULATE
IMPLICATE Colin and Colin will IMPLICATE...

60. Will have POLICERECORD. SIMULATE
61. Yeah ?
62. He's FRIENDLY with ADAM, he'll IMPLICATE SIMULATE

ADAM.
63. ADAM'11 'HAVE POLICERECORD'. SIMULATE
64. He's 'FRIENDLY with COLIN'. SIMULATE
65. You're going to get, er, by the looks of SPECIFY

it something of a loop between Adam and
Colin...

66. Because Adam'11 always get picked up by SIMULATE
being FRIENDLY with Colin and vice versa.

67. So you're gonna be in a recursive loop SPECIFY
there between Adam and Colin

68. So you probably want in your database to ADVISE
make... Ermm.. the relationships two-way ERR0R2
so Adam FRIENDLY with Colin necessarily
implies Colin FRIENDLY with Adam without
having to explicitly state it in the
database.

69. As you have at the moment. ADVISE
70. 'Cos presumably that's gonna lead you to IDENTIFY

some.... to some loops somewhere, at some
point......

IDENTIFICATION, SPECIFICATION & ADVICE (DATABASE RELATIONS):

IDENTIFY71. Now you've also got the problem of
'PAIDBY'.

72. But you only want to [indecipherable].
73. Eric, Adam and Fred PAYS Colin
74. Adam.
75. After Adam it's gonna go back to Colin,

back to Fred.
76. Yes.
77. Fred also is gonna be a recursive loop,

err...
78. Because you've got a link between Fred,

Colin and Adam which takes you straight
back to Fred.

79. And you're just gonna keep cycling round
those Fred, Colin, Adam loops.

ABSTRACT (DB)
?
ABSTRACT (DB)

SPECIFY

ABSTRACT (DB)
ERR0R3

SPECIFY

Page 3-43

80. So you wanna get rid of Adam FRIENDLY ADVISE
Colin, Adam FRIENDLY Fred, and just make ERR0R2
all your relationships 2-way.

81. That will now IMPLICATE.... CERTIFY
82. THAT SEEMS TO BE THE WHOLE GROUP READ (12)

IDENTIFIED.
83. Well, it'll certainly identify Adam, Fred CERTIFY

and Colin. ERR0R3
84. Errm..... ?
85. I don't know whether David would be... IDENTIFY
86. Eric PAIDBY Brian READ (DB)
87. Well, the whole group wouldn't be SPECIFY

IMPLICATED because Eric would be picked
up by being paid by Brian...

88. So how would Brian be picked up? IDENTIFY
89. Brian would not be picked up because the SIMULATE

only relationship he has with anybody is
PAIDBY with Fred and PAIDBY isn't
recognised as PAYS so Brian would never
be picked up because 'PAIDBY' & 'PAYS' do
not equate.

90. The program wouldn't recognise that SIMULATE
equation, so Brian would never be picked
up which would imply that Eric would
never be picked up.

91. So you cannot equate the relation 'PAIDBY' ?
and 'PAYS'.

92. That has to be changed. ADVISE
93. Ermm... ?
94. So if you do equate them you'll have to ADVISE

specify it in the program somewhere.
95. Errrrr... ?
96. What else have we got? ?
97. David FRIENDLY with Adam. READ (DB)
98. Adam would be picked up but whether David ?

would be picked up, being the other end ERR0R4
of the relationship is doubtful.

99. So it's doubtful whether Eric, David or IDENTIFY
Brian would ever be picked up.

100. The only ones that would be picked up SPECIFY
would be picked up in recursive loops ERR0R5
which would be Fred, Adam or Colin.

101. Errmmm... ?

SPECIFICATION & ADVICE (4TH SEGMENT):

102. CHECK.... READ (11)
103. I'm looking again at this statement 4. ?
104. 'B' CHECK C* PAYS. READ (11)
105. Now I can't see where C comes from, I IDENTIFY

don't see a question mark, anywhere,
above it.

Page 3-44

106. So it looks as if.... ?
107. It looks as if it's a complete SPECIFY

typographical error.
108. Looks as if it should be "CHECK *B PAYS ADVISE

?C"
109. Then "IF PRESENT, IF ABSENT", but like I ADVISE

say they aren't even in there.
110. Err.. ?
111. Given that you're gonna IMPLICATE 'B' I SIMULATE

don't see what the point is in having
that, anyway, because it's gonna come
down later, when it comes to statement 3,
"FOR EACH CASE OF 'X' PAYS ?B".

112. The last *B will then be 'X'. SIMULATE
113. So I can't really see why 4 has to be in ADVISE

there at all.

REFUSAL (4TH SEGMENT):

114. I'd need to check with what the students REFUSE
were thinking they were doing to find out
what that whole line means.

SUMMING-UP :

115. So, I think those were about all the errors
that I can identify., based on what my
assumptions are on what the program is meant
to do.

Fig. 3.5

3.2.5 Results, And Comparison Of Them With The Methods Of

AURAC

Protocols were used because they show not only which bugs

experts identify but also the main processes -

IDENTIFICATION, SPECIFICATION, SIMULATION, PATCH, etc. -

they use. Whilst it is apparent that the same processes are

used by almost all experts, there are some exceptions -

e.g., some experts never go beyond the ABSTRACT level in

Page 3-45

analysing program behaviour. Nor do experts uniformly

analyse programs in the same fashion. Some READ the entire

program, then ABSTRACT. Some both READ and ABSTRACT first,

then ABSTRACT and SIMULATE on a second pass through the

program, and so on. However, all subjects work through the

program in approximately SOLO line-number order. Subject SI

most displays the approach chosen for AURAC; apart from

some initial inspection of the database, his method is to

deal fully with each error before moving on to the next

segment of the program.

The protocol from Subject 3 shows the main drawback of

this experimental method: the information available from

the protocol is heavily dependent upon the subject's

willingness to think aloud. By contrast, the protocol from

Subject 5 gives much more information in the way of META

comments. Whilst these are fascinating from the point of

view of future research, they are not immediately relevant

to the current version of AURAC.

Page 3-46

The first thing to notice is the wide variation in the

order in which the experts detected the various errors.

AURAC, of course, being a logical machine, would always

detect them in the same order, if asked to debug the above

program several times. Its sequence is the same as that in

which the program lines are executed. However, it is

apparent that the precise order of analysis or of error

detection is of no particular importance for a debugging

system based upon human expert behaviour. The order in

which AURAC itself would find the faults in the program

could be changed by completely trivial modifications to its

production system.

The second interesting aspect of the results is that not

all experts pick up all the errors, and that some report

errors (L00P2) which do not actually exist. There is also

some disagreement amongst the experts as to whether or not

the PRINT COMMAND is an error. Of the four definite errors

found (UNDEFINED PROCEDURE, LOOPl, SCOPE and REPEATING

STRING, as described in section 3.2.3) AURAC would detect

the first three; in the case of SCOPE it would detect both

occurrences of the error. REPEATING STRING is an error

which is in any case self-evident at run-time. It also

worth noting from the protocols that most of the experts at

first completely ignore any PRINT statements in the

procedure and mention them, if at all, only after they have

Page 3-47

analysed the more complex parts of the code. AURAC does not

currently concern itself with PRINT statements.

Thirdly, the experts themselves make a number of mistakes

during analysis. These are broadly of two types ; confusion

between database items and code items (e.g. PAYS vs PAIDBY,

lines 47-53 of S2); and incorrect statements about the SOLO

machine (e.g. lines 149-150 of S3). As mentioned

elsewhere, AURAC is deliberately designed to be very

conservative in areas where mistakes of analysis could occur

(e.g. during cliche recognition or algorithm matching); it

would rather miss a genuine error than announce a

non-existent one.

Fourthly, it is clear that the experts sometimes use

their own world knowledge (e.g. that the relation FRIENDLY

implies knowing - being able to recognise - another person,

or that PAYS and PAIDBY are inverse forms of each other) to

help them in their search for an abstracted view of the

program's operations. AURAC cannot do this, but it is

noteworthy that those experts who did use this kind of world

knowledge were no more successful at debugging the program

than those who did not. The precise usefulness of such

world knowledge, if any, in debugging is not revealed by

this experiment.

Page 3-48

A related point is that three of the subjects (SI, S3 and

S5) immediately CLASSIFY the program as belonging to a set

of programs with which they are familiar. One of them, S5,

spends a long time analysing the database for possible loops

(hence the LOOPTEST label - lines 141-350 of S5's protocol).

He generalises the database relationships in order to do so,

and says in effect "I can 'GET' from A to B if A is either

FRIENDLY with B or PAYS B, and if B HAS a POLICERECORD."

(lines 252-350). He gradually builds a stylised network

representation (on paper) of the GET links so found. Since

(apart from those forming LOOPl) no node appears twice on

any path through the network, he concludes that no further

loops are possible. This is a very specialised analysis,

specific to this kind of problem - i.e. the subject was

using knowledge selected in response to his CLASSIFICATION

of the program. He actually says (line 140) "This I

wouldn't do...for detecting the student's bug.".

An early version of AURAC attempted some database

analysis. It was capable of detecting three of the database

structures most commonly found in SOLO: chains, trees and

tables. The process proved to be time-consuming compared

with its usefulness. But on the strength of the experience

it can be suggested that a module to emulate S5's database

analysis might work as follows :

1) Recognise the program as a member of a known class via
(a) cliche recognition, or (b) interaction with the

Page 3-49

user concerning his/her "project".

2) Predict a suitable database structure.

3) Generate "database fragments" corresponding to the
program code, e.g.

'--HAS— >POLICERECORD HAS— >POLICERECORD

'--FRIENDLY— ? A PAYS— >?B

4) Map these fragments onto each database node in turn, so
as to create a deeper representation of any actual
database structures.

5) Compare these with the predicted structures so as to
detect differences - i.e. errors.

This again sounds as though it might double the

computational overheads involved. In the context of a

practical debugger it is undesirable to have a large ratio

between the time taken to complete an analysis and the

results produced by it. Currently, AURAC is expected to be

called when a program has failed. If the failure was due to

a database loop, AURAC will discover the fact during its

simulated re-run of the failed call. This is an efficient

way of achieving the desired result if the database has only

one loop in it. If, as S5 suspected, it has several, his

method might be preferable on efficiency grounds. But,

endless recursion is not at all a common error amongst SOLO

users, and we believe that multiple database loops are even

less common. Therefore, our position concerning 85's

unusually meticulous debugging behaviour is that whilst it

Page 3-50

is feasible to add a comparable module to AURAC, to do so

would not improve AURAC's performance sufficiently to

warrant the extra delay suffered by its users.

This subject's additional comment on line 141: "I might

do it (the above analysis) when I'm explaining it to the

student" raises the large question of how an auto-debugger's

results are best presented to the user. We shall return to

this question in chapter 6.

Only one of the subjects (S3, lines 115-117 and lines

157-160) goes beyond the three levels of analysis described

here to consider whether or not the program conforms to his

own model of IMPLICATE. He compares it to something like an

algorithm: "There's no increment, or decision-making" (line

160) in a way which suggests that AURAC's step-by-step

algorithm matching may be analogous to his own. But of

course the evidence here is far too slim for us to claim a

confirmation. What is supported is the status of AURAC's

algorithm matcher. The matcher is a (useful) by-product of

the process of data flow analysis, but is not implied by the

criteria on which AURAC is based.

Page 3-51

Apart from these two sections from the protocols of S5

and S3, where knowledge specific to the program's CLASS is

employed, no subject explicitly uses any level of analysis

other then BEAD, ABSTRACT and SIMULATE. If these prove

insufficient to explain a bug, a REFUSAL generally occurs

(e.g. lines 20-32 of SI). As described above, a REFUSAL

implies a need for extra information from the programmer,

rather than a further level of analysis of the existing

data.

There is also the question of the kinds of ADVICE and

PATCHes suggested by the experts. All of them express

puzzlement over the UNDEFINED PROCEDURE error, and several

note that in the SOLO dialects they are accustomed to the

error could not occur, as it could not in MacSOLO. In

general, their suggestion is to discard the line altogether.

(It is also worth mentioning that one subject, S5, wished

aloud that he had MacSOLO - not AURAC itself - available so

as to be able to step through the sample program, rather

than having to do a trace on paper).

Page 3-52

The error LOOPl causes several experts to suggest

alterations to the database. Subjects 2 and 5 advise

changing some relations to their own inverses so that the

loop can no longer occur. AURAC does not suggest patches of

this sort, but instead points out to the user the fact of

the loop, together with the names (FRED, COLIN, ADAM, COLIN

in the earlier example) of the database nodes comprising it.

Exactly what the user does about it is left to his/her

discretion; as can be seen from S2's protocol in

particular, having explicit inverse relations in the

database can sometimes cause more confusion that it cures

(lines 47-53).

The SCOPE error is caused by substitution of EXIT for

NEXTCASE as a control-statement. As already mentioned, it

is in AURAC's terms a cliche error; which means that AURAC

will suggest a direct patch, to replace the incorrect word

with the correct one. Only two subjects, 81 and 85, offer a

patch for this error, and both of them suggest replacing

EXIT with NEXTCASE on lines 5 and 9 of the program.

Page 3-53

Finally, there is a marked consistency amongst the

experts in terms of their levels of analysis. As already

metioned, it is almost invariably during a line labelled

READ that the human expert will first notice the syntactic

error UNDEFINED PROCEDURE. Lines marked READ are directly

comparable to the "skimming" phase of AURAC's analysis, and

detect the same kind of errors: Higher Level syntactic.

The first 14 lines of the above sample protocol are an

excellent example of this phase of analysis. A glance at

Appendix E will show that Subject 5 actually says "I want to

skim through it" during a META comment at the beginning of

his protocol (line 5).

Lines marked ABSTRACT occur when the expert puts some

kind of general value (e.g. "someone", "that someone") in

place of the user's SOLO variables. The assumption here is

that the expert is trying to gain some more abstracted view

of the operations of segments of code. The token "someone"

resembles a variable to which is assigned some value

presumed to be in the program at that moment; and "that

someone" similarly resembles retrieval of that value. This

is very akin to the detailed matching process in AURAC's

cliche analysis : in an ideal case cliche analysis would

offer the desired degree of abstraction. There is no

evidence as to precisely what would comprise the abstraction

the expert seeks, but we offer cliches as suitable material.

Page 3-54

As the protocols show, some experts do not go beyond the

ABSTRACTION stage in their debugging. Those who do,

SIMULATE the program's behaviour, often replacing SOLO

variables with suitable but otherwise arbitrary items from

the given database, and then following the progress of those

data-items during a mental execution of segments or of all

of the program. As mentioned above, all of AURAC's

analyses, including Data Flow, are effected via a simulated

execution of the buggy program. It is clearly during

SIMULATION that any missing database triples will show up -

errors which AURAC traps during its Higher Level syntactic

analysis. So, instead of selecting items from the database,

AURAC assumes the correctness of the input data as supplied

by the user during an actual (failed) run of the program,

and does its tracing - i.e. its Data Flow analysis - on

that basis. Approximately 30% of all the protocol lines are

labelled READ, ABSTRACT or SIMULATE, and thus correspond to

one or other of the analyses carried out by AURAC.

Thus, AURAC's three levels of analysis are clearly seen

in comparable human behaviour. It can do what they most

frequently do, and often they do not use any further levels.

With the exception of REPEATING STRING, it finds all the

genuine errors in the program and does not find any

non-existent errors (in fact, a relatively minor

modification involving an additional type of "endless

Page 3-55

recursion" would enable it to find REPEATING STRING). But

it is evident also that beyond these three levels of

analysis, when a human expert recognises a program as

belonging to a known class, he/she is able to apply large

amounts of knowledge ranging from the general comments of S3

to the database analysis of S5. (SI makes no use of the

knowledge at all). From the corresponding protocols, one

can see that this knowledge includes knowledge of the kinds

of subprocesses to be expected in the program - although

there is not sufficient data to predict whether the

subprocesses more resemble cliches or algorithms - and

knowledge of when careful database investigations may be

worthwhile. Exactly what is going on here, and how it could

usefully be implemented in an auto-debugger, is well worth

further research.

It is also reasonable to claim that the current version

of AURAC (discounting its algorithm matcher) is an

implementation of the SOLO experts' general debugging

skills; that is, of the skills they apply when they have no

knowledge of the buggy program's specific purpose. It is

clear that these skills can generate substantial amounts of

debugging information - information which could not be

provided by static demons. Knowledge of a program's purpose

can be acquired (in the real world) either by asking the

programmer or by CLASSIFYing the program, so that 85's long

Page 3-56

section of database analysis and S3's short section of

algorithmic analysis are comparable with REFUSE lines, on

which subjects express a need to consult the programmer over

some specific point.

CHAPTER 4

AURAC

This chapter discusses the operations of AURAC in greater

detail. It is assumed that a user will call upon AURAC when

a program has failed at run-time, and as already mentioned

it employs a production system to re-execute the faulty

code. The second execution follows the previous run-time

sequence and uses the same values for its top-level

parameters as were supplied by the user. As it proceeds,

the user's code is analysed for Higher Level syntactic

errors by the production system, and is also passed for

analysis to the Cliche recogniser and Data Flow modules.

But before discussing these three modules in detail it is

important to describe the means by which errors found by the

first two are represented and related within AURAC.

Page 4-2

4.1 ERROR FRAMES

Any error found at the syntactic or cliche level is

recorded at the moment of its discovery in an error "frame":

a standardised data structure having "slots" for various

items of information concerning the error. Here is a very

simple SOLO routine containing a single error. The CHECK on

line 10 fails to find in the database a suitable matching

triple, and so the variable *THOUGHT remains unbound.

MacSOLO itself sees nothing amiss until line 20, where the

unbound variable reveals itself as an error in the NOTE \

instruction;

TO THING

10 CHECK FIDO THINKS ?THOUGHT
A If Present : CONTINUE
B If Absent : CONTINUE

20 NOTE TONY HAS *THOUGHT

MacSOLO would announce the run-time error, and execution

would halt;

"Procedure execution halted in THING because of :

Unbound variable - *THOUGHT has no value on line 20 of THING."

Suppose we were now to call AURAC to debug this procedure.

It would first ask for the name of the project concerned

(see section 4.7) to which question a carriage-return, NONE

or ANY is a suitable reply in this case. There would then

be printed the following messages :

Page 4-3

"Working on THING...1

An error on line 10 of THING at level 1 :

Your code (CHECK FIDO THINKS ? THOUGHT) is activated
and that CHECK-triple does not exist in your database
So there is also...

An error on line 20 of THING at level 1 ;

Your code (NOTE TONY HAS ^THOUGHT) is activated
and that contains an unbound variable.
This caused your run-time error.

Analyses available for

THING

type INFORM followed by any of these."

The above are the messages from AURAC's Higher Level

syntactic module. Notice how the two errors (the failure of

the binding and the subsequent failed reference) are

chained. This shows in the "So there is also..." segment

between the two messages. Use of the INFORM instruction

produces a "description" of the THING'S execution, including

any cliche or data flow errors:

"Your procedure THING:

Lines 10 of THING, 20 of THING
seem to be intended to carry out an action
if the triple FIDO THINKS— >?THOUGHT is present,
but on line lOB of THING you have written CONTINUE
where perhaps you meant to write EXIT.

Level 1> Line 10: CHECK-triple does not exist in your
database.

Level 1> Line 20: contains an unbound variable.
RUN-TIME ERROR « <

Page 4-4

...and also the triple NOTEd on line 20 of THING
is never CHECKed.

...and also the triple NOTEd on line 20 of THING
is never FORGOTten."

Correct coding of this line would indeed require an EXIT

on line lOB so as to avoid, in the absence of the any triple

matching the pattern FIDO THINKS ?THOUGHT, precisely the

run-time error which has occurred. The next two notes

repeat in abbreviated form the information given prior to

our use of INFORM; and the final two messages are from the

data flow analyser, indicating that THING leaves data behind

it in the database. Such added data is frequently not

acceptable from a correct program (see section 4.5).

The error frames generated during analysis of THING are

as follows :

ERR0R4

EFFECTS; (RTE)
CAUSE: ERRORS
TYPE : "contains an unbound variable."
UNREACHED: NIL
EVALUATED: (NOTE TONY HAS *THOUGHT)
CODE: (NOTE TONY HAS *THOUGHT)
LINE: (20)
PROCEDURE: THING
RECURSION: NIL
ALTPROCS: NIL
ALTNODES: NIL
LEVEL: 1
CLICHE : NIL
ALTLINES: NIL
WORD: NIL
SYMBOL: NIL
ANNOUNCE : T

Page 4-5

ERRORS

EFFECTS: (ERR0R4)
CAUSE: NIL
TYPE: "CHECK triple does not exist in your database."
UNREACHED: NIL
EVALUATED: (CHECK FIDO THINKS ?THOUGHT)
CODE: (CHECK FIDO THINKS ? THOUGHT)
LINE: (10)
PROCEDURE: THING
RECURSION: NIL
ALTPROCS : NIL
ALTNODES: NIL
LEVEL: 1
CLICHE: NIL
ALTLINES: NIL
WORD : NIL
SYMBOL: NIL
ANNOUNCE : T

ERR0R2

EFFECTS : NIL
CAUSE: NIL
TYPE : NIL
UNREACHED: NIL
EVALUATED: NIL
CODE: NIL
LINE: (10 B)
PROCEDURE: THING
RECURSION: NIL
ALTPROCS: NIL
ALTNODES: NIL
LEVEL: 1
CLICHE: FETCH-D0-M_1
ALTLINES: ((10 THING) (20 THING))
WORD: CONTINUE
SYMBOL: EXIT
ANNOUNCE: T

ERRORl

EFFECTS:
CAUSE:
TYPE:
UNREACHED;
EVALUATED;
CODE:
LINE:
PROCEDURE;
RECURSION;

NIL
NIL
NIL
NIL
NIL
NIL
(10 B)
THING
NIL

Page 4-6

ALTPROCS; NIL
ALTNODES; NIL
LEVEL; 1
CLICHE: UPDATE-M_1
ALTLINES: NIL
WORD : CONTINUE
SYMBOL: EXIT
ANNOUNCE: NIL

ERRORl is discarded by the system - it represents a

multi-line cliche of which only one of the library lines

could be matched against the code of THING. ERR0R2

represents the cliche found and described above, and ERRORS

and ERR0R4 together represent the chained unbound-variable

errors.

The meanings of the various slots in these frames are as

follows :

CAUSE/EFFECTS. When an attempted variable binding fails,

that fact is stored temporarily in the production system's

working memory, and an error frame is created. Later

reference to the same (unbound) variable causes another

error frame to be created for this second error, and the

data in the working memory enables the two frames to be

related in a cause-and-effect chain.

Page 4-7

TYPE. There are thirteen "types" of error, as described

under Module 1, below. Each "type" is recorded in this slot

as an error message segment, such as "CHECK triple does not

exist in your database."

UNREACHED. If a control-statement error occurs such that

the user's code contains unreachable lines or subroutines,

their line-numbers and procedure names are recorded here.

EVALUATED/CODE. These slots are merely for the sake of

completeness in the subsequent printouts; so that the

message-printers can tell the user how SOLO evaluated any

particular line of code - where that line contains variables

and where in the light of any earlier errors those variables

can be evaluated. For example the CODE slot might contain

CHECK FIDO ISA *WHAT, whilst the EVALUATED slot contained

CHECK FIDO ISA DOG.

LINE/PROCEDURE. To identify the line of user code to

which the current error frame refers.

Page 4-8

RECURSION/ALTPROCS/ALTNODES. These slots hold the

information necessary to explain endless recursion. The

error TYPE in each case (third slot in the frame) is "uses

up more than twenty LEVELS.". The RECURSION slot will

contain one of five "sub-types", each of them again being an

error message segment :

1. "Your chain of database nodes is too long."

2. "Your series of subroutine calls is too long."

3. "self-recursion."

4. "data loop."

5. "procedural loop."

The production system calls itself recursively to handle

subroutine calls, and maintains its own push-down stack of

useful (to it) data. Amongst this data are records of each

subroutine call and of the letter's arguments. Thus, when

the inbuilt recursion limit is reached, distinctions can be

made between the five sub-types:

1) for example, a recursive SOLO procedure such as
INFECT which was given a different argument at
each recursive level.

2) disregarding the arguments, where the number of
sub-routines, sub-sub-routines and so on exceeds
the limit of twenty.

3) where the name of the subroutine and its arguments
are identically repeated at sequential levels.
This is normally a procedural error, but in the
unique case where (e.g.) INFECT is applied to a
database consisting only of JOHN KISSES >JOHN,
AURAC does not distinguish between the two.

4) where the name of the subroutine and its arguments

Page 4-9

are identically repeated after a sequence of
intervening calls to the same subroutine (as when
INFECT is applied to a database such aa:

JOHN— KISSES— >MARY MARY— KISSES— >FRED
FRED--KIS SES— > JOAN JOAN— KIS SES— > JOHN

5) where a sequence of subroutines and their arguments
are identically repeated.

Thus, sub-types 1 and 4 will be accompanied by additional

information in the ALTNODES slot specifying the database

nodes concerned; and sub-types 2 and 5 will carry

additional information in the ALTPROCS slot specifying the

offending procedure-names.

LEVEL. Recursive or subroutine level at which the

current error occurred (derived from the production system's

working memory).

CLICHE. The name of the cliche concerned, if the current

error is a cliche error. This name is a purely internal

marker, and is not told to the user.

Page 4-10

ALTLINES. Line-numbers and procedure names of all lines

comprising the current cliche, including the current line.

These are derived by (rather expensive) heuristics which

operate when all possible matches and near-matches between

the code line and the cliche library have been found (see

section 4.4).

WORD/SYMBOL. Cliche errors are atomic. That is to say,

AURAC suggests a patch involving only a single "word" of

code. The WORD slot holds the user's version; the SYMBOL

slot holds the correct version inferred by AURAC.

ANNOUNCE. The Boolean value of the datum in this slot is

adjusted according to whether or not the current error frame

needs to be passed to the message printers. Where only some

of the lines of a multi-line cliche are found, any

error-frames associated with those discovered lines will be

redundant, and so will not need to be "announced".

An important feature of this style of representation is

that error frames created during code analysis may later be

modified, or rejected altogether, during analysis of the

reminder of the code.

Page 4-11

We shall now discuss the various modules of AURAC in more

detail.

4.2 MODULE 1: HIGHER-LEVEL SYNTACTIC ANALYSER

Higher level syntactic analysis is accomplished via a

production system xdiich largely replaces the normal,

run-time, MacSOLO interpreter. (However, it is important to

stress that no implicit claims are made concerning the

production system: during implementation, it was convenient

formalism, and that is all). The run-time interpreter is

called upon, for example, to discover which exit should be

taken from a conditional form or to evaluate user-supplied

variables. The analyser takes the program code line by

line, following the normal run-time sequence where

subroutines etc. occur.

The only exception to the normal run-time sequence of

execution occurs when the program contains a coded loop. In

SOLO, the looping construct is FOR EACH CASE OF, vAiich as

its name implies does no more than retrieve from the

database a set of cases each of which matches a given

wildcard-triple pattern. If a conditional test is required

within the loop, this is achieved by nesting the CHECK form

within the FOR EACH line. Here are two examples :

10 FOR EACH CASE OF FIDO LIKES ?D
A NOTE *D LIKES FIDO

Page 4-12

10 FOR EACH CASE OF FIDO LIKES ?D
A CHECK *D ISA DOG
AA If Present: NOTE *D LIKES FIDO ; NEXTCASE
AB IF Absent : NEXTCASE

Given a suitable database, the first loop will NOTE the

inverse relationship for everything which FIDO LIKES; the

second will first CHECK to ensure that that something is

another dog. Notice the control-statement NEXTCASE, which

is only appropriate when CHECK is used within FOR EACH.

FOR EACH lines may be nested up to five deep;

10 FOR EACH CASE OF A B ?C
A FOR EACH CASE OF *C D ?E
AA FOR EACH CASE OF *E F ?G ...

and as before the innermost subline may be a simple SOLO

instruction or a conditional test.

Assuming that a FOR EACH loop is correctly constructed in

its basic syntax (and MacSOLO will not allow it to be

otherwise), the only error which can arise is where one of

the triples referrerd to by the code does not actually exist

in the database. In analysing a FOR EACH nest, AURAC checks

each level in turn to ensure that at least one suitable

triple exists. The levels are considered sequentially, in

case - as in the last example here - the triples for

subsequent levels cannot be specified until earlier levels

Page 4-13

have been evaluated. If AURAC finds at least one "case" at

each level, it assumes that the nest overall is correct. If

the innermost subline is found to be a simple one-line

instruction, it is then executed in the context of just one

case; this saves on processing time.

However, this short cut is not taken if the innermost

subline carries a CHECK instruction; the result "CHECK

always succeeds" or "CHECK always fails" despite the

conditional test having been applied to the possibly large

number of cases generated by a FOR EACH nest is quite likely

to be the symptom of an error.

The production system has twelve rules in its production

memory - i.e. twelve rules whereby it analyses the SOLO

code presented to it, and these rules are briefly described

here. Suppose that the line of SOLO code to be analysed

consists of a multiple FOR EACH statement within which is

nested a CHECK statement, whose A subline carries a call to

a user defined function FOO:

FOR EACH CASE OF FIDO LIKES ?P
FOR EACH CASE OF *P BROTHER ?B
A CHECK *B ISA DOG
AA FOO *B ; NEXTCASE
AB ; NEXTCASE

This line is initially held in working memory as a Lisp

list, each separate statement or subline being a disctinct

Page 4-14

element of the list. The first job AURAC must do is ensure

that the triples (FIDO LIKES ?P and *P BROTHER ?B) - out of

which the tree of possible cases is constructed - do

actually exist in the database. So the first production

rule says :

1) IF there is a FOR EACH statement in working memory which
cannot produce any cases

THEN create the appropriate error frame;

deposit FOR into working memory to signify to later
rules that a FOR nest has been detected;

deposit into working memory the ^-variable (*P in
this case) whose binding has failed.

The last effect of this rule will allow "chaining" of the

error if *P is referred to by subsequent user code. If the

rule fires (i.e. if the triple was unable to generate any

cases) it also resets the production system interpreter so

that the same rule is tried again on the next segment of

user code. The next segment of user code - the next

instruction on the line - is reached by "rotating" the copy

of the code held in working memory; the first line (the

first member of the list) is moved to its end, so that the

head of the list is now the second FOR EACH instruction in

the above example.

Page 4-15

Rule 2 is the rule which actually generates the cases of

any FOR EACH statement. It uses the normal functions in the

MacSOLO interpreter to effect evaluation of FOR EACH

statements, and so generates all the possible cases of, say,

FIDO LIKES ?P. The possible bindings of *P are then

deposited in working memory (this is to treat a FOR EACH

loop as a generator of aggregate, rather than sequential,

results as in Waters (1979).). On the second or any

subsequent passes the first of the cases generated during

the previous pass is used if necessary for full evaluation

of the FOR EACH triple. In the above example, the first

value of *P is required \dien evaluating the triple *P

BROTHER ?B.

Production rule 2 says ;

2) IF the head of the line in working memory is a FOR EACH

THEN find its cases and add them to working memory;

add the token FOR to working memory;

rotate the line.

The FOR token signifies to other rules that FOR EACH

evaluation is in progress, so that the two above rules

progressively find each path through the tree of possible

cases.

Page 4-16

If no further restrictions were to be applied, the system

would continue to evaluate the tree of cases in depth-first

order. In the interests of saving processing time, only one

of the paths is investigated if the innermost instruction is

a call to a SOLO primitive or to a user-defined function.

When such an instruction is found and executed, all

remaining cases in working memory are deleted. However, in

the above example, the innermost call is to the conditional

form CHECK (TEST is handled identically by the production

system); here the cases are worked through one by one until

the conditional has both succeeded and failed at least once

(or until there are no more cases in working memory).

Rule 3 concerns itself with non-conditional inner

instructions. It says:

3) IF there is user code in working memory and if its head
is neither a FOR line nor a CHECK line; and if

working memory contains the token FOR; and if

there is at least one case stored in working memory

THEN execute the line with in the context of the case;

delete the line from working memory.

The last effect of this rule halts further evaluation of the

tree of cases.

Page 4-17

The purpose of rule 4 is to detect a CHECK line and to

ensure that the letter's triple exists:

4) IF the head of the line is a CHECK line but there is no
CHECK token in working memory;

THEN add CHECK to working memory;

if the CHECK's triple is found in the database, add
the token EXISTS to working memory.

Rule 5 looks for the condition where a FOR-nested CHECK

line has been evaluated in the presence of sufficient cases

for the conditional test to have both succeeded and failed

at least once - or for exhaustion of the list of cases. In

either of these circumstances no further evaluation of the

CHECK line should take place:

5) IF working memory contains both FOR and CHECK; and if

working memory contains either PRESENT with ABSENT
or no remaining cases

THEN create an error frame if there are no more cases;

examine the working memory to see if this frame
can be chained to earlier error frames ;

remove CHECK from working memory;

delete the line from working memory.

Page 4-18

Rule 6 handles the intermediate stages of FOR-nested

CHECK evaluation - those where the CHECK has not yet both

succeeded and failed:

6) IF working memory contains both FOR and CHECK but no
more cases

THEN un-rotate the line in order to generate fresh cases
from an earlier FOR instruction.

Rules 7 to 9 detect three kinds of control-statement

error:

7) IF working memory contains CHECK; and if

both of the current line's sublines carry the STOP
control-statement; and if

there is subsequent (unreachable) code.

THEN add STOP to working memory.

8) IF working memory contains CHECK; and if

both of the current line's sublines carry the EXIT
control-statement; and if

there is subsequent (unreachable) code.

THEN add EXIT to working memory.

9) IF working memory contains CHECK; and if

one subline of the current line carries the EXIT
control statement and one carries STOP; and if

there is subsequent (unreachable) code.

THEN add both STOP and EXIT to working memory.

Page 4-19

Rule 10 calls upon the normal MacSOLO interpreter to

return the Lisp Boolean values T or NIL according to whether

or not a FOR-nested CHECK instruction succeeds in the

current context of cases :

10) IF working memory contains both tokens CHECK and FOR

THEN execute the CHECK line in working memory;

place PRESENT or ABSENT in working memory
according to the result of this interpretation.

Rule 11 is similar except that it deals with non-nested

CHECK lines and so needs to delete the line after

interpretation:

11) IF working memory contains CHECK but not FOR

THEN execute the CHECK line in working memory;

place PRESENT or ABSENT in working memory
according to the result of the interpretation;

delete the line from working memory.

Finally, Rule 12 executes single (i.e. non-FOR,

non-CHECK) lines of SOLO code:

12) IF working memory holds current code, but neither FOR
nor CHECK

THEN execute the code and delete it from working memory.

Page 4-20

A glance at these rules will reveal that their order

within the production cycle is important, and that certain

minor bookkeeping details (such as how the various tokens,

once deposited in working memory, are cleared out again)

have been omitted for the sake of clarity.

These rules tell the analyser how to analyse SOLO code

and how to trap the following kinds of error:
a) A FOR EACH triple which either does not exist in the

database or cannot produce any CASEs.
b) A CHECK triple which does not exist in the database.
c) Control-statement errors - certain combinations of

control-statements on CHECK/TEST sublines can
cause subsequent code to be ignored: double STOP,
double EXIT, STOP/EXIT or EXIT/STOP. If any of these
occurs on a line other than the last line of a
procedure, it is an error.

d) A FOR-nested CHECK which either always succeeds or
always fails.

e) A non-nested CHECK which either succeeds or fails.
This is not, of course, an error - unless it happens
to occur in the context of an unbound variable.

As FOR EACH lines are analysed (rule 1) error frames are

created if necessary. Rules 10, 11 and 12 call the normal

MacSOLO interpreter, which may signal a run-time error. If

it does so, an error frame is created by this module of

AURAC in the usual way. Usually, this means that a

substantial amount more detail about the error can be stored

than could be provided by the interpreter alone - for

example, see the description of the RECURSION slot in

section 4.2. The following run-time errors are handled in

this way:

Page 4-21

f) Unbound variable. The normal MacSOLO error messages,
which specifiy where the unbound variable was
discovered, are often not sufficient to pinpoint the
actual error. AURAC is able to "chain" together
errors such as (a), (d) and (e) in a cause-and-effect
sequence.

g) Undefined procedure.
h) Recursion limit exceeded. Unless the user has written

a program involving more than ten levels of
subroutine,

this signifies endless recursion. In SOLO, this can
have one of two causes : a procedure which repeatedly
calls itself (or a group of procedures which do the
same), or a loop in the database. AURAC is able to
decide which and to inform the user accordingly.

i) Attempt to DESCRIBE or LIST non-existent database
entities.

j) Incomplete database chain. This error arises when
the user (quite reasonably) views a certain set of
database triples as being in a conceptual "chain",
and tries to make use of this fact via the APOSTROPHE
construct when in fact the chain is not complete.
For example :

10 FOR EACH CASE OF FIDO LIKES ?WHO
A NOTE FIDO LIKES (*WHO'S BROTHER)

should assign a value to *WHO on line 10. Suppose
that that value is ROVER. On line lOA the APOSTROPHE
operation should retrieve from the database the
missing element in the triple ROVER BROTHER ..., and
should supply this as the third argument to the NOTE
instruction. If the triple FIDO LIKES ... is present,
but no triple corresponding to ROVER BROTHER ... can
be found, the Incomplete Chain error results. Note
that use of a CHECK on the FOR EACH subline :

10 FOR EACH CASE OF FIDO LIKES ?WHO
A CHECK *WHO BROTHER ?B
AA If Present: NOTE FIDO LIKES *B ; NEXTCASE
AB If Absent : ; NEXTCASE

would not generate this error, since the CHECK syntax
supplies a specific action in the "If Absent"
condition. Notice also the NEXTCASE control

statement,
which is of course only appropriate when CHECK or TEST
is used in a FOR EACH subline.

Page 4-22

Any of these errors, if found, will generate an error

frame as above. Some of them, such as type (c), have

several sub-types. Each is explained, with the help of the

corresponding error frame and a set of canned messages (see

section 4.2). AURAC also keeps a list of all the "holes"

(non-existent triples) it finds in the database, and this

list is available to the user after analysis.

Some examples of buggy programs and the corresponding

messages resulting from this module of AURAC alone are

presented below:

1) This procedure does nothing of any value, other than to
demonstrate the error message:

TO EXIT2

10 CHECK FIDO ISA DOG
A If Present: PRINT "Yes" ; EXIT
B If Absent : PRINT "No" ; EXIT

20 PRINT "And that's that"

30 PRINT "So there."

40 PRINT "Bye."

The message from AURAC is:

"An error on line 10 of EXIT2 at level 2:
It has a double-EXIT bug.
This means that lines 20, 30 and 40 of EXIT2
are not reached."

Page 4-23

2) The INFECT procedure from chapter 1, but with a loop in
its associated database:

TO INFECT /X/

10 NOTE /X/ HAS FLU

20 CHECK /X/ KISSES ?WHO
A If Present: INFECT *WHO ; EXIT
B If Absent : EXIT

JOHN-- KISSES— >MARY

MARY-- KISSES— > ANDREW

ANDREW--KISSES— >URSULA

URSULA-- KISSES— > JOHN

The message from AURAC is :

"An error on line 30 of INFECT at level 5:
You have a loop in your database via

JOHN MARY ANDREW URSULA JOHN

This caused your run-time error."

Page 4-24

3) Again, merely a demonstration procédure. The top
level call is BLAH JOHN, and there is no suitable triple
in the database for the CHECK of line 10. This results
in *A being an unbound variable. Reference is then made to
this unbound variable on line 20. AURAC is able to "chain"
the two errors together and so to announce that the cause
of the run-time error on line 20 is to be found on line 10.

TO BLAH /X/

10 CHECK /X/ IS ?A
A If Present: PRINT "YES" ; EXIT
A If Absent : CONTINUE

20 NOTE /X/ IS *A

The message from AURAC is :

"A possible error on line 10 of BLAH at level 1 :

Your code CHECK /X/ IS ?A is activated
as CHECK JOHN IS ?A

and that CHECK fails.
So there is also...

An error on line 20 of BLAH at level 1 :

Your code NOTE /X/ IS *A is activated
as NOTE JOHN IS *A

and that contains an unbound variable.
This caused your run-time error.

In the last of these examples, only "a possible error" is

announced, even though the error concerned is also noted as

being the cause of a run-time error. The "possible"

message-fragment is generated when a CHECK or TEST line

fails with the user-supplied input data. Under different

input conditions it might not do so, so AURAC cannot be sure

that a genuine error has occurred. The inappropriateness of

the "possible" fragment when further analysis of the

Page 4-25

remaining code reveals it to be the chainable cause of some

other error, is an example of the undesirable complexities

which can arise from a canned-message system (see chapter

6) .

Here follows a trace (invisible to the user under normal

conditions) of AURAC's first module working on the short

program from section 1.3.3. For convenience, the program is

reprinted here:

TO TRY /X/

10 CHECK /X/ IS UP
A If Present: FORGET /X/ IS UP ; CONTINUE
B If Absent : NOTE /X/ ISA UP ; CONTINUE

20 CHECK AURAC LOVES TONY
A If Present: EXIT
B If Absent : EXIT

30 PRINT /X/ "IS UP."

Items in square brackets are annotations.:

Beginning skimmer's analysis of (TRY FLAG)

Original WM for line 10 of TRY:
WM =
((LINE

(CHECK /X/ IS UP)
(FORGET /X/ IS UP & CONTINUE)
(NOTE /X/ IS UP & CONTINUE)))

[Working Memory initially holds the user's code for line 10.
The production rules are then applied in order.]
P4 fired: CHECK/TEST line found

Pll fired: execute CHECK/TEST line and subline

Error found on line 10 of TRY:
"CHECK-triple does not exist
in your database."

Page 4-26

[This error is actually ERR0R2 (ERRORl represented a cliche
- see below). Now that the code for line 10 has been fully
dealt with; all that remains in the working memory is a note
of the fact that no variables were created during ERR0R2,
and the notes CHECK and ABSENT which were used in the course
of analysis. The production cycle continues.]

WM =
((ERRVARS (NIL . ERR0R2))
ABSENT
CHECK)

[Analysis proceeds to line 20. Notice that the ERRVARS
information is carried forward into the new "original"
working memory. It is used for chaining unbound variable
errors back to their causes if any.]

Original WM for line 20 of TRY:
WM =
((ERRVARS (NIL . ERR0R2))
(LINE
(CHECK AURAC LOVES TONY)
(NIL & EXIT)
(NIL & EXIT)))

P4 fired: CHECK/TEST line found

P8 fired: Double-exit bug

Pll fired: execute CHECK/TEST line and subline

Error found on line 20 of TRY:
"CHECK-triple does not exist
in your database."

Error found on line 20 of TRY:
"Double-Exit"

[Two errors were found this time: ERRORS and ERR0R6. The
other two errors from the sequence, ERRORS and ERR0R4,
represent matches found between line 20 and two lines
from the multi-line cliches UPDATE-M_1 and FETCH-D0-M_1.
They are later discarded by the system.]

WM =
((ERRVARS (NIL . ERR0R6) (NIL . ERRORS) (NIL . ERR0R2))
ABSENT
EXIT
CHECK)

End of skimmer's analysis of TRY

Page 4-27

[Since analysis follows the normal flow of control, the
double exit on line 20 brings the production system to a
halt. But this does not prevent AURAC from noticing that
line 30 is a portion of unreached code.]

At this point AURAC would be able to report to the user:

Line 10: CHECK-triple does not exist in your database.
Line 20: CHECK-triple does not exist in your database.
Line 20: Double-Exit — > Line 30 not reached.

4.3 MODULE 2: CLICHE ANALYSIS

As each line of the user's code passes through the above

production system, it is also passed for analysis to the

cliche module and the data flow module of AURAC. Here is

the SOLO cliche represented by line 10 of TRY. It FORGETs a

triple if it is already present in the database, and

otherwise NOTEs it. The internal variables a, b, and c can

represent any user-supplied tokens :

10 CHECK a b c
A If Present: FORGET a b c ; CONTINUE
B If Absent : NOTE a b c ; CONTINUE

The structure of this cliche, ignoring possible user

variations and cosmetic printouts, is:

<n> CHECK <triple>
A FORGET <same triple) ; CONTINUE
B NOTE <same triple) ; CONTINUE

and it is this "skeleton" which the cliche-analyser looks

for in the user code. The skeletons are actually stored in

Page 4-28

standardised data objects which have slots into which the

various "bones" of the skeleton fit. The bones are;

1) the main instruction on the line (which may be
FOR EACH CASE OF, CHECK/TEST, some single-line
primitive such as PRINT, or a subroutine call.
If it is a nest of FOR EACH CASE OF
instructions, these are automatically collapsed
into a single FOR EACH CASE OF instruction, in
the same way as in the skimmer module. But of
course this can only happen if all of the
necessary triples are present in the database
and can generate new cases.

2) the FOR EACH CASE OF subline if any, which may in
turn be a CHECK/TEST instruction, or a
single-line call as above.

3) the A and B subline instructions, if any, of a
CHECK/TEST instruction, whether the latter was
on the main line or on a FOR EACH subline.

4) the A and B control-statements if any.

The current skeleton would be stored like
this :

MAINLINE: (CHECK)
FORSUBLINE: NIL
A-SUBLINE: (FORGET)
B-SUBLINE: (NOTE)
A-CONTROL: (CONTINUE)
B-CONTROL: (CONTINUE)

and that simple structure completely defines the "type" of

SOLO line concerned. In the case of multi-line cliches,

each line will have its own skeleton, and its own example or

"schematic" (see below).

Page 4-29

Each skeleton in the cliche library is checked against

the line of user code by a pattern-matcher. A cliche

skeleton corresponds very closely to the fixed parts of a

programming construct such as the MacLISP DO-loop. If the

skeleton and the equivalent parts of the user's code are

identical, a match is signalled. If there is a single

difference (e.g. in one control statement), an error-frame

is created as above. If there is more than one difference,

a mismatch is signalled and analysis of the code line in

terms of that particular cliche ceases. If a match is

found, the analyser goes on to look for mismatches between

the line of user code and an "schematic" of the cliche line

drawn from the same library. The schematic might look like

this :

((CHECK >N >0 ?P)
(FORGET <N <0 *P & CONTINUE)
(NOTE <N <0 *P & CONTINUE))

This time the matching is more sophisticated, but again only

a single difference will be counted as a detected error.

Matching now allows the binding of the temporary variables

N, 0 and P so as to store the arguments to the CHECK

instruction, and these values are compared with the

arguments to the NOTE instruction in order to ensure that

the two user-entered triples are the same. Similarly, the

matcher can now accept items such as "ANY" in places where

the user might decide to insert an arbitrary node, relation

or procedure name, or control-statement, other than any name

Page 4-30

already bound to N, 0 or P. The symbols N, 0 and P

themselves are unrestricted, and can occur in any number of

different cliches without confusing the matcher, but of

course they must not be LISP special symbols. The operators

">" and "<" will also match to a wildcard or to a starred

variable name respectively; similar operators "?" and

behave in the same way, and are provided merely to make the

writing of the cliche library easier.

If, for example, this second match is perfect except that

some symbol other than that already bound to the variable P

appears in the NOTE instruction, an error is assumed. Owing

to the paucity of SOLO syntax, it is in fact only when a

single mismatch is found that an error can be signalled;

two mismatches might well signify a different cliche

altogether.

Other keywords such as SELF (see the cliche IMPLICATE,

below) and SUBR can be inserted into the schematics of

recursive or subroutine-calling cliches; and the keyword

NO-OP signifies any SOLO instruction such as PRINT or

DESCRIBE which cannot affect the database. For example, the

INFECT procedure from section 1.3.1 is expressed as a cliche

thus :

Line 1: ((note >a >b >c))

Line 2: ((check <a >d ?e)

Page 4-31

(self <a & exit)
(no-op & exit))

With the gradual refining of the library of cliches SELF,

and SUBR have dropped out of use. But they have been left

as facilities in the matcher for the sake of future

expansion. (The changing of the semicolon into an ampersand

is done because the semicolon is a special character in LISP

- the token remains merely a marker to separate the

control-statement from any instruction appearing on the same

subline). And the matcher understands cases where although

its schematic might specifiy a CONTINUE control statement,

the equivalent word in the code is EXIT because the

procedure line concerned happens to be the last in that

particular procedure.

In more complex cases there will be more than one line

comprising the cliche itself, and they may between them

contain several wildcards which the matcher has to

"understand" as matching the corresponding variables. Each

line of code is tried against each line of every cliche in

the library. The apparent computational overhead incurred

is easily justified by regarding cliche recognition as a

conceptually parallel process. In actual fact, the overhead

is not unduly burdensome - but, see chapter 6.

Page 4-32

When a match or very close match is found, that fact is

remembered. Subsequently, the analyser goes through these

matches again, and where only part of a multi-line cliche

has been found, it rejects all the matches concerned. Thus,

so long as any two cliches differ by more than one item per

line, they can reliably be distinguished from one another.

AURAC always picks the cliche which most closely matches the

code as supplied. Here is an example of a procedure which

contains a four-line cliche. The cliche replaces one triple

with another, the second being inferred from the first, as

follows :

TO DEMI

10 CHECK FIDO LIKES ?V
A CONTINUE
B EXIT

20 CHECK *V BROTHER ?P
A CONTINUE
B EXIT

30 FORGET FIDO LIKES *V

40 NOTE FIDO LIKES *P

Suppose now that the user inadvertently typed *X instead of

*P on line 40. The typical message from this module of

AURAC would be ;

"Lines 10 of DEMI, 20 of DEMI, 40 of DEMI and 60 of DEMI
seem to be intended to remove one triple from your
database and to replace it with another,
but on line 60 of DEMI you have written *X
where perhaps you meant to write *P.

The procedure name is given along with the number of each

code-line comprising the cliche because, of course, naive

Page 4-33

users may spread cliches across procedure boundaries. The

cliche detected here is that named UPDATE-M below. A trace

of this second module of AURAC in action follows. Again it

is working on the program from 1.3.3;

TO TRY /X/

10 CHECK /X/ IS UP
A If Present ; FORGET /X/ IS UP ; CONTINUE
B If Absent ; NOTE /X/ ISA UP ; CONTINUE

20 CHECK AURAC LOVES TONY
A If Present; EXIT
B If Absent ; EXIT

30 PRINT /X/ "IS UP."

[AURAC tries the first cliche in its library, attempting to
match it against the user's code for line 10. Whenever the
skeleton matches the code, an attempt is made to match
the schematic against the code. Note that the symbol M
occurring in a cliche name merely signifies that the cliche
concerned is a multi-line cliche. In such cases a numeral
is also added to the name of each line.]

Trying UPDATE-M_1

(UPDATE-M_1 TRY (10))

[The library cliche looks like this...]
((CHECK >A >B >C) (NO-OP & CONTINUE) (NO-OP & EXIT))

[And line 10 looks like this...]
((CHECK /X/ IS UP) (FORGET /X/ IS UP & CONTINUE)

(NOTE /X/ ISA UP & CONTINUE))

[The first word matches.]
CHECK matches CHECK

[AURAC goes on to inspect the triple.]
(PHRASE (>A >B >C)
(SUBLINE (/X/ IS UP))

>A matches /X/
>B matches IS
>C matches UP

[OK so far; now the first subline.]
(PHRASE (NO-OP & CONTINUE))

Page 4-34

(SUBLINE (FORGET /X/ IS UP & CONTINUE))

[NO-OP doesn't match FORGET /X/ IS UP, so:]

No match

[AURAC runs through the rest of its stored cliches, until it
gets to the one called FLIP-FLOP:

Trying FLIP-FLOP

(FLIP-FLOP TRY (10))

[The library cliche:]
((CHECK >N >0 ?P) (FORGET <N <0 *P & CONTINUE)

(NOTE <N <0 *P & CONTINUE))

[Line 10 of the user's code:]
((CHECK /X/ IS UP) (FORGET /X/ IS UP & CONTINUE)

(NOTE /X/ ISA UP & CONTINUE))

[The first word matches.]
CHECK matches CHECK

[Looking at the triple...]
(PHRASE ON >0 ?P))
(SUBLINE (/X/ IS UP))

>N matches /X/
>0 matches IS
?P matches UP

[OK. Now the first subline.]
FORGET matches FORGET

(PHRASE « N <0 *P))
(SUBLINE (/X/ IS UP))

[The sudden appearance of error totals
is an artifact of the tracer.]

<N matches /X/ with error NIL TOTAL = 0
<0 matches IS with error NIL TOTAL = 0
*P matches UP with error NIL TOTAL = 0
& matches &
CONTINUE matches CONTINUE

[First subline OK. Now the second.]
NOTE matches NOTE

(PHRASE (<N <0 *P) & CONTINUE))
(SUBLINE (/X/ ISA UP & CONTINUE))

<N matches /X/ with error NIL TOTAL = 0

Page 4-35

<0 matches ISA with error (ISA . IS) TOTAL = 1
*P matches UP with error NIL TOTAL = 1
& matches &
CONTINUE matches CONTINUE

Imperfect match accepted:
FLIP-FLOP on line 10 of TRY.

The match is "imperfect" because of the single mismatch,

between IS and ISA, found on the second subline. This

cliche is in fact the only one to be accepted overall. Its

"imperfection" is recorded as ERRORl, and the resulting

printout to the user is this :

Line 10 seems to be intended to FORGET the triple /X/ IS UP
if it exists, and to NOTE it otherwise
but on line lOB of TRY you have written ISA
when perhaps you meant to write IS.

On line 20, TRY looks in the database to see if the flag
AURAC LOVES TONY is Present, and if so EXITs
Otherwise, it EXITS.

On line 30, TRY prints a message.

Remember that the double-EXIT bug on sublines 20A and 2OB

is trapped by AURAC's Skimmer module. As mentioned in the

previous section, subsequent analysis of subline 20 shows it

to match (actually it is a near miss: one control-statement

varies in each case) to one line in each of the two

multi-line cliches UPDATE-M_1 and FETCH-D0-M_1. But the

error frames so created are later ignored in the absence of

the companion lines from these multi-line cliches.

Page 4-36

Below will be found full details of the nine cliches

currently held in AURAC's library. Several more cliches

have been discovered in the course of our work with SOLO,

but as discussed in chapter 6 near-misses to some SOLO

cliches (such as its equivalent of AND and OR) are not

reliably distinguishable from one another. Those included

in the library are those which can, with a fair degree of

consistency, be correctly detected when they arise in user

code.

One slot in the skeletons was not mentioned above: the

MULTI slot, which records the names of all lines in any

cliche, and hence of the companion lines in multi-line

cliches. ANNOUNCE is normally initialised to NIL for

multi-line cliches - in case the companion lines are not

found in the code - and to T for single line cliches.

Notice that if slots are not specified, the system assumes a

NIL entry.

1) UPDATE-M replaces one triple (a b c) with another
similar one (a b d):

update-m_l (mainline (check)
forsubline nil
a-subline nil
b-subline nil
a-control (continue)
b-control (exit)
schematic ((check >a >b >c)

(no-op & continue)
(no-op & exit))

announce nil
multi (update-m_l update-m_2

update-m 3 update-m 4))

Page 4-37

update-m_2 (mainline (check)
forsubline nil
a-subline nil
b-subline nil
a-control (continue)
b-control (exit)
schematic ((check <c any >d)

(no-op & continue)
(no-op & exit))

announce nil
multi (update-m_l update-m_2

update-m_3 update-m_4))

update-m_3 (mainline (forget)
schematic ((forget <a <b <c))
announce nil
multi (update-m_l update-m_2

update-m_3 update-m_4))

update-m_4 (mainline (note)
schematic ((note <a <b <d))
announce nil
multi (update-m_l update-m_2

update-m_3 update-m_4))

2) PSEUDO-P-M is a SOLO "predicate": under conditions
specified by its first CHECK, it NOTEs some standard
triple. The presence of this triple is used later in
the program to enable some action.

pseudo-p-m 1 (mainline (check)
forsubline nil
a-subline (note)
b-subline nil
a-control (exit)
b-control nil
schematic ((check any any any)

(note >h >i >j & continue)
(any & any))

announce nil
multi (pseudo-p-m 1 pseudo-p-m 2))

Page 4-38

pseudo-p-m 2 (mainline (check)
forsubline nil
a-subline nil
b-subline nil
a-control nil
b-control nil
schematic ((check <h <i <j)

(any & any)
(any & any))

announce nil
multi (pseudo-p-m 1 pseudo-p-m 2))

3) INFECT recurses if its CHECK line succeeds. It is most
often used, as already explained, for propagating
inferences along a database chain.

infect-m_l (mainline (note)
schematic ((note >a >b >c))
announce nil
multi (infect-m_l infect-m_2))

infect-m_2 (mainline (check)
forsubline nil
a-subline (self)
b-subline nil
a-control (exit)
b-control (exit)
schematic ((check <a >d ?e)

(self <a & exit)
(no-op & exit))

announce nil
multi (infect-m 1 infect-m 2))

Page 4-39

4) IMPLICATE uses a FOR EACH loop and recurses if an inner
CHECK SUCCEEDS. It is the standard SOLO method of
searching a database tree, and is named after the
course assignment in which such a possibility is likely
to arise (see chapter 3).

implicate (mainline (for)
forsubline (check)
a-subline (self)
b-subline nil
a-control (nextcase)
b-control (nextcase)
schematic ((for >a >b ?c)

(check *c any any)
(self *c & nextcase)
(no-op & nextcase))

announce t
multi (implicate))

5) CLEANUP applies FORGET to all triples matching the
pattern (k 1 ?);

cleanup (mainline (for)
forsubline (forget)
schematic ((for >k >1 ?m)

(forget <k <1 *m))
announce t
multi (cleanup))

6) FLIP-FLOP FORGETs a triple if it is Present,
NOTES it if Absent :

flip-flop (mainline (check)
forsubline nil
a-subline (forget)
b-subline (note)
a-control (continue)
b-control (continue)
schematic ((check >n >o ?p)

(forget <n <o *p & continue)
(note <n <o *p & continue))

announce t
multi (flip-flop))

Page 4-40

7) CAUT-NOTE-M NOTEs a triple, but first tests to see if a
similar triple already exists, and FORGETs it if so.
Such an arrangement is often found when, for example,
a database counter is to be augmented.

caut-note-m_l (mainline (check)
forsubline nil
a-subline (forget)

y b-subline nil
a-control (continue)
b-control (continue)
schematic ((check >a >b ?c)

(forget <a <b *c &continue)
(no-op & continue))

announce nil
multi (caut-note-m_l caut-note-m_2))

caut-note-m_2 (mainline (note)
schematic ((note <a <b any))
announce nil
multi (caut-note-m 1 caut-note-m 2))

8) FETCH-DO fetches a value to be NOTEd as part of
another triple. For example,

10 CHECK FIDO BROTHER ?B
A If Present: NOTE *B ISA DOG ; CONTINUE
B If Absent : CONTINUE

fetch-do (mainline (check)
forsubline nil
a-subline (note)
b-subline nil
a-control (continue)
b-control (continue)
schematic ((check >a >b >c)

(note any any <c & continue)
(no-op & continue))

announce t
multi (fetch-do))

Page 4-41

9) FETCH-DO-M does the same thing in two lines (this will be
commented upon in chapter 6):

fetch-do-m_l (mainline (check)
a-subline nil
b-subline nil
a-control (continue)
b-control (exit)
schematic ((check >a >b >c)

(no-op & continue)
(no-op & exit))

announce nil
multi (fetch-do-m_l fetch-do-m_2))

fetch-do-m_2 (mainline (note)
schematic ((note any any <c))
announce nil
multi (fetch-do-m 1 fetch-do-m 2))

It is normally in cases of variable confusion (the user

having accidentally typed the wrong variable name) that

cliche recognition appears to be most useful to beginners.

Other errors, such as spelling errors, will normally have

been handled at a much earlier stage by MacSOLO's spelling

corrector. Use of the wrong node or relation name, an

equivalent error, has not so far occurred in practice.

Page 4-42

4.4 MODULE 3; DATA FLOW ANALYSIS

Data flow analysis involves the setting up of

"expectations", and their subsequent "satisfaction". The

result conceptually resembles a flow-chart. For example, a

CHECK instruction involving a wildcard (and hence binding a

variable) sets up the expectation that that variable will be

referred to later in the code. Similarly, if there is a

call to a user-defined procedure, there is the expectation

that the procedure's formally declared parameters will be

referred to as execution proceeds. In either case the

"expected" items (bound variable, formal parameter) can be

equated to the cause of the expectation (result of a CHECK

search, argument to the procedure call). AURAC keeps track

of both expectations and satisfactions so that at any point

during analysis a variable or parameter can be traced back

to the point at which it entered the program (often, the

original top-level call). For example, here is part of the

long subtraction routine used as a demonstration at Summer

School (a detailed discussion of which will be found in

section 4.6.1). It uses subroutines TOPNUM and BOTTOMNUM,

which are actually setup routines ensuring that the correct

input digits are entered into the database before

subtraction proper begins. One "track" of its data flows is

superimposed upon the code :

Page 4-43

TO SUBTRACT2 /P/ /Q/ /F/ /X/

10 TOPNUM /X/ /Y/
20 BOTTOMNUM /P/ /Q/
30 SUBTRACT

TO TOPNUM /X/ (/Y/

10 CHECK TT IS 'T
A If Present :
B If Absent :

20 CHECK TU IS
A If Present :
B If Absent :

30 NOTE TT IS /

FORGET TT IS *T ; CONTINUE
; CONTINUE

U
FORGET TU IS *U ; CONTINUE
; CONTINUE

40 NOTE

50 PRINT

TO BOTTOM|NUM /P/ /Q/

10 CHECK |BT IS ?V
A If Present: FORGET BT IS *V ; CONTINUE
B If Absent : ; CONTINUE

20 CHECK bU IS ?W
A If Present: FORGET BU IS *W ; CONTINUE
B If Absent ; ; CONTINUE

30 NOTE BT IS /P/

40 NOTE b(j is /Q/

50 PRINT I'AND THE BOTTOM NUMBER IS" /P/ /Q/

THE TOP NUMBER IS"

TO SUBTRAC

10 PRINT "I AM GOING TO TAKE THE BOTTOM
NUMBER FROM THE TOP NUMBER"

Page 4-44

20 CHECK IS
A If Present xT\ CONTINUE
B If Absent :/PRINT "ERROR 1" ; EXIT

30 CHECK BU 1$?G
A If Present: ; CONTINUE
B If Abse/t : PRINT "ERROR 2" ; EXIT

50 CHECK *G ?B
A If Present: NOTE ANSUM IS *B ; CONTINUE
B If Absent : BORROW ; EXIT

... and so on.

Ideally, it should not be the case that a SOLO program

will make any permanent changes to the database. A correct

SOLO program would consist of three sections : a SETUP

routine to establish the prior conditions of the database;

the program proper; and a CLEARUP routine to restore the

database to normal. Therefore, each NOTE instruction

"expects" both a CHECK reference to the triple noted, and a

FORGET of the same triple. However, it is perfectly legal

SOLO usage to put the CLEARUP routine before the program

proper, and the SETUP routine at the end. (Messy, but

legal). Because of this, it is possible for the FORGET

expected by a NOTE lexically to precede the NOTE itself.

This is where AURAC's method is superior to symbolic

evaluation techniques such as those of Laubsch and

Eisenstadt (1981): the latter would derive the wrong

Page 4-45

overall net effect from such an inversion of the expected

order of operations

Of course, it is not actually illegal to write a SOLO

program which does make permanent (but intentional) changes

to the database - for example a simple model of learning

would have to do so. For this reason, any imbalances which

AURAC finds in its system of expectations and satisfactions

are merely pointed out to the user, and are not announced as

definite errors.

Expectations are placed on a stack as they are generated,

in a standardised form which specifies the place

(procedure-name, line number) where the expectation arose

together with a "descriptive" token such as the word NOTE or

the name of a newly-bound variable. When this expectation

is found to be satisfied in the code (in the case of NOTE,

it is possible for the satisfaction to be already present,

waiting to be "expected"!) it is deleted from the

expectations stack, but a copy of the same information is

placed on the satisfactions stack. A bound variable or a

formal parameter may change its name as it is passed into a

subroutine, or if it occurs along with a wildcard in a FOR

EACH or CHECK triple. Therefore the satisfaction just

placed on the stack also carries a note as to the variable's

new name.

Page 4-46

Thus, by balancing the expectations against the

satisfactions during analysis, AURAC can detect such things

as bound variables to which no subsequent reference is ever

made, or triples which are NOTEd but never CHECKed. So the

simplest use of data flow analysis is to be able to issue

messages such as :

"The variable *X created on line 20 of FOO is never used."

"The NOTE instruction on line 30 of FOO is unnecessary."

The trace of AURAC's third module analysing the same

piece of code from 1.3.3 follows:

TO TRY /X/

10 CHECK /X/ IS UP
A If Present: FORGET /X/ IS UP ; CONTINUE
B If Absent : NOTE /X/ ISA UP ; CONTINUE

20 CHECK AURAC LOVES TONY
A If Present: EXIT
B If Absent : EXIT

30 PRINT /X/ "IS UP."

Line T of TRY expecting /X/ in TRY marker (/X/)

[Line T is the title line. The marker is the new name, if
any, of the piece of data being followed.]

/X/ satisfied on line 10 of TRY marker (/X/)
remaining expectations :
NIL

IS cannot satisfy existing expectation
UP cannot satisfy existing expectation

TRY 10 (CHECK /X/ IS UP) onto leftover sats list
remaining expectations :
NIL

Page 4-47

[The CHECK on line 10 is remembered because the rule is that
a NOTE expects both a CHECK and a FORGET. However, these
latter need not occur lexically after the NOTE itself. In
fact, in TRY, the NOTE occurs on line lOB. However, a CHECK
without an accompanying NOTE (as on line 20) need not
signify any error.]

/X/ repeated on line lOB of TRY marker (/X/)

ISA cannot satisfy existing expectation
UP cannot satisfy existing expectation

Line lOB of TRY expecting (CHECK /X/ ISA UP) in $ marker NIL
Line lOB of TRY expecting (FORGET /X/ ISA UP) in $ marker NIL
remaining expectations :
((CHECK /X/ ISA UP) (FORGET /X/ ISA UP))

[The NOTE instruction on line lOB generates the expectation
of a matching FORGET and a matching CHECK.]

AURAC cannot satisfy existing expectation
LOVES cannot satisfy existing expectation
TONY cannot satisfy existing expectation

TRY 20 (CHECK AURAC LOVES TONY) onto leftover sats list
remaining expectations ;
((CHECK /X/ ISA UP) (FORGET /X/ ISA UP))

The above analysis results in the following two messages

to the user:

...and also the triple NOTEd on line lOB TRY is never CHECKed.

...and also the triple NOTEd on line lOB TRY is never FORGOTten.

Page 4-48

4.5 CANONICAL ALGORITHMS

There is a secondary use to which the derived information

can be put, in cases where some indication of the

programmer's intention is known. And this second use

depends upon a particular view of algorithms. An algorithm

is, of course, a description of a series of steps which the

machine is capable of carrying out and which overall

achieves some desired objective.

Translating an algorithm into code involves three things:

writing lines of code which perform the same actions as

those specified in the steps of the algorithm; including in

them variables which will be bound to the appropriate data;

and assembling those lines into the correct order. AURAC's

analysis inverts this process, i.e. it inspects the code

with the aim of finding the algorithm distributed throughout

it.

A program may of course do a great many other things

besides achieving some particular goal; but one would not

be correct in saying that the algorithm for the whole

program is also the algorithm for achieving that goal.

Conversely, if a program does carry out the steps of an

algorithm in their correct order, and using the appropriate

data, it must achieve (at least) whatever the algorithm

Page 4-49

achieves. AURAC has a library of "canonical algorithms",

which are each an algorithm for achieving some particular

effect. For example, as will be seen below, the canonical

algorithm for subtraction represents precisely the four

steps necessary to achieve subtraction of two two-digit

numbers, provided that the answer is positive but regardless

of whether or not "borrowing" is required. If code

representing such an algorithm is fed with suitable input

data, AURAC concludes that it will successfully subtract.

By combining the knowledge stored in an "algorithm

library" with its data flow analysis, AURAC is able to

identify individual algorithm lines within the code.

The "canonical" algorithm thus is an algorithm each of

whose lines can be expressed as a single line of SOLO code.

If it is possible to spread one step over several code

lines, these variants must be included in the algorithm

library; this does not in practice lead to any

combinatorial explosion. But, it is a restriction which, we

hope, a later version of AURAC will not impose.

Page 4-50

Whatever form the original (input) data may take as

program execution proceeds - bound variables or components

of database triples - there must at some point be a line of

SOLO code which, say, contains the equivalents of both

digits of the units column in the format necessary for them

to be compared with the subtraction tables in the database:

CHECK /TU/ /BU/ ?ANSU

AURAC's usefulness here is to recognise this line as an

algorithmic step.

The crucial point is this: if the user's program, no

matter how large or rambling it may be, executes lines which

can be shown (during behind-the-scenes evaluation) to

correspond to the steps in some stored algorithm, AURAC can

say that the program will achieve whatever goal is assured

by that algorithm. The program may do other things, but it

will achieve that goal. As an example, here is one of the

algorithms from AURAC's library: one which achieves the

kind of two-column subtraction where "borrowing" involves

adding ten to the minuend in the units column and "paying

back" requires the subtraction of one from the minuend in

the tens column. The algorithm is written in a form which

is an abstraction from actual SOLO code:

(subtract (check /tu/ /bu/ ?ansu) <— 1
(check /tu/ pluslO ?newtu) <— 2
(check /tt/ 1 ?newtt) <— 3
(check /tt/ /bt/ ?anst)) <— 4

Page 4-51

The steps are labelled here for the sake of the following

explanation. The algorithm says (in English): "Try to

subtract the two digits in the UNITS column of the problem

(step 1). If this is not possible, "borrow" by adding ten

to the top digit in the UNITS column (step 2) and by

decrementing the top digit in the TENS column by one (step

3). Then subtract the two digits in the TENS column (step

4). When borrowing is required line 1 will obviously need

to be repeated, and AURAC is unaffected by whether this is

done via recursive call or by a line of code repeating step

1. Exactly how the corresponding program works, and the

database it requires, will be made clear in section 4.6.1.

An important aspect of data flow analysis is that the system

is able to recognise the equivalence between, say, &NEWTT

(the top tens digit after borrowing and paying back) and

/TT/ (the same digit when borrowing is unnecessary). Thus,

the third line of the above algorithm will be detected in

either case. The same applies to the first line.

Provided that these four steps are carried out in the

correct order and using the correct data, the corresponding

SOLO program will subtract (given a suitable database),

regardless of how many subroutines it may be divided into or

of how many extra lines may appear amongst those shown in

the algorithm itself. There is in existence a perfectly

sensible SOLO program which, at top level, merely subtracts

Page 4-52

a pair of two-digit numbers. It is in fact one of the

demonstration programs whose top level effects are shown to

Summer School students at the start of their course. As

such it of necessity includes a large number of

behind-the-scenes routines to guard against faulty or

deliberately unco-operative entries by its users. The full

running program occupies well over 80 lines of SOLO code

(see Appendix B), but the above canonical algorithm approach

correctly identifies it as a working two-column subtraction

program, and in fact points out a few minor mistakes where

certain triples (extraneous to the algorithm itself) are

asserted into the database but never cleared out.

Fortunately, these triples are not such as to affect

subsequent re-runs of the same program. The question of

counter-examples is addressed in chapter 6.

By looking down the stack of satisfactions AURAC is able

to trace the path of any particular item of data. But

notice that the VALUE of any variable is not taken into

account: this part of the analysis remains lexical - i.e.

syntactic. Data flow analysis enables mapping of the user

code onto the stored algorithms; so that AURAC can ask for

example :

"Was /A/ on the title line of SUBTRACT intended to
represent the digit on the top row, tens column?
(Y or N)"

If the user's answer is Yes, the equivalence between the

Page 4-53

user's token /A/ and the algorithm's token /TT/ is

established. This may in turn allow AURAC to establish

equivalence between the entire line of user code and, say,

line 3 of the algorithm. It is not always necessary to ask

questions: the likely range of user tokens is limited, and

variable-names such as /TOPTEN/ are in fact detected by a

"typical menemonic variable-name" recogniser. When AURAC

succeeds in identifying lines of code corresponding to all

of the lines in the algorithm, it announces that the program

will achieve the corresponding objective (two-column

subtraction, in this case; the user is asked to sepcify, at

the start of analysis, which of the projects he or she is

attempting). If one or more of the expected lines is

missing, AURAC points this out to the user:

"There is no line in your program which repays
the borrowed ten."

If everything is perfect, and no errors have been discovered

throughout all forms of analysis, AURAC announces:

"Your program will SUBTRACT.

No errors."

AURAC's analysis of a user's actual subtraction program is

illustrated in detail in chapter 5.

Page 4-54

4.6 THE LIBRARIES

As has been seen, AURAC relies on its libraries for its

abilities to produce any useful debugging information above

the level of Higher Level Syntactic errors. It has several

times been mentioned that AURAC was intended to work within

a limited problem area; at this point it is worth

describing exactly what those limits are, and how firmly

fixed.

The current implementation of AURAC contains the

algorithms and their variants for three of the four Summer

School projects described below; the reasons why the fourth

project is not amenable to AURAC's kind of analysis are

given in chapter 6.

4.6.1 Subtraction

The first of the projects is to give SOLO, which has no

numerical primitives at all, the ability to perform

two-column subtraction. In fact the project is more

interesting than this, since having achieved that goal

students are asked to treat their programs as models of

children's subtraction skills, along the lines of the

analyses of Brown and Burton (1978) and of Young and O'Shea

(1980). Students are encouraged to create a number of

similar but buggy programs, the bugs imitating the

Page 4-55

children's (presumed) errors. Having written the initial

correct program with the help of MacSOLO/AURAC, students can

then use AURAC to reassure themselves that, for example, a

buggy program has no errors other than an intentional

missing algorithmic step.

For this project students are supplied with a substantial

database which contains all the necessary numerical

relationships expressed as SOLO triples. For example, the

group :

3

“ — 3— 0̂
— 2— ^1

— 1—

— — 0 — — ^ 3

 plus 10— >13

gives all the necessary data for subtracting any digit equal

to or less than 3 from 3, and this subtraction can be

effected using CHECK:

CHECK 3 /N/ ?DIFFERENCE

where /N/ is a formally declared parameter corresponding to

the digit to be subtracted. ^DIFFERENCE is then assigned

(by CHECK) the correct value. Should the search fail, i.e.

if /N/ is greater than 3, a "borrowing" procedure involving

adding 10 to 3 must be invoked; hence the final triple

Page 4-56

shown above. (Alternative "borrowing" algorithms require a

different database, but are equally easy to implement).

A minimal SOLO two—column subtraction program,

corresponding exactly to the canonical algorithm reprinted

below is as follows :

TO SUBTRACT /BT/ /BU/ /TT/ /TU/

10 CHECK /TU/ /BU/ ?ANSU
A ; CONTINUE
B BORROW /BT/ /BU/ /TT/ /TU/ ; EXIT

20 CHECK /TT/ /BT/ ?ANST
A PRINT "THE ANSWER IS:" *ANST *ANSU ; EXIT
B ; EXIT

TO BORROW /BT/ /BU/ /TT/ /TU/

10 CHECK /TU/ PLUS10 ÎNEWTU
A ; CONTINUE
B ; EXIT

20 CHECK /TT/ 1 ?NEWTT
A SUBTRACT /BT/ /BU/ &NEWTT *NEWTU ; EXIT
B ; EXIT

Here again is the canonical algorithm:

(subtract (check /tu/ /bu/ ?ansu)
(check /tu/ plus 10 ?newtu)
(check /tt/ 1 ?newtt)
(check /tt/ /bt/ ?anst))

Page 4-57

The tokens given as formal parameters to SUBTRACT here

represent the digits in the problem when set out as children

normally would; for example /BU/ represents the 7 and /TT/

represents the 4 in this calculation:

4 3
2 7

1 6

SUBTRACT itself merely effects the subtraction of the two

individual columns of the calculation. If its first CHECK

fails, the subroutine BORROW is called; and this in effect

re-writes the problem as

3 13
2 7

before recursively calling SUBTRACT to try again.

There is no necessity for students to write a recursive

program: the above second call to SUBTRACT could be

included as extra lines of code in BORROW, to mention just

one alternative. As far as AURAC is concerned, this would

mean that it "saw" at least one line of its corresponding

algorithm occurring twice in the code. AURAC does not class

that as an error: it signals only missing lines. However,

if the student chose to write BORROW so that it "paid back"

the borrowed ten like this :

Page 4-58

4 13
3 7

that would count as an algorithm-variant and would need to

be included in AURAC's library. In other words, so long as

the steps of any given algorithm variant are carried out in

their correct order, regardless of any reptitions and

regardless of flow of control, AURAC recognises the fact.

But if a different sequence of steps is carried out, it

needs to be told via an addition to its algorithm library.

An alternative strategy, used by Laubsch and Eisenstadt

(1981), is to reason about the mathematical equivalence of

the two algorithms (e.g. [X-1—Y = X-(Y+1)]). AURAC prefers

to store algorithm variants for two reasons: (a) it wishes

to mimic the human expert, who will normally employ only one

algorithm at a time; and (b) the technique is easily

adaptable for new domains which don't involve mathematical

reasoning.

Page 4-59

Thé majority of students tackling this project are in

fact quite happy to use the database as supplied, and

therefore to employ the first of the above algorithms.

However, as was seen above, alternative algorithm variants

are not a problem. Students may also, of course, choose to

code an algorithm differently from the above. A

frequently-encountered example is where he/she decides to

store intermediate answers in the database, rather than pass

them from one routine to another as arguments :

TO SUBTRACT /A/ /B/ /C/ /D/

10 CHECK /B/ /D/ ?U <--1
A If Present; NOTE UNITS IS *U ; CONTINUE
B If Absent : BORROW /A/ /B/ /C/ /D/ ; CONTINUE

20 CHECK TENS IS ?T
A If Present: PRINTANS ; EXIT
B If Absent : ; CONTINUE

30 CHECK /A/ /C/ ?T
A If Present: NOTE TENS IS *T ; CONTINUE
B If Absent : ; EXIT

40 PRINTANS

TO BORROW /A/ /B/ /C/ /D/

10 CHECK /B/ PLUS 10 ?NEWB <— 2
A If Present: ; CONTINUE
B If Absent : ; EXIT

20 CHECK *NEWB /D/ ?U <--1
A If Present: NOTE UNITS IS *U ; CONTINUE
B If Absent : ; EXIT

30 CHECK /A/ 1 ?NEWA <— 3
A If Present: ; CONTINUE
B If Absent : ; EXIT

40 CHECK *NEWA /C/ ?T <— 4
A If Present: NOTE TENS IS *T ; EXIT
B If Absent : ; EXIT

Page 4-60

TO PRINTANS

10 CHECK UNITS IS ?U
A If Present: ; CONTINUE
B If Absent : ; EXIT

20 CHECK TENS IS ?T
A If Present : PRINT "Answer is : " *T *U ; CONTINUE
B If Absent : ; EXIT

30 CLEARUP

TO CLEARUP

10 FORGET UNITS IS ?U
20 FORGET TENS IS ?T

The marked lines are the algorithm lines corresponding to

the four lines of the previous example. Notice that line 20

of BORROW repeats the same algorithmic step as was carried

out by line 10 of SUBTRACT. AURAC recognises all programs

of this algorithmic type as successful subtraction programs,

provided that the user supplies suitable input data. If

either of the above programs is run with input data such

that borrowing is not required, AURAC will (correctly,

following the flow of control) announce that the two

corresponding lines from the algorithm are not carried out.

Hence the form of its message: "No line activated during

that run of your program...". This input-dependent approach

can be more useful to novices than a system which analyses

regardless of the supplied arguments.

Page 4-61

4.6.2 Collins & Quillian

The second project concerns the Collins and Quillian

(1969) model of human semantic memory. This is represented

as a tree-structure of sets and of supersets : one path

might run (from its bottom upwards) JOEY, CANARY, BIRD,

CREATURE. The hypothesis is that information is included in

the tree only at that point (that node) where it is most

general and yet remains true. For example, to discover

("remember") that JOEY can fly, it is necessary to inspect

first joey's superset CANARY, and then CANARY's superset

BIRD, before the information is found. The statement

CREATURE CAN FLY is not, of course, necessarily true, so

that BIRD is the correct node to which to attach this data.

The SOLO algorithm for reaching the same result is a

recursive one which first CHECKS for the required

information at the lowest node (JOEY) and, if the

information is absent, recursively CHECKS each superset

until either the information is found or the top of the tree

is reached :

TO CONFIRM /X/ /Y/ /Z/

10 CHECK /X/ /Y/ /Z/
A PRINT "YES" ; EXIT
B ; CONTINUE

20 CHECK /X/ SUPERSET ?S
A CONFIRM *S /Y/ /Z/ ; EXIT
B PRINT "NO" ; EXIT

In the above example, this procedure is executed a total of

Page 4-62

three times, with the formal parameter /X/ acquring

successively the values of JOEY, CANARY and BIRD. The /Y/

and /Z/ parameters retain their initial values CAN and FLY

on each call. As with the SUBTRACT project, an actual

program may contain much else besides these minimal two;

but it is to these that the algorithm in AURAC's library

corresponds:

(candq (check \node\ \relation\ \property\)
(check \node\ superset ? superset)
(self ^superset \relation\ \property\))

Students go on to extend their programs to handle

anomalous cases (birds which cannot fly etc.) and individual

exceptions (birds with clipped wings), but AURAC is not at

present equipped to handle these variations.

4.6.3 Schema Matching

The third project concerns Schema Matching, and its role

in object recognition. The idea is that the mind holds

representative descriptions of all known classes of object -

chairs, people, planets, gods - and that new objects are

perceived as belonging or not belonging to one of these

classes on the basis of a match of their attributes. This

can be modelled in SOLO, for one class of object only, by a

FOR EACH loop:

TO MATCH /NEWOBJECT/ /STANDARD/

Page 4-63

10 FOR EACH CASE OF /STANDARD/ HAS ?ATTRIBUTE
A CHECK /NEWOBJECT/ HAS *ATTRIBUTE
AA ; NEXTCASE
AB ; EXIT

20 PRINT "YES"

This is a simple all-or-nothing match: line 20 will only

be executed if the loop runs out of cases without detecting

a mismatch. A more elaborate version might look something

like this:

TO MATCH /NEWOBJECT/ /STANDARD/ /DEGREE/

10 RESET /COUNT/

20 FOR EACH CASE OF /STANDARD/ HAS ?ATTRIBUTE
A CHECK /NEWOBJECT/ HAS *ATTRIBUTE
AA INCREMENT /COUNT/ ; NEXTCASE
AB ; NEXTCASE

30 GREATERP /COUNT/ /DEGREE/

40 CHECK GREATERP DID SUCCEED
A PRINT "YES" ; EXIT
B PRINT "NO" ; EXIT

This allows the match to be taken as perfect if a certain

number (= DEGREE) of individual attributes match. COUNT is

the node of a database triple such as COUNT IS ..., and

GREATERP is a user-defined procedure which ensures that the

triple GREATERP DID SUCCEED is removed from the database

before either reasserting it or not depending upon its own

comparison of the number of matches (COUNT) and the number

required (DEGREE). Once again, additions to the basic

Page 4-64

matcher can be of arbitrary complexity, but the only

differences between the two FOR EACH loops in the above

examples are the subroutine call on line AA and the

control-statements on line AB. If these are counted as

variants of the same algorithm, the existence or absence of

the FOR EACH loop can be taken as an indication of whether

or not the program has the essentials of a schema-matcher in

it.

(match (feco /standard/ has ?attribute)
(check /newobject/ has ^attribute)
(no-op & nextcase)
(no-op & exit))

(match (feco /standard/ has ?attribute)
(check /newobject/ has ^attribute)
(subr & nextcase)
(no-op & nextcase))

The subroutine is not analysed further by the library

algorithm shown. However, AURAC is perfectly capable of

deeper analysis, provided that a suitable canonical

algorithm and message generator are added (by the tutor) to

the library. It is important to notice that within the

canonical algorithms subroutine algorithms are actually

macroexpanded in place, just as the BORROW algorithm is

within the SUBTRACT algorithm shown above.

Page 4-65

The above three examples with their variants are the

minimum set of programs which AURAC can handle. As already-

mentioned, adding new algorithms is in principle a simple

matter, but most students are happy enough to have achieved

one of the above during the three days allotted to the

project at Summer School. Extending, on an experimental

basis, AURAC's library to include more complex programs

naturally brings problems in its train - especially as

regards cliche recognition (see chapter 6). But the skimmer

and cliche recognition modules of AURAC are equally

effective regardless of the complexity of the code supplied.

AURAC's algorithm library contains algorithms (and

variants of algorithms) for these three major projects. All

of them are simple and SOLO-like, as shown above. It is

therefore almost a trivial matter for a tutor to add new

algorithms should this ever prove necessary. So long as the

new algorithm is correct and minimal, there will be no

problems.

Page 4-66

Adding a new cliche is more complicated, since it is

necessary to ensure that the new skeleton could not be

confused with any existing skeleton. Again, the highly

simplified nature of SOLO code makes the reliable

discrimination of similar cliches very difficult. This

point is covered more fully in chapter 6.

4.7 PRESENTATION OF RESULTS: INFORM

Firstly, a few general points are worth stressing. We

are not, except as an incidental means to an end, teaching

our students to become expert programmers. Beyond learning

how to operate the SOLO machine so as to produce working

programs, they are not expected to know what they are doing

- certainly not at the level of detail required for them to

employ the more traditional stop-and-search debugging

methods. Nor would it be practicable to require them to

learn a sophisticated meta-language in which to describe

their intentions to the machine. This means, as already

hinted, that there has until now been no automated debugging

system tailored to their needs.

Page 4-67

It is perhaps difficult for expert programmers to

empathise with the difficulties faced by such students.

They are working in what is to many of them a very alien

environment, trying to manipulate a machine which can seem

at best recalcitrant, if not actually inimical. What they

most often need is reassurance, and in this respect

Transparency figures very importantly in any list of design

priorities. It is notable that the powerful MacSOLO stepper

is by far the most successful and the most popular of the

various user aids so far implemented for any dialect of

SOLO.

The debugging information generated by AURAC must

therefore be such as to be useful to such users. (This

consideration was in fact the primary motivation behind the

original decision to base its methods empirically upon those

of SOLO tutors). We can for the time being excuse the fact

that its messages, as distinct from the debugging

information itself, will sometimes need to be explained for

the students' benefit. The crucial point is that the top

level of AURAC must appear to understand what the students

understand or need to understand - preferably no less, but

certainly no more. It would for example clearly be damaging

to our students' progress to inform them that "what you have

just typed does not hash to any known bucket". It is better

to say "that triple does not exist in your database", which

Page 4-68

may seem to the novice to be 90% untrue (as when he/she

types NOTE /X/ ISA UP instead of NOTE /X/ IS UP) but is far

more meaningful in the SOLO context.

As already mentioned, results are presented via canned

message-segments. These are selected and combined into

reasonable-looking sentences as required, and printed in

line-number sequence. From the user's point of view, the

whole resembles a description of the program's execution.

For the sake of Consistency and Transparency it is desirable

that the "gaps" in this description - corresponding to any

error-free lines of code - should be filled. Therefore, via

a descriptive mechanism involving more canned messages,

AURAC inserts into these gaps simple descriptions of the

corresponding lines of code. For example;

"Line 30 checks to see if the triple A—— B—— ^C is present.
If so, it CONTINUES. Otherwise, it prints a message."

By this simple addition AURAC becomes not only a

fault-finding mechanism but also a source of reassurance

that at least some of a user's program is working as

expected. However, the current implementation of AURAC's

data flow module also uses canned messages with which to ask

the user questions concerning the algorithm, and to present

its algorithmic results. For each project - i.e. for each

major algorithm together with its variants if any - there is

a purpose-built (LISP) routine which selects the

Page 4-69

mêssage-segménts as required, and although to write a new

one is not a difficult matter, it does require a knowledge

of LISP syntax on the part of the tutor. Failing any better

solution, a future version of AURAC will store the required

message-segments along with the algorithm lines, so that a

general message-printing routine can handle them. The

algorithm library will then be considerably more flexible in

its ability to accept new algorithms.

AURAC, then, looks for simple answers to known problems.

To the extent that it can do that, we judge it a success.

As will be seen from a protocol in the next chapter, its

accent on being amenable to its users has been so successful

that one student was able to use it in an entirely

unexpected fashion; as a stepwise program development aid,

rather than as an after-the-event analyser.

CHAPTER 5

AURAC AND MACSOLO IN USE: A SESSION TRANSCRIPT

Here is a short protocol from an experimental subject

undertaking the subtraction project as described in chapter

4. The subject was a 26 year old male television director

(and not an Open University student). He was completely

computer-naive and had no knowledge whatever of programming.

He first worked through the SOLO primer, and then through

the notes and exercises shown in Appendix C. He then

successfully attempted the (subtraction) project using the

full MacSOLO/AURAC system. His approach was to write each

algorithm step as a separate procedure, and then to combine

them once each was working correctly. The protocol

demonstrates the behaviour of various automatic correctors

(for spelling and for unbalanced parameter-slashes); of the

stepper, and of the debugger itself. Square brackets below

are comments; angle brackets signify messages flashed by

MacSOLO at the top of the terminal. User input is shown in

bold face.

SOLO: TO SUBTEN /TT/ /BB/

...10: CHECK /TT/ /BB/ ÎANST

Page 5-2

...lOA If Present: PRINT "anst is" *ANST ; CONTINUE

...lOB If Absent : EXIT

...20: DONE

SUBTEN has been successfully defined and added to
your pool of procedures.

TO SUBTEN /TT/ /BB/

10 CHECK /TT /BB/ ?ANST
A PRINT "anst is" *ANST ; CONTINUE
B ; EXIT

[Notice that though the subject omitted the semicolon on
line lOB, MacSOLO understood the significance of the
subsequent control-statement and inserted the semicolon in
its own listing]

SOLO: SUBTEN 25 24

[Nothing happens, and the SOLO prompt reappears.]

SOLO:

[Subject: "Oh. Single digits."]

SUBTEN 5 4

anst is 1

[Subject: "I'd like to step through that and see what
happens."]

SOLO: STEP

Enter SUBTEN 5 4 [RETURN]

10 CHECK 5--4— >?ANST
A If Present: PRINT "anst is" *ANST ; CONTINUE
B If Absent : ; EXIT

5 4 ?ANST...Present: *ANST = 1 [RETURN]

anst is 1

Exit SUBTEN

Page 5-3

[Subject: "Now, what does this debugger thing say?"]

SOLO : DEBUG

Name of Project:

[Subject: "Subtract"]

SUBTRACT

Working on SUBTEN...1

Was /BB/ on the title line of SUBTEN meant to
subtract 1 from the Top Tens digit? (Y or N) *N

[AURAC does not yet know that /BB/ represents a
database node - it may represent a relation, so
the question must be asked.]

Was /BB/ on the title line of SUBTEN meant to
represent the digit on the Bottom Row, Tens Column?
(Y or N) *Y

** Correct pattern from model found: line 10 of SUBTEN **

No line activated during that run of your program
did the subtraction of the UNITS column.

No line activated during that run of your program
added 10 to the top digit of the UNITS column.

No line activated during that run of your program
decremented the top digit of the TENS column by 1.

Analyses available for

SUBTEN

type INFORM followed by any of these.

SOLO: INFORM SUBTEN

On line 10 it looks in the database to see if the triple
/TT/ /BB/ ?ANST is Present,
and if so prints a message and CONTINUES.
Otherwise, it EXITs.

Level 1> line 10: CHECK succeeds.

[Subject proceeded to write the corresponding SUBUNIT
procedure. He then went on to write his first version of

Page 5-4

SUBTRACT, which was to include both SUBUNIT and SUBTEN]

SOLO: TO SUBTRACT /BT/ /BU/ /DUMMY/ /TT/ /TU/

...10: CHECK /TU/ /BU/ ?ANSU

...lOA If Present: TRINT *ANST

Control-statement error. <Type HELP if you don't understand>
[MacSOLO reprints the user's incomplete input, plus a
semicolon as a prompt :]

...lOA PRINT *ANST ;

CONTINUE

...lOB If Absent : EXIT

...20: CHECK /TT/ /BT/ ?ANST

...20A If Present: PRINT *ANST CONTINUE

...20B If Absent : EXIT

...30 OK

[MacSOLO accepts OK for DONE]

SUBTRACT has been successfully defined and added to
your pool of procedures.

TO SUBTRACT /BT/ /BU/ /DUMMY/ /TT/ /TU/

10 CHECK /TU/ /BU/ ?ANSU
A PRINT *ANST ; CONTINUE
A ; EXIT

20 CHECK /TT/ /BT/ ?ANST
A PRINT &ANST ; CONTINUE
B ; EXIT

SOLO: SUBTRACT 2 1 FROM 4 3

2
2

SOLO: EDIT SUBTRACT

edit = SUBTRACT

edit line... lOA CONTINUE

Page 5-5

edit line... 20À CONTINUE

edit line... 30 PRINT "and the right answer is" *ANST *ANSU

edit line... OK

SUBTRACT has been successfully modified:

TO SUBTRACT /BT/ /BU/ /DUMMY/ /TT/ /TU/

10 CHECK /TU/ /BU/ ?ANSU
A ; CONTINUE
A ; EXIT

20 CHECK /TT/ /BT/ ?ANST
A ; CONTINUE
B ; EXIT

30 PRINT 'and the right answer is" *ANST *ANSU

SOLO: SUBTRACT 2 1 FROM 4 3

and the right answer is 2 2

[Subject: "All RIGHT..."]

SOLO: DEBUG

[AURAC remembers the project]

Working on SUBTRACT...1

Was ?ANSU on line 10 of SUBTRACT meant to represent
the answer in the UNITS column? (Y or N) *Y

[In this case, unlike the above one, AURAC is lucky enough
to get the answer Y from the user on its first attempt]

** Correct pattern from model found : line 10 of SUBTRACT **

Was ?ANST on line 20 of SUBTRACT meant to represent
the answer in the TENS column? (Y or N) *Y

** Correct pattern from model found: line 20 of SUBTRACT **

No line activated during that run of your program
added 10 to the top digit of the UNITS column.

No line activated during that run of your program
decremented the top digit of the TENS column by 1.

Page 5-6

Analyses available for

SUBTRACT

type INFORM followed by any one of these.

[Subject: "Right. So now it's just the borrowing, and the
- er - decrementing." This student immediately found a novel
use for AURAC: as a check that individual algorithmic steps
have been coded correctly in segments of a growing overall
program. He was also highly amused by the inappropriate
(and unsatisfactory) use of the word "decremented" in
AURAC's printout.]

SOLO: INFORM SUBTRACT

[Subject: "This is just a breakdown. A sort of verbal
breakdown."]

On line 10 it looks in the database to see if the
triple /TU/ /BU/ ?ANSU is Present, and if so CONTINUES.
Otherwise, it EXITs.
On line 20 it looks in the database to see if the
triple /TT/ /BT/ ?ANST is Present, and if so CONTINUES.
Otherwise, it EXITs.
On line 30 it prints a message.

Level 1> 10: CHECK succeeds.
Level 1> 20: CHECK succeeds.

The parameter /DUMMY/ on the title line of SUBTRACT
is never used.

[Notice that AURAC picked up the unused /DUMMY/ formal
parameter. In this case, of course, its purpose was merely
cosmetic; that is, an unused variable does not necessarily
indicate an error.]

SOLO: SUBTRACT 2 2 FROM 8 8

and the right answer is 6 6

[Subject: "OK. Let's have a look at it"]

SOLO: STEP

Enter SUBTRACT 2 2 FROM 8 8 [RETURN]

10 CHECK 8-- 2— >?ANSU
A If Present : ; CONTINUE
B If Absent : ; EXIT

Page 5-7

8 2 ?ANSU...Present: *ANSU = 6 [RETURN]

20 CHECK 8— 2— >? ANST
A If Present : ; CONTINUE
B If Absent : ; EXIT

8 2 TANST...Present: *ANST = 6 [RETURN]

30 PRINT "and the right answer is" *ANST *ANSU

and the right anser is 6 6

Exit SUBTRACT

SOLO: KILL SUBUNITS

When you typed SUBUNITS did you mean SUBUNIT? (Y or N) *Y

SUBUNIT...no longer exists.

SOLO: TO BORROW

...10: CHECK /TU/ PLUSIO ?NEWTU

Undeclared parameter!

...10: HELP

PARAMETERS - such as /TU/ - which you refer to within one of
your procedures MUST be included ('declared') in the title
line to that procedure. You present title line to BORROW
is :

TO BORROW

If you would like to change it (and/or the declared
parameters), look at HELP RENAME.

...10: OK

SOLO: TO BORROW /TU/

...10: CHECK /TU/ PLUSIO ?NEWTU

... 10A If Present : CONTINUE

...lOB If Absent : EXIT

...20: /BT/ BU/ <Slashes don't balance>

Page 5-8

[[System going down in one minute!]]

When the system was restored, this subject successfully

completed his SUBTRACT program, saying at the end that "it

must be OK now because DEBUG says so." He had clearly

acquired, from his use of the system, the habit of employing

the (SOLO) machine's own facilities in order to check his

evolving program - not only his unexpected use of AURAC, but

his frequent recourse to STEP, show that this is so. This

we count as a major triumph, since it implies that this user

fully understood the differences and relationships between

the various parts of the machine. The conclusion is

confirmed by the very small number of "silly" mistakes in

this protocol. What has been successfully taught here is,

from the didactic point of view, of equal importance to the

debugging systems themselves. This was his final SUBTRACT

program:

TO SUBTRACT /BT/ /BU/ /DUMMY/ /TT/ /TU/

10 CHECK /TU/ /BU/ ?ANSU
A If Present: CONTINUE
B If Absent : BORROW /BT/ /BU/ /TT/ /TU/ ; EXIT

20 CHECK /TT/ /BT/ ?ANST
A If Present : CONTINUE
B If Absent : EXIT

30 PRINT "And the right answer is" *ANST *ANSU

TO BORROW /BT/ /BU/ /TT/ /TU/

10 CHECK /TU/ PLUSIO ?NEWTU
A If Present: CONTINUE

Page 5-9

B If Absent : EXIT

20 CHECK /TT/ 1 7NEWBT
A If Present: CONTINUE
B If Absent : EXIT

30 SUBTRACT *NEWBT /BU/ FROM /TT/ &NEWTU

This user also modified his program to employ a different

subtraction algorithm, and modified his database

accordingly. No assistance was given to him in doing so,

either by the notes supplied or verbally. Since the

algorithm variant he used was not at the time included in

AURAC's library, his "proof" that his new program was

correct was AURAC's announcement that one of the algorithm

lines was apparently missing. The variant algorithm is the

one mentioned in chapter 4, which repays the borrowed ten by

adding one to the lower tens digit, rather than by

decrementing the upper tens digit:

TO SUBTRACT2 /BT/ /BU/ /DUMMY/ /TT/ /TU/

10 CHECK /TU/ /BU/ ?ANSU
A If Present: CONTINUE
B If Absent : B0RR0W2 /BT/ /BU/ /TT/ /TU/ ; EXIT

20 CHECK /TT/ /BT/ ?ANST
A If Present : CONTINUE
B If Absent : EXIT

30 PRINT "And the right answer is" &ANST *ANSU

TO B0RR0W2 /BT/ /BU/ /TT/ /TU/

10 CHECK /TU/ PLUSIO 7NEWTU
A If Present : CONTINUE
B If Absent : EXIT

Page 5-10

20 CHECK /BT/ PLUSl ?NEWBT
A If Present; CONTINUE
B If Absent : EXIT

30 SUBTRACT *NEWBTBT /BU/ FROM /TT/ *NEWTU

CHAPTER 6

A CRITICAL APPRAISAL OF AURAC

6.1 THE ACHIEVEMENTS

AURAC's main achievement is to show that very substantial

amounts of debugging information can be derived from the

program code without the need for any elaborate internal

representation of the program's intended effect; and that

this information can be obtained without the problem of

combinatiorial explosion which so bedevils other debugging

methods.

Simple Syntactic errors can arise in any programming

language (although of course the specific errors may vary),

and their common feature is that they are trappable at their

time of entry, by simple demons. Simple Syntactic errors do

not require any intelligence on the part of the debugging

system. Higher Level Syntactic errors cannot be reliably

detected until run-time, but even so the first module of

AURAC is in essence little more than a multi-purpose demon.

Page 6-2

whose abilities and whose scope for trapping errors can be

altered by altering the rules in its production memory.

As can be seen from the tables in chapter 3, syntactic

errors form a very high proportion of the errors made by

novices; the MacSOLO/AURAC combination performs a useful

service in clearly distinguishing these from higher-level,

more semantic errors.

The kind of errors here referred to as Cliche errors -

which, as has already been pointed out, can be equated to

errors in the use of programming constructs - may or may not

be considered as syntactic errors. If a construct exists in

the host language but is wrongly used, that is a syntactic

error; but if no suitable construct exists, the error is a

semantic one. In the latter case the errors are

particularly difficult to pinpoint without the concept of

cliches. This is of course an argument in favour of

structured programming techniques, but the problem which

AURAC has tackled with some degree of success is how to

debug programs written in a relatively non-structured

language.

Page 6-3

Data Flow analysis is not new, but is here used in a

novel way; to ensure that overall a SOLO program does not

make any permanent changes to the database - changes which

might well interfere with subsequent runs of the same

program. In the SOLO context this is not only a debugging

advantage but also a didactic advantage; it compels

students to consider the long-term effects of every addition

to or deletion from their databases, and so to move away

from a view of the program as a series of discrete steps and

towards seeing it as a coherent operation which has

predictable effects. Again, this is a move towards the

ideas of structured programming.

In the context of a less database-dependent language than

SOLO, the no-overall-effeet ideal is less useful - if indeed

it has any relevance at all. But AURAC has demonstrated

that the notion of "canonical algorithms" is well worth

further exploration. Appendix B shows two lengthy

subtraction programs which have been successfully analysed

in this way, and as was seen in chapter 5 AURAC's simple

question and answer technique does not impose any undue

extra load on the user. Instead, the extra load falls on

the tutor, who must supply the library forms of the

algorithms and their variants ; and from an OU point of view

that is precisely what is required.

Page 6-4

An unrelated point concerns MacSOLO's partial resolution

of the inevitable conflict between its design principles of

Transparency and Simplicity. Whilst Transparency requires

that as much as possible of the machine's internal workings

(especially where error conditions arise) should be

displayed to the user, Simplicity requires that all such

displays be reduced to a minimum. Earlier versions of SOLO,

stressing Transparency, confused their novice users by

printing out large amounts of not immediately useful

information such as descriptions of non-fatal run-time

errors.

MacSOLO's solution is to give the user a measure of

(simple!) control over the degree of transparency. This is

most evident in two areas: its error messages, which are

brief to the point of terseness but which can always be

expanded upon via the one-word instruction HELP; and its

stepper. The latter, entirely under the user's control as

described in chapter 4, prints run-time messages (such as

"noted triple already exists" which would be suppressed for

the sake of Simplicity during an actual, non-stepped run.

Page 6-5

6.2 AREAS FOR FURTHER IMPROVEMENT

6.2.1 Inability To Cope With Certain Projects

There is a fourth Summer School project in which students

are asked to model the cognitive behaviour of Sherlock

Holmes as he solves a mystery. One solution is to write a

program which, for each of a list of suspects, ascertains

whether or not he/she has the necessary motive, opportunity,

weapon and so on. Unfortunately, the process of

ascertaining guilt may involve a loop containing a simple

CHECK as in the schema-matching example in chapter 4, or it

may involve indirect inferencing of arbitrary complexity.

In other words, there is no definable "standard" algorithm

(let alone a minimal one) for this project, and so AURAC is

quite unable to say whether or not any supposed Sherlock

Holmes program is satisfactory.

We count this as a failure, even though AURAC's main

analyses still work normally and are of help. It is a

failure in terms of the original hope that AURAC would be

able fully to debug any Summer School project. However, it

should be pointed out in AURAC's defence that the difficulty

lies in the imprecise nature of the problem, rather than in

any inadequacy in AURAC's strategies. In the terminology of

Rich, Schrobe and Waters (1979b) the resulting correct

program is a system rather than an algorithm. This suggests

Page 6-6

that, when dealing with novices, we have to supply them with

(at least):

a) a simple model of programming techniques (i.e. SOLO);

b) instruction concerning the writing of correct
algorithms; and

c) problems which are easily amenable to algorithmic
translation.

As mentioned in chapter 1, Kahney has produced some valuable

new data concerning the third of these points.

6.2.2 Inability To Discriminate Among Certain Cliches

As already mentioned, SOLO cliches tend not to be easily

distinguishable from one another owing to the small number

of different tokens involved in each one. Cases have been

found where two cliches differ only by one CHECK

control-statement. For example, the following is the SOLO

equivalent of a Boolean AND construct :

10 CHECK FIDO ISA DOG
A ; CONTINUE
B ; EXIT

20 CHECK FIDO HAS FLEAS
A ; CONTINUE
B ; EXIT

And the following is the SOLO equivalent of a Boolean OR

construct :

Page 6-7

10 CHECK FIDO ISA DOG
A ; EXIT
B ; CONTINUE

20 CHECK FIDO HAS FLEAS
A ; EXIT
B ; CONTINUE

If the user's code is:

10 CHECK FIDO ISA DOG
A CONTINUE
B CONTINUE

this may be intended as either an AND or an OR line :

there is no way of telling. Such cliches have to be

rejected from AURAC's library because the system cannot tell

whether the user's code as supplied is a correct coding of

one cliche, or an erroneous coding of the other. In the

(perfectly legal) circumstances of multiple AND/OR lines, or

their combinations, the system similarly cannot tell where

one cliche ends and the next begins. However, this is a

language-specific problem: one which would not necessarily

occur in a richer source language.

In this context there is also the question of just how

often in real user code one comes across cliches which are

perfect apart from the one error (in skeleton or schematic)

required if AURAC is to be able to offer a specific patch.

In some respects this is a language-specific question - for

example it has already been mentioned that the "just one

Page 6-8

error" restriction had to be imposed because of the extreme

simplicity of SOLO programming constructs (such as CHECK)

and the paucity of different symbols therein.

On the other hand, it can already be said that there may

be more than one type of cliche. INFECT and IMPLICATE, for

example, occur often enough in SOLO code to be counted as

cliches - but this is largely because the course notes with

which the students work explicitly tell them to write such

things. One would reasonably expect to find comparable

patterns of code in the work of novices formally learning

any computer language. The remainder of the cliches

currently in AURAC's library seem to occur spontaneously,

and as has been said this is often without the student being

aware that his/her piece of code is something commonly found

in the work of large numbers of SOLO users. Our suggestion

here is that the rate of occurrence of recognisable cliches

- the cliche "density" - is likely to vary from language to

language, but that the idea of isolating sections of code on

this basis and of applying further analysis to them is

sensible in any language.

Page 6-9

6.2.3 False Alarms

An allied problem, again almost certainly SOLO-specific

and due to the extreme simplicity of SOLO code, is that

cliches can be detected where no cliche was intended. For

example, line 20 of BORROW in the second of the two example

subtraction programs given in the chapter 4 is as follows :

10 CHECK *NEWB /D/ ?U
A If Present; NOTE UNITS IS *U ; CONTINUE
B If Absent : ; EXIT

and this is recognised as a faulty (one differing item)

version of the FETCH-DO cliche (see section 4.4) whose

example is this :

((check any any >c)
(note any any <c & continue)
(no-op & continue))

The assignment operator (>) and the retrieval operator (<)

in the matcher permit the corresponding items of code to be

respectively a wildcard (?) and its corresponding bound

variable (*), whilst the NO-OP symbol must of course match

the case where there is genuinely no operation specified on

subline B. Therefore the only difference is the EXIT on

that subline of the code versus the CONTINUE in the

cliche-example, and AURAC duly announces the possible cliche

error. However, the code was never intended to represent

that cliche, but merely happened quite fortuitously to take

the same form.

Page 6-10

In his own work with LISP, Shapiro (1981) recognises that

programming cliches and Waters-type PLANs are not

isomorphic: considerable work is required to derive the one

from the other. Cliches tend to be amorphous (just as the

AND and OR constructs in LISP can take any number of

arguments, so the comparable code in SOLO can be repeated

any number of times, and their parts tend to be scattered

amongst what would normally be thought of as PLAN-sized

clumps of code (a single AND may comprise arbitrary amounts

of subordinate code in the form of conditionals, loops,

subroutines, each with its own PLANs and Plan Building

Methods). AURAC's empirical, and largely lexical, approach

ignores the boundaries of PLANs altogether. Although SOLO

code can contain the equivalents of the complexities

metioned above, library cliches can be reliably detected

regardless of their overlapping with divisions between other

conceptual "areas" of the program. Our problem, unlike

Shapiro's, has not been that cliches are hard to detect but

that they can be detected too easily - cliches found where

none was intended, or confusion between similar cliches, as

above.

Page 6-11

There is also the question of the cost of cliche

recognition. As already mentioned, it is an expensive

process (as implemented in AURAC), involving detailed

pattern-matching of user code against a library of cliches.

The difficulty is compounded when one includes the

possibilities that single lines from multi-line cliches may

form near-perfect matches for single lines from other

multi-line cliches ; that other unrelated lines may be

insterspersed amongst the lines of any given cliche; and

that multi-line cliches themselves may be intermixed. There

is a rapid and explosive growth of potential matches. Thus,

unless the cliche library is carefully tailored to contain

only cliches which cannot easily be confused with one

another, the process can become too slow and too unreliable

for use.

Against these considerations has to be balanced the fact

that cliche recognition can detect fatal errors of detail -

for example, the wrong variable name as in the example in

section 4.4 - which would be missed by any of the other

systems described here. AURAC's very first "real" success -

that is, the first time it found the error in other than a

purpose-built buggy routine - was when its cliche recogniser

unerringly spotted the single wrong variable name in a fifty

line program.

Page 6-12

At one time it was fondly hoped that it might be possible

to describe all SOLO programs in terms of cliches, and that

these in turn could be described in a higher—order

terminology; for example, a line such as

CHECK /BT/ PLUS10 7NEWBT

would be seen as a "database function", since the PLUS 10

relation can be regarded as "operating upon" the /BT/ node

to generate the resulting &NEWBT binding. It was hoped that

ultimately an entire program could be described in terms of

database functions and other cliches, and that such a

description would closely parallel the symbolic evaluation

methods of Eisenstadt and Laubsch. However, the

above-mentioned combinatorial explosion put a stop to this

idea. (But, see below).

6.2.4 More Sophisticated Reporting Of Analyses

The error frames created by AURAC during analysis often

contain far more information than can conveniently be

presented to the user - especially to a novice user. The

data stored about a single error - especially where it is an

error which "chains" back to an earlier cause - can occupy

several dozen lines of printout. In the present

implementation AURAC selects from this mass of data those

items (the most salient) which can be expressed via its

canned messages-segments; and these are in turn designed to

be understood by a user who conforms to our own notion of an

Page 6-13

"average novice".

There are thus three problems concerning the output of

AURAC's results:

a) much detailed debugging information is lost; and

b) the information which is presented makes no allowances
for the state of expertise of the individual user.

c) canned messages will inevitably conflict with one
another (an example was given in chapter 4).

Below is briefly described a system which might remove

the first of these diffculties; the second could only be

overcome if AURAC maintained some kind of internal model of

the individual student's progress. As mentioned in chapter

2, the current implementation keeps only a very rudimentary

record of users' behaviour.

The problem is also domain-specific: Rich et al.

(1979b) describe how a learner first gains an understanding

of the programming language primitives at a computer science

level (in LISP, he/she learns about how CONS, CAR and CDR

manipulate pointers in memory-space to create, connect and

modify CONS-CELLS), and subsequently is able to grasp the

more abstracted idea of operating upon lists, each of which

may be composed of many cons-cells in a known pattern.

Page 6-14

But this is not the hands-on approach. Anyone who learns

LISP from Hasemer (1983b) will learn to manipulate lists

first, and will only later be told the nuts-and-bolts

details. Similarly with our students. They are not

expected ever to know how the SOLO primitives actually

achieve their effects, neither in terms of the supporting

LISP or PASCAL, nor at the memory-address level. They are

presented with the abstracted ideas straight away : that

there is a "database" where "triples" can be stored,

referenced or deleted, that "variables" become "bound" under

certain conditions, and so on. However, from the students'

point of view it is desirable that they seem to be more than

merely apprentice magicians, learning to get the arcane

details of their spells right. Hence the emphasis

throughout the SOLO environment and its associated course

notes on maintaining a consistent and logical model of the

SOLO machine. Our students learn to operate SOLO without

detailed understanding, as one might learn to operate any

complex machine.

This both simplifies the problem of presentation (there

is a finite set of terms in which explanations can be

couched) and exacerbates it: the terms themselves can only

be explained by analogy, which carries the danger of

destroying the all-important consistency of the model. The

computer as a telephone exchange, or variables as "boxes"

Page 6-15

which "contain" values, are analogies which in a different

context - or in a more critical mood on the part of the

system designer - might seem like no explanation at all.

The third problem can be obviated only temporarily: by a

series of ever more complicated and ad hoc adjustments to

the (LISP) message-generating functions. This is not only

messy and therefore unsatisfactory, but also means that

large amounts of highly language-specific information are

scattered piecemeal throughout a series of interlocking LISP

routines. This, of course, means that extending the system

- with the corresponding need for extended printed

explanations - becomes more difficult than it otherwise need

be. A future version of AURAC will certainly seek to bring

some order to this chaos, or to adopt some entirely new way

of presenting its results. For the purposes of our present

project, however, it was thought more important to

concentrate on being able to derive the debugging

information itself: presentation was a more or less

secondary issue.

Page 6-16

An even more glaring example of this kind of problem

occurred in the previous chapter, where a message from AURAC

read:

"No line activated during that run of your program
decremented the top digit of the TENS column."

If such comments are to make any sense to the user, he/she

must be aware of the "picture" of the subtraction problem to

which they refer, e.g.:

4 3 Top Tens Top Units
2 7 Bottom Tens Bottom Units
 is equivalent to ------------------------
1 6 Answer Tens Answer Units

and, of course, of the particular subtraction method

(algorithm or algorithm variant) which AURAC is expecting.

Ideally, AURAC's printouts would require a sophisticated

graphics package, which could say for example :

"Is this what you mean? -

/TT/ /TU/
/BT/ /BU/

ANST ANSU "

where /TT/ etc. are the student's own coded symbols, and

which could actually show an animated version of the

algorithmic steps taking place. We have not attempted any

such arrangement, partly because as above it would have

detracted from the main thrust of our research, but also

because - other than at Summer School itself - many of our

students have to work with printing terminals.

Page 6-17

6.2.5 Alternative Test Inputs

AURAC's analysis relies upon the correctness of its input

data: i.e. it reliés upon the user to call his/her program

with suitable arguments. In many cases its outputs make

obvious the fact of any unsuitable arguments, but of course

there are anomalous cases, for example when under the given

input conditions a FOR-nested CHECK instruction either

always succeeds or always fails. This is why certain

apparent errors are signalled by AURAC with the phrase "A

possible error on line...". AURAC currently makes no

attempt automatically to generate alternative test inputs.

Within its present context, this would not be hard to do,

but (a) in a wider context it would necessitate the

construction of a whole new module for this purpose, and (b)

the process would no longer conform to tutors' standard

strategies as described in chapter 3.

6.2.6 Data Flow Anomalies

Consider again the instruction

CHECK /BT/ PLUS 10 7NEWBT

AURAC attempts to follow the progress of a piece of original

input data /BT/ across this triple. It is clear to us as

human beings that the value of the variable *NEWBT is merely

a new form of /BT/, after it has been operated upon by the

database function PLUS 10. However, the token PLUS 10, the

name of the "database function", is arbitrarily chosen by

Page 6-18

the user. There will thus be cases where AURAC, despite its

parser, cannot be sure that a data-flow graph drawn through

a triple such as the above is correct. When that happens,

AURAC is obliged to start a new graph from the ?NEWBT token,

and to follow the progress of that in subsequent code, at

the same time terminating the graph which led from the

top-level call to the /BT/ token. It may then have to ask

the user

"Was ?NEWBT on line 20 of BORROW intended to represent..."

rather than being able as is preferable to refer all such

questions back to the original input data.

This is not a serious drawback, since in any case the

ability to trace tokens back to their sources is only a

(useful) by-product of AURAC's system of balanced

expectations and satisfactions.

6.2.7 Algorithm Variants

There is an interesting analogy between the "paraphrases"

suggested by Simmons (1973), needed for the machine to

understand verbally different versions of what is

essentially the same infomation input, and AURAC's need to

establish the precise "significance" of the various

user-selected tokens within SOLO code. AURAC has no

"paraphrase rules", and is obliged to ask the user "did this

token represent that one (or that operation)" in terms of

Page 6-19

some standardised format which the user is presumed to share

with the machine (e.g. "did /X/ represent the top column,

tens digit?). Even in the context of the simple projects

described above, AURAC's method has obvious drawbacks - not

the least of which is that a new set of canned questions has

to be provided for each new project added to the algorithm

library.

But the analogy with Simmons' work can be drawn at a

higher level also: with the problem of algorithm variants.

The latter are different ways of telling the machine to

achieve the same overall effect - i.e. different ways of

saying the same thing, or paraphrases. They also strongly

resemble Rich's (1981) "overlays". It is entirely possible

(though no serious work has been done on this) that these

ideas might contribute to a much more elegant solution to

the problem of variants than AURAC currently employs.

Alternatively, a solution might be found via further

consideration of the mathematical equivalence of programs

and algorithms at a deeper level - somewhat along the lines

of Schank's (1973) "conceptual dependencies". We take up

this point in more detail in the next section.

Page 6-20

6.3 FUTURE DEVELOPMENTS AND EXTENSIONS TO OTHER AREAS

The vast majority of existing automatic programming aids

require a knowledgeable, if not knowledge-packed, input from

their users. We contend that in the future, when large

numbers - if not the majority - of computer users will lack

such specialised knowledge, that path is not the most

practical to follow. Future users will want aids which,

although powerful and intelligent in themselves, can

describe bugs and suggest cures for them in layman's terms -

or at least in terms of the user's own field of expertise,

which is to say in terms of the problem he/she is trying to

solve, rather than in terms of the programming language

being used to do it. We believe that AURAC's empirical,

straightforward methods demonstrate that such aids are

feasible. One obvious forward direction for research,

therefore, is to investigate AURAC's potential in a richer

and more widely applicable programming language. Since

AURAC's language-specific knowledge is concentrated into a

relatively small proportion of its routines, there would

seem to be no obvious reason why its algorithms and methods

should not be directly transferable to other languages -

particularly to database-dependent language, such as PROLOG

or the variants of LOGO.

Page 6-21

Plans are in hand to transfer AURAC to a new

implementation of PROLOG. It is hoped that this will result

in an expansion of AURAC's power, especially where cliches

are concerned. The ideas of attempting to describe a

program entirely in terms of cliches will be re-examined.

The symbolic-evaluation debugging system of Eisenstadt

and Laubsch (see chapter 1) currently fails because of

combinatorial explosion of the number of possible paths

through the Plan Diagrams it creates. Somewhat ad hoc,

after-the-event rules are employed to reduce this number.

However, at the level of equating the effect of the user's

code to his/her (presumed) intentions it is far more

flexible than AURAC, not being dependent upon a library of

expected algorithms. Combining the two systems so that

AURAC's algorithm-recognition process was replaced by

Eisenstadt and Laubsch's symbolic evaluation method would

form a very powerful system indeed, capable of handling

programs well above (as well as at) the novice level. Such

a combination seems entirely possible: although AURAC does

not explicitly keep track of a current environment in Ruth's

sense, equivalent information is implicitly held in AURAC's

working memory. It should therefore be possible for AURAC

to "hand on" unexplained sections of code to the Eisenstadt

and Laubsch system for deeper analysis. The combination

promises to be able to deal with the Sherlock Holmes project

Page 6-22

(see chapter 6), which completely defeats the algorithmic

approach for the reasons given above.

Cliches and canonical algorithms, as used by AURAC, are

both methods of checking the correctness of conceptual

"chunks" of code, and there are clear similaritites between

the two. Indeed, it would be feasible to add a new cliche

to the cliche library - consisting of the same four lines

(but not, of course, precisely the same symbols) as those

comprising the subtraction model from the algorithm library

- and so to have a subtraction program recognised (and

analysed) by AURAC's cliche module. The difference between

the two methods is of course that a cliche is recognised in

isolation, independently of the significance of any

variables etc. included within it. The cliche module only

checks that suitable "words" occur in the various parts of

the cliche, i.e. that its structure is correct. The new

subtraction program might be analysed as perfect in this

respect, and yet still fail to subtract because the

"subtracting cliche" within it was, say, passed the wrong

data from some earlier part of the program. By analysing

data flows, AURAC establishes the essential links between

the input to the program, the various algorithmic steps

within it, and the final result.

Page 6-23

There is thus an analogy between AURAC and Schank's

(1977) method of analysing text via "scripts". Both attempt

to understand what is fed to them by using some pre-stored

plan as a template against which to match, and hence to

abstract the essential elements of, the input. Schank's

scripts are analogous to the algorithm (or set of algorithm

variants) selected by AURAC once it has established via the

user the name of the project being attempted. Both may also

fail when the input consists of a deliberately-chosen

counter-example. Schank's answer to the problem of

counter-examples is that these usefully point out suitable

areas for further research, but do not detract from his

basic approach. In this respect AURAC has a further

practical advantage, in that its users are normally

co-operative: their objectives are precisely what AURAC

expects them to be (e.g. to write a working subtraction

program).

Schank uses an internal representation (conceptual

dependency) which, unlike that used by AURAC, is quite

different from the surface text it represents. There is

obviously a question here as to whether what is essentially

raw SOLO code (in AURAC's libraries) is the best

representation to use. Other research does not provide any

firm answer, and we argue that because of SOLO's bare syntax

the language is at least an effective representation of its

Page 6-24

own operations, Eisenstadt and Laubsch, whose work has been

mentioned several times in this thesis, use a purely

symbolic representation of SOLO code, but have commented

(personal communication) that at times it seemed that all

they had achieved was a very sophisticated SOLO interpreter.

Rich (1981) argues that LISP is the best possible form in

which to represent LISP programs, and is also the best form

in which to represent other languages such as FORTRAN. Adam

and Laurent (1980) disagree, and their FORTRAN debugger

represents idealised algorithms directly as FORTRAN code.

Shapiro (1983) says that PROLOG code can be represented very

conveniently in PROLOG. Our contention is that there is

nothing to be gained from a re-representation of the raw

code unless the new representation (a) contains more

information than the raw code itself, or (b) is easier to

operate upon or to analyse. Since the majority of AURAC's

analyses are carried out via processes of recognition - of

pattern matching - the raw code is the obvious choice as far

as the second of these criteria is concerned. From the

point of view of the amount of stored information, AURAC is

a debugging mechanism, and hence needs to "know" very little

about sections of the raw code which are not faulty. It

creates an error frame (an internal representation of a

fault condition) for every error it finds, and these also

adequately represent any relevant information derived from

non-error code-lines. For the future, the question of

representation is interesting, but is not immediately

Page 6-25

essential.

Finally, a part of AURAC's interest lies in the fact that

it combines elements of psychology, of Artificial

Intelligence, of software engineering and of Computer Aided

Learning. AURAC would not achieve what it does without its

empirical base in psychology - that is, without the account

of human debugging behaviour described in chapter 1. The

account was originally derived via introspection and by

formal observation of SOLO experts, and was later supported

by the experiments of chapter 3. The underlying

investigation into the behaviour of expert human debuggers

has led to a mechanism which is markedly different in its

approach from that of any other currently implemented

auto-debugger. And, as detailed in chapter 2, the design

philosophy behind the whole MacSOLO/AURAC system is also

firmly rooted in empirical experience - this time of the

problems and difficulties of real novice programmers.

AURAC uses well-known AI techniques such as pattern

matching and data-driven searching. In some cases -

particularly in the two-stage matching which effects cliche

recognition - these basic ideas have been extended in

interesting ways. Its efforts to present programming

concepts and descriptions of errors in terms suitable for

non-programmers are relevant to software engineering. We

Page 6-26

remain convinced that use of some of the letter's techniques

- bit-mapped terminals, displayed menus, animated graphics -

could benefit AURAC and its users enormously. And AURAC's

whole conception and design was firmly within the context of

(intelligent) Computer Aided Learning. As hinted above,

this was very much a process of evolution, the growing

system being repeatedly tried out on real representative

users and modified if necessary in order to take account of

their specific needs and problems. It is clear that

machines intended to help novice programmers can benefit

from knowledge drawn from all four of the above areas of

research.

APPENDIX A

REFERENCES

Adam A. and Laurent J-P. (1980) "LAURA: A System to Debug
Student Programs". Artificial Intelligence No.15,
pp.75-122

duBoulay B., O'Shea T., and Monk J. "The Black Box Inside
the Class Box: Presenting Computing Concepts to
Novices" Int. Journal Man-Machine Studies, 14, pp
237-249.

duBoulay B. (1979) Unpublished Doctoral Dissertation, Dept.
of Artificial Intelligence, University of Edinburgh,
U.K.

Breuker J., (1981) Availability of Knowledge. COWO -
publientie 81-JB, Amsterdam.

Brown J.S. and Burton R.R. (1978) "Diagnostic Models for
Procedural Bugs in Basic Mathematical Skills"
Cognitive Science Vol.2 No.2 pp 155-192

Chapman D. (1981) "A Program Testing Assistant" MIT AI Memo
No. 651.

Collins A.M. and Quillian M.R. (1969) "retrieval Time from
Semantic Memory" Journal of Verbal Learning and
Verbal Behaviour Vol.8 pp 240-7

Dijkstra E.W. (1972) "Notes on Structured Programming" in
Structured Programming, by O.J. Dahl, E.W.
Dijkstra and C.A.R. Hoare, Academic Press, New
York, U.S.A.

Eisenstadt M. (1978) The Solo Primer, Units 3/4 of
Cognitive Psychology: a Third Level Course. Open
University, U.K.

Eisenstadt M. (1983) "Design Features of a Friendly

Page A-2

Software Environment for Novice Programmers". CACM
1983 (in press) .

Eisenstadt M. and Lewis M.W., (1982) The Behaviour of
Novice Programmers in ̂ Friendly Software
Environment. Tech. Report No.4., Human Cognition
Research Laboratory, The Open University, U.K.

Eisenstadt M. and Laubsch J. (1980) "Towards an Automated
Debugging Assistant for Novice Programmers" AISB-80.

Floyd R.W. (1967) "Assigning Meanings to Programs" Proc.
Symposium on Applied Mathematics, AMS Vol 19.

Cawronski A. and Eisenstadt M. (1982) "Micro-SOLO: a Tool
for Elementary AI Programming", SWURCC
Microprocessor Software Quarterly No.7, South West
Universities Regional Computer Centre, University of
Bath, U.K.

Coldstein I.P. (1975) "Summary of MYCROFT: A Sytem for
Understanding Simple Picture Programs" Artificial
Intelligence 6, pp 249-288.

Coldstein I. and Miller M. (1976) "Structured Planning and
Debugging: A Linguistic Theory of Design", MIT AI
Laboratory Memo No. 387.

Hasemer T. (1982) MacSolo, Computer Assisted Learning
Research Croup Technical Report No. 24. Open
University, U.K.

Hasemer T. (1983) "AURAC - A Debugging Tool for Novice Solo
Programmers". In: New Technologies in Distance
Education, Jones A., Scanlon E. and O'Shea T.
(eds). Harvester Press, Sussex, U.K.

Hasemer T. (1983b) _A Beginner's Cuide to Lisp,
Addison-Wesley, London, (in press).

Hoare C.A.R. (1969) "An Axiomatic Basis for Computer
Programming" CACM Vol 12 No. 10.

Kahney H. (1983) ^ In-Depth Study of the Cognitive
Behaviour of Novice Programmers, Human Cognition
research Laboratory Tech. Report No.5, Open
University, Milton Keynes, U.K.

Laubsch J. and Eisenstadt M. (1981) Domain Specific
Debugging Aids for Novice Programmers, Computer
Assisted Learning Croup Tech Report No. 17, open
University.

Page A-3

Lewis M (1980) Improving Solo's User Interface: an
Empirical Study of User Behaviour and Propnnals for
Cost-effective Enhancements to Solo, Computer
Asssisted Learning Research Croup Technical Report
No. 7. Open University, U.K.

Lukey F.J., (1980) "Understanding and Debugging Programs",
Int. Journal of Man-Machine Studies, Vol.12.,
pp.189-202.

Maguire M. (1982) "Computer Recognition of Textual Keyboard
Inputs from Naive Users", Behaviour and Information
Technology, Vol.l, No.1, pp 93-111.

Miller M. and Coldstein I. (1977) "Structured Planning and
Debugging", Proc. Fifth Int. Joint Conf. on
Arificial Intelligence.

Mills H.D. (1971) "Top-Down Programming in Large Systems"
in Debugging Techniques in Large Systems, R. Rustin
(ed), Prentice-Hall, New Jersey, U.S.A. pp 41-45.

Muth F.E. and Tharp A.L. (1977) "Correcting Human Error in
Alphanumeric Terminal Input", Information Processing
and Management, 13, p.329.

Osterwell L.J. and Fosdick L.D. (1976) "Some Experiences
with DAVE - A Fortran Program Analyser" AFIPS Conf.
Proc.

Papert (1971) "Teaching Children to be Mathematicians versus
Teaching About Mathematics", MIT AI Laboratory Memo
249.

Rich, C. (1981) Inspection methods in programming.
Technical Report AI-TR-604. Cambridge, MA: MIT
Artificial Intelligence Laboratory.

Rich C., Schrobe H.E., and Waters R.C., (1979) "Overview of
the Programmer's Apprentice", Proc. Sixth Int.
Joint Conf. on Artificial Intelligence, pp 827-8.

Rich C., Schrobe H.E., and Waters R.C. (1979b) "Computer
Aided Evolutionary Design for Software Engineering",
MIT AI Memo No. 506.

Ruth G.R. (1976) "Intelligent Program Analysis" Artificial
Intelligence 7, pp 65-85.

Schank R.C. and Abelson R.P. (1977) Scripts, Plans, Goals
and Understanding&, Lawrence Erlbaum Associates, New
Jersey, U.S.A.

Page A-4

Schank R.C. (1973) "Identification of Conceptualizations
Underlying Natural Language", in Computer Models of
Thought and Language. Schank and Colby (eds), W.H.
Freeman and Co., San Francisco, U.S.A.

Shapiro C. (1983) Algorithmic Program Debugging. MIT
Press.

Shapiro D. (1981) "Sniffer: a System that Understands
Bugs", MIT AI Memo No. 638.

Simmons R.F. (1973) "Semantic Networks: Their Computation
and Use for Understanding English Sentences", in
Computer Models of Thought and Language. Schank and
Colby (eds), W.H. Freeman and Co., San Francisco,
U.S.A.

Sleeman D.H. (1977) "A System Which Allows Students to
Explore Algorithms", Proc. 5th. Int. Joint Conf.
on Artificial Intelligence, pp780-786.

Waters R.C (1976) "A System for Analysing Mathematical
FORTRAN Programs" MIT AI Memo No.368.

Waters R.C. (1979) "A Method for Analysing Loop Programs"
IEEE Transactions on Software Engineering VOL SE-5
No. 3, pp 237-247.

Waters R.C. (1979b) "A Method for Automatically Analysing
Programs" Proc. Sixth Int. Joint Conf. on
Artificial Intelligence, pp 935-941.

Waters R.C. (1981) "The Programmer's Apprentice: Knowledge
Based Program Editing" IEEE Transactions on Software
Engineering, Vol.SE-8 No.l, pp.1-12.

Wertz H. (1979) "Automatic Program Debugging", Proc. Sixth
Int. Joint Conf. on Artificial Intelligence, pp
951-3.

Wirth N. (1974) "Program Development by Stepwise
Refinement" CACM 14 pp 221-227.

Young R.M. and O'Shea T. (1981) "Errors in Children's
Subtraction" Cognitive Science, Vol.5, No.2.

APPENDIX B

TWO SUBTRACTION PROGRAMS

The first of the programs shown below is the

demonstration program mentioned in chapter 4. It comprises

sixteen separate procedures occupying over eighty lines of

code as written here; NUMBERP, ASSERT, WORKON, ASSIGN and

DEVALUATE will be called several times each, depending upon

whether or not borrowing is required. WORKON is called to

do the subtraction of each column, and so its line 70

doubles as both line 1 and line 4 (arrowed) of the

algorithm; during analysis, this line is encountered, and

the user is queried about it, twice.

TO TOPNUM /X/ /Y/

5 CHECK NUMBERP HAS FAILED
A If Present: FORGET NUMBERP HAS FAILED ; CONTINUE
B If Absent : CONTINUE
10 NUMBERP /X/ /Y/
20 CHECK NUMBERP HAS FAILD
A If Present: RETRY TOPNUM ; EXIT
B If Absent : CONTINUE

30 ASSERT TT IS /X/
40 ASSERT TO IS /Y/

TO BOTTOMNUM /X/ /Y/

5 CHECK NUMBERP HAS FAILED
A If Present: FORGET NUMBERP HAS FAILED ; CONTINUE

Page B-2

B If Absent : CONTINUE
10 NUMBERP /X/ /Y/
20 CHECK NUMBERP HAS FAILD
A If Present: RETRY TOPNUM
B If Absent : CONTINUE

40 ASSERT BO IS /Y/

EXIT

TO ASSERT /X/ /Y/ /Z/

10 CHECK /X/ /Y/ ?
A If Present: FORGET /X/ /Y/ * ; CONTINUE
B If Absent : CONTINUE

20 NOTE /X/ /Y/ /Z/

TO SUBTRACT

10 CHECK NUMBERP HAS FAILED
A If Present: FORGET NUMBERP HAS FAILED ;
B If Absent : CONTINUE

15 CHECK SAYNUMBERS HAS FAILED
A If Present: FORGET SAYNUMBERS HAS FAILED
B If Absent : CONTINUE

20 SAYNUMBERS
30 CHECK SAYNUMBERS HAS FAILED
A If Present : EXIT
B If Absent : CONTINUE

60 WORKON ONES NOW
70 CHECK AO IS ?F

WORKON TENS NOW ; CONTINUE
FOULPLAY 7OB SUBTRACT ; EXIT

CONTINUE

CONTINUE

A If Present
B If Absent

80 CHECK AT IS ?E
A If Present: SUCCESS *E *F
B If Absent

EXIT
FOULPLAY 8OB SUBTRACT EXIT

TO SAYNUMBERS

10 CHECK TT lA ?A
A If Present: CONTINUE
B If Absent

20 CHECK TO IS
A If Present
B If Absent

30 CHECK BT IS
A If Present
B If Absent

40 CHECK BO IS
A If Present
B If Absent

; PROTEST lOB SAYNUMBERS ; EXIT
?B
: CONTINUE
I PROTEST 20B SAYNUMBERS ; EXIT
?C
I CONTINUE
: PROTEST 30B SAYNUMBERS ; EXIT
?D
: CONTINUE
: PROTEST 40B SAYNUMBERS : EXITSAYNUMBERS

50 PRINT "OK, YOU'VE ASKED ME TO SUBTRACT" *C *D "FROM" *A *B
60 NUMBERP *A *B

Page B-3

70 NUMBEEP *C *D
80 CHECK NUMBERP HAS FAILED
A If Present: ASSERT SAYNUMBERS HAD FAILED ; EXIT
B If Absent : CONTINUE

TO NUMBERP /X/ /Y/

10 CHECK /X/ PLUS 10 ?
A If Present : CONTINUE
B If Absent : ASSERT NUMBERP HAS FAILED ; CONTINUE

20 CHECK /Y/ PLUS10 ?
A If Present: CONTINUE
B If Absent : ASSERT NUMBERP HAS FAILED ; CONTINUE

30 CHECK NUMBERP HAS FAILED
A If Present: CONTINUE
B If Absent : EXIT

40 PRINT "UH OH! YOU MUST RESTRICT YOURSELF"
50 PRINT "TO DIGITS ONLY (0,1,2,3,4,5,6,7,8,9)"
60 PRINT "EITHER YOU MADE A TYPING ERROR"
70 PRINT "OR ELSE YOU'RE TRYING TO TRICK ME."

TO WORKON /COL/ /TIME/

10 PRINT "I'M" /TIME/ "WORKING ON THE" /COL/ "COLUMN..."
20 CHECK /COL/ TOP ?T
A If Present: CONTINUE
B If Absent : ERROR 2OB WORKON ; EXIT

30 CHECK /COL/ BOTTOM ?B
A If Present: CONTINUE
B If Absent : ERROR 30B WORKON

40 CHECK /COL/ ANS ?A
A If Present : CONTINUE
B If Absent : ERROR 4OB WORKON ; EXIT

50 CHECK *T IS ?X
A If Present: CONTINUE
B If Absent : ERROR 50B WORKON ; EXIT

60 CHECK *B IS ?Y
A If Present: PRINT "NOW, DO I KNOW WHAT" *X "MINUS" *Y

"IS?" ; CONTINUE
B If Absent : ERROR 60B WORKON ; EXIT

70 CHECK *X *Y ?R <— 1,4
A If Present: ASSIGN *R *A ; EXIT
B If Absent : PRINT "NO, I'LL HAVE TO BORROW 1." ; CONTINUE

80 CHECK /COL/ NEXTCOL ?N
A If Present: BORROWFROM *T *N ; CONTINUE
B If Absent : NEGNUMBER ; EXIT

90 CHECK BORROWFROM HAS FAILED
A If Present: FOULPLAY 90A WORKON ; EXIT
B If Absent : WORKON /COL/ /STILL/ ; EXIT

Page B-4

TO BORROWFROM /PLACE/ /COL/

5 PRINT "HMMM...LOOKING AT THE" /COL/ "COLUMN..."
10 CHECK /COL/ TOP ?T
A If Present: CONTINUE
B If Absent : ERROR 10 BORROWFROM ; EXIT

20 CHECK *T IS ?L
A If Present: CONTINUE
B If Absent : ERROR 20 BORROWFROM ; EXIT

30 CHECK /PLACE/ IS ?R
A If Present : CONTINUE
B If Absent : ERROR 3OB BORROWFROM ; EXIT

40 CHECK *L 1 ?X <— 3
A If Present: PRINT "BORROWING 1 FROM" *L "LEAVES" *X

"THERE, AND" ; CONTINUE
B If Present: If Absent : ERROR 4OB BORROWFROM ; EXIT

50 CHECK *R PLUS 10 ?P <— 4
A If Present: CONTINUE
B If Absent : ERROR 50B BORROWFROM ; EXIT

60 ASSERT /PLACE/ IS *P
70 ASSERT *T IS *X

TO ASSIGN /VALUE/ /VARIABLE/

10 PRINT "YES, IT'S" /VALUE/
20 ASSERT /VARIABLE/ IS /VALUE/

TO SUCCESS /FIRSTNUM/ /SECONDNUM/

10 PRINT "FINISHED. THE ANSWER IS:" /FIRSTNUM/ /SECONDNUM/
20 DEVALUATE TT TO BT
30 DEVALUATE BO AO AT

TO DEVALUTE /X/ /Y/ /Z/

10 FORGET /X/ IS ?
20 FORGET /Y/ IS ?
30 FORGET /Z/ IS ?

TO RETRY /PROCNAME/

10 PRINT "TRY" /PROCNAME/ 'AGAIN, BUT THIS TIME"
20 PRINT "USE TWO DIGITS, E.G." /PROCNAME/ "2 7"
30 FORGET NUMBERP HAS FAILED

TO FOULPLAY /STEPNUM/ /PROC/

10 PRINT "Hey, wait a minute...I think you've"

Page B-5

20 PRINT "given me a problem which has a funny"
30 PRINT "solution (e.g. a negative number), which"
40 PRINT "I can't handle. Remember, I'm very dimwitted,"
50 PRINT "so start again with TOPNUM # # and BOTTOMNUM # #."
60 PRINT "(trapped at step" /STEPNUM/ "of" /PROC/ ")"

TO PROTEST /STEPNUM/ /PROC/

10 PRINT "I'm afraid you haven't given me TOPNUM and"
20 PRINT "BOTTOMNUM properly. Be sure to"
30 PRINT "leave a space between each of the numbers, e.g.:"
40 PRINT " TOPNUM 4 7"
50 PRINT " BOTTOMNUM 3 9"
60 PRINT "(trapped at step" /STEPNUM/ "of" /PROC/ ")"
70 ASSERT /PROC/ HAS FAILED

TO ERROR /NUM/ /NAME/

10 PRINT " ==> UH OH, GOOFED AT STEP" /NUM/ "OF" /NAME/

TO NEGNUMBER

10 PRINT "BUT THERE IS NO NEXT COLUMN!! WELL,"
20 PRINT "YOU MUST HAVE GIVEN ME A PROBLEM WHICH"
30 PRINT "HAS A NEGATIVE NUMBER AS THE SOLUTION."
40 PRINT "I CAN'T COPE WITH THOSE, BUT PERHAPS YOU"
50 PRINT "CAN DEFINE A BETTER 'SUBTRACT' PROCEDURE WHICH CAN."

The second program was written by a Summer School

student. Rather than using TOPNUM and BOTTOMNUM to enter

the problem itself into the database, the programmer has

used the SOLO procedure INPUT to allow these values to be

inserted directly into a running program, where they are

held as the bound values of variables. The algorithm lines

are again arrowed, on the assumption that borrowing will

occur.

TO SUBTRACT

Page B-6

10 CHECK FLAG IS UP
A If Present: FORGET FLAG IS UP ; CONTINUE
B If Absent : CONTINUE

20 PRINT "CAN YOU GIVE ME THE FIRST DIGIT OF THE TOP NUMBER"
30 INPUT *I
40 PRINT *I
50 PRINT "WHAT IS THE SECOND DIGIT OF THE TOP NUMBER"
60 INPUT *J
70 PRINT *J
80 PRINT "NOW I NEED THE FIRST DIGIT OF THE BOTTOM NUMBER"
90 INPUT *K
100 PRINT *K
110 PRINT "WHAT IS THE SECOND DIGIT OF THE BOTTOM NUMBER"
120 INPUT *L
130 PRINT *L
140 ZEROBUG *I *J *K *L
150 CHECK FLAG IS UP
A If Present : EXIT
B If Absent : CONTINUE

160 FOOLCHECK *I *K
170 CHECK FLAG IS UP
A If Present : EXIT
B If Absent : CONTINUE

180 BORROW *I *J *K *L
190 CHECK FLAG IS UP
A If Present : EXIT
B If Absent : CONTINUE

200 LET *Y = (*J'S *L)
210 LET *X = (*I'S *K)
220 PRINT *X *Y

TO ZEROBUG /X/ /Y/ /Z/ /A/

10 TEST /Y/ = /Z/
A If Yes: CONTINUE
B If No : EXIT

20 CHECK /A/ /Y/ ?
A If Present: ZEROBUGl /Y/ /A/ ; CONTINUE
B If Absent : EXIT

30 NOTE FLAG IS UP

TO ZEROBUGl /Y/ /A/

10 TEST /Y/ = /A/
A If Yes: PRINT "THE ANSWER IS 0!! !" ; EXIT
B If No : PRINT "THIS NUMBER IS NEGATIVE." ; EXIT

TO FOOLCHECK /Y/ /A/

10 CHECK /A/ /Y/ ?

Page B-7

A If Present: CONTINUE
B If Absent : EXIT

20 NOTE FLAG IS UP
30 PRINT "I REALLY WOULD LIKE TO HELP ETC."

TO BORROW /X/ /Y/ /Z/ /A/

10 PRINT "TT = " /X/ " TO = "/Y/ " BT = " /Z/ " BO = " /A/
20 CHECK /Y/ /A/ ?
A If Present: PRINT "THIS IS AN EASY ONE!!" ; EXIT
B If Absent : PRINT "HMM!! I'VE GOT TO BORROW HERE!" ; CONTINUE

30 NOTE FLAG IS UP
40 LET *L = (/Y/'S PLUS 10) <— 2
50 LET *B = (/X/'S 1) <--3
60 LET *X = (*L'S /A/) <— 1
70 LET *Y = (*B'S /Z/) <--4
80 PRINT *Y *X

APPENDIX C

EXERPT FROM EXPERIMENTAL SUBJECT NOTES

Introduction.

This booklet assumes that you have worked through the
D303 Course notes (Block 1, Units 3 and 4) concerning SOLO,
and have a fair understanding of the following:

1) The computer plus a properly-designed program can
together form a dynamic model of some process or other
- in our case a model of some human cognitive ability.
The model is of course based upon a theory of how the
process itself works, and its usefulness lies in the
fact that the success or otherwise of running the
model provides evidence for or against the validity of
the theory.

2) The computer by itself knows NOTHING other than how to
"do" SOLO. All the extra knowledge it needs in order
to become a model of your theory must be supplied by
you. This knowledge can be provided either as static
data in a "database", or as procedural instructions in
a suite of "procedures" referred to as a "program", or
- more usually - as both. In the latter case the
program operates (in accordance with your theory) upon
the static data so as to produce (predictable)
effects.

3) SOLO is a programming language especially designed to
help you rapidly to acquire experience of points (1)
and (2) in action. It consists of a set of inbuilt
procedures which allow you to create and to change a
database, and to create and to change procedures of
your own. You should by now have a good idea of how
to do these things, in particular of how to use the
conditonal procedure CHECK, and of how "variables" are
given "values" when CHECK is used with a "wildcard".

Page C-2

**
* *
* If ANY of the above isn't clear to you, please ASK - *
* otherwise you could waste a great deal of your time. *
* *

So, you now feel yourself to be reasonably competent to
write working SOLO procedures, and you will understand the
cognitive ability which you have chosen to model: perhaps
memory-retrieval according to the theory of Collins and
Quillian, or schema matching, or two-column subtraction, or
the detective skills of Sherlock Holmes. At this point many
students are totally bemused as to how to join these two
areas of understanding together: how DOES one select from
all the possible permutations of NOTE, CHECK, FOR EACH etc.
in order to make SOLO behave as a model of anything? The
purpose of this booklet is to help you over that hurdle. By
the end of it, you'll have the kernel procedures for your
project written and working, and can then go on to write for
yourself the more interesting additions and variations for
which you'll get higher marks.
Algorithms - a How To section.

The word "algorithm" is a piece of programming jargon,
but for once it is a useful piece, rather than (as so often)
merely a new word to denote something for which a perfectly
adequate word exists already. An algorithm is a DESCRIPTION
of what a program is to do in order to achieve its (your)
goal, and is very much like a recipe, or a section from a
car-maintenance manual. That is, it is a set of
instructions written in more or less everyday English. The
difference is that the individual instructions in an
algorithm are instructions which the COMPUTER, rather than a
human being, is capable of carrying out; and since the
computer is so remorselessly logical the instructions have
to follow one another in a a logical and necessary sequence
- necessary in the sense that, if carried out in the order
given, they INEVITABLY achieve whatever is the goal of the
corresponding program. A good algorithm will represent a
sequence of actions by the computer which achieve the goal
neatly and cleanly, with no waste of computing time.

Page C-3

So, in order to write the algorithm which the computer
can follow to achieve twô-côlumn subtraction, we first need
to decide what are the essential steps in the subtraction
process. A handy way of doing this is to introspect: to
decide how WE do it. Once we've managed to write those
steps down in English, we can go through them pruning out
any strictly unnecessary bits, and making sure that they are
in the "inevitable" order mentioned above. Finally, we have
to make sure that each remaining instruction is one which
SOLO is capable of. At that point we'll have our algorithm
written, and writing the corresponding SOLO code should be a
doddle.

* *
* TRY TO WRITE DOWN THE STEPS REQUIRED FOR *
* TWO-COLUMN SUBTRACTION BEFORE READING ON *
& *

There are several ways of handling the "borrowing and
paying back" when the bottom units digit of the subtraction
sum is larger than the top units digit. For example, if the
sum is like this :

4 3 -
2 7

Therefore, the following description of how it is done may
not be exactly the same as the way you were taught at
school. Please look at it carefully, and make sure you're
happy that it achieves the same effect as the description
you have just written down:

1) Try to take the bottom units digit from the top units
digit without borrowing: If that is possible, go to
step (2); If not, go to step (3).

2) Subtract the digits in the units column. Go to (4).

3) Borrow 10 from the top tens digit and add it to the top
units digit. Go to (2) with this new top units value.

4) If no borrowing was necessary, go to (5). If borrowing
was necessary, go to (6).

5) Subtract the digits in the tens column. Go to (7).

6) Pay back the borrowed 10 by subtracting 1 from the top
tens digit. Go to (5) with this new top tens value.

Page C-4

7) Write down the result of steps (5) and (2) in that
order.

'1 hope you'll agree that if you follow those seven steps
you must inevitably get the right answer to any two-column
subtraction sum, provided that no negative numbers are
involved (handling negative numbers is one of the
refinements you can try to add for yourself later). The
arrows at the side, however, show at a glance how tortuous
the procedure is. Another clue which tells us that as an
algorithm this description is a mess is the fact that steps
(1) and (4) actually achieve nothing at all - they just
tells us which step to move on to next. We can simplify the
description (and shorten it) quite a bit just by rearranging
some of its lines: specifically by doing the "paying back"
immediately after the "borrowing":

1) Try to subtract the digits in the units column without
borrowing: If SUCCESSFUL, go to (4); If
UNSUCCESSFUL, go to (2).

2) Borrow by adding 10 to the top units digit. Go to (3),
taking this new value with you.

3) Pay back by subtracting 1 from the top tens digit. Go
to (1) with this new value and the new value from (3).

4) Subtract the digits in the tens column. Go to (5).

5) Write down the results of steps (4) and (1) in that
order.

Notice that step (1) now does the test ("can I subtract
the units column as it stands?") AND actually does the
subtraction of the units column, either immediately or after
the borrowing process embodied in steps (2) and (3). If
step (3) is executed, step (1) will be RE-executed, and step
(4) will be executed for the first time, using the new
numbers at the top of each column. That is to say, our
emergent algorithm does this :

4 3 - 3 13 -
2 7 ==> 2 7

To put it another way, it tries to subtract the units digits
as they stand, and if that is impossible it changes the
digits at the top of both columns and tries again. The
second time around, it must (inevitably, because of the
borrowing rules) succeed and so can move on to subtract the
tens digits.

Page C-5

Right. That's about as good an algorithm as we can get
without considering the other essential criterion: the one
which says that each and every step comprising the algorithm
must represent an action which SOLO is capable of carrying
out. Only when that criterion is satisfied will we be able
to say that our algorithm is written, and we can go on to
write the code. And here we have a problem straight away.
If you type into SOLO something like:

3 MINUS 2

SOLO will reply, in its little electronic way, with the
equivalent of "Eh? I don't understand you." because, as I
hope you know, the first word in any legal SOLO sentence
MUST be the name of a procedure, and SOLO has no inbuilt
procedure called "3". Similarly if you type

SUBTRACT 3 2

you'll get a similar error message from SOLO. In fact, if
you type HELP at this stage to see why you got an error
message, SOLO will probably suggest that you ought to write
the missing procedure "SUBTRACT", which is exactly where we
came in. As you probably realised at the start, SOLO knows
nothing about arithmetic at all.

So the problem becomes one of how we are to give SOLO a
knowledge of the arithmetical difference between 3 and 2 -
and, of course, of the arithmetical differences between
quite a lot of other pairs of digits as well. Remember what
I said in paragraph (2) of the Introduction: SOLO can be
given knowledge in either of two forms; as static data or
as procedural instructions. What kind of knowledge are we
trying to give it now? Is it the knowledge of HOW TO
subtract 2 from 3, or knowledge of the FACT that the
difference between 3 and 2 is 1?

There is no hard and fast rule here. You, as the
programmer, are perfectly entitled to make whatever
arbitrary decisions you like as to what knowledge should be
represented procedurally and what knowledge should be
represented as static data. And the way to make such
decisions is to look at the problem (the model of
subtraction, in this case) to see what knowledge is needed,
and then to look at the tools you have available in whatever
programming language you're using (SOLO, of course) to see
what methods of representation are most convenient.
"Convenient" here can mean that the representations make
intuitive sense and so are easy for human beings to
understand, or it can simply mean that they lead to the
least possible effort for you - programming is probably the

Page C-6

only conscious activity in which laziness can be thought of
as creditable.

Now, remember what we're trying to do. We want to write
a program which will generate the correct answer to any
two-column subtraction problem. It would be perfectly
feasible (though I wouldn't advise it) to write a separate
procedure for every one of the possible permutations of four
digits, and then to run them all on any given problem until
one or other of them produced the answer. This would be the
way to go about things if you had decided that ALL of the
necessary subtraction knowledge should be represented
procedurally. It would need something approaching 10,000
procedures, and no programmer in his or her right mind would
take on such a huge project (just think how long it would
take to find all the typing mistakes). Conversely, it would
be equally feasible and equally boring to represent every
possible subtraction problem, together with its answer, as a
database triple, like this:

NOTE 43— 27— >16

and then to have a single CHECK line:

CHECK /X/ /Y/ ?ANS

which would dig any required answer out of your gigantic
database.

No, both of the above approaches are ludicrously
cumbersome, besides being very boring for you and very
boring for anyone who reads your work (including, of course,
your examiners!). In other words, what we need to do is
represent SOME of the knowledge about subtraction
procedurally, and SOME of it as data; so as to minimise
effort.

Now let's look at SOLO to see what tools we have
available. As I've already mentioned, SOLO has no inbuilt
procedures to handle arithmetic, so we're going to have to
write whatever PROCEDURES we need. On the other hand, it
does have inbuilt facilities (NOTE and FORGET) which give us
control over what data is to be found in the database, and
it has CHECK which enables us to inspect individual database
triples. And here SOLO's total ignorance about numbers can
be an advantage. You know and I know that the symbol "5"
represents a very different KIND of thing from, say, the
symbol "FIDO" (one is a number and one is a word), but SOLO
knows nothing of the kind, and will be quite happy to accept
numbers in its triples as easily as it does words. Remember

Page C-7

also the significance of the arrows on data printouts from
SOLO :

FIDO--BROTHER— >ROVER

implies a ONE-WAY relationship. That is, although SOLO
knows from that triple that Fido's brother is called Rover,
it cannot make the reverse inference and so discover that
Rover has a brother called Fido.

Therefore, we can easily put into the database triple
which will UNIQUELY express basic data about subtraction.
For example, the information that 8 minus 5 is 3 can be
written simply as

8— 5— >3

without any danger of SOLO getting confused into thinking
that 5 minus 3 is 8.

Now let's try the above-mentioned introspection - apart
from any other considerations, we have a prime motive for
doing so in the fact that we're trying to model a HUMAN
cognitive ability, so what could be more sensible than using
our own abilities as the basis of the model?

Clearly, we neither work out every possible subtraction
problem from first principles, nor do we habitually remember
the answers to all 10,000 of them. Perhaps you'll agree,
however, that most people don't need to WORK OUT things like
the difference between 8 and 5 - they KNOW it, straight
away, because they learned their subtraction tables at
school. And, given that (static) knowledge of all possible
single-column subtraction problems (only 99 of those), we
are able to extrapolate via something very like the above
algorithm to achieve two, three, four or N column
subtraction.

So what I suggest is that we give SOLO very much the same
kind of division between static and procedural knowledge.
We'll have a database whose triples represent any
single-column subtraction problem. Triples like this one;
8— 5— >3

There will be similar triples to represent 8 minus any other
digit which is equal to or less than 8 itself; and similar
sets of triples again to represent subtraction from any of
the other digits between 0 and 9.

Page C-8

But unfortunately that's not all we need. Remember that,
when the sum requires borrowing, our algorithm generates a
new sum something like

3 13 -
2 7

so we're going in fact to need sets of triples which
represent subtraction of any single-digit number from any
two digit number up as far as 18 (it is only 18, and not 19,
if you think about it). For the borrowing itself, we're
going to need triples which tell us what the result is of
adding 10 to any single-digit number between 0 and 8. But -
our first piece of luck - we'll be able to effect the paying
back by using triples such as

8— 1— >7

which already exist.

You may be thinking that even so that sounds like an
awful lot of typing, just to create the database. And
indeed it is. But don't worry: that's already been done
for you. (And is the reason why I was so determined that
you should accept one particular algorithm rather than any
other). Type, for example,

DESCRIBE 5

and SOLO will reply with a picture of the triples associated
with the node "5" in the usual format :

5— 5— >0

— — 4— > 1

— 3— >2

— 2— >3

—— 1— >4

— 0— >

— plus 10— >15

Page C-9

Get SOLO to DESCRIBE a few other numbers, just to
convince yourself that your database is as I said it should
be. From this I hope you can see that SOLO has been given
the same STATIC data as you and I would use in solving a
two-column subtraction problem. The rest of the required
knowledge will be given to SOLO in procedural form. Look
again at the final version of our algorithm, and remember
that it was also written on the basis of how WE do
subtraction. You'll see that the algorithm could not
possibly work unless that same static data were around for
it to work with. Step (1) would always fail, so that the
algorithm would try to borrow when it shouldn't; step (2)
wouldn't be able to add 10 to anything because it wouldn't
know any of the results; and so on. In other words, the
algorithm is a description of the PROCEDURAL knowledge
required to solve our subtraction problems, and the database
holds the STATIC knowledge on which the procedures will
operate.

The final stage in the construction of a good algorithm
is making sure that each step in it is an instruction which
can be carried out by the programming language you're using.

With experience, one can see that at a glance - in fact
an experienced programmer has that consideration at the back
of her/his mind throughout the writing of any algorithm, and
it was certainly at the back of mine as I wrote the
algorithm above. I hope you'll be willing to take it on
trust that steps (1) to (5) in our algorithm CAN be
translated directly into working SOLO code. Sections 1 to 4
which follow will show you how this is done. When you reach
the end of the Sections, you'll have a working SUBTRACT
program, which you'll be able to use by typing for example

SUBTRACT 2 7 from 4 3

in the certainty that SOLO will dutifully reply

16

Stage 1.

Now then. Given the database you've just been looking
at, your objective in this section is to write a procedure
which will correctly subtract ANY two single-digit numbers,
provided that the answer is not negative. In your final
program, the code which you will have written here will be
the part which subtracts the digits in the units column -
i.e. it will be the translation into SOLO code of the major

Page C-10

part of step (1) of the algorithm.

Remember the following: SOLO's database now contains a
large number of triples such as

8— 5— >3

and SOLO itself has a CHECK procedure with which you could
do something like

CHECK 8 5 ?ANSU

(In the particular version of SOLO you're using now, you're
allowed to put any letters you like after the question-mark
in order to create a variable-name. "ANSU" has been chosen
to be mnemonic: to remind you that &ANSU will hold the
answer to the subtraction of the units column).
a**
* *
* CAN YOU WRITE A PROCEDURE CALLED "SUBUNITS" SUCH THAT *
* YOU CAN TYPE *
* *
* SUBUNITS 8 5 *
•k *
* (OR ANY OTHER TWO SINGLE-DIGIT NUMBERS WHERE *
* THE FIRST IS LARGER THAN THE SECOND) AND *
* SUCH THAT "SUBUNITS" WILL PRINT THE RESULT OF *
* SUBTRACTING THOSE TWO NUMBERS? *
* *

If you can, turn to page . If you can't, read on.

Do you remember how to write procedures in SOLO? You
type something like

TO SUBUNITS /TU/ /BU/

which puts SOLO into a special mode (called EDIT mode).
Anything you type between now and the moment when you type
DONE becomes a part of the procedure called "SUBUNITS". You
can tell that SOLO is in EDIT mode because you get a
hash-sign (#) amongst other things in place of the usual
"SOLO:" prompt.

Page C-11

The two parameters /TU/ and /BU/ in the TO-line above are
like variables in the sense that they "hold" values. When
you have written SUBUNITS and come to try it out, you'll
type something like

SUBUNITS 8 5

and from then on any occurrence WITHIN the procedure
SUBUNITS of /TU/ will be understood by SOLO to mean "8", and
any occurrence of /BU/ will be under- stood to mean "5".
Similarly, if you run SUBUNITS by typing

SUBUNITS 9 2

then WITHIN the procedure SOLO will understand /TU/ to mean
"9" and /BU/ to mean "2".
a**
* *
* CAN YOU miTE "SUBUNITS" NOW? *
* *
a**

If you can, turn to page . If not, read on.

OK. You know about the CHECK procedure which can be used
like this

CHECK 8 5 ?ANSU

to retrieve from the database the third member of whatever
triple matches the pattern:

8— 5— >....

Remember also that CHECK creates a variable whose name is
the same as that of the wildcard (?ANSU) but which begins
with a star (*ANSU) rather than a question-mark. This
variable holds whatever was retrieved from the database by
the CHECK itself. So you could put into SUBUNITS something
like

10 CHECK 8 5 ?ANSU
A If Present: PRINT "ANSU IS" *ANSU; CONTINUE
B If Absent : EXIT

However, WITHIN A PROCEDURE you aren't obliged to write the
specific NUMBERS after the word "CHECK". Instead, you have
the facility of using the PARAMETERS /TU/ and /BU/, which as

Page C-12

mentioned above will later take on any value you care to
give them when you run the procedure.
**
* i *
* WRITE "SUBUNITS" *
* *
**

Debugging - Stage 1.

The word "debugging" is another bit of programming slang.

Errors and mistakes in written programs are known as
"bugs", and the process of finding and rectifying them is
known as "debugging".

I'm assuming that at this stage you have what you believe
to be a working procedure to subtract any two single-digit
numbers. If not, please ASK.

You may have heard or read that SOLO is more than just a
programming LANGUAGE, it is a programming ENVIRONMENT.
You're about to find out what that means. You've already
met some of the many error-messages that SOLO can generate,
and I hope that from time to time you've used the HELP
system. Both of these are parts of the environment. Now
it's time to introduce you to another useful facility: the
STEPPER. The stepper allows you to watch, line by line, as
your program is executed by SOLO. This is true whether your
"program" is a simple one- or two-line procedure, as yours
should be at the moment, or a huge suite of procedures and
subprocedures. The way to run the stepper is to type, for
example :

STEP SUBUNITS 8 5

that is, you type "STEP" and then, on the same line,
whatever you would type to run your procedure in the usual
way. SOLO will reply:

Enter SUBUNITS 8 5

which means that the stepper has begun execution of SUBUNITS
with the parameters you specified. From now on, you can
move from one line of SUBUNITS to the next by pressing the
RETURN key. A correct SUBUNITS will give results similar to

Page C-13

this :

10 CHECK 8 5 ?ANSU
A If Present : CONTINUE
B If Absent : EXIT

Present ... *ANSU = 3

20 PRINT "ANSU IS" *ANSU

ANSU IS 3

Exit SUBUNITS

SOLO;

<RETURN>

<RETURN>

<RETURN>

You may have chosen to put the PRINT statement of Line 20
on line lOA rather than on aline of its own, in place of the
CONTINUE above. That's perfectly OK, of course (in fact, is
a bit neater), in which case the stepper's printout will
look like this :

<RETURN>

10 CHECK 8 5 ?ANSU
A If Present; PRINT "ANSU IS" *ANSU; EXIT
B If Absent : EXIT

Present ... *ANSU = 3

ANSU IS 3 <RETURN>

Exit SUBUNITS

SOLO:

If you find any bugs while using the stepper - in
particular you should watch out for control-statements (EXIT
or CONTINUE) which send SOLO in the wrong direction after a
CHECK line - use the SOLO editor to put them right. To do
that, type

EDIT SUBUNITS

and SOLO will reply

EDIT = SUBUNITS (to show you that you're editing the right
procedure)

Page C-14

and

edit line...#

Whenever, during editing, you see that last prompt, you can
if you like type

SHOW

to have the CURRENT version of your procedure printed out
for you. The editor will also prompt you (rather
determinedly) for any sublines following a CHECK, should you
happen to delete them or anything. To delete a line
(including its sublines if any), type the number of the line
to the edit prompt, and follow it with a RETURN. To change
a line, type its number followed by the new version of the
line itself.

YOU MUST ALWAYS GIVE A LINE-NUMBER TO THE EDIT PROMPT

(except when you type HELP or SHOW). Otherwise, you'll get
a complaint to that effect from SOLO. When you've finished
editing, type
DONE

OK. One final check, to show you that everything really
is alright. Run your SUBUNITS. It should of course print
out the correct ANSU. Now type

DEBUG

This brings in another part of the SOLO environment, the
debugger. The debugger is able to look at quite a number of
aspects of programs, and to point out the possible sources
of errors. In particular, it can say whether of not a
program contains the code necessary to embody each step of
the algorithm. And in our case, when the SUBTRACT program
is completely written and correct, the debugger will say
simply "Your program will subtract". In order to do this,
the debugger has to ask you, the programmer, the occsaional
question, and of course the first thing it needs to ge told
is which of the many algorithms it knows about is the one
you're working on. So the first thing you get in response
to "DEBUG" is

Name of Project:

to which you type, on the same line of course,

SUBTRACT

Page C-15

Then the debugger will set off doing its stuff, which takes
a minute or two. If its asks you any more questions, answer
them as best you can. When it has finished, and if your
SUBUNITS is correct, the debugger should say:

Your program has no line which adds ten to the top units
column.
Your program has no line which subtracts 1 from the top tens
column.
Your program has no line which subtracts the digits in the
tens column.

Which is quite true, of course - you haven't written those
parts yet. What the debugger should NOT say is

Your program has no line which subtracts the digits in the
units column.

If it does and you can't see why it should, or if it says
anything else which you don't understand, please ASK.

APPENDIX D

SELECTION FROM AURAC CODE

Included here are sample LISP functions from the three

modules of AURAC. The first is NOTE-ERROR, which creates

the actual error frames each time AURAC's production rules

detect a Higher-Level Syntactic error in the user's code.

Notice the inefficiency of using strings to denote the

various error types; there would be no objection to using,

say, mnemonic atoms instead in a future implementation.

(defun note-error (type codeflag) ; create an error frame
(let ((error-name (symbolconc 'error (setq n (1+ n))))

(etype (exploden type))
(var nil)
(cause nil))

(push error-name errorlist) ;remember the error.
; if the line may contain
;an unbound variable,
;note this fact in the
;PS's working memory.

(and
(not (or (equal etype (exploden '|CHECK succeeds]))

(equal etype
(exploden 'j CHECK always succeeds]))))

(wm-augment (cons (genname (ps-is? (headline)))
error-name)

'errvars))
;some slots will be
; empty

(putprop error-name t 'announce)
(putprop error-name nil 'symbol)
(putprop error-name nil 'word)
(putprop error-name nil 'altlines)

Page D-2

(putprop error-name nil 'cliche)
;PS's push-down list
; gives depth of
;recursion.

(putprop error-name (1+ (length psi-pdl)) 'level)
(cond
((equal (exploden type)

(exploden 'juses up more than twenty LEVELS.]))
(note-recursion error-name))
(t (putprop error-name nil 'altnodes)

(putprop error-name nil 'altprocs)
(putprop error-name nil 'recursion)))

; current args to PS
; interpreter give the
; current procedure-name.

(putprop error-name (car psi-call) 'procedure)
;line-number is global.

(putprop error-name line-number 'line)
;HEADLINE retrieves
; current line from WM.

(putprop error-name (headline) 'code)
;AURAC's evaluator can
; evaluate it.

(putprop error-name (ps-eval (headline)) 'evaluated)
(putprop error-name codeflag 'unreached)
(putprop error-name type 'type)

;if the line contains an
unbound variable, find
it via HEADLINE and then
look in the ERRVARS slot
of WM to see which error
frame notes its creation.
That frame and the current
one can then be chained.

(putprop
error-name
(and (equal etype

(exploden ']contains an unbound variable.]))
(setq var (^unbound (headline)))
(setq cause (cdr (assoc var (errvarsp))))
(member (get cause 'procedure)

(mapcar 'caar psi-pdl))
cause)

'cause)
;If the run-time error
; found by AURAC and that
;found by MacSOLO are the
;same, note the fact.

(cond ((and rte (equal rte run-time-error))
(putprop error-name '(rte) 'effects))

;If not, note the one
; found by AURAC.

(run-time-error

Page D-3

(putprop error-name '(run-time-error) 'effects))
;Otherwise, no run-time
; error.

(t (putprop error-name nil 'effects)))
;If the current frame was
; found (above) to have a
;cause, note that the
; current frame is that
;frame's effect.

(addprop (get error-name 'cause) error-name 'effects)))

The second module of AURAC, the cliche—recogniser, has a

similar function to create error-frames when an error in a

cliche is detected:

(defun note-cliches (errors) ;Cliche-recogniser's
; equivalent of NOTE-ERRORS.
ERRORS is a list of :
cliche-name, line-number,
(word . symbol),
procedure-name.
WORD is the erroneous
word as entered, and
SYMBOL is what it ought
to be, as retrieved from
jthe EXAMPLE.

(let ((error-name (symbolconc 'error (setq n (1+ n)))))
;Allow EXIT or STOP in place
;of any other control state-
;ment if the current line is
;the last of the procedure,

(cond ((not (and (member (car (third errors))
'(exit stop))

(null (cdr lines))))
;remember the error.

(push error-name errorlist)
;update ANNOUNCE slot.

(putprop error-name
(announce-slot
(get (car errors) 'cliche))

'announce)
;fill the error slots,

(putprop error-name (cdr (third errors)) 'symbol)
(putprop error-name (car (third errors)) 'word)

;the ALTLINES slot is
; filled later, if the
;whole of the cliche is

Page D-4

; found in the user's code,
(putprop error-name nil 'altlines)

;record the cliche-name.
(putprop error-name (car errors) 'cliche)
(putprop error-name nil 'level)
(putprop error-name nil 'altnodes)
(putprop error-name nil 'altprocs)
(putprop error-name nil 'recursion)
(putprop error-name (fourth errors) 'procedure)
(putprop error-name (second errors) 'line)
(putprop error-name nil 'code)
(putprop error-name nil 'evaluated)
(putprop error-name nil 'unreached)
(putprop error-name nil 'type)
(putprop error-name nil 'cause)
(putprop error-name nil 'effects))))

In AURAC's third (flow-analysis) module is the function

which takes note of each time a SATISFACTION balances an

EXPECTATION. Its arguments are the procedure (FN), the

line-number (ID) and the name (ARC) of the satisfying item

(e.g. NOTE, *P). MARKER is the name of the item expected.

An expectation looks like this:

(ITEM WHERE-CREATED WHERE-FOUND LINE-NUMBER MARKER)

and is referred to in the following code thus :

(ARC FN POS ID MARKER)

The point of the marker is to retain information where the

name of an item of data changes, for example across the

instruction CHECK /TU/ Plus 10 ?NEWTU. The function SATISFY

is called to inspect each atom (ARC) in the user's code.

(defun satisfy (fn id arg)
(let ((temp nil) (marker nil))
(cond

;look down the EXPECTATIONS

Page D-5

; stack for the most recent
;appearance of ARG within
;FN.

((setq temp (fn-assoc arg fn expectations))
;if one is found, establish
;new marker, and

(setq marker (or (nth 4 temp) (and (atom arg) arg)))
; delete the expectation,

(setq expectations (delete temp expectations 1))
;record the satisfaction.

(push
(list (list arg

fn
(third temp)
id
(car (last temp)))

'satisfies
temp)

successes)
;in the cases of bound
;variables or expectations
;of complete triples (i.e.
;NOTE expecting CHECK or
;FORGET, look down the
;EXPECTATIONS stack for
;any duplicates.

(and (or (variablep arg) (pairp arg))
(others? arg fn id expectations)))

;if none is found, look
;at existing SUCCESSES to
;see if the satisfaction
;is a repeat of one which
;has occurred already.

((setq temp (fn-assoc arg fn successes))
(setq marker (or (nth 4 temp) (and (atom arg) arg)))
(setq successes (delete temp successes 1))
(push
(list (list arg

fn
(third temp)
id
(car (last temp)))

'repeats
temp)

successes))
;otherwise, the
; SATISFACTION has as yet
;no balancing EXPECTATION.

(t (push (list arg fn id) satisfactions)
(setq marker nil)))))

APPENDIX E

THE REMAINING PROTOCOLS

Subject 1:

CLASSIFICATION AND SYNTACTIC ANALYSIS (DATABASE):

1. Right, this is Adam's attempt to IMPLICATE or
to debug IMPLICATE.

2. This is like the Watergate problem.
<slurp, slurp>

3. IMPLICATE people.
4. So first I'm gonna look at the DATABASE.

5. I'm looking at the various descriptions at the

database.
6. 'PAIDBY' seems to occur in the first two

descriptions.
7. 'PAYS' occurs in the first and third

descriptions.

CLASSIFY

CLASSIFY
READ
(DB)
READ
(DB)

READ
(DB)

READ
(DB)

SYNTACTIC ANALYSIS (1ST SEGMENT):

8. O.K., so what do we want to IMPLICATE?
9. PRINT 'X' IS A CRIMINAL. READ (2)

ASBTRACTION, IDENTIFICATION, SPECIFICATION
& PATCH (2ND SEGMENT):

10. And FOR EACH CASE OF 'X' being FRIENDLY to ABSTRACT
somebody, we're gonna CHECK if that person HAS (3) (4)
a POLICERECORD.

11. If he HAS we IMPLICATE that person; if not we ABSTRACT
can loop round. (5) (6)

Page E-2

12. So one possible mistake is here. IDENTIFY
13. When you IMPLICATE somebody, you may want to SPECIFY

loop round anyway.
14. So there is a mistake in 2AA. SPECIFY
15. I would say 'NEXT CASE', to look for other PATCH

people to IMPLICATE, having IMPLICATED an
instance of somebody.

16. Ummm... ?

ABSTRACT AND PATCH (3RD SEGMENT):

17. The next thing we CHECK for is does 'X' PAY ABSTRACT
money to somebody. (7)

18. If that's the case, we CHECK does that person ABSTRACT
HAVE a POLICERECORD. (8)

19. Then we go and IMPLICATE that person, and ABSTRACT
again I would substitute the EXIT statement (9)
with NEXTCASE', to look for other instances. PATCH

READ, IDENTIFY, SPECIFY AND REFUSE (4TH SEGMENT):

20. Now, statement 4 is CHECK C PAYS...

21. That's not....
22. 4B is a procedure..
23. CHECK C PAYS....

24. I think statement 4 is wrong as well...
25. 'Cos B is a procedure in it's own right, which

isn't defined anywhere.
26. So the program would stop there with an

undefined procedure so we want to CHECK that...
27. (I'm writing things down)...
28. Ermm....
29. But I can't see the point of this statement at

the moment.
30. 'Cos we've already CHECKED to see if the

person PAYS money to someone else.
31. Perhaps the author would look on the

relationships which are called 'PAIDBY'.
32. But I'm not asking them what 'PAIDBY' is

supposed to do. I'm gonna leave that alone....

READ
(11)
IDENTIFY
IDENTIFY
READ
(11)
IDENTIFY
SPECIFY

SIMULATE

?
?
SPECIFY

ABSTRACT

REFUSE

REFUSE

ABSTRACT AND PATCH (1ST SEGMENT):

33. But this program can also <solve?> loop....
34. Going in turn from the loop we wanna first of

all CHECK to see if someone is already a
criminal and if they are we wanna NOTE that
fact and then stop IMPLICATION at that point

SPECIFY
ABSTRACT

Page E-3

and go back up the recursion chain.
35. So the first thing I would say is 'CHECK that

'X' IS A CRIMINAL: IF PRESENT; EXIT: IF ABSENT;
CONTINUE'.

36. Then we can NOTE the fact that 'X' IS A
CRIMINAL, and we can PRINT out that as we had
in the original, just say 'PRINT 'X' ISA
CRIMINAL'.

37. I think I've got most of it here...
38. I don't know what 4 is supposed to be doing.
39. And that statement 5 will appear a number of

times, depending on the level of recursion.
40. And I don't know if that isn't required.
41. But I'd just chuck '4' out at the moment and

see how that works and try that on the
terminal.

42. See if we get what we expect.
43. But that's it.

PATCH

SIMULATE

META
IDENTIFY
IDENTIFY

IDENTIFY
PATCH

SUMMARY

Subject 2: is covered in the main text: chapter 3.

Subject 3:

READ (DB):

1. Gotta talk about each line.
2. 'Bloody IMPLICATE problem.
3. Ermm...
4. I'm looking at..
5. Ermm...
6. The DATABASE....
E: Keep talking.
7. Well I'm still reading through it.
8. I'm just looking at the different relations.
9. Err..
10. I've noticed already that Fred is an 'ISA'

and that Adam, Brian and Colin have 'HAS'.
11. I see there's a relation between David and

Adam.
12. There's a 'PAIDBY' the gardener.

E: Could you speak up a bit please.
13. O.K...
14. Hmmm...
15. Right, that makes some sort of sense.

CLASSIFY
?
?
?
?

?
?
?
READ
(DB)

READ
(DB)

READ
(DB)

?
?
CERTIFY

Page E-4

READ (1ST AND 2ND SEGMENT):

16. "TO IMPLICATE 'X' PRINT 'X' ISA CRIMINAL"___

17. I haven't been told what the student thought
wasn't working about this ...

18. It would seem that it would PRINT...
19. Ermm....
20. If you say IMPLICATE anything it would

immediately PRINT whatever it is ISA CRIMINAL.
21. Which means...
22. Doesn't seem to make any sense.
23. They can't all be...
24. But we'll go on.

READ
(1) (2)
REFUSE

SIMULATE
?
ABSTRACT

?
?
?
9

READ (DB):

25. FOR EACH CASE OF 'X' FRIENDLY.... READ (3)
26. HAS POLICERECORD <mumble, mumble>.... READ (4)
27. I'm just checking, umm.. META
28. There were names with a POLICERECORD.... ?
29. Relation. ?
30. I'm just checking that all the spellings are META

correct on 'FRIENDLY', 'cos I can't spell it
usually.

READ,SIMULATE & IDENTIFY (2ND SEGMENT):

31. FOR EACH CASE OF.... READ (3)
E: Say what you're thinking.
32. Ermm... ?
33. I'm just looking at the 'FOR EACH CASE READ (3)

OF'
34. I'm just imagining in my head that... ?
35. Ermm... ?
36. That Adam was the variable you put in. SIMULATE
37. So Adam is FRIENDLY with Colin.... SIMULATE
38. You then CHECK whether the.... SIMULATE
39. Ermmm ?
40. I see, was it.... ? ?
41. I'm wondering now, like Adam is FRIENDLY SIMULATE

with Colin and Fred....
42. I'm wondering now if the logic is gonna be IDENTIFY

right if more than one...
43. If there's one FRIENDLY relation and it won't IDENTIFY

work if there's more than one.
44. I'm just checking that. META

SIMULATE & IDENTIFY (2ND SEGMENT):

Page E-5

45. IMPLICATE.... ?
46. Well there's recursion within a forward loop. ABSTRACT
47. Umm... ?
48. It will go up that chain.. ABSTRACT
49. It will find Colin.. SIMULATE
50. And then go and look for Colin is FRIENDLY,.. SIMULATE
51. Oh no, ermm.. ■ ?
52. Go back... SIMULATE
53. You CHECK if any of them ABSTRACT
54. Has Colin got a POLL.. SIMULATE
55. Yeah, so.. SIMULATE
56. This one gets in a loop bacause Colin is SPECIFY

FRIENDLY with Adam, Adam is FRIENDLY with
Colin, Colin HAS a POLICERECORD, so we then
recurse with Colin as the parameter.

57. And the first thing it will do is that, umm, SIMULATE
it will find out that Colin is FRIENDLY with
Adam.

58. Now Adam HAS a POLICERECORD and is FRIENDLY SIMULATE
with Colin,....

59. And it will just get into a loop on that SPECIFY
first 'CHECK and IMPLICATE'.

60. It's 2A and 2AA because... SPECIFY
61. Umm... ?
62. And they could've got round that by putting ADVISE

something in the DATABASE and CHECKING...
63. And what's that first PRINT... IDENTIFY
64. And ?
65. But, even if they got that right, that looks IDENTIFY

like it's gonna get....
66. Just with the two, with Adam and Colin it SPECIFY

looks like it would get into an infinite loop.

ABSTRACT, READ & IDENTIFY (2ND SEGMENT);

67. I assume that it had been sorted out FOR EACH IDENTIFY
CASE OF....

68. It EXITS if... ABSTRACT
69. Ummm... ?
70. Well the EXIT after IMPLICATE is going to... ABSTRACT
71. I can't think what's gonna happen about that. ?
72. It's gonna go up and recurse and when it ABSTRACT

comes back down it's gonna EXIT.
73. It's not gonna do the CHECK of who PAYS. ABSTRACT
74. IF ABSENT NEXT READ (6)
75. It will CHECK all the FRIENDLY ones. ABSTRACT
76. I'm looking at 2AB now. READ (6)
77. Looking at the NEXT CASE. READ (6)
78. FRIENDLY.. READ (3)
79. If there were more than one FRIENDLY and they IDENTIFY

all had POLICERECORDS I don't see how this
would get it....

Page E-6

80. You'll get the first one with a POLICERECORD,
and go off IMPLICATING on that one; but not if
there's more than one....

IDENTIFY

META-COMMENTS :

81. Right, so that's two problems I can see.... IDENTIFY
82. In the FOR-loop of two ?
83. And I'll get three... ?
84. Ermm... ?
85. It's one of those things where a student IDENTIFY

thinks he can do it in a single procedure.
86. 'Cos I assume this is the whole program. REFUSE
87. They haven't realised that programs have to REFUSE

be in separate procedures.
88. If you were actually tutoring a student you ?

wouldn't give him all the gumph I've just given,
you would tell him to go away and think about it
in separate procedures.

89. I'm now looking at 3. META
90. Ermm... ?

READ & CERTIFY (3RD SEGMENT):

91. FOR EACH CASE OF 'X' PAYS.
92. I assume there's no case where a person PAYS

one person and that person PAYS them back 'cos
on the 'PAYS' relation you're not gonna get
that infinite loop....

READ (DB):

93. I assume that....
94. I'm just checking the DATABASE now....

95. CHECKS through 'PAIDBY' relations.

96. They've got these 'PAIDBY' relations and they
never actually use them.

READ (7)
CERTIFY

READ
(DB)
READ
(DB)
READ
(DB)

META-COMMENTS:

97. I assume it's gonna be one of those things
where the students write another procedure or
something......

98. And then the 'loves and the 'ISA' relations
aren't used either.

99. But I assume they're gonna do something about
them..

100. Umm....

ABSTRACT
(DB)

Page E-7

101. <mumble, mumble> ?
102. I'm looking at '3' now. I'm trying to work META

out this recursion within the FOR-loop.
103. I'm trying to work \jhat will happen when it META

ends.
104. And I would tend to debug a program like this META

myself by actually running it because you're
never quite sure what SOLO will do.

ABSTRACT & SIMULATE (3RD SEGMENT):

E. What're you doing now?
105. I'm just scribbling a notation to myself

about what would happen as you go through '3'
after each 'FOR' and each 'IMPLICATE'.

106. I'm just imagining Fred went to Adam and say
Adam went to Brian....

ABSTRACT

SIMULATE

META-COMMENTS :

107. And in none of this,...
108. This is why Hank's examples of...
109. Nothing's ever side-effected, nothing's ever

put into the DATABASE....

?
?
IDENTIFY

CERTIFY & ABSTRACT (1ST SEGMENT):

110. Oh, I can see why that line 1 has some
meaning now....

111. Because...
112. Umm..
113. Apart from the first time when it doesn't

make much sense, 'cos you're just trying to
IMPLICATE the person.,

114. It will actually PRINT that the next, umm,
person in the relation who was FRIENDLY with
'X' and HAS a POLICERECORD, when it gets to
them it will PRINT that they are guilty.

CERTIFY

?
?
ABSTRACT

ABSTRACT

META-COMMENTS :

115. Yes, but, ummmm, it doesn't make sense. IDENTIFY
116. I mean knowing people have POLICERECORDS is ABSTRACT

just one thing you CHECK.
117. This isn't going to IMPLICATE 'X' in any way, CLASSIFY

it's just CHECKING through the DATABASE very
simplistically....

READ, SIMULATE, ABSTRACT & IDENTIFY (3RD SEGMENT:

Page E-8

118.
119.
120.
121.
122.
123.
124.
125.
126.
127.

128.

129.
130.
131.

132.

133.

I'm just going back to think about '3' again.
FOR EACH CASE OF F....
IMPLICATE....
Christ....
B failed...
3AB...
I've got F goes to A, A goes to B.,
I'm now thinking about when it comes back.
B is not a...
I wonder if B has not got any 'PAID'
relations....
Oh, B is not the same as ?B in 3, B just
stands for Brian in my notation.
Umm...
B....
It would just come back into that and then it
would EXIT from A....
Yeah, there's no way that it's going to CHECK
every 'PAID' relation, 'cos when it tries to
come back after either there being no 'PAYS'
or no POLICERECORD, the FOR-loop isn't......
Recursion is gonna blow up so quickly in SOLO
anyway, even if it made sense...

READ (7)
READ (8)
?
ABSTRACT
READ (9)
SIMULATE
SIMULATE
?
SIMULATE

?
?
ABSTRACT

ABSTRACT

IDENTIFY
ERRORl

READ & IDENTIFY (4TH SEGMENT):

134. Which I can't make sense of.
135. Right, so I've given up thinking about that

so I'm thinking about number 4.
136. 4B.

137. CHECK *C PAYS.

138.
139.
140.
141.
142.
143.
144.

145.

146.

147.

I can't, umm......
I've had far more experience the micro-SOLO
I can't think how they got it in like that.
Maybe the thing just....
Whether it would accept it.
I can't understand the syntax of the B
CHECK *C PAYS.

Well, I mean maybe the B should be after the
'PAYS' or something but I really don't see how
they could have produced that line.
They couldn't have produced that line on the
micro-SOLO because it never would have
accepted it, but I assume the original SOLO
would have somehow done it.
But there's no way a symbol in front of a
SOLO command can be interpreted I don't think.

READ
(11)
READ
(11)

IDENTIFY
READ
(11)
IDENTIFY

IDENTIFY

IDENTIFY
ERR0R2

IDENTIFY (3RD SEGMENT):

Page E-9

148.
149.

150.
151.
152.

153.
154.
155.

156.

I'm now on to '5'.
For micro-SOLO you can't have a 'FOR EACH'
followed by a 'FOR EACH' anyway.
It would bomb out.
It looks like a BASIC programmer....
You'd have to have the other 'FOR EACH'
within procedure within one of the 'IF PRESENT.
IF ABSENT' bits of the first 'FOR EACH'.
Sort of high level bits are wrong with it...
'FOR EACH' and recursion's screwed up..
'FOR EACH' within 'FOR EACH, I think, is
fairly screwed up..
There're relations within the DATABASE that
are gonna cause an infinite loop, if you chose
those to start with.

?
?
ERR0R3
ERR0R3
IDENTIFY
IDENTIFY

IDENTIFY
IDENTIFY

IDENTIFY

META-COMMENTS:

157. It isn't actually very interesting in all it ?
does....

158. If it did anything it just PRINTED people are ABSTRACT
guilty if they've got POLICERECORDS.

159. It doesn't seem to do anything to IMPLICATE CLASSIFY
the first person.

160. There's no increment, or decision-making. CLASSIFY
161. I give up here.
162. That's it.

Subject 4:

ABSTRACTION & CERTIFICATION (1ST & 2ND SEGMENTS):

1. O.K. I'm just reading it, to see what it
says.

2. TO IMPLICATE 'X' PRINT 'X' ISA CRIMINAL....

3. FOR EACH CASE OF 'X' something or other.

4. CHECK that something or another HAS
POLICERECORD, IF PRESENT IMPLICATE that, then
EXIT.

5. If not, go round again.

6. That looks alright.

READ (1) (2)
ABSTRACT
(3)
ABSTRACT
(4) (5)

ABSTRACT(6)
CERTIFY

Page E-10

READ (3RD SEGMENT);

7. FOR EACH CASE OF 'X' PAYS B CHECK B HAS a
POLICERECORD.

8. IF PRESENT IMPLICATE B.
READ
(7) (8)
READ (9)

IDENTIFICATION & SPECIFICATION (4TH SEGMENT):

9. B CHECK C PAYS.

10. That's nonsense, that one......
11. So line 4, anyway, doesn't work.
12. I think that's absolute rubbish.
13. B CHECK C PAYS.

14. In any case, there's no *C in the program.

READ
(11)

IDENTIFY
IDENTIFY
IDENTIFY
READ
(11)
SPECIFY

SIMULATION & IDENTIFICATION (2ND SEGMENT):

15. FOR EACH CASE (I've started at the top
again).

16. FOR EACH CASE OF 'X' FRIENDLY A there's...
17. Adam's FRIENDLY with two people.

18. So I'll just assume it's Adam for the moment.
19. Ummm....
20. Adam's FRIENDLY with Colin and Fred, so we'll

just see if either of them HAS got a
POLICERECORD.

21. Colin HAS....
22. Ummm....
23. So it goes around again, starts again.
24. Colin FRIENDLY Adam.
25. That's a loop.
26. 'Cos Adam's FRIENDLY Colin and Colin's

FRIENDLY Adam.
27. So I suppose that line 2 would not actually

stop.
28. That's probably the bug.
29. Umm...

READ (3)

READ (3)
READ
(DB)
SIMULATE
?
SIMULATE

?
?
SIMULATE
SIMULATE
SPECIFY
SPECIFY

SPECIFY

IDENTIFY
?

SIMULATION & CERTIFICATION (3RD SEGMENT):

30. So let's have a look at line 3...
31. FOR EACH CASE OF 'X' PAYS...
32. Fred PAYS Colin.
33. That's alright.

READ (7)
SIMULATE
CERTIFY

Page E-11

SUMMARY:

34. I think there's just those two bugs,
actually...

35. As far as I can see.
36. That's it.

Subject 5:

READ & CLASSIFICATION (START OF PROGRAM):

1. Okay, TO IMPLICATE X. READ (1)

2. I immediately realize this is like the standard CLASSIFY
'WATERGATE' problem, which in turn should be
like the standard 'INFECT' problem.

3. That's my expectation. CLASSIFY

READ & IDENTIFICATION (1ST SEGMENT):

4. One, PRINT X ISA CRIMINAL. READ (2)
5. And I'm just going to read it now but, my gut META

feeling is I want to skim through it but some
thoughts come to mind instantly so I'll shout
them out here.

6. I think it ought to be a NOTE here. IDENTIFY
7. I would say that to myself mentally but I META

wouldn't point it out to the student.

READ, ABSTRACTION, SPECIFICATION & PATCH (2ND SEGMENT):

8. Two, FOR EACH CASE OF X FRIENDLY A CHECK A HAS READ (3)
POLICERECORD. IF PRESENT, IMPLICATE A. (4) (5)

9. So, everyone that X knows who HAS a POLICERECORD ABSTRACT
is going to recursively get IMPLICATED.

10. It's just going to PRINT out more junk about ABSTRACT
that.

11. Uh, FOR EACH CASE OF.... READ
12. Then, it EXIT's on 2AA, which is wrong. SPECIFY
13. It should be NEXTCASE. PATCH

CERTIFICATION (2ND SEGMENT):

14. Anyway, go on to line 3.
15. I see that 2AB, IF ABSENT, NEXTCASE, is okay.
16. That's for people who didn't have a

POLICERECORD,

CERTIFY
ABSTRACT

Page E-12

17. it goes on to the next FRIENDLY. ABSTRACT

READ, PATCH & CERTIFICATION (3RD SEGMENT);

18. Three, FOR EACH CASE OF X PAYS B, CHECK B HAS READ (7)
POLICERECORD, IF PRESENT, IMPLICATE B, EXIT. (8) (9)

19. Again ought to be NEXTCASE on 3 AA. PATCH
20. IF ABSENT, 3AB, NEXTCASE, that looks okay. CERTIFY
21. It's everyone that X PAYS that HAS a ABSTRACT

POLICERECORD.
22. I haven't thought about what those mean yet, I META

mean sort of semantically in English, but I'll
come back to that in a minute.

READ & IDENTIFICATION (4TH SEGMENT):

23. Four, B CHECK C PAYS.

24. I don't know what the hell that is.
25. There's this sort of multisyntactic stroke

typing error which I'll come back to in a
second.

26. Just a wierd one.

READ
(11)
IDENTIFY
IDENTIFY

IDENTIFY

READ, IDENTIFICATION & SEPCIFICATION (5TH SEGMENT);

27. Five, PRINT THAT SEEMS TO BE THE WHOLE GROUP
IDENTIFIED.

28. DONE.

29. Okay, now five is also wierd.
30. It...because, my gut feeling about why it's

wierd is that we're going to PRINT THAT SEEMS
TO BE THE WHOLE GROUP IDENTIFIED for every
turkey on this chain.

READ
(12)
READ
(13)
IDENTIFY
SPECIFY

META-COMMENTS & ABSTRACTION (3RD, 4TH AND 5TH SEGMENTS):

31. What we're gonna do. I'm just thinking here... META
32. It appears, I mean I haven't thought it ABSTRACT

through, but it appears it's going to go
through, well, to discriminate between a fan
and a chain where a fan is all the ones
emanating out from a node, using FOR EACH,
call that a fan.

33. And a chain is the one where we go recursively ABSTRACT
down a chain.

34. Now it looks to me like there's going to be a ABSTRACT
fan of people who are going to get. I'll say

Page E-13

caught, meaning we're going to PRINT X ISA
CRIMINAL about them.

35. And then basically everytime we get everybody ABSTRACT
we're going to PRINT out line 5: THAT SEEMS TO
BE THE WHOLE LOT IDENTIFIED.

36. Now I might actually be wrong and I'm just META
going to think it through.

37. Let me look at the database first, and then META
I'm going to talk through a little trace of it,
just to confirm it to myself.

38. I'm going back to the instructions just to see META
whether the student seems to run the program.

39. I doubt it.
40. (Re-reads instructions).
41. So I don't even know what the hell it's

supposed to do but I've got my ideas.

META

META

READ & ABSTRACTION (2ND AND 3RD SEGMENTS):

42. So let's look at the database.
43. FRED ISA MAN LOVES MARY PAIDBY BRIAN PAYS

COLIN.
44. I see that PAIDBY is an irrelevant piece of

cosmetics.
45. In fact everything is cosmetic for this

particular problem unless it's FRIENDLY or PAYS
but I just see the structure here.

46. ADAM HAS POLICERECORD.

47. Obviously POLICERECORD is important....

48. ADAM HAS POLICERECORD.

META
READ
(DB)
ABSTRACT
(DB)
ABSTRACT
(DB)

READ
(DB)
ABSTRACT
(DB)
READ
(DB)
?
META

49. Sorry, I....
50. That last realisation. I'm commenting on my eye

movements here.
51. I noticed that ADAM HAS POLICERECORD and that META

triggered off: 'Oh, yeah, ADAM HAS POLICERECORD
must be important'.

52. And I instantly scanned back to line 3A just to META
confirm for myself that HAS POLICERECORD is
indeed important as I actually knew and I even
double checked again by looking further back to
line 2A, first to see that there were no typing
errors and (b) to see that there were no tricks
in the problem as set up by the experimenters.

53. Okay.
54. Now, I'm reading through ADAM here.

55. ADAM HAS POLICERECORD, FRIENDLY COLIN, FRIENDLY

FRED, PAIDBY BRIAN.

?
READ
(DB)
READ
(DB)

Page E-14

56. Okay, well PAIDBY BRIAN is irrelevant.

57. The student might have made a mistake or I
don't know what.

58. It doesn't matter.
59. ADAM, well, it may or may not be a mistake,

PAIDBY BRIAN may be just cosmetic.
60. BRIAN is the one who PAYS everybody.

61. BRIAN HAS POLICERECORD, PAYS ADAM, PAYS FRED.

62. COLIN HAS POLICERECORD, FRIENDLY ADAM, PAIDBY
FRED.

63. DAVID FRIENDLY ADAM, ERIC PAIDBY BRIAN, ISA
GARDENER.

64. More cosmetics.

65. So, I can take any one of these as a starting
point.

66. I happened to notice there's an alphabetical
group here if you go by ADAM, BRIAN, COLIN,
DAVID, ERIC, FRED.

67. We've got the first six letters of the
alphabet.

68. I'm going to assume, uh, ADAM and BRIAN make
the most natural starting point.

69. I'm looking for a test case to try out this
crazy program, (snigger, snigger, snigger).

70. I'm going to test it out on BRIAN.
71. The reason I'm doing this is because it's

twenty times easier to work through a test
case than to go through it abstractly in
my head.

ABSTRACT
(DB)
ABSTRACT

ABSTRACT
(DB)
ABSTRACT
(DB)
READ
(DB)
READ
(DB)
READ
(DB)
ABSTRACT
(DB)
SIMULATE

ABSTRACT
(DB)

ABSTRACT
(DB)
META

META

META
META

SIMULATION (1ST AND 2ND SEGMENTS);

72. So, here I go and this is, this is exactly what META
I'd do as a tutor.

73. I'm going to type in IMPLICATE BRIAN, and I'm SIMULATE
writing it down.

74. I'm probably doing too much work for this thing META
but this is the only way I can be absolutely
sure myself what it does.

75. I would in fact do this on a computer if the META
student was in front of me.

76. Okay IMPLICATE BRIAN. SIMULATE
77. First thing it does (I'm gonna split my page SIMULATE

here) and keep a record of the actual printouts
as they appear on the computer on the right-hand
side of my sheet.

78. First thing it's gonna do is print BRIAN ISA SIMULATE
CRIMINAL.

Page E-15

79. Now the only reason I chose BRIAN instead of META
ADAM; ADAM would be first choice because letter
A, but BRIAN has more links emanating from him
for me to test out all along this PAYS branch.

80. I'm gonna test ADAM in my head in a second. META
81. Ah, looking down through ADAM, I'm gonna get to SIMULATE

BRIAN in a sec anyway in the normal course of
events.

82. So this test, IMPLICATE BRIAN, will be enough META
to satisfy my feeble brain.

83. Okay, BRIAN ISA CRIMINAL gets printed out at SIMULATE
line 1.

84. Two, FOR EACH CASE /X/ FRIENDLY A, uh SIMULATE
85. Brian's not FRIENDLY with anybody, I can see at SIMULATE

a glance so let's zip on down to step 3.

SIMULATION, IDENTIFICATION & PATCH (3RD SEGMENT);

86. FOR EACH CASE OF /X/ PAYS B.
87. Okay BRIAN PAYS ERIC, ADAM and FRED.
88. So, we're going to first take ERIC.
89. We're going to recursively IMPLICATE ERIC and

in the original program we would EXIT.
90. Now, I said that's a bug but it might just be

the case that the student only wanted to get
the first character.

91. For instance there's a fan of PAYS relations
coming out of BRIAN.

92. He may only have wanted to get the first one
and then IMPLICATE would recursively, would
PRINT out ERIC ISA CRIMINAL and recursively,
well, it would get either the person he's
FRIENDLY with or with POLICERECORD or etc,
the person he pays that HAS a POLICERECORD.

93. I maintain that's not what the student
intended.

94. He surely meant NEXTCASE, so when I work
through the example here I'm simply changing
the EXIT to NEXTCASE.

95. At this point I would have to ask the student,
did he want to get them all or did he just
want to get the first guy who was paid.

96. I think there might be some halfassed reason,
historically, it's the first guy you paid,
it's your cohort in crime or something crazy
like that.

97. But I doubt it, that's implausible to me.
98. So I'm going to arbritarily change 2AA and

3AA to NEXTCASE, in fact I already did that
on the sheet, crossing out EXIT, and I'm
working through it on paper in the same way.

99. So we're now recursively going to IMPLICATE

READ (7)
SIMULATE
SIMULATE
SIMULATE

REFUSE

ABSTRACT

ABSTRACT

IDENTIFY

SPECIFY

REFUSE

META

META
PATCH

SIMULATE

Page E-16

ERIC.
100.Now in order to remember where I am I have

to keep a little stack, I'm going to have
to do this on paper.

META

SIMULATION & META COMMENTS (1ST, 2ND AND 3RD SEGMENTS);

101.
102.
103.

104.
105.

106.
107.

108.
109.

110.

So, I'm going to IMPLICATE BRIAN.
I'm writing indented 'IMP ERIC', in fact
I'll just keep my own trace here.
I'm going to write 3AA, just to remind me
where the hell I am.
3AA, IMP ERIC.
Obviously if I was using Tony's system
this would be a hell of a lot easier
because I'd just have it indented for me.
Now, what the hell's it going to do?
On the right hand side I'm going to print
out ERIC ISA CRIMINAL.
Why? Why should ERIC be a CRIMINAL.
Wait a minute, in my head I'm saying the
guy HAS to have a POLICERECORD.
ERIC doesn't.

111. Aw, shit, sorry. I'm thinking three
different things at once here.

112. Right, ignore that little digression
there.

SIMULATE
META

META

META
?

SIMULATE
META

META
META

READ
(DB)
FALSE
START
FALSE
START

SIMULATION & SPECIFICATION (1ST, 2ND AND 3RD SEGMENTS);

113. Let us restart the trace.

114. IMPLICATE BRIAN, one PRINT BRIAN ISA
CRIMINAL.

115. I'm starting completely from the
beginning again.

116. Brian's not friendly with anybody so we
skip over line 2.

117. Line 3, X PAYS ERIC.
118. Now it's already running off at the mouth,

starting to IMPLICATE ERIC.
119. ERIC doesn't have a POLICERECORD.

120. First, CHECK has a POLICERECORD.
121. So, we get the NEXTCASE of 3AB.
122. What about ADAM?
123. Okay, ADAM HAS POLICERECORD.

124. Hallelieuja, so all the points I made are
still valid.

FALSE
START
READ (1) (2)
META

SIMULATE

SIMULATE
SIMULATE

READ
(DB)
READ (4)
READ (6)
META
READ
(DB)
META

Page E-17

125. Slip of the mind here. META
126. So we IMPLICATE ADAM, cross out ERIC on SIMULATE

my little trace sheet.
127. IMPLICATE ADAM at 3AA. SIMULATE
128. Now my print out will say ADAM ISA META

CRIMINAL.
129. And now, step 2 in my recursive call SIMULATE

here, see if ADAM's FRIENDLY with anybody.
130. Yes, he is, he's FRIENDLY with COLIN, so SIMULATE

let's see whether COLIN's got a
POLICERECORD at 2A.

131. COLIN does have a POLICERECORD. READ
(DB)

132. So, we're going to IMPLICATE ADAM. SIMULATE
133. So, this is beautiful because you're going SPECIFY

to get into an infinite loop here and all
sort of screwy things.

134. Okay, so, ADAM's FRIENDLY COLIN and COLIN's SPECIFY
FRIENDLY ADAM, so we've got a loop in the
database.

META-COMMENTS :

135. Now, I could've done a loop detection test
in the database first, because I know that's
a kind of bug that comes up but I think,
I know that comes up in some of Hank's
examples, but in fact as a real live tutor
I'm 99% certain I'd debug it exactly this
way, and that's how I'm behaving. I simply
go through the trace and during the trace I
discover the loop.

136. That to me is simpler.
137. Well, depends on how complicated the

database is, but a loop in the database
is not a priori reason for alarm, only in
the context of this screwy program.

138. So, I haven't even done the trace.
139. This immediately triggers off loop, loop,

loopbecause I see that, let me just do the
trace now.

140. This I wouldn't do for the student, uh, for
detecting the student's bug.

META

META
META

META
SPECIFY

META

LOOPTEST & SPECIFY (2ND SEGMENT AND DB):

141. I might do it when I'm explaining it to the
student, but what I do here, uh. I'm doing
ADAM here, my first recursive call and I
see that ADAM is FRIENDLY with COLIN, at
step 2 and at step 2 COLIN HAS POLICERECORD

LOOPTEST

Page E-18

so I recursively, 2AA IMPLICATE COLIN and
now let's trace it out here.

142. Step one of my next recursive call I PRINT LOOPTEST
COLIN ISA CRIMINAL

143. And FOR EACH CASE OF COLIN FRIENDLY with LOOPTEST
somebody,who's he FRIENDLY with, he's
FRIENDLY with ADAM, CHECK ADAM HAS
POLICERECORD, yes indeed he does so step
2AA, next level of recursion down, IMPLICATE
ADAM, etc.

144. So that's loop in database. SPECIFIY

ADVICE & PATCH (2ND AND 3RD SEGMENTS):

145. So, now what I'd do is, I would eliminate the ADVISE
loop.

146. I mean to debug the student's program. ?
147. If I'm supposed to. ?
148. (Rereads instructions). ?
149. Okay, so I'm looking over to my scratchsheet. META
150. So I'm going to debug this thing. META
151. What I'm going to do is change the database META

here.
152. Where it says COLIN FRIENDLY ADAM, ADAM PATCH

FRIENDLY COLIN, in a sense you only need
one and the obvious thing to do is put in
an inverse relation and have FRED PAIDBY
BRIAN and BRIAN PAYS FRED.

SIMULATION, ADVICE & REFUSAL (2ND AND 3RD SEGMENTS):

153. That little cosmetic trick is a way of
keeping out endless loops but immediately
an alarm goes off in my head.

154. It's going to be more complicated than that
because it's not only that I have to look
out for FRIENDLY loops within themselves and
PAYS loops within themselves, I could have
an indirect loop, I suppose ADAM could PAY X
and X could be FRIENDLY with ADAM and that's
going to be an additional way of looping,
which is a little more subtle. Now let me
instantly see if there is such a case.

156. Let me just say BRIAN PAYS ERIC for example.
157. If ERIC was FRIENDLY with BRIAN I'm up the

creek, but he's not so, jesus christ, having
to check all these is actually a pain in the
ass but I might as well do it.

158. ADAM FRIENDLY COLIN.

159. Let's check that COLIN doesn't get back to

META

SIMULATE

LOOPTEST
?

READ
(DB)
META

Page E-19

ADAM.
160. This seems, now I'm now thinking these META

indirect loops are going to be even worse
because ADAM could pay X, X could PAY Y,
Y could PAY Z, Z could be FRIENDLY with ADAM
and then I'm still shafted.

161. So this looks completely useless, (blows ?
raspberry)

162. So the way I would do it, I mean I know from META
many AI tricks or from normal lets say graph
traversal tricks that anyone knows would be
to flag the nodes that have already been hit
so you don't do them again.

163. I mean that's the simplest thing to do either ADVISE
with trivial node blah already used or the
more obvious thing to do is change line 1 to
NOTE X ISA CRIMINAL and then if X, then you
could CHECK X ISA CRIMINAL and skip over them.

164. So I'd do something like, line 1 CHECK X ISA ADVISE
CRIMINAL, IF PRESENT EXIT, oh sorry,
IF PRESENT, ah shit, this is already more
complicated. I'll come back to this in a
second because I don't want to lose my train
of thought.

165. Okay, so that. I'm going to write a note to REFUSE
myself on a sheet of paper here, I would have
to ask the student actually vÆiat he wanted to
do at this point.

ABSTRACTION & PATCH (DB):

166. I would assume that he typically wants to ABSTRACT
start with ADAM, whip through the database
and get everybody who's either FRIENDLY with
ADAM, HAS a POLICERECORD, or etc. etc.

167. And they're, let's call these people cohorts ABSTRACT
in crime, he wants to get all the cohorts in
crime in the normal way.

168. Therefore he wants to avoid looping, he'd ADVISE
want to flag them in someway and I think
that's not hard to do.

169. I'll do that at step 1 in a second. META
170. What I'm doing now, is thinking, I just want META

to reconfirm that steps 2 and 3 are okay.
171. Now, popping back my own goal stack, what META

I've been working on is looking for loops
in the database.

172. I'm going to look for simple loops of the META
type A FRIENDLY B, B FRIENDLY A.

173. I'm going to look for simple loops of that META
kind first.

174. I'm simply going to change FRIENDLY to PATCH

Page E-20

FRIENDOF.
175. I'm going to use this inverse relation

trick.
176. So I say COLIN FRIENDOF ADAM.

ADVISE

PATCH

LOOPTEST, CERTIFICATION & PATCH (2ND AMD 3RD SEGMENTS):

177.
178.
179.
180.
181.
182.
183.
184.

185.
186.
187.
188.
189.
190.
191.
192.
193.
194.

195.

196.
197.

198.
199.
200.
201.
202.
203.

204.

Okay, ADAM FRIENDLY FRED.
Let's see if FRED loops back.
No.
Okay, so let's do BRIAN.
I'm doing them in alphabetic order.
PAYS ERIC.
Does ERIC loop back.
No, I mean only with this PAIDBY but that's
okay, it's this cosmetic one which avoids
looping.
BRIAN PAYS ADAM.
Does ADAM PAY BRIAN? No.
BRIAN PAYS FRED, good.
Let's go to COLIN.
COLIN FRIENDOF and PAIDBY.
So there's no opportunity for a loop.
DAVID FRIENDLY ADAM.
Let's see ADAM FRIENDLY DAVID. No.
I should, to be consistent, add FRIENDOF.
I'm going to add this inverse here,
ADAM FRIENDOF DAVID.
This is total rubbish, totally cosmetic,
but I'm going to add it in anyway.
Okay, ADAM FRIENDOF DAVID.
Now, alphabetically here, ERIC PAIDBY BRIAN
so we should have BRIAN PAYS ERIC. Correct.
ISA GARDENER is useless. Leave it in.
Let's go up to FRED now.
ISA MAN, LOVES MARY, is useless.
PAIDBY BRIAN.
Let's check BRIAN PAYS FRED. Yes.
FRED PAYS COLIN, so, we've got
COLIN PAIDBY FRED. Beautiful.
Okay, so, there're no simple loops, in the
sense A PAYS B, B PAYS A, or A FRIENDLY B,
B FRIENDLY A.

LOOPTEST
LOOPTEST
CERTIFY
LOOPTEST
META
LOOPTEST
LOOPTEST
CERTIFY

LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
CERTIFY
LOOPTEST
LOOPTEST
META
PATCH

META

LOOPTEST
LOOPTEST

LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
CERTIFY

LOOPTEST & CERTIFY (2ND AND 3RD SEGMENTS):

205. Now I'm going to look for a simple indirect META
loop of the type A PAYS B and B FRIENDLY A,
which I think may shaft me.

206. I don't know. I'll look for a couple of META
cases.

Page E-21

207.

208.

209.
210.
211.
212.
213.

214.
215.
216.
217.

218.
219.

220.
221.
222.
223.
224.

225.

226.
227.

228.
229.
230.

231.
232.

233.
234.

235.

236.

Let's go ADAM FRIENDLY COLIN, does
COLIN PAY ADAM. No.
ADAM FRIENDLY FRED, does FRED PAY ADAM.
No.
Okay let's go down to BRIAN.
BRIAN PAYS ERIC, is ERIC FRIENDLY BRIAN.
No.
BRIAN PAYS ADAM, is ADAM FRIENDLY BRIAN.
No.
BRIAN PAYS FRED, is FRED.... No.
Okay, COLIN only has these inverse
relations.
DAVID doesn't have any.
Uh, sorry, DAVID has FRIENDLY ADAM.
Interesting because DAVID was a one liner.
I hallucinated that he was going to be
purely cosmetic like ISA BURGLAR or
ISA GARDENER, something like that.
God knows why.
DAVID FRIENDLY ADAM, ADAM should be
FRIENDOF DAVID which I put in by hand.
So there's no PAYS, there's no indirect
loop.
ERIC is PAIDBY is only an inverse so that's
okay.
FRED is only, ah, PAYS COLIN so we check
that COLIN FRIENDLY FRED I'll be in trouble.
So I'm not, good.
So I get no simple loops, no two step loops,
either PAYS/FRIENDLY or FRIENDLY/PAYS.
Now I was just thinking in my head it's
intrinsically possible for there to be a
long distance loop of the kind that, well,
it's just obvious what it is.
A very long term looping around.
We could eventually get from ADAM back
to himself.
Now let's just see if....
It ought to be possible.
Let's see if I can get from BRIAN to FRED
via PAYS.
I can get from FRED to COLIN via PAYS.
And I can't get anywhere else because there's
only inverses.
Ah ha!
Interesting. So I've got real terminal nodes
here.
Now let me see, working backwards here in
the true means ends analysis I see that I
can get to ADAM from DAVID so I'm going to
see
Knowing that ADAM's the guy I want to start
with, for example, is there anybody that

LOOPTEST

LOOPTEST

LOOPTEST
LOOPTEST

LOOPTEST

LOOPTEST
LOOPTEST

LOOPTEST
LOOPTEST
META
META

LOOPTEST

CERTIFY

READ
(DB)
READ
(DB)
CERTIFY
CERTIFY

META

META
?

?
?
LOOPTEST

LOOPTEST
LOOPTEST

CERTIFY

META

META

Page E-22

takes me back to him?
237. So I'm looking backwards now. META
238. I see DAVID FRIENDLY ADAM is a potential LOOPTEST

source of trouble, so how do I get to DAVID?
239. So I'm looking along the right hand sides META

[of the database provided] to see how I
would get to DAVID in the normal course of
events.

240. And there is no way to get to DAVID in the LOOPTEST
normal course of events.

241. So that's good, so that's not a source CERTIFY
of trouble.

242. Let's see if there's any other way to META
get to ADAM.

243. On the right hand side I see that ADAM, LOOPTEST
I see BRIAN PAYS ADAM.

244. I just found ADAM on the right hand side LOOPTEST
of that.

245. So how do we get to BRIAN? META
246. Again a means ends analysis here. META
247. How do we get to BRIAN? META
248. On the right hand side, in the normal way, LOOPTEST

there is no way.
249. Wow, that's beautiful, that's interesting. ?
250. So BRIAN can't be reached in the normal CERTIFY

way unless he's typed in at the top level.
251. ADAM can be reached from BRIAN. LOOPTEST

LOOPTEST CERTIFICATION & PATCH (2ND AND 3RD SEGMENTS)

252. Why don't I draw this out? ?
253. What I'm drawing here is just a tree which

says who's reachable.
META

254. I don't even care whether it's PAYS or
FRIENDLY or what the hell it is.

META

255. Doesn't matter to me, I just want to see
whether they can be reached at all.

LOOPTEST

256. From BRIAN I can get to ERIC, ADAM and FRED. LOOPTEST
257. From ADAM I can get to COLIN and FRED. LOOPTEST
258. From FRED I can get to COLIN. LOOPTEST
259. From.... ?
260. Well I started with BRIAN arbitrarily, well

it doesn't matter.
META

261. So who haven't I done? META
262. Do it alphabetically here. ?
263. COLIN. LOOPTEST
264. From COLIN I can't get to anybody. LOOPTEST
265. From DAVID I can get to ADAM, but I've got

no way to get to DAVID, so I've got....
LOOPTEST

266. So I can get from BRIAN to ADAM or I can
get from DAVID to ADAM.

LOOPTEST

267. Interesting. ?

Page E-23

268.

269.

270.
271.
272.
273.

274.

275.

276.

277.
278.

279.

280.

281.
282.
283.

284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.

296.
297.

298.
299.
300.
301.
302.

So if I start with DAVID I get DAVID,
ADAM, COLIN, FRED.
So I've got a little sort of converging
tree here.
COLIN I can't get to anybody.
Alphabetically now the next one is ERIC.
From ERIC I can't get to anybody.
BRIAN takes me to ERIC so that's a deadend
or terminal node.
From FRED, I already did, I can get
to COLIN.
Interesting, so that's the complete
tree here.
BRIAN is the most prolific source let's
say, in this whole damn thing.
BRIAN'11 get me ERIC, ADAM, FRED.
ERIC'11 just, uh, because ERIC doesn't
have a POLICERECORD I'll skip him.
I'm now doing a sort of quicky trace by
looking at this tree I've drawn.
This is a slightly different way of
doing it.
I'll get to ADAM, ADAM'11 get to COLIN.
Now I'm looking back up at my trace.
I had this infinite recursion because COLIN
took me back to ADAM so by changing that
relation, by changing it to FRIENDOF, the
thing appears to terminate, because I get
BRIAN ISA CRIMINAL, ADAM ISA CRIMINAL,
COLIN ISA CRIMINAL.
And then I'm looking back at my procedure.
COLIN.
Now I'm looking in my database.
COLIN HAS POLICERECORD.
I've got him at....
Whereever the hell I got him.
At 2AA.
And then I would go NEXTCASE.
I would try to get the NEXTCASE of....
Looking back to my trace here.
Of ADAM, who I'm working on.
And I cross out my recursive loop where I
get IMPLICATE ADAM, on my trace, now that
I've corrected my database.
It all seems to work okay.
IMPLICATE COLIN would PRINT out COLIN ISA
CRIMINAL and then NEXTCASE would look for
the NEXTCASE of who ADAM's friendly with.
And I see he's FRIENDLY with FRED.
So I'm going to CHECK FRED HAS POLICERECORD.
He doesn't so he gets skipped.
I'll put a little X next to him.
And I tick BRIAN in my tree, I tick ADAM,

LOOPTEST

CERTIFY

LOOPTEST
?
LOOPTEST
LOOPTEST

LOOPTEST

CERTIFY

LOOPTEST
LOOPTEST

META

META

LOOPTEST
META
LOOPTEST

META
?
META
LOOPTEST
?
?
LOOPTEST
LOOPTEST
?
META
META
META

CERTIFY
LOOPTEST

LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST

Page E-24

303.

304.
305.

306.

307.
308.
309.
310.
311.
312.

I tickCOLIN.
ERIC gets an x, because he didn't have a
POLICERECORD.
FRED gets an x, so nothing happens to him.
I see that, I'm looking in my database who
ADAM's FRIENDLY with, just to make sure my
NEXTCASE loop gets them all.
I did ADAM FRIENDLY COLIN,
ADAM FRIENDLY FRED.
FRED is not, does not have a POLICERECORD.
So I do the NEXTCASE at 2AB.
There is no NEXTCASE.
So I go on to step 3.
FOR EACH CASE OF X PAYS.
ADAM doesn't pay anybody.

LOOPTEST

LOOPTEST
LOOPTEST

LOOPTEST

LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST
LOOPTEST

LOOPTEST & SPECIFICATION (1ST, 2ND, 3RD AND 5TH SEGMENTS):

313. So I'm ignoring step 4 for the moment META
because it's so screwy and....

314. Step 5, THAT SEEMS TO BE THE WHOLE GROUP READ (12)
IDENTIFIED.

315. Well there's my prediction that it's going IDENTIFY
to print out that stupid message a little
too often because I'm down one level of
recursion.

316. So I'm going to do, having terminated COLIN LOOPTEST
and FRED, FRED doesn't get anything printed
out about him but I then print out THAT
SEEMS TO BE THE WHOLE GROUP IDENTIFIED.

317. I'll just put THAT SEEMS dot dot dot META
on my sheet.

318. So I get BRIAN, ADAM, COLIN.... LOOPTEST
319. And since I've hit my terminal node I'll LOOPTEST

print THAT SEEMS....
320. Now I pop up from. I'm popping up from LOOPTEST

IMPLICATing ADAM.
321. Why didn't I go down any further with ?

COLIN?
322. Because COLIN didn't have any.... LOOPTEST
323. Shit ?
324. I'm thinking THAT SEEMS etc should get SPECIFY

printed out a lot more, at every terminal
node here.

325. I'm sorry, everybody whom I print ISA SPECIFY
CRIMINAL should also get THAT SEEMS etc
about it.

326. So let me just check this again. META
327. I haven't been worrying about line 5 because META

it's uninteresting, but just for cosmetics.
328. I mean, in fact I can see, IMPLICATE BRIAN, LOOPTEST

Page E-25

starting again from the top, I recursively
go down to ADAM and I print ADAM ISA CRIMINAL.

329. And then I recursively go down to COLIN, print
COLIN ISA CRIMINAL.

330. And then just before I pop out I print THAT
SEEMS TO BE THE WHOLE GROUP IDENTIFIED. Yeah.

331. So thats, so COLIN ISA CRIMINAL, THAT SEEMS
TO BE THE WHOLE GROUP IDENTIFIED.

332. I pop out of COLIN because COLIN doesn't
PAY or FRIENDLY anybody.

333. So I pop out of COLIN.
334. Now I try FRED.
335. Sorry, I think about FRED for a second here,

within ADAM, because he doesn't have a
POLICERECORD I don't do anything with him.

336. Finally I pop out of ADAM because there's
no more NEXTCASE's.

337. So I print THAT SEEMS etcetera when popping
out of ADAM.

338. Now I'm in my NEXTCASE loop with BRIAN.
339. This time to get FRED because BRIAN PAYS

FRED.
340. Now I do this whole routine with FRED....
341. No I don't because FRED does not have a

POLICERECORD. Good.
342. So I draw a chain from BRIAN to FRED to

COLIN, but that's only a sort of idealized
chain along the PAYS and FRIENDLY relations.

343. It would presuppose that FRED HAS
POLICERECORD, that I can even get there.

344. Because FRED does not have a POLICERECORD,
that's a dead chain so I put an x next to
FRED for the same reason I did the last time.

345. I can even cross out that tree to COLIN which
makes me feel happier.

346. I was afraid that COLIN was going to be
reached twice, but I was holding that to
come back to.

347. COLIN doesn't get reached twice, so, let's say
within my BRIAN loop now, at the top level I'm
going to say BRIAN PAYS FRED, CHECK FRED HAS
POLICERECORD.

348. He doesn't, so I'm going to print THAT SEEMS
TO BE THE WHOLE GROUP again and pop out.

349. So that's correct, so I have THAT SEEMS
printed out for each level of recursion.

350. And I print it as I pop out so I get that
corresponding to each CRIMINAL and I pop out.

LOOPTEST

LOOPTEST

LOOPTEST

LOOPTEST

LOOPTEST
LOOPTEST
LOOPTEST

LOOPTEST

LOOPTEST

LOOPTEST
LOOPTEST

LOOPTEST
LOOPTEST

LOOPTEST

LOOPTEST

LOOPTEST

META

META

LOOPTEST

LOOPTEST

SPECIFY

SPECIFY

CERTIFICATION & PATCH (DB, 2ND, 3RD AND 5TH SEGMENTS):

351. I'm now satisfied that the database is CERTIFY

Page E-26

correct, because I've changed it, changing
COLIN FRIENDLY ADAM to COLIN FRIENDOF ADAM
and adding ADAM FRIENDOF DAVID just for
completeness.

352. I'm going to recommend to the student that he PATCH
change 2AA and 3AA to NEXTCASE instead of EXIT
and I'm going to suggest that line 5 be
completely deleted because it's going to get
him into trouble.

353. I'll delete line 5. PATCH
354. If I really wanted to have that line in I'd ADVISE

do it as a separate procedure.
355. In other words I'd have a, let's say TO GET, PATCH

TO GET X, one IMPLICATE X, which would set
off this whole nonsense going.

356. And two, print ALL DONE or THAT SEEMS TO BE PATCH
THE WHOLE GROUP IDENTIFIED.

357. So that would be just a cosmetic thing, and ADVISE
I could say GET BRIAN, do the whole chain
that I've just traced out, and then when
it's all finished it would just print out
this message.

358. But that's unimportant. I would recommend PATCH
deleting step five.

READ, IDENTIFICATION, SPECIFICATION & PATCH (4TH SEGMENT);

359. Finally, step four, which I've saved until META
last because it's so bizarre.

360. I haven't even thought about it. ?
361. It says 4 B CHECK STAR C PAYS. READ

(11)
362. Well I would just suggest he deletes it. PATCH
363. It looks like.... ?
364. Either it's a typing error on Hank's part, IDENTIFY

which I doubt, I think it's deliberate just IDENTIFY
for this protocol.

365. I would say probably the student was pissing IDENTIFY
about.

366. I know that in the old SOLO, it may be true ?
in the new one, you could get a typing error
like this.

367. The student was thinking of something wierd ?
and he typed in, he thought he was on a
subline of a FOR EACH, he wanted to do two
things within that FOR EACH loop.

368. Let's say, hallucinating along with him, META
that he wanted to do the kind of thing to
prevent the program looping.

369. He wanted to CHECK the payment or something META
like that so he started to type it in and
then he changed his mind and he, because

Page E-27

he typed 4B CHECK blah blah blah, the old
SOLO, because it had an automatic space
corrector and space inserter, would've
split off the, put in a space between
the 4 and the B and invented a procedure
named B and ignored the rest of the line.

370. So he ends up with a procedure called
B which takes three arguments which look
like CHECK, C, PAYS.

371. But I attribute this to something the
student had started to type in, changed
his mind, and the old space corrector
inserted a space and invented a procedure
called B and that's just a wierd one.

372. The student, it would cause the student to
freak out, I mean it's bizarre, and he
probably couldn't remember how to
delete it.

373. I'd say, just kill it.
374. Well, I'd obviously ask the student what

he was thinking, what he thought he was
doing.

375. I'd delete it.

SPECIFY

SPECIFY

PATCH
REFUSE

PATCH

SUMMARY & ADVICE;

376.

377.
378.

379.
380.

381.
382.

383.

384.
385.

The new procedure just has the old step
one, the old step two, the old step three,
the main ones.
Four and five are deleted.
Change 2AA and 3AA to have a NEXTCASE
instead of an EXIT.
And I believe that's it.
I'd only ask the student at step one did
he really want to PRINT it out or did he
want to NOTE it in the database.
Sometimes it's nice to NOTE it in.
I mean it really depends upon what the
student wanted to do.
If you NOTE it in then you have the
unfortunate consequence of having to
clean up the database each time you
run the example but if you're doing more
complicated things then it's useful to
have it in the database.
So that's purely up to the student.
So that's my corrections.

ADVISE

PATCH
PATCH

META
REFUSE

ADVISE
META

ADVISE

APPENDIX F

THE SPELLING CORRECTOR

MacSOLO's spelling corrector is essentially a series of

filters which progressively reduce the size of the set of

possible matches between the input "word" and the current

dictionary. The latter is constantly updated as the user

types in new node names, relation names and procedure names.

The names of variables and parameters are not included in

the dictionary, but at logout its current state is saved on

the user's own file so that it can later be restored along

with the rest of the user's database. The initial

dictionary, supplied to new users, contains the names of all

the SOLO system words, plus a few nodes and relations (new

users are given a handful of preset database triples so that

examples in the early part of the course notes will work

straight away), plus a set of HELP topic names and common

synonyms - such as HELP BRACKET for HELP PARENTHESIS. The

size of this initial dictionary is 63 words, stored

according to their first letters.

Page F-2

Our spelling corrector is an improvement on that

suggested by Maguire in his (1982) paper on recognition of

textual keyboard inputs, which was in turn based on the work

of Muth and Tharp (1977). We agree with the first three of

their four categories of spelling error (wrongly typed

letter, missing letter, extraneous letter). However, their

fourth category - two adjacent letters interchanged - refers

to adjacent letters in a typed word, and is apparently

caused by inexpert typists reversing the actions of their

two hands during typing. A very similar mistake is caused

by a slight shift in the position of the hands, and results

in KEYBOARD ADJACENCY errors: for example, U or 0 instead

of 1. Our own analysis of spelling errors in Lewis's data

shows that horizontal adjacency (along the same row of keys)

is by far the commonest type of keyboard adjacency error.

We also agree with Maguire's assumption that the first

letter of any typed word will be correct - so long as only

novice users are under consideration. We would not agree

that this is also the case for experts, or for novices who

happen to be expert typists.

Page F-3

MacSOLO's corrector takes the word as entered by the user

and immediately selects from the current dictionary the set

of words whose first letter is the same as that of the input

word. If, of course, the input word exactly matches one of

the members of this set, the input is assumed correct and no

further corrective action is necessary. The corrector is

context-sensitive: owing to the simple nature of SOLO

syntax (for example, any legal line MUST begin with an

instruction - system supplied or user defined) it is

possible to eliminate from the dictionary set all words

which would not be legal in the current position. This

increases both the corrector's speed and its hit-rate. It

rejects from the remainder any members whose length is more

than one character greater, or more than one character less,

than the length of the input word. Taking each word of this

final list in turn, it compares each with the input word,

applying a series of filters to find the best match.

The filters check for the following possible errors

(imagine the intended input word to have been MEMBER):

MEMMBER duplicated letter M
MEBMER reversed pair MB
MEVMER keyboard adjacency V/B
MEBER missing M
MEMEBER extraneous E

The input word is compared with the current dictionary word

essentially by successively matching corresponding pairs of

letters. The filters are applied in sequence as shown

Page F-4

below. For each letter of the input word:

a) If it is the same as the current letter of the dictionary
word, discard the current letter from both words and
proceed to the next.

b) If it is the same as the previous letter of the
dictionary word (if any), score one error, discard the
current letter from the input word and return to (a).

c) If it is the same as the next letter of the dictionary
word, whilst the current letter of the dictionary word
is the same as the next letter of the input word, score
one error, discard two letters from each word and return
to (a).

d) If it is "adjacent" to the current letter of the
dictionary word, score one error, discard one letter from
each word and return to (a).

e) If the next letter of the input word is the same as the
current letter of the dictionary word, score one error,
discard the current letter from the input word, and
return to (a).

f) If the current letter of the input word is the same as
the next letter of the dictionary word, score one error,
discard the current letter from the dictionary word and
return to (a).

Only the lowest-scoring word or words from the dictionary

remain in the list of possible matches at the end of

filtering. Any dictionary words whose score rises above 35%

are rejected immediately. The scores are expressed as

percentages of the length of the input word (so many percent

of its letters are wrong). The figure of 35% was chosen

arbitrarily, but seems to work well in practice. It implies

that no word of less than three letters can successfully be

spelling-corrected (one wrong letter in three = 33%), and

also implies that possible matches to any input word of less

than six letters may share the same lowest score. In other

words, selecting the lowest scorer(s) as above will

sometimes result in several possible matches. And this of

Page F-5

course is a corrector "failure" - it does not recognise the

input word as a properly spelt dictionary word, but also

cannot suggest a unique dictionary word to replace it.

However, many SOLO words are longer than six letters,

particularly those used to denote relationships;

NOTE JOHN— LIKESPLAYING-->FRISBEE

so that this kind of failure is less common in a SOLO

context.

At the end of filtering, and if there is still more than

one candidate in the dictionary set, any members of the

latter whose length is not exactly the same as the length of

the input word are rejected.

In many cases this will result in a single candidate

remaining in the dictionary set. When this is the so, the

corrector will query the user, e.g. "When you typed FIOD,

did you mean FIDO?". Maguire's system displays a menu of

possible matches and invites the user to retype the correct

one (leading to the possibility of a repeat mistake).

MacSOLO proposes a single candidate match if any and

requires only Y or N as the user's reply. If the user

gives a positive reply, FIDO replaces FIOD; otherwise FIOD

is accepted. But if after all filters have operated the

dictionary set still contains more than one possible match

(FOOl, F002, F003) the corrector will not take any further

action.

At the start of 1983

Page F-6

the mainframe PASCAL—based SOLO was given a corrector based

on these algorithms. But no empirical data as to its

behaviour are yet available.

APPENDIX G

SIMPLE SYNTACTIC ERRORS.

This is the full list of simple syntactic errors

trappable by MacSOLO. They are in approximate order of

increasing complexity.

Specific triple already exists (top level or in STEP mode)
Specific triple not found (top level or in STEP mode)
Node not found
Wrong format
Attempt to redefine or edit system procedure
Procedure - use LIST
Node - use DESCRIBE
Undefined procedure - top level

Unrecognised character(s) removed
Unrecognised extra word(s) removed
Slash error
Quotes error
Parenthesis error
Spacing error
Spelling error

Missing line number
BYE/DONE confusion
SHOW/DESCRIBE/LIST confusion (EDIT mode)
EDIT function (such as RENUMBER) used from top level
DESCRIBE used on non-existent node
Not top level procedure (e.g. FOR EACH, LET)
Attempt to redefine existing procedure
Control statement error
First argument to LET not a node
Third argument to LET not a variable
No arguments given to INPUT

Page G-2

First input word not a procedure name
PRINT omitted before a string
Sublines inappropriate
Inappropriate use of subline syntax
DONE during subline
DONE/BYE confusion (EDIT mode)
Line number at top level
INPUT - wrong number of values
FOR EACH - no wildcard
Inappropriate use of parameter-name
Wildcard inappropriate
Undeclared parameter
Undefined procedure - run-time
Impermissible procedure name (e.g. AB - a reserved subline label)
Impermissible function (e.g. STEP, BYE) in procedure
Duplicated formal parameter
Too many procedure lines

Unbound variable - top level
Excessive FOR nesting
Nothing to undo
CHECK/TEST/FOR nesting not permitted
EDIT etc. used on a string
Inappropriate use of apostrophe

