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ABSTRACT
i

The problems of current use of query languages are looked at. One 
chief drawback is the undesirable requirement for end user familiarity 
with and knowledge of the underlying database structures, in order to 
retrieve data effectively. The approach adopted towards resolving this 
is by means of high-level view support, using unit view structures called 
perceived records. A prime concern of this thesis then, is the study of 
perceived record mappings from the database.

A set of criteria for categorising and analysing the features of 
database mappings for end-user views is first developed. In addition, a 
classification of data structure transformations and data item 
transformations is also presented. The framework is general and is 
independent of a specific data model or database management system. Its
usefulness is demonstrated by its application to the analysis of view 
transformations from recursive database structures to high-level, unit 
view structures. In addition, it serves as a basis for evaluating and 
comparing the mapping facilities in existing systems.

Possible ways of specifying a suitable data model for the perceived 
record view concept are described. Following on, two general mapping 
techniques are discussed. This leads to a proposal for a mapping 
mechanism that supports the flexible derivation of complex perceived 
record views that can differ considerably from the source structures.
The mechanism uses an intermediary canonical transform model.
Description of how the transform model mechansim can be used in practical 
systems to derive perceived record views, is also presented.

The feasibility of the ideas proposed are tested out by implementing 
an interactive software system for defining perceived record views. For
this, a mapping definition language for perceived record derivation is 
first designed. The control system sets up the structures of the mapping 
definition language and prompts the End-User-Administrator to define and 
specify the mappings for a perceived record. Appraisals of both the 
proposed mapping mechanism and implementation are discussed. Examples of 
use of the interface system are included. The limitations of the 
implementation are pinpointed with suggestions for further improvements. 
Practical applications of the work and evaluation of the approach in the 
light of other existing approaches, are also discussed.
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Chapter 1 INTRODUCTION

1.1 Problem background

A structured database is a model of information about some real-world 
system, expressed as a collection of data values. This model is often 
massive and complex. A database system is an information resource tool 
that is designed to handle the complicated organisation and storage of 
data for the purpose of data accessing and sharing by many users.

The organisation of data refers to how data is grouped together in
aggregates which relate to each other. It is specified by a set of rules
defined as a logical data model. The storage of data requires data to be
structured according to physical implementation considerations. An
important criterion of data accessibility is user insulation of the 
details of, and changes if any, made to the storage and logical 
organisation of data. The latter type of insulation from changes is 
often termed as data independence.

A database architecture defines a framework for analysing the 
complexities of a database system in terms of interrelated components.
One widely accepted useful reference architecture is the ANSl/SPARC [ANSI 
751 model. This proposes three general levels of data structures: 
internal, external and conceptual. The internal level represents data 
storage descriptions; the external level features individual user's view 
of data, and finally, the conceptual level, lying between the internal 
and external levels, represents the description of the entire database. 
Each level is described by a schema; this is defined to be a collection 
of data types and representations.

Database users who access stored data, generally fall into two broad 
classes characterised by the level of expertise they have in manipulating 
the data. Sophisticated users are trained in the use of computer 
systems; these users comprise largely of application programmers.

End users are non-data-processing professionals whose job 
requirements will necessitate the use of a database system. Their needs



are commonly data retrievals to satisfy some queries, although 
modifications to data may be performed as well. These users may be 
further categorised into skilled ones and casual ones. The former 
consists of:
o ad-hoc users who very often use a structured query language. A query 

language is a high level language designed primarily for non-program­
ming users chiefly to retrieve data from databases or files. Such 
users may include engineers, salesman, doctors or scientists, 

o transaction-oriented users whose requests are repetitive in nature and 
may invoke a tailored application program to obtain or modify data. 
These will typically be clerical personnel in an office or airline- 
reservation system.

The second category of casual, non-trained end users are not bound by any 
work requirements to access a database and hence infrequently do so.
They may use a natural query language i.e. expressed in a natural 
language such as English.

User views in general, are just some portions of data in the 
database. The term ’view' used here is informal. A number of authors 
though, have used the term 'user-view' synonymously with the term 
'external schema' [Zaniolo 79a, Clemons 79a]. We felt that such an 
equation is too loose; more often than not, the external schema in 
practice describes the mapping information as well, as Date [77] rightly 
pointed out. ( The topic of mapping will be discussed later in the 
chapter).

In this thesis, we define a view to be a meaningful collection of 
data values that the user is interested in. The representation of these 
data values usually conform to a data model. View descriptions, such as 
information about its named contents and data structure, are held in the 
external schema. A view mechanism is an important means of suppressing 
irrelevant data in the database and hence abstracting only that for 
particular user's needs.

Significantly, the containment of only relevant data in views 
simplify access by users. It is this principal use of views as an access 
facility to users, precisely the ad-hoc users, that this thesis aims to



concentrate on. It is expected that views in general for such end users 
will be predefined by an End-User-Administrator( EUA, c.f. DBA).

Other uses of views include the provision of data independence and 
its contribution as an authorization mechanism. The latter is achieved 
by allowing only users with the given privileges to access certain 
portions of data. This protects data from undesirable or wrongful 
manipulations and thus helps to maintain the integrity and security of 
the database.

For a long time, the database user community was mainly dominated by 
the application programmer. Not surprisingly then, many user views are 
designed to interface to COBOL or PL/1 programs. Probably the earliest 
form of a view mechanism is the subschema facility first proposed by the 
Codasyl DBTG in 1969 [Codasyl 693. These subschemas views which 
interface to COBOL or PL/1 application programs, are limited to mere 
subsets of the database; users (application programmers) have to 
'navigate' in order to obtain the data.

The rigid coupling to the underlying database structures has two 
consequences in that:
o it forces the conformation of user views to that of the database

model (an inadequacy recognised in Nijssen [76], Pelagatti et al[78]). 
o it does not allow for user's requirements and ease-of-use in a real- 

world application environment.

The first limitation generated much research efforts to provide 
multiple external schema views in terms of different data model 
representations of the database schema; a large number are devoted to 
deriving external schemas based on the hierarchical and/or relational 
data model from Codasyl network systems (See Section 2.2.1). These views 
consist of loose structures which are necessarily manipulated by the 
associated data manipulation languages (DMLs) pertaining to the data 
model.

Recognising the latter point made above, another line of research 
highlighted the need to orientate view structures to user's applications.
A chief contributor was Clemons [78,79a] who challenged the limitations of



the Codasyl subschema for programmer support and its lack of data 
independence. It became increasingly apparent that the way to extend the 
usability and usefulness of database systems is by abstracting views away 
from the system’s constraints, to match user's requirements [Anderson and 
Dale 77].

In 1981, the DCS Query Language group published a report [BCS QL 81] 
which underlined the shortcomings of query languages for end users. The 
main thrust of the report is aimed at a query language system that 
supports a uniform approach towards data access for end users, 
irrespective of how data is stored and structured in different databases 
(or files).

A fundamental problem identified by the report is the close linking 
of query views to the database structure. A number of existing database 
query languages are based on the relational data model. Examples are 
SQL, QUEL and ISBL. These allow users to retrieve data in terms of 
database relations or in terms of defined view relations. Most other 
query languages which operate on views of network or hierarchical 
database are similarly constrained by views that are often coupled to 
varying degrees to the database model (e.g. Univac's QLP).
Consequently, query language users (this term is used synonymously with 
end users who use a query language) are faced with the task of stating 
explicitly how pieces of data are to be derived or connected together in 
order to use the system effectively to retrieve the required data values. 
This inevitably requires some familiarity with database structures.

Certainly it was on the basis of this requirement that attempts were 
initiated to ease the problem by allowing users to pose queries in terms 
of named data items only. One early implementation is the APPLE system 
[Carlson and Kaplan 76]. This is followed by more recent universal 
relation systems. Alternative proposals, running along very similar 
argument for ease-of-use, are natural query language systems. Examples 
include Codd's Rendezvous [Codd 74*]» ROBOT [Harris 78], TORUS
[Mylopoulous et al 76], EUFID [Kameny 78] and that by Waltz [78]. 
Experiments comparing natural and structured query languages, have shown 
though, that an essential ingredient in effective query language usage 
seems to be the structuring of data that users can perceive and



understand [Shneiderman 78]. It is on this basis, that we shall remain 
interested only in structured query views in the rest of this thesis.

A second finding by the report highlighted on a wider perspective, 
the non-uniform approach to using query languages in general, to extract 
data. Each query language is based on a differ ent form of view 
structure or database structure. If end users wish to access data from 
multiple database systems that are different (such as from a network, 
relational and hierarchical system), they must learn to cope with varying 
types of data-model dependent view constraints; there is no one common 
query language.

This thesis thus specifically researches into the derivation of views 
that overcome the above limitations. In particular, a view model is 
proposed that can provide the basis for specifying simple, DBMS- 
independent query commands to retrieve data. Views defined by the model 
are called perceived records; the terminology is first credited to the 
BCS Query Language Group. The work involves a study of end-user view 
requirements and methods to derive them. The term 'end users' for the 
rest of the discussions will now be taken to refer strictly to those who 
use a structured query language.

1.2 Characteristics of a high-level, user-oriented view

The characteristics can be regarded from the point of contributing 
towards, firstly, the functionality and secondly, the user-perception of 
the view.

1.2.1 Functional requirements

The chief purpose of a query view is to facilitate direct data 
access. This requires that where necessary, raw data from the database 
can be processed in a 'ready-to-use' form so that users do not have to 
specify additional procedures in order to retrieve the desired data 
values. The following example based on a HOSPITAL database illustrates 
the point.



The database describes about wards, patients, doctors, nurses and 
their related information in the hospital. Suppose some information 
about a ward, modelled in the database is thus; each WARD(entity) has 
INTENSIVE CARE UNIT(entity, abbreviated to ITU) as shown graphically 
below.

HAS

WARD

ITU

The corresponding attributes of the two entities are 
Ward(W-no, W-name, Matron-name, No-of-beds) 
ITU(U-no, No-of-beds)

In order to answer a query of the general form ’How many beds are 
there altogether in a ward?*, the end user should not have to understand; 
o that additional information i.e. no-of-beds are held in another entity 

i.e. ITU as well, 
o how to access this information.
o how to compute the desired data by adding no-of-beds from ITU to that 

in WARD.
In other words, a view consisting of information about a Ward(note: not 
Ward and Intensive Care Unit) should be available to the end user with 
data items, W-no, W-name, Total-no-of-beds in the view. The query then 
becomes a direct retrieval request.

The example here sums up two aspects central to the functional 
requirements:-
o the provision of data values in the desired form.

Often enough, end users are not just interested in getting raw data 
values from the database, but wish to extract information in the form 
of computed values, such as a summarized statistical value, for a 
given view application.

o the achievement of user independence from logical database structures. 
A solution to this is to capture all the data values representing the 
user’s information needs in a unit data structure. A unit view 
structure therefore defines a ’complete’ semantic unit of information 
to the end user; specifications of connections related to the underly­
ing structural constraints are hidden away. The end user is thus



relieved of the task of 'navigating' between disjointed data 
structures. Complete is used in the sense of satisfying some given 
information requirement about a user-perceived real-world object.
This refers to the primary entity that the end user wants information 
related to, and on which the whole meaning of the view focuses. The 
view may contain information drawn from other entities (as in the 
above example, from ITU) but the end user should not have to perceive 
or understand as so.

At this juncture, we introduce the concept of a base entity (or 
otherwise referred to as root entity) of a view, that is mappable from 
the database which represents the user-perceived real-world object. For 
instance, the base entity of the above view example is the database 
entity WARD.

A second important consideration is how the end user can use such a 
view effectively, given that we now have a view that contains the 
desirable functional characteristics.

1.2.2 User perception and semantics

One factor which significantly affects the understanding of the 
meaning, and hence the use of the view, is the end user's perception of 
it. This in turn depends on the way that data values are structured. A 
data structure embodies certain semantics of the data within it. The 
chosen structural representation should reflect as closely as possible 
the real-world situation. Often, in many practical applications, data is 
perceived in a hierarchic form. For instance, in the case of ward with 
many patients, one data occurrence of WARD has repeated occurrences of 
PATIENTS associated to it. A comprehensive data representation for such 
kinds of views is a hierarchic one.

In accordance then, a second view requirement is the capability to 
structure and represent repeating data values where necessary. 
Furthermore, in order to aid fuller perception of the view's semantics, 
the need exists that meaningfully associated data values can be grouped 
into an identifiable object in the view.



The points considered in this and the previous section can now be 
best concluded with a more complete example. This again uses the 
HOSPITAL scenario.

Consider the following view PATIENT which describes the user- 
perceived object of interest; the corresponding base entity is the 
database entity PATIENT but the view also includes other related 
information of interest.

PATIENT(P-no, P-name, Appmt(Appmt-date, Doctor(D-name, D-phone-no) ),
Test (Type-of-test, Result ) )

All data values are represented as data items which are not 
underlined; these are P-no, P-name, Appmt-date, D-name, D-phone-no, Type- 
of-test and Result. Note that the end user will not consider the last 
five data items (from Appmt-date to Result) as belonging to independent 
and separate entities. He or she will regard them as the Patient's 
Appmt-date, Patient's Doctor(name) and so forth, i.e. information 
pertaining to the base entity of PATIENT view.

The underlined names of Appmt, Doctor and Test serve as aggregate 
names for the purpose of enhancing the semantics; they do not contain any 
data values. The meaning of the view is that each patient can have one 
or more appointments, and one or more tests. Each appointment is with 
one doctor only. In short, the data values of Appmt-date, D-name, D- 
phone, Type-of-test and Result can repeat.

An occurrence of the view PATIENT is as follows:
P-no P-name Apmmt-date D-name D-phone-no Type-of-test Result

123 B.Smith 10-1-83 ’ T.B.Connors 653120 Eye positive
12-1-83 J.S.Bank 653482 Skin negative
20-4-83 R.W.Ling 653125



1.3 Mapping

Intrinsic to a view mechanism is a mapping. This is defined to be a 
mechanism which specifies how one set of data object descriptions and 
constraints at one level corresponds to a set of data object descriptions 
at another level. A data object here refers to a data type or data 
value. The two levels of concern here are the external and conceptual 
level.

The correspondence can be classified into two types: structural and 
operational. In this context, structural correspondence is the 
translation of both the inherent constraints of a set of structures (as 
defined by its logical data model) and the constraints defining the data 
values, from the conceptual level to those at the external level. An 
inherent element of structural correspondence are the kinds of changes in 
the semantic information that may be obtained with any differences in the 
data structures.

Operational correspondence is the translation of operations specified 
at the external level to those that can be performed at the conceptual 
level. In both cases, the equivalence or correct translation, is a 
crucial requirement of a mapping. Translation of retrieval operations, 
in general, are fairly simple. Those of update operations, on the other 
hand, are tricky because they can affect the global data in the database. 
Any modifications must be carefully propagated in order that the database 
maintains its integrity.

In this thesis, we specifically consider structural correspondence 
from the conceptual to the external schema, in the context of retrieval 
operations only. Operational modifications to data in the external 
schema will not be translated to the conceptual level, the chief reason 
being that end users are more commonly interested in data retrievals. 
Other works which consider the mappings of update operations can be 
referred in Clemons [76b], Klug [78] and Dayal and Bernstein [78].

The conceptual schema objects used for our investigation are 
entities, attributes and relationships (e.g. the EAR model as described 
in OU [80], or that on which Chen's Entity-Relationship model [Chen 76]
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is based on). Internal schema storage descriptions will not be relevant 
in the study.

1.4 Organisation of thesis

The thesis can be regarded as having two main parts. The first part 
deals with the development of a generalised framework to categorise 
mapping concepts and features and the subsequent application of these 
findings to a. analyse view transformations from recursive database 
structures and to b. evaluate and compare mapping facilities of 
practical systems. The second part concerns the specific research into 
perceived record mapping —  i. a definition of a view model for 
perceived record, ii. a proposal for a mapping mechanism and a design 
and iii. implementation of an interface facility for perceived record 
definition. The corresponding chapters are as follows :

Chapter 2 reviews past research into mappings of different kinds of 
views and their relevance to that in this thesis. For this, a framework 
for categorising the various classes of works is used.

Chapter 3 formulates a framework of criteria for a mapping facility. 
This consists of five distinct concepts that form inter-related features 
of a mapping facility, A classification of data transformations, sub­
divided into data structure transformation and data item transformation, 
is also presented. The features and requirements of two other chief 
aspects of a mapping facility are also discussed. These aspects are :
1. the corresponding mapping definition language used to define view 
mappings, and ii. the process of how the definitions and mappings of 
views is carried out.

Chapter 4 describes the analysis of mapping unit view structures from 
recursive database structures based on the framework developed in Chapter
2, The study represents a new way of looking at such transformations 
which emphasises the abstraction and preservation of the semantics in the 
underlying database structures, and the representation of data in views.
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Chapter 5 uses the mapping framework to evaluate the mapping 
capabilities of System R and those proposed by the Codasyl EUFC, In this 
way, the framework provides a common basis for comparing the available 
facilities.

Chapter 6 concerns the specification of the perceived record view 
model. Three different methods of modelling the characteristics of the 
perceived record view are described and evaluated.

Chapter 7 develops a mechanism for mapping perceived records from the 
database. Existing techniques of mapping are first surveyed. The 
subsequent approach adopted is an intermediary one, in the form of a 
canonical transform model. Its applicability in a practical system, 
advantages and disadvantages are also discussed.

Chapter 8 describes the design and implementation of an interactive 
mapping interface which controls and prompts the EUA to define a 
perceived record and its mapping from database types. A mapping 
definition language for the purpose is presented. The use of the 
facility is demonstrated by example runs given in the appendices.

Chapter 9 concludes the thesis. A summary is given and directions for 
further extensions to the existing implementation, and practical 
applications of the research are suggested. Finally, an overall 
appraisal of the perceived record approach is briefly discussed in the 
context of general database applications and other existing approaches to 
resolving the problems of database querying.
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Chapter 2 REVIEW OF RELEVANT RESEARCH

2.1 A characterisation

The wide spectrum of research in external-conceptual database 
mappings can be broadly categorized according to the degree of difference 
firstly, in the syntactic data structures and secondly, by changes in the 
semantic content of some pieces of data from the conceptual level. These 
two criteria could be said to be due first to Lisboa [79] who used them 
as the basis for classification of work in this area. His framework was 
subsequently adopted by Spaccapietra [80] in the treatment of mappings in 
heterogeneous distributed database systems. This specifically pinpointed 
the differences in the data model and semantic interpretation (SI) that 
can exist at the two levels. Semantic interpretation was simply defined 
as ’the interpretation by one of the semantics of a piece of reality’ 
[Spaccapietra 80]. Four categories in all were identified:-

o Trivial Mapping - This establishes no change in data model
representations. The external semantic interpretation (E.SI) is 
equivalent to or a subset of the conceptual semantic interpretation 
(C.SI), e.g. as exists with many commercial query products.

o Semantic Mapping - This again establishes no change in data model 
representations but the E.SI now differs from the C.SI. Relational 
query systems such as Ingres and System R provide good examples here.

o Model Mapping - This establishes a specific change in data model
representations. The semantic interpretations remain unchanged. The 
multiple schema work by Zaniolo [79a] is representative of this.

o Total Mapping - This is a combination of semantic and model mapping; 
both the SI and data model representations differ at the two levels.
An example is the high-level user interface implemented by Clemons 
[76a].
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These mappings are illustrated in fig, 2.1.
A

changes in 
semantic content

2 é semantic
mapping

trivial
1 #-mapping'

3 • total 
mapping

model
4-#-mapping'

data structure 
differences

fig. 2.1 Categorization of External - Conceptual Mappings

In yet another paper, Anderson and Dale [77] defined three classes of 
mappings at a more general level i.e. not necessarily external- 
conceptual. The classification is in terms of data value changes or 
correspondences:

o Value transformation - this is simply the mapping of one value set to 
another,

o Schema directed transformation - the key factor here is that
individual data values do not get transformed; the schema structure is
manipulated or transformed. ^

o Value directed transformation - this is recognised as the most
important category; it establishes substantial changes in both the 
data structures of the schema and the data values, and hence the 
overall semantics that can be derived, (c.f. total mapping).

Although some useful concepts in terms of the power and capabilities 
required of a view mechanism are presented, their categorization is not 
very complete; it does not sufficiently cover the range of research in 
this area.

The remaining sections of this paper will use the top three realms 
(If 2, 3) of the graph in fig 2.1 as focal points for referencing the 
works of other researchers. An attempt is made to assess the impact on, 
or perhaps the departure from the line of research pursued in this work.
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which falls into the realm of total mapping. The majority of 
contributions are from within a single database environment. The last 
section is specially devoted to examining work done in integrating 
distributed database systems, which in terms of mapping requirements bear 
direct relevance to the work in this thesis.

It is noted that trivial mappings provided by most commercial DBMS(s) 
will not be dealt here; these are mainly subschema facilities. An 
appraisal of query languages and the provision of view facilities in a 
list of Codasyl-based DBMS can be found in Tagg [83].

2.2 Contributions along the axis of data structure differences

2.2.1 Specific data model mapping

Much research has been generated in this direction over the past 
years. The mappings involved emphasise the structural correspondences of 
inherent constraints between the data models and the operational 
correspondence of the data manipulation commands.

A number of contributions in particular have been made with Codasyl- 
type network databases. Zaniolo [79a, 79b] designed algorithms based on 
key migration for mapping relational and hierarchical views over Codasyl- 
78 [Codasyl-78] schemas. Emphasis is laid on preserving the information 
contents of the underlying database in deriving general purpose views 
which can support both query and update operations. Goldman [79], on 
similar lines, developed a system to automatically translate Codasyl 
schemas to a relational schema. Translations of hierarchical and network 
database schemas to external relational schema views in order to support 
transactions (restricted to retrival operations) in a distributed 
database environment have been investigated by Vassiliou and Lochovsky 
[80]. They specifically considered the problems of mapping basic 
relational operators (SELECT, JOIN and PROJECT) in the queries to 
corresponding operations in the underlying database schemas. Another 
contribution which specifically looked at the mappings of the relational 
operators (JOIN and GROUP BY) on navigational network schemas is due to
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Esslemont and Gray [82]. More recent work on the correspondence of 
Codasyl network schemas to relational schemas can be found in Fallahzadeh 
and Cousins [83], who identified the limitations of the other three 
pieces of research mentioned above. However, an important issue which 
all these works did not attempt to address is mapping repeating groups 
from network schemas. This thesis extends to consider transformations of 
repeating data structures into view structures.

Related research on the mapping from relational schemas to differing 
data model external schemas have been carried out by Kalinichenko [76] 
and Lien [81, 82]. The former concentrated on the network model while 
Lien [81] designed (2-steps) algorithms for deriving hierarchical 
schemas. His other contribution, (Lien [82]) specifically studied the 
problem of equivalence i.e. preserving the constraints in the mappings 
between relational and network acyclic (loop-free) schemas.

At a more general level, Klug [81] proposed a relational canonical 
mapping model that supports the derivation of hierarchical, network and 
relational external schema views. This, in essence, is the translation 
of the external data model and the relational model. Some other work 
[Date 75, Klug and Tschritzis 77] which concentrated specifically on the 
mapping of DML operations of the hierarchical, network and relational 
data model, proposed a single common language to support the different 
types of data structures being manipulated.

The works mentioned so far are concerned with the three conventional 
data models: hierarchical, network and relational. There are some other
efforts which involve different data models. Pelagatti et al [78], for 
example, demonstrated the mapping of a binary relational model at the 
conceptual level to the n-ary relational model [Codd 70], using an 
algebraic specification. A semantic data model is the basis of the 
translation of a Codasyl database schema to a relational database schema 
in Biller’s work [Biller 79].

The references described above are by no means exhaustive; it is only 
hoped that they can provide adequate illustrations of the contrasting 
emphasis in the other remaining sections of this chapter.
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Finally, it is noted that this type of mapping is intended to support 
high level DML(s) i.e. data access via commercial application programs. 
Notably, the change in view representation aims at the adaptability to 
using a different data model based DML. There is no change in the basic 
interpretation of the database semantics; views are represented in 
disjointed structures (unlike in a unit view structure) and in general, 
no processing of data values occurs as part of the mapping process.

An interesting development in recent years has been to facilitate 
data access via high level programming languages using data abstraction 
software tools. The following description is intended to give a more 
complete picture of the current state-of-the-art in mapping techniques 
via different types of computer languages.

2.2.2. View Mappings via high-level programming languages

The general term of data abstraction refers to the containment of 
only essential data and the exclusion of irrelevant details, required for 
a certain purpose or certain user needs. Data abstraction is a 
fundamental concept in reducing the complexities of using computer 
systems. In database systems, it forms the underlying principle of view 
facilities. It is also the basis for developing database design tools 
[Smith and Smith 77a, 77b] and for designing semantic data models [Hammer 
and Mcleod 78, 81, Brodie 81].

In the area of programming languages, the emphasis of abstraction 
techniques has been to develop software tools for clearer and shorter 
specification of problems [Jones 80]. Research has shown that such tools 
can be used to directly define database views in a high level programming 
language environment [Weber 79, Wasserman 79a].

A number of high level languages have been designed with the aim of 
integrating database objects into the program without the need of the 
programmer explicitly mapping database structures to conform to the data 
types of the program. (This mapping is usually performed by coding calls 
to the database structures). This type of integrated languages [Lacroix 
and Pirotte 83] are largely based on the programming language PASCAL, for
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accessing a relational database. The list includes RIGEL [Rowe and 
Shoens 79], PLAIN [Wasserman 79b], PASCAL-R [Schmidt 77] and EXT-PASCAL 
[Claybrook 82, 83]. The use of abstract data types [Jones 80] in these 
languages has contributed to a means of defining database views which 
encapsulate, and are characterised by a distinct set of predefined 
operations that can be allowed in the views. This certainly adds a new 
dimension to the conventional type of database views that are described 
in an external schema, in that it is not just a way of restricting what 
kinds of data the user can access (and hence simplify the user’s task), 
but also determines what types of operations can be performed on the 
data. It is therefore particularly useful in controlling and monitoring 
the consistency and integrity of the database in a shared update 
environment [Weber 79]. On a slightly different slant, the attractive 
property of encapsulating operations within a data type has prompted 
Lockemann et al [79] to apply abstract data types in the design of 
databases.

Another piece of work which adopted the concept of data abstraction 
based on the persistence of data objects in the programs, is due to 
Atkinson et al [83]. The programming language they proposed is PS-ALGOL 
(developed from S-ALGOL); the approach to defining database views and the 
objectives are in general, similar to those in the other languages 
mentioned above.

In a contrasting contribution, Leavenworth [81] uses a data abstract­
ion language in conjunction with a module interconnection language to 
define views of the hierarchical database IMS [as described in Date 77 3. 
Both languages are very like CLU [Liskov 77]. The data abstraction 
object (or view) is a two-dimensional form (which is due earlier to 
Housel and Shu [76]. Interestingly, a form can either be a ’flat table’ 
(i.e. in the relational sense) or a hierarchical data structure (c.f. the 
characteristics of a view as described in Section 1.2).

2.3 Contributions along the axis of semantic changes

This can be divided into two lines of research directions. The first 
establishes different set of view semantics by shuffling and reorganising
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pieces of data in the database schema; individual data values are not 
operated on i.e. modified or transformed. The second involves actual 
transformations of data values which registers the changes in the meaning 
of the data. This is especially true of research-oriented relational 
query language systems. Notably in both cases, no change in data model 
representation is specified.

2.3.1. Restructuring of schemas

Extensive work has been carried out in the restructuring of
hierarchical schemas [Mehl and Wang 74, Navathi and Fry 76, Dale and Dale
76, 77, Navathi 80]. Navathi and Fry identified three types of schema 
modification: renaming of the schema constructs, combining of schema
constructs and relating of schema constructs (constructing new 
relationships between the source schemas). Each type of modification has 
corresponding effects on the associated occurrence structures, expressed 
by instance and value operations. (Note that the ’value operations’ here 
are non-value modifying: these operations are delete value, copy value
and create null value).

Dale and Dale presented useful algorithms for restructuring classes 
of schemas: subschemas, ancestor schemas and descendent schemas, from an
original hierarchical schema. They demonstrated that these derived 
schemas are consistent in that queries defined on these schemas will be
equivalently processed and executed on the original schemas.

The restructuring techniques used for hierarchical schemas are mainly 
operation-based. Swartwout [77] argued that such operation oriented 
specifications are not applicable to network schema restructuring. The 
approach put forward instead, was a descriptive specification of the 
desired target schema in terms of the access paths which relate the 
source data types.

In accessing the relevance of these research in terms of direct 
access functional requirements, the efforts represent one step towards 
provision of semantic information that can be derived to satisfy user 
needs. However, because the data model remains unaltered, any data
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retrieval will still require some knowledge of the linkages in the data 
structures. In addition, any data value conversion must be specified 
externally by the users themselves.

2.3.2 Modification of schemas by queries

Two of the most prominent contributions in this area are System-R 
[Astrahan et al 76] and Ingres [Stonebraker 75]. The concept of views 
predefined in an external schema by a database administrator (as exists 
in Codasyl database systems) is absent. Users define their own views 
directly in terms of underlying database relations, in a query language, 
by means of query modification algorithms. A view in these systems 
specifically refers to a derived relational table. Capabilities are 
provided which support a large range of data vdlue transformations. The 
view mechanism of System R will be assessed in greater detail in Chapter 
3.

Universal Relation Systems
A great deal of research and literature has been generated about the 

concept of the universal relation. The topic is still undergoing active 
research and there is still not yet a general acceptance of precise 
definitions of the many ideas associated with it. Indeed, as recently as 
1982, Ullman [82] gave a taxonomy of the various assumptions referred to 
generally as the ’universal relation assumption’ that appeared on 
numerous papers. He identified five different forms altogether. We do 
not propose to go through all five in detail; we shall only describe one 
which is fairly commonly encountered. This is known as the Universal 
Relation Scheme Assumption (URSA). The underlying assumption here is 
that sufficient renaming of attributes occurs such that there exists a 
unique relationship among any set of attributes, in order that ’all 
attributes are available freely for combination into relation schemes’ 
[Fagin et al 80]. This assumption has important implications in the 
design of universal relations as a user interface.

For a long time, conventional relational query language systems (such 
as System R or Ingres) have been credited with freeing the user from the 
knowledge of physical access paths [Date 81]. However much criticism
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remains about the fact that an understanding of the logical associations 
between the database relations is still necessary in specifying a 
relational query [Maier 83a, Biskup and Bruggemann 833. The universal 
relation is seen as a means to overcome this latter limitation. The user 
queries the database in terms of attributes only. It essentially appears

as if the database were one single relation ; he or she is relieved from 
learning the intricacies of the database structures [Ullman 82, 83].

A number of query language systems have been developed based on the 
universal relation concept. An early study was made by Carlson and 
Kaplan [76] in which they proposed an attribute-based query language 
called APPLE (An Access Path Producing Language). Another system called 
q [Aho and Kernighan 80] is still under current development. Other 
recent systems include System/u [Korth and Ullman 80, Korth 81, Ullman 
82], PIQUE [Maier et al 82, Rozenshtein 82, Stein 83] and Parafrase [Kuck 
et al 80, Kuck and Sagiv 82]. Kuck and Sagiv designed a universal 
relation interface over a network database. The PIQUE system uses a 
query language called PITS which is described in [Maier 83b].

All these systems rely on a capability to infer required linkage that 
exists between sets of attributes (the consequences of it not being 
correct need to be explained later). For this, it is assumed that 'among 
any set X of attributes, there is one basic connection that may serve as 
the default connection' [Ullman 83]. This basic connection for mapping 
is referred to as window [Maier 80] or connection [Maier et al 82].

Much scepticism has been directed at the suitability of the universal 
relation scheme as a user interface [Atzeni and Parker 82] and more 
generally, the underlying implications behind the assumptions [Kent 81]. 
The main objection to it as a user view can perhaps be best summed up as 
the sheer dependence on the database query system to deduce the 'correct 
answers' to users' queries; this it is argued, relies heavily on natural 
inference and intuitive assumption of what the user wants -—  it is

* Some gross simplifications may have been implied. In this rather brief 
review, it is not possible to describe every detail; the reader is 
referred to the appropriate literature where necessary.
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especially vulnerable where semantic ambiguities can arise with cyclic 
schemas. Ullman [82] however, recognised this fact and pointed out that 
the query language should allow the user the option to specify a 
connection in his or her query if so desires, but that the simpler 
connection (in the case of several) be used as the default if a 
specification to the contrary, is not stated. However, this begs the 
question (an expression of the author's own opinions) because the user 
will only be able to define exactly which connection to use if he or she 
is aware of what is in store in the underlying database.

It is perhaps appropriate at this point, to compare the approach put 
forward in this thesis and the universal relation approach towards the 
design of user views. Just as with universal relation schemes, the prime 
objective of a view in this research, is granting independence from 
details of underlying logical database structures to the user. The 
proposal here for achieving this is to encapsulate a set of distinct 
semantics within a set of data values (associated with the corresponding 
data items), which conform to a semantic view object. This, we believe, 
overcomes the types of conflicts inherent in the universal relation 
approach mentioned above. For each connection that exists between two 
sets of attributes, a semantic view can be defined where necessary and 
the differences made clear and explicit to the end user.

2.4. Specific User Interfaces

Contributions in this section are representative of total mapping. A 
significant implementation was by Clemons [76a, 76b] who designed a user- 
oriented interface for the data processing environment. The interface 
consists of hierarchically-structured data objects called Virtual 
Information Objects (VIO's) that represent a COBOL or PL/I record, mapped 
from a relational database; these VIO's can then be easily manipulated 
easily by a COBOL or PL/I application program. He identified three 
important aspects of a mapping description;
o Format information which describes how a VIO can be structured 

differently from the database relations; for this, a taxonomy of a 
hierarchical unit view structure is presented.



22

o Access information which describes the access paths (relationships) 
that are to be used in deriving the source data items, 

o Data item information which allows the transformation of values of 
data items.

VIO's may be virtual, defined in the sense that they may be used in 
the description of other VIO's as if they were relations. A particularly 
interesting aspect of the work is the processing of recursive 
hierarchical data structures (the mappings of which are still not well, 
explored) into amenable VIO structures. In subsequent works, he extended 
these ideas to propose an external schema facility to replace the limited 
subschema facilities for Codasyl-78-based systems [Clemons 79a, 79b].

A very relevant proposal for a user interface is the Codasyl End- 
User-Facilities Committee forms-oriented approach [Codasyl EUFC 83]. The 
interface is aimed at end users in an office environment, where views of 
a Codasyl database are structured and perceived as forms, which may be 
considered as normal office forms or documents. The proposed mapping 
technique is via elementary data items; a full evaluation of this 
proposal is dealt with in Chapter 4.

Earlier on. Dale and Lowenthal [77] discussed a very similar 
approach, based on forms advocated by the then known Codasyl End User 
Facility Task Group [Codasyl EUFTG 75]. In particular, they applied 
previous research in hierarchical schema restructuring [Dale and Dale 76, 
77] firstly, to the mapping of hierarchical forms from a database schema 
which is restricted to a hierarchy, and secondly, to the definitions of 
forms on top of existing hierarchical forms.

All three studies have one thing in common; the proposal of a single 
hierarchical data object as the user view. This serves to reinforce the 
similar stand taken in this thesis; further reference pointing towards 
the same direction is that of Leavenworth [81] described in the preceding 
Section of 2.2.2.

Moving away from the conventional data models (and specifically the 
relational data model), McLeod [82] adopted a different, alternative 
approach to end-user interfaces and in particular, universal relation
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interfaces in granting user independence from logical database 
structures. He presented an interactive system which prompts and guides 
the naive end-user to formulate and identify the required data from the 
database by a stepwise refinement methodology. The interface is built on 
an underlying semantic database model called SDM (Semantic Data Model), 
developed by Hammer and McLeod [78, 81]. The construct which represents 
the user's perceived neal-world object is a 'class' in the SDM. Although 
such a methodology may eliminate some of the semantic limitations of the 
universal relation approach or natural language approach, it is however 
not as appropriate for the class of end users we are interested in.

2.5 Contributions from integrated distributed database systems

The direct relevance of research in this area is the mapping of 
multimodel (heterogeneous) database schemas into a single common data 
model, on which users can express queries independently of any specific 
local distributed DBMS. ,

A very interesting software system designed for such integrated 
access is MULTIBASE [Smith et al 81]. The system supports a unified 
global schema which is expressed by the functional data model [Shipman 
81]. Corresponding to the functional data model, the single unified 
query language provided for user access is DAPLEX which is proposed by 
Shipman [81]. The entire project is to span over three years and at the 
time of the report publication, three types of local DBMS schemata were 
claimed to be integrated into the global schema: the Codasyl model, the
relational model and the (commercial) file model. The mappings involve 
translating the data structures and constructs of each of the three 
models to entity types and functions in the functional data model. The 
complete mapping from the local host schema (at the site of each specific 
DBMS) to the global schema is performed in two stages: (1) the
translating of the local host schema to a local functional-model based 
schema, (2) the merging of the transformed schemas to the single global 
schema. A particular aspect is the integration of incompatible data into 
the global schema. Three types of data incompatibility that can occur 
are given as:
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o Scale difference - one example is that climate may be assigned one of
four values (cold, cool, warm, hot) in one database, or it may have a
numeric value of average temperature in Fahrenheit in another 
database.

o Level of abstraction - an example described is the recording of an 
employee's average salary over the past five years in one database, 
while another database may record the 'salary history' instead, 

o Inconsistency of data - the same piece of information occurring in
several databases may have different values due to some errors.

The distributed context of the mappings has given the work a 
generality that has been missing from all others mentioned above —  these 
are either restricted to a particular data model or are DBMS-specific. 
Effectively, the transformations of local schemata to the global schema 
represents a model mapping whilst the resolution of data incompatibility 
is one form of semantic transformations. More precisely, it 
characterises a total mapping. Notwithstanding the judgement of whether 
a view model based on a unit data structure is better than a functional 
data model in terms of end-user usability, the MULTIBASE system does 
share in common many of the mapping requirements underlined in this 
thesis — general-purpose, ease-of-use and support of a unified high 
level query language. Finally, it goes to show that view mappings 
carried out in this thesis can be usefully applied to a distributed 
database system.
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Chapter 3 A FRAMEWORK FOR CATEGORIZING MAPPING FEATURES

3.1 A set of underlying concepts

There are five essential features of a mapping facility.

3.1.1 Data structure support

It has been noted in previous chapters that the structure of a view
contributes significantly to the understanding and interpretation of some 
pieces of data. The facility to define a view structure suited for end 
users is thus a fundamental aspect of the mechanism. The categorization 
in Chapter 2 has shown that not all view facilities incorporate this 
capability; in many instances, the structure defaults mainly to the 
database schema (subschemas), or is just a list of data items (as with
many commercial products). In the latter case, the view structure is
often represented as the displayed format resulting from some query 
processing. -

The view characteristics as described in Section 1.2 require the 
support of a single hierarchic data structure. The concept of a base 
entity of a view will then be represented by the root node of a tree 
hierarchy. Associated with a view structure is the corresponding view 
occurrence structure. This can be thought of as the (sub) set of data 
occurrences selectively combined as a whole unit from occurrences of the 
source data types. In specifying the hierarchic structure of the view, 
the external schema needs to contain the database types and the 
derivation rules for the proper construction of a view occurrence 
structure.

3.1.2 Naming

Naming is an essential aspect of a mapping mechanism where there is a 
need to reference database objects by perhaps more meaningful names, or 
to reference newly derived data objects in the view. The provision of 
names is a fundamental means of referencing data.
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Meaningful names clearly contribute to the understanding of the 
semantics of the view. However, names cannot adequately serve as a 
proper explanation of the complete semantics of the view. Such an 
explanation can be appropriately provided as a data dictionary facility 
that stores the textual description about the meaning of the view and its 
data items.

The most basic form of (re) naming in a mapping is of atomic data 
type i.e. a data item type in the view or a database attribute type. 
Naming is an important aspect in the structuring of atomic data types 
into a higher level or aggregate data type. Such a data type within a 
view, is a collection of data items in the view which have a common 
association. The proper semantic naming of the aggregate structure 
brings out the meaning of this association. This aids the end user's 
comprehension of the view; it is especially true with complex views. 
Referring to the PATIENT view on page 8, three such aggregate names 
Appmt, Doctor and Test are used to present a clearer context of the view 
to the end user.

3.1.3 Format

This refers to the representation of data values of the view as 
displayed to thé end user. It relates to both the individual data value 
representation and the overall spatial layout of all the data values for 
an occurrence of the view.

The representation of a data value may be numeric, for example, as 
integers or real numbers, or it may be character string. The term data 
type used elsewhere [Date 77] is synonymous with data item format. The 
conceptual schema, in principal, is not concerned with data 
representation. The representation of individual values is therefore an 
essential aspect of a mapping. In practice however, (logical) schemas do 
incorporate the representational format, expressed in terms of domain 
values. Consequently, the specification of a data item format is an 
optional part of a mapping. It is only required when the desired display 
format differs from its schema type format, or when a standard default
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transformation (as exist in most programming languages) is not 
appropriate.

Section 3.1 earlier advocated that the overall representation of data 
in a view be supported by a hierarchic data structure. This basic 
structure may be mapped to a display layout designed specifically to 
enhance user's perception. Such a format is a presentation of the 
spatial positions of data values relative to each other, (most likely 
laid out on a screen), with the underlying hierarchical framework still 
retained. The use of a form layout, for example, is claimed to be most 
suitable for the office environment c.f. the Codasyl EUFC proposals.
These proposals contain a Geometry Section which is used to specify the 
mapping of hierarchically-structured derived values to the geometric 
positions in the user-perceived form. One can even go further to 
consider graphical facilities mapped on top of the hierarchic structure. 
However, although such facilities have their relevance towards the 
perception of data, they are not a fundamental feature. For our intended 
view model aimed at general query purposes and direct retrievals, the 
simple linearised view representation as illustrated on page 8 is 
adequate.

3.1.4 Selection

There are two forms of selection. Selection of data types and the 
exclusion of irrelevant ones, is a basic means of limiting data contained 
in a view. Type selection is a facility fundamental to many aspects of 
database systems. It is, for instance, an integral part of query 
language (sub) systems.

Selection of data occurrences, on the other hand, is not as commonly 
supported as a means of view definition. The inclusion of this capability 
is important because it is a way of conceptualising new classes of 
semantics that can be logically derived from the underlying database 
semantics, which has not been defined before [Hammer and McLeod 81]. 
Suppose in the HOSPITAL database example (Section 1.2), the database 
entity APPOINTMENT has APPMT-TIME as one of its attribute. The attribute 
APPMT-TIME does not necessarily have to appear as a data item in the view
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LATE-APPMTS. The inherent meaning of 'lateness* derived from some 
property of APPMT-TIME is now implicitly carried in the view. Occurrence 
selection is therefore a way of creating new view objects which can 
encapsulate some common property.

3.1.5 Identification of data values for a view occurrence structure

One of the primary objectives of a view mechanism (as underlined in 
this work) is to free the end user from specifying database connections 
when using a view. In order to achieve this, the mapping facility must 
support the selection of data values for an occurrence corresponding to 
the defined data types that comprise a view structure, based on correct 
unambiguous links between the data types. Correct here is in terms of 
both the database and user semantics. The selection operation is a 
straightforward process, given the conditions of qualifications for the 
selection.

The specification to derive the required view structure must be 
semantically-equivalent and consistent. Used here, semantically- 
equivalent means the correct matching of user's intended semantics with 
the definition of the view semantics in terms of database objects. The 
requirement of equivalence and consistency is necessary for any mapping 
facility; it is especially critical here, given that a main objective of 
a view here is to close the semantic distance (the term borrowed from 
Nijssen 77) between the database and the end user.

Notably, the specification of relationships between database entities 
does not necessarily form an appropriate access path for the actual 
retrieval of data values for an occurrence structure. Such access paths 
will often depend on optimisation strategies, or on the particular form 
of query posed by the user on a given query.

3.1.6 Summary

The five functionalities discussed above are necessary elements of a 
mapping facility for the overall transformation of database structures to
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a query view. The aspect of semantics has been intuitively implied in 
the descriptions; its abstract notion has made it difficult to confine it 
solely to a specific area of discussion. The extent of semantic changes 
and structural differences are especially highlighted in the following 
section, in the range of data type transformations that is used to create 
a linear repeating view structure and its associated occurrence 
structure.

3.2 Ways of transforming ; a classification

The transformations that are contained here are from the entities, 
attributes and relationships of a conceptual schema to data items and 
view structures in an external schema. Aspects of name and format 
changes are assumed to be part of the overall mapping.

3.2.1 Data item transformation

This sub-section looks at the various ways data items in the view may 
be specified with the possible corresponding data value changes. The 
categorization is split up into two parts : Section 3.2.1.1 examines
changes from database attribute types --  these are commonly encountered;
Section 3.2.1.2 features derivation from non-attribute source types i.e.
from database entity and relationship types --  the significance of such
transformations is the adaptation of one form of data description and its 
role as an attribute or entity or relationship type as defined in the 
database conceptually, to suit different user's perspective.

3.2.1.1 Conventional

o The simplest class of transformation is a direct mapping from an 
attribute. The data value remains the same but the name and format 
may change if required.

o The second class of transformation involves an algorithmic computation 
using the values of one or more database attributes, to give the
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transformed value for a single data item. The different types that 
fall into this category can be grouped according to the kind of 
algorithm used:

—  An arithmetic expression computes a transformed value from occurren­
ces of related attributes associated to the same or possibly 
different entity type. Parameters with values supplied by the EUA or 
even the end user may also form part of the expression.

—  A table lookup is used to convert values of an attribute to a 
semantically-equivalent value for the corresponding data item. A 
nice example due to Date 77 is where a database attribute COLOR has 
values represented as integers. The equivalence of these values can 
be coded in a table such that 1=’RED', 2='BLUE' and so on.
Another application is in the conversion of units for numeric values 
of attributes. For instance, the database attribute SIZE of say, 
SHIRT, may be represented in 'inches'. These values may be coded by 
prior evaluation of an arithmetic expression to values in 'centi­
metres' that are entered into a table.

—  A standard summarizing function produces a single data item from the 
set of occurring values of a particular database attribute type. 
Examples of these functions are TOTAL, COUNT, AVERAGE, MAXIMUM and 
MINIMUM.

) The third class is an aggregate mapping from values of more than one 
database attribute types. The value of the data item is a combination 
of the values of semantically associated attribute occurrence values. 
The relevant occurrences all belong either to one database entity 
occurrence, or to one such occurrence and its associated occurrences 
of closely related database entity types, such as the owner of its 
Codasyl set.

3.2.1.2 Semantically-motivated mapping

The term semantically-motivated mapping refers to the means of 
representing a piece of data as a different semantic category of 
information from the underlying human perception of the data. Categories
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of information and semantics in this context, is expressed in terms of 
attributes, entities and relationships. The capability to project the 
type of role a piece of data assumes in differing user's perspective, has 
been referred to as semantic relativism [Brodie 79, Hammer and McLeod 81, 
Kreps 80]. Significantly, it forms one of the fundamental aspects of 
semantic data modelling.

In general, classical structured data models such as the relational, 
network or hierarchical model lack this necessary flexibility of viewing 
the roles of data differently. This of course is one major criticism 
underlined strongly by semantic data model advocates. Indeed, we believe 
that conventional data model-based systems must provide semantic- 
motivated mappings in order to make up for the inherent limitation in 
this aspect of capturing real-world semantics. It also follows that in 
using a semantic data model at the conceptual level, the need to support 
semantic-motivated mappings, interestingly becomes secondary; the 
database theoretically holds various semantic forms of data and hence it 
should be possible to employ a direct mapping instead.

Three common and useful classes of semantic-motivated mappings are 
identified as follows:
o Mapping of an entity type to a data item value.

This takes a database entity type name and treats it as a value for a 
mapped data item in the view. Again returning to the HOSPITAL 
database example, suppose a general class of view object denoted by 
the view HOSP-STAFF, is created from the database entities NURSE and 
DOCTOR. Each occurrence of the view HOSP-STAFF can be a NURSE or a 
DOCTOR occurrence.
It may be useful in such a transformation, for the end user to be able 
to identify whether data about a HOSP-STAFF is indeed that of a NURSE 
or DOCTOR. For this, a new data item JOB-TITLE can be included in 
HOSP-STAFF, the value of which is derived from one of the two entity 
names, DOCTOR or NURSE.

o Mapping of a relationship type to data item value.
In a similar way, the name of a database relationship (type) can be 
regarded as a data item value in a view. To illustrate this, let us 
assume that the database entity DOCTOR attends two types of patients



32

i.e. OUT-PATIENT and IN-PATIENT. A view about DOCTOR and all the 
related patients (both OUT and IN-PATIENTS) can be defined as follows: 

DOC-PAT (D-name (P-no , P-name) ) , where P-no and P-name
together form a repeating group. It may be desirable in many circum­
stances, to preserve the information about the patient's category in 
the view. This can be achieved by mapping a new data item called 
CATEGORY associated with each PATIENT, whose value is taken from the 
relationship name, OUT-PATIENT or IN-PATIENT.

o The third class of semantic-motivated mapping abstracts the descript­
ion of a database attribute into an explicit new data item type in the 
view. The part of the database attribute name which describes the 
characteristics of the attribute becomes the value of the data item 
type. The mapping is reversible i.e. the occurrence value of a data­
base attribute type becomes part of the name of a data item type i.e. 
it is used in the semantic naming of a data item.

These types of mappings generally occur alongside the structural 
transformation of linear structures to a repeating structure in the 
first case, and that of a repeating structure to a linearised form in 
the second case. The usefulness of these mappings will be fully 
illustrated in Section 3.2.2.5.

To sum up this section then, semantic-motivated mappings (in the 
context of conventional database systems) are generally used in 
conjunction with an overall transformation of the whole view structure. 
The motivation is to preserve the original semantic contents that helps 
to enhance the view's intent, thus making it more easily understood.

3.2.2 Data structure transformation

The above discussion describes transformations of data item and its 
value. This section now considers the reorganisation of database 
structures into a single view structure. Two basic forms of changes can 
be defined: an intra-structural change is defined to be the 
reorganisation of attribute types and any or all of their occurrences 
within one database entity type structure. It is less explicit in its
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structural manifestations i.e. no obvious modification to the overall 
structure, but encompasses a distinct change in the semantics and hence 
the use of the view.

An inter-structural change defines a reorganisation of data at a 
higher level of framework i.e. among entities in a larger context. The 
restructuring work of Dale and Dale [76r,77J is one general example of 
inter-structural change.

Based on these two concepts, five classes of structure 
transformations are identified. The first three signify an inter- 
structural change, while the latter two describe intra-structural change.

3.2.2.1 Concatenating transform

It is useful, first of all, to understand the context of such 
transformations. A loose structure is defined in terms of nodes and arcs 
which represent database entities and relationships respectively. The 
relationship between two adjoining entities can be expressed by an 
immediate arc. This refers to a single linkage between two nodes with no 
other nodes in between.

An immediate arc can be written as: A( N., N.)

The equivalent diagrammatic representation is N.  N. denoting a
 ̂ J

1:1 relationship, or ^ denoting a 1:n relationship. It is

further assumed that complex m:n relationships are resolved into two 
separate 1:n relationships in the database.

The concatenation of a set of database entities E^, E^ ... denoted

by nodes N^, Ng ... NU in a loose structure, is defined to be the

directional collapsing of the associated immediate arcs between the 
specified nodes, such that the full set or a subset of the nodes i.e. the 
database entities, form a contiguous linear structure. The concatenation 
must consist of one origin node; this is defined as the centre point
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from which the collapsing of immediate arcs is propagated. (Origin node 
here represents the base entity of the view thus transformed).

The direction of the collapse of an immediate arc is represented by 
imposing a shaded arrow as follows: ">.— In terms of the

concatenated occurrence structure, each occurrence of the node from which 
the collapse is directed (NL), may be associated to one or multiple

occurrences of the 'destination* node (ML). The number of occurrences

associated depends on the degree of the relationship the arc bears. In 
the case of a 1:1 relationship, there will always be only one occurrence 
of the destination node for each occurrence of the 'source' node. With 
1:n relationships, two different situations arise and are drawn as 
follows:

i. N. — > > N.1 J
The relationship between N. and N. is 1:n. The direction of the1 J

collapse, in this case, from to has a one to many context. (This

is denoted by the shaded arrow pointing towards the multiple relationship 
indicated by the single arrow). Collapses of this kind will result in 
one occurrence of the source node related to multiple occurrences of the 
destination node.

ii. N. — 4--- > N.1 J
The direction of this collapse this time is from N. to N. . The; J 1

relationship between N. and N. is n:1, i.e. each occurrence of N. is

associated to one occurrence of N^. Exemplary collapse of this generic

form, in a many to one context, will result in one occurrence of the 
source node associated to one occurrence of the destination node.

The direction of the collapse, thus significantly determines the 
corresponding occurrences for a given concatenated linear structure.
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On the whole, concatenating transforms represent the majority classes 
of complex structural transformations. Three cases of variants are 
presented here. In the following diagrams, these other notations apply:

o nodes of database entities are written as capital letters e.g. Y.
With the concatenated structure, 

o brackets around a capital letter denote multiple occurrences of the 
corresponding entity; if otherwise, a single occurrence is implied, 

o in each case, X represents the origin node in the schema diagram, and 
the equivalent base entity in the view structure diagram.

Case I : a loose hierarchical structure

An example:

=> i. X ( Y ( Z ) )

ii. X ( Z )

Intermediate nodes may be omitted as in (ii). Navathi and Fry 80 in 
their work, used the term compression to refer to the same class of 
restructuring.

Case II : a loose network structure

Example i.

=> X ( Y )
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This example illustrates the important requirement of identifying the 
correct view occurrence structure. The concatenation of nodes X, Y may 
be accomplished by two different sets of arc definitions: 
a. A( X,S ) or b. A( X,Z )

A( S,Y ) A( Z,Y )

Example ii.

\ /
Zt

Example iii.

/\
Ï

Example iv a.

/ \

=> X ( Z Y ( S ) )

i. X ( Z ( S ) ) ( Y )

Y =>
ii. X ( Z ) ( Y )

=> X ( Y ) ( Z )



Example iv b.
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=> X ( Z ( Y ) )

Examples (ii) through (iv) show the wide range of possibilities

3.2.2.2 Merging transform

The merging of two or more database entities belonging to the same 
set of classification, is defined to be the creation of a single new 
object that represents the common class. The domain of data occurrences 
of a merged data object is drawn from the selected set of data 
occurrences of the source entity types. The qualification of source data 
occurrences is optional; it is achieved by matching attribute value in an 
occurrence, with the specified qualifying conditions.

A merging transform is one way of conceptualising new semantics. The 
earlier example of the generalisation of HOSP-STAFF is one practical 
illustration of a merged view structure.

The figure below shows the mapping of source occurrences to the 
merged object occurrences.-

Ê  occurrences 

Eg occurrences

E^ occurrences

( _ )

C Z)

(_)

set of merged 

data occurrences

fig. 3.1 Merging Transform at the occurrence level
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3.2.2.3 Subsetting transform

A subsetting transform defined on a database entity type results in 
the formation of a new semantic object with data occurrences which 
satisfy the qualifying conditions. The requirement of data occurrence 
selection is the basis of this type of transform. A thorough treatment 
of the semantics, and an example have already been given in Section
3.1.4.

3.2.2.4 Summarizing transform

A summarizing transform must be specified with a named 'grouping 
attribute'. This must be a valid attribute of the entity, on which the 
transform is applied. When defined on an entity, it reorganises the data 
occurrences into sets of occurrences based on a common value of the 
grouping attribute. In order to produce the summarized content, a 
summarizing function e.g. AVERAGE, is used to aggregate the required data 
values in each set. The semantics of the transformed object is chiefly 
characterised by the grouping attribute. The number of summarized data 
occurrences is equal to the number of unique values of the grouping 
attribute in the source occurrences. The effects are illustrated as 
follows;
A database entity with its attributes is written as E ( a^,ag ... a^) 

where â  is the grouping attribute.

rearrange 
by grouping 
predicate

c
Q

sets of E 
occurrences 
where : 
a =_ t
a =

/ a =

apply a 
summarizing 

function

consists of 1 
corresponding 
summarized 
occurrence from 
from each set

E occurrences intermediate occurrences final summarized occurrences

fig.3.2 Summarizing Transform at occurrence level
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3.2.2.5 Transposing transform

The transposition of a database entity reorders occurrences belonging 
to the same type or having a common property, in a non-repeating linear 
flat structure to a repeating data structure of occurrences, or vice 
versa. In general, the transform is defined in conjunction with a 
concatenation of related entity types in a loose structure framework.

It must be emphasised that in the following cases, the chief interest 
is in the kinds of semantic derivations and differences in structures 
that arise from the transformation. Details of the exact means of 
specifying such a transform are not a concern here. The notations used 
in Section 3.2.2.1 apply here as well.

Case I ; Simple Linear to Repeating Transform

r X >1 Y ( A» A' ...A' ) => r X---1 Y ( A» )
I________ I I 2 3---------------- I-------------- 1

A' named within brackets represents attribute type.
A dotted square box indicates the presence of related entity types. 
The corresponding occurrence structure is as follows:

I------ 1
I X— —) I Y ( a ' 
I------- ! . a! )

flat linear structure

=> r
I X - 1 y/a A

w J
repeating group

Lower case letters a' represent data values that do not necessarily 
differ, of the corresponding attribute type A*.
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Several things are to be noted with this case;
1) The transposition involves significantly a merging of attribute types 

of a similar class to a generalised attribute type i.e. A’ A^*... A^’

to A* in the view.

2) As with merging transforms in general, some original information may 
be lost in the process.
The semantics of the set of source attribute types A* can be broadly 
categorised as:-
o Consisting of explicit descriptive characteristic or role attached 

to each element of the set e.g. Eye-test-result, Skin-test-result 
and Blood-test-result => (General) Test-result.

o Pertaining to an implicit ordering sequence e.g. TestJ, Test^ and 
Tests => Test.

The generic figure above illustrates the latter kind. In this case, 
the end user may intuitively perceive from the repeating structure of 
occurrences in the view, the possible ordering sequence in which the data 
values a* appear, which can be reflective of the source semantics. This 
is one demonstration of how a data structure in fact captures certain 
semantics. (See subsequent example).

With the first category, information about the individual roles of 
the source attributes will be submerged in the transformation unless 
these characteristics are abstracted out explicitly by a semantic- 
motivated mapping as described earlier. This type of semantic-motivated 
mapping is less clear-cut than the previous ones. It involves the 
partial extraction of the source attribute type name to become the data 
value of the newly-created attribute type in the view. To illustrate the 
point, the first example is expanded:

A semantic-motivated mapping is defined such that a new attribute 
type called 'Type* (of test) is created to describe the corresponding 
attribute type 'Result*. The domain of values of 'Type* is then drawn 
from the characteristic description of source attribute type names, 
namely, 'Eye, Skin and Blood*. Hence, instead of just seeing a broad
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heading of (general) 'Test*, each is now broken down into specific ones 
expressed by two attribute types 'Type* and 'Result*. The graphic 
representation is as follows ; X in the generic figure is now replaced 
by Patient with attributes P-no, P-narae; R abbreviates Result. For 
simplicity, only the occurrence structure is shown.

P-no P-name Labtest(EyeR SkinR BloodR) P-ho P-name Labtest( R ) 
123 Jones +ve -ve +ve => 123 Jones +ve

-ve
-ve

Applying a semantic-motivated mapping on the transposed view, it 
becomes;

=> P-no P-name Labtest(Type, R)
123 Jones Eye +ve

Skin -ve 
Blood +ve

The example brings out a further point. Such a transposition is 
useful for the purpose of suppressing particular information; this may be 
one way of restricting complete access to certain types of information.
On the other hand, full preservation of semantics can be achieved by 
means of semantic-motivated mappings.

Similarly, a graphical illustration of the example in the second 
category is now given. The implicit ordering is explicitly defined using 
a data item Seq-no (Sequence-number) in the view.

P-no P-name Labtest(R1 R2 R3) P-no P-name Labtest(Seq-no R )
123 Jones +ve -ve +ve => 123 Jones 1 +ve

2 -ve
3 +ve



Case II ; Repeating to Linear Transposition

This is just an inverse of Case I. The general representation is

X ^  Y (A»)

The occurrence structure is:

= > ( A,. A,. ... Aj- )
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I X - = > rX— 1 Y ( a* 
I I 1

repeating group flat linear structure

The linearization is obtained by generating a new attribute type that 
corresponds to one occurrence of the repeating structure, for every 
occurrence that exists. In this process, the source semantics modelled 
implicitly or explicitly, must be captured in the naming of data types in 
the view in order that the view be meaningful. Consider the following 
example which is a complete opposite of the one above.

P-no P-name Labtest( R ) P-no P-name Labtest(R1 R2 R3)

123 Jones +ve
-ve
+ve

=> 123 Jones +ve -ve +ve

Here, the repeating occurrences of Labtest are transposed to a linear 
form. The inherent structural information of the source occurrences is 
expressed by the names of R1, R2 and R3. Note that there is no reason 
why these names should not simply remain as R, except that such a view 
will not be very meaningful to be of good use.

Depending on how the source structure is modelled, a semantic- 
motivated mapping may be required, as in the following sequel :
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P-no P-name Labtest(Type, R) P-no P-name Labtest(EyeR SkinR BloodR)

123 Jones Eye +ve => 123 Jones
Skin -ve 
Blood +ve

+ve -ve +ve

In this instance, R is characterised by another attribute type, 
'Type'. It is essential that this information should be preserved in the 
view for a clear understanding of the semantics. The semantic 
transformation that accompanies this class of transposition is from a 
data value to a conjunctive attribute type name i.e. the data value only 
forms the descriptive part of the name, which has to be attached to a 
main attribute (in this case, R).



TABLE I Classification of Data Transformations

TRANSFORMATION CLASSES

Concatenating transform

Merging transform

Data Structure Subsetting transform 

Summarizing transform 

Transposing transform

Direct value mapping

Arith. Expr.
Conventional Algorithmic Table Lookup

Summ. Function

Aggregate value mapping

Data Item

Entity-type to data item value

Semantic-

motivated
Relationship type to data item

value

Mapping
Attribute characteristics to data

item type
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3.3 Form of mapping specification

We consider two important aspects of a mapping specification; 
o the provision of a language that supports the different classes of 

transformations. This language will be referred to as the mapping 
definition language, and 

o the mapping specification process.

3.3.1 The mapping definition language

A mapping definition language desirably, must be simple in order to 
be employed easily, but yet be sufficiently powerful to encode the 
required complex transformations as well.

Two interrelated issues are central to the properties of a language; 
its syntactic structure and the degree of procedurality. The syntactic 
structure refers to how the syntax of the language is built. Codasyl- 
based languages such as the Codasyl DDL, DML are distinctly characterised 
by a separation of different functionalities into individual sections. 
Relational mapping languages such as SQL support self-contained 
expressions within a single statement. The syntactic structuring of 
languages imply;
1) a set of logical operations that may not necessarily be in the desired 

semantic order. For instance, in the Codasyl EUF DDL syntax, the item 
conversion specification is such that it appears before the specifica­
tion stating how these items are extracted from the source types. The 
correct semantics requires that the extraction be carried out prior to 
any transformation. The recognition of the right order of logical 
operations is however, usually performed by the compiler [ Leavenworth 
and Sammet 74 ].

2) a sequencing of how requirements must be specified in order to achieve 
the desired results. This is a question of procedurality (or non- 
procedurality). Obviously, as a measure of independence from the 
system's implementations! and structural constraints, the language 
should allow one to state what is wanted rather than how to go about 
doing it. In other words, the language should be as declarative as
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possible. There is of course the danger of not knowing if a set of 
declarative codes will produce the correct required results. However 
the problem is equally true of procedural languages as well, where 
syntactically-faultless specifications may also lead to incorrect 
retrievals of data. This is more of a semantic issue and not a 
syntactic one. One way to alleviate this is to monitor the interpret­
ation of user's intended semantics with what is actually held in the 
database. This issue of semantic equivalence and correctness is the 
prime concern of the next section. ,

3.3.2 The mapping specification process

There are three general approaches towards definition of views in an 
external schema:
o By embedding mapping codes in application programs —  this is the case 

with Codasyl subschemas, 
o Direct specification —  this is true of definitions by means of query 

modifications as with the relational systems of System R and Ingres, 
o Automatic generation of subschemas by a program as in Goldman [79].

The last case relies totally on the system to produce consistent 
derivations. In the other two cases, the user is informed of any 
inconsistencies that may arise. Validations, however, are mainly for 
syntactic correctness and include only basic checks of semantic integrity 
e.g. the format of say, AVERAGE-WEIGHT cannot be a character string. In 
general, there is no proper means of finding out if the derived data 
values are the expected ones; erroneous information may be used without 
the user even being aware of it. As such, this question poses a serious 
threat to the use of a database and its data integrity.

The approach hereby proposed is bent on the motto of ' Prevention: is 
better than cure '. The issue of semantics is highly intuitive. It is 
imperative that the process of specification is an interactive one during 
which the user is:
—  guided to formulate data requirements within the allowed database 

constraints,
—  made aware of any semantic ambiguity that may lead to wrong dérivât-
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ions and hence knows properly what the ultimate derived values stand 
for.:

In the review of universal relation interfaces in Chapter 2, it has 
already been pointed out that the heavy dependence on the system to 
interpret what the user wants by rules stored about the data 
dependencies, is just as error-prone.

Until a formal and reliable way of validating the semantic 
consistency of a view with the corresponding human interpretation can be 
found, it is sensible to minimise the possibilities of such 
inconsistencies happening. ,
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Chapter 4 RECURSIVE STRUCTURE TRANSFORMATION

There are numerous cases of recursion that crop up in the modelling 
of real-world applications. Perhaps, by far the most common is the Bill- 
Of-Materials (BOM) in the manufacturing industry. Others include the 
'family-tree' where a person has children. Hierarchies of departments 
with sub-departments, employers with employees are typical ones found in 
a large organisation.

The abstraction into amenable view structures containing the required 
data from logically recursive constructs in the database represents an 
important aspect of view transformations. The associated complications 
have not yet been extensively researched. This chapter attempts to apply 
the concepts of transformation described in the previous chapter to treat 
the problem of mapping recursive structures. The approach departs from 
all other more traditional lines of specifying special retrieval 
functions. It instead draws on the representation of a view and its 
semantics so that end users may use a set of simple direct retrieval 
commands consistent with non-recursive applications, without having to 
resort to special operators or procedures.

A formal notation to represent the recursive nature of data 
structures in order to enable consistency of presentation throughout the 
chapter will first be described.

4.1 An introduction to the problem

A recursive data structure involves only one entity type whose 
occurrences inter-relate in 'loops', the number of recursive levels of 
which cannot be fixed a priori. A recursive structure therefore can be 
more easily appreciated by studying its occurrence structure. This can 
be best represented in terms of a recursive hierarchical tree (c.f. 
Clemons 81) whereby the nodes of the tree denote data occurrences of the 
same entity type.
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First, consider the basic form of a single recursive loop structure. 
This has unique data occurrences linked by one kind of relationship. In 
general, such a structure will be represented as:

where r is the recursive relationship

defined on the entity type X. Due to the arbitrary degree of recursion 
that can exist with such structures, it is difficult to present a 
generalised hierarchical occurrence structure accurately. A typical one 
will probably be:

/°\ - N  ̂ is the set of nodes at level 1

Q  Q  —  N 2 is the set of nodes at level 2
/  \  I I .  /  \  \

-----  N  ̂is the set of nodes at level i

fig. 4.1 A Recursive Occurrence Structure

In order to distinguish clearly the use of the term node in a loose 
structure (See Section 3.2.2.1) from this present context, a node of 
entity occurrence in the tree structure will instead be referred to as 
occurrence-node (o-node) hereafter.

An o-node is drawn with a symbol . The collection of o-nodes at a 
particular level i are denoted by . Using the normal conventions for

describing a tree hierarchy, each o-node rests on a particular level 
which is its depth in the hierarchy from the topmost root. O-nodes lying 
on the same level are said to belong to the same level set (of 
occurrences). Those which have no further sub o-nodes hanging from them 
are known as leaf o-nodes.

Based on the above descriptions, three problems encountered in the 
mapping of recursive structures are identified as follows:
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1) The depth from the root o-node to each of the leaf o-nodes in any 
given occurrence structure varies and cannot be predetermined. 
Currently, most existing query languages do not provide adequately- 
general specification facilities for end users to retrieve information 
from recursive structures, without having to first define a specific 
depth of nestings of retrievals. All relationally-complete languages, 
except QBE [Zloof 75, 76, 77] fail even to resolve this inherent 
recursive problem.

2) The position of an o-node as denoted by its level (number) embeds 
essential information about the real-world semantics. For instance in 
the case of modelling generations of 'ancestors-descendents', the 
level of a given o-node from the root of the hierarchy expresses 
implicitly the generation (number) of the corresponding descendent- 
person to the ancestor-person represented by the root. In general, 
this kind of information will be lost in a retrieval process, unless 
it can be explicitly abstracted. In applications where such informa­
tion is crucial to the processing needs, for example the different 
’levels' of components used in the manufacture of a part, it is common 
to assign an explicit attribute to the component entity which desc­
ribes the level-number of the component. This simplifies the data 
processing involved and ensures that the essential information will be 
available.

3) Whilst the above two problems concern the extraction of data, a third 
problem relates to the representation of retrieved data in unit view 
structures for end users.

A recursive structure may be regarded as having a 'breadth' and a 
'depth' [ Bobrow 71 ]. (B obrow used the term width instead of 
breadth). The breadth represents all o-nodes at an immediate level 
belonging to a higher o-node. The depth represents all o-nodes which 
relate to a given o-node, at each of the various levels. Repeating 
groups can be used to represent in a view, syntactically the arbitrary 
breadth or depth of a recursive structure. The complete semantic 
content though, cannot be captured.

Each data occurrence associated to an immediate parent occurrence.
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often always relates to other data occurrences at the immediate lower 
level.

Presently, there is no general mechanism for structuring all recursive 
levels of information into one view structure such that these inter­
relationships between the data occurrences are fully preserved. To 
illustrate this, consider the recursive structure drawn in fig. 4.15.' 
below. The above statement means that it will not be possible to have
an equivalent view structure such that the end user can perceive
directly and extract the following information from the view -

i) all occurrences related to a —  b, c, d, e, f, g , h, i, j, k, 1
and m, belong to three different levels.

ii) and that b itself relates to, i.e. has 'children* e, f
c itself relates to, i.e. has 'children' g
d itself relates to, i.e. has 'children' h, i and j

iii) and that f in turn relates to k,
h in turn relates to 1 and m.

/ I
b c d/\ \ /w

f g h i j

I / \
k 1 m

fig. 4.1a Example of a Recursive Structure

Very little work has been devoted to investigating the above three 
described areas. The two significant pieces of contribution so far, by 
Zloof and Clemons [76b,81] have concentrated mainly on obtaining the 
required data values without paying sufficient attention at all to the 
overall semantics of the information that can be derived. Although 
Clemons advocated for user-oriented data structures in application 
interfaces to treat recursive examples, he looked mainly at two issues:
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o the extraction of processed data from recursive database relations,
and other related data held in different relations,

o the extraction of processed data from the recursive structures.

The latter facility is supported by external functions defined to 
retrieve certain portions of the recursive structure with the main aim of 
computing derived values for very specific application purposes. The 
functions, as such, are not quite general enough. There is also very 
little effort paid to the abstraction of meaningful information about the 
basic relationships between sets of occurrences embedded in the self­
nested structure, into semantic user views. Nevertheless, the work 
represents a very useful achievement towards the direct retrieval 
requirement of a view identified in this research here.

The remaining presentations here will specifically concern the 
structuring of user views from recursive structures, in ways that can be 
general-purpose. It will be shown step by step how concepts of 
transformation, namely concatenating, transposing and semantic-motivated 
can be used in combination to produce meaningful view structures in an 
attempt to eliminate the problems mentioned above. Any further 
processing of data values can then be defined on top of these view 
structures by means of an item transformation as listed in Section 3.2.1.

4.2 Linear view structuring

We first consider the transformation of the data occurrences in the 
recursive hierarchy in fig. 4.1 into data occurrences held in a unit 
linear view structure. An appropriate transform for the purpose will be 
a concatenating transform. However, in order to see how this may be 
applied, the general context of concatenation in a loose structure of 
database entities and relationships must be broadened to treat a 
framework of entity occurrences and relationships of one type.

A concatenating transform will now be defined on o-nodes instead of 
nodes. An immediate arc between two o-nodes represents the self-
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recursive relationship, and is depicted as: Q  ►---------,
n. a n .1 J

where the shaded arrow again represents the direction of collapse.
For the time being, only single recursive loops with a 1:n relationship, 
is considered. Notice here that the effect of the collapse-direction in 
the sense described in Section 3.2.2.1 on the occurrence structure 
formed, is no longer relevant because the collapse now operates
explicitly on the data occurrences themselves. It is also important to
distinguish a root o-node and an origin o-node. A root o-node is always
the top-most single o-node in the hierarchy and is not necessarily an
origin o-node from which the collapse propagates.

The way that the real-world semantics of recursive applications are 
captured in database structures requires different ways of collapsing in 
order to extract specific types of query information. In general, there 
are two ways in which the immediate arcs may collapse.

Definitions

A breadth-wise collapse is defined to encapsulate the positional 
semantics that is formalised by the term level, embedded in the tree 
occurrence structure. The collapse operates across a set of o-nodes 
belonging to the same level with respect to an origin node. It only 
extracts information pertaining to o-nodes directly related to one 
another in a given level of the tree hierarchy.

A depth-wise collapse is defined to abstract the relationship of o- 
nodes lying along a non-branching, hierarchical path in the tree 
occurrence structure. The collapse only extracts information pertaining 
to o-nodes directly related in only such a hierarchical path of the tree 
hierarchy.

The graphic representations of these two collapses are shown in figs.
4.2 and 4.4 respectively. Accordingly, the transformed figure drawn on 
all the following diagrams depict occurrences and not types, i.e. it 
shows the occurrence structure of the view.
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4.2.1 Breadth-wise extraction of semantics

A "O O O  00-2
/\/\ \ in.

is collapsed to become n^ {N^, N^, ...NL^}

fig. 4.2 Breadth-wise collapse

In the diagram, n^ is the origin node. { } are used to indicate the

association of data occurrences to the origin o-node occurrence.
If we regard the set of o-nodes, to as generically the 'members' of

'owner' origin node, n^ , the semantics of the collapsed occurrence

structure can be interpreted as all the members belonging to the 
specified owner. The following gives a practical example to illustrate 
the usefulness of a breadth-wise collapse. In such cases, qualifying 
conditions are always used to select that subset of an occurrence 
structure identified always by a specified root o-node, on which the 
transform is applied.

In the first instance, a single recursive loop is used. For the 
purpose, the case of family-tree is assumed to be a single recursive 
loop. The recursive data structure is represented as :

Person Has-children

where Person is the database entity and Has-children is the self-nested 
relationship. The Person entity will have attributes Person-name, Age, 
Sex, etc. ; for simplicity, occurrences of Person will only be identified 
by the value of the attribute Person-name, e.g. John is an occurrence of 
Person entity.
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Let us now consider the breadth-wise collapse of a subsetted
occurrence structure of the family tree, corresponding to the generic
fig. of 4.2. This is drawn as follows, with Joe as the origin node. 
Note that the generic symbol of an o-node is now replaced by the 
identifying name of the entity occurrence in question.

I

Joe

/  X
Mary John => Joe {Mary, John , Jim, Pat, Ben, Jill, Bill}/ \ /

Jim Pat Ben Jill Bill

fig. 4.3 Family-tree example

In order to represent the above collapsed occurrences in a unit view 
structure, one must be able to refer to the sets of occurrence values of 
Person-name generically as typed data items in the view, that convey the 
view semantics. Identifying the roles of the occurrences in this 
example, the members are the descendents (Mary, John, Jim, Pat, Ben, Jill 
and Bill), whilst the owner is the ancestor (Joe). Obviously, 
descendents repeat within ancestor. It is therefore appropriate to 
transpose the flat representation into the following view structure :

Ancestor ( Descendent )
Joe Mary

John 
Jim 
Pat 
Ben 
Jill 
Bill

The database entity type of Person has now been abstracted into two 
distinct roles of Person, represented by data items Ancestor and 
Descendent, that inform the end user the semantics of the application.
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There are two problems of semantic preservation though. First of 
all, the fundamental piece of information that values (of Descendent) 
belong to different levels in the original hierarchy is lost. All the 
descendents here are simply lumped together as one whole 'mass'. The 
fact that Mary and John are related as immediate descendents and that the 
rest belong to the second generation has vanished.

The second point is that the inter-relationships between the 
descendents themselves are also hidden away. For example, Jim and Pat 
are further associated to Mary as her children. (Recall the third 
limitation identified on page 50 of not being able to capture the full 
intent of the data in a unit view).

In order to resolve the first problem, a semantic-motivated mapping 
is applied. Just as in Section 3.2.2.5 where a semantic-motivated 
mapping is used to project out an explicit type characteristic or a piece 
of 'ordering sequence' information in the database structure, a semantic- 
motivated mapping may be applied here to project the original semantics. 
The position of the level of an occurrence in the hierarchy may be 
extracted out by means of an externally-defined procedure. Such a 
procedure is required because unlike earlier examples of semantic- 
motivated mapping, there is no explicitly stored assignment of a value 
for level number as such (unless as mentioned before, the information is 
modelled explicitly as an attribute). Thus, in this family-tree example, 
a new data item called Generation, can be derived with values indicating 
the number of the generation, as shown below.

Ancestor ( Generation ( Descendent ) )
=> Joe 1 Mary

John
2 Jim

Pat 
Ben 
Jill 
Bill

Notice that this does not alleviate the second problem i.e. the 
occurrence structure is only able to convey the information that Jim,
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Pat, Ben, Bill and Jill are grand-children of Joe, but does not inform 
any further that Jim and Pat are direct descendents of Mary whilst the 
other three belong directly to John. Recall however, that the semantics 
of a view (in the way that we have defined in Chapter 2, is with respect 
to the base entity of the view. In recursive examples, it is with 
respect to the particular data occurrence representing the base in the 
view; in this case, it is in the form of the data item Ancestor. All 
other data items in the view, namely. Generation and Descendent therefore 
characterise the data item Ancestor. Hence in the view occurrence where 
Joe is the Ancestor, the information that Jim and Pat are descendents of 
Mary does not directly describe Joe; it relates specifically to Mary and 
consequently can be obtained by looking at the view occurrence where Mary 
is the ancestor. No essential information about Joe is strictly lost.
For this reason, it is argued that this latter case does not constitute a 
loss in information in such a context. Rather, it is regarded as a 
compression of information that cannot be properly represented by the 
semantics of a view defined by the base entity concept and the subsequent 
notations adopted for this presentation.

One last interesting observation, though perhaps digressing from the 
main point slightly, can be made with this example. This regards the 
useful application of different forms of semantic-motivated mapping and 
naming to capture specific semantics of an application. Two separate 
views containing distinct meaning can be derived from the view above. 
These are as follows :

i) Children ( Parent-name , Children-name )
Joe Mary

John

ii) Grandchildren ( Grandpar-name , Grandchild-name )
Joe Jim

Pat
Ben
Jill
Bill



58

The semantics of the data item Generation (i.e. level in the 
hierarchy) is embodied by the specific name of Children and Grandchild­
ren, i.e. of data objects possessing concepts in the real-world context. 
The compression of information now disappears.

4.2.2 Depth-wise extraction of semantics

A depth-wise collapse can be further divided into two categories. In 
one category, the collapse descends downwards with respect to the root o- 
node of the occurrence structure, from a specified origin o-node in a 
given path to the leaf o-node. In the second category, the collapse 
ascends upwards from a specified origin o-node to the root o-node in a 
given occurrence structure. Both leaf o-node and root o-node are named 
here for the sake of generality; they can be replaced by an appropriately 
specified o-node that may be qualified.

In the following diagrams, the data occurrences collapsed are those 
in the encircled hierarchical path. Suffixes are introduced to o-node in 
the form of n where q is the level number at which the node is located,

pq
and p indicates the pth element in a set of nodes at a specified level q.

n

n1

is collapsed to become n^ { n^^, ...n^^}

Oq is the origin o-node 

n^^ is the leaf o-node

fig. 4 . 4 a  Descending :
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n

n
1

is collapsed to become }

"i

n^^is the origin o-node

n^ is the leaf o-node

fig. 4.4b Ascending : 

fig. 4.4 Depth-wise Collapse

The two forms of depth-wise collapse can be usefully applied in 
practical cases to extract real-world semantics to give information of a 
different kind to that in a breadth-wise collapse. Consider again the 
occurrence structure of the family-tree example in fig. 4.3. In order to 
produce a view of 'descendent and all his/her ancestors', an asending 
depth-wise collapse, is needed this time. The diagram below shows the 
final transposed view and several of its resultant occurrences.

Joe Descendent ( Ancestor)y \
Mary John

/  \  /  \ \ = >

Jim Pat Ben Jill Bill

f
Jim

Pat

Ben

Maryl
Joe J Each one is one
Maryl individual view
Joe J occurrence
Johrij ^
Joe

With the BOM parts-explosion example, a descending depth-wise 
collapse may be usefully applied to obtain the basic components 
(represented by leaf o-nodes) for a given part (a specified root o-node
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which is also the origin o-node in this case). An asending depth-wise 
collapse will be useful to find out the line of 'ancestor-parts* that use 
a given component.

We shall use this parts-explosion example to consider complex 
recursive loop structures.

4.2.2.1 Complex recursive loops

A complex recursive loop has a m:n relationship between its 
occurrences. Often, this is resolved by explicitly modelling the roles 
each occurrence takes, into separate relationship types and introducing 
an additional 'intersection' or 'link' entity type, as depicted below.

X
=> a b where a, b are the resolved

Link relationships of r

In terms of the recursive hierarchical representation adopted at the 
beginning of the chapter, the resultant hierarchy now becomes a network. 
We propose here to represent such cases by allowing the o-node in an 
occurrence structure to be replicated. The main purpose of this section 
is to examine the effects of such replication if any, on the view 
representation and the required transformation.

With the parts-explosion example, the Link entity thus introduced 
usually has a specific role and contains data items that describe so.
This will probably be of the form :

Part
is-made-of is-used-in

Component

Part and Component belong to the same type of entity. Part may have 
attributes Part-no, Part-name while Component has attributes Component-no 
and Qty-used. Again for simplicity, occurrences of Part and Component
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will only be identified by their domain value of Part-name and Component- 
name in the following diagrams, e.g. x, p, d, etc. It is further assumed 
that a concatenating transform with a breadth-wise collapse has already 
been applied.

The diagram below shows the final view occurrence structure after 
applying both a transposing transform and semantic-motivated mappings, x 
is the origin o-node.

/ \ Part (Level ( Component ) )

I
p q p

/i\ /\
r s t r s t

1

=>

The meaning of the view here is to give all component types, used in 
the manufacture of a part, in this case of x. The duplication of 
Component occurrences in the view occurrence structure —  p at Level 2, 
r, s and t at Level 3 —  is thus inessential i.e. they do not bear useful 
information. Furthermore, the presence of such duplication may lead to 
confused perception of the view by the end user. Accordingly then, these 
duplicates may be removed. It is interesting though, to note that the 
duplication serves to highlight the factor of compression of information 
described in the family-tree example. The first occurrence of p in the 
view occurrence in fact belongs directly to c, whilst the other p 
occurrence belongs to d. The same thing happens with the rest of the 
occurrences. It also demonstrates our earlier assertion that the 
consequence does not constitute a loss of information, by virtue of the 
fact that such duplicates may be removed without violating the 
consistency of the view semantics.
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The view occurrence after removing duplicates becomes :
Part ( Level ( Component ) )

X 1 c
d

2 P
' q

3 r 
s 
t

In a similar way, it can be shown that transformations based on an 
ascending collapse of concatenating transform may be treated thus. The 
following diagram gives an illustration. Given the detailed descriptions
of previous examples, this one should be fairly self-explanatory. The
view occurrence shown is that of component r being the origin o-node.

Component(Used-in-Part) Component(Used-in-Part) 
r p r p

c c
= >  X => d

r p X
d
X

Finally, we caution that the duplication of such occurrences may 
become essential if further processing of data values is to be defined on
top of the view. Consider the derivation of a view with data items :
Parte basic-comp , total-qty-used), based on the above existing view.
The meaning of the new view is that a given part uses a number of units 
of basic components and has more than one basic component. Illustrating 
with just component r in this case, the sub-total of r used along the 
ascending hierarchical path r, p, c, x must be added to the sub-total of 
r obtained along the other path r, p, d and x to give the correct final 
total. In such cases, it is important to preserve all the original
number of occurrences in the source view.
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4.3 Summary

The basic framework of Chapter 2 has been extended to examine 
recursive data structures and how information from these structures can 
be extracted into unit view structures. To this end, two main classes of 
collapse for a concatenating transform —  breadth-wise and depth-wise, 
are identified. It is shown how transposition and semantic-motivated 
mappings can be applied in conjunction, to produce user-oriented view 
structures.

The transformation semantics and requirements formulated here can 
form the basis for specifying appropriate operators or functions in the 
mapping definition language. The derived view structures facilitate 
simple direct retrieval specifications. It is also possible that the 
various operators defined with semantics as described in this chapter, be 
used together in a single view definition to produce more complex views 
such as the following :

Anc-Desc ( Person ( Ancestors), ( Descendents) ) 
where the Ancestors information is obtained by means of an ascending 
depth-wise operation and the Descendents information by a descending 
depth-wise operation.
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Chapter 5 AN EVALUATION OF MAPPINGS IN EXISTING SYSTEMS

This chapter studies two contrasting view mechanisms of a. the 
relational system, System R and b. that proposed by the Codasyl EUFC. 
These two choices were decided on the grounds that : 
o both support the concept of a user view which may be different from 

the underlying logical schema —
Although the Codasyl EUFC proposals have not yet been implemented, 
they are nevertheless based on the well-established Codasyl DBMS 
architecture (which despite not strictly an ANSI/SPARC candidate, has 
reasonable separation of a user logical schema and database logical 
schema).

o both (arguably) are directed towards non-expert use, and hence prov­
ides a consistent frame for comparison,

o they present two interesting sets of variations in the approach —  
System R employs a direct mapping mechanism whilst the second proposal 
adopts an intermediate path in the form of data items.

The view facilities are evaluated along the mapping framework 
developed in the previous chapter.

5.1 System R

System R is a relational database prototype system developed by IBM. 
It is extensively researched into. A commercial product based on this 
prototype, called SQL/DOS is available on the market. The primary
objective of this section is to examine its support for user views. The
interested reader is referred to other literature for detailed 
description of the whole system [Astrahan 75, Date 81].

The fundamental data structure in System R is the base table i.e. a 
flat structure. A view in System R specifically means a derived table. 
In the rest of this section, unless indicated by the context of the
discussion, the term view will otherwise be a System R view and not that
defined in Chapter 1. View definition is by means of direct query
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modification i.e. in the form of query procedures posed by the users. 
Constraints though, are exercised if a view is to allow update 
operations; at this point, only retrieval operations are relevant.

The fact that a view is a tabular structure justifies that some of 
the criticisms, especially that of Section 4.1.1 are true of the 
relational model in general. The next section then assesses the impact 
of a flat table as a view structure. The query language of System R, SQL 
(Structured Query Language) will be the chief focus of Section 4.1.2; in 
particular, its mapping power and limitations will be investigated. The 
user is allowed to define a new view on top of existing views; this has 
an implication as will be seen in Section 4.1.3. Section 4.1.4 sums up 
the assessment by answering two questions : a. how far does the System R 
view match the desired view characteristics set in Chapter 1, and b. what 
can one then conclude about the view mechanism of System R.

5.1.1 A flat table as a user view

The main point of contention of a flat data representation is its 
deficiency in capturing and reflecting real-world semantics. The chief 
and well-publicised drawbacks ( see Schmidt and Swenson 75, McLeod 78, 
Clemons 76b, Codd 79 ) are :
o no hierarchic structural support for repeating data values 
o no semantic data construct for aggregating atomic data values.

These points will be expanded on. It will also be argued how these 
snags are compounded by the way constraints are dealt with in System R.

A view table in System R is a relation and attributes are called 
fields. A tabular representation which does not allow data values to 
repeat, is not at best congenial to end-users’ perception, where in many 
cases, the information content assumes a natural hierarchic structure.
In such circumstances, the important concept of a user-perceived real- 
world object remains hidden. It is more obscured by the fact that a 
table can contain duplicated rows unlike a strict relation. This is a 
consequence of the optional constraint on the field types of a view being
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unique. (System R does not support the concept of keys at all although 
it provides a unique index system).

Associations between fields cannot be abstracted into a higher level 
object. There is a complete lack of structured concepts to collect 
groups of commonly related fields into a semantic data type. As such, 
the interpretation of a view’s semantics relies largely on the intuitive 
naming of fields. A second source of semantic expression is derived from 
the (linear) sequencing of field names in a view relation, as displayed 
to the end user. It is natural that fields which bear a strong 
association to each other are placed next to each other. Furthermore, 
fields directly describing the user perceived real-world object are 
arranged at the beginning of the sequence. However, the arbitrary manner 
in which one could possibly order field names in a System R view, could 
result in an awkward sequence and lead to unwanted confusion and 
misunderstanding in its interpretation. Consider the following fields of 
a view called Person-Info : Person-name, Post-code, Street-name, House-
no. Town, Age, Sex —

Certainly such a view description does not help the end user at all. 
This example also demonstrates the exposition of semantic links between 
fields by aggregating the fields of Post-code to Town into a meaningful 
object called Address. It also means that unnatural sequencing can be 
better controlled.

Finally to reiterate a point made in earlier chapters, the user is 
compelled to carry out cross-linkings between base or view tables in 
order to define a view. This undesirable burden is made worse because 
connections between fields in same or different tables are not always 
made explicitly clear to the user. A second more serious setback results 
from that System R does not support domains. Tables then are connected 
together as long as the values of the named link fields match. The use 
of domains is a way of enforcing that the set of values defined by that 
domain belong to the same category and hence bear a meaningful 
relationship with each other. In the absence of such a constraint, one 
could easily and unawarely specify meaningless associations between 
tables. An example could be where Age of Patient is equal to the number 
of Lab-tests he or she has undergone.
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5.1.2 View definition in SQL

A query is expressed by an SQL ’mapping’ operation in the form of a 
SELECT-FROM-WHERE block. A view is defined by combining the description 
of the view with the required ’mapping’ operation.
The general syntax for defining a view is :

DEFINE VIEW view-name ( [field-name ...] )
DEFINE VIEW view-name ( [ view field-name ... ] )

AS SELECT [ field-name ...]
FROM [ table-name ... ]
WHERE [ field-name = ’value’ ]

[ field-name-1 in table-1 = field-name-2 in table-2 ] 
Notations used are :
... possible repeating items 
( ) optional item that can be omitted

The first part of the section investigates the kinds of transformations 
supported by the language. The second part comments on the general 
aspects of the language.

5.1.2.1 Mapping capabilities and limitations

Consider initially data item or in this case, field transformations
The list of supported features include;

o renaming of field - the optional specification denoted that default 
fieldj,

^names are used when no new field names are described.
o computation of a new numeric field by evaluation of an arithmetic 

expression.
o built-in summarizing functions, namely, COUNT, AVE, SUM, MAX and MIN.

Others not available are :

o reformatting of a field type - data types of view fields must be 
acquired from the underlying base tables
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o concatenation of data values to form an aggregate field value, 
o semantic-motivated mappings - the SQL mapping operation is based on 

predicates defined on fields of a table. Consequently, it is not 
possible to project the name of a table as a perceived field value in 
the view. Due to the uniform modelling of data, relationships between 
entities in an application are also explicitly represented as tables.
It therefore implies a relationship name as well (in the form of a 
table name), cannot be interpreted as a field value in a view.

SQL, being a relationally complete language [Codd 72], allows a range 
of powerful set operators that are used to define operations on the 
extension of a table i.e. all the associated rows or occurrences. As a 
result, most of the structural transforms are provided, and in the 
following ways :

a) concatenating transform -
This is executed by a relational natural JOIN predicate. Syntactica­
lly, it is represented as the second optional clause in the WHERE 
statement, as given in Section 4.1.2. For complex views, sub­
predicates may be nested to a fixed number of levels. In particular, 
there is a whole repertoire of powerful commands which can be used to 
qualify many types of derivation. Some examples are EXIST —  an 
existential quantifier, ANY, ALL ,etc.

b) subsetting transform -
This is accomodated by the first clause option of the WHERE statement. 
The selective conditions may use comparison operators =, <>, >, >=, < 
and <= ; boolean operators AND, OR, and NOT, and parentheses that 
specify the order of evaluation.

c) merging transform -
This is defined by the set operator UNION on two or more mapping 
blocks, each of which may use different qualifications.

d) summarizing transform -
This is represented by the GROUP BY operator acting on a named table. 
The corresponding fields in the SELECT clause i.e. the allowable 
fields in the derived view, must be single-valued. This means that a
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field may be the GROUP BY field itself, or a single transformed value 
as summarized by a built-in function. In addition, it is possible to 
specify a predicate on the GROUP BY operation by using the HAVING 
clause.

e) transposing transform -
The hierarchical structuring of repeating values associated with 
transposing transforms is certainly not meaningful in the context of 
System R tabular data structures. However, aside from the syntactic 
structural representation shortcomings, one could still regard the 
semantic-motivated mapping of the occurrences in its own right; it can 
be shown that the essence of transposing transforms can be obtained, 
albeit not in a straightforward fashion, and with limitations. Below 
are two demonstrations; both are adapted from Section 3.2.2.5.

i) Consider a base table Labtest-A and its derived view, View-A.

Labtest-A( P-no, Testno, Result) View-A( P-no,Result 1,Result2,Result3)

015 10 +ve => 015 +ve -ve +ve
015 21 -ve
015 03 +ve

This transformation can be carried out in the following two stages
1) a series of subsetting transform - this separates out individual 

occurrences as characterised by Testno, into different views.
2) concatenating the intermediate sub-views from (1).

One possible way of specifying this in SQL is as follows ;
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Stage 1) DEFINE SubviewK P-no, Result 1)
AS SELECT P-no, Result 

FROM Labtest-A 
WHERE Testno = 10 

DEFINE Subview2( P-no, Result2)
AS SELECT P-no, Result 

FROM Labtest-A 
WHERE Testno =21 

DEFINE Subview3( P-no, Result3)
AS SELECT P-no, Result 

FROM Labtest-A 
WHERE Testno =03

Stage 2) DEFINE View-A( P-no, Resultl, Result2, Result3)
AS SELECT P-no, Resultl, Result2, Result3 

FROM Subviewl, Subview2, Subview3 
WHERE Subviewl.P-no = Subview2.P-no 

AND Subview2.P-no = Subview3.P-no
* the list can be omitted

One is immediately conscious that a prior knowledge of what and how 
many values exist for Testno is required in order to specify the 
derivation. Note that the intension of this example is similar to the 
case of repeating - linear transposition.

ii)Now consider a modified base table, Labtest-B and its derived view, 
View-B.

Labtest-B( P-no, Resultl, Result2, Result3) View-B(P-no, Result)
015 +ve -ve +ve => 015 +ve

015 -ve
015 +ve

Again, two steps are used to derive the view i.e.,
1) defining subviews for each Result type, this time by excluding the 

irrelevant field types.
2) merging these subviews together.
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The corresponding SQL specification is as follows :
DEFINE View-B( P-no, Result)
AS SELECT P-no, Resultl 

FROM Labtest-B 
UNION
SELECT P-no, Result2 
FROM Labtest-B 
UNION
SELECT P-no, Results 
FROM Labtest-B

Unfortunately though, the UNION operator automatically removes 
duplicate rows of the table formed. There is therefore a loss of 
information, as happens in this case where rows occurring in View-B 
are just [ 015 +ve ] and [ 015 -ve ]. The third row no longer appears 
and hence gives the impression that the patient with P-no 015 had only 
two results, which is not true.

The same snag of having to know specific information a priori to 
defining the above views applies equally to recursive applications. The 
latter cases with levels of nesting are even more difficult to handle.

SQL provides a labelling mechanism to reference rows in the same 
table for the purpose of specifying recursive joins with the table 
itself. Take the example of the base table Product(Part-no, Comp-no,
Qty). The representation of its extension as a recursive hierarchy of 
occurrences is :

Product(Part-no, Comp-no, Qty)
1 2 100
1 3 200
2 4 150
2 5 100
2 6 220
3 7 60
4 8 200
4 9 170

->
4 5 6 7/\

8 9
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Consider the following specification for extracting the immediate 
components of a part.

DEFINE View-C( Part-no, Compl-no, Comp2-no)
AS SELECT R1.Part-no, R1.Comp-no, R2.Comp-no 

FROM Product R1, Product R2 
WHERE R1.Part-no = R2.Part-no 

AND R1 .Comp—no < R2.Comp—no

R1 and R2 are two arbitrary labels used to specify the rows to be joined 
under the conditions that the value of Part-no in one row is equal to the 
value of Part-no in a second row. The other qualification is required to 
ensure that at most, only one of the pairs (a,b,c), (a,c,b) will be 
shown.
The rows of the view View-C are ;

View-C( Part-no, Compl-no, Comp2-no)
1 2 3

2 4 5
2 4 6
2 5 6
4 8 9

As it appears, the view is not strikingly meaningful; on the 
contrary, the extension as shown above is not easy to understand because 
Part-no 2 still has three immediate components and cannot be represented 
altogether in one single row. This example is purposely chosen to 
illustrate the awkwardness that can crop up which one does not often find 
in textbook examples. Obviously, if there were just two components for 
each part, this problem would not have arisen; the third and fourth row 
above would not be materialised. Notice also that the base table 
occurrence where Part-no equals 3 does not feature in the view extension. 
The reason here being that it has only one component and has no second 
row with the same Part-no to join with. This is yet another case of 
missing information.

It can also be seen from the specification that a certain amount of 
understanding is required for the user to write down the corect join 
predicates. Second-level components in this example can be obtained by
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using a join predicate of *R1.Comp-no = R2,Part-no' in a similar way to 
that just shown. However, in general any further levels must be nested 
accordingly to the number required. This means that there can only be a 
fixed limit of iterations. In other words, it is not possible to extract 
for each part in the example hierarchy, all the related sets of component 
parts at every level of the hierarchy, without knowing how many levels 
exist for each.

So far the single table recursive join mechanism has been used to 
illustrate the one shortcoming above. It is equally important though, to 
appreciate its usefulness when applied to non-recursive applications.
The operation represents a powerful facility for establishing a 
relationship between rows (occurrences) of the same table (entity) type. 
This is analogous to a semantic-motivated mapping. The example below, 
borrowed from Date [81], aptly depicts this.

Given a base table for Supplier S(S-no, S-name, Status, City) and the 
SELECT statement,

SELECT First.S-no, Second.S-no 
FROM S First, S Second 
WHERE First.City = Second.City 

AND First.S-no < Second.S-no

The meaning of a view defined using this SELECT specification will be 
'Supplier-Pairs who can be located in the same city'.

Just to recap, several crucial points emerge from the rather long 
discussion on transposing transforms.

o There is a limited form of two-way semantic-motivated mapping of data
value to attribute type; any definition also requires a fairly
substantial understanding and pre-knowledge of certain underlying data 
values on the part of the user.

o Recursive structure mappings is restricted to a fixed depth of iterat­
ion decided a priori by the user.



74

0 The abstraction of a relationship (type) between the same entity type 
occurrences into a user-perceived view is supported.

The next section now looks at some other less specific issues.

5.1.2.2 General criticisms

There are two noteworthy ones here,
i) Awkward formulation of queries,

ii) Incorrect data materialisation in the sense of not meeting user's
intentions, from syntactically faultless specifications.

Notice the use of the term 'queries' which is used presently to 
convey the context of view definition. Studies on the user-friendliness 
of relational query languages [Shneiderman 78, Reisner 81], have in fact 
revealed that SQL's 'sugared' syntax is rated very favourably, just after 
QBE(Query-By-Example; see Zloof 77). Indeed, in most cases of averagely- 
siraple mappings, it is not too difficult. However, with most complex 
mappings, the nesting of sub-queries can become very cumbersome; this is 
especially true of recursive applications. The ripple effect of this is 
partly described by the second drawback listed above.

When forced to embed queries to several levels, which requires a 
careful and thorough understanding of the underlying data structures and 
their connections, one is prone to making logical slips. Very often in 
such circumstances, the syntax of the specification is not violated. 
Consequently, the slips go undetected, resulting in data whose semantics 
is inconsistent with user expectations, and which the user is not aware 
of. There is also no proper means of checking out such expectations. 
Hence, one cannot properly validate the retrieved data, except by knowing 
beforehand the underlying data occurrences so as to be able to work out 
manually what the expected data values should be. Such an ad-hoc 
solution, with its unreasonable and unrealistic assumption of pre­
knowledge, is not at all practical and is only feasible with very small 
databases (such as those used for course presentations at universities). 
The absence of effective semantic validations is by no means confined to 
System R; it is probably true of all systems. In System R, this factor.
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coupled with a number of others, bear a serious implication on the 
semantic integrity of its view mechanism.

5.1.3 Flexible view definition ; an implication

There is no concept of a centralised role of a DBA in System R as in 
say, a Codasyl-based DBMS. Individual users define their own views as 
long as they have the appropriate privileges granted. The external 
'schema* here consists of a collection of base tables and derived view 
tables. The user can specify new views either on the underlying base 
tables or on existing view types. Given that there is no guarantee of 
the semantic interpretation of views, semantic inconsistencies can easily 
proliferate. Further views derived from inconsistent ones can only 
inherit the consequences. The preceding section has already underlined 
one possible source of semantic inconsistency which is related to the 
language and query specification. A second possibility is due to the way 
that integrity constraints are handled optionally, and significantly that 
domains are not supported. Unintended meaningless derivations more often 
than not will pass unnoticed. Finally, the low level of semantic 
expression in the data representations that can be perceived by users, 
may also contribute indirectly, as a result of sheer misinterpretation.

5.1.4 Conclusions

The mapping facilities as provided by SQL are relatively powerful. 
This is not surprising given the relational completeness of SQL. 
Semantic-motivated mappings however, remain an important gap to be 
bridged.

It is clear that there are major inherent inadequacies of a tabular 
view structure. Proliferation of semantic inconsistencies is 
undoubtedly, a constant threat.

In comparing a System R view with the declared view characteristics 
of this thesis, one can readily conclude from the above studies that a 
System R view does not conform to a Unit view structure which requires no
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cross-linking of data structures by the user. On the other hand, direct 
data access, in terms of providing processed data is very good.

If a query is modified into a view, it is likely to be due to the 
following reasons :
i) an existing view table provides easy access to data by other users,

ii) the query is a repetitive transaction and hence it is useful to keep 
the definition.

iii) as a means of access control — by extracting out only certain types 
of data in a view, selective data can be protected,

iv) as an aid to schema structuring - consider the restructuring of base 
table by replacing a given base table by two of its projections such 
that a join of the projections will produce the original table. An 
important requirement of schema changes caused by the restructuring 
is that users should not be affected. By constructing the original 
table as a view table defined over two projections, the user is 
immuned from the underlying structure modifications. This though, 
is only true as far as data retrieval is concerned.

The conclusions that can be drawn are :

o the view mechanism provides logical data independence to users when 
schema restructuring is carried out.

o the view mechanism of System R probably stands out more prominently 
as an access control mechanism. This claim can be backed by the 
considerable amount of research efforts devoted to its view authori­
zation and access control mechanism [Chamberlain et al 75, Griffiths 
and Wade 76, Selinger 80, Fagin 78, Stonebraker and Wong 74]. (The 
last reference though not directly related to System R, has its 
relevance in that it addresses access control issues in relational 
views defined by means of query modification).
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5.2 The Codasyl EUFC Forms-Oriented Approach

The Codasyl EUFC (End User Facilities Committee) proposals aim 
specifically to support a general environment where end users handle 
forms - office forms, worksheets, memoranda, reports etc., in their daily 
work activities. The proposals are still under development and the 
studies reported in the first version of its JOD (Journal of Development) 
[Codasyl EUFC 83] on which this evaluation will be based, concern the 
derivation of end-user view objects only from a database definable by the 
Codasyl Data Description Language [Codasyl 78]. Again, aspects other 
than those related to view provision in the JOD, will not be addressed 
here.

In the rest of the discussion , a ’form* is defined to be a 
rectangular object which is the primary unit of data perceived and 
manipulated by the end user. A group of forms may be collected into a 
higher level object called a file. Forms and files can be of two types :

o base perception forms and files represent user views of the underlying 
database and are defined by a DBA using a data description language 
called EUF DDL.

o base user objects are defined by the end users themselves using an OMIL 
(Object Manipulation Interface Language) —  they are only relevant as 
far as the OMIL operations are concerned, which allow end users to 
create derived perception objects upon existing base types.

A form has a hierarchical structure; it can be regarded as a special 
class of end-user view - this will be discussed in the next section of
5.2.1. Section 5.2.2 examines the mechanism adopted for database-form 
mapping. Its translation into the EUF DDL syntax and the extent to which 
transformations are supported will be described in Section 5.2.3.
Section 5.2.4 briefly concludes the findings.

5.2.1 The form as a user-view

The use of a form as a view represents a very good example of 
abstracting away from underlying database structures to a real-world
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object with which the user is familiar and identifies readily. Its 
usefulness in encapsulating rich semantics is expressed in terms of its : 
o concept
o basic hierarchical structure
o positional layout of overall data that enhances the semantics

The concept of a form is an idea (of a thing) that is very well 
established in our human minds. A form regardless of how its contents 
are obtained is still to the end user, just a containment of some 
specific information —  he or she can be completely divorced from any 
knowledge of the database. Furthermore, the user will not have to learn 
any newly-coined term for an object which although represents the same 
concept, will nevertheless take some time to adjust to.

The hierarchical organisation of data is the chief aspect that merits 
discussion. The basic structuring construct for a form is a group. A 
group is a complex of one or more elementary data items, referred here to 
as group items, and other possible nested groups. The notion of a base 
entity introduced in Chapter 1 is met by the equivalent of a root (group) 
for a form. Groups other than the root group can contain repeating 
values.

The advantages of hierarchical data representations in general, have 
already been previously mentioned and will not be dwelled on further.
Two EUFC specific limitations related to the specification of a form 
structure will be considered later.

Finally the provision of geometric layout facilities is undoubtedly 
an additional means of improving user's semantic perception, thus 
reinforcing the effectiveness of the form as a user view. This however, 
is a secondary concern and will not be part of the study here.
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5.2.2 A non-direct mapping mechanism

The mapping process consists of three distinct logical stages as 
depicted below :

Stage I Identification of

Stage II Decomposition into

Stage III Assembly of

DB SCHEMA 

:
database occurrences

intermediary items^
^  V data item

group items }transformation

FORM

fig. 5.1 Mapping of an EUF FORM

Each stage is represented independently by an EUF DDL section. The 
key element of this non-direct derivation is the pool of intermediary 
items. These intermediary items are database items belonging to the 
subset of (Codasyl) record occurrences selected. Though it is required 
that every form item must have its intermediary correspondence, not every 
intermediary item must appear on the form because ;

o it may be used in the transformation of a different group item.

o it may be used as a qualifying attribute for the exclusion of
irrelevant occurrences of some other group item types or group types 
which satisfy the conditions (see Item/Group Limiter Section later). 
Group items are therefore either transformed from intermediary items 
or map direct from them. All group items must necessarily be cont­
ained in a group construct for the purpose of structuring the 
ultimate form.
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One possible advantage in thus breaking up the process is that it 
provides a kind of canonical source of intermediary items which is 
independent of the underlying model and database structures. One could 
conceive the derivation of the intermediary items from more than one 
database occurrence type i.e. relational or hierarchical besides the 
presently-supported Codasyl network database, which may require different 
specification for identifying the correct set of data occurrences.

There are however, a number of disadvantages. These are as follows : 
o The most severe criticism is that the canonical pool of items is at 

too low a level. The semantic associations between database records 
i.e. whole collection of database items, are broken down and there 
is no mechanism to preserve them in the re-assembling into semantic 
units for a form structure. For example, as long as the item name 
used in a data item transformation algorithm exists in the intermed­
iary list, the group item mapping will succeed even if it may not be 
semantically correct. The arbitrary structuring of the group items 
into groups establishes a relationship between these groups which 
may not reflect the true underlying semantics. Again as in Syèiefn R, 
there is no formal way of validating the form contents.

o The necessary containment of group items in a group means that in
the case of a single item group, such a step is not meaningful - it
is a mere duplication of names. The duplication is particularly 
true of the additional naming of a root group which in essence 
refers to the entire form itself. The root group name hence can be 
equally represented by the form name. In view of the fact that a 
view (as described in Section 1.2) has the same basic hierarchical 
structure, this point will be carefully noted in the subsequent 
proposal of a view model in Chapter 6.

o In instances when it is required to map a whole database record
occurrence into a semantic group in a form, the decomposition stage
proves to be unnecessary; additional work is required which 
increases the probability of incurring errors. It is also here in 
the reconstruction stage that the original essential semantics can 
be contaminated.
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5.2.3 Defining perception objects in EUF DDL (Data Description Language)

Not surprisingly, the syntax of the EUF DDL resembles other Cpdasyl 
specifications and employs entries, sections and clauses. The language 
consists of two main parts :

o the Form Entry which specifies the definition of a base perception form 
and its derivation.

o the File Entry which specifies the definition of a base perception file 
containing selected forms.

Form Entry is further divided into the following ordered Sections : 
i)Source Section - this simply states the name of the database schema 
to be accessed. 

ii)Name Section - this specifies the name of the form, 
iii)Item Section - this defines the list of intermediary items and the 

specification of any desired transformation of form items. It 
represents the decomposition stage of the process,

iv)Structure Section - this describes the hierarchical structure of the 
form in terms of the component groups and their corresponding group 
items. It represents the assembling stage.

v)Data Section - this defines how the underlying database occurrences 
are to be selected. It represents the identification stage, 

vi)Item/Group Limiter Section - this determines the conditions for
limiting number of occurrences of a group item type or group type to 
be displayed in the final form. 

viDGeometry Section - this specifies the visual appearance of the form 
layout.

viii)Description Section - this gives a text description of the form
entry; it provides a full explanation of the form semantics to the
user -it is good recognition of the need for such an important
facility.

The File Entry has the corresponding sections of :
i) Name Section - this names the file,

ii) Form Section - this defines the form type of the file,
iii) Limiter Section - this specifies the criteria for excluding form
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iii) Limiter Section - this specifies the criteria for excluding form 
instances in the file,

vi) Description Section - this is a text description of the file entry.

Only two Form Entry Sections, namely Item and Data, will be further 
discussed in detail.

5.2.3.1 Mapping capabilities and limitations

The types of item transformations supported are first considered.
These are :

o renaming of data item.
o reformatting of item type - this is expressed by the familiar COBOL 

PIC clause.
o creation of a new numeric item using an arithmetic expression.
o provision of summarizing functions - the functions here are not yet 

built in as in System R. Instead, they are specified as pieces of 
named procedures by the DBA. It is noted though that codes can be 
generally written for other more complex transformation algorithms 
besides summarizing functions. This flexibility can be used to 
generate fairly powerful mapping but it also implies that external 
semantics may be introduced unintentionally in syntactically-correct 
procedures.

o transformation using coded table rules - this can be achieved by 
representing the translation rules in an external procedure.

Two classes missing from the above list are :
o derivation of an aggregate item by concatenating the values of

elementary source items into a single item value. Notice that this 
is not the same as combining several items together in a group where 
the group items are made explicit.

o semantic-motivated mappings - all group item mappings are from data 
items only. There is no provision for deriving form contents from 
database record names or Codasyl set names (relationship names).
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Given that the underlying database is a network, the major structure 
mapping supported by the EUF DDL is expectedly, that of :

a) concatenating transform -
The Data Section contains a number of traversal commands for 

navigating through the network structures. The origin node of a 
concatenation is identified using the SEARCH clause. The clauses THEN 
and FROM are means of specifying what database record types are to be 
visited and the set type to be used. Two interesting features are to be 
examined in more detail ;

i)recursive path definition specified by the EXAMINE clause -

The clause allows the recursive looping of a pair of Codasyl owner- 
member record types that are related by more than one set. The syntax is 
as follows :

EXAMINE RELATIONSHIP record-name-1 
THEN record-name-2 
BY set-name-1 
OWNER record-name-1 

BY set-name-2
GIVING item-name-1 [item-name-2]...

[UP TO integer-1 TIME [S] ]

Note that record-name-1 and record-name-2 must be connected in an 
owner-member direction. Record-name-1 must be previously stated in the 
clause directly preceding the EXAMINE clause. The UP TO phrase specif­
ies the terminating condition for the recursive looping. INTEGER-1 
indicates the maximum number of times the pair of sets (set-name-1,set- 
name-2) will be traversed between the initial retrieval of record-name-1 
and the subsequent retrieval of record-name-1. This is taken to mean the 
number of levels of the recursive hierarchy to be extracted. If the 
phrase is omitted, no maximum condition is assumed. This implies that 
the mapping is not necessarily restricted to a fixed number of levels 
that must be explicitly defined.
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One contention remains with the specification. Item-name-1 and item- 
name-2 must be derived from schema items from record-name-1. This in a 
way, limits the expressiveness of the operation to single-loop hierarch­
ies —  in Codasyl structures that the EUFC is based on, the same record 
type cannot be both owner and member of the same set type, hence disall­
owing loop structures. To overcome this, a second link record type can 
be introduced with two set types connecting the original record type and 
new link type. In this case, the link record is not required to contain 
any data items at all.

Consequently, the constraint on the item source is not significant if 
the link record (represented by record-name-2) is in fact empty. This, 
however is not true with complex recursive loops. Here the link record 
does play a meaningful role and may contain useful information. For 
instance, in the part assembly example, record-name-1 may be replaced 
by PART with data items Part-number, Part-name and record-name-2 replaced 
by COMPONENT with data items Component-number and Quantity-used. With 
the specification as such, information about the number of units of 
component used cannot be derived.

ii) concatenation based on item value matching specified by the LOOKUP 
clause -

The LOOKUP clause allows a relationship to be defined between 
(occurrences of) two record types given that the matching predicates are 
satisfied. It is equivalent to a relational JOIN operation. This is a 
useful facility for new relationship types that can be derived 
independently of set relationships.

Support for other classes of structural transformations is as follows :
b) subsetting transform -

Instead of deriving a new form object (type), an entirely different 
object type, a file is created. The introduction of the file concept is 
yet another attempt to employ objects familiar to end users —  a file 
actually conveys the meaning of a whole collection of things.

The specification is contained in the File Entry. The selection 
condition is expressed in quite different terms. Called the limiting
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criteria, it specifies the predicates used to filter out a subset of 
irrelevant form instances. To demonstrate this, suppose a Late-Order- 
File is to be constructed containing form instances where form item 
Order-date > 30-1-84. The limiting criteria in this case will be to 
exclude form instances when Order-date <= 30-1-84. This somehow seems to 
a rather unnatural way of stating the requirement because one has to 
twist the criteria the other way round.

c) merging and summarizing transforms -
As it stands, these are not featured by the EUF DDL. The reason can 

be attributed to the traditionally-lacking support for relational set 
operations in Codasyl-typed DBMS where record-at-a-time traversals are 
more common. It is however becoming increasingly recognised that such 
powerful set operations are needed to extend the flexibility of Codasyl- 
based systems. One witness to this is CQLF (Codasyl Query Language Flat) 
[Manola and Pirotte 81,82] —  the SQL-like language is an attempt to 
enhance the retrieval power from Codasyl-based databases by supporting a 
range of relational set operators.

It is very interesting to note though, that external to the EUF DDL, 
there exists a MERGE operation in the OMIL which the end user can use to 
define a derived user file from a number of source files. The MERGE 
operator has very similar semantics to that defined for a merging 
transform, except that the source files must be ordered in the same way. 
Consequently, it is not strictly true that merging transform is not at 
all possible. The capability does exist at the end-user level. It must 
be pointed out that although the results achieved may be the same, the 
implications are different. By placing the task of specifying the 
operation in the hands of the end user, the end user has to explicitly 
carry out the merging. If the facility is included in the lower realms 
of the EUF DDL, the end user can be presented with both the transformed 
entity and the individual entities in their original 'form', depending on 
choice. The foregoing statements are not meant to imply that the availa­
bility of such facilities should be removed from the end users, but 
rather that if the objective is to provide direct data access to end 
users, then the feature should be equally included at the database- 
mapping level.
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d) transposing transform -
It can be envisaged that the transposition from linear to repeating 

structures and vice versa, is possible by selecting the required correct 
item occurrences. The limitation is as in System R, where explicit 
values must be known beforehand. This last criticism is directed at the 
absence of means to extract information that may be carried in a Codasyl 
set construct and set ordering. The position of a record in a set may 
contain a useful piece of information, as in an example given by Kay 
[75] —  in a PARENTS set, the position of the set member may be used 
to identify the two parents (which otherwise can be identified by a data 
item SEX in the record). Another example of desirable information is the 
number of members that are associated with a given set.

The same problem of incorrect data materialisation prevails too with 
the EUF DDL specifications. Here again there is no way to find out if 
the semantics is not as expected. As already pointed out in Section
5.2.2, the intermediary item mapping process itself is inherently very 
prone to semantic consistencies. On the other hand, there is perhaps 
better check on the propagation of such inconsistencies in a DBA- 
controlled environment since end users are not allowed to manipulate 
database objects directly and freely. As such, the possibilities of 
committing errors from a lack of understanding are reduced.

5.2.4 Conclusions

The Codasyl EUFC proposals represent an encouraging step towards the 
direction of providing real-world views of data from databases. Its 
mapping facilities can certainly be upgraded by the inclusion of :

o set operations which support structural transforms other than 
concatenating and subsetting, 

o semantic-motivated mappings,
o facilities to materialise data inherently held in Codasyl sets.

The major drawback is the loose semantic preservation that can be 
maintained by the non-direct mapping mechanism. Nevertheless, it has the 
potential of supporting a more general environment of heterogeneous
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databases and commercial files.



Chapter 6 THE PERCEIVED RECORD VIEW MODEL

Section 1.2 in the introductory chapter has described the desirable 
properties of a high-level, end-user view. This chapter now considers 
these specifically and defines a view data model that :
o supports such a view, hereby formally called a perceived record, 
o can be easily built on top of a database conceptual EAR model, 
o can provide the basis for building a non-DBMS specific, easy-to-use 

query language —  the ease-of-use requires that the query language 
defines on a minimal set of data constructs.

The following section first clarifies a number of terms and 
associated concepts. Section 6.2 then examines the basic data construct 
used to model a perceived record view - the component construct - and the 
roles it play. Alternatives for specifying the data model in terms of 
the component construct are investigated in Section 6.3. The last 
section. Section 6.4, looks at the constraint of uniqueness.

6.1 Some concepts and definitions

Two notions must be clearly distinguished.
The perceived record data model describes formally the rules of how 

its data objects relate to one another, and the semantics of these data 
objects.

The perceived record view, or simply known as the perceived record, 
is a unit data structure that is defined by the model. It represents :

A named collection of data values that contains all the information 
that the user is interested to query about.

These data values may be constructed from a number of database entity 
occurrences which may not necessarily be of the same type. The 
definition carefully avoids implication of any specific form of 
structure; this maintains the flexibility as a perceived record may be 
"both ;
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o a flat view where all the data values are single valued . 
o a structured view where it consists of a number of embedded groups

with data values that may repeat.

Fundamental to a perceived record lies the concept of a base entity. 
As noted in Section 1.2.1, a base entity corresponds to the user- 
perceived real-world object; the essence of the perceived record 
semantics is described in terms of the base entity type. Such a base 
entity type must be mappable from an existing database entity type. In 
particular, one occurrence of a perceived record type is represented by
one instance of the base entity type that specifies the user's perspec­
tive. This effectively means that a perceived record occurrence captures 
the required semantic information about one precise object instance that 
the end user perceives in the real-world.

All data values in a perceived record belong to the corrresponding
perceived record items. A perceived record item (abbreviated to pr-item) 
is the smallest unit of data in a perceived record. It is basically 
similar to a data item.

The basic structuring construct is the component. This is defined to 
be a named group of pr-items which possess a common association. The 
association can be implicit or acquired. Implicit association refers to 
the relationship that exists naturally between attributes which together 
describe the characteristics of an entity. For instance the attributes 
of D-name and D-phonername are held implicitly together as one aggregate 
unit conveyed to the end user as the Doctor entity.

Acquired association is more complicated. It defines an explicitly 
derived relationship between two or more pr-items brought together by 
some form of structural transformation on the same or different data 
object types.
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6.2 Roles of the component construct

Before one can start building a data model, one needs to fully 
understand the purposes of the data constructs used. A component has 
four main purposes :
i) At the occurrence level - structuring

The component construct provides a facility for handling repeating 
values of pr-items. This capability is one of the chief view 
requirements identified earlier on in Section 1.2. It needs to be 
reminded though that data values in a component do not necessarily 
repeat.

ii) At the data type level - naming
Obviously the identification of a list of pr-items by a meaningful 

component name projects out more clearly to the end user, the intent of 
the data. This applies usefully when a component is mapped directly from 
one whole database entity; the name of the database entity can be 
retained as the component name if so wished. Such cases illustrate 
components bearing an implicit association.

iii) Acquiring new semantics
A component consisting of pr-items related by an acquired 

association represents a newly derived semantic data object. In this 
way, a component may in fact be considered as a view object. This will 
have certain implications in terms of defining the perceived record 
model. _

It is interesting to note here that the 'group* construct featured 
in the Codasyl EUFC forms approach, does not support such a role. 
Subsequently, the functionality is very much reduced to a merely 
syntactic one of 'putting* group items together.

iv) Nesting of components
A component can be used to embed other sub-components, thus 

providing the potential to model complex structured views. The diagram 
below illustrates the nested component structure. Each component has 
zero, one or more sub-components, expressed by the relationship 'has*.
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COMPONENT HAS

fig. 6.1 Nested structure of the component construct

Given the above purposes of the component construct, the following 
section proceeds to find the most efficient way of specifying the 
complete data model, both in terms of usability to the end user and ease 
of mapping.

6.3 Alternative ways of structuring

The design of the perceived record view model is based on entity 
modelling, that is, identifying the entities involved, their roles and 
their constituent attributes. The entities will be in third normal form 
(3NF). A single database environment is assumed throughout. The data 
object representing the perceived view thus can be sufficiently uniquely 
identified by the name of the data object name alone; otherwise, a 
composite key comprising of the database name is required.

There are three different ways of expressing a perceived record data 
model :

o as a special case of the component construct
o as a hierarchical structure
o as a variable typed structure

Each of these alternatives is described in turn.

6.3.1 The component as a perceived record

Recall in the previous section that a component can assume the role 
of a view. The proposal here exploits this fact by modelling the 
perceived record view as a special class of component which is used for
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retrieval purposes. The component construct still retains its nested 
structure, but now plays two distinct roles : 

o as a perceived record view entity, 
o as a sub-component.

The data model can be represented diagramatically as follows :

PR-ITEM

COMPONENT

fig. 6.2 The Component Entity as a special 
class of Perceived Record

The following statements describe the above diagram, 
o A component name (c-name) is unique within a database,
o A perceived record item name (pr-itemname) is unique within a

component.
o A component type contains n pr-item types and m immediate i.e. at the 

next level component types where
n is an integer between 1 and a finite number N,
m is an integer between 0 and a finite number M.

In this design, a component featured as a perceived record, becomes a 
data object that can be manipulated. It is no longer just a semantic and 
structuring construct. Queries built on this model are therefore based 
on components which in turn reference pr-items. The basic operation that 
can be defined on a component is ’GET* where this can be interpreted as 
retrieving data values corresponding to the component.

One far-reaching implication arises from this. Every existing 
component described in the external schema must have only one unique name 
and distinct role. This is necessary to ensure that queries defined in 
terms of the component names are unambiguous. The parallel of such a 
unique naming constraint occurs in universal schemes (refer back to
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Section 2.3.2) whereby all attributes must bear one unique name and 
meaning for the purpose of attribute-based queries. The same criticism 
there is true here - a long list of component names must be carefully 
maintained at all times. This list can easily proliferate especially in 
the case of a large database applications. Consequently, this model is 
not a practical solution.

The above drawback can be resolved by identifying and modelling the 
two roles explicitly into two separate data objects. The perceived 
record retrieval role can be abstracted into a higher level object. The 
next model explores this mechanism and introduces an additional data 
object - the perceived record entity.

6.3.2 A hierarchical structure

This model features a perceived record entity ’sitting’ on top of the 
previous one. The resultant data structure is hierarchical - a 
perceived record entity is expressed in terms of components which in turn 
break down into pr-items. The diagram below illustrates the 
representation. PR abbreviates Perceived Record.

PR-ITEM

COMPONENT

PR

fig. 6.3 Hierarchical representation of perceived record model

The following statements are true of this model, 
o A perceived record name (pr-name) is unique within a database, 
o A c-name is unique within a perceived record, 
o A pr-itemname is unique within a perceived record.
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o A perceived record type contains n immediate component types where 
n is an integer between 1 and a finit̂ '̂ e number N. 

o A component type contains p pr-item types and m immediate component 
types where

p is an integer between 0 and a finite number P, 
m is an integer between 0 and a finite number M.

The component entity now becomes strictly a sub-structure within a 
perceived record entity. The second statement above reflects its 
subordinate role. As it is, it cannot be treated and manipulated as a 
data object independently of the perceived record entity that it belongs 
to. The unit of data referenced and manipulated by the query language is 
now replaced by the perceived record entity.

In overcoming the limitation of the first model, this solution 
presents its own disadvantages as well. The uniform hierarchical 
structure forces a rigidity on^end users’ perception of a perceived 
record; all pr-items must be contained in component constructs and hence 
be referenced via component names. The base entity of a perceived record 
view is best expressed'b.y^in terms of pr-items belonging directly to the 
perceived record entity, without the need of a duplicated level of 
component structuring and naming. The representation of the view in 
Chapter 1 (page 8) based on this model (view semantics remaining 
unchanged) is as follows :

PATIENT( Pat-details(P-no, P-name, Appmt( Appmt-date, Doctor( D-name,
D-phone-no ) ), Test( Type-of-test, Result ) ) )

As noted then, the base entity of the perceived record PATIENT is the 
database entity Patient. This particular piece of semantics is already 
captured by the name of the perceived record view. The additional 
specification of a component structure and hence the appearance of the 
component name of Pat-details is redundant. Moreover, it may cause 
confusion to an end user using the perceived record. One could argue 
though that the component name, equivalently expressed by the perceived 
record name can be suppressed from the display of a perceived record type 
to the end user. This effectively is the approach adopted by the Codasyl 
EUFC proposals. The visual rearrangement hides the fact that the
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underlying hierarchical structuring of 'groups' is inflexible. The 
inherent rigidity however remains untackled.

The final model below attempts to improve on this design with a more 
flexible structure.

6.3.3 A variable-typed structure

The approach here removes the strict hierarchical relationship in the 
above design by expressing a perceived record entity as a combination of 
both components and pr-items directly. It allows a perceived record to 
consist only of pr-items, and if required, the use of components to 
structure it. The data model is represented as follows :

PR-ITEM

COMPONENT

PR

fig. 6.4 Variable-typed representation of 
the perceived record model

The following statements are true, 
o A pr-name is unique within a database.
0 A c-name is unique within a perceived record, 
o A pr-itemname is unique within a perceived record,
o A perceived record type contains n pr-item types and m immediate

component types where n and m are as before, 
o A component type contains p pr-item types and q component types where 

p is an integer between 1 and a finite number P,
q is an integer between 0 and a finite number Q.
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Note that in the last statement, when p=1 and q=0, the component consists 
of just one pr-item. Since a perceived record entity can be described in 
terms of pr-items directly, this additional level of referencing via a 
component is not particularly meaningful. This contrasts with the second 
model discussed above, where such a structure will be absolutely valid as 
enforced by the inherent hierarchical constraint.

The variable-typed representation has two attractive properties.
i) Flexible structuring -

Following from the above definitions of the model, two types of 
perceived record structure can be distinguished.

A simple perceived record comprises just a list of pr-items that are 
associated to the base entity; it contains no components. This can be 
regarded as representing a flat, non-hierarchical view.

A complex perceived record consists of a number of pr-items related 
directly to the base entity, and one or more components. It represents 
a nested structured view.

ii) Common derivation -
The last two assertions made at the introduction of this model state 

a structural equivalence between a perceived record entity and a 
component entity. Both structures are described by the same set of 
rules. In other words, a perceived record entity and component entity 
can be derived via a similar route. This is hardly surprising as the 
perceived record entity evolves from abstracting one of the dual roles of 
the component construct. The previous model has failed to capture this 
point because a perceived record must always be defined solely in units 
of component at one level, and pr-items at a lower level.

A simple pr, consequently, can be regarded as a component comprising 
of only pr-items and no other components. It follows then that a complex 
pr can be thought of as a homogeneous combination of components.
Clearly, this model offers a great potential for developing a powerful 
and flexible mapping mechanism based on one uniform and symmetric class 
of data object. This property influences very significantly the way that 
the mapping mechanism will be formulated.
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The perceived record entity represents the only unit of data that the 
query language, and hence the end user manipulates. Just as in the 
second model, queries only reference the component construct contained 
within a specified perceived record entity. The kinds of query language 
operators defined on the perceived record entity will be simple retrieval 
commands, such as the pseudo 'GET' operation described earlier. Higher 
level operators that one accustoms with many data manipulation languages 
and especially relational query languages (for example, the JOIN or GROUP 
BY operator) will not be considered. This accords with one of the 
initial motivations of this thesis to propose a view model that can 
provide a basis to build a uniform DBMS-independent query language which 
requires no excessive manipulative operations for the purpose of data 
retrievals.

To complete the full description of the data model in fig. 6.4, the 
following specifies the properties of the perceived record entity, 
component entity and pr-item entity of the model, as attributes of these 
objects. Identifying attributes are underlined. ... indicates 
additional attributes that define the mapping rules; these will be 
included in the next chapter.

Perceived Record( pr-name, ... )
Component ( c-name, pr-name, pc-name, ... )
Pr-item ( pr-itemname, pr-name, c-name, pri-role, pri-format, ... )

?
Some explanatory notes :
o Component has a composite key since a component is unique within a 
perceived record.

o Pc-name abbreviates parent-component name.
Referring back to the component structure diagram (fig. 6.1), each 
component can contain components of its own i.e. sub-components. 
Equivalently, each component has one parent-component name at one 
immediate level. The attribute parent-component name defines the 
relationship 'has'; it is functionally dependent on c-name and pr-name. 
Where a component belongs immediately to a perceived record entity, 
i.e. it does not belong to a component, the corresponding pr-name has a 
null value.
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o The 1:n relationship between component and pr-item is represented by 
putting c-name as an attribute in the pr-item entity. Each pr-item is 
sufficiently identified by the composite key of pr-itemname and pr-name 
uniquely. C-name does not form part of the identifier of pr-item 
entity. It will be incorrect to do so, for where a pr-item belongs 
directly to the perceived record entity, c-name will have a null value; 
it hence cannot be part of a key.

o Pri-role abbreviates pritem-role. This denotes whether a pr-item is an 
identifying key attribute or non-key attribute for its associated 
perceived record type. Pri-role will have values 'K' (Key) or 'NK* 
(Non-Key). (See Section 6.4 on key constraints).

o Pri-format (pritem-format) describes how the data value of the pr-item 
type is to be represented in an occurrence of the perceived record. At 
the most basic level, pri-format takes one of these values :
INT (integer), STR (string), REAL (real number).

One more aspect of the data model needs to be described in detail, 
and that is the issue of data constraints.

6.4 Constraint of uniqueness

The discussion here specifically concerns key constraints only.
Other forms of constraints, especially consistency ones that must be 
maintained during the mapping process will not be dealt here. Instead 
they will be considered in the development of a mapping mechanism.

A fundamental requirement of the perceived record concept states that 
each perceived record occurrence represents only one distinct real-world 
object instance that the user can unambiguously identify. It means that 
all perceived record occurrences for a given perceived record type must 
necessarily be uniquely derivable from the database.

Uniqueness is established by one pr-item or a combination of pr-items 
which possess unique data values for each occurrence of a given perceived 
record type. Pr-items bearing this unique identification property are
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known as perceived record keys (prkeys). In order to fulfil this 
integrity constraint, a perceived record must have prkeys. This fact has 
been modelled by the inclusion of the pri-role attribute for the pr-item 
entity in the previous section.

In general, identifying database attributes of the database entity 
corresponding to the base entity form the necessary prkeys of the mapped 
perceived record type. Cases may arise though, that composite prkeys in 
fact derive from different database entity types. An example of this 
will be demonstrated in the next chapter.

It must be stressed that this constraint must not be imposed on end 
users such that they have to be actually aware of prkeys in order to 
retrieve perceived record occurrences; otherwise the whole purpose of the 
perceived record approach is defeated. Only the DBA or EUA who specifies 
the mapping of a perceived record type needs to understand and know what 
prkeys are to be used.
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Chapter 7 A GENERALISED CANONICAL TRANSFORM MODEL

This chapter aims to develop a formal method of specifying the 
correspondences between the data objects in the conceptual schema and 
those in the perceived record model. The proposed mechanism makes use of 
an intermediate pivot structure. Section 7.1 first examines existing 
mapping techniques and explains the reasons for adopting an intermediate 
approach. Section 7.2 presents an overall view of the underlying 
principles. The actual design of the transform model is conducted in 
three main parts in Section 7.3. The chapter concludes by appraising the 
proposal.

7.1 The Rationale

7.1.1 Methods of mapping

It is useful first to consider methods currently used to achieve view 
transformations from database structures. The context of database 
structures is stressed in order to distinguish the related issue of 
mapping views based on predefined view definitions. This is usually 
provided as an additional enhancement to the basic mapping capabilities 
of a system —  it allows appropriate mapping definitions to be reused 
without having to duplicate efforts, thus reducing the probability of 
incurring errors.

Two common mapping techniques are as follows;

a) Direct correspondence of view structures from database structures —
Relational query language systems usually employ this strategy. As 

already noted. System R is one example, and so is Ingres. This method 
has the advantage of being a neat, one-step procedure. It however 
suffers from the drawback that mappings are restricted to a specific 
database model - the mapping definition language must be defined on a set 
of data structures and in this case, those of the database model. Hence, 
unless this set of structures is generalised to support different 
specific logical data models, view mappings will be constrained to the 
only one data model that the database is built upon.
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b) Use of intermediate data objects —
This strategy involves two steps ; first, the translation of the 

database structures to some intermediate form, and second, the 
construction of these intermediaries into the required view structures. 
The intermediaries may conform to a data model e.g. a functional data 
model as in MULTIBASE, or may be an unstructured collection of elementary 
data types that can be represented by some kind of an end user data model 
at a later stage. The Codasyl EUFC mechanism clearly illustrates this 
latter approach.

This method entails more efforts both in coding the rules for the two 
steps, and in maintaining the consistency of the mapping throughout. 
Consequently, extra consistency checks are required to validate the 
correspondence between the intermediaries and database schema objects.
The considerable amount of validations can adversely affect the system's 
performance and efficiency.

On the other hand though, it does not have the disadvantage inherent 
in the former direct approach —  intermediate data objects provide a 
means of supporting generalised mappings by accomodating different data 
models into common structures. The flexibility of derivations depends 
very much on the choice of the intermediary data structures, as for 
example the kinds of inherent constraints that may be imposed by a 
particular data model. In a hierarchical model for instance, 'all 
children' objects must have one 'parent' and hence the 'parent object' 
must be referenced for every derivation. (For further discussion on 
inherent constraints, refer to Brodie [78], Tsichritzis and Lochovsky 
[82]).

7.1.2 A canonical approach

The above discussion helps to clarify the possible avenues together 
with their merits and demerits that can be considered for perceived 
record mappings. It is important to emphasise that the source structures 
for mapping perceived records considered in this work, are not specific 
to a given logical data model of DBMS. As such, the factor of supporting 
(or not supporting) generalised mappings in the two approaches does not
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influence the choice of technique. Rather, the chief reason for adopting 
the second intermediate strategy in this case, arises from the non- 
monolithic structure of a perceived record. A perceived record view may 
be a simple flat structure or a complex one with embedded repeating 
groups. The task of developing general algorithms for the direct 
structural correspondence in terms of database objects is non-trivial. A 
way out will be to tackle the problem in a modular fashion by breaking 
the process down into a number of functional steps, with common mapping 
characteristics described in simple intermediate mapping objects.

We further propose that the mapping be via a canonical transform 
model built on simple data structures. There are two main reasons.
First of all, the use of elementary unstructured data items as occurs 
with the EUFC approach leads readily to semantic inconsistencies. Using 
larger structured units of data helps to alleviate the problem because a 
data structure constrains that the associations between the constituent 
data items be semantically meaningful. The problem of maintaining 
semantic consistency in constructing a view from the intermediaries 
becomes a more manageable task of identifying associations between blocks 
of data (as opposed to individual item), with a reduced probability of 
errors.

The second reason lies within the perceived record structure itself. 
As explained in Chapter 5, the structure of a perceived record can be 
expressed homogeneously in terms of the component construct. It is 
appropriate to define a generalised flat object, hereby referred to as 
the canonical mapping object, in the transform model that corresponds to 
the component construct. Many different types of perceived record can 
then be derived using a common data structure.

The canonical mapping object therefore forms the key feature of the 
canonical transform model. Its roles are ;

o to describe the properties of a component (type) i.e. the rules that
are applied to derive the component from the database, any transfor­
mation operations that define a structural reorganisation of its
source types, and the data items of the component,

o to facilitate the derivation of a perceived record view from one
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uniform type of data object. The canonical mapping object can be 
regarded as the basic building block for a perceived record.

The overall objective of the canonical transform model, in summary, 
is to provide a simple, but yet general means of capturing the mapping 
information necessary to derive a perceived record view from the data­
base. A very important requirement of the mapping is the semantic 
integrity of the occurrences of a given perceived record. It is aimed to 
build such integrity constraints explicitly as an integral part of the 
canonical transform model.

The totality of the proposal can be better understood and appreciated 
by looking at how the transform model can be employed in practice. 
Descriptions of its data structures can be appropriately held in a data 
dictionary, with supporting software used in conjunction to define 
perceived record (types) and to retrieve corresponding view occurrences. 
The following diagram illustrates this. It must be emphasised that the 
three pieces of software represented below are at a logical level —  at 
implementational level, the various functions may be integrated as one 
package depending on the constraints.

perceived
record
objects

(3) (1 )
database
objects

(2)
data j. 

dictionary ;
transform model 
data objects

TRANSLATOR

MAPPING
PROCESSOR

MAPPING
INTERFACE

full boxes represent a piece of 
implementable software

fig. 7.1 The Transform Model applied in a practical environment
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The processes involved are :

1) The EUA defines a perceived record view in terms of database objects. 
The main function of the mapping interface is to validate the 
correctness of the specifications.

2) The translator translates the mapping definitions into equivalent 
descriptions of data structures in the transform model. These mapping 
descriptions plus those of the perceived record will be held in the 
data dictionary.

3) Upon an end user's valid request for a perceived record view, the 
mapping processor extracts the corresponding mapping descriptions 
(from the data dictionary) and uses them to retrieve the actual occur­
rences of the perceived record.

The interactions of the various types of data objects in the 
respective schemas are represented in fig. 7.2. Note that the logical 
schema is also included, only to show its association to the general EAR 
conceptual schema in practice.

COMPONENT

PR-ITEM

Canonical
Transform

Model
DB-ENTITY

E—R

SUBSCHEMA

DB-ATTRIB

DB-RELSHIP

- relational
- Codasyl 
network

- IMS hier­
archical

External Schema Conceptual Schema Logical DB Schema

fig. 7.2 Schema Interfaces with the Canonical Transform Model
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Subschema here defines a subset of the entire database which 
sufficiently contains the database objects that are required to construct 
a perceived record. The E-R (Entity-Relationship) data object represents 
the fact that one db-entity type can participate in many db-relationship 
types, and that, similarly one relationship may involve many db-entity 
types.

For the remaining parts of the chapter, the canonical transform model 
will be developed based on studying the requirements of database-to- 
perceived record mapping and applying the framework obtained in Chapter 
3. The following section first formalises the underlying notions before 
embarking on the detailed modelling.

7.2 The Formulation

Hereinafter :
«

o component refers to the flat structure representing items of either 
a perceived record entity or a component entity in the perceived 
record model.

o X-object (abbreviated to X-obj) refers to the canonical mapping
*

object bearing the transformation characteristics of a component .

The modelling is established at three levels. The first two concern 
the actual transformation of data objects, whilst the third is included 
so as to maintain the semantic integrity of the data occurrences in the 
mapping.

*
i) At the data structure level pertaining to component i.e. the 

perceived record or the component entity 
This involves two stages as illustrated below.

*
Component <----  X-obj <----- Db-entity (linked by db-relationship)

(b) (a)
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Stage (a) describes the derivation of X-obj from db-entities.
Stage (b) describes the construction of X-objs into the corres­
ponding perceived record.

ii) At the data value level, pertaining specifically to the pr-item 
For this, an elementary data mapping object called Y-object (Y-obj) 
is defined which describes the transformation characteristics of a 
pr-item.

The two stage structural correspondence between pr-item and 
db-attributes is as follows:

Pr-item <------  Y-obj <-------  Db-attribute or some other
(d) (c) derivable property

Stage (c) describes the derivation of Y-obj from db-attributes.
Stage (d) describes the correspondence of Y-objs to a pr-item.

iii) At the data occurrence level
The values of pr-items make up an instance or occurrence of a perce­
ived record. As noted in Chapter 2, structural transformations 
cause a reorganisation of occurrences of db-entity i.e. the db- 
attribute values within. Value transformations applied to db- 
attributes must be defined on the correct instances of db-attribute 
values in order to ensure the integrity of perceived record occur­
rences. For this, the correct interaction of mapping information at 
the two higher levels of modelling are required.

(

In the next section, the design of the canonical transform model will 
feature the mapping descriptions required at each level. The model will 
be in 3NF.

7.3 The Development

Sections 7.3.1 through 7.3.3 consider the mapping at the levels of 
data structure, data value and data occurrence respectively. It is 
assumed that within a single database, db-entities and db-attributes can
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be uniquely identified by their respective names, represented by db-ename 
and db-attrname. Furthermore, a X-obj or Y-obj is termed basic if it 
relates directly to an existing data object described in the database 
schema. If the relation is expressed by some transformation rules, it is 
termed derived.

Capitalised names (e.g. X-OBJ) refer strictly to the schema data 
object in question; if otherwise, a general context is implied.

%7.3.1 Correspondence of component to db-entity

Accordingly, the study here involves the two stages identified in the 
earlier section.

7.3.1.1 Derivation of X-obj from db-entities

(I) When X-obj is basic -
The correspondence between X-obj and db-entity is many-to-one (m:1); 

each X-obj maps directly to one db-entity; each db-entity however 
relates to more than one X-obj.

(II) When X-obj is derived -
A derived X-obj can be mapped from more than one db-entity. In 

general, each db-entity may correspond to more than one X-obj that is 
either basic or derived. The simple m:1 relationship between X-obj and 
db-entity now generalises to a complex m:n. (See fig. 7.3 )

The derivation is characterised by a structural transformation 
defined on the source db-entity. Chapter 3 gave five main classes of 
structure transforms —  concatenating, merging, subsetting, summarizing 
and transposing. Each of these can be specified by some kind of rules. 
The middle three transforms can be directly defined using an appropriate 
operator. Concatenating transforms, on the other hand, are slightly more 
complicated because they involve db-relationship types other than just 
db-entities in the process. The essence of transposing transforms lies
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primarily in the semantic-motivated mappings of pr-items; these, as such, 
will be examined in the next section.

We first look at the three operators and the modelling of the 
associated mapping information.
i) Mrgset

The Mrgset operation assumes the semantics of a merging transform.
It takes two or more entity types and generates a single common class of 
entity.

ii) Subset
The Subset operation assumes the semantics of a subsetting transform. 

The selection criteria defined on attributes of the entity may consist of 
the comparison operators =, <>, >, >=, < and <= ; boolean operators AND, 
OR and NOT, and parentheses to indicate a desired order of evaluation.

iii) Grpset
The Grpset operation assumes the semantics of a summarizing 

operation. It must be specified with a grouping predicate defined on a 
given attribute of the source entity.

Information about each of the set operations associated with an X-obj 
derivation can be recorded using two attributes which describe the X-OBJ 
entity in the transform model. SOPTYPE (Structure Operation Type) 
defines the kind of operation; it has domain values of MRGSET, SUBSET and 
GRPSET. In order to generalise to basic X-obj, a fourth domain value,
NIL is used to indicate the absence of transformations. A second 
attribute PRED (predicate) describes the qualification criteria that may 
be required for the process.

Whilst these two attributes can sufficiently model the operator- 
defined transformations, the modelling of concatenating transforms 
requires much deeper analysis. As seen in Chapter 3» a concatenating 
transform consists of two essential concepts : an origin node and a set 
of immediate arcs. In this case of X-obj derivation, the db-entity 
chosen for the role of an origin node will be referred to as the anchor 
(entity) of the X-OBJ. Each immediate arc is represented by a



109

concatenating predicate expressed in terms of db-relationship connecting 
the db-entities.

It is necessary to be more specific about the meaning of the 
concatenating predicate here. This can be : 
o an explicit named db-relationship
o a value-matching predicate that is defined on db-attributes

belonging to the two ’nodal’ db-entity types. This may express an 
existensial relationship such as in relational logical schemas —  
the existence of an explicit relationship between two relations is 
defined by key propagation and the subsequent matching of the data 
item values. Alternatively, it may be used to derive an implicit 
relationship between two entities, as we have already seen with the 
LOOKUP operator in the Codasyl EUF DDL.

Earlier on, it was established that X-OBJ has a m:n relationship with 
DB-ENTITY. In a concatenating transform, the relationship between a 
given X-obj and each of its source db-entities must be fully described by 
a predicate which indicates the connection to be used to select the 
correct occurrence of the db-entity type, with respect to a predefined
anchor entity. Note that when the source db-entity is in fact the anchor
entity, this description does not apply. The complex m:n relationship is
now resolved into two 1:n relationships by introducing an additional
entity called XLINK as shown below.

X-OBJ DB-ENTITY =>

XLINK

X-OBJ DB-ENTITY

fig. 7.3 Relationship between X-OBJ and DB-ENTITY

XLINK has a composite key comprising of the two identifying 
attributes from X-OBJ and DB-ENTITY. It also has an additional attribute 
called LINFO (link information) which describes the concatenating 
predicate. LINFO will take one of the following forms:-
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0 r where r represents the name of a db-relationship in an immediate 
association between the db-entity in question and the anchor entity.

o multiples of a triple descriptor of type <r^- e - r^> , separated by

commas —  r̂  and r^ are db-relationship names; e is a db-entity name.

Such descriptors will be used to define complicated associations. For 
example, suppose an X-obj has sources of db-entity A and C as shown in 
the diagram. A is the anchor entity. LINFO description for an XLINK 
occurrence involving db-entity, C, will be expressed as :

(i) X - B - y  or 
(ii) x - B - z ,  z - F - t  

depending on which predicate is required

fig. 7.4 Example of a Cyclic Schema

a^= a^ where a^, a^ are db-attributes of the db-entities involved.

o a null value - this happens in the case of when :
i) the source db-entity is the anchor entity in a concatenating 

transform.
—  in the above example, LINFO will be null for XLINK occurrence 

that is identified partially by the db-entity A.
ii) the inter-structural transform is not a concatenation i.e. it is a 

merging transform.

For two reasons, the anchor entity name is explicitly associated with 
an X-obj by adding one more attribute to X-OBJ, appropriately referred to 
as ANCHOR. Its major purpose relates to the identification of X-obj 
occurrences in constructing a complex pr. A perhaps lesser reason is the 
ease of checking out the correctness of the LINFO description. With 
basic X-obj, or those described by a Subset or Grpset operator, the 
ANCHOR value defaults to the only source db-ename. Merged X-obj i.e.
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that defined by a Mrgset operator, has optional ANCHOR values which can 
be either one of the multiple source db-enames. The ANCHOR value in this 
case will be indicated by the value ’OPT’ which is system-defined to mean 
one of the associated source db-enames.

The attributes for the X-OBJ and XLINK entity in fig. 7.3, can now be 
gathered together. The X-OBJ attributes identified so far are SOPTYPE, 
PRED and ANCHOR. No one of these attributes, or a combination of them, 
can form an identifying key required for X-OBJ. It is therefore 
necessary to construct an internal identifier; this will be called X-ID 
(X-identifier). For the moment, it suffices to say that X-id is a value 
generated by an algorithm invoked each time a new X-obj is defined. The 
algorithm will be considered further as an implementational aspect.
Since DB-ENTITY is identified by the attribute DB-ENAME, the composite 
key of XLINK consists of both X-ID and DB-ENAME.

The entities defined so far are now written down with their 
attributes. Unique identifiers are underlined.

X-OBJ ( X-id, soptype, pred, anchor)
XLINK ( X-id, db-ename, linfo)

The next stage now is the construction process of perceived records 
from X-objs.

7.3.1.2 Case of a simple perceived record

The correspondence here is fairly straightforward. A simple pr has 
no components and therefore relates to just one X-obj which may be basic 
or derived. Each X-obj on the other hand, may feature in one or more 
simple pr, and possibly other complex pr. A one-to-many (1:m) 
relationship hence exists between an X-OBJ and a PERCEIVED RECORD, as 
shown below.
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P R ^ ^  X-OBJ

fig. 7.4a Relationship between PERCEIVED RECORD and X-OBJ

In general, the pr-items in a simple pr pertain directly to the base 
entity i.e. they originate from the same db-entity type. This means that 
the end user could retrieve data directly from the database rather than 
via a perceived record. In other words, the provision of simple pr s 
(and maybe its concept) does not seem to be particularly meaningful, 
except for the aim to have a generalised facility. There are however two 
interesting situation when a simple pr maps from a derived X-obj where 
its pr-items are extracted from entity types related to the base entity 
type. It is probably these exceptions that justify the case for simple 
prs.

Case (i) Inclusion of a summarized pr-item
The required view information may consist of summarized data 

describing the user-perceived object, i.e. the base entity of the 
perceived record. Consider the following example featuring a portion of 
the HOSPITAL database :

WARD( W-no, W-name )

Registers => WARD-VIEW( W-no, W-name, Tot-Pat )

PATIENT( P-no, P-name, Age, Sex )

WARD-VIEW describes a ward and the total number of patients it has. 
The base entity here corresponds to the WARD entity in the database. The 
pr-item Tot-Pat is summarized from a count of occurrences of the PATIENT 
entity which is related to the base entity via the db-relationship 
Registers.



113

Case (ii) Composite keys
The perceived record base entity may correspond to a db-entity that 

can only be identified by db-attributes from its ’owner’ db-entities.
This happens when the db-entity contains intersection data resulting from 
the resolution of a complex m:n relationship between the two ’owner’ db- 
entities. An example is as follows :

DOCTOR( D-name,Age, Sex ) PATIENT( P-no,P-name, Sex ,Age )

\ /
TREATMENT ( Date, Drug-code )

=> TREATMENT-VIEW( P-no, D-name, P-name, Date, Drug-code )

Only a bare minimum of attributes have been used to describe the db- 
entities —  in practice, there will be more descriptive information held. 
D-name and P-no identifies the db-entity DOCTOR and PATIENT respectively. 
TREATMENT-VIEW in this case is required to have these two identifying 
attributes both for consistency reasons and to make it meaningful.

7.3.1.3 Construction of a complex pr

The process of constructing a complex pr is an assembly of X-objs
that form the building block structures of the transform model. Recall

%
that the term component was adopted earlier in Section 6.2 to refer to 
either a perceived record entity or a component entity, that maps from an 
X-obj. This can now be expressed more precisely. Each component entity, 
in the same way as a perceived record entity, maps from one X-obj. Every 
X-obj corresponds to one or more component entity, as well as 
corresponding to one or more perceived record entity. X-obj then has a 
1;n relationship with COMPONENT as depicted in the following diagram in 
fig. 7.5.
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X-OBJ

COMPONENT

fig. 7.5 Relationship of X-OBJ to COMPONENT

More information however must be recorded about this assembling 
process. The semantics of a complex pr are expressed chiefly by the 
association of individual component to the simple pr i.e. base entity, 
and the associations between the various components. A crucial 
requirement is the selection of the correct occurrences of X-obj that 
match the expected semantics. This, in fact, is a second level of 
occurrence identification. The first, as seen in the previous section, 
concerns the identification of db-entity occurrences in a concatenating 
transform to derive an X-obj. The nature of the two are very similar, 
except that this next level is complicated by the fact that a complex pr 
may be a deeply nested structure.

The following first illustrates where the similarity lies, and 
expands on to take into account possible hierarchies of nestings.
With reference to fig. 7.4,

- two complex pr types, with the same syntactic structure but different 
semantics, are constructed from the same basic A’ and C*. A' and C’ 
correspond to db-entity A, C respectively.

- PR-1 contains the meaning that component C is associated to base A by 
the associations x, y via db-entity B.

- PR-2 contains the meaning that component C is associated to base A by 
the associations x, z via db-entity B, and association t via db- 
entity F.
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PR-K A , C )

PR-2( A , C )
<=

C t

perceived records basic X-objs database schema

fig. 7.6 Identification of pr occurrences with different semantics

Notice that the X-obj A* and C* are defined only once. Note also 
that the direct process depicted by the single arrow -4“ , is no different 
from the example of deriving an X-obj with the same composition in 
Section 7.3.1.2. There, the predicates for determining the correct 
selection are expressed by means of the LINFO attribute in the XLINK 
entity.

The predicates, in this case, are described in terms of the anchor 
entities of the X-obj instead. The identification of a required X-obj 
occurrence of one type in relation to another X-obj type amounts to a 
step-wise procedure between pairs of the anchor entities of the X-objs 
involved. The information about which associations i.e. db-relationships 
will be used to relate the anchor pair pertain specifically to the given 
perceived record type, and forms part of its description. More 
precisely, the information is relevant to only the component entity which 
describes how the component ought to be derived with respect to the 
perceived record base entity. The perceived record entity, as such, does 
not contain explicit link information of this kind. For the purpose of 
modelling this aspect, the component entity has an extra attribute called 
C-DESC (Component-Description). C-DESC will be expressed in the same 
first three formats as defined for LINFO earlier. The fourth null value 
option of LINFO is not relevant here because the case of describing the 
linkage to the anchor entity itself is explicitly represented by the 
perceived record entity.
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The following explains how the combined information ANCHOR and C-DESC 
information are used.

Consideration of nested levels of components
The above example illustrates a trivial identification of just one 

component occurrence to the base entity of the perceived record. In more 
complex situatuions, there must be a mechanism of keeping track of how 
pairs of nested components, more precisely their corresponding X-objs, 
can be identified correctly.

Each component in a nested structure belongs to a specific level 
(c.f. recursive tree structures in Chapter 4). All components at one 
level are identified to its parent component at one immediate level 
higher up. In the context of the perceived record model, the root of the 
nested hierarchy is represented by the perceived record entity.

We propose to express the embedded structural information explicitly 
by using an attribute LEVEL-NO which indicates the level position of a 
component in the hierarchy. The root conventionally has a level value 0 
(zero). This however is implicit and the perceived reocrd entity does 
not carry the LEVEL-NO attribute. Immediate components have level value 
1 and this increases with the depth of the structure. The component 
entity, hence has an additional attribute called LEVEL-NO, with domain 
values beginning from integer 1 to a desired limit (according to 
implementation considerations).

The example below, based on the same database schema as before, 
demonstrates the use of this piece of ’level’ information in conjunction 
with the attributes ANCHOR and C-DESC, to fully define the X-obj 
occurrence identification process for a perceived record.
The perceived record here has base entity A and nested components B, F 
and C, Brackets indicate one or more occurrences of the data objects 
enclosed within each pair in the perceived reocrd representation.
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PRC A (C ( B ( F ))) <= B»

\

perceived record basic X-obj database schema

fig. 7.7 Construction of a nested complex pr

The following steps are taken in constructing this perceived record :
i)The base entity corresponds to X-obj A*. The ANCHOR value of A’ is 
thus extracted.

ii)The LEVEL-NO value indicates that ^ and ^ are first level components, 
ANCHOR values of corresponding X-obj B' and C  are then checked. 
C-DESC information from components for B and C are also extracted. 
Based on these, the anchors of components B and C are identified to 
their parent component anchor i.e. anchor of A’ from step (i). (Both 
JB and C will have null pc-name because of their immediate association 
to the base entity of the perceived record).

iii)Level-2 component is F. Its parent component is B. The ANCHOR
values of F’ and B’ are then obtained. The correct selection of F* 
occurrence to B* occurrence is completed by knowing the anchor 
connection from the C-DESC information in F.

The whole process can be specified by a generalised algorithm as 
follows ;- For ease of notation, X-OBJ is parametrized to indicate its

*
corespondence to a component type. For instance, X-OBJ(COMPONENT) reads 
as X-OBJ corresponding to a COMPONENT.
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Get ANCHOR of X-OBJ(PERCEIVED RECORD)
For LEVEL-NO =1 to specified-no-of-levels 
Begin
For each COMPONENT at the level 

Begin
Get ANCHOR of X-OBJ(COMPONENT) { call this a1 }
Get C-DESC of COMPONENT 
If LEVEL-NO <> 1, then 
Begin

Get PC-NAME of COMPONENT { parent component^}
Get ANCHOR of X-OBJ( COMPONENT= parent component )

{ call this a2 }
End
else if LEVEL-N0=1 { do nothing }
Connect a1, a2 by C-DESC of COMPONENT 

End { for component }
End { for level-no }

The attributes LEVEL-NO and C-DESC are now included in the 
appropriate entities. With reference to the sub-model of fig. 7.5, the 
additions are :

PR( pr-name , X-id )
COMPC c-name, pr-name, pc-name, level-no, c-desc, X-id )

The presence of X-id in both entities express their relationship with 
X-OBJ as shown in the diagram.

Fig. 7.8 sums up the entities of the transform model established so 
far, and their relationships with the other schema objects.

f X-OBJ DB-ENTITY

COMPONENT XLINK

fig. 7.8 Mapping correspondences at Data Structure level
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The next section now analyses the modelling requirements of data 
value transformation.

7.3.2 Correspondence of pr-item to db-attribute

The study is again divided into two parts.

7.3.2.1 Derivation of Y-obj

(I) When Y-obj is basic -
Each Y-obj relates directly to one db-attribute; there is no value 

transformation. Each db-attribute in turn may correspond to more than 
one Y-obj. The relationship between Y-OBJ and DB-ATTRIBUTE is thus m:1.

(II) When Y-obj is derived -
In terms of relating to db-attributes, a derived Y-obj maps from one 

or more db-attributes. A derived Y-obj may also correspond to properties 
such as that abstracted from the db-entity types or db-relationship 
types. For the moment, we focus on its association to db-attributes 
first. Each db-attribute, in general, relates to one or more Y-obj that 
may be basic or derived. As such, the general relationship between Y-OBJ 
and DB-ATTRIBUTE is in fact a complex m:n relationship. More information 
however needs to be recorded about this relationship.

A derived Y-obj defines a change in the source data type values as 
specified by a data item transformation rule. The various classes of 
item transformations have already been described in Chapter 3. We shall 
now define how information about these are modelled and recorded; in 
particular, specific operators will be defined where necessary.

Each transformation rule can be regarded as described by two 
attributes: lOPTYPE (Item Operation Type) which states the class of 
transformation, and SPEC (specification) which describes the complete 
specification of the operation. The domain values of lOPTYPE and the 
corresponding valid expressions for SPEC are as follows :-
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lOPTYPE value of :
i) EXP (Expression) indicates the use of an arithmetic expression to

evaluate a data value.
The corresponding SPEC expression consists of one of the first two, or a 
combination of all three, of the following fields, joined by arithmetic 
operators —  +, -, *, / with optional parentheses determining the order
of evaluation :

o db-attribute
o summarized term on a db-attribute e.g. SUM(SALARY) 
o literal supplied externally as a parameter

ii) TAB(Table) indicates the ’look-up' of data values coded in a table 
The corresponding SPEC expression has the form :

TAB-CODE = c-value 
TAB-CODE identifies which table is to be accessed. C-value depends 

on how the storing of tables is implemented; it may be a numeric value.

iii) FCT(Function) indicates the use of a summarized function.
The corresponding SPEC expression is of the form :

FCT ( db-attrname ) where FCT can be one of these :-
TOTAL, COUNT, MAX, MIN, AVE

iv) AGR(Aggregate) indicates an aggregation of more than one data value 
belonging to different db-attributes to a single data value.

The SPEC expression is :
AGR( db-attrname, ... ) where ... means item repeats

v) TRP(Transpose) symbolises a transposing transform accompanied by 
either one of the two item transformations defined in the SPEC 
expression.

o MERGE( db-attrname , ... ) produces a generic attribute. The 
operation specifies a linear to repeating transposition. (Refer 
back to Section 3.2.2.5).

0 a repeating to linear transposition is obtained by the SPEC 
expression.
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SPLIT( db-attrname WHERE f ORDER = ' integer ' 1 ^
\ CHARATTR = ’ value IN db-attrname ’J

where { } indicates choice of item

The SPLIT operation generates a new attribute type with a data value 
that is defined in the qualification. The qualification ORDER 
specifies the position of data value occurring in a repeating struc­
ture. The convention adopted here is an ascending integer value. 
Generally then, given an attribute(type) A with values a^, a^, ...

a^ in a repeating structure, appearing as :

A the order value 1 will pick out a^.

â  the order value 2 will pick out a^, and so on.

2
1

a

CHARATTR denotes the attribute type that characterises the main 
attribute. (See Section 3.2.2.5 Case II).

Note that the semantic naming of the resultant attribute (which will 
form the pr-item) depends totally on the user who specifies the 
mapping; in this case, it is the EUA. For instance, in the example 
illustrated on page 43, the view data item name Eye-R will in fact 
be defined by the EUA using the following specification :

SPLIT( R WHERE CHARATTR = 'eye' IN 'Type' )

Accordingly, the way that this operation has been specified requires 
prior knowledge of the underlying structure and data values. It is 
possible to define the operation in a declarative manner such that the 
number of attributes and associated attribute names can be generated 
without user-supplied values. This may be in the form :

SPLIT( db-attrname r BY-ORDER 1 )
I BY-CHARATTR-name J

CHARATTR-name here is provided by the EUA. The resultant attributes 
implicitly will have names formed from combining the main attribute 
name with the order value or charattr value.
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Despite the advantages of non-procedurality and no pre-knowledge 
requirement, the first specification is still preferred because : —  

o the mapping is defined by the EUA who is familiar with the underly­
ing database; ease of non-procedurality is not significant, 

o it is easier to check out errors. In the latter case, the EUA has 
no idea nor control whatsoever of the kinds of attributes that may 
be obtained.

vi) PROJ (Project) symbolises a semantic-motivated mapping from a db- 
entity type or a db-relationship type.

The corresponding SPEC expression may be one of the following types 
of operations : 

o E-PROJ( db-entity-name, [ db-entity-name, ... ] ) 
o R-PROJ( db-relationship-name, [ db-relationship-name, ... ] )

where [ ] indicates optional item

The first specifies mapping of an entity type to a data item value. 
More than one db-entity-names may be used when the mapping occurs in 
conjunction with a merging transform, and it defines a new attribute 
in the merged entity (such as the example of JOB-TITLE on page 3D. 
The second operator specifies the mapping of a db-relationship type 
to a data item value.

vii)NIL is used in order to generalise the modelling to basic X-obj.
The corresponding SPEC expression is a null expression.

The two attributes of lOPTYPE and SPEC describing the transformation 
rules associated in the derivation of Y-obj will be part of the Y-OBJ 
entity. The complex m:n relationship between Y-OBJ and DB-ATTRIBUTE will 
be further decomposed to produce normalised entities. Just as before, a 
'link’ entity is introduced. Y-OBJ has a 1:n relationship with YLINK; 
similarly the relationship between DB-ATTRIBUTE and YLINK is 1:n, as fig. 
7.9 shows. YLINK consists of only two attributes which are the 
identifying attributes from Y-OBJ and DB-ATTRIBUTE, and which form its 
composite key. The attributes of Y-OBJ are just lOPTYPE and SPEC. These
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composite key. The attributes of Y-OBJ are just lOPTYPE and SPEC. These 
two either individually on their own, or combined together cannot be a 
unique identifying key for Y-OBJ. As with X-OBJ, an internal identifier, 
Y-ID(Y-identifier) is constructed for the purpose. The algorithm for 
obtaining Y-id value will be considered in the next chapter.

7.3.2.2 Pr-item mapping from Y-id

Each pr-item maps directly from only one Y-obj; each Y-obj however 
may correspond to more than one pr-item pertaining to different perceived 
record types. The relationship of Y-OBJ to PR-ITEM is thus m:1 
relationship, as depicted below.

DB-ATTRIBPR-ITEM ^— » Y-OBJ

YLINK

fig. 7.9 Mapping correspondences at Data Value level

The corresponding attributes and entities are as follows;
Y-OBJ( Y-id, ioptype, spec)
YLINKC Y-id, db-attrname)
PR-ITEM(pr-itemname, pr-name, c-name, pri-role, pri-format, Y-id)

Note the addition of Y-id to PR-ITEM in order to represent the m:1 
relationship between Y-OBJ and PR-ITEM.

The sub-model obtained at the end of this section of modelling is now 
merged with that in the previous section (fig. 7.8) to present a more 
complete picture of the inter-connections between the data objects 
modelled so far. This is shown below.
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SUBSCHEMAPR

COMPONENT St DB-RELSHIPDB-ENTITYX—OBJ

XLINK

DB-ATTRIBY-OBJPR-ITEM

YLINK

fig. 7.10 Modelling Data Structure and Data Item Transformation

The next section now extends to include semantic constraints that are 
required at the data occurrence level when the two levels of 
transformation interact.

7.3.3 Data occurrence correspondence

Each perceived record entity occurrence or each component entity 
occurrence maps from one corresponding X-obj occurrence which in turn is 
equivalent to one of the following :- 
o an original i.e. unchanged, db-entity occurrence (case X-obj basic), 
o a restructured occurrence consisting of one unique anchor entity 

occurrence, and possibly associated occurrences from different db- 
entity types that may repeat with same or different values (case 
X-obj derived).

The restructured occurrences may be one of these kinds :- 
i) concatenated set of db-entity occurrences

ii) merged set of db-entity occurrences
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iii) subsetted set of db-entity occurrences
iv) summarized set of db-entity occurrences
v) transposed set of db-entity occurrences

Notice how in Section 7.3.1 concatenating transforms have been 
modelled separately from other operator-defined transforms. It is 
possible to superimpose operator-defined intra-structural transforms on 
top of concatenating transforms, in one single piece of mapping 
specification. Hence, in addition to the above five categories, three 
more variants exist as follows :-

vi) concatenated + subsetted set of db-entity occurrences
vii) concatenated + summarized set of db-entity occurrences
viii) concatenated + transposed set of db-entity occurrences

Superimposition of intra-structural transforms on a merged set of db- 
entity occurrences cannot be obtained in a similarly straight manner.
This would require the specification of more powerful operators that can 
combine the semantics of an intra-structural transformation and merging 
transform. As it is, with this present way of modelling, the task must 
be achieved in two steps : first define a merging transform, and then use 
the resultant object to specify a second required operation. The 
equation of the data occurrences are shown graphically below.

Equation (I)
*

COMPONENT occurrence = basic X-OBJ occurrence = DB-ENTITY occurrence 

Equation (II)
transformed

*
COMPONENT occurrence = derived X-OBJ occurrence c  DB-ENTITY occurrence

Transformation rules defined directly on the db-attributes modify the 
values in a db-entity occurrence to form the pr-item values making up a 
perceived record occurrence. This definition satisfies Equation(I) above 
since the middle term of X-obj may be omitted altogether. It however 
fails with Equation(II); here value modifications must necessarily 
operate on the derived X-obj occurrence, which instead of being the 
original db-entity occurrence, is a restructured db-entity occurrence.
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Summarizing transforms provide an illustrative case where functions are 
used in combination to summarize data values in sets of reorganised db- 
entity occurrences. In other cases, the data values may originate from 
one db-entity occurrence and its associated occurrences of related db- 
entity types as derived with concatenating transforms.

The direct relationship of Y-OBJ to DB-ATTRIB in fig. 7.10 
subsequently is consistent in situations governed by Equation(I) but not 
Equation(II). This inadequacy is overcome by modelling the data 
occurrences of X-obj explicitly such that Y-OBJ occurrence values relate 
to those in X-OBJ occurrences. For this, we introduce a new entity X- 
ELEM (X-element). X-elements are elementary data attributes that belong 
to an X-obj; the set of X-ELEM values collectively form an X-obj 
occurrence. Each X-element type has, and is equivalent to a 
corresponding db-attribute type; this has an associated name, X-ELEM- 
NAME, which is appropriately a db-attrname. Y-OBJ, instead of relating 
directly to DB-ATTRIB, now maps from X-ELEM.

The sub-model of fig. 7.9 is reconfigured as follows :

X-OBJ

PR-ITEM Y-OBJ X-ELEM (f--) DB-ATTRIB

YLINK

fig. 7.11 Modelling Integrity Constraint

Note the implicit m:1 relationship drawn in dotted lines between X- 
ELEM and DB-ATTRIB indicating the replication of db-attrname in X-ELEM- 
NAME.
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Finally, the diagram of fig. 7.10 illustrating the first two levels 
of mapping information, can now be expanded to include this third level 
of mapping constraints. This is shown in fig. 7.12.

The attributes of the various data objects of both the perceived 
record model(these include those with mapping characteristics) and the 
transform model in fig. 7.9 are :
PR( pr-name , X-id )
COMPC c-name , pr-name , pc-name, level-no, c-desc, X-id )
PR-ITEMC pr-itemname, pr-name, c-name, pri-role, pri-format, Y-id )

X-OBJ( X-id, soptype, pred, anchor )
X-LINKC X-id, db-ename, linfo )
Y-OBJ( Y-id, ioptype, opexp )
X—ELEMC X—elem—name, X-id )
Y—LINK( Y-id, X—elem—name )

DB-RELSHIPDB-ENTITY

PR

XLINK E-R

Y-OBJ

X-OBJCOMP

X-ELEM

YLINK

PR-ITEM

SUBSCHEMA

DB-ATTRIB

fig. 7.12 The Canonical Transform Model and its relationship 
to the perceived record model and database schema
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7.4 Appraisal of the model 

Advantages
The transform model has two benefits in terms of supporting 

derivations of many perceived records of different types from a database. 
The use of one basic type of data structure i.e. X-obj that is common to
the mapping process leads to :

(i) A reduction in the complexities and efforts involved —
An X-obj(type) can be defined once and used to map various perceived

records which share common characteristics without having to specify the 
mapping all over again.

(ii)An extended range of complex perceived records that can be mapped —  
Many different complex views can be constructed by combining X-obj

together in multiple ways (within the semantic constraints of the 
database). This advantage of flexibility is analogous to that of the 
binary relation model as demonstrated by Bracchi et al [74], Bracchi et
al [76] and Pelagatti et al [7>'] in the context of the entire system
architecture.

Dijsadvantages
In terms of criticisms, two general points can be made :

(i) consistency requirements -
A significant amount of consistency checks must be built into the

model. Validations must be carried out at the interfaces of all three
schemas, between :
o database schema objects and mapping data objects - these involve 

firstly, the consistency of X-obj with DB-ENTITY established via 
XLINK, and secondly the consistency of X-ELEM with DB-ATTRIBUTE. 

o mapping data objects and external schema schema objects - the 
required consistencies are between PERCEIVED RECORD/COMPONENT and 
X-OBJ, as well as between PR-ITEM and Y-OBJ.

The checks at this level comprise of general operations such as ;
- making sure that the named database objects are valid ones.
- making sure that the attributes defined in an item transformation rule

are compatible. The dbattribute COLOUR, for instance cannot be used in
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an arithmetic computation.

At an integral level, there is also the requirement of semantic 
consistency of all the constituent components making up an entire 
perceived record. The validations here must take into account the 
important element of semantic equivalence.

(ii) excessive efforts required for simple, direct mappings -
The use of X-OBJ can be regarded as irrelevant in deriving simple 

perceived records which can be mapped directly from the database objects 
Similarly, the explicit representations of X-ELEM in such cases, is not 
necessary. These extraneous procedures however, are inevitable if a 
generalised mechanism is the goal.
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Chapter 8 IMPLEMENTATION OF A MAPPING INTERFACE FOR PERCEIVED RECORD 
DEFINITION

This chapter concerns the presentation of a mapping interface —  the 
Perceived Record Interactive Mapping Controller (PRIMC) —  in the form of 
an interactive system that controls the specification of perceived 
records by the EUA.

The intent for building such a facility is three-fold : 
o to evaluate the kinds of consistency checks required, and hence the 

practical feasibility of the proposed transform model mapping mecha­
nism.

o to minimise the possibilities of deriving views with semantics that 
do not match expected semantics of end users, 

o to ease the task of specification and hence reducing the probability 
of errors. It must be stressed here though, that the design of a 
'very' user-friendly interface (such as will be desired for casual 
users) is not an immediate concern.

The first two objectives, in particular, require a very careful design 
of the interface and its capabilities. Section 8.1 gives an overall view 
of the interface and its interconnection to other components in a query 
system environment. Section 8.2 addresses the principal feature which is 
the mapping definition language. The ultimate aim is the feasibility of 
the proposed language in terms of translating the language declarations 
into structures of the transform model. Section 8.3 specifically 
examines this aspect. An implementation based on a relational database 
has been developed. Section 8.4 reports on the current state of the 
implementation.

8.1 An overview

8.1.1 Nature of the interface

The interface is designed to aid specifically the EUA to define 
perceived record views of a database. It provides an automated set-up of 
the structure declarations of the mapping definition language and prompts
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the EUA for actual data value input at the appropriate places. The 
entire system is driven by a piece of control software; when 
inconsistencies are detected, it issues error messages; where necessary, 
it prescribes corrective measures to the EUA. To present a clearer 
understanding of its use, where possible, generic terms that occur in 
later parts of the specification will be replaced by the corresponding 
data names input (by the EUA) earlier during the session.

At the end of each session of perceived record definition, data files 
consisting of the perceived record object descriptions and transform 
model descriptions will be generated. In other words, the database 
mapping specifications are automatically translated into the 
corresponding transform model descriptions.

For any user to be able to specify mapping requirements (the EUA or 
DBA inclusive), he or she must learn and understand the syntax of the 
mapping definition language. The provision of a system that sets up the 
actual syntactic structures of the mapping definition language helps to 
alleviate the user, specifically the EUA to a large extent, from the 
complexities and syntactic concerns of coding a view definition. It not 
only simplifies the task but has the advantage of eliminating the need to 
check for syntactic errors in writing down the clauses of the language 
that are often made by the human user.

A similar kind of facility was reported by Bell [81] which concerns 
the use of Codasyl-typed DBMS. Called IDBACS (Interactive DataBase 
Administrator Control System), it relieves the DBA from having to specify 
the various DDLs (Data Definition Languages) correctly. The DBA faces 
interactive sessions of questions and answers during which data files are 
created for the construction of an I-D-S/II database. We however believe 
that the generation of the complete language clauses and statements is 
more appropriate than a simple style of questions and answers. This, 
firstly, is in view of the fact that the EUA is not in the least an 
ordinary user; secondly, such an approach still maintains the overall 
flavour of the language.
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8.1.2 Overall architecture

Fig. 8.1 shows the relationship of the PRIMC facility with other 
components of a database system.
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fig. 8.1 Overall query architecture

Note that PRIMC is separated from the query processor. Recall
the three boxes of software —  the mapping interface, translator and
mapping processor, in fig. 7.1. PRIMC effectively encodes the first two 
functions, whilst the third is managed by the query processor.

The query processor’s main function is to compile and interprète end 
user queries and to retrieve the actual data occurrences in response; the 
occurrences, in this case are perceived record occurrences. In general, 
the query procesor may also optimise the actual access paths used to
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retrieve the data occurrences. This decision rests mainly with the 
implementation and design of the entire query system, and thus is not our 
concern here. For ease and independence of implementation, the component 
of PRIMC forms a stand-alone piece here. It however can be integrated 
into the query processor box given that the latter is capable of 
manipulating and retrieving perceived record occurrences. The dotted 
arrow between these two boxes in the diagram illustrates this.

The data dictionary component plays an important role here. In 
practice, descriptions of the database schema are also held in the data 
dictionary. It acts as the chief communication block between PRIMC and 
the database. Validations of all database object descriptions are made 
with the data dictionary. Furthermore, it is the repository of all the 
perceived record definitions and the transform model object descriptions. 
This however is a theoretical basis. Quite often in actual 
implementations, this may not work out nicely, either because no 
appropriate data dictionary facilities are available (as happens in this 
particular research) or due to other kinds of limitations.

8.2 A language for perceived record definition

The chief purpose of the mapping definition language is to define a 
perceived record and its semantics, and to specify the inter­
relationships between it and the database structures.

The language must feature (at least) three distinct levels of details

1) Syntactic naming of the perceived record data types.
2) The expression and correct translation of end-user requirements of the 

view semantics in terms of the associations between the various compo­
nents which make up a perceived record.

3) Database related mapping definitions which involve the declarations of 
the structural and item transformation rules.

Several factors have influenced the way the language is designed. 
Section 8.2.1 considers these in detail. Section 8.2.2 gives the meta
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language for the subsequent presentation of the entire language and its 
syntax in Section 8.2.3.

8.2.1 Design considerations

One of the foremost issues concerns the clarity and conciseness of 
the language. Structuring of the language into parts or sections, 
referred to in this thesis as blocks, each dealing with a specific 
functionality helps to improve the understandability and its usage. 
Accordingly, the approach adopted is a modular one; for each of the three 
levels of requirements named above, there is one corresponding main block 
of declaration in the body of the language.

Non-procedurality forms another major consideration. However, this 
factor must be weighed out with the important need to optimise 
validations in an interactive two-way, 'system-and-user’ feedback 
environment.

The procedurality of a language in general, is largely characterised 
by the amount of sequencing [ Leavenworth and Sammet 74 ]. Sequencing 
here refers to the order in which the steps necessary to carry out a task 
must obey. The general description of non-procedurality as stating what 
is wanted instead of how to go about achieving it, can be looked at from 
the point of view of independence from any arbitrary sequencing 
requirements. Two notions of sequencing can be identified : sequencing 
within one statement, and sequencing across a number of statements. The 
order of evaluation in an arithmetic expression, as dictated by the 
precedence, if any among its operators, provides a good example of the 
former. The latter can be generalised to blocks comprising of multiple 
statements. It is to this second form of sequencing that we shall pay 
particular attention.

An interactive facility controlling the specification in a step-wise 
manner requires that inconsistencies be spotted and put right as early as 
possible. Any late detection that demands a repeat (and possibly many 
times more) of previous sections of the specification in order to correct 
the errors is totally unacceptable. It would be most undesirable in
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terms of user-convenience and certainly would produce disastrous effects 
in terms of operational efficiency. In addition, such a possibility 
could strain the already large volume of built-in consistency 
requirements of the transform model. This problem therefore commands a 
very careful and thorough consideration of the various dependencies 
inherent in the definition of a perceived record and its mapping from the 
database.

Such dependencies, expressed in terms of the language constructs, can 
occur at two levels ; those which inter-relate between blocks of 
statements, and those which exist amongst the statements within each 
block.

In general, each block couples to one another in some ways; this can 
be thought of as a kind of logical input-output connection. The output 
information from the precedent block becomes the input of the next, 
forming a cascade as depicted in fig. 8.1 below. The flow of information 
consists of data needed for the validation of externally-provided values 
entered by the EUA.

BLOCK 1 o---- — > BLOCK 2 o------> BLOCK 3 o-

input , output of
information

fig. 8.2 Dependencies between Blocks of Statements

The sequence of the three blocks as specified in the syntax of the 
language results from the the inter-coupling properties that require data 
to be obtained in a specific order. Furthermore, it is only with a 
correct sequencing that the generation of known data names during the 
course of specification in place of generic terms, is possible.

It follows that much though the language is desired to be as 
declarative as possible, an element of procedurality necessarily 
prevails. On the other hand, the constraint of sequencing does not
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significantly affect the EUA since the specification is actually 
controlled and guided by the system.

8.2.2 The meta language

The formalisms used for presenting the complete syntax of the mapping 
definition language are as follows :
1) Capitalised letters represent keywords e.g. IS-FROM.
2) Lower-case letters represent generic terms, e.g. prname, which will be 

replaced by specific user-supplied names.
3) Curly brackets indicate choice of several options e.g. f INTEGER

REAL 
^ CHAR

4) Round brackets indicate optional items that may be omitted e.g.
(COMP cname, ...)

5) Ellipses indicate possible repetition e.g. dbename, ...
6) Square brackets represent sub-blocks consisting of several statements

e.g. IS-FROM
FORMAT IS

7) A slash indicates either one of two choices e.g. PR IS prname/
COMP IS cname

8.2.3 Structure of the language

Following from Section 8.2.1, the proposed language consists of three 
main blocks, in the sequence of DECLARATION, MAPPING and INTER-COMP- 
DESCRIPTION. Each block will be explained in turn.

8.2.3.1 DECLARATION

This block specifies the name of the perceived record, the names of 
its pr-items and components and the whole of the perceived record 
structure. A component construct is declared in the same way as a simple 
pr with no components; it has the following generic form contained within 
the block heading :
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DECLARATION.

PR IS prname/ COMP IS cname (REPEATS)
HAS PR-ITEMS pritemname, ... 

( COMP cname , ... )

Some notes :
o COMP simply abbreviates COMPONENT.
o The term REPEATS indicates whether a component is a repeating group. 

Its omission implys a non-repeating group.

Rules :
o Pritemname(s) and cname(s) occurring in a HAS block belong immedia­

tely to the preceding declared structure of either PR or COMP. This 
means they are not further contained in a sub-structure. For 
example, any declared cname belonging to a PR declaration pertains to 
the first level or immediate components of the perceived record.

o Each cname specified in the HAS block must be fully defined by a
corresponding COMP DECLARATION block in the order that they appear in 
the 'HAS' list. If a component contains sub-components, each level 
of component in the nested structure will be fully declared until no 
more nestings exist, before specifying the contents of the next cname 
in the original list. The following example will illustrate what 
this means.

Suppose a perceived record has two first level components A and B 
with the nestings represented linearly as follows :

A ( C ( E (F) ) ), B (D)
F and D are simple sub-components with no children components of 
their own. The 'HAS' list of the PR DECLARATION has cnames A, B.
The subsequent order in which the components are specified will be A, 
C, E and F. Upon completion of the first embedded structure, B and D 
will then be defined.
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A practical example should further clarify this ;
For the PATIENT perceived record view used throughout in this thesis, the 
DECLARATION specifications corresponding to its linear representation 
given on page 8 of Chapter 1, is as follows :

DECLARATION.

PR IS Patient
HAS PR-ITEMS P-no, P-name

COMP Appmt, Test\
COMP IS Appmt

HAS PR-ITEMS Appmt-date
COMP Doctor

COMP IS Doctor
HAS PR-ITEMS D-name, D-phone-no

COMP IS Test
HAS PR-ITEMS Type-of-test, Result

The arrows are drawn to indicate the sequence of specification 
linking the provided cnames and the associated declarations. In the 
context of the interface, the EUA would need to specify once the order in 
which the components are embedded in the DECLARATION section. In the 
rest of the specification, the control system will generate the 
appropriate statements according to the defined order.

8.2.3.2 MAPPING

The MAPPING block defines the derivation of perceived record objects 
specified in the DECLARATION block, in terms of database objects. The 
definition includes that of :

o a perceived record entity or component entity i.e. a specification of 
the corresponding X-obj. 

o pr-items belonging to the perceived entity or component entity i.e. a
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specification of the corresponding Y-objs.

Accordingly, the overall syntax is partitioned into two parts for 
each of the purposes.

MAPPING.

PR prname / COMP cname
IS-FROM BASE dbename

OR-FROM BASE dbename
[AND-FROM BASE dbename WHERE » ],

HAS OPERATION * ̂  j

PR-ITEM pritemname * J

Part I

Part II

* to be expanded 
later

Some general points ;

o The order in which the COMP MAPPING definition is specified follows 
from that given in the DECLARATION block.

o In the interactive controlled specification, the generic names of 
prname, cname and pritemname will be automatically generated by the 
system using the information entered in the first block of declara­
tions.

o The deliberate containment of pr-item mapping specification within a 
PR/COMP specification block establishes a very useful consistency 
constraint —  all db-attributes named must originate from the named 
db-entities.

The rest of this section now examines in detail the statements in 
Parts I and II.
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Part I
The IS-FROM / OR-FROM / AND-FROM statements specify the source db- 

enames. The option OR-FROM denotes the generalisation of a common class 
of view entity; no explicit database relationship is required to qualify 
this choice. This clause could have been combined in the IS-FROM clause 
in which case there would be more than one db-enames. The reason for 
precisely separating it out is for sake of clarity and conciseness. Note 
that the corresponding operation must be MRGSET.

The option AND-FROM embodies a concatenating transform. The clause 
may be repeated to accomodate the specification of more than one db- 
entity to be related to the base entity. The WHERE clause has the 
following form :

WHERE LINK-IS r dbrelationship \
L INTERM db-ename WHERE LINKS-IS db-relship, ,,,J

The clause defines the concatenating predicates to be used. The first 
choice of db-relship indicates a simple, direct association between the 
base entity and the other relevant entity. An indirect linkage is 
specified by the second option; the term INTERM abbreviates 
INTERMEDIATE, In this case, (at least) two db-relship descriptors must 
be provided —  the order in which they appear is not relevant. We felt 
it reasonable to assume that in most circumstances, one intermediate is 
usually used, (For an example of intermediate linkages, refer back to 
fig, 7,4 on page 110 of the previous chapter). It must be stressed 
though, that a named intermediate db-entity serves only as an essential 
bridging object; its contents of db-attributes cannot be extracted for 
use in a pr-item transformation.

The reserved word BASE has been used to refer to both the base entity 
for a given perceived record entity type, and its synonymously-associated 
concept in the context of a component entity type, (This is in view of 
the fact that both are structurally-equivalent and is expressed by an X- 
obj).
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The HAS OPERATION sub-block defines the type of structure transform 
operation required. Based on the list described in Section 7.3.1.1» the 
HAS OPERATION sub-block has a format as follows :

HAS OPERATION MRGSET
SUBSET db-attrname # data value 
GRPSET db-attrname (# data value ) 
NIL

# stands for any of the comparison operators =, >, >=, <, <= . The data 
value for the equal comparator (=) may be a character string; the rest of 
the options are only valid with numeric data values. Note the bracketted 
term after db-attrname in GRPSET. The db-attrname here defines the 
grouping predicate and this may be optionally qualified by some criteria 
if desired.

Part II
The PR-ITEM sub-block specifies : 

o the source db-attributes and any required transformation rule, 
o whether the pr-item forms a prkey for the perceived record. 
o the format of the pr-item.

Its syntax looks like this :

PR-ITEM pritemname IS-FROM

V

db-attrname
EXP
TAB
FCT
AGR
MERGE
SPLIT
E-PROJ
R-PROJ

(IS-PRKEY) 
FORMAT f INTEGER 

J REAL 
I CHAR
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The IS-FROM sub-block has a list of options in accordance with the 
descriptions of the operators given in Section 7.3.2.1, The first choice 
of db-attrname signifies a direct one-to-one mapping from the database.

The IS-PRKEY clause, when omitted indicates that the pr-item is not 
an identifying attribute for the perceived record. The FORMAT clause is 
self-explanatory. It does appear that the placement of these two clauses 
in the MAPPING block seems most inappropriate; they ought to feature in 
the DECLARATION block since they are properties pertaining to the 
perceived record description. The reason here being that with prior 
knowledge of its source db-attribute and db-entity from precedent 
specifications, a pr-item can be determined straightaway if it forms a 
valid key or not. Similarly, its specified format can be checked out 
conveniently. This illustrates the effects of optimum validation 
considerations.

As it is, the third block of INTER-COMP-DESCRIPTION comes after the 
MAPPING block instead of the DECLARATION block for similar reasons.

8,2,3.3 INTER-COMP-DESCRIPTION

The INTER-COMP-DESCRIPTION block defines the construction stage of 
the mapping process that corresponds to the analysis carried out in 
Section 7 in the earlier chapter. It specifies the association of each 
component to its immediate parent in terms of db-relationships. It also 
represents the point in the specification which relates to specific end 
user required semantics.

The syntax of this block is as follows :

INTER-COMP-DESCRIPTION,

COMP cname RELATES-TO j prname 
I cname

WHERE *

* same as in Section 8,2,3.2
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It must be pointed out that the linkages as defined by the WHERE 
clause here, will already be validated at the MAPPING block and any 
inconsistencies or ambiguaties detected. With acyclic schemas, the 
association between the various components, or more precisely, their 
anchors, is non-ambiguous and deterministic. In other words, there 
exists only one valid db-relationship connecting them in the database 
schema —  the semantics of the perceived record, as such, conveyed to 
all end users is bound by this constraint. In the latter case of 
ambiguaties as arising in cyclic schemas, the choice of which linkage is 
to be used in line with the desired semantics, can be confirmed at this 
point.

Conceivably, in cases of non-ambiguity, the control system can deduce 
the association using the anchor i.e. base information derived from the 
MAPPING block, without further external specification from the EUA. In 
short, the efforts made here again (in such circumstances) seem to be 
unnecessary. However, the goal here is a generalised facility and 
although such a deductive capability is possible, we opt not to do so.

Note too the irrelevance of this block in the case of a simple pr 
since it does not contain any components. Consequently, the INTER-COMP- 
DESCRIPTION block is omitted altogether for simple prs.

Finally, corresponding to the example specification of the 
DECLARATION block on page 137» the specification of the INTER-COMP- 
DESCRIPTION is thus :

COMP Appmt RELATES-TO Patient WHERE LINK-IS ......
COMP Doctor RELATES-TO Appmt WHERE LINK-IS ......
COMP Test RELATES-TO Patient WHERE LINK-IS ......

Again note that all the cnames and the prname will be displayed to 
the EUA in the interactive specification session.

Some general comments about the overall design of the language can 
now be best summed up in the following section.
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8.2.4 Some criticisms

The above presentation has concentrated chiefly on the 
functionalities required of the language; there is no consideration of 
interfacing to a DBMS, Obviously, in practice, there needs to be some 
means of specifying which database schema the perceived record is derived 
from. An appropriate clause is thus proposed as follows, which can be 
inserted at the beginning of the DECLARATION block :

SOURCE DB-SCHEMA IS schema-name 
If the db-schema is Codasyl-based, then the db-relship used in the 
specification will be a Codasyl set-name. With relational schemas, it 
will be a JOIN predicate.

On a broader context, the language syntax is unnecessarily complex 
and redundant (at some places). The OR-FROM clause provides one such 
example of the latter. Another excessively expanded syntax is that 
pertaining to the WHERE LINK-IS option using INTERMEDIATE entities.
These remarks are made in view of the fact that the EUA is not a casual 
user. The syntax could certainly be improved to a more succinct form.

8,3 Translatability of language constructs to transform model data 
structures

In order to show that the language proposed is adequate for its 
purpose, there must exist some means to translate the language 
declarations into the equivalent data structures in the transform model 
and in the external schema. Precisely, there must be some means of 
establishing a value for each attribute in all the data objects involved, 
The remainder of this section demonstrates the feasibility of such an 
exercise.

It is useful first to identify three groups of attributes. Where an 
attribute type is present in more than one entity type, association to a 
specific entity type is denoted by prefixing the attribute name by the 
entity name, such as PR-ITEM,cname. The three groups are as follows :

Dthose whose values are externally provided by the user. These
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include : pr-name, COMP.c-name, pr-itemname, pri-role, pri-
format, c-desc, db-ename, soptype, pred, linfo, ioptype, opexp, 
anchor and x-elem-name.

ii)those whose values are deduced from the input values or from external 
information. These are : pc-name, level-no, anchor, PRITEM.c-name.

iii)those whose values are generated internally. These include both the 
identifying attributes of X-id and Y-id.

Fig. 8.3 shows the correspondence of data values specified in the 
language structures to those as required for the complete definition of 
the various mapping and perceived record objects.
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Language Structures Schema Objects

DECLARATION.

PR IS prname/ COMP IS cname-T
y

PR ( pr-name, X-id )
HAS PR-ITEMS pritemname TPR-ITEM(pr-itemname, pr-name,

r

COMP cname

I I
I----- ic-name,pri-role, pri-format, Y-id )
I ^  'NÎ COMP( c-name,pr-name,pc-namef---^

? «
—i -->level-no,c-desc, X-id )

MAPPING.
IS-FROM BASE dbename 
OR-FROM BASE dbename

AND-FROM dbename 
WHERE LINK-IS

OPERATION

PR-ITEM pritemname 

IS-FROM

1 1-  

[ }

* \k VX-OBJ( X-id ,soptype,pred, anchor)

j

r dbattrname^i 

EXP

V FCT ^

XLINK( X-id ,db-ename, linfo )

* Î ~ XY-OBJ( Y-id ,ioptype, opexp )

X-ELEM( x-elem-name, X-id ) 

YLINK(Y-id , x-elem-name)

IS-PRKEY
FORMAT INTEGER

INTER-COMP-DESC.
COMP cname RELATES-TO

prname/cname 
WHERE LINK-IS

/

I ] — > direct 
deduced 

* generated by algorithm 
fig. 8.3 Translating Language Structures to Schema Objects
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The direct correspondence of values in the fig. 8.3 is self- 
explanatory; as such, they will not be described further. Some 
explanations are necessary for the deduced values. The algorithms for 
obtaining X-id and Y-id values will also be discussed.

Values that must be derived are those of the attributes : PR-ITEM.c- 
name, pr-name, level-no and anchor. Both PR-ITEM.c-name and pc-name are 
deduced from the context of the specification of the DECLARATION block. 
The c-name for a pr-item belonging directly to a perceived record entity, 
and the pc-name of an immediate component of a perceived record, will 
have null value; otherwise, the values are determined from the c-name 
(supplied externally) as indicated by the dotted arrow.

The value for level-no is obtained as follows :
0 the level-no corresponding to cname specified in a PR DECLARATION 

block i.e. all the first level components, is system-assigned integer 
value 1.

o for subsequent cname specified in the associated COMP DECLARATION 
blocks, the level-no of its parent(pc-name) is first checked, 

o the parent component level-no is then increased by 1 to give the 
required value of level-no for the component.

The mapping of anchor value is not all that straightforward from the 
specification. As noted in the previous chapter, when a merging 
transform is defined, the anchor will have a default value of ’OPT'. In 
other general circumstances, the value will just be the db-ename of the 
BASE entity as entered by the EUA.

Generation of X-id and Y-id
The important property of X-id and Y-id is that both must be able to 

uniquely identify the respective entities that they belong to. As such, 
they do not have to be meaningful. Consequently, both X-id and Y-id can 
be numbers that are generated from a code generator. Such generators 
would commonly be available on computer installations and therefore could 
be used for this purpose —  they are usually pseudo-random number 
generators based on linear congruent calculations [ Grogono 79 ]. There 
is also no reason why X-id and Y-id thus generated cannot have the same 
value occurrence since they in fact belong to different entity types.
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For instance, the number 12 may be both an X-id value and Y-id value 
pertaining to the same or different perceived record types.

Alternatively, the numbers can be generated simply by a step function 
which increases by 1 each time. Depending on the size of the database 
and the scale of perceived record derivations, the values generated in 
this way can theoretically grow infinitely large. For our small database 
example, we adopt this latter strategy.

We can now define X-id and Y-id to consist of three numeric fields. 
Any non 3-digit value for X-id and Y-id will be represented with leading 
zeros in the appropriate fields, e.g. 006.

8.4 Status of implementation

The interface system software is written in PASCAL and runs on a DEC- 
20 computer. The database it presently builds onto is a relational one 
which stores information about a hypothetical University environment. 
Appendix A describes this University database. The reason why the 
Hospital database, referred to in all previous chapters was not used for 
the experimentation was that tests on PRIMC started early —  a simple 
database example that can be readily adapted was needed to get it going. 
It was found that later in illustrating the various complicated aspects 
of mapping that the Hospital database seems to provide the kinds of 
realistic cases required.

Data dictionary facilities are not available at the time of
implementation and the necessary features have to be explicitly coded.
As already noted in Section 8.1, the resultant data descriptions from a
PRIMC session are held in simple data files.

The interface so far :
- accepts the definition of a perceived record with a given level of 
nested components.

- supports a minimal set of transformations ; direct value mapping, use 
of simple arithmetic expression, use of summarizing functions. Others 
listed in Chapter 7 have yet to be added.
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The actual interactive syntax does not strictly adhere to that 
presented in this chapter; the modifications however are only syntactic 
and trivial - they do not change the underlying meaning. A guide to the 
dialogue with PRIMC is given in Appendix B. Example runs of the 
interface are provided in Appendix C.
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Chapter 9 CONCLUDING REMARKS, FURTHER WORK AND APPLICATIONS

This chapter summarises the thesis and examines its significance in 
contributing towards database research in general, and the particular 
role of its application. Suggestions for specific applications of the 
work are also discussed.

9.1 Summary and conclusions

In the past, query languages have placed undesirable restrictions on 
end users in requiring familiarity with the underlying database 
structural constraints in order to perform effective data retrievals.
The mainstream of current approaches to solving this problem lies in 
natural query language processing and querying by attribute naming (as in 
universal relation systems).

The approach in this thesis towards 'database structure independent' 
data retrievals is by means of high-level view support in the form of 
perceived records. An end user accessing data via a perceived record 
will only need to use simple direct retrieval commands, e.g.

GET perceived-record-name, followed possibly with a qualifying 
selection expression to specify the desired selection of data value 
occurrences.

The main contribution of this thesis lies in the study and analysis 
of end user view definitions that are independent of a DBMS or logical 
data model. The significance of a generalised view definition facility 
is in supporting uniform data retrieval operations to end users 
regardless of the underlying database model. In order to understand the 
requirements of mapping perceived record views, it was first necessary to 
develop a framework for categorising the mapping features and criteria in 
general, and the classes of data transformations that are possible. 
Altogether, five mapping features were identified : data structure 
support, naming, format, selection and identification of data values for 
a view occurrence structure. Depending on the types of views 
(structures) supported at the external schema, the whole set or a subset 
of these features may be found in a given mapping facility. A facility
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for mapping perceived records was found to require all five features for 
supporting transformations of the view structures from the database.

Two main types of data transformations were categorised in the 
framework : data structure transformation and data item transformation. 
The former was classified into concatenating, merging, subsetting, 
summarizing and transposing transforms. The latter was divided into two 
main types ; conventional capabilities (possibly in the form of macros) 
supported by most systems to obtain derived data values, and semantic- 
motivated mappings. The second category is analogous to the properties 
of semantic data models; its importance and usefulness lie in enhancing 
the semantic expressiveness of data in views mapped from classical data 
models (relational, network or hierarchical).

The framework also discussed the properties and requirements of a 
mapping definition language in terms of its syntactic structure and its 
degree of procedurality. It was recognised that an important and 
ultimate issue in view mappings, namely that of ensuring the correctness 
of syntactically valid view occurrences (with respect to end user 
expectations), has yet to be resolved formally. A pragmatic approach 
proposed in this thesis to alleviate this problem is by means of 
interactively monitoring and checking the expected semantics with that in 
the database during a view specification.

As a specific demonstration of using the concepts and requirements, 
the mapping of perceived record from recursive database structures was 
analysed. It was shown that (end users') data retrievals from complex 
recursive structures are greatly simplified by the use of perceived 
record type of view structures. Much more significantly, using the 
concepts of view transformations, it was shown that the underlying 
essential semantics could be preserved and the information represented 
explicitly in perceived records that end users can perceive directly. 
However, it was found that the semantics of inter-dependencies between 
data occurrences at different recursive levels cannot be fully 
abstracted. This is due partly to the inherent nature of the problem and 
partly to the linear repeating representation adopted for views defined 
by the base entity concept. The formulations in recursive applications 
provide the logical basis for defining the semantics of necessary mapping
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operators. Applicability of the analysis and its usefulness in practice, 
was illustrated using commonly-encountered recursive examples such as BOM 
and Ancestor-Desendent relationships in a family-tree.

Following on, it was shown that the body of concepts and requirements 
could be identified in existing database systems. The framework thus 
serves as a means of evaluating, and provides a common basis for 
comparing, the mapping capabilities of practical systons. To this end, 
the ideas were carried out on two specific systems : System R and the 
Codasyl EUFC mapping proposals. A chief finding common to both was that 
(given that they are based on classical structured data models), both 
support very limited form of semantic-motivated mappings that can allow 
end users to perceive the underlying data objects in different role 
types. It is here that the kinds of semantic-motivated mappings 
developed in the mapping framework could be shown to be appropriately 
applied to these systons in order to specify the semantics of such data 
transformations and the corresponding operators. As a further 
suggestion, it would be most interesting to see how view mappings based 
on a semantic data model, such as in McLeod [78], would compare using 
this framework.

Apart from this, the comparison also revealed a general need for 
better-controlled specification of view mappings. By removing the 
freedom of end users to define views directly from database objects (in 
other words, leaving such tasks to the DBA or EUA), the probability of 
incorrect data retrievals,"though not eliminated, can be reduced.
Perhaps by far the most significant outcome of the evaluation was that it 
provided conclusive evidence for the requirement of structured view 
representation as advocated in the perceived record approach. More 
specifically, it showed that the work on perceived record mappings could 
be adapted to a data-processing environment such as using 'office-forms'; 
the extra facility required would be to map the basic perceived record 
structure to the visual layout of a 'form' (e.g. geometric layout 
facilities in the Codasyl EUFC proposals).

In the second part of the thesis then, three possible ways of 
specifying the perceived record model in terms of the component construct 
were described. The method finally adopted, integrates as part of the
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data model, the flexibility for an end user to perceive the base entity 
of the view directly in terms of pr-items (rather than necessarily via a 
component). Based on the flexible description of the perceived record 
model, two kinds of perceived record views were distinguished. These are 
: a simple pr representing a flat view consisting of pr-items, and a 
complex pr representing a structured view, consisting of possibly 
repeating components. A significant advantage with this model is that a 
perceived record, whether simple or complex, can be uniformly described 
in terms of one kind of data construct - the component. This property 
was exploited in designing a mechanism for mapping perceived records.

Due to the inherent complexity of generalising mappings for both 
simple and complex prs, the mechanism proposed uses an intermediary 
transform model. This first breaks down the transformation 
characteristics into a common intermediate structure called X-OBJECT 
which contains 'pre-processed' data items of a component, from which a 
perceived record can be composed. These data items may be further 
operated on to produce the final required pr-items in the perceived 
record. The concept embodied in X-object, is powerful —  it does not 
merely establish straightforward correspondences of data structures, but 
in a derived form (specified by means of a structure transform), also 
represents a source of new semantics for view definition. In this latter 
form, it could be regarded as a newly—derived 'view' object and hence in 
a way, provide an extra dimension for directly defining a perceived 
record with derived semantics. In general circumstances, such a 
requirement will be achieved in two stages —  the derived semantics will 
be held in pre-defined views; new views can then be built on top of the 
existing views (as in System R).

Using the framework developed earlier on, three levels of mapping 
information are captured in the canonical transform model : that of data 
structure transformation, data item transformation and integrity 
requirements of perceived record occurrences arising from interactions of 
transformations at the first two mentioned levels. The application of 
the transform model for mapping perceived records can be used in a 
practical database system vAiich has appropriate supporting software to 
translate the perceived record definitions into corresponding transform 
model object descriptions. Such descriptions will need to be held in a
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data dictionary to facilitate efficient validations and the subsequent 
retrievals of required perceived record occurrences.

A significant advantage of the transform model is the econcxny and 
flexibility in deriving many diferent perceived record types from within 
a single database. The economy is that the (one) specification of a 
component type derivation, i.e. an X-object description, may be (re)used 
in many perceived record definitions. The flexibility lies in the 
various possible ways of constructing a perceived record using different 
building blocks of X-objects. Its disadvantages are the extra 
consistency checks that need to be exercised, and the unnecessary 
procedures that are required for simple direct mappings (the latter being 
a penalty of a generalised facility).

The development of an underlying framework of mapping requirements 
and concepts, and the canonical transform model culminated in the design 
of a mapping interface facility (PRIMC) for defining perceived records. 
Central to this is the design of a mapping definition language. PRIMC 
essentially provides a general testbed for evaluating the feasibility of 
the mapping concepts and that of various consistency checks and their 
effects in practical circumstances. A perhaps more specific role is to 
demonstrate the application of the transform model mapping mechanism, and 
to consider carefully the kinds of software support that will be required 
in an actual working systan.

It was found that the initial motivation for developing a prescriptive 
control systan in order to minimise materialisation of unexpected end- 
user semantics, has a second pay-off. By carefully considering the 
sequence of the mapping definition language structures, the number of 
both semantic and syntactic validations can be reduced during the 
interactive specification. Similar checks that may necessarily have to 
be repeated at different sections of the specification need only be 
performed once at the very first occurrence. This, in a way, helps to 
overcome the major drawback imposed by the transform model mechanism. 
Testings with example runs of PRIMC showed that the proposal is feasible 
with a small database. The results were encouraging in confirming the 
effectiveness of optimising consistency checks using an interactively- 
controlled approach towards view specification. However, larger
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databases will need to be tested to realistically and conclusively 
ascertain the full benefits.

Notably, the need to predefine perceived record views (by the EUA via 
PRIMC) is in a sense contradicting the objective of mapping views for 
ad-hoc end users v^ose requests are often ill-defined. This 
contradiction arises from a paradox : on the one hand, it is desired that 
ad-hoc end users can define their own views; on the other hand, in order 
to distance them from the low level of abstractions of data in the 
database, someone else, in this case the EUA, is required to carry out 
the mapping task instead. A second reason why pre-defined views may be 
desirable is that it offers some kind of protection against unwary 
incorrect data retrievals (which often crops up when the end user needs 
to define more complex views, such as those from recursive structures). 
There is however no reason why it should not be considered that end users 
be allowed to define their own perceived records based on existing 
components. This will require careful considerations of the possibly new 
kinds of consistency checks that must be exercised.

Right at the beginning, it was assumed that query languages are used 
for data retrievals only. Consequently, perceived records considered 
throughout this work do not support updates. This may seen rather 
restrictive in a real world situation because there are occassions 
whereby end users may wish to delete, insert or alter certain information 
—  for instance, a doctor may wish to update the drug-code for a 
particular patient's treatment. We suggest that in such circumstances, 
update facilities can be provided and controlled by using an application 
program.

9.2 Areas of further work

Two main lines of work can be pursued : small size tasks that can be 
achieved quickly, and those relating to applications of this research in 
practical database systems that require deeper research.
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9.2.1 Immediate extensions to the existing facility

At present, PRIMC provides only very basic mapping definition
capabilities. A number of facilities could be added onto the existing
ones to provide a more complete and sophisticated systen.

(1) The set of transformation functions defined in Chapter 7 have not all 
been fully implemented. A first step could be to augment the remain­
ing ones.

(2) In a second step, operators for the transformations of recursive 
database structures could be defined. So far, only the logical 
framework for achieving such mappings has been explored.

(3) The current syntax of the perceived record mapping definition langu­
age support only derivations of perceived records from database 
objects. For fuller exploitation of the potentiality and usefulness 
of the canonical transform model, the capability should be expanded 
to allow derivation in terms of existing perceived record objects.
The EUA should then be able to define a new perceived record type 
comprising appropriate component types already held in the data 
dictionary, which will be validated against the corresponding 
X-objects.

(4) Another worthwhile implementation may be that of a mapping processor 
facility on top of PRIMC. This will provide a self-contained package 
for defining and retrieving perceived records.

(5) The present version of PRIMC uses only very basic and simple files 
for storing descriptions of the data objects. A larger and more 
realistic trial of PRIMC, as for example for an actual implementation 
on a practical system, would need more sophisticated data dictionary 
facilities.
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9.2.2 Applications of this research

(1) Implementation on practical DB1S —
The experimentation of PRIMC so far has been with a relational 

database only. The ultimate objective of interfacing PRIMC to a IBMS in 
a realistic situation, such as System R or Ingres, or a commercially
available Codasyl-based DBMS requires additional facilities. One of
these, namely, data dictionary facilities, has just been mentioned in the 
above section.

The MAPPING block in the present version of PRIMC has database 
linkage clauses specific for relational predicates. For Codasyl and 
other types of IBMS, this will need to be made more general-purpose. A 
flag could be programmed into PRIMC to set up the appropriate type of 
linkage clauses during a perceived record definition for a given type of 
DBMS. In particular, with Codasyl-typed systems, additional capabilities 
need to be defined in order to extract information onbedded in the 
Codasyl set (as described in Chapter 7). These functions should form 
part of the repertoire of mapping functions already available in the 
mapping definition language.

The ideal implementation should be accompanied with a mapping 
processor facility. There are of course interesting considerations of 
efficiency in such implementations and the problems of resolving the best 
strategy.

(2) Application in a multi-database system —
The research in this thesis has assumed throughout a single database 

environment. In practice, there may often be more than one database 
supported within one system. For instance, a hospital database, health­
care database and perhaps a school database may be held in the same DBMS. 
It is desirable that one could issue a multi-database query request for 
data, for example, one might wish to find out what health-care centres 
that hospital doctor attends besides his hospital duties. Hence, it is 
such a context of requirements, that the work on mapping perceived 
records can be applied to a multi-database system. In general, the
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databases supported will be homogeneous i.e. based on the same logical 
data model.

It shall be assumed that in a multi-database system, descriptions of 
all the schona objects in the various databases are held in a central 
repository such as a data dictionary. The role of a data dictionary is 
especially important for the installation of PRIMC on top of a multi­
database system to enable efficient cross-checkings of data consistency 
and semantic integrity between the databases. The unique identification 
of all perceived record objects and transform model objects in a single 
database environment, will now include the specific identifier of the 
respective databases. (A possible candidate for such a database 
identifier could be database-name).

A common feature of multi-database access is data incompatibility, 
especially that due to variance in the scale or unit that the same piece 
of data may be assigned in different databases. Given that the 
consistency constraints between the data objects are satisfied (e.g. 
ensuring that they belong to the same domain), these cases could be 
handled in a manner consistent with the present version of PRIMC —  for 
instance, with unit or scale difference examples, transformation rules 
could be coded in a table that could be applied to the appropriate data 
objects in order to map to a standard scale or unit in the perceived 
record.

(3) View mappings in a distributed database environment—
The successful implementation of the work defined in (1) and (2) 

above should provide the pre-requisites for applying the mapping ideas to 
a distributed database environment, that may be homogeneous or hetero­
geneous. This generally can mean two things, which are as follows ;

(i) The end user may retrieve data from any one database at any one 
time that is supported by a local DB1S connected in a distributed network 
system. For instance, one may wish to access another database held 
physically elsewhere about say, housing information.
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(ii) More significantly, the end user may wish to retrieve data from 
more than one database within a single query at any one time, i.e. a 
multi-database request. In practice, these DBMSs are commonly 
heterogeneous. Such situations may arise when there are pre-existing 
databases containing information of a similar nature that can be 
meaningfully associated. For example, information about different 
universities held in local databases at each site may be integrated 
together. A possible query may be to find lecturers from all 
universities who teach Mathematics. Another possible query may be to 
find out the marking scheme of all the universities where each university 
may have different standards for the schene. This latter example 
illustrates yet another case of dealing with incompatible data.

One more issue of incompatibility that must be considered carefully 
is that of different data structure representations (pertaining to the 
heterogeneous context). To illustrate, consider the two database schemas 
below :
a) a network schema

Student(S-no,S-name) Course(C-no, C-name)\ /MarkCDna 1, Tma2, IYna3)

b) a relational schema

Mark(Ms-no, Mc-no, Tma-no, Tma-result)

In order to define a perceived record,
Student-Grade(S-no, C-no, S-name, (Tma-no, Mark)) merged from the 

above schematic data, the source entities for the merging transform must 
be in compatible form. This raises issues that need to be researched 
further into, such as whether transformations can be defined on a mixture 
of database types and X-object types, the use of a global data 
dictionary, besides other implementational and efficiency considerations. 
An outline of a possible mapping architecture that uses the canonical 
transform model as a basis for mapping perceived records might be as 
follows :
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Perceived Records

Global transformation 
rules

/ \

Local
X-objects

DBMS1

Local
X-objects

DBMS2

Local
X-objects

DBMSS

Global X-objects

fig. 9.1 Outline of a possible perceived record mapping 
architecture in a distributed database system

9.3 Final appraisal

Following from the above discussions on the practical applications of 
the perceived record approach, it is appropriate to end the thesis by 
looking at its overall impact in resolving some fundamental issues in 
database querying.

The direction adopted is one based on the structure and semantics of 
a view to simplify end-user retrievals. The end user is presented with a 
restricted but precise set of semantics contained within a unit 
structure which represents all the information that is required.

So far, the other main two approaches, namely that of natural language 
querying and attribute-based querying represent in contrast, a non­
structured approach. These claimed that by not imposing any form of data 
structure, users can then express their queries more easily and readily
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according to their real-world requirements. This although true to a 
certain extent, can have dire consequences in producing incorrect data 
retrievals. In both approaches, there is little information about the 
underlying database semantics communicated to the end user. As already 
stated in Chapter 1, it was indeed found that the structuring of data 
does help the user to understand its meaning and that natural language 
querying is not that natural as it sounds. Similarly, in attribute-based 
querying such as the universal relation approach, there is the same 
element of inadequate provision of semantics that is essential for proper 
and effective retrievals. Again, the partial solution to this lies in 
enhancing the user’s perception by appropriately structuring data 
presented to users.

In such approaches, with a lack of semantic constraints to guide 
users to interprète data themselves, the systen attempts to interpret 
and deduce any senantic ambiguaties that may arise in users’ queries. 
Although sane of such systems do provide a mechanism for interacting with 
the user, or allowing user-specification of actual semantics required, 
this process can only be effective if the user can be fully aware of the 
semantic constraints of the underlying data.

In the light of the kinds of specific query applications described in 
the previous section, it is particularly noted that both these approaches 
cannot be applied to the last two areas without aggravating the kinds of 
problems mentioned above. The universal relation approach though, by 
definition can support homogeneous multi-database retrieval as the user 
is given the illusion that he or she is accessing a single relation only.

In summarizing, the perceived-record approach in overcoming the 
problems, offers a simple and more effective means of data retrieval that 
can be anployed in specific database application areas as compared to 
natural-language and attribute-based querying.
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Appendix A The University Database

The University database model is extracted from OU [81]. The information
described in the database relates to Students, Tutors and Courses.

Each Student has a Tutor-Counsellor; each Tutor-Counsellor counsels many
Students.
Each Student enrols in many Courses; each Course registers many Students.
Each Student might do many Previous-course.

The corresponding relational logical schema is as follows:
Student (S-no, S-prefix, S-name, S-year, Counsellor)
Tutor-c (Tc-no, Tc-prefix, Tc-name, Marker)
Course (C-no, C-title)
Enrolment (Es-no, Ec-no, Tutor)
Mark (Ms-no, Mc-no, Tma-no, Tma-result)
Prev-Course (Ps-no, Pc-no, Pc-year, Pc-grade)
Inactive (Is-no, Is-prefix, Is-name, Is-year)
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Appendix B The Interactive Dialogue

Notes :
o User inputs are prompted by generic data names within angle brackets 

e.g. < dbattrname >. Hence, all data names immediately following the 
prompts are typed in by the user, except in the cases of :
i) a blank - this signifies that the user does not want the option 

ii) a - the system provides a Help facility to the user in the 
MAPPING and INTER-CŒ4P-DESCP block to guide the user as to what 
database types are valid. To invoke this, the user types a ’?'.
The system also prescribes the correct database connections in 
response to a ’?’ •

o The system responds with error messages if any semantic inconsisten­
cies or mismatches of data names are detected.

o At the end of each successful specification for a perceived record, 
the entire perceived record structure is displayed to the user. Names
of perceived records and components always begin with a capital
letter; pritem-names, on the other hand are in lower-case letters. 
Currently, the system depends on the user to input the data names in 
the correct lower/upper cases.
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Appendix C

Example runs of PRIMC to define perceived record views based on the 
University database

These examples show the dialogues by which a user declares and specifies 
the mappings for:
(1) A simple pr with a pr-item summarised from a different db-entity 

type.
(2) A complex pr with one component.
(3) A complex pr with nested components.
(4) A pr merged from different db-entity types.
(5) A complex pr containing a transformed component merged from two

different db-entity types.

The following consistency checks have been implemented :- 
o Check 1 - This checks that the input data name is a valid domain

value. It is essentially a syntactic check on the value.

o Check 2 - This is used in the MAPPING block. It checks that within
*component structure mapping, in the case of multiple source db- 

entities, there exists a valid semantic link between each non-base
*source and the base entity of the component structure. This is 

invoked when the db-ename value is input. Effectively the check 
ensures the correct identification of db-entity occurrences in a 
concatenating transform.

o Check 3 - This again is applied in the MAPPING block. It checks that 
the base entity of every component entity mapping has valid links to 
the base entity of the associated perceived record entity mapping. If 
none is found, the user will be asked if the connection is via an 
intermediate db-entity.

Contd.
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o Check 4 - This occurs in the INTER-CÛMP-DESCRIPTION block. It checks 
that the input db-link between every component and perceived record 
base, which specifies the required end-user semantics is correct.
This effectively registers the higher, second-level of occurrence 
identification. Note that by virtue of Check 3 applied earlier in 
the MAPPING block, there must exist at least one explicitly stored 
relationship i.e. there is one specific set of semantics that can be 
associated to the perceived record.

o Check 5 - Given that Checks 2 to 4 are not violated, i.e. there exists 
a valid relationship, this then checks that the corresponding link- 
attributes input are correct.

o Check 6 - This checks that for a mrgset operation, the input data 
names belong to the same class of entity.

Annotations in italics have been inserted alongside the respective 
listings in order to guide the user in understanding the dialogues 
better.
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** A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS**

** If option is NOT required, press RETURN 
Otherwise input data names as required **

DECLARATION.

PERCEIVED RECORD IS < prname > Student
HAS PRITEM(S) <pritemnames> s-num,s-name,s-year,no-course-enrolled 
HAS COMPONENT(S) < cnames >

MAPPING.

PERCEIVED RECORD Student
IS-FROM BASE-ENTITY < dbename > student 
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename > course 
....no relationship exists between base and nonbase Consistency
entities....Is link from an intermediate (nsource) Check 2 invoked;
entity ? Type Y/N >> Y

VIA NON-SOURCE-ENTITY <dbename> enrolment 
WHERE LINK IS-FROM student

<dbattrname> s-no 
WHERE LINK IS-FROM enrolment 

(note : two link attributes are required)
<dbattmame> es-no 
<dbattrname> ec-no 

WHERE LINK IS-FROM course
<dbattrname> c-no 

.... to end derivation, press RETURN ....
AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM 3-num
IS-FROM < dbattrname >s-no

PR-ITEM s-name
IS-FROM < dbattrname >s-name

PR-ITEM 3-year
IS-FROM < dbattrname >s-year Note that no INTER-

COMP-DESC generated 
PR-ITEM no-course-enrolled for simple p r ,

IS-FROM < dbattrname >
IS-FROM < arithmetic-exp. »
IS-FROM <funct.(dbattrname)>count(c-no)

**** PERCEIVED RECORD DEFINITION IS SUCCESSFUL ****
Display of simple pr 

NEW PERCEIVED RECORD DEFINED : Student

Student( s-num, s-name, s-year, no-course-enrolled)
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** A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS** 
** If option is NOT required, press RETURN 

Otherwise input data names as required **

DECLARATION.

PERCEIVED RECORD IS < prname > Tutor-student 
HAS PRITEM(s ) <priteranames> tc-no,tc-name 
HAS COMPONENT(s ) < cnames > Student

COMPONENT IS Student
HAS PRITEM(S) <pritemnames> s-num,s-nameyear 
HAS COMPONENT(S) < cnames >

Only one

component declared

MAPPING.

PERCEIVED RECORD Tutor-student
IS-FROM BASE-ENTITY < dbename > tutor-c 
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS < 'OPERATION >

PR-ITEM tc-no
IS-FROM < dbattrname >tc-no

PR-ITEM tc-name
IS-FROM < dbattrname >tc-name

COMPONENT Student
IS-FROM BASE-ENTITY < dbename > student 
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM s-num
IS-FROM < dbattrname >s-num 

...dbattribute is not valid ...try again
< dbattrname > ? one of the following: 

counsellor s-name s-no s-prefixs-year
< dbattrname > s-no

Mapping for 
component begins

Consistency 
Check 1 invoked 

Input of ' 
prompts system 
to give choice 

of valid names

Contd.
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INTER-COMP-DESCP.

168

COMPONENT Student RELATES-TO BASE Tutor-student Automatic generation
WHERE LINK IS-FROM tutor-c of data names and pr

<dbattrname> tc-no structure
WHERE LINK IS-FROM student

<dbattrname> s-no 
? Does not match directory or user name -

(dbattrname) ? "counsellor"
(dbattrname) counsellor

*♦** PERCEIVED RECORD DEFINITION IS SUCCESSFUL

Consistency 
Check 5 
invoked 

System prescibes 
correct name

on user prompt
* * * *  -  t »of f

NEW PERCEIVED RECORD DEFINED :

Tutor-student( tc-no, tc-name, Student( s-num, s-nameyear))
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Exaiïïpio Run 3

** A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS**
** If option is NOT required, press RETURN

Otherwise input data names as required ** 

DECLARATION.

PERCEIVED RECORD IS < prname > Student-details

:: aæ;',?-"""
COMPONENT IS Course

HAS PRITEM(s) <pritemnames> c-no,c-name
HAS COMPONENT(S) < cnames > Mark Level-2 component

embedded within
COMPONENT IS Mark component Course

HAS PRITEM(s) <pritemnames> tma-no,tma-result 
HAS COMPONENT(S) < cnames >

No further component 
COMPONENT IS Tutor-c nested

HAS PRITEM(s) <priteranaraes> tc-prefix,tc-name 
HAS COMPONENT(S) < cnames >

Level-] component 
Tutor-c has no nested 
structure

MAPPING,

PERCEIVED RECORD Student-details
IS-FROM BASE-ENTITY < dbename > student 
OR-FROM BASE-ENTITY < dbename >
AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM s-no
IS-FROM < dbattrname >s-no

PR-ITEM s-name
IS-FROM < dbattrname >s-name

COMPONENT Course
IS-FROM BASE-ENTITY < dbename > course consistency Check 3

 ------ Warning—  ----------  invoked
there is no stored relationship between the anchor entity of this 
component to the base entity of the perceived record

  abort and start all over again, press CONTROL key and C key toget
else continue input ........

Contd,



OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM c-no
IS-FROM < dbattrname >c-no

PR-ITEM c-name
IS-FROM < dbattrname >c-title

COMPONENT Mark
IS-FROM BASE-ENTITY < dbename > mark
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM tma-no
IS-FROM < dbattrname >tma-no

PR-ITEM tma-result
IS-FROM < dbattrname >tma-result

COMPONENT Tutor-c
IS-FROM BASE-ENTITY < dbename > tutor-c
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS <■ OPERATION >

PR-ITEM tc-prefix
IS-FROM < dbattrname >tc-prefix

PR-ITEM tc-name
IS-FROM < dbattrname >tc-name

170

Program has not been 
aborted after check 3 
warning; indicates 
a possible valid 
link that user prefers

;nter-comp-descp.

COMPONENT Course RELATES-TO BASE Student-details 
VIA NON-SOURCE-ENTITY (dbename) enrolment 

WHERE LINK IS-FROM student
(dbattrname) s-no 

WHERE LINK IS-FROM enrolment
(note : two link attributes required) 

(dbattrname) es-no 
(dbattrname) ec-no 

WHERE LINK IS-FROM course
(dbattrname) c-no

COMPONENT Mark RELATES-TO COMPONENT Course 
WHERE LINK IS-FROM course

(dbattrname) c-no 
WHERE LINK IS-FROM mark

(dbattrname) mc-no

Note: earlier in 
MAPPING block, system 
detects no direct link
the source db-entities 
here. User now proceeds 
to define a required 
semantic linkage via an 
intermediate

Contd.
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COMPONENT Tutor-c RELATES-TO BASE Student-details 
WHERE LINK IS-FROM student

(dbattrname) s-no 
? Does not match directory or user name -

(dbattrname) counsellor 
WHERE LINK IS-FROM tutor-c

(dbattrname) tc-no

Consistency 

Check 5 invoked

* * * * PERCEIVED RECORD DEFINITION IS SUCCESSFUL * * * *

NEW PERCEIVED RECORD DEFINED : Nested structure
representation of complex pr 

Student-details( s-no, s-name, Course( c-no, c-name, Mark( tma-no, tma-result 
Tutor-c( tc-prefix, tc-name)) '
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** A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS**
** If option is NOT required, press RETURN 

Otherwise input data names as required **

PERCEIVED RECORD IS < prname > All-students
HAS PRITEM(s ) (pritemnaraes) s-no,s-prefix,s-name,year-enrolled 
HAS COMPONENT(S) < cnames >

MAPPING.

PERCEIVED RECORD All-students . .

HAS < OPERATION >

PR-ITEM S-no DERIVED-FROM-DB-ENTITY student
IS-FROM < dbattrname >s-no &

OR-DERIVED-FROM-DB-ENTITY inactive 
IS-FROM < dbattrname >sis-no

PR-ITEM s-prefix DERIVED-FEOM-DB-ENTITY student
IS-FROM K dbattrname >s-prefix ^
Tc nnmu X OR-DERIVED-FROM-DB-ENTITY inactiveIS-FROM < dbattrname >is-prefix

PR-ITEM s-name DERIVED-FROM-DB-ENTITY student
IS-FROM < dbattrname >s-name 5

rnnw OR-DERIVED-FROM-DB-ENTITY inactiveIS-FROM < dbattrname >is-name

PR-ITEM year-enrolled DERIVED-FROM-DB-ENTITY student
IS-FROM < dbattrname >
IS-FROM < arithmetic-exp. »
IS-FROM <funet.(dbattrname))
IS-FROM < dbattrname )s-year

OR-DERIVED-FROM-DB-ENTITY inactive* 
IS-FROM < dbattrname )is-year

**** PERCEIVED RECORD DEFINITION IS SUCCESSFUL ****

NEW PERCEIVED RECORD DEFINED ;

All-students( s-no, s-prefix, s-name, year-enrolled)

<5 —  system automatica­
lly knows that the pr- 
items have optional 
source db-attributes
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** A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS**

** If option is NOT required, press RETURN 
Otherwise input data names as required **

DECLARATION.

PERCEIVED RECORD IS < prname > Student-course
HAS PRITEM(s ) <pritemnames> s-no,s-name,year 
HAS COMPONENT(s ) < cnames > Course-attended

COMPONENT IS Course-attended
HAS PRITEM(s ) <pritemnames> c-no 
HAS COMPONENT(S) < cnames >

MAPPING.

PERCEIVED RECORD Student-course
IS-FROM BASE-ENTITY < dbename > student 
OR-FROM BASE-ENTITY < dbename >

AND-FROM NONBASE-ENTITY < dbename >

HAS < OPERATION >

PR-ITEM s-no
IS-FROM < dbattrname >s-no

PR-ITEM s-name
IS-FROM < dbattrname >s-name

PR-ITEM year
IS-FROM < dbattrname >s-yaear

COMPONENT Course-attended Consistency Check 3
IS-FROM BASE-ENTITY < dbename > course invoked

there is no stored relationship between the anchor entity of this
component to the base entity of the perceived record

  abort and start all over again, press CONTROL key and C key together
else continue input ........

User indicates that 
OR-FROM BASE-ENTITY < dbename > prev-course the component has 
OR-FROM BASE-ENTITY < dbename > optional bases

HAS < OPERATION >

PR-ITEM c-no DERIVED-FROM-DB-ENTITY course
IS-FROM < dbattrname >c-no

OR-DERIVED-FROM-DB-ENTITY prev-course 
IS-FROM < dbattrname >pc-year

....domain type is not correct.... try again .... Consistency
< dbattrname > ? one of the following: Check 6 invoked

pc-grade pc-nopc-year ps-no System prompts
< dbattrname > pc-no user with list

Contd.
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INTER-COMP-DESCP.

COMPONENT Course-attended RELATES-TO BASE Student-course
VIA NON-SOURCE-ENTITY (dbename) enrolment defines

WHERE LINK IS-FROM student
(dbattrname) studs-no 

WHERE LINK IS-FROM enrolment
(note : two link attributes required)

(dbattrname) es-no 
(dbattrname) ec-no 

WHERE LINK IS-FROM course
(dbattrname) c-no

* * * * PERCEIVED RECORD DEFINITION IS SUCCESSFUL ****

NEW PERCEIVED RECORD DEFINED :

Student-course( s-no, s-name, year, Course-attended( c-no))

*♦ A SEMANTIC CONTROLLER TO DEFINE PERCEIVED RECORD VIEWS** 
** If option is NOT required, press RETURN

Otherwise input data names as required **

DECLARATION.

*C
Ologoport
Open or close? close
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