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Abstract
Population pressure in developing countries is believed to be the 
predominant cause of deforestation, due to the dual needs of food and 
fuel. This has led to a shortage of firewood (for cooking) and affects 
especially the rural poor of these countries. One intervention strategy 
to reduce firewood consumption has been to design, develop and 
disseminate "improved" (ie fuel efficient) cooking stoves for use in the 
rural sector. These stove programmes have failed to achieve widespread 
dissemination of "improved" stoves. One reason is the mismatch between 
the felt needs and problems of the rural poor and the assumptions of 
institutions and individuals designing and promoting these stoves. 
Moreover, traditional stoves and fireplaces are not inherently 
inefficient for cooking. Not all "improved" stoves have been more 
efficient than traditional designs in practice. Traditional modes of 
cooking serve a number of sociocultural and practical functions which 
have been neglected in stove programmes to date. Stove users in a 
number of developing countries appear to be more concerned about speedy 
cooking whilst stove programmes overemphasize fuel savings.

Villagers in Zimbabwe appear to have spontaneously transferred to stoves 
which consume significantly more fuel than their traditional fireplace. 
However, this lack of fuel economy is offset by the benefits of faster 
cooking, greater space heat, more stable pots and a modern "image". The 
higher firewood collection costs are affordable as this takes place in 
the agriculturally slack season.

Deforestation is a complex issue to which there are a number of 
contributary factors. In Zimbabwe, the processes of land degradation, 
deforestation, and the ensuing shortage of firewood were set in motion 
as early as the I890’s when the African population residing on the 
fertile highlands was forcibly evicted onto marginal land by European 
settlers. Strategies to cope with deforestation in Zimbabwe would be 
aided by user participation in defining needs and problems within the 
wider framework of land tenure, agroforestry schemes and inputs to 
increase the productivity of African areas.
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Chapter 1 

ENERGY IN DEVELOPING COUNTRIES

1-0 Introduction

Energy supplies and costs hit the headlines when oil prices rose by a 

factor of four in 1973-4 (Srail and Knowland, 1980). These events have 

been seen as marking the transition from an era of cheap coal and oil to 

an age of high cost energy. By 1980 the price of oil in real terms was 

five times as high as in 1972 (World Bank, 1980). Although developing 

countries were adversely affected by the oil price rise, it was only in 

the mid 70’s that the importance in their economies of fuels such as 

firewood and crop residues was given widespread attention (e.g. Eckholm, 

1975; Revelle, 1976) as summarized below.

1-1 Sources of primary energy

Primary energy can be supplied by a number of fuels. Two broad terms 

used to categorise fuels are "commercial" and "non-commercial". 

"Commercial" fuels refer to traded fuels ’such as electricity, coal, oil 

and gas. The term "non-commercial fuels" is used for fuels which have 

traditionally been gathered at zero monetary cost in developing 

countries. Hence, the term "traditional fuels" is often also used 

(Table 1.1). "Non-commercial fuels" usually refer to fuels such as 

firewood, crop residues or agricultural waste (ie bagasse, rice straw, 

maize cobs, maize stalks), and animal manure.

There is some confusion in the literature regarding terms such as 

"fuelwood", "woodfuel", and "firewood" (Table 1.1). For example, whilst



Table 1.1
Definitions of fuels and energy in developing countries

Term
(a) wood

(b) fuelwood

(c) woodfuel

Source
Hughart (1979:8)

F.A.O. (1983:7)

Hughart (1979:2) 
Makhijani (1976:22)

Openshaw (1978:72)
Smil and Knowland (I98O) 
U.N. (1981:802)

Hughart (1979:1)
Openshaw (1978:72)

Referring to:
"firewood and charcoal"

"firewood, charcoal, crop 
residues"
"firewood and charcoal" 
"wood, including twigs 
and forest debris 
"firewood"
"firewood"
"firewood"

"firewood and charcoal" 
"fuelwood and charcoal"

(d) biomass fuels Srail and Knowland (1980:6)

Hughart (1979:1)(e) traditional 
fuels

"fuelwood, crop residues, 
animal manure"
"firewood, crop residues, 
animal manure"

Makhijani and Poole (1975:1) (as above)
Smil and Knowland (1980:6) (as above)

(f) traditional 
fuel sources

(g) traditional 
energy sources

Smil and Knowland (1980:6) 

Reddy (1979:2)

(h) alternative Reddy (1979:2) 
energy sources

(i) organic fuels Arnold (1979:232) 
and non-commercial
organic fuels

<j) renewable Smil and Knowland (1980:7)
biomass sources

"firewood, crop residues, 
animal dung"

"firewood, vegetable 
wastes, dung cakes, 
coal, electricity, oil, 
natural gas"

"alternatives to the 
traditional sources in 
vogue today"

"woodfuel, animal dung, 
crop residues"

"energy from fuelwood, 
crop residues, dung"

(k) non-commercial Hughart (1979:2) 
energy "energy from traditional 

fuels, draught animals, 
human labour, solar 
energy, wind, hydro 
plant"

Makhijani and Poole (1975:27)"energy from woodfuel,
crop residues, dung.

(1) traditional 
energy

(m) non-
conventional
energy

Smil and Knowland (1980:7) 

Smil and Knowland (1980:6) 

Hughart (1979:2)

animal labour"
"energy from traditional 
fuels, draught animals, 
human labour" 
see entry under "non
commercial energy"

see entry under "non
commercial energy"



some authors (e.g. Openshaw, 1978:72; Smil and Knowland, 1980:6; U.N. 

1981:802) use "fuelwood" and "firewood" synonymously, Hughart (1979:1) 

uses "fuelwood" to mean "firewood and charcoal". Moreover a recent 

paper by the F.A.O. (1983:1) refers to "fuelwood and charcoal", and yet 

later defines "fuelwood" to include firewood, charcoal and crop 

residues!:

"Fuelwood: Wood and pulp material obtained from the 

trunks, branches and other parts of trees and shrubs 

to be used as fuel for cooking, heating or generating 

energy through direct combustion, not only in 

households but also in rural industries (curing, 

smoking, etc.). Included in this definition are 

charcoal and agricultural and industrial wood and 

pulp residues. The large-scale use of wood fuel for 

industrial purposes, for example in metal-working, is 

not covered." (FAO, 1983:5)

"Non-commercial energy" usually refers to energy derived from non

commercial fuels, draught animals and human labour (e.g. Smil and 

Knowland, 1980), although, Hughart (1979:2) also includes "solar energy, 

wind and hydro power" (Table 1.1).

In this thesis, the following terms will be used as defined below:

"Firewood" refers to wood, ranging from small twigs to logs, which is 

utilized in direct combustion. "Fuelwood" refers to firewood and 

charcoal. "Crop residues" refers to agricultural residues (e.g. 

bagasse, rice straw, maize cobs, maize husks) which are used through 

direct combustion. "Traditional fuels" will be used to collectively



describe firewood, charcoal, crop residues and animal manure, when they 

are utilized in direct combustion. "Non-commercial energy" will refer 

to energy obtained from draught power, human labour and the combustion 

of traditional fuels.

1-2 World consumption of energy

According to the Statistical Office of the United Nations (1979, 1981), 

in 1978, the world consumption of primary energy was just over 9,000 

million tons of coal equivalent (mtce). The bulk of the total energy 

was supplied by commercial fuels (8755 mtce), whilst about 6% (569 mtce) 

was supplied by fuelwood and bagasse (Table 1.2). Moreover, world 

consumption of energy is dominated by the developed countries. In 1978, 

developed countries (with 18.5̂  of the world population) used over half 

(56.6^) of the commercial energy (Table 1.2). Within this group, the 

U.S.A. (with 5.8% of the population of the world) used 31.355 of the 

energy from commercial fuels. Developing countries (comprising of 

Africa, Latin America, the Middle and Far East including China and Viet 

Nam) with 7355 of the world population used 20% of the energy from 
commercial fuels.

According to data compiled by the United Nations (1979, 1981), over 

three-quarters (or nine-tenths if China is included) of the total world 

consumption of firewood, charcoal and bagasse took place in developing 

countries. (However, nearly all this energy was from firewood alone). 

These traditional sources provided developing countries with nearly one- 

third of their primary energy consumption (United Nations, 1979, 1981). 

However, actual consumption may be even higher owing to the nature of 

records of the amounts of these fuels collected and used (Smil and 

Knowland, I98O). For example, data on firewood consumption may



underestimate actual consumption by as much as a factor of 2 (Openshaw, 

1978).

Table 1.2
Energy Consumption in the World by Source

Region Commercial Energy from Percentage
energy (CE) firewood, charcoal of World
consumption and bagasse (NCE) Population
(mtce) (% of (mtce) (% of total

total CE NCE
consumption) Consumption)

Developed 4953 56.6% 330 5.8% 18.5%
Countries

N. America 2736 31.3% 8 1.4% 5.8%

Centrally 2095 23.4% 30 5.2% 8.9%
Planned Europe

Centrally 772 8.8% 73 12.8% 22.8%
Planned Asia^

Developing 936 10.7% 432 75.9% 49.4%
Countries:
Africa 82 0.9% 120 21.1% 9.5%
Middle East3 153 1.7% 12 2.1% 3.0%
Far East^ 310 3.5% 190 33.4% 28.6%
Latin America 175 2.0% 101 17.8% 4.5%
Caribbean 211 2.4% 11 1.9% 3.7%
America
Total (World) 8755 100% 569 100.0% 100.0%

Source: adapted data from United Nations (1979, 1981)
Key
 ̂m.t.c.e. - million tonne coal equivalent
 ̂principally China and Viet Nam.
 ̂excluding Israel
excluding Japan

The degree of dependence on traditional fuels varies between developing 

countries (Parikh, I98O). On the whole, Africa is the most dependent on 

traditional fuels, Asia less so, and Latin America the least dependent 

(World Bank, 1980).

Attention to this heavy dependence on traditional fuels in many of the 

developing countries was first drawn by studies in the mid-1970’s (e.g. 

Eckholm, 1975; Revelle, 1976).



1-3 Developing countries; patterns of energy demand in the rural sector

Parikh (1980) estimates that in 1975, 85% of commercial energy 

consumption in developing countries took place in the urban areas. 

Traditional fuels are the principal source of energy in the rural areas 

of developing countries, where 70% of the population of these countries 

live.

Arnold and Jongma (1978) estimate that in typical villages in developing 

countries, between 27% and 88% of total energy consumption (including 

agriculture, lighting and transport) is for domestic purposes (ie for 

cooking and heating) (Table 1.3). In Bangladesh (Rahman and Huq, 1974), 

Gambia and Thailand (Openshaw, 1978) over three-quarters of total rural 

energy consumption is for cooking.

Table 1.3
Energy Budgets of Prototypical Composite Villages in Different  ̂

Regions (million kilocalories per capita per year)
Bihar E. Hunan Tanzanian Bolivian Northern

Organic Fuels^
India China Plateau Andes Nigeria

wood fuel 0.25 5.0 5.50 8.33 3.75
other^ 0.75
Commercial Energy 0.04 0.87 — — 0.03
Human energy 0.75 0.75 0.75 0.83 0.71Animal Labour 1.88 1.25 - 2.50 0.18
Total 3.67 7.87 6.25 11.66 4.67
(a) for domestic use 1.00 5.00 5.50 8.32 3.75
(b) for agriculture 1.82 2.07 0.57 1.68 0.72
(c) other% 0.85 0.80 0.18 1.65 0.18
Domestic energy 27% 64%

Source: Arnold and Jongma (1978)
^all data refer to gross (input) energy

88% 71% 78%

see "organic fuels" defined by Arnold 
3animal dung and crop residues 
transport, crop processing and so on.

(1979:232) Table 1.1

Fuels such as firewood have traditionally been gathered at zero monetary 

cost by rural women and children (Smil and Knowland, 1980; FAO, 1983:18) 

- recognition of which has led to the coining of the term "energy



gatherers" (Reddy, 1976) to describe the rural poor in these countries. 

Women in these countries are also generally responsible for cooking 

using these fuels (Hughart, 1979:3; lEA, 1979:16).

According to Eckholm (1975) and Revelle (1976), cooking absorbs a high

proportion of total energy consumption in villages because of the very

low efficiency of traditional stoves and fireplaces used in these 
countries.

Primary Cooking Fuels; Urban and Rural Sectors

A study by carried out Hughart (1979) for the World Bank, estimated that 

(in 1976), traditional fuels were the principal source of cooking energy 

for 2000 million people in developing countries (Table 1.4). The 

majority of these people lived in rural areas. Moreover, most of the 

energy supplied by these fuels came from firewood alone.

According to Hughart (1979), the use of commercial fuels for cooking is 

almost entirely restricted to the urban "non poor" population. For the 

population of developing countries as income increases there is a shift 

from firewood for cooking to other fuels such as paraffin and bottled 
gas (Openshaw, 1978).

There are important differences between the poor in urban and rural 

areas of developing countries regarding cooking fuels. Firstly, the 

urban poor generally have to purchase fuelwood (ie firewood and 

charcoal). Expenditure for fuelwood may represent a significant 

proportion of the income of the urban poor (World Bank, 1981:40). The 

term 'non commercial' fuels can be misleading in this situation.

Secondly, a substantial proportion of cooking energy for urban users



Table 1.4

World Population by Principal Cooking Fuel 
(millions)

Total commercial fuelwood 
energy

dung and crop 
residues

Africa South of Sahara 
Urban non-poor 
Urban poor 
Rural

340
30
20

290

35
25

10

215
5
20

190

90

90

India
Urban non-poor 
Urban poor 
Rural

610
60
70
480

60
40

20

290
20
40
230

260

30
230

Rest of South Asia 
Urban non-poor 
Urban poor 
Rural

205
20
15

170

25
15

10

95
5

10
80

Ê1
5

80

East Asia-Developing 
Pacific
Urban non-poor 
Urban poor 
Rural

265

55
30
180

95

40
15
40

110

15
15
80

60

60

Asian CPE's* 855
Urban 205
Rural 650

Middle East - North Africa 200
Urban non-poor 20
Urban poor 20
Rural 110

190
150
40

105
70
10
25

435
55
380

35

10
25

230

230

60

60

Latin America & Caribbean 325 230
Urban non-poor 145 145
Urban poor 50 25
Rural 130 60

85

25
60

10

10

*CPE'S - Centrally Planned Economies (ie Centrally Planned; Europe + 
Asia)

Source: adapted data from Hughart (1979)



comes from charcoal, whilst for villagers energy for cooking is provided 

principally by firewood (Fig 1.1) (Openshaw, 1978).

1-5 Traditional fuels and deforestation

In the mid 1970's, Eckholm (1975), a researcher with the Washington 

based Worldwatch Institute, argued that deforestation in developing 

countries had led to an acute shortage of firewood in these countries, 

and that continued fuel gathering had led to further deforestation. By

the late 70's this view was accepted by international institutions;

"Many developing countries are...facing a second 

energy crisis which affects particularly the rural 

sectors of their economies. The magnitude of this 

fuel crisis is immense" (World Bank, 1980;38)

According to a number of researchers and institutions (e.g. lEA, 1979; 

Parikh, 1980; Smil and Knowland, 1980; VITA/ITDG, I98O; World Bank,

1980; Kennedy, 198l;33; NAS, 1981a, 1981b; Smith, 1981;31) deforestation 

was a result of increasing demand for firewood by the rapidly growing 

population of developing countries. Increases in firewood supply had 

not kept pace with increases in demand. In the early 1980's a report on

firewood in developing countries by the Food and Agriculture 

Organization of the United Nations (Montalembert and Clement, 1983;119) 

concluded that the firewood situation in many developing countries was 

"deteriorating ever more rapidly". The President of the World Bank, Tom 

Clausen, writing in the 198I Annual Review of the United Nations 

Environment Programme (UNEP) declared.



RURAL URBAN

Gambia
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charcoal charcoal
firewood

firewood

firewood
charcoal charcoalf irewood

Sudan
(1962)

charcoal

firewood firewood .charcoal

Tanzania
(1970)

charcoal charcoalfirewood

firewood

Thai Land 
(19 72)

Household Consumption of Charcoal and Firewood (per capita basis) 
in Urban and Rural Areas of Developing Countries 

(adapted from Openshaw, 1978 in Smil and Knowland, 1980)
Fig 1.1
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"Primarily because of the growing need for firewood, 

third world forests are being cut down ten times 

faster than new ones are being planted" (UNEP,

1981:171)

Concern about the rapid depletion of forests was also expressed in a 

report (Campbell, 1984:23), by the Institute of Terrestial Ecology, to 

the National Environmental Council of the United Kingdom.

According to the World Bank (1980:38), the shortage of firewood affected 
both the urban and rural poor:

"whereas villagers once usually could find enough 

firewood near their homes, many must now search for 

it half a day's walk or more away, and the urban poor 

must spend large portions of their income on fuel"

According to a number of authors (e.g. Eckholm, 1975; Hughart, 1979; 

Parikh, 1980; Smil and Knowland, 1980; World Bank, 1980, 1981) responses 

by villagers to the shortage of firewood have adversely affected food 

production. In addition, a number of vicious cycle effects have been 

set in motion, which have led to a deterioration in the supply of both 
food and cooking fuel:

Parikh (1980:53) reports that as supplies of firewood close to the 

homestead have been exhausted, the distance to sources of firewood has 

increased, and collection trips have become more frequent. This means 

that more time is spent in collecting fuel and has increased the work of 

rural women and children (World Bank, 1981:40; Joseph and Shanahan,

1981). In order to reduce the task of firewood collection there has
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been a shift to using animal manure and crop residues as cooking fuels 

(Kennedy, 1981:33; World Bank, 1981:41; Eckholm, 1984:26). One effect 

is the diversion of crop residues from animal fodder to fuel, another is 

the diversion of animal manure from its use as a fertiliser to use for 
fuel.

Earl (1975:18) reports that using cow manure as a cooking fuel is 

widespread in households in Bangladesh, India, Nepal, Pakistan and other 

countries in the Middle East. According to Eckholm (1975:9-10),

"a visitor to almost any village in the (Indian) 

subcontinent is greeted by omnipresent pyramids of 

hand molded dung patties drying in the sun...dung is 

also burnt for fuel in parts of the Sahelian zone of 

Africa, Ethiopia, Iraq and in the nearly treeless 

Andean valleys and slopes of Bolivia and Peru"

Garg (1978:20) estimates that only 5-10% of the population of India used 

cow manure as a cooking fuel in the early 1900's. However, because of 

wood shortages due to the forests being cleared for agriculture and 

trees cut down for fuel, increasing amounts of cow manure were used, and 

Garg estimate that about 70% of the population used cow manure as 

cooking fuel by the late 1970's.

In burning animal manure and crop residues, it is argued (e.g. Gould and 

Joseph, 1978:4; World Bank, 1980:38), that organic fertilizer has been 

lost, thereby reducing crop productivity. This increases the pressure 

to bring more land under cultivation (World Bank, 1981:4l).
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Moreover, according to Dunkerley (1979:360),

"the diversion of dung from agriculture may require 

the import of chemical fertilizer or even food 

grains; and the destruction of ground cover through 

deforestation may also lead to the import of extra 

food supplies."

Revelle (1976) reports that the food requirements of a growing 

population will exacerbate deforestation through the clearance of forest 

land for agriculture. According to Novak and Polycarbou (1969: quoted 

in Earl, 1975), the need for food and agricultural land by the growing 

populations of Asia will mean that there is little land available on 

which to grow firewood plantations.

According to the analysis outlined above, this shortage of firewood will 

become more acute. Spears (1978), in a paper prepared for the World 

Bank, says

"By the turn of the century, at least a further 250 

million people will be without wood fuel for their 

minimum cooking and heating needs and will be forced 

to burn dried animal dung and agricultural crop 

residues, thereby further decreasing food crop 

yields"

It is regarded as crucial (e.g. NAS, 1981a, 1981b; World Bank, I98O,

I98I; FAO, 1983) to intervene in the rural energy systems of the 

developing countries in order to arrest the continuing ecological 

degradation and to reverse the deterioration in the supply of firewood.
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1-6 Approaches to the cooking fuel problem in developing countries

Responses to the perceived firewood crisis are supply and/or demand 

orientated.

1.6.1 Supply based strategies

Supply focussed strategies are aimed at increasing the supply of fuel. 

One method is by increasing the supply on firewood, for example through 

forestry programmes (Revelle, 1976; World Bank, 1980; Smith, 1981:32).

Another method is fuel substitution, whereby commercial fuels are 

increasingly used to replace traditional cooking fuels. This would 

parallel the historical shifts from firewood to commercial fuels by 

developed countries. During industrialization, traditional fuels were 

increasingly replaced by 'modern* fuels, initially coal and subsequently 

by oil, gas and electricity. For example, whilst wood provided nine- 

tenths of the energy consumption of the United States in 1850, by 1955 

this had fallen to less than 3/5 (Melosi, 1982).

A wide range of options regarding commercial fuels have been put forward 

for developing countries, depending on their energy resource endowments: 

programmes of growing energy crops (Hammond, 1977; Miccolis, 1977; 

Goldemberg, 1978), developing coal mining (Revelle, 1976; Arismunandar, 

1977); drilling for oil (Rahman and Huq, 1974; Miccolis, 1977) and 

hydro-electric power (Adelman, 1976; Arismunandar, 1977; Revelle, 1976).

However, according to the World Bank (1980), the sharp rises in the 

price of oil makes the transition to commercial fuels for villagers in
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developing countries very difficult. Villagers are likely to be too 

poor to be able to afford any other but traditional fuels (Arnold and 

Jongraa, 1978). Moreover, if present rates of rural electrification 

continue, then only 25^ of the world’s villagers are likely to have 

access to electricity by the year 2000 (World Bank, 1975). It seems 

likely that the future fuel supply for the vast majority of the 

populations of developing countries will continue to be traditional 

fuels even by the year 2000 (Wood et al, 1980; Venkatasubramanian and 

Bowonder, 1980).

1-6.2 Demand focussed strategies

Demand based strategies aim to decrease the demand for firewood and 

reduce pressure on forests. Two ways in which this can be done are:

(a) Introduction of "improved" stoves

One method is the introduction of "improved" (ie fuel efficient) cooking 

stoves (Revelle, 1976; NAS, 198la:viii; World Bank, 1980) to replace 

traditional types of stove and fireplace. In addition, traditional 

stoves and fireplaces are said to produce substantial amounts of smoke 

in kitchens which is damaging to health (e.g. Chrenko, 1967-8; Evans and 

Wharton, 1977; Goldemberg and Brown, 1978; VITA/ITDG, 1980), hence, the 

emphasis has been on designing improved stoves which are also smokeless 

(Raju, 1957; Evans, 1978; French, 1984).

(b) New technologies

In the second category are interventions concerned with the introduction 

of new technologies, principally biogas plants (Brown and Howe, 1978;
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Kashkari, 1977), and solar cookers (e.g. Hoda, 1978). Biogas plants 

produce a gas which is mainly a mixture of methane and carbon dioxide 

and can be used as a cooking fuel. In addition a fertilizer rich slurry 

is left which can be used to increase crop yields.

1.7 Expected effects of technical fix interventions

According to a number of authors (e.g. Eckholm, 1975; World Bank, 1980, 

1981; FAQ, 1983) the rural energy crisis can be contained through a 

combination of technical strategies such as reforestation and the 

introduction of 'improved' (ie fuel efficient) stoves.

The widespread dissemination of "improved" stoves is believed to have 

the following effects: (i) An immediate impact on deforestation (e.g.

Goldemberg and Brown, 1978; Attwood, I98O; CSE, 1982). (ii) A 

reduction in the health risk to rural women working in smokey kitchens 

(e.g. Raju, 1957; Acott £t a]̂ , 1980). (iii) A Substantial reduction in 

firewood consumption in cooking (e.g. Evans, 1978; Bogach, 198I; Ma, 

1982). As a result of reduced fuel consumption, the firewood collection 

burden on rural women and children will be reduced (e.g. NAS, 1981a; 

Norman, 1981; Prasad, 1982; Howes et al, 1983). Women may then be 

released to carry out other activities which could raise their income 

(e.g. Kallupatti, 1957; Soedjarwo, 1982), and hence, increase their 

economic status, whilst decreasing their dependence on men (Arnold, 

1980a). It would also be possible for children to attend school, 

without depriving rural families of essential labour (e.g. Prasad,

1982). This is in accord with the development objective of increasing 

the degree of control individuals have over their own lives.
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These 'technical fix' strategies make the following assumptions:

(1) there is a shortage of traditional cooking fuel in rural areas 
of developing countries;

(2) deforestation is caused by the rural populations' use of 

fuelwood for cooking and other domestic purposes, and exacerbated 
by population growth;

(3) traditional stoves and fireplaces developing countries are 
inefficient as modes of cooking;

(4) traditional stoves and fireplaces used in developing countries 

contribute to the ill health of women because of smoke production;

(5) the low thermal efficiency of traditional cooking stoves 

aggravates the burden of fuel collection on rural women and 
children;

(6) It is possible to solve the cooking fuel problem purely by 

technical fixes.

1-8 Summary

Energy demands in rural areas of developing countries are met primarily 

by traditional fuels such as firewood, crop residues and animal manure. 

These fuels have usually been gathered by rural women and children at 

zero monetary cost, and used for cooking (a task generally performed by 

women). It has been estimated up to 88^ of all energy used in Third 

World villages is for cooking in the household (the remainder being used
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for agriculture, lighting, transport, and so on). One reputed reason 

for such a high consumption of cooking fuel is the very low efficiency 

of traditional stoves and fireplaces used in these countries. More than 

2000 million people in developing countries are estimated to rely mainly 

on traditional fuels for cooking.

However, increasing demand for firewood and agricultural land by the 

growing population of these countries has led to increasing pressure on 

forests, which is widely believed to be leading to deforestation. In 

addition, the dual pressure for food and fuel has set into motion 

vicious cycle effects. As nearby firewood supplies become exhausted the 

work of rural women and children has increased. This has necessitated 

firewood trips further afield and with greater frequency. In order to 

reduce the task of firewood collection, there has been an increasing 

shift to animal manure and crop residues as cooking fuels. Organic 

fertilizer has thus been lost, thereby reducing potential crop 

productivity and further increasing the pressure for clearance of forest 

land. Hence, it is argued that this energy shortage will become more 

acute.

A number of "technical fix" strategies have been put forward to 

alleviate the perceived shortage of cooking fuels in developing 

countries. These strategies aim to reduce demand for firewood (e.g. 

through the introduction of "improved stoves") or increase the supply 

of traditional fuels (e.g. by forestry programmes).

1.9 Objectives of the research

The following chapters will critically examine the six propositions 

outlined earlier (see pi?).
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1-10 Methodology

This thesis is primarily concerned with interventions to solve the rural 

energy problem. Domestic energy in the rural sector is supplied 

primarily by firewood, crop residues and animal manure, consequently, 

charcoal burning stoves or the problem of cooking fuel in the urban 

sector will not be considered.

Data to test all the above propositions was gathered by conducting a 

literature search. Additional information was obtained through a 3 

month research visit to a developing country (Zimbabwe) - the detailed 

methodology adopted is given in Chapter 6. Laboratory tests were 

conducted to assess the efficiency of two traditional stoves used in 

developing countries, and a stove which had displaced the traditional 

fireplace in Zimbabwe - the detailed methodology used is given in 

Chapter 5-

Chapter 2 assesses the evidence that the rural areas of developing 

countries are suffering from a shortage of firewood.

Chapter 3 details the strategy of introducing "improved" stoves into 

developing countries.

Chapter 4 examines the basis of the belief that traditional modes of 

cooking have very low efficiencies.

Chapter 5 details the results of laboratory tests of thermal efficiency 

of three cooking ’stoves'.
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Chapter 6 presents the results of a pre-feasibility study on the need

and the design of "improved" stoves for Zimbabwe.

Chapter 7 draws together the themes that have been running through this

thesis, and outlines further work which needs to be done.
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Chapter 2

FUEL STRESS AND DEFORESTATION IN DEVELOPING COUNTRIES 

2-0 Introduction

The previous chapter has shown that according to organizations such as 

the F.A.O. (1978:13) and the World Bank (1980:38), the growth in the 

population of developing countries has lead to deforestation. As a 

result of deforestation, developing countries suffer from an acute 

shortage of firewood, especially in the rural sector. This chapter 

examines the evidence of fuel stress in the rural sector of developing 

countries and whether the demand for firewood by the rural population is 

the major cause of deforestation.

2-1 Evidence of firewood shortage

It is widely believed (see Chapter 1) that the rural poor in developing 

countries are experiencing a shortage of firewood for the following 

reasons: increases in the time spent in firewood collection, a shift in 

the type of food crops grown, changes in cooking practices, a shift to 

"inferior" cooking fuels and deforestation. The following will examine 

the evidence for each of these.

2-1-1 Increased time spent in collecting firewood

Estimates of the time spent per family in firewood collection vary 

between 50 and 300 days per year in India (Makhijani, 1977:1459) and 

between 200 and 300 days per year in Tanzania (per family of five) 

(Workshop on Energy for Rural Communities in Tanzania, 1980). Another
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estimate has put the time spent in collecting firewood in India at 

between 200 and 300 days (Vita/ITDG, 1980:1). The basis of these 

estimates is not given.

Village level studies have been carried out in which the time spent in 

gathering firewood has been measured: on average 16 hours were spent per 

family per week in firewood collection in Ungra village (in south India) 

(Reddy, 1979). In Kwenzitu, (NE Tanzania), the time spent per family 

per week in firewood gathering was found to be between 4 and 12 hours 

(Fleuret and Fleuret, 1978); these values did not take time spent by 

children into account. Similar values of between 4 and 10 hours per 

week per family were obtained for Nyakusa village (Brush, 1977) in 

Tanzania. Assuming 52 weeks per year and 8 hours per working day, means 

that on average 104 days are spent collecting firewood per year per 

family in Ungra village. The minimum time spent in both Tanzanian vil

lages per family per year is 26 days and a maximum of 65 and 78 days for 

Nyakusa and Kwenzitu respectively.

It is not possible though, to determine how the firewood collection 

burden" has changed without data on time spent in gathering firewood in 

the past.

Some authors have pointed to a dramatic rise in the time spent in 

firewood collection in the space of one generation:

"deep in the once heavily forested Himaylayan 

foothills of Nepal, journeying out to gather fuelwood 

and fodder is now an entire day’s task. Just one 

generation ago the same expedition required no more 

than an hour or so" (Bishop and Bishop, 1971)
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It has not been possible to obtain the data upon which this statement 

was made. The extent to which this change is representative of other 

parts of Nepal or other developing countries is not known.

In any case it has been assumed that firewood collection is always a 

burden. The following will show that this issue is not so clear cut: 

perceptions of the task of gathering fuels such as firewood are not 

coherent. On the one hand, fuel collection has variously been described 

as "an odious task" (Goldschmidt, 1951:412), "a lowly and endless 

process" (Kroeber, 1951:156), and "a distasteful chore" (Holmberg, 

1950:41) (all cited in Heizer, 1963:189).

It was reported, at a workshop held in Tanzania in 1974 for extension 

workers, that two of the tasks regarded as being most burdensome were 

cooking with traditional equipment and fires, and collecting wood (UN 

Economic Commission for Africa, 1975:22, cited in Martin, 1979:62).

This information is not reliable unless reported by the villagers 

themselves# However, it is not known whether this was reported by 

villagers or not.

In some instances, firewood collection is said to be an enjoyable 

activity. For instance, an anthropologist working with Mayan Indians in 
Mexico, commented how she,

"had never really understood why the women did not 

seem to mind going to the woods; the immense loads of 

firewood they brought back looked painful to carry on 

their tump lines (ie rope used to tie the bundle of 

firewood) their foreheads straining against the rope.

The little children also seemed to love going to the
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woods ... The trip was a mixture of work and play ...

(and she was later told that) ... when women go to 

lenar* (ie get wood) it is an outing — a group 

experience. ’The women love it ... They are free in 

the woods’" (Elmendorf, 1976:28-29).

Similar observations were made in an earlier study of Mayan Indians in a 

Tzeltal village, in Mexico. The study helps shed more light on this, 

since it seems that once a women is married,

"she is expected to keep her social life within the 

boundaries of her husband’s circuit ... except for 

gathering firewood, a woman has few chances to go out 

of the compound" (Hunt, 1962:143-144).

Hence, it may not be the task of collecting firewood in itself which is 
enjoyed but rather that

"going to gather wood is a very nice break in the 

routine and women usually go in the company of other 

women with whom they chat, exchanging news and 

gossip" (Hunt, 1962:144).

It has also been argued that there is no point in reducing labour time 

spent in firewood collection, since there is no alternative work to be 

done by the rural poor (Desai, c.1978). In addition, the task of 

firewood collection may be done in conjunction with other activities.

For example in Uchucmarca village in the Peruvian Andes, women’s 

gathering trips are combined with tending food crops in daily trips to 

cultivated fields (Brush, 1977:77). Hence, any measure to reduce
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firewood consumption would not necessarily lead to a reduction in time 

spent in firewood collection. In areas of high fuel stress the savings 

in firewood, brought about by more efficient cooking methods may result 

in increased profligacy of firewood consumption as people may consider 

other benefits such as increased space heating or returning to the 

original diet which had had to be abandoned owing to firewood scarcity.

It also has to be borne in mind that firewood collection is not the only 

contribution to the burden of rural women (this is examined in more 

detail for Zimbabwe in Chapter 6), nor is it only women who collect 

firewood; men and children can also be involved (Wood et al, 1980).

2.1.2 A shift in the types of food crops grown

According to the FAQ (1978:15), the major problem in introducing more 

nutritive crops in some areas of Haiti is that they would require more 

cooking. In the uplands of Nepal, farmers are said to be only growing 

vegetables which can be eaten raw (FAQ, 1978:15). In addition,

"the cost and scarcity of firewood have forced 

Nepalese women to include more raw grains, vegetables 

and nuts in their diet ... the women of Sahel are 

switching from millet to rice since rice takes less 

time to cook" (Srinivasan, 1980:17) (emphasis added)

However, this shift to rice from millet may have been to save time 

rather than simply to save firewood: a number of programmes to 

disseminate "fuel efficient" stoves have found that women prefer to have 

stoves which will allow them to cook more quickly (Gern et al, 1981;

Howes e^ 1983; Joseph, 1983) - in some cases even at the cost of
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greater fuel consumption (see Chapter 6),

2-1.3 Change in cooking practices

A similar shift in diet has also been reported to occur in in West 

Africa and meals are being cooked for less time (Hoskins, I98O cited as 

pers comm in Novick, 1980). According to the FAQ (1978:15) in areas of 

West Africa suffering from "serious shortages of firewood" villagers 

have only one cooked meal each day instead of two. The reduction in 

cooking time and number of meals will affect nutrition. It is not known 

whether the change in diet is for better or worse.

2.1.4 A shift to "inferior" fuels

It has been argued that as nearby supplies of firewood become exhausted 

villagers begin to turn to "inferior" fuels such as crop residues and 

animal manure. The following will show that the situation is much more 

complicated and that use of crop residues does not necessarily mean that 

villagers are under fuel stress. Crop residues may simply be used in 

seasons when they are available. In addition, some villagers perceive 

certain advantages to using crop residues.

Seasonal variations occur in the type fuel used for cooking, have been 

reported for a number of developing countries: Bangladesh (Islam, I98O), 

Burkina Faso (formerly Upper Volta) (Ernst, 1978), Peru (Skar, 1982),

Sri Lanka (Howes et al̂  1983; Stewart, I983), Zimbabwe, (Gill, 1982), 

Brazil, Mexico and Tanzania (Wood et al, 1980:32-33).

In Bangladesh, firewood is the principal cooking fuel during the rainy 

season, and collected by the men, whilst crop stalks are used as the
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main fuel source during the dry season. Firewood is collected over a 

period of fifteen days and stored, while the collection of crop stalks 

is carried out by the women and children, and is a daily task (Islam, 

I98I: pers comm). Similarly, in Burkina Faso (formerly Upper Volta) 

millet stalks are used from November (at the end of harvest) through to 

May. Wood is used from around late April or early May. Collection of 

wood occurs once or twice a day in order to stock up for the rainy 
season (Ernst, 1978).

Seasonal variation in the type of fuel appears to be linked to agricul

ture, as well as increased accessibility of areas of sources of firewood 

(Wood ^  1980). Labour requirements for agriculture in developing

countries show a marked variation over the year. Ploughing, weeding and 

harvesting all have a high labour requirement. At these times, little 

spare labour may be available for activities such as firewood collec

tion. Villagers can overcome these problems by strategies such as 

storing fuels collected during the slack season and/or using alternative

fuels such as crop residues which are readily available after harves
ting.

Variation in agricultural labour demand may be important in the patterns 

of collection and use of traditional cooking fuels, or in the acceptabi

lity of alternative fuels. In recognition of this, biogas plants in 

Haryana State in India were installed during the agricultural slack 

season (in this case November to March) - a time when both the farmers 

and departmental officials were relatively free (Moulik et al, 1978:75).

Villagers attitudes to using different cooking fuels vary: on the one 

hand, in north-east Ghana, women do not like using millet stalks, be

cause they burn faster than wood, and require a lot of attention.
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According to the women the firewood was either "too expensive", "in 

short" supply or simply "too far" away (Martin, 1979:42).

Additionally,

nearly three fourths of the women who cook with 

firewood or with stalks said they would prefer using 

another fuel, at least to prepare foods such as soup, 

stew, or tea" (Martin, 1979:29)

However, In Burkina Faso (formerly Upper Volta) villagers prefer millet 
stalks to firewood because

"the stalks weigh no more than wood, and they are 

found in fields next to the women. There is no need 

for stocking unlike wood, and the millet stalks can 

be collected either several times a day, for each 

meal, or as needed" (Ernst, 1978:3).

Village women said it took less time to collect millet stalks compared 

with wood, and the stalks could be much more easily broken up than wood, 

as well as be collected by children. This gives the women more time to 

undertake other activities, such as spinning. Whilst millet stalks burn 

much faster than wood, it is not regarded as a problem, as the rate of 

burning can be slowed down by wetting the stalks (Ernst, 1978:4).

2.2 Deforestation

Trivially, deforestation can be defined to occur when the rate of deple

tion of forests is greater than their rate of regrowth. However,
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forests must be seen as the terminal stage of plant communities, from 

grassland through scrub, secondary and then primary forests. 

Deforestation occurs when this succession is reversed, for example, when 

firewood collection causes the succession to reverse and create an 

environment dominated by scrub, grasslands or crops. Productivity is 

usually greatest at the early stages of succession (Odum, I969). This 

is shown in European practices of pollarding and coppicing.

Firewood collection by the rural poor has been cited as a major cause of 

deforestation. It is not within the scope of this thesis to consider 

deforestation in developing countries in any depth. The following will 

show that the situation is very complicated and that there are a number 

of contributions to deforestation and related issues (e.g. soil erosion, 

crop productivity, the increased incidence of flooding and so
on).

It has been argued that,

"as a rule, the poor do not cut whole trees for fuel 

much less entire areas. Most fuelwood consists of 

twigs and small branches. Moreover, a great deal of 

this does not come from the forests, but rather from 

trees planted near people’s homes, on field bunds, 
willage common lands and roadsides" (Makhijani,

1979:24).

There is evidence to support this view: in Central Java between two- 

fifths and four-fifths of fuelwood came from trees and shrubs in home 

gardens and between one—fifth and two—fifths from dry—land farming 

areas. This left only between one-twelfth and one-fifth from forests.
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roadside trees and so on (Wiersum, 1976, quoted in Arnold and Jongma, 
1978).

In addition, Makhijani goes on to say that

"population growth also seems to be a relatively 

minor factor. The increase in deforestation has been 

sudden and faster than population growth. Moreover, 

people usually do not clear entire areas of forests 

because of fuelwood needs. The devastation of 

forests in many regions, where forests have been 

entirely or largely wiped out, clearly point to other 

causes...large scale commercial clear-cutting for 

timber and fuelwood by governments and private 

contractors is one of the major causes."

(Makhijani, 1979:24).

Supporting this view, is that in India,

"there is some evidence that timber contractors are 

permitted to engage in overcutting, especially in 

tribal areas" (Adams and Tyner, 1977:79).

Deforestation in Central America has been linked to cattle ranching to 

produce cheap hamburgers for the North American market (Myers, 1981); 

commercialization of the forests in West Bengal has led to their disap

pearance (Raman, 1982); extreme forest damage has been incurred in 

Indonesia as a result of logging operations (Kartawinata et 1981); 

in the case of the Sahel environmental degradation appears to be a 

consequence of the peanut production system (Franke and Chasin, 1981).
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other contributions to stress on forest resources include tree felling 

for export (Sardar, 1981; Francois, 1977), road construction (Zerbe et 

al, 1980), shifting cultivation practices (often now ecologically 

disastrous owing to a perversion of traditional practices whereby 

rotation cycles have been compressed) (Ashish, 1979, 1980; Digernes, 

1978), charcoal production (Martin, 1979) which is used mainly by urban 

dwellers (Steckle, 1972; Martin, 1979).

In Bangkok, charcoal consumption in 1972 was equivalent to 3 million 

cubic metres of wood (Arnold and Jongma, 1978:233). According to Arnold 

and Jongma (1978:233) tobacco production in Malawi accounts for one 

million cubic metres of firewood, representing 17̂  of the total annual 

energy consumption. The energy demand for tobacco curing in Malawi was 

rising much faster than household demand for firewood.

Moreover, when looking at any country or region in detail it becomes 

increasingly obvious that the situation is very complicated. A case in 

point is that of Zimbabwe, (this is examined in more detail in Chapter 

6), where deforestation in the rural areas appears to be a consequence 

of extension of land for agriculture not firewood gathering activities. 

However, this pressure on land is embedded in the political economy, 

whereby a growing African population was forcibly evicted in the I890’s 

from the fertile highlands and artificially constrained to "reserves" - 

this led to increased man/land ratios and to both soil erosion and 

environmental degradation leading to vicious cycle effects (Ndlela,

1981). Bunker (1981) similarly links the political economy of Brazil to 

the destruction of Amazonia.
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2.3 Conclusions

Whilst there may be shortages of firewood in certain countries or areas 

it is not a universal phenomenon. Issues related to the collection and 

consumption of traditional fuels are more complicated than has been 

assumed. For example, firewood collection is not always regarded as a 

burden, and the causes of deforestation are manifold requiring detailed 

study.

The next chapter looks in detail at the strategy of reducing firewood 

consumption through the introduction of "improved" cooking stoves.
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Chapter 3

"IMPROVED STOVES": PROBLEMS AND PROMISES

3.0 Introduction

The previous chapter has shown that there are a number of contributory 

factors in deforestation, and that the issue of traditional fuels in 

developing countries is more complicated than assumed by many observers.

Traditional stoves and fireplaces commonly used in developing countries 

are believed to have both low cooking efficiencies and contribute to 

poor health because of smoke produced in the kitchen (Raju, 1957; 

Eckholm, 1975; Knowland and Ulinski, 1979; Baron, 1980; Siwatibau,

1981). In order to eliminate smoke from traditional kitchens - for 

reasons of health - and reduce consumption of firewood, much effort has 

been devoted to designing and disseminating stoves which are both 

smokeless and more efficient than traditional designs. These are 

generally referred to as "improved" stoves. It was believed that if 

these "improved" stoves could be adopted on a widespread scale, then 

firewood consumption would fall, thereby reducing the pressure on 

forests (e.g. Makhijani, 1976: 24-26; Salariya, 1983:4). This would 

increase the chances of success of solutions concerned with increasing 

the supply of firewood, e.g. reforestation, agroforestry, silviculture.

Other aims of stove programmes have been to improve women’s health 

through their working in a smoke-free kitchen and a reduction in time 

spent in cooking and collecting fuel (Acott et 198O; Soedjarwo,

1982; UNICEF, 1982). Women could spend the time saved in economically 

productive activities (Arnold, 1980a). In order to have a significant
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effect (on health and firewood consumption), the dissemination of "im
proved" stoves must occur on a large scale.

This chapter identifies the various "improved" stoves that have been 

promoted for the rural sector of developing countries and the reasons 

why these stoves have not been able to displace traditional designs to 

any extent. This chapter is concerned principally with the proposition 

that "improved" stoves save firewood (compared with traditional stoves) 

and for that reason will be desirable to the rural poor.

This chapter is divided into several parts: first the various types of 

traditional stoves and fireplaces used in developing countries are 

considered; section 3.2 introduces efficiency concepts in the context of 

cooking stoves; section 3.3 details methods to determine the efficiency 

of cooking stoves and measurement of of firewood consumption in the 

field; section 3.4 examines reasons for disseminating "improved" stoves; 

section 3.5 looks at the various types of "improved" stoves; section 3.6 

examines reasons for the general failure of "improved" mud stoves to 

achieve widespread dissemination; section 3.7 examines the response of 

improved stove promoters in both Sri Lanka and Indonesia to the problems 

of dissemination and their early experience in promoting "improved" ' 

ceramic (or "pottery liner") stoves.

Different Types of Traditional Stoves and Firenlaoes Used in 
Developing Countries

In this thesis, 'traditional' stoves and fireplaces will be used to mean 

open fires (and variations), and mud/clay stoves which are widely used 

in developing countries today, (most of which have been in use for many 

centuries). "Improved" stoves are those which have specifically been
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promoted in developing countries, on the basis of being smokeless and a

reputedly high cooking efficiency e.g. HERL chulha, Lorena stove, Magan 
chula.

Stoves may be classified in a variety of ways, for example stove types 

may be categorized in terms of stove material, and/or the number of pot 

holders. In the following classification stoves and fireplaces will be 

divided into three categories: open fires (usually with the addition of 

rocks or stones); mud/clay stoves; below ground/pit stoves. The list 

presented here is neither exhaustive nor exhausted. Details of many 

stoves not included here are given in the other literature on stoves 

(e.g. Joseph et 1980; De Lepeleire et I98I; TERI, 1982; Foley 
and Moss, 1983).

3-1.1 Open fire with the addition of rocks or stones

(a) open fire + three legged pot

One of the simplest arrangements is a fire under a three legged pot (Fig 

3.1). This method of cooking was observed (Best, 1979a:32) in three 

in South Africa (Natal and the Eastern Cape) and Lesotho.

(b) *three-stone* fireplace

Open fires with rocks or stones which act as a support for the cooking 

utensils are very widespread. The most common arrangement involving an 

open fire in conjunction with supporting rocks or stones is the ’three 

stone’ fireplace (Fig 3.2). This has been observed in parts of Latin 

America, Bangladesh, and much of Africa (Table 3.1)
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'stove'

Table 3.1
Traditional Cooking Stoves and Fireplaces 

Where Observed Source
Open fire and variations
(a) 3-Stone fireplace Ghana

Nigeria
Tanzania
Zimbabwe

sub-Saharan
Africa
Upper Volta
Dori
Niger
Sahel

West Africa
Guatemala
Ecuador
Indonesia
Bangladesh

(b) ’Two Stone’ fireplace

(c) two bricks + iron 
bars as supports

Fiji

Malaysia

Ecuador

(Martin, 1979:63-64) 
(Ay, 1978:27) 
(Mnzava, 1980:99) 
(Ascough, 1981) 
(Gill, 1982, 1983) 
(FRIDA, 1980:44)

(Ki-Zerbo, undated)

(Norman, 1981:3) 
(Asare, 1976:23) 
(Evans, 1978)
(Moran, I98I) 
(Singer, 1961:24-28) 
(Islam, 1980:111-4)

(Weir and Richolson, 
I98O; Siwatibau, 198I) 
(Ohlsson and Purvis,

1972)
(Moran, I98I)

Clay/Mud Stoves

(a) ’U’ Chulha

(b) Mud wall + iron 
bars

(c) two/three hole 
stoves

India

Sri Lanka 

Mexico

Indonesia
Java
India

(Rao, 1962) 
(Salariya, 1978) 
(Jajodia, 198O) 
(Stewart, 1983)

(GATE, 1980)

(Singer, 1961:24-28)
(  II II II )

(Geller, I98O; 1982)

Below Ground/Pit Stoves
(a) earth oven

(b) Bangladeshi pit 
chulha

Oceania
Pacific
Mexico

Bangladesh

(Gould and Joseph, 1978) 
(Kuper, 1977:212) 
(Elmendorf, 1976:31)

(Islam, 1980:111-4)
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Fig 3.1 Fire under 3-legged pot 
(Best, 1979a)

Fig 3.2 3-stone fireplace

Fig 3.3 Ecuadoran 2-stone method 
(Moran, 1981)
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During the cooking process the firewood is continuously fed into the 

fire. The power output (burning rate) can be controlled by moving the 

fuel in or out of the burning fire. In villages around Ibadan in 

Nigeria the size of these sticks is commonly a metre or more in length 

(Ay, 1978:27).

The size of the supporting rocks vary depending on the size of the 

cooking utensil: small stones being used for small pots and large stones 

for large pots; in Zimbabwe small pots may be placed directly on the 

burning firewood rather than the stones (see Chapter 6). Sometimes mud 

is placed between the supporting rocks to act as a wind shield (Martin, 
1979:64).

Cooking may require more than one utensil to be heated at the same time. 

This can be achieved in a variety of ways. The three-stone fireplace 

may with the addition of a two more rocks, (at zero cost), become the 

"five stone" fireplace. This enables two pots to be heated at the same 

time. This arrangement is frequently observed in sub-Saharan Africa 

(FRIDA, 1980).

In rural areas of Guatemala the most common traditional method of cook

ing is the 3-stone fireplace, though cooking is sometimes done over a 

"primitive iron grill" (Evans, 1978:3). According to Evans (1978) the 

"rising middle class" either buy a propane stove or build a "poyo" - a 

brick cooking platform with a cast iron plate and chimney. Evans (1978) 

reports that the fireplace is usually on the floor and sometimes on a 

raised platform. However, the opposite was found in a survey of 1000 

households conducted in Guatemala by Bogach (1981:2.19): only one-fifth 

of the families used an open fire on the floor whilst nearly two thirds 

cooked on an open fire on a raised platform.
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(c) Fijian Traditional "Open Fire"

A traditional arrangement in Fiji (Siwatibau, 1978, 1981; Weir and 

Richolson, 1980:9) involves placing iron bars across two large stones. 

Moran (1981) reports a similar method for supporting the cooking pot in 

Ecuador (Fig 3.3).

3.1.2 Mud Stoves

(a) One-Pot Stoves

Indian *U* Chulha

The Hindi word for stove or fireplace is "chulha" (also spelt chula, 

chulah and choola), and has been absorbed in the literature on stoves 

throughout the world. In this thesis the words "chulha" (and 

derivatives) and "stove" will be used interchangeably. A variety of 

chulha’s are used in India. The simplest is a small horseshoe—shaped 

structure (Fig 3.4) made out of brick or mud (NCAER, 1959; Salariya, 

1978, 1983). This can be regarded as a simple wind shield.

*Madura* and ‘Keren* Stoves

Two simple one-pot stoves observed in East Java (Singer, 196I) are the 

’Madura* (Fig 3.5) and ’Keren’ (Fig 3.6) stoves.

Portable Bangladeshi Chulah

A portable chulha has been reported to be used in Bangladesh (Fig 3.7) 

(Vita/ITDG, 1980), and Indonesia (Singer, 196I).
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Fig 3.4 Indian 'U ' chulha Fig 3.5 Madura stove
(Singer, 1961)

(all dimensions in cm)
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Fig 3.6 Keren stove

(De Lepeleire et al, 1981) section A-A
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Fig 3.7 Portable chulha 
(VITA/ITDG, 1980)

Fig 3.8 Mexican mud wall 
(GATE, 1980)

Fig 3.9 Twin ’U' Sri Lankan chulha 
(Howes et al, 1983)

Fig 3.10 Twin fireplace chulha 
(TERI, 1982)
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(b) Multi-Pot Stoves

There are a variety of mud stoves on which several (usually two or 

three) cooking utensils can be heated simultaneously. These types of 

stove are reported in the literature predominantly for Asia (see below).

A design similar to the *U* chulah has been reported for Mexico, and 

will support several cooking utensils. This design utilizes a low ’U’ 

shaped mud wall and metal bars (Fig 3.8) (GATE, 1980:23). A twin ’U» 

chulha is traditionally used in Sri Lanka (Fig 3.9) (Howes et 1983; 

Stewart, 1983)

A stove with two openings the "Twin fireplace Chulah" (Fig 3.10) has 

been observed in some rural parts of India (Jajodia, I98O). Other 

traditional two-hole stoves are used in West Java (Fig 3.11) (Singer, 

1961) and India, (Fig 3.12) (Dutt, 1978, in De Lepeleire et al,

1981:139).

Another two pot stove is the Tungku Muntilan (Fig 3.13). The second pot 

seat of this stove acts as a chimney. This stove is built by artisans 

in central Java and Indonesia and used in domestic cooking as well as in 

restaurants and for processing food (Joseph et al, 198O). The size of 

these stoves vary in size from 30 x 15 x 15cm to 120 x 50 x 70cm. A 

stove 65 X 33 X 22cm weighs about 20kg. The lifetime of this stove is 

estimated to be up to 10 years.

Traditional three-hole stoves have been observed in India (Fig 3.14) 

(Dutt, 1978, in De Lepeleire e_t 1981:139), Indonesia (Fig 3.15) 

(Singer, 1961) and Egypt (Fig 3.16) (Theodorovic, 1954).
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Fig 3.11 West Java 2-pot stove Fig 3.12 Indian 2-pot stove
(Singer, 1961) (De Lepeleire et al, 1981)
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eection A-A 
(all dimensions in cm)

Fig 3.13 Tungku Muntilan
(De Lepeleire et ai, 1981)
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^^8 3.14 Indian 3—pot. stov6
(De Lepeleire et al, 1981)

Fig 3.15 Indonesian 3-pot Fig 3.16 Egyptian 3-hole stove
stove 
(Singer, 1961)

(De Lepeleire et al, 1981)

Fig 3.17 Bangladeshi pit chulha 
(VITA/ITDG, 1980)
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3-2-3 below-ground/pit "stoves"

(a) Earth Oven

The earth oven is reported to be common throughout Oceania (Gould and 

Joseph, 1978) and the Pacific (Kuper, 1977:212). Elmendorf (1976:31) 

has observed the Mayan Indians in Mexico also using the earth oven.

According to Gould and Joseph (1978:6) the following cooking procedure 

is used in Oceania: a shallow hole is dug in the ground, in which pieces 

of wood are placed and set alight. Once glowing coals have formed, 

volcanic rocks are placed on them. After all the wood has burnt, the 

ashes and rocks are removed. The bottom of the hole is then covered 

with leaves. Parcels of food (wrapped in leaves) are placed in the 

hole, along with the hot rocks, and covered with leaves. The heat from 

the rocks slowly cooks the food. Food can be steamed by sprinkling 

water on the hot rocks. About ten pounds of food can be cooked in four 

hours - and if needed for social occasions - 300 pounds in about twelve 

hours. This method is time consuming, and is now only used for special 

occasions. People in Oceania now tend to cook either over open fires or 

use kerosene stoves.

(b) Bangladeshi Chulha

The Bangladeshi chulah is similar to a mud stove, but constructed below 

the ground (Fig 3-17) and uses the thermal insulating properties of the 

earth (VITA/ITDG, 1980). This stove consists of a spherical hole - the 

combustion chamber - above which the cooking utensil rests, and a side 

vent through which fuel is introduced. These stoves can have one or two 

’mouths', on which the cooking pot(s) rest (Islam, 1980:111-4).
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3.2 Efficiency Concepts

Cooking consists of maintaining food at an elevated temperature for a 

given length of time. The length of time required depends both on 

physical factors (e.g. quantity of food, type of food, ambient tempera

ture, wind speed), and subjective factors (e.g. taste and cultural 

preferences). The elevated temperature is provided by water (when 

boiling or simmering), by oil (when frying) or simply by air (when using 
an oven).

During the process of cooking, heat flows from the burning fuel to the 

food. The cooking pots and stove (or fireplace) act as channelling 

agents for this flow of heat. In order to minimize fuel consumption in 

cooking, the proportion of heat energy which goes to the food must be 

maximized. Cooking on a traditional stove involves losses of heat in a 

number of ways. For example, through hot or unburnt gases which escape, 

radiation and convection of heat from the hot stove as well as food and 
cooking pot(s) and so on).

The efficiency of an energy conversion device is usually defined as the 

amount of useful energy or work provided by the device, divided by the 
energy input.

It is useful to define partial efficiencies associated with the transfer 

of heat (liberated from the combustion of the fuel) to the food (Equa

tions 3.1 - 3.5) (De Lepeleire, 1982).

These partial efficiencies can be combined to obtain an overall stove 

efficiency, (ie Equation 3.5) (De Lepeleire, 1982:46).
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Partial Efficiency Equations

combustion efficiency n^:
^ _ heat generated by combustion
° consumed heat energy in firewood

transfer efficiency n̂ :
gross heat input into the pann*. = generated heat

efficiency np:
net heat input into the pan

gross heat input

efficiency nr:
heat absorbed by foodn.,= net heat input in the pan

overall cooking efficiency

n = heat absorbed in the food mix 
heat consumed by firewood “ ^c * ̂ t • ^p• n^

Equation (3.1)

Equation (3.2)

Equation (3.3)

Equation (3.4)

Equation (3.5)

Definitions of efficiency have tended to focus on the provision of heat 

for cooking (see section 3.3). However, in developing countries stoves 

are used for a variety of purposes, such as the provision of space heat 

and drying food, and not just for cooking. Hence, not all heat which 

does not go to the food is necessarily a "loss". Traditional cooking 

stoves in developing can also have socio-cultural functions (e.g. pro

vide a social focus or reflect the status of the user). Moreover, stove 

users may also be concerned about other practical aspects of a stove, 

(e..g long lifetime, low maintenance requirement, cash and labour cost, 

and so on (Dutt, 1981). Invariably these would involve trade-offs, 

since a number of features considered desirable may conflict, e.g. low 

cost and long lifetime. In recognition of multiple practical functions 

of stoves, Joseph and Shanahan (1980a)use the term "Percentage Heat 

Utilization" (PHU) in place of "efficiency".
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A single value of efficiency is often quoted for traditional stoves and 

fireplaces (see Chapter 4). However, cooking stoves will have a variety 

of cooking "efficiencies" depending on the definition of "efficiency" 

chosen as well as operating conditions. Hence, a family of curves will 
be produced rather than a single value.

3-3 Methods for Determining Fuel Consumption of Different Stoves

Efforts have been made to obtain information on the fuel consumption of

traditional stoves. Various tests have been used to provide information

on energy flows. These data can be used to design new stoves, or to

modify existing ones by optimizing the heat energy which is delivered to 
the food.

One aim of stove testing has been to provide information on the perfor

mance of cooking stoves and fireplaces (Bialy, 1981:1). An analysis of

the literature relating to test data and the results of programmes to 

disseminate "improved" stoves show that this task has proven to be more 

difficult than initially envisaged. One technical reason is that the 

concepts of efficiency rely on being able to achieve a steady state 

situation, but the dynamics of combustion of wood and other traditional 

fuels are not a simple affair (see Browne, 1958; Shelton et 1978).

There are several ways of obtaining data on consumption of traditional 

fuels in cooking. Experimental tests in the laboratory or field can be 

carried out to provide fuel consumption data under defined conditions. 

These tests are either carried out using food which involves cooking 

standard meals or heating water (instead of food) and are known as Water 

Boiling Tests. Water Boiling Tests are the most common type of testing 
method.
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At the field level, fuel consumption can also be determined by asking 

the households to estimate their fuel consumption (the direct recall 

method) or by direct measurement. Field tests have also been designed 

to determine the relative fuel consumption of different stoves (the Kaya 

test) as well as optimizing stove design (the Bamako test).

These various methods are described below.

3.3.1 Water Boiling Tests

Water Boiling Tests (WBT’s) involve heating water instead of food to 

simulate the cooking process: the energy absorbed by the water can 

easily be calculated if the specific heat capacities and the temperature 

rise of the water and cooking pots are known.

Joseph and Shanahan (1980a)use the term PHU to denote the proportion of 

heat energy absorbed by the water from the fuel. Two PHU’s (PHU1 and 

PHU2) are defined in bringing the temperature of the water from ambient 

to boiling point. PHU1 treats evaporated water as an energy loss, 

whilst PHU2 does not. PHU's involving simmering do not treat energy 

associated with evaporated water as an energy loss.

PHU1 = temperature rise of water X specific heat x mass of water
heat energy of consumed wood

PHU2 =
(temperature rise of water 
+ mass of water evaporated

X specific heat s 
X latent heat of

(eqn 3.6)
mass of water) 
evaporation of water)

heat energy of consumed wood
(eqn 3.7)

refers to the time taken for the water, in a one-pot stove, to reach 

boiling point from ambient temperature. If the stove has two pot hol

ders, than BP2 refers to the time at which the water in the second pot
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has reached boiling point. This terminology is similarly extended to

stoves which can heat more than two pots simultaneously (ie BPS, BP4 and 
so on).

Measurements of the PHU after 't' minutes of simmering, for a one pot 

stove, are referred to as BPiSt. Fkr example, BP1S30 means measurements 

taken 30 minutes after the water in the first pot reached boiling point.

Most experimental work on cooking stoves has been carried out using 

firewood as the fuel. The following details the calculations of heat 

liberated when using firewood (the same principles would apply to other 

fuels such as crop residues or animal manure).

The calorific value of virtually all oven dry woods, whether from tropi

cal or temperate regions is 20 MJ/kg to within 5 per cent (Bialy, 1979). 

The calorific value of moisture-free wood is referred to as the gross 

calorific value (or high heat value). The presence of moisture in wood 

lowers the amount of heat energy that is available, as this water ab

sorbs heat in being converted to steam. The calorific value of wood

containing moisture is referred to as the net calorific value (or low 
heat value).

Using standard enthalpy reactions associated with the combustion of

wood, and the assumption that the hydrogen content of virtually all

woods is around 6%, Bialy (1979) calculates that the variation of net

calorific value (E(m)) with moisture content, is approximately given by 
the equation:

E(m) = 2.4 (780 - m)
(100 + m) Equation (3.8)
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where m is the moisture content (dry basis) - a more detailed account of 

moisture content and calorific values is given in Appendices A and B.

The heat energy released by the firewood is calculated by subtracting 

the heat energy available in the fuel residue, from the heat energy in 

initial quantity of firewood; the latter is simply the product of its 

mass and calorific value (corrected for moisture content).

The heat energy of the fuel residue can be determined in a variety of 

ways. The simplest is by separating any unburned charcoal from any

unburned wood in the fuel residue. Each of these is then weighed.

Since the approximate calorific value of charcoal and wood are known, 

the total heat content of the residue can be calculated. For charcoal, 

Shafizadeh (1981) (quoted in Emmons and Atreya, I983) gives calorific 

values in the range 24-31 MJ/kg, with an average of 28 MJ/kg. Joseph 

and Shanahan (1980a) use a value of 29 MJ/kg.

A number of WBT's have been reported in the literature (Ahuja, undated; 

Bhatt, 1983) each of which, according to Joseph and Shanahan (1980a) 

gives a different result. Five methods are described below - the final 

two methods have been the least reported in the literature. A more 

detailed account of some of these WBT's is given in Bhatt (1983).

(a) Cooking Simulation Test

A fixed amount of water is brought to the boil, and the quantity of wood 

used, and mass of water evaporated, recorded. The water is then allowed 

to simmer for a defined length of time, at the end of which the

remaining wood, charcoal, and water are weighed.
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This appears to have been the most widely used test. A detailed 

description of which is given in Joseph and Shanahan (1980a) who adopted 

it because of its similarity to cooking which involves simmering. Weir 

and Richolson (1980) extended this methodology to include thermal losses 
from the cooking pots.

This WBT has been critisized since cooking food which involves simmering 

initially requires a high power output to quickly bring the water to 

boiling point. Once the water has boiled, the heat input is reduced to 

just maintain simmering. Hence, a stove which gives a high PHU with 

such a WBT's may not do so when cooking food. Thus, Agarwal (198O) 

refers to a report (Government of India, 1964) in which an "improved 

South Junagadh Stove" had a higher PHU than the traditional design in 

WBT's. However, in practice, the "improved" version used more fuel than 

the traditional design! In recognition of this criticism there has been 

a shift to WBT's which are carried out at high and low powers.

(b) High power/low power tests

This WBT, described in Vita (1982), is a simple modification of the 

previous test: a known mass of water is brought to boil at the maximum 

power output of the stove, and allowed to simmer for 15 minutes, at this 

power output. The mass of residual firewood, charcoal and water is 

weighed and PHU's calculated at BP 1SI5. A known amount of firewood is 

then put in the stove and lit. The procedure outlined above is then 

repeated. However, after simmering for 15 minutes, the power output of 

the stove is reduced to the minimum to maintain simmering, for one hour. 

The PHU's obtained at the low and high power outputs are compared. The 

ratio of the maximum and minimum power output (averaged over each part 

of the test) are also calculated. This is referred to as the "turn
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down" ratio of the stove.

(c) Water Evaporation Method I

A known mass of water is heated and a given mass of fuel completely 

burnt. The PHU is calculated from the temperature rise in the mass of 

water and the amount of water evaporated.

This test is used by the Woodburning Stove Group at Eindhoven University 

in the Netherlands (Visser and Verhaart, I98O; Prasad, I98I). In their 

tests, small pieces of wood were fed into the fire in "charges" (e.g. 

50g, lOOg). This procedure had the advantage of performing the test 

under quasi-steady state conditions. The end point was defined when the 

temperature of the water in the cooking vessel fell below a set value.

(d) Water Evaporation Method II

The mass of fuel required to evaporate a fixed quantity of water is

measured at a variety of burning rates (ie power outputs).

High PHU's are obtained for stoves capable of a high power output, 

however, this test is not particularly useful since the parameter of 

interest is the quantity of fuel to cook a meal, not the steam 

generating efficiency.

(f) Constant Power Output Method

This test is recommended by Khanna (1965) (quoted in Bhatt, 1983). In

this test, a known mass of wood is burnt. The number of times a fixed

quantity of water can be brought to (or close to the) boiling point is
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recorded. As the water in the final cooking vessel heated may not reach 

point, the highest temperature reached is recorded. The PHU is 

calculated from the temperature rise of the total mass of water heated 

in the test. One advantage of this test is that there is very little 

time lag between one cooking vessel being removed from the stove and 

another being heated. It is not known whether evaporated water is 

included in the calculation of the PHU, but as the water is not allowed 

to simmer for any length of time, it is likely that the energy 

associated with steam will be very small.

This test has been recommended by Micuta (1985) to give villagers a 

visual indication of the relative fuel consumption of two stoves.

3-3-2 Fuel Consumption in Cooking "Standard" Meals

In WBT's, calculations of PHU after the water has reached boiling point 

generally include the energy carried away by steam. However, this 

energy has not performed any useful function. The parameter of interest 

is the fuel consumption to carry out any cooking task, not the 

f̂'̂ iciency with which steam can be produced. Consequently, PHU's should 

only be given in bringing the water to boil. Measurements involving 

simmering should give the total fuel consumed. In order to allow 

comparison with PHU data of other authors, the WBT data in Chapter 5 

gives values of PHU after the water has reached boiling point.

WBT's are also open to the criticism that measuring the fuel consumption 

in bringing water to the boiling, or in allowing it to simmer, is not 

the same as cooking a meal. In order to overcome this criticism as well 

as to determine the fuel consumption in cooking, "standard" meals are 

defined and cooked on different types of stove. (Another response has
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been to measure cooking fuel consumption in the field, see section 

3.3.4). As variations are expected in cooking practices between as well 

as within countries, standard meals have to be site specific. Meals 

which are most often cooked, or cooking procedures which are most 

common, are used as a basis for designing these standard meals.

Fuel consumption is calculated by measuring the amount of fuel at the 

beginning and end of the test. An appropriate correction has to be made 

for differences in calorific value between the unburned fuel and fuel 

residue. For example, if firewood is the cooking fuel, the fuel residue 

will consist of firewood and charcoal, each of which have different 

calorific values. The remaining charcoal has to be expressed in terms 

of the mass of firewood which will have the same available heat energy. 

This can be done by multiplying the mass of charcoal by the ratio of the 

calorific values of charcoal and the firewood. Micuta (I985) suggests 

using a value of 1.5 for this ratio. The firewood consumption can 

simply be calculated by subtracting the 'firewood' remaining at the end 

of the test from the initial quantity of firewood.

Data from standard meals is sometimes expressed in terms of the amount

of fuel to cook one kilogramme of food (e.g. De Lepeleire, 1982, in

VITA, 1982: Micuta, 1985). This is referred to as specific fuel consum
ption.

Cooking standard meals can give information on fuel consumption, and 

ease of operation of each type of cooking stove or fireplace. Such 

tests can also be used to identify and relate the physical characteris

tics, (e.g. number of pot holders, controllability of heat output), to 

the existing cooking patterns. This information would be useful in 
designing 'improved' stoves.
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3-3-3 Field Measurements of Fuel consumption

Methods used to determine fuel consumption depend upon the situation in 

the field. For fuels such as firewood, animal manure and crop residues 

two basic methods - direct recall and direct measurement - are commonly 

used. Procedures to determine the relative level of fuel consumption of 

different cooking stoves are based on the direct measurement method.

(a) Direct Recall Method

In this method, each household is asked to recall the amount of fuel it 

has used over a particular period of time (ranging from one day to a 

year). The longer the time period the larger the errors that will creep 

in. However, short periods may be subject to daily variation. As a 

result, there is need to ask about fuel consumption over several short 

periods. It has to be borne in mind that information on consumption may 

only be available in units of measurement with which the respondents are 

familiar e.g. per headload or cartload.

An extension of this method is to ask the householder to place in a pile 

the amount of each fuel used over a short period of time, e.g. the 

previous day or week. These quantities can than be weighed or measured 

(For example to obtain the volume of firewood) by the researcher.

(b) Direct Measurement

The second method relies on physically measuring the fuel consumption 

over a defined period (e.g. per day, per week or per month) for defined 

activities e.g. cooking and space heating. A common way of doing this 

is by asking selected households each to make a pile of the fuel (e.g.
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firewood) used. Only fuel from this pile should be used by the house

hold. The researcher by weighing each pile of fuel periodically, and 

replenishing as needed, can estimate the fuel used for the defined 

activities. Errors can arise from various factors, for example if fuel

not from the experimental pile is used, or if another householder uses 
this fuel.

Another source of error is that the very act of measuring fuel 

consumption may affect the actual consumption, since monitoring 

consumption of fuel would draw attention of the households to their fuel 

use. Wood (1981, 1982) reports the results of a fuel survey in Burkina 

Faso (formerly Upper Volta): the average level of firewood consumption 

was 6% lower in the second week of the survey (following a one week gap 
in measurement) with families using the same traditional stove.

However, the overall change for these families ranged from an increase 

of \\% to a decrease of 24%. Whilst, Wood ascribes this variation to 

the act of observing consumption, this variation may simply have been 

due to different types or quantities of food being cooked over these 

weeks (see Chapter 6, for a discussion of the variation in consumption 

reported in the Zimbabwean villages visited). Unfortunately, Wood did 

not gather data on the type and amount of food cooked.

3-3.4 Relative Fuel Consumption of Stoves/Optimization of Stove Design

Field tests based on direct measurement of fuel consumption have been 

described which can be used to compare the efficiency of different 

stoves (the 'Kaya* test), which can be followed by the 'Bamako* test to 

optimize the stove design (Dutt, 1981).
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(a) Kaya Test

This test is named after Kaya, Burkina Faso (formerly Upper Volta) where 

the test was first carried out. The Kaya test is used to compare the 

performance of two stoves or a stove operating under two different 

operating conditions (Geller and Dutt, 1982). For the former objective, 

each participating household is given the two stoves to be compared. 

Households are instructed to alternate their cooking between these two 

stoves. Measurements of fuel consumption are then taken after each meal 

or at the end of each day. It is recommended that at least five 

households are chosen and tests conducted over six consecutive days to 

permit statistical analysis. It is important to design the cooking 

schedule such that the same meal is not repeatedly cooked on one stove 

and not on the other. A worked example based on field data, along with 

detailed statistical analysis is given in Geller and Dutt (1982).

(b) Bamako Test

This test is named after Bamako, Mali where this test was first carried 

out. The Bamako test enables optimization in stove design parameters or 

cooking practices (i.e. stove use) and is based on the Kaya test 

outlined above. A detailed account is given by Dutt (1981). In the 

test, two stoves (a reference stove, and test stove) are given to a 

selected household. These two stoves may now be compared using the Kaya 

test procedure. After about one week the relative fuel consumption will 

have been determined. The effect of changes in the design parameters of 

the test stove, for example chimney height, shape of combustion chamber, 

or the introduction of a grate, can be observed in continuation of the 

test over subsequent weeks. One parameter is altered at a time.
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Simultaneously, tests may be carried out in another household where a 

^iFferent parameter is altered at one week intervals. Similarly, 

changes in fuel consumption due to alterations in cooking practices can 

also be obtained. In this latter case the original cooking practices 

must be retained when using the reference stove.

Dutt (1981) points out some of the weaknesses of the Bamako test pro

cedure. Firstly, the optimal values of each parameter only relate to 

the stoves of a particular dimension. Hence, in practice optimization 

of every parameter would have to be done for stoves of varying sizes — 

this would be a tedious process. However, Dutt points out that once 

each parameter has been individually optimized then it is likely that 

the overall optimal values will be close to these values.

Another problem is that the actual energy consumed will not be known 

since the fuel consumption figures in this procedure do not take into to 

account variations in the calorific value of different firewood species 

and moisture content. However, alternate use of the stoves will tend to 

reduce errors due to these variations.

An approximate value of the total heat energy consumption can be deter

mined if the calorific value and moisture content of the fuels is known. 

If these values are not known, or can not be measured, then 'typical' 

calorific and moisture content values of these fuel types may be used.

An assumption made here is that the fuel(s) used are homogeneous in 

terms of parameters which affect the heat content. Variations in these 

parameters may be taken into account by sampling the fuels.

Finally, the optimization of a single parameter at a time ignores inter

action effects. Dutt argues that further optimization can be undertaken
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on stoves which have been initially optimized using this method. More

over, there are factorially designed experiments which can be used to 

examine interaction effects (Fisher, 1942) and have been applied stove 

testing (Bialy, 1981). (The application of factorial design to testing 

an Indian ’U* chulha is given in Chapter 5.)

Measurements of fuel consumption and households chosen must be statisti

cally representative. In addition, since seasonal and regional varia

tions are expected, generalization or extrapolation from these results 

may not be possible.

The major disadvantages of these types of field tests is the degree of 

disruption of cooking patterns of the families under observation, as 

well as the effect of monitoring on the observed fuel consumption.

3-4 Reasons for Introducing "Improved" Stoves

The most important reasons put forward for replacing traditional cooking 

stoves by "improved" ones are to increase the efficiency of cooking with 

firewood, thereby reducing firewood consumption (e.g. Raju, 1957; 

Makhijani, 1976:24; World Bank, 1980:39; Kennedy, 1981:33; Smith,

1981:15; TERI, 1982:3; Salariya, 1983:4) and to provide a smoke-free 

cooking environment for women in the kitchen (e.g. Kallupatti, 1957; 

Chrenko, 1967-8; Siwatibau, 1981:77). The evidence to support these 

beliefs are examined below.

(a) The "Efficiency" of Traditional Stoves/Fireplaces

There is a widespread belief that traditional stoves and fireplaces are 

very inefficient (see Chapter 4). The basis of this belief is examined
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in detail in Chapter 4.

(b) Cooking Fires and Smoke-Related Diseases

Using traditional stoves and fireplaces in confined spaces means that 

cooking is done in a smokey atmosphere; a lot of smoke can be produced 

during cooking particularly during the early stages of the fire, owing 

to incomplete combustion of the volatile gases released.

Cooking out of doors can reduce the deleterious effects of the smoke. 

However, this may not always be possible, owing to adverse weather 

conditions, or because of religious, social or cultural reasons. In 

Nepal for instance, villagers are uncomfortable about cooking in public 

(Yoder, 1981). One way around this has been to vent the smoke from the 

kitchen by means of a chimney; this is the principle behind most of the 

"improved" stoves that are "smokeless".

The ill-effects of smoke in cooking huts (e.g. Kallupatti, 1957;

Chrenko, 1967-8) is the major rationale given for promoting smokeless 

stoves. Siwatibau (1981:77) argues that smokeless stoves should be 

introduced on grounds of improving health alone, even if this means an 
increase in firewood consumption. The evidence relating cooking with 

traditional stoves and smoke induced diseases, as well rural womens 

perceptions of smoke in the kitchen are considered below.

Clifford and Beecher (1964:25) report that 85 cases of primary malignan

cy of the nasopharynx were admitted to hospital from all over Kenya in 4 

years (1959-1961). In this study, more men were treated at hospital for 

nasopharyngeal cancer than women - this may have arisen because women 

were less likely to go to hospital than men. To explain the spatial
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distribution of cases of "nasopharyngeal carcinoma", two possible aetio- 

logical (ie causal) factors - environmental and hormonal - were 
suggested :

(i) In terms of environmental factors,

"the disease occurs in areas above 2000 feet in 

altitude, with an annual rainfall of over 20 inches 

... these are also areas of greatest population. The 

African population in these areas live in small ill- 

ventilated huts constructed of mud and wattle with a 

grass thatched roof without a chimney. The disease 

is not evident in the Coast and Northern Province 

which are dry and warm and cooking is generally done 

outside, in contrast to the colder and higher areas 

(where the disease occurs) where there is a cooking

fire in the hut most of the day" (Clifford and 
Beecher, 1964:40).

Hoffmann and Wynder (1972) reach similar conclusions regarding the 

different environmental conditions of villagers living in the mountains 
and coastal regions of Kenya,

"the mountain tribes live in a cold rainy climate and 

remain in their very poorly ventilated dwellings 

during large parts of the day. The huts have only 

one small door and no windows. They are constantly 

heated by an open wood and cowdung fire. The 

analysis of indoor air for (two carcinogens) BaP 

(benzo[a]pyrene), and BaA (benzo[a]anthracene) and the
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irritating phenols and volatile acids revealed the 

highest air pollution density so far recorded."

(Hoffmann and Wynder, 1972:11-12).

It was noted that the disease occurred especially in areas of Kenya 

where 'exotic trees (eucalyptus and wattle) and the indigeneous acacias, 

which belong to the same Mimosa family as wattle are used to provide 

firewood" (Clifford and Beecher, 1964).

(ii) Comparing the sex and racial incidence with other studies addition

ally suggested a hormonal link (Clifford and Beecher, 1964:42).

Results (reported by Siwatibau (1981:71)) from a survey of one town by 

the Fijian Medical department showed that Fijians had a higher incidence 

of trachoma (ie inflamed granulation of the eyes) than Indians: 30% of 

all Fijians surveyed had trachoma, compared with 16% of all Indians 

surveyed. Siwatibau (1981:71) comments that this may be a result of 

Fijians sleeping in the room where cooking is done.

A number of negative comments have been made about smoke from tradition

al stoves by women doing the cooking. Martin (1979) reports that women 

in Ghana complain that smoke flavours the soup they are cooking. In 

Fiji, more than three-quarters of the women interviewed in a rural 

energy survey complained about eye irritation due to smoke (Siwatibau, 

1981: 71). One reason given by rural women in Zimbabwe for changing 

from their traditional fireplace, was that the new stove produced much 

less smoke (see Chapter 6, Gill, I983).

However, smoke from stoves is not universally regarded as a problem for 

a number of reasons. Villagers surveyed in Sri Lanka (Howes ̂  al.
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1983) were not particularly concerned about smoke, since this escaped 

through the roof. In Guatemala, not all the villagers were worried

about smoke as it was traditionally used to cure meat (Evans, 1978) and

served to eliminate parasites from the ears of corn hung from the roof 
(Shaller and Shaller, 1979).

Smoke also acts as an insect repellent. In Fiji, fires are kept burning 

in areas with a high incidence of mosquitoes (Siwatibau, 1981:71). 

Moreover, the roofs of houses in rural areas are made using materials 

such as grass, leaves and crop residues. The smoke from the burning 

fuel tends to deter insects from the dwelling. In Gambia, the 

introduction of smokeless stoves led to the roofs of the buildings

collapsing (Joseph, 1980: pers comm). Since there was little smoke, the

insect population in these dwellings multiplied rapidly, ate the roofing 

material, and caused the roofs to collapse. Foster (1962:80-82) reports

similar experiences with the introduction of smokeless stoves in both 
Iran and India.

According to Joseph (1983: pers comm), users of smokeless stoves in 

Gambia, came up with an ingenious solution to this problem. During the 

initial stages of the cooking process, the covers of the pot holders on 

the stove were removed, causing smoke to fill the dwelling, and thus 
repelling insects.

The evidence to support the view that women in developing countries

would be healthier by working in a smoke-free environment is patchy.

Moreover, smoke that is produced is not always regarded as a problem, as

it may serve a useful purpose, for example, curing food and deterring 
insects.
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3-5 Types of Improved Stoves

A number of "improved" stove designs have been promoted in developing 

countries. These stoves have been made out a number of materials: mud 

stoves, ceramic stoves and cement (or brick) stoves, metal stoves and 

hybrid stoves (e.g. mud + metal) - this chapter deals in detail with mud 

and ceramic based stoves. Most interest has centred on the design, 

development, and dissemination of "improved" mud stoves. Interest in 

the early 1980’s shifted to "improved" ceramic stoves. These two stove 

types are considered below.

The following will show that attempts to achieve widespread adoption of 

"improved" mud designs have not been successful for a number of reasons. 

In many cases, "improved" mud stoves in the field, used more fuel than 

the traditional design. In some cases, this was a result of poor con

struction. Moreover, "improved" mud stoves which saved fuel initially, 

were reported to have rapidly deteriorated in performance over the 

following 6 to 9 months. In addition, improved mud stoves were charac

terized by a high labour cost, a low lifetime (due for example to the 

cracking of the stove body, erosion of the combustion chamber and con

necting channels), and poor construction (sometimes even by trained 

stove builders). Moreover, the large mass version of these stoves gave 

out very little space heat. Other reasons put forward to explain the 

failure of "improved" stove programmes are given in section 3.6.

3.5-1 "Improved" Mud Stoves

The earliest reported "improved" mud design was developed in India in 

1953 at the Hyderabad Engineering Research Laboratories (HEHL) - in the 

southern Indian state of Andhra Pradesh - by S.P. Raju (1957); this
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stove is known as the HERL ohulha. A number of other mud based designs 

appeared from 50»s onwards: the 'improved' Egyptian Stove (Theodorovic, 

1954), the Singer Stove in Indonesia (Singer, 196I), PRAI ohulha in 

India (Joseph et al, 1980), Lorena Stove first introduced into Guatemala 

(Evans, 1978), the "new Nepali Chulho" (R.E.G.A.S.T., 1979a; 1979b), and 

the Tungku Lowon introduced into both Indonesia and Sri Lanka in the 
early 1980»s (Soedjarwo, I982).

(a) The HERL Smokeless Chulha

Raju (1957) stressed the importance of using local resources (in terms 

of skills and materials) and traditional cooking practices in the design 
of the HERL chulha:

"the basic materials of the chulha should be earth

and earth products that can be fabricated by village

craftsmen or built by village women themselves ..

the general shape, method of feeding firewood and 

operation should be as little different as possible 

from what is already familiar to them" (Raju, 1957:

5).

A number of versions of the HERL chulha - having up to four pot holders

- were designed (Fig 3»l8)j each design had one pot hole reserved for

heating water. Women using the HERL chulha were reported to have saved 

between 20/6 and 40/6 of their previous fuel consumption (Raju, 1957:3) - 

though no data is given to substantiate these claims.

According to Raju (1957) this basic design had been taken up in 

Pakistan, Burma, Sri Lanka, Africa, Lebanon, Iraq and the West Indies.
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However, to date, very little has come of these attempts (Joseph et al, 
1980).

Ohlsson and Purvis (1972:1) report that women extension workers, in the 

state of Perak (in Malaysia), experimented with "Indian type" smokeless 

stoves. It was found that these stoves were too heavy to be installed 

on the wooden floor of Malaysian village homes.

Raju (1953) claimed that the HERL chulha used considerably less fuel 

than the traditional Indian design. Geller (1981) reports on WBT’s and 

SFC (specific fuel consumption) tests conducted on the HERL chulha and 

the traditional 3-pot Indian chulha (used in Ungra region). For both 

types of test, the traditional design was more efficient: the PHU for 
the HERL chulha was slightly lower than the traditional design; the HERL 

chulha also used nearly one-fifth more firewood than the traditional 
chulha for the same cooking task.

According to Siwatibau (1981), an Indian chulha (HERL chulha design) is 

well known in Fiji: a trial introduction in a whole village by the 

Ministry for Rural Development showed that the average lifetime was 

around 3 years. Stove users reported (Bale, 1978) that the Indian 

chulha developed cracks which were difficult to repair. Consequently, 

villagers "reverted to previous devices". The reason given by Siwatibau 

(I98I: 76) is that the villagers could not replace the Indian chulha's 

"easily", though she also comments that the Indian chulha continues to 
spread.

Siwatibau (1981) reports on cooking tests on the two-stone fireplace 

(see section 3.1.1), the Indian HERL chulha, and Ghanain smokeless stove 

(Fig 3.19); Siwatibau refers to the two-stone fireplace as an "open
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fireplace". Five different type of meals were cooked: two types of 

Chinese meal, two types of Indian meal, and one Fijian meal. The time 

taken and the firewood consumption were recorded. It was found that the 

traditional two-stone fireplace used about half the firewood required 

with the Indian chulha in four types of meal. There was no difference 

in firewood consumption for the remaining meal type. Cooking with the 

two-stone fireplace was much faster for all the meals.

Data on firewood consumption gathered in the field was at variance with 

these findings: a four year old Indian HERL chulah used in one the

villages surveyed by Siwatibau (1981: 76) was badly cracked, - the owner 

complained that the stove used "too much fuel". Yet, it used less 

firewood than two-stone fireplaces used by the other villagers: the mean 

mass of firewood (oven dry equivalent) used per person per day was 

1.28kg and 1.57kg for the Indian chulha and two-stone fireplace 
respectively.

Siwatibau (1981: 76) attributes these divergent results, (between the 

HERL chulah tested in the field and laboratory), to differences in the 

dimensions of the firebox and smoke channel. This is supported by the 

work of Joseph and Loose (1982) who found that the shape and dimensions 

of the combustion chamber critically affected the PHU of a 2-hole 

"improved" ceramic stove (see Tungku Lowon below).

(b) The "Improved" Egyptian Stove

In the early 1950»s, Theodorovic (195%) adapted the improved stove 

design by Raju (1953) to design a two pot smokeless version (Fig 3.20) 
for use in Egypt.
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Theodorovic (1954) carried out a total of 10 WBT's using corn stalks and 

husks as a fuel. These involved heating 1 litre of water in each of two 

pots (made of tinned brass).

In the first five WBT's the test was terminated when water in the pot 

directly above the combustion chamber reached boiling point. At this 

point the temperature in the second pot was recorded. The time taken to 

bring the water in the first pot to boiling point in the traditional and 

'improved' versions was 8.4 and 11.7 minutes, respectively. The PHU's 

(excluding evaporated water) were 4.4̂  for the traditional stove and 5% 
for the "improved" version.

In the next five WBT's, the test was continued until the water in both 

pots had reached boiling point. With the traditional design, the 

average time taken for the water in the first and second pot to reach 

boiling point was 5 and 9 minutes respectively, and 1.290kg of crop 

residues were used. Using the 'improved' design, the average time for 

the water in the first and second pot to reach boiling point was 8.5 and 

11 minutes respectively. In the process 0.930 kg of crop residues were 
consumed.

On the basis of these results, Theodorovic concluded that the only 

disadvantage of the 'improved* stove was that it took longer to heat 

water, but had several advantages, principally a lower fuel consumption 

and a smoke-free environment. As will be shown later villagers in a 

number of developing countries regard the ability to cook quickly as 

being important (and in some cases more important than fuel economy).

No further information has been found on the 'improved' Egyptian stove, 

and the degree of dissemination of this stove is not known.
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(c) Singer Stove

Work on "improved stoves" was carried out in the late 50’s by Hans 

Singer, at the Regional Housing Centre, Bandung, in Indonesia (Foley and 

Moss, 1983:104). Singer (1961) proposed three models of "improved" mud 

stoves (often referred to as "Singer stoves"). Two of the models had 3

pot holes, however, the pot holes in one were aligned along a straight

flue (Fig 3.21), whilst the other had an "L" shaped flue (Fig 3.22).

All the models vented the smoke through a chimney. The third model was 

designed for smaller families and had two pot holes. All the stoves 

could be built as either "high" or "low" versions. The height of the 

"low" and "high" versions was about 30cm and 70cm respectively. Singer 

(1961) gives the results of WBT's on these "improved" stoves: PHU's 

between 20% and 30% were reported. To date however, no other work has 

been able to confirm these data, nor the extent to which these stoves

have been disseminated in Indonesia.

(d) Ghanaian Smokeless Stove

In Ghana, smokeless stoves made from locally available material (Fig 

3.19) claiming to use only half the fuel of traditional stoves were 

introduced in the late '60»s. According to Hoskins (1979:33), the stove 

design was taken from an F.A.O. report, and recommended by the Canadian 

Hunger Foundation and the Brace Research Institute. The programme was 

abandoned in the mid '70's when it was found that women were no longer 

using many of the stoves (Hoskins, 1979:33). It was discovered that 

when the covers were not on the unused pot holders the stove consumed 

even more fuel than the traditional stoves (Martin, 1979). People soon 

switched back to the stoves they had used before. Other reasons given 

for the rejection of the 'improved' stoves were that the pots did not
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fit the cookers, larger pieces of wood were needed for the stove than 

could be found locally, and the surface of the stove was too high for 

stirring the large pots for their traditional dish (Hoskins, 1979:34). 

These latter problems might have been avoided if the recipients of the 

technology had been involved in the design process (Martin, 1979:77).

(e) Lorena Stove

Probably the best known "improved" mud stove is the Lorena stove. This 

stove was developed in Guatemala in the mid 1970»s. A number of 

variations of the basic design are given in literature on "improved" 

stoves (e.g. Joseph et aJL, 1980; De Lepeleire et al, 1981; T.E.R.I., 
1982).

The Lorena stove - "Lorena" comes the Spanish, "lodo" (mud) and "arena" 

(sand) - is made out of adobe, (a mixture of sand and clay), and does 

not need firing. To construct the stove, a large base of adobe is used, 

upon which the wet sand/clay mixture is heaped, and evened out to form a 

cylindrical shape, lying on one face. When this cylinder is dry enough, 

the pot holders, combustion chamber, and interconnecting channels are 

carved out.

The Lorena stove originated in Latin America: a firewood shortage had 

arisen in Guatemela in 1976, owing to the subsequent timber requirements 

for rebuilding the houses following a major earthquake. The Lorena 

stove (Fig 3.23) was developed by the Choqui Experimental Station in 

Guatemala in response to this firewood shortage. By 1984, between 5,000 

and 7,000 Lorena stoves were estimated to be in use in Guatemala 

(Erlbeck, 1984:6). Its designers claimed that it was smokeless and 

reduced firewood consumption by half (Evans and Wharton, 1977:8). How-
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Fig 3.23 Lorena stove
(De Lepeleire et al, 1981)
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ever, no evidence is given to support the latter claim.

Although villagers in Guatemala liked the height, and cleanliness of the 

Lorena stove (Shaller and Shaller, 1979) there were problems in

dissemination. These are outlined in section 3.6.

Erlbeck (1984:6) comments that whilst the Lorena stove was generally 

acceptable in the highlands, cases of rejection were more widespread in 

the coastal regions of Guatemala. No reason is given, fîaceres (1983: 

cited in Foley and Moss, 1983), estimates that by 1983, around 6000 

Lorena stoves had been built in Guatemala.

In Guatemala, very few people using the Lorena stove realized the

savings in firewood that had been claimed by the designers (Shaller and 

Shaller, 1979) and in some cases, there was no change in firewood 

consumption.

Over 800 Lorena type stoves were built in Indonesia over a 4 year period 

(1978-1981). This stove programme was halted when it was discovered 

that the majority of these stoves were no more efficient than the 

traditional local stove (Soedjarwo, 1982:4). Lorena type stoves 

introduced into Malawi were similarly found to have a high level of 

firewood consumption (French, 1984) and their dissemination was 

discontinued in I98I.

Attempts to disseminate the Lorena stove into a number of other 

countries - Ecuador (Erlbeck, 1984:6), Sri Lanka (Howes et al, I983) and 

Zimbabwe (McGarry, I98I: pers comm) - have met with little success.

In August 1983, the Government of Guatemala set up the Ministry of
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Energy and Mines with a department responsible for renewable energy, and 

which in association with about 20 Non-Governmental Organizations 

(NGO’s) was planning to distribute 300,000 "fuel saving stoves"

(Erlbeck, 1984:7). The stove type or the target population is not 

known.

(f) Ban-ak-Suuf Cookstoves

Lorena stove building techniques were used in the Senegelese "Ban-ak- 

Suuf" stove programme, which was initiated in 1980. Ban ak Suuf means 

clay and sand in Wolof (Senegalese). The national stove programme was 

carried out by the Centre for Study and Research on Renewable Energy 

(GERER) at the University of Dakar. Initially large Lorena stoves were 

designed but these proved to be unsuitable. Smaller models, designed 

with the help of local people were made (Foley and Moss, 1983:109). The 

most popular type of stove was. small chimneyless design known as the 

"Louga" (Fig 3.24). According to Foley and Moss (1983:109) Louga stoves 

are mainly designed and constructed by women. Though, Gern et al 

(1981:34) had earlier commented that whilst women were considered to be 

the best extension agents in the stove programme, there was "little 

deliberate attention in involving women.

The two main problems reported with the Ban ak Suuf construction 

material have been crumbling (especially on getting wet) and cracking. 

After a year or so, many stoves had "almost crumbled away" (Foley and 

Moss, 1983:109). In a survey carried out by Gern et ^  (1981:44) it was 

found that cracks (due to thermal expansion) had developed in almost all 

Louga stoves in use. The cracks usually developed on the firebox 

bridge, though sometimes in the connecting bridge (Fig 3.24). However, 

users continued to use the stoves (Gern et al, 1981:44).
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(a) One
(Gern, 1981)
One-pot Louga stovepot

7m?̂r7imjrp.
Cdugs SriCVlU.N

(b) 2 pot Louga stove
(TERI, 1982)

Cracks in one—pot Louga stove 
(Gern, 1981)

Fig 3.24
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By 1982, 5000 stoves had been built, of which one-third had chimneys. 

Whilst 65% of the stoves were found to in regular use, one-fifth of 

these stoves were considered by a (CERER and Peace Corps) survey team to 

be in a very poor condition (Foley and Moss, 1983:111).

(g) The "Economical" *U* Chulha*s

Salariya (1978, I983) gives the results of WBT’s on three types of 

’’economical” ’U’ chulha’s (Fig 3.25), all of which are modifications of 

the traditional Indian ’U’ chulha. One is a traditional ’U’ chulha with 

the addition of a grate, another design has a water jacket around the 

mud walls of the traditional design, and the third design incorporates 

both a water jacket and a grate. These are reported to have PHU’s 

(based on WBT’s) of 15.8%, 18.9% and 23.2% respectively. There is 

little information available on the tests conducted or dissemination 

results.

(h) New Nepali Chulho

In response to both the smokiness and (perceived) ’’low efficiency" of 

traditional cooking methods used in Nepal, (e.g. 3-stone fireplace, iron 

tripod, or mud stove), the Research Centre for Applied Science and 

Technology (RECAST) designed the new Nepali Chulho. This stove was 

based on the HERL chulha and the Lorena stove (RECAST, 1979a). It was 

claimed that Chulho used less than half the fuel of traditional Nepalese 

stoves (RECAST, 1979a). However, no evidence is given to substantiate 

this claim.

Two versions (with differing pot hole configurations and masses) (Fig 

3.26 and 3.27) of the Chulho were designed (RECAST, 1979b): a low mass
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(all dimensions in cm)

(a) Chulha with grate

cU.

(b) Chulha with water jacket

(c) Chulha with grate and water jacket 
Fig 3.25 "Economical" chulhas (Salariya, 1978)
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me ta l  grate

slit for d a m p e r

chimney

L/

Fig 3.26 Nepali chulha I 
(RECAST, 1979b)

sl i t  for d a m p e r

m et a l  g r a t e ------

top

Fig 3.27 Nepali chulha II 
(RECAST, 1979b)
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and high mass version. The higher mass stove is recommended for "cold 

climates" where space heat was required, and the lower mass stove for 

"moderate climates" (RECAST, 1979b).

In the initial field trials 7 Chulho's were installed in schools "where 

formerly there were no traditional stoves at all" - each school catering 

for between 80 and 120 pupils (RECAST, 1979b). The results of these 

trials are not given.

No additional information has been obtained from RECAST in Nepal.

(i) "Tungku Lowon" stove

The Tungku Lowon stove was designed in Indonesia by Dian Desa when the 

shortcomings of the Lorena type stoves (promoted between 1978 and 1981) 

were realized. This stove is a two-pot chimneyless design based on a 

traditional Indonesian stove and has been introduced into both Indonesia 

and Sri Lanka in 1981 (Howes et al, 1983). Hot gases generated in the 

combustion chamber heat the pot on the first pot holder, and are chan

nelled to where the second pot sits, by a sloping channel (Fig 3.28).

The second pot is slightly higher than the first pot.

WBT’s (for cooking times of DPI, BP2 and BP2S30) using 2 aluminium pots 

each containing 2 litres of water have been carried out by Dian Desa in 

Indonesia. ITDG carried out additional tests on a modified version of 

this stove. WBT’s and "cooking tests" were carried out on both a 

traditional Sri Lankan stove and the Tungku Lowon at the Panwila Test 

Centre in Sri Lanka; the cooking tests involved village women cooking 

breakfast, lunch and heating "1 pot of water" each day for a period of 4 

days. The results for all the above tests are reported in Joseph and
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Fig 3-28 Tungku Lowon
(Joseph et al, 1980)
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Loose (1982), and are summarized below.

A lot of smoke was produced on lighting the stove. ITDG found that the 

internal dimensions of the stove had a major effect on both the amount 

of smoke produced and the firewood consumption. Increasing the slope of 

the channel connecting the first and second pot holders (Fig 3*28) 

decreased both the amount of smoke and the time to boil but increased 

the amount of firewood required. The time taken to boil the water in 

the first pot, varied between 12 and 32 minutes. PHU2 was 20/5 at BP1 

and 22/5 at BP2; evaporative losses were between 1-2/5 at BP1 and 4% at 

BP2.

In the WBT's carried out by Dian Desa, PHU's around 23^ were obtained at 

BP1 and 22/5 at BP2. BP1 was 15 minutes, whilst an additional 9 minutes 

were taken for the water in the second pot to reach boiling point.

In Sri Lanka, 10 WBT's were carried out on the Tunkgu Lowon and a 

further 8 tests on the traditional Sri Lankan 'U' shaped stove. The 

results for for these tests are as follows: for the traditional stove 

the "effective" mass of wood (ie energy in the charcoal left at the end 

of test not neglected), used was between 0.84 kg and 1.35kg, the time to 

boil varied between 19 and 40 minutes, and PHU2 between 10/5 and 17/5; the 

mean value of PHU2 and time to boil was 13.7% (s.d. 1.8/5) and 31 minutes 

respectively.

For the Tunkgu Lowon, the range of firewood used was much smaller:

0.69kg to 0.90kg, and the values of PHU2 (16/5 - 22%) were higher than 

for the traditional Sri Lankan stove. Joseph and Loose (1982:20) 

conclude that skills to use the stove efficiently are not so crucial 

with the Tungku Lowon compared with the traditional Sri Lankan design.
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Two series of cooking tests were also carried out. In the first series 

of tests, the Tungku Lowon used around 30% less firewood (statistical 

significance p<0.05) than the traditional design. However, the firebox 

of the Tungku Lowon (firebox) had deteriorated by the second series of 

tests. This was caused by the "differential heating and cooling" and 

mechanical erosion of the "door" through which the firewood was inserted 

(Joseph and Loose, 1982:19). As a result there was no significant 

difference in fuel consumption between the traditional stove and the 

Tungku Lowon (Joseph and Loose, 1982:21).

Approximately 800 Tungku Lowon type stoves had been built in Sri Lanka 

over a period of 8 months, however, about two-fifths of these had been 

built inaccurately, and were not properly maintained or repaired 

(Joseph, 1983:15). In addition, the performance of these stoves 

decreased after about 6 and 9 months. As a result, production shifted 

to the ceramic based stoves (see section 3*5.2).

(j) "Improved" Malawi Mud Stoves

The Energy Studies Unit (E.S.U.) in Malawi became involved in the design 

and testing of mudstoves for use in rural areas towards the end of 1981. 

The findings reported below are taken from French (1984). The E.S.U. in 

association with the Farm Home Assistants (F.H.A.) of the Natural 

Resources College, considered three "improved" designs (Fig 3.29) for 

dissemination. Laboratory tests were carried out to measure firewood 

consumption and time to cook ’standard’ Malawian meals (Table 3*2).

In March 1983, a total of 18 of these 3 types of stove were installed in 

3 villages (ie 6 stoves in each village). Two months later women were 

asked to comment on the fuel consumption and speed of cooking of the
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Fig 3.29 Malawian mud stoves 
(French, 1984)



Table 3.2

Laboratory tests on Malawian "improved" stoves and 3—stone fireplace
(French, 1984)

Meal Stove A
nsima + relish
- firewood used (kg) 0.40
- cooking time (mins) 32
consumption relative 48
to 3-Stones (%)

Stove Type
Stove B Stove C
0.41
46
49

0.51
31
61

3-Stones
0.84
50
100

Beans
- firewood used (kg) 1.69
- cooking time (mins) 165
Consumption relative 51
to 3-Stones (%)

1.75
183
53

2.02
168
61

3.33
164
100

Table 3-3
Cooking Tests on "improved" stoves in Malawi in the Field

(French, 1984)

Meal Stove A
nsima + relish
- firewood used (kg) 1.06
- cooking time (mins) 56
consumption relative 49
to 3-Stones (%)

Stove B

Stove Type
3-Stones 
(outside)

2 .18 1.37
54 ’ 81
100 90

3-Stones
(inside)
1.5269
100

Beans
- firewood used (kg) 2.84
- cooking time (mins) 148
Consumption relative 54
to 3-Stones (%)

5.24
147
100

2.70
15083

3.24
145
100
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"improved" stoves and their traditional 3-stones. All the women report

ed firewood consumption had been halved and cooking could be done more 

quickly.

The survey team found that women using stove type A had moved their 3- 

stones outside, as there was insufficient room for both in the cooking 

hut. Tests on standard meals carried out in the field showed that 

mudstove type A (inside the cooking hut) used about half the firewood of 

the 3-stones outside the cooking hut (Table 3.3). These data were 

comparable to the laboratory tests conducted earlier. However, the 

cooking time was the same for both types of cooking stove. In earlier 

tests mudstove A cooked nsima and relish more quickly (32 minutes) than 

the 3-stones (50 minutes).

Firewood savings with mudstove B relative to 3-stones inside the cooking 

hut were much less (10% and 17% savings to cook nsima and relish, and 

beans respectively). French (1984) attributes the lower efficiencies of 

the 3-stones outside the cooking hut (see above) to the effect of 

breezes.

Although more efficient in earlier laboratory tests, in the field tests, 

mudstove type C used more fuel than the 3-stone fireplace .

In November of the same year, the villages were visited again, and it 

was found that 6 of the 18 stoves were no longer in use. Moreover, 

cooking was not being done on the remaining stoves in the most efficient 

way. For example, in some cases, stones had been placed on top of the 

stove to support the pot.

French (1984) concludes that savings with "improved stoves" are much
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smaller in the field than in the laboratory, that the women's perception 

of the relative speed and firewood consumption of the "improved" mud 

stoves and the 3-stone fireplace were inaccurate.

(k) GS Chulha

The OS chulha (Fig 3«30) is named after Cyan Sagar (1980) and based on 

the HERL chulha.

Wood (1981) conducted WBT's on a modified version of the GS chulha: 2 

pots each containing 3 litres of water were heated. When the water in 

the pot above the firebox reached boiling point, a record was made of 

the temperature of the water, and the weight of both the pots and wood; 

the mass of the charcoal was estimated at this stage. The pots were 

returned to the stove and heating continued for another 30 minutes, 

after which the measurements were repeated. PHU's were calculated at 

BP1 and BP 1330.

Field tests using the Kaya test (see section 3*3.4) were carried out for 

"low income" squatter settlements on the outskirts of Ougadougou,

Burkina Faso (formerly Upper Volta). A control group of 10 families 

used the traditional 3-stone fireplace throughout the survey period.

This group was found used 6% less firewood (on average) in the second 

week of the survey. Data from 7 families using the modified GS Stove 

used (on average) 55% less firewood in the second week of the survey 

compared to the first week when they were using the traditional open 

fire.

However, as fuel savings with other "improved" mud stoves have been 

observed to fall significantly over time, e.g. 6 - 9  months (see
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"Improved" Malawi Mud Stoves, and "Tungku Lowon"), it is likely that 

these levels of fuel saving would persist only over the short term.

3-5.2 "Improved" Ceramic Stoves

At temperatures above M50°C, clay loses it chemically combined water and 

becomes similar to a moderately hard stone (Scott, 1955). Ceramic is a 

term used to describe clay that has undergone this heat treatment (or 

firing). Although the earliest ceramic stove was the Indian Magan 

Chulha, designed in the early 1950’s, ceramic based stoves appear to 

have been neglected till the late 1970»s. Recent designs are the 

"Tandoor Stove", "TERl/lTDG stove", "Tungwu Sae stove", and the "new 

Keren stove". These stoves are also known as "ceramic insert" or 

"pottery liner" stoves.

(a) Magan Chulha

The earliest ceramic based stove design is the Magan Chulha, designed in 

India by the Khadi Village Industries Association (K.V.l.C.) in the 

early 1950’s. This design was modified by Kallipatti (1957) to produce 

a portable (Fig 3-31) and fixed (Fig 3-32) versions. The fixed version 

simply had pottery liners which were surrounded by mud, to act as a 

thermal insulator. These designs were planned to replace the tradition

al one-pot and 2-pot stoves. The primary objective of the Magan chulha 

was to remove smoke from the kitchen, though it was claimed that this 

chulha also reduced firewood consumption by about 30^ and cooking could 

be done more quickly. However, no test data was given. An additional 

positive feature was that building the chulha would provide employment 

for rural potters.
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PHU’S around 1% were obtained in WBT's on a portable 2-pot version of 
the Magan chulha, conducted by ITDG (Shanahan, I98O). PHU’s of \2% have 
been reported in subsequent tests (Joseph and Shanahan, 1980b). It was 

later found that the Magan chulha had not been correctly set up, and 

PHU’s between 16% and 22% have been obtained (Joseph and Loose, 1982).

(b) Tandoor Stove

The Tandoor stove (Fig 3.33) was designed by ITDG in 1978 (Joseph et al, 

1980), and modified in accordance with feedback from M. Garg (ATDA) to 

ensure that the stove was suitable for cooking pratices in northern 

India. WBT’s were conducted using 2 aluminium pots (each containing 2 

litres of water). PHU’s ranged between 14 — I8%j the water in the 

second pot reached a maximum of 80°C. The lifetime of the Tandoor stove 

is estimated to be more than 2 years.

(c) TERI/ITDG

The TERI/ITDG stove (Fig 3«34) is a modification of a stove designed by 

the Tata Energy Research Station in I98O (Joseph et 198O). WBT’s by 

ITDG consisted of heating 2 litres of water in each of two aluminium 

pots (Joseph et ê , 1980:38). A combined PHU of 20% was obtained in 

bringing the water in the first pot to boiling point and raising the 

temperature of the water in the second pot to 66°C,. The lifetime of 

the stove is estimated to be 2 years.

(d) Tungku Sae

The Tungku Sae (Fig 3.35) was developed by Dian Desa in 198O, based on 

the traditional Indonesian stove and the Tandoor stove (Joseph et al,
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1980: 20-22). Five WBT’s carried out at Dian Desa in which 2 litres of 

water in each of two aluminium pots, were heated. PHU’s in the range 

16-19% were obtained in bringing the water in the first pot to boiling 

point.

(e) the *new* Keren stove

The Keren stove (Fig 3.36) is widely used for fast cooking (usually for 

boiling water or frying) in central Java. WBT’s conducted by ITDG 

(Joseph et al, 1980) gave PHU’s which were not significantly different 

compared to the traditional design. The estimated lifetime of the 

improved version is 2 years.

3.5.3 Improved stoves; an assessment

Fuel efficient cooking stoves require the following: all the fuel to 

undergo combustion, a maximisation of the heat transfer to the cooking 

vessel, minimisation of the thermal losses from the cooking pot, and 

controllability of the heat output of the burning fuel (de Lepeleire et 

al, 1981; Dunn, 1985).

Improved stoves can conveniently be grouped into 2 categories: 1-pot and 

multi-pot designs (Dunn, 1985). In 1-pot designs a cooking vessel is 

placed directly over the burning fuel - the hot gases liberated from the 

fuel flow past the bottom and sides of the cooking vessel and 

subsequently escape. Heat is transferred from the flames by both 

radiation and convection. In multi-pot stoves these hot gases, after 

hitting the first cooking vessel, are channelled to other pots. With 

these latter designs a chimney is sometimes added to increase the draft 

and remove smoke. In both cases the heat transfer is sensitive to the
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relative positioning of the fuelbed and pot.

The heat transfer from the hot gases to the cooking pot can be increased 

by having the pot lower in the stove body. Heat losses from the pan can 

be reduced by insulation or by using a lid. The burning rate of the 

fire can be controlled by moving the wood in or out of the fire, or 

through the use of dampers.

The performance of various improved stoves within these two categories 

will be similar. Any difference in fuel economy will be due to 

variations in critical parameters such as the pot/fuelbed distance (see 

Chapter 5; Bussmann et 1983) or the velocity of the hot gases (de 

Lelpeleire et 1981). Fuel consumption will also depend on the skill 

of the stove user and both the size and type of fuel used in the tests.

A potential adopter of a new/improved stove is likely to be interested 

in a stove which is simple to use, fits in with traditional cooking 

practices, has a low cost (either in monetary terms or construction 

time), easy to maintain, has a low fuel cost and produces low levels of 

smoke if used in an enclosed space (Dunn, 1985). A summary of such 

features are given for stoves promoted as being both smokeless and fuel 

efficient (Table 3.4) and stoves that were fuel efficient (Table 3.5). 

Detailed comments about each stove are given in section 3.5.1 and 3.5.2.

Nearly all the stoves promoted as being both fuel efficient and 

smokeless, were constructed from mud (unfired clay) and were not 

generally portable (Table 3.4). Most of these stoves had dampers (to 

control the heat output of the burning fuel). In effect, they were not 

simple to use and the cook had to be taught how to use the dampers. The 

designers of most of these stoves claimed fuel savings of around 50%

99



PO
0)

ï

§
g

s
0  2
1(ga ”n  -H<U nJ
0) o 

§  £

o o4J (w
w m
L rol §

•H »Ho 4J
0) o  T3 <D
L

•H O) 
O O 
Xi m 
4J '

ÈI
g

g
O
* )
CO

G
G 4Z
cd rH C--bO 3 LO
G 4Z cr\

ü

G
G 0
0 > o
G O
O 45 CT»

mJ «

•H G
rH -G
G rH CTi
a 3 b-
0 jG cr>
S ü

I «.I IO co

g
oco 4J

ü  «

L  CO 
M >I I
I  S
I
il
I ®
4J OCO a

ïi
0)a

4J

g
4J
tO

08È
Xi

1

w
c.
JZ
-=r o  

I m  
(\j / \

ni
• o

m  c  tn

m cd 
• • o

c  c  m

CM • • . .
G G G G1

cr G G G G

•o
a  o  >>
c  Î-. cd co
o  -i-l r—I d)
C Cm O >» OJ

U p
co o  o >-<
<u o  g>, r- C\j 6

0 î- 0
G G G W TO O O P

O 0 o 3 O O O gG G G >> G CM E G CM G CM CM E

.
G G G w G TO W G G

0 3 0 OG G G >> G CM E >> G G G r o

o
VO
(0\ 0

G G G G G W• O O 00 G G in G G G >ï
•o

o 3
C CM 6

ro • •
m  (d (d 
C7> • • o  
r -  c  c  ro

IT> G G W G1 0
=T G G >. G

r o
m G G G G G WCT» O 0G G ir> G G G >>

T3i
X5
3
E

ST • •
OO (d (d

C c  m

Z f . .
co (d (d E
CTi .  .  ü. - C G C

o
in

o
in

C
bO
•H
W
0  1*

TO 0B
Cm •HO 43
G c
G o
0 •H>> 4-3O
• «H 3

X s_. GO 43
G  43 W
ex CO Cex o O
G o o

•OI
td
fH
o W
M L  bO 0) 
G G 
•H hO 
>  -H 
Cd CO 
CO 0)

h ’ ’
3  -û 
k

d, ^
m X  

(d
4J H

g z
d

bO
C
•H
y i§3
G
*r4

X
CO (d 
hO H

1 “<d
co
H  ?
<u o3 Cm 
d,

CO3
a i s

■ S 3
cd a  
co -H

(w
I—I
G G
a - "
Cm  o

o  >
G

r H  0) 
0  CO 
>  JQ 0 O

bO
C
•H
C

•H
n) G)a  g

'n  4J 0 (0 
CO
3  0  

WS =
■ o S0
4J t3 
(d 0  
ü  G 
•H ‘H

G 0  
8

• 0
0  C T3 
• O 3  

C C E

• 0
0  C T3 
• O 3  

C C E

0
O
■H
X
O
S
a  co
G 0  c  

•H a  o  
G *H 

co rt 4-> 0*0 0 
0  3

r H  Cm

O
Cd o  

o  • o o
c  c  c  T- ro

o
00 G G G G W G TOco\ • O 0 3 O <X>T- G m G G G >> G E G V

w
G

TO m O
• b— ro

vo G -=r 1 1 G G W TO Go • 1 o o 0 O 3 OG rOMO CM G G >> G T- E G e:

o
o  ro 
O  I 
T- CM

0  O
o  • o  o  c  c  c ro CM

o  ^  
o  o  ir> I 
C ro c  r -  CM

m  cd 
o  » o  •
c  o  c  c

uo cd 0 * 0 *
c  o  c  c  CM

2
Cd

g

I
a
•H

0 O 0 0 y in X X 
G 
OG <3

CO S5 O
Cd cd

co 
G 0 

•O 
r H

ê
X

•a r-. o
0  0  bO ex 
4J H  ^
Cd X  '—•' Cm
G rt o 
•H JJ co 
4J G CO •

a a s â

0>
o
4-5
W
O•H
E
0
G
0
O
0+5
Cd
o•H
G40
Cd
Cm
O
X

G0
4J
-P
O
ex
>>40
coG
3
O

JZ
C

•H
0
E•H
4-5

C
O

•H
X
O
3G
4-5
CO
C
O
O

G0
S

•H
W0

TO

0>
O
4-5
W
> ,40
0
TO
Cd

0  E
f-4
-û  bO 
cd G

i-H ‘H 
•H ^
cd 0  
>  co 
0

rH 
4-5 0
§ 2
S 's

44 E
cd "H 
E cdG rH
0  ü  
CL,
C O 
•H C
1 I

>. (d E 
0  • ü

c  c

100



in
enIT3

GI
X

È
TJI
0100

I
C 0  
3  
H a
3%
Cg

oCO
CTv

b-

oOJ
G ro E I• I o \0
C CM C T-

m
G

TO0 0 >. 
C  G  G  O'Hi—I C  Cm  O

W  G  W  0 • 0 >> C >>CO CM

S B
K B
GI
. 10 0 C hd

CO
t—
c \

c c

0MO S G G G G G TO M G G1 0 O 3 0 0CM C G G G G G E >> G >) OO CM
TO0 0G E G G G G G G O G0 O O •H 1—1 O 5 CMG G CM G G G G Cm 0 G P G CM

G OO TOG 0 >,-G E 1 G G G 0 G G W O0 P" G •H 1—1 0 rs O OMO G G G G O Cm 0 >> P G en CM
GG-G O TOCM 0 0CM E 1 G G G G G W o W1 0 MO O O •H rH 0 3 0G G G G G <M 0 >> P >> ro r—

>•H o Ü
w » X
rH G V) 0 zr 0 0•H H "S a 00 G G G G G TOG G 3 >* crv O O O O 3p S B X G G O G MO G G G E0
TO W

3 0\ G
0 •S G b- -G en
G bO P (0\ CM 0
O ï G MO 1 G G G G TOE Q 1 O CM O 3Eh -3 0 G CM m CM G G G G E
O
Cm X G oO bO « MO 0in a 3 CO G G 1 G G G G G TO1 q (OA • O O 3ro m3 G G ro G G G G G E

in G o • o •
c  o  c  c

0  
01g

•H

H rt

s L•H O

co G G G G G Gco\ C  ■ 0r- G G G r- G G >>
CQ
0s cob- G G G G G Gcr» CM 0G G G r- G G >>

0 
(X 
>1 0  X

co wC G C
0
CX
>,0  4-3

Co wC G C

0S44 CO • • •
G  G  G  

o \  • • •' - C G C O

+  4-3 r-40 0 0
G  T3 0  0
O  3  -C 4-3 O
G  E  M  M  G

g
O
X
n
Cm
0s
G
3
P1

bO
•H
W0
TO
Cm
O
G
S
>)

g
•H 
X  
ü

• W 3  
X GO P
G P  tOa CO C a o o G o  U

TJIGrH W. 0 v-r
W G 
bO 0  
G G 
•H bO > "H 
G W W 0

a "

w
H

(G r-N
CQ X
4 . 3

g o
(G

g3
O
8 g

.sZ
X  

W G 
bD rH| 3
G
W
h 80 O

G
rH
G

•H

S  P  
C
'0 3
G 0  G 'H Cm

hO
G

•H
C

•H
G 0

«s
0  G 
G
3 0
o  § G 

G
O 0  C TO P a O

, "̂ 3Cm 0  O > 
. G rH 0  

0  G 
>  X0 om3

0 G 'H
P  TO G P  rH
G 0  TO ü G
0  G 3  -H
•H ’H Cm g  g
H  3  O P  0
a  cr 
B 0  • 
o  G o _
O  23 ü

G P
§ g

0
P

O 03 O o >P G co CM OPG
. 0G o •H

O o EG G GG0 G0 0G0 bOG P •H
O o G GG G CM 0 0•H TOG

X 0G >
Cm OG P

O o O GG G CM P >,G P0P 0P TOG O G
O o a 0 EG G CM rH>1 P bO

X G G
rH •HG •H >G G GG 3 > GG O GG -G rH0 P Q)

>> G O 3•H G Cm
0 G 0 G Cm
B G E O O
•H 0 •H •H
P TO P P E0 rH G •H
Ch O G E G
•H 40 O G 1—1f—1 •H O 0

P P Cm
TO O 0 G O0 0 bO a 3 •H G
P rH y G

40 Cm P 1 1G O G
•H P G G
P G G O to G EG O G o 0 0 • 0Ci3 a S 23 H: bd G G

101



but gave no field data to substantiate this belief. Moreover, a number 

of these stoves were not smokeless in practice (see section 3.6a).

From the mid 70’s attention shifted to designing and promoting stoves 

which were their designers claimed were fuel efficient (Table 3.5). A 
number of these stoves were made from fired clay and constructed by 

skilled potters in the space of a few hours. The time to build the 

fired clay stoves varies from 1 - 6 hours (Table 3.5), however, it is 
not clear why there should be such a wide variation in the construction 

time given that these stoves look remarkably similar. It is important 

to note however that for most of these stoves no claims of actual fuel 

savings are made.

3.6 Reasons for the "failure" of "Improved" Mud Stoves

"Improved" mud stove programmes in developing countries have failed to 

displace traditional designs to any extent. Various reasons have been 

put forward to explain this failure, and are considered below.

(a) "Improved" Mud Stoves did not Live Op to Expectations

"Improved" stoves were envisaged to reduce the time spent in firewood 

collection since the increased efficiency would reduce the demand for 

firewood. Not all "improved" mud designs were more efficient than 

traditional designs, moreover, stoves that did save firewood initially 

deteriorated very quickly over time.

One reason for the low efficiency of some of the "improved" stoves was 

poor or inaccurate construction. For example, a number of Lorena stoves 

in Indonesia were found to be constructed badly which increased their
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fuel consumption (Joseph, 1980). In Indonesia, Dian Desa found that the 

trained stove builders were unable to build Lorena-type stoves according 

to design or effectively train others (Soedjarwo, 1982). In Sri Lanka, 

Lorena stoves had a lower efficiency than the traditional stove, since 

only 2 pot holes out of the 4 were used in cooking (Howes et al,

1983:24)

In any case an increase in the end use efficiency of fuelwood, may not 

reduce firewood consumption by as much as expected, since villagers may 

become less careful in their use of fuel or expect higher living stan

dards. In the U.K., for example, higher insulation standards have led 

to higher house temperatures - as a result not all the potential energy 

savings have been realized (Chapman and Lowe, 1984).

More efficient stoves do not necessarily mean a fall in the time spent 

in collecting fuel, since fuel collection may be done in conjunction 

with other tasks (e.g. collecting fodder, cattle grazing, children 

playing). In addition, firewood collection is not universally regarded 

as a burden (see Chapter 2).

In other cases there were problems with smoke or the operation of the 

"improved" designs. For example, the "improved" stove promoted in Ghana 

gave off smoke when unused pot holders were not tightly covered (Martin,

1979). In Guatemala, some Lorena stoves created as much smoke as the 

traditional 3-stone fireplace (Shaller and Shaller, 1979). In the late 

1950’s, an ’improved’ stove (said to be able to burn fuel very 

efficiently) was introduced in South India. There were two problems 

with this stove. Firstly, flames would rise to a height of about one 

metre, during the initial stages of operation. Secondly, the stove 

required the wood fuel to be cut up into lengths six inches by one inch.
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which the wood splitters were not prepared to do (Rao, 1962:22).

(b) men control decision-making in the household

It is argued (e.g. Gamser, 1979; Agarwal, 1980:78; Norman, 1981:5) that 

men perceive little gain from expenditure on technology which benefits 

primarily women, and hence are reluctant to buy or build an 'improved* 

stove. Makhijani (1979) with reference to the HERL chulha contends that

"in India many have designed more efficient stoves
using local materials and traditional techniques but 

these have made little headway. I suspect that lack 

of effective extension or higher first cost are not 

the fundamental causes of the failure... The fact 

that women collect wood and cook and face the smokey 

fire from the traditional stove may have more to do 

with this failure" (Makhijani, 1979:30) (emphasis 

added)

However, another reason could be that the HERL chulha is less efficient 

than the traditional designs.

(c) The problems are perceived differently by the rural poor

"Improved" stove programmes have focussed on efficiency and venting 

smoke from the kitchen. As will become clear, high cooking efficiency 

is only one feature of stoves and is not necessarily the one considered 

the most desirable. The following will show that one of the major 

barriers is the multiple role of traditional stoves and fireplaces in 

societies in developing countries.
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"Improved" stove progammes emphasize savings of firewood and smoke-free 

kitchens, however, the rural poor perceive benefits differently. 

Villagers in Senegal (Evans, 1981: pers comm; Gern et al, 1981), Sri 

Lanka (Joseph, 1982: pers comm; Howes et 1983) and Indonesia 

(Joseph, I98O; Soedjarwo, 1982) were more concerned about being able to 

cook quickly than about fuel efficiency. The desirability of fast

cooking has also been reported for charcoal stoves in Tanzania----

(Sneiders, 1984:16) and solar cookers in Sudan (Brattle, 1983).

In other cases, access to clean water for villagers can have a much 

higher priority than fuel supplies (Thomson, I98O). Hoskins (1979:19) 

reports that villagers in Burkina Faso (formerly Upper Volta) were more 

concerned about the water supplies, provision of education for their 

children, health care, jobs for young adults, and enough food and income 

to keep their families together, than about forestry products. Joseph 

(1980:8) comments that firewood gathering was not a high priority to 

villagers surveyed in Indonesia. The villagers main concerns after 

water was increasing their income. Desai (c.1978) argues that this is 

because there is no firewood problem and that no studies show an energy 

shortage being perceived by the rural poor.

The following examines why the perceptions of the villagers are not the 

same as "improved" stove designers. It will be argued that traditional 

stoves and fireplaces have to be seen in the context of the rural energy 

system within which they are situated - this is illustrated below by 

examples from Sri Lanka (taken from Howes et al, 1983) and Bangladesh 

(taken from Islam, I98O).

In Sri Lanka, there is a strong association in the minds of the vil

lagers with installing a new stove and building a new kitchen, such that
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(in some cases) there has been resistance to making one of these changes 

without the other. Traditionally the kitchen has a roof made out of 

coconut leaves, whereby smoke can escape. Consequently, villagers do 

not regard smoke as a problem. With the higher income groups, the 

kitchen has a tiled roof, and smoke is a problem. In response to this, 

the stove (on an elevated platform) has a chimney.

In Bangladesh, constructing a below ground (or pit) chulha, increases 

the distance between the stove and the kitchen roof - thereby reducing 

the fire risk. This is important as the kitchen is usually made from 

wood and leaves (Islam, 1980:63). In addition, the pit can be used to 

store ash (Islam, 1980).

Moreover, traditional stoves and fireplaces in developing countries are 

not simply used for cooking but serve a number of practical and socio

cultural functions.

In practical terms, traditional stoves produce light, heat, and smoke 

all of which may be considered useful.

Heat from the fire can be used for cooking food, brewing beer, providing 

space heat and drying things (e.g. firewood, clothes, crop residues).

Traditional stoves and fireplaces are versatile. For example, the 3- 

stone fireplace and will perform reasonably well over a range of 

cooking activities (Dickinson, 1980: pers comm). The 3-stone fireplace 

in Zimbabwe is also used to support a large oil drum for brewing beer 

(see Chapter 6) as well as cooking and after a meal has been cooked, the 

hot ashes can be used to roast tubers, (lEA, 1979:16; Dunkerley, 

1979:359). A variety of cooking fuels can be used in the traditional

106



Sri Lankan stove. This is important since crop residues are used when 

available. However, crop residues are much more ’bulky’ than firewood; 

the design of stoves is such that the distance between the pot and 

hearth between 12 and 17cm. This distance is much larger than would be 

the case if only firewood was used, and the main aim of the cook was to 

minimize firewood consumption. Where there is a very high reliance on 

crop residues the gap may be even greater (e.g. 20 - 23cm). However, 

this large gap allows more crop residues to be placed in the hearth as 

well as reduce the amount of time spent in tending the fire.

Some of the various functions of stoves and fireplaces (in addition to 

cooking) are outlined below:

Utilization of Heat

In Guatemala, the major source of resistance (Shaller and Shaller, 1979) 

to the Lorena stove (purposely designed to have a high mass and low 

thermal conductivity), was that it gave out very little space heat.

Some were prepared to put up with this inconvenience, while others used 

the Lorena stove for cooking, and used the traditional 3-stone fireplace 

for the provision of heat - the latter practice defeating the primary 

objective of reducing firewood consumption!

In Fiji, fires are kept burning all night in the sleeping quarters of 

old people, and in parts where it is cold (Siwatibau, 1981:71).

In the traditional Fijian kitchen, the fireplace is at ground level 

above which a drying rack is built - this rack holds firewood and other 

items to be dried e.g. clothes and crops (Siwatibau, 1981:7). Public 

health authorities in Fiji advised women to raise this fireplace
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(0.6 -0.9m) above the ground and to place a broad chimney over the fire 

to vent the smoke; these are known as "Indian fireplaces" (Siwatibau, 

1981:71). However, it was no longer possible to place a drying rack 

above the fireplace, and the Indian fireplace was not used for drying. 

This modification may have increased firewood consumption since the 

drier the firewood, the less the heat energy lost in driving away the 

moisture.

Social and Cultural Functions

Traditional fireplaces may provide a social focus (Brokensha and Riley, 

1978; Stryker, 1982) as well as have a symbolic value. In Ghana, the 3- 

stone fireplace symbolises a united family (Martin, 1979).

In parts of Nepal, villagers believe that a spirit dwells in their 

traditional hearth. According to Bajrachaarya (quoted in Makhijani, 

1979:26) this is why the villagers do not use other "more efficient" 

stoves.

The manifold functions has been highlighted in Kenya, where

"a fire is regarded as being essential at night, to 

keep away hyenas and other wild animals, to deter 

thieves and intruders, and to serve as a focal point 

for a range of activités —  these included story

telling to children, conversations with visitors, or 

discussions with elders. For older people, the fire 

was especially important as a welcome source of 

warmth: although Mbere Division never registers 

really cold temperatures, the month of Githano (July)
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is always overcast and old people (presumably because 

older people feel the cold more) complain about the 

penetrating cold and damp mists." (Brokensha and 

Riley, 1978:2-3).

In these respects, the concept of high cooking efficiency has little 

value or meaning. The importance of the multiple functions of stoves 

and fireplaces is beginning to be recognized (e.g. O’Keefe, 1982; Foley 

and Moss, 1983).

However, whilst traditional stoves and fireplaces in developing 

countries perform a number of functions, this does not mean that vil

lagers are unwilling to change, provided there are perceived benefits. 

For example, in Ghana,

"Although the three-stone stove is used as a symbol

of a united family this emotional factor has not 

stopped women from using alternative fireplaces for 

specific purposes. They also alter the three-stone 

fireplace by putting rocks or earth between two of 

the stones when there is wind, etc. Women are 

willing to experiment with new stoves. If a stove 

really saves up to half the daily fuel or more, what 

woman would choose the extra hours of hauling wood?"

(Hoskins, 1979:41).

Whilst in this case, there does not seem any significant difference in a 

user modifying their stove or fireplace by the addition of a few other 

rocks or earth for stability or windy conditions, villagers in Zimbabwe 

have spontaneously transferred from the 3-stone fireplace to stoves
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which they perceived to be better (see Chapter 6)

3-7 Reactions to Failure of "Improved" Mud Stove Programmes

The previous section has shown that in many cases, "improved" mud stoves 

used the same or more fuel than the traditional designs. "Improved" mud 

stoves that did use less firewood were prone to deterioration in perfor

mance over 6 - 9  months.

This section examines the strategy adopted by stove promoters in Sri 

Lanka and Indonesia to the failure to achieve widespread dissemination 

of "improved" mud stoves. Background information is given below on two 

organizations (Sarvodaya and Dian Desa) which initiated "improved" stove 

programmes in the late 1970’s. These organizations have been singled 

out for two reasons; firstly, both organizations appear to be having 

some level of success in disseminating "improved" stoves, and secondly a 

great deal of information is available on their respective stove 

programmes.

(a) Sarvodaya Movement

Improved stoves have been promoted in Sri Lanka since 1979 by the 

Sarvodaya Movement. Sarvodaya is a Non-Governmental Organisation 

(N.G.O.) established in 1978 to "promote an integrated approach to rural 

development" (Howes et 1983:2) (emphasis added). Emphasis is placed 

on "both widespread participation and a reassertion of traditional 

cultural values of cooperation and self reliance" (Howes et 1983:2). 

The main aims of the stove programmes are threefold: firstly, to improve 

the quality of womens lives (e.g. reducing the time spent in fuel col

lection and cooking as well as removing smoke from the kitchens);
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secondly, to improve the kitchen environment (in terms of appearance and 

hygiene in food preparation); thirdly to reduce firewood consumption.

(b) Dian Desa

Dian Desa is based in Indonesia and is involved in "training village 

workers in all aspects related to community development" (Joseph,

1982:4). These village workers are trained in agriculture, health and 

hygiene, small village industries and water supplies.

Dian Desa’s aims in disseminating "improved" stoves are similar to those 

of Sarvodaya (Soedjarwo, 1982:2). In addition, it is argued that if 

women spend less time in cooking and collecting fuel they would be able 

to spend time in economically productive activities.

For "improved" stoves to have a significant impact on fuel consumption a 

large number of stoves need to be disseminated. Dian Desa aimed to do 

this by transferring the skills of stove construction to the users 

(Seod jarwo, 1982:3).

Dian Desa decided to shift to a new stove design and an alternative 

dissemination strategy as a consequence of the following problems: 

firstly, the general failure of the Lorena-type stoves to save fuel, the 

difficulty in obtaining stoves which were built according to the given 

design parameters, and finally the bottleneck caused by the low product

ivity of the Lorena stove builders to this type of design.

The new stove designs were modifications of traditional Indonesian 

designs - this is an important consideration as it would reduce socio

cultural resistance.

Ill



As users in both Sri Lanka and Indonesia were not particularly worried 

about smoke, it was not necessary to have stoves with chimneys. In 

addition, stoves with chimneys need more attention (Loose, 1984:pers 

comm). High chimneys can easily create high drafts leading to rapid 

burning of the fuel. The hot gases produced are quickly lost through 

the chimney. This means that baffles (which have to be adjusted) are 

needed. These problems are much less severe if low chimneys (which 

would vent the smoke at a greater height than would have been the case 

in a chimneyless stove) are used (Joseph, 1984:pers comm).

Dian Desa and Sarvoydaya both opted for the dissemination of "improved" 

ceramic insert stoves (see section 3*3.2). The pottery liner stoves 

promoted were based on the Tungku Lowon design - for at least three 

reasons (Soedjarwo, 1982): firstly, initial testing of improved ceramic 

stoves suggested that they were capable of high efficiencies (the Tungku 

Sae "achieved efficiency ratings of 20%"); secondly, it was possible to 

produce large numbers of (accurately made) stoves at a high rate of 

productivity by experienced artisans - the pottery liners could be also 

surrounded by mud (e.g. the fixed Magan Chulha); thirdly these pottery 

liner stoves were prone to slower physical deterioration through use 

compared with mud designs.

Potters in Sri Lanka can produce between 150 and 200 pottery liners per 

month (Howes et al, 1983:28; Sepp, 1984:22). In 1983, women in Sri 

Lanka were ordering ceramic insert stoves at the a rate of about 200 per 

month (Joseph, 1983:15). An estimated 6,000 of these stoves have been 

sold in Sri Lanka between 1982 and 1984 - the retail price of each 2-pot 

design is around 17 Rs (note 34Rs = £1) (Young, 1984:pers comm). In 

Indonesia these "improved" ceramic insert stoves were planned to be 

disseminated (!) using the existing family planning network in villages.
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3.8 Conclusions

A traditional cooking stove or fireplace is a deceptively simple 

technology, but its functions in rural societies in developing countries 

are multifaceted, and may be intimately linked to social and cultural 

factors. Any substitute must give an overall benefit, if it to be 

favourably received. In addition, the users or stove designers may not 

necessarily be aware of the ecological bases of traditional practices or 

designs - the use of smoke as an insect repellent is a case in point.

Because of these manifold functions within the village system, stove 

efficiency may not have the highest priority from the point of view of 

the stove user. Other features such as versatility, speed of cooking, 

convenience, and status, also need to be taken into account.

Fuel efficient stoves can essentially be categorized into 1-pot and 

multi-pot designs. The performance of stoves within these categories 

should be more or less the same. Differences in the measured fuel 

economy of stoves within each of these categories will be a result of 

differences in critical parameters such as fuelbed/pan distance, 

arrangement of baffles, and so on, as well as the skill of the operator.

Most early "improved" stoves had a high mass and were constructed from 

mud. Attempts to achieve widespread dissemination of these improved mud 

stoves have largely been characterized by failure. A number of these 

"improved" mud stoves were less efficient than traditional ones. In 

addition, the performance of improved mud stoves deteriorated over a 

period of 6 - 9 months. Consequently, maintenance is required, either 

by stove artisans or (preferably) the user themselves.
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As a consequence of the realization of the technical shortcomings of 

'improved" mud based stoves (e.g. rapid deterioration of performance, 

high labour cost) there has been a shift to "improved" pottery liner 

stoves based on traditional designs. Skilled artisans can produce these 

stoves accurately and at high rates of productivity.

The chances of successfully diffusing new stoves would be enhanced by 

modifying the traditional stove (if possible) rather than introducing 

something completely new. This would also bypass any sociocultural 

constraints, since it is a design which is already acceptable to users. 

Additionally, designing with people rather than simply for people, as 

well as producing a stove which has a low opportunity cost to obtain and 

maintain (whether in terms of labour or cash) would all help.

One of the key assumptions of the strategy to reduce firewood demand by 

promoting "improved" stoves was that traditional stoves were very in

efficient. However, it has been found that not all traditional stoves 

were less efficient than the 'improved' designs that were promoted. The 

next chapter examines the basis of this belief in the low efficiency of 

traditional stoves and fireplaces as modes of cooking.
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Chapter 4 

TRADITIONAL STOVES AND FIREPLACES

4.0 Introduction

The main reasons for introducing "improved" stoves in developing 

countries were to decrease firewood consumption and the amount of smoke 

produced during cooking in rural kitchens. This chapter will show that:

(1) it is widely believed that traditional stoves and fireplaces used in 

developing countries are thermally very inefficient (with efficiencies 

ranging between 5% - 10/5);

(2) experimental work shows that whilst some stoves are inefficient 

(with PHU’s <10/5), efficiencies are considerably higher (PHU's in the 

range 10J5 - 28%) depending on the type of stove and skills of the user;

(3) efficiency is a complex question and depends on the whole system of 

cooking (e.g. fuel, stove, cooking pots, and cooking practices) - this 

point is also taken up in Chapter 5 which details the experimental tests 

carried out on traditional stoves by the author at the Open University.

4.1 Efficiencies of cooking stoves and fireplaces

Values of cooking efficiency have been given for a number of stoves and 

fireplaces used in developing countries. Most authors give values of 

the efficiency for the "stove" type, whilst a few authors give values 

simply for the fuel used (Table 4.1) (e.g. Kaskhari, 1977; Openshaw,

1980). Some authors refer to the cooking method they are considering
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(e.g. 3-stone fireplace or brick chulha). Others generalize about all 

stoves in developing countries, for example there are references to 

"stoves and fireplaces in Third World homes" (Knowland and Ulinski,

1979) and "stoves in developing countries" (Baron, 1980).

There is some confusion in the literature about the various types of 

fireplaces used in developing countries. For example, the terms "open 

fire", "hearth" and "3-Stone fireplace" are often used interchangeably. 

In the cases of both Siwatibau (1978, I98I) and Weir and Richolson 

(1980) reference is made to the Fijian 'two stone' fireplace as the 

'open fire'.

4.2 Basis of Efficiency Data

The basis for the data reported in the literature on the 'efficiency' of 

traditional stoves and fireplaces can be divided into four categories: 

firstly, data which is "anecdotal", secondly where the author refers to 

another source, thirdly data obtained by comparing the magnitude of 

cooking energy consumption in two countries and finally data based on 

empirical work.

Most of the work cited falls into the first two categories. The figures 

in these two categories are remarkably consistent, (mostly in the range 

5 - 10%), and are almost all derived from literature written between 

1978 and 1981. One explanation is that these authors have either drawn 

upon each other or another common source.
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Table 4.1
"EFFICIENCY" DATA WITH NO ORIGINAL SOURCE GIVEN

COOKING METHOD AUTHOR

Stoves in general
"stoves in developing Baron (198O) 
countries"

QUOTED ’EFFICIENCY* (%)
"grossly inefficient"

"woodstoves" Mackillop (1983)

"stoves and fireplaces Knowland and Ulinski (1979) 
in Third World homes"

10

3-8

"Primitive stoves" Desch (1973)

cooking in developing Hayes (1977) 
countries

10

<9

Open fires and variations
Hearth

Open fire

3-Stone fireplace

McGranahan et. ̂  (I98O) 10
Smith (1981) 6-8
Stanford (undated) 8

Desch (1973) 10
Digernes (1978) 6-8
lEA (1978) 5-10
Dunkerley (1979) 10
Gamser (1979) 10
ROCAP (1979) <10
Morgan and Moss (1980) 5-10
Norman (1981) 5
Hottenroth (1982) 6
Tiwari (1982) "very low efficiency"
Munasinghe (I983) 5
Sodha and Prasad (undated) 5-10

Club du Sahel (1978) 
KiZerbo and de Lepeleire 
Mnzava (I98O)
Vita (1980)
Norman (I98I)
Smith (1981)
Moss and Hall (1981) 
Lequeux (1982)
Thomas and Amalfitano 
(1982)

3-8
(1979) 3-8

10-12
"Very wasteful on fuel" 

7 
6-8  
7-8 
<5

"wasteful of heat"

Mud stoves
"Open chulha" 
"chulha"
"Mud chulha" 
"Brick chulha" 
"open chulha"

"chulah"

Fuel
Cowdung
Firewood

Raju (1955)
Prasad et ^  (1974) 
Gupta (1982)

ti It
Nanda (1982: 58) 

Tiwari (1982)

Kashkari (1975) 
Openshaw (I98O)

"extremely low efficiency" 
1 1

"very low efficiency"
11 It It

17 (firewood)
11 (cow manure) 

"very low efficiency"

11
7-(
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4.2.1 ’Anecdotal* Data

The first category contains those figures which are apparently anecdotal 

and have no acknowledged source or direct literature reference (Table 

4.1). This category contains the largest number of efficiency figures 

given in the literature - thirty six in all. Nearly all the efficiency 

values are in the range 5-10%.

4.2.2 Efficiency Data Where the Author Cites Another Source

Fourteen references fall into this category (Table 4.2). Of 11 authors 

whose sources where checked, there were eight end references (Fig 4.1). 

Of these eight ultimate source references, four have relied on published 

experimental testing methods. Data by Ascough (pers comm) and Franklin 

et al (1977) are unpublished and unavailable, despite several requests; 

both Revelle (1976) and NCAER (1959) are considered in section 4.2.4.

The data by Makhijani and Poole (1975) is discussed in section 4.2.3. 

Both the paper by Makhijani (1976) and Prasad et al (1974) do not give a 

source for the efficiency figure, and hence fall into the category of 

'anecdotal' data listed in Table 4.1. Makhijani (1976) explicitly 

states that he has assumed the efficiency value.

An example of how evidence can get passed on and become part of the 

accepted wisdom can be seen in the following flow of citations; Arnold

(1979) cites Floor (1978) as his reference source, whilst Floor (1978) 

refers to an earlier paper by himself (Floor, 1977). Floor (1977) 

refers to Le Développement Voltaique (1976) as his ultimate source this 

does not contain any efficiency data! Floor (1981; pers comm) 

acknowledges this and cites two other references ("a publication by the 

Village and Khadi Commission on Gobar gas, and a shorter Makhijhani
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Table 4.2

AUTHOR REFERS TO ANOTHER SOURCE

COOKING METHOD AUTHOR QUOTED
’EFFICIENCY’

(%)

SOURCE OF DATA

Stoves in general

"traditional modes Floor (1978) 8 Floor (1977)
of cooking"
(closed) "wood fire" Vanin et al (I98O) 10-43 Goldemberg and Brown 

(1979)
"wood stoves" Revelle (1980) 5-10 Revelle (1976)

Pearson and Stevens 
(1984)

Open fire and variations

6 Makhijani (1976)

open fire Revelle (1978) 10 Revelle (1976)
Goldemberg and 
Brown (1979)

5-10 Franklin et al 
(unpublished)

FRIDA (1980) 2.5 Ascough (pers comm)
Newham (1984) 5 Makhijani (1976)

3-Stone Fireplace Arnold (1979) 8 (a) Makhijani and 
Poole (1975)

(b) Floor (1978)
Floor (1977) 8 Le Développement 

Voltaique No. 40 ( 
August, 1976

Morgan et al (1979) 5-10 Goldemberg and 
Brown (1979)

Mud stoves 
chulha’s

Bene et al (1978) 

Somasekhara (1978)

5
to
11

Makhijani and 
Poole (1975)
Prasad et al (1974) 
NCAER (1959)

Cooking
Method

Open
fire

Table 4.3

SOURCE OF ’EFFICIENCY’: COMPARISON OF DOMESTIC ENERGY 

Author

Makhijani and Poole (1975)

’’Efficiency” Source of
efficiency data

5% Comparison (domestic)
energy used in U.S.A. 
and India
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study") from which he obtained the data.

4.2.3 Comparison of Cooking Energy Consumption in Different Countries

There is only one example in this category; Makhijani and Poole (1975) 

who compare the magnitude of domestic energy use in rural India - based 

on work by Revelle (1976) - and the U.S.A. From these data, the 

domestic energy use per capita figure for India is four times that of 

the USA, whence, the efficiency of cooking in India is calculated to be 

one-quarter of that in the United States. In addition,

"If we assign an efficiency of 20 per cent to gas 

stoves - somewhat arbitarily - then the efficiency of 

rural cooking would be about 5 per cent." (Makhijani 

and Poole, 1975:27) (emphasis added).

This is the underlying logic that Makhijani and Poole use to arrive at 

the 5? figure of efficiency (Table 4.3). Assuming for the moment this 

logic to be valid, then simply altering the value of the assumed ef

ficiency of gas cookers will change the calculated efficiency of cooking 

in rural India. Values of efficiency of gas cookers in the U.S.A. 

varies between 30% and 60/S (depending on the power output and type of 
pan) (Knapp £t al, 1966) - these figures would mean that the calculated

efficiency of cooking in rural India would lie between 7.5% and \5%.

However, this method of estimating efficiencies may contain further 

errors, as there are difficulties in comparing the magnitude of domestic 

energy in the US and India. For instance, foods purchased in the US 

will tend to be processed, pre- or partially cooked. All these will 

reduce the domestic cooking energy demand. Another implicit assumption
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in this analysis is that the same amount of food is cooked, (i.e. same 

useful cooking demand). The average US citizen does not eat the same 

amount of food as the average rural Indian. These would have to be 

taken into account in any attempt at comparison.

4.2.4 Data based on empirical work

Data based on experimental work gives a wide variation in the values of 

"efficiency"(Table 4.4).

(a) Cooking in India

Revelle (1976) obtains a figure of just under 9 per cent for the 

efficiency of fuel use in India. The empirical basis for Revelle’s 

efficiency figure is as follows:

"two experiments with rice cooking showed that the 

energy required to bring the cooking water to boiling 

and to boil away the requisite quantity of water is 

about 600 kcal/kg, or 17.5 percent of the food energy 

content of rice" (Revelle, 1976:972)

Revelle makes the following assumptions: firstly other food grains 

behave similarly to rice (ie they also require 17.5̂  of their calorific 

value to be cooked); secondly that 75^ of the energy "biomass" (ie 

firewood, crop residues and animal manure) is available for cooking 

food. A value of the efficiency of cooking fuel can then be calculated 

if the food energy intake and energy from firewood, crop residues and 

animal manure are known. Revelle estimates that the average food energy 

intake per capita per year is 0.78 x 1q6 Kcal, and the energy from the
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Table 4.4
SOURCE OF *EFFICIENCY* DATA: EXPERIMENTAL WORK^

COOKING METHOD
cooking 
in India

AUTHOR
Revelle (1976)

QUOTED PHU' ($)
<9

Open fire and variations
"fire under 3-legged pot"

3-Stone fireplace

3-Stone fireplace + grate 

**Fijian** Fireplace

Best (1979a, 1979b) 1.27-7.33

Brattle (1979)
Visser et al (1979)
Joseph and Shanahan
(1981)
Visser and Verhaart 
(1980)
Ascough (1980)
Bussmann et al (1983) 22-36 
Ouedraogo et al 
(1983)
Visser and Verhaart 
(1980)

11.2-25.5 (13.3-30.3) 
13-26  
14-30

11-23

3.5 
22- :
4.9-17.4 

11-26

Weir and Richolson 3.8-5.1
(1980)
Siwatibau (1981) 5-10

Bangladeshi Chulha*s
"one-mouth" chulha 
"two-mouth" chulha

Islam (1980)
II II

4.3-10.0
12.5-19.5

Mud stoves 
one-pot stoves
Indian brick *U' chula 

(firewood logs)
(small pieces of firewood)

Indian *U* chulha 
(firewood)
(cow manure)

Indian *U* chulha + grate 
(firewood)

Sri Lankan *U* chulha

NCAER (1959)II II 13-15 (17-19)
19.1 (24)

Salariya (1978, 1983) 12.3 
N.C.A.E.R. (1959) 10.1-10.7

Salariya (1978, 1983) 15.8

Joseph and Loose
(1982)

10.4-16.2

Two-pot stoves
Egyptian design 
Indonesian design 
Indonesian " 
Indian design

Theodorovic (1954) 3-4.4
Singer (1961) 6-7
Joseph (1983) 1217
Geller (I98O) 6-14

Three-pot stoves
Indonesian design 
Indian design

II II
1

Singer (I96I) 
Geller (I98O) 
Geller (1982)

6-7
8-14
3-9

WBT's were used by all authors except Revelle (1976) who conducted two
experiments cooking rice.
 ̂see text for explanation of PHU figures in brackets.
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biomass sources for domestic use is 1.57 x 106 Kcal/capita/year. Hence,

"efficiency _ food energy intake/capita/year x 0.175 ^100  ̂ ^
of cooking" " domestic energy from biomass x 0.75

0 . 7 8  X 1 0 ^  X  0 . 1 7 5  1 0 0

i . 5 7  X  1 0 ^  X  0 . 7 5  ^  1

11 .6 %

Revelle’s figure is 9%j which suggests that he has made an arithmetical 
error.

Revelle gives very little detailed information regarding the rice cook

ing tests he conducted on rice. Popali et al (1979) obtained values 

around 1210 kcal/kg to cook rice. Using this data would roughly double 

the value of the efficiency of cooking from 11.6 to 23%.

However, the determination of the energy required to cook food items is 

not simple since the energy needed is not a constant quantity, but 

depends on the physical properties of the food (e.g. the size or degree 

of fibrous material), as well as subjective qualities (e.g. when the 

food item is regarded as being "cooked"). Food can be cooked much more 

quickly and use less energy through being cut into small pieces compared 

large pieces. Similarly, the energy required to cook pulses can be 

reduced if they are soaked prior to cooking.

Islam (1980:111) describes two methods used to cook rice. In one 

method, the amount of water added to the rice is such that no water 

remains when the rice is fully cooked; this is termed the "dry method". 

In the second method, rice is cooked with "excess" water, such that
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water remains at the end of the cooking process. This water is poured 

away once the rice is cooked. The amount of water, in excess of that 

required for cooking rice using the "dry method", depends on the quanti

ty and type of rice used (Islam, 198O).

Experimental work by Islam (1980) showed that the amount of energy to 

cook rice depends not only on the type and quantity of rice, but also on 

the amount of water used (Fig 4.2) and the type of cooking vessel: 

cooking rice in a pan with a round bottom used about three-quarters of 

the energy required with pan with a flat bottom.

(b) Fire under a three-legged pot

Best (1979a, 1979b) describes one traditional method of cooking in 

Southern Africa as "a fire underneath a three legged pot (Fig 3.1).

Best defines the efficiency only for the process of bringing water from 

ambient temperature to boiling point. No correction is made for the 

moisture content on the calorific value of the fuels; all the values he 

uses for the calorific value of both firewood and animal manure are for 

oven-dry material.

Best does not mention wind speed. For experiments performed outside, 

Joseph and Shahanan, (1981) found that high winds decreased the measured 

value of PHU of the 3-stone fireplace from 30% to 12%. French (1984) 

similarly reports the adverse effects of wind in field tests in Malawi 

on the fuel consumption of the 3-stone fireplace. In data by Best 

(1979b),PHU's obtained for tests inside a cooking hut were higher than 

those performed outside: the maximum value using firewood was only 

7.33%, (of minimum of 1.52% for results obtained outside). Lower PHU's 

were obtained using manure (Table 4.5).
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quantity
Ckg)
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content(l)

"p«rboll«d-l"
12.&

*'parbolled-2"
17

"parbolled-3*'
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17

"atap.l"
16

•••tap-2"
12

sr
22

(a) cooking rice with the "dry method"

11 
10 

9

s
7 

6

i 5 2
£ ^

3

2
1

0
rlca
quant 11y
(ka)
rlc* typa "parbot Ud. 1"
atolature 12.6
content (I)

"parboll*d-2' 
17

••parbol l#d-3 * 
16

3 S Xo o -C
'*P«rbo( l«d-4**

17

% %
••atap-l"

16
••atap-2̂̂

122222

(b) cooking rice with the "excess water" method

Fig 4.2 Energy to cook rice using Kerosene 
(Islam, 1980)
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(c) 3-Stone Fireplace

Experimental tests on the 3-Stone fireplace have been reported from the 

late 70's onwards: Visser et al (1979), Brattle (1979), Joseph and 

Shanahan (1981) and Visser and Verhaart (1980). More recent work has 

been reported by Bussmann et ^  (1983) and Ouedraogo et ^  (1983). All 

these tests employed water boiling tests (WBT's). Tests using three 

bricks were conducted by Visser et Brattle, and Visser and Verhaart; 

Joseph and Shanahan, Bussmann at al, and Ouedraogo et all refer to 

tests carried out on "3-Stones".

Ouedraogo et al (1983) and Joseph and Shanahan (198I) carried out tests 

in the field but only the latter mention the affect of wind on the PHU; 

tests by all the other authors were conducted in a laboratory.

Visser et ^  (1979)> Visser and Verhaart (I98O) and Bussmann £t al 

(1983) employed the same WBT methodology, and most of their testing was 

carried out under similar conditions (Table 4.6).

Visser et ^  do not mention the method used to light the fire, whilst 

both Visser and Verhaart, and Bussmann et ^  lit the fire by holding a 

propane torch on the firewood for approximately 30 seconds. In each 

case, 5kg of water were heated in an aluminium pan (diameter 28cm and 

height 24cm). Evaporated water was included in the definition of PHU; 

the PHU was measured after allowing the water to simmer: Visser et al do 

not give the length of time the water was allowed to simmer, whilst the 

simmering time for Visser and Verhaart was between 30 and 70 minutes, 

and Bussmann et al terminated the test once the water had stopped boil

ing. This ill-definition of simmering time makes it difficult to com

pare their data with work in which the PHU has been measured after a
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definite cooking time, e.g. Brattle (1979), Joseph and Shanahan (1981).

Table 4.6
Experimental Set-up for testing "3-Stone Fireplace"

(at Eindhoven University)

Author Visser et al Visser and Bussmann et al
(1979) Verhaart (1980) (1983)

Set Up 3-bricks 3-bricks 3-stones
Mass water 5kg 5kg 5 kg
Pan type Aluminium Aluminium Aluminium
Lid Yes Yes Yes
Fuelbed/Pan distance 11cm, 18cm 5-23cm 7-15cm
(f.b.p.d.)
Kindling n.a. propane torch propane torch
Firewood n.a. n.a. various (see
species table 5.8)
Firewood 1.5 X  1.5 X  5 1.5 X  1.5 X 5 2 X  2 X  6.7 cm
dimensions (cm) 3 X  3 X 30 3 X 3 X 30
Fuelbed diameter n.a. (cm) 26 (cm) 18 (cm)
(f.b.d.)
Evaporated water Yes Yes Yes
included in PHU term 

Constants mass of water mass of water 
pan pan
f.b.d. f.b.d.

mass of water
pan
f.b.d.
charge size

Variables f.b.p.d. f.b.p.d. f.b.p.d.
wood size wood size wood size

moisture content moisture content moisture content 
charge size charge size power output

addition of grate addition of grate 
wood species

PHU - measurement

PHU values (%)

BPIS't»

13-27

BPIS't' BPIS't'
(t= 30 -70 mins)

11.8-23.6 22-36

In order to obtain measurements under steady state conditions (Visser 

and Verhaart, 1980) firewood was added to the fire in "charges" each 

time the flames died down: charges used by Visser et ^  ranged from 100 

to 400g; Visser and Verhaart used charges varying from 50g to 400g; 

Bussmann et al conducted all their tests with lOOg charges.

Visser et ^  (1979) describe briefly the results of preliminary labora

tory based tests: WBT's were carried out at two heights (11cm and l8cm) 

with two sizes of pieces of firewood: "small" - 1.5 x 1.5 x 5cm and
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"large" - 3 x 3 x 30cm, with oven dried wood used in the vast majority 

of tests.

For tests conducted at a height of 11cm using the small pieces of oven 

dried wood in charges of 200g, PHU’s of 18.9% and 19.5% were obtained. 

Reducing the charge size to lOOg gave values 25% and 26%. Using lOOg 

charges with a moisture content of 10.8% gave PHU’s of 21% and 26.8%; 

Visser and Verhaart (1980) observed that a moisture content of around 5% 

increased the PHU (Figure 4.3).

Increasing the height to l8cm decreased the PHU: using 400g charges of 

the small pieces of wood gave PHU’s around 13%; using the large sized 

pieces of wood in charges of 200g gave a PHU of 16.6%. Later work by 

Bussmann et al (1983) highlights' the importance of the distance between 

the fuelbed and pan.

From this data. Visser et ̂  conclude that small pieces of wood, small 

charges and (to the same extent) moisture, all enhance the PHU.

In further work. Visser and Verhaart (1980) systematically examined the 

effect on the PHU of parameters such as the moisture content, quantity 

and size of the fuel wood, distance between the fuelbed and pan, and the 

addition of a grate (Fig 4.3 and 4.4). Visser and Verhaart’s initial 

testing method involved feeding small charges of wood varying from 50g 

to 400g into the fire. As the size of the charges was decreased the PHU 

increased; the PHU was 12% and 24% when using firewood charges of 400g 

and lOOg respectively. Consequently, subsequent tests (to examine the 

effect of the distance between the fuelbed and pan) were carried out 

using fuel charges of lOOg.
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(%) - # tire uich a grate
- • fire without a grate

«H’isture content (%)

Fig 4.3 Effect of moisture content on PHU 
(Visser and Verhaart, 1980)

- dry wood
- w (ire with a grate
- o fire without a grate

(%)

Fig 4.4 Effect of fuelbed-pan distance on PHU 
(Visser and Verhaart, 1980)
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The optimum height was found to lie between 5cm and 10cm: heights less 

than 5cm led to substantially increased quantities of smoke as well as 

reducing the rate of combustion. Increasing the height beyond 10cm led 

to a drop in PHU owing to a decrease in the transfer of heat for two 

reasons. Firstly, flames could not reach the pan bottom. Secondly 

because the pan bottom would intercept an increasingly smaller solid 

angle subtended by the fire, it would absorb proportionally less 

radiated heat energy from the fuelbed (Goldemberg and Brown, 1979; 

Bussmann et al, 1983).

The next series of tests examined the effect of moisture content on the 

PHU, and though, the optimum height was found to lie between 5cm and 

10cm these follow-up tests on their 3-Stone fireplace with a height of 

11cm. This would have the effect of lowering the PHU by about 10/5. The 

PHU was at a maximum when firewood with a moisture content of around 5/5 

was used (Fig 4.3). As expected, increasing the moisture content beyond 

5/5 decreased the PHU as more energy is required to evaporate the 

moisture in the wood.

The effect of a grate is to increase the PHU (Fig 4.3 and 4.4), which 

Visser and Verhaart attribute to higher combustion efficiency.

Bussmann £t ^  (1983) follow up the work of Visser et ^  (1979) and 

Visser and Verhaart (1980) and consider in detail the effects of six 

parameters (power output, wood species, moisture content, wood size, 

height of pan from the fuelbed and the addition of a grate) on the PHU 

of a 3-stone fireplace (Table 4.6 and 4.7). The PHU was measured at 

BP1S"t"; the length of time "t" the water was simmered is not given and 

not constant since each test was terminated when the water had stopped 

boiling.
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Fig 4.5 "efficiency” as a function of a number of parameters 
(Bussmann et al, 1983)
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Table 4.7
Firewood Species Used by Bussmann et al (1983)

Botanical name Common name Density (kg/m^)
Piecea abies White fir 400
Dyera Costulata Jelutong 440
Chlorophora regia Iroko 580
Shorea Meranti 600
Quercus robus Oak 620
Fagus sylvatica Beech 650
Intsia bijuga Merbau 850

The PHU was not affected by altering any of the following; power output 

over the range 2.5 to 8.5kW; density of the wood (300 to 700 g/m^); 

woodsize (volume-to-surface-area ratios ranging from 3.3 to 7.0); 

moisture content (oven dry wood to a moisture content of 2055); and 

addition of a grate.

The key parameter which affected the PHU was the distance between the 

fuelbed and the pan: a PHU of 3655 was obtained when the pan was lowered 

to the minimum height of 7cm. Increasing this height lowered the PHU, 

for example, PHU was between 22 and 26% at a height of 13cm) (Fig 4.5).

Bussmann et ^  go on to describe a model of the open fire. This model 

predicts that the overall efficiency (of heat transfer due to convective 

and radiative components) should be independent of both the nominal 

power output and fuelbed-to-pan distance. Whilst no significant varia

tion in efficiency was observed in varying the nominal power output, 

changing the fuelbed/pan distance had a dramatic effect on the 

efficiency. Bussmann et al suspect that this conflict between predic

tion and observation is a result of an invalid assumption in the model 

that the volatiles stop combusting when they impinge on the pan bottom.

WBT’s by Brattle (1979) and Joseph and Shanahan (1981) were carried out 

at ITDG’S stove testing workshop in Reading, involving a similar set-up
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(Table 4.8). Their results (along with those of Ouedraogo et ^  (1983)) 

are shown in Fig 4.8.

Table 4.8
Experimental Set-up for testing of 3—Stone Fireplace

Author

Set Up 
Mass water 
Pan type 
Lid
Fuelbed/Pan distance 
Kindling

Firewood
species
Firewood
dimensions
Fuelbed diameter
Evaporated water
included in PHU term

Constants

Variables

PHU - measurement

PHU values (%)

Brattle (1979) Joseph and
Shanahan (I981) 

3-bricks 3-Stones
1.5 litres 2 - 4 kg
Aluminium Aluminium
Yes Yes
10cm 11cm
paper Paper + Parana

Pine
Iroko Iroko

Jelutong
3.8 X 3.8 X 45cm 2.5 x 2.5 x 50 cm

n.a.
Yes

n.a,
Yes

Fuelbed/Pan Fuelbed/Pan
distance distance
Pan type Pan type
Firewood species 
Mass of water 
Size of firewood

Ouedraogo e t  al 
(1983)
3-Stones
3kg

Aluminium
No
10cm
Kerosene
(1ml)
n.a.

3 X 3 X L 
L=20-30cm 
10 - 20 cm 
Yes

Fuelbed/Pan
distance

Power output

BP1S60

13-30

Power output 
Firewood moisture 
content 
Mass of water

BP1
BP1S30
BP1S60

14-30

Pan type 
Fuelbed di- 
-ameter 
Mass of water

Lo/Hi power 
tests

5-17

Joseph and Shanahan examined the effect on the PHU of wood size, wood 

type and moisture content. A standard height of 8.5cm (from the fuel 

surface to the bottom of the pan) based on the work of Visser and 

Verhaart (I98O).

Two tropical species of wood were used: Iroko (Chlorophora regia), a 

dense wood which burns slowly with small blue flames, and Jelutong 

(Diera Costulata) a low density wood which burns much more rapidly with
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long yellow flames. WBT’s were carried out using an aluminium pan (with 

a flat bottom) pan. Most tests involved heating 2 litres of water; 4 

litres of water were heated in some tests.

Moisture content of the wood did not significantly affect the PHU - 

using wood with a moisture content of 57% (dry basis) only reduced the 

PHU from 20% to 17%. The most important variable was considered to be 

the wind around the fireplace.

Higher values of PHU were obtained for BP1S30 and BP1S60 compared to BP1 

for low burning rates (power outputs) (Fig 4.6). The PHU for BP1S30 and 

BP1S60 fell much faster as the burning rate was increased.

Brattle’s tests involved heating 1.5 litres of water (in an aluminium 

pan) and measuring the PHU (including water of evaporation) at BP1S60. 

Sticks of Iroko (Chlorophora regia), 3.8cm square (Brattle, 1984) with 

an oven dry moisture content 12% were used. A value of 19.58 MJ/kg is 

assumed for the calorific value of the Iroko, - Bussmann et al (1983) 

give an experimentally determined value of 18.1MJ/kg for Iroko.

Table 4.9 
WBT Data on 3-Stone Fireplace 
(adapted from Brattle, 1979)

Experiment No. 1 2 3 4 5 6
Power Output (Kw) 3.73 2.80 3.46 3.13 2.96 2.30
PHU* at BP1S60(%) 11.2 20 15.7 16.7 19.5 25.5
PHU (%) at BP1S60 (calorific 
value of firewood corrected 
for moisture content)

13.3 23.8 18.7 19.9 23.2 30.3

*PHU in bringing 1.51 of water to boil and simmering for 60 minutes>
(evaporated water not treated as an energy loss).

Brattle’s values of PHU at BP1S60 range from 14% to 30% (Table 4.9). 

Brattle explains the variation as due to her becoming more proficient at
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tending the fire. Plotting the PHU against the power output shows that 

the observed variation is principally due to the tests being done at 

different power outputs (Fig 4.6), this may be a result of Brattle 

becoming more skilled at tending the fire.

Comparable results by Joseph and Shanahan differ from those obtained by 

Brattle (Fig 4.6). For Brattle, the PHU falls from 30% at 2.3kw to 14% 

at 3.7kw, whilst Joseph and Shanahan's data show a PHU of 25% at 0.7kw 

which falls to 14% at I.Skw. One possible reason for this difference is 

that for Brattle the distance between the pan bottom is 6.2cm, whilst 

for Joseph and Shanahan this distance is 8.5cm. According to the varia

tion of efficiency with the distance between the fuelbed and pan bottom 

observed by Bussmann at al, the efficiency data for Brattle would be 16% 

higher than that by Joseph and Shanahan. This is clearly not the case, 

though Joseph and Shanahan noted that the PHU for BP1S30 and BP1S60 were 

highly sensitive to the operating conditions or the tending skills of 

the user.

Ouedraogo et al (1983) conducted high/low power WBT's (using 3kg of 

water) on a 3-stone fireplace surrounded by a 'U' shaped wind shield 

(80cra high, 70cm wide and 110cm deep). In the high power phase of the 

test, the water was brought to boiling point, and the water in the pot 

and the firewood used weighed (ie at BP1). This was followed by the 

simmering phase (low power output): the fire was relit and the wood 

burnt at a rate to maintain simmering; the temperature of the water was 

not allowed to fall below 90°C. After 60 minutes (ie at BP1S60) the 

test was terminated and the water, remaining firewood and charcoal 

weighed. Evaporated water was not treated as an energy loss for either 

part of the test. The amount of charcoal formed at the end of the first 

part of the test was not estimated or weighed but assumed to be equal to
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half of the charcoal that remained at the end of the complete test.

This is likely to underestimate both the PHU and the charcoal that had 

formed and at the high output stage of the test; operating the fire at a 

high output will produce much more charcoal than in the low power stage 

(see for example the energy flow diagrams in chapter 5).

Ouedraogo et ad (1983) obtained PHU's between 6.3J5 & 16.6̂ , and U,9% & 
17.4̂  at BP1 and BP1S60 respectively (Table 4.10).

Table 4.10
WBT Test Data on 3-Stone Fireplace (Oudraogo et al, 1983)

BP1 BP1S60 Average
Test No. Power output PHU Power Output PHU PHU

(Kw) (%) (Kw) (̂ ) CG)
11 ■ 7.5 8.1 3.5 14.0 9.9
132 4.1 16.6 3.5 15.5 15.3
151 5.3 14.1 5.2 14.3 13.8
166 5.2 11.7 4.5 16.8 14.0
184 6.2 10.7 4.2 12.9 11.3
216 6.1 10.9 4.7 13.2 11.8
231 6.8 10.3 5.2 13.7 11.9
249 6.1 11.6 3.9 17.4 14.1
267 9.9 6.3 10.4 4.9 5.4

(d) Fijian *two stone* Fireplace

Weir and Richolson (1980) report the results of WBT's on a traditional 

Fijian fireplace. This arrangement consisted of a single pot supported 

by iron bars resting on concrete blocks with the pot 20cm above the 

ground and 10cm above the fire, and referred to as an "open fire".

The testing methodology is based on the stove testing methodology de

veloped by Joseph and Shanahan (1980a),with the modification that the 

heat energy radiated and convected from the pot is included in the PHU. 

Their rationale is that this heat energy is channelled from the fire to
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the pot and hence should be included in the PHU terra. This explanation

is dubious, since this heat energy is simply lost to the environment and

does not contribute to heating the food. However, the magnitude of this

component is small and should not significantly affect the values given 
of the PHU.

The WBT procedure used by Weir and Richolson is as follows; a fixed 

amount of wood (2kg of firewood and 0.3kg kindling) were used to heat 

water (2kg) were used. Sticks of air dried mangrove wood were used and 

not disturbed in the fireplace once the fire had been lit. Only a small 

amount of unburnt firewood was left at the end since each test was 

carried out till the fire had burnt itself out. The water was heated 

from ambient to boiling point in an aluminium pan. Each test was con

ducted outside in the open and shielded from the breeze. Values of PHU 

(including evaporated water) range from 3»Q% to 5.1>S with an average 
value of 4.3% (Table 4.11).

Table 4.11
WBT test results for Fijian 'two stone* fireplace 

(adapted from Weir and Richolson (1980))
Air Time simmering PHU2 Burning
speed to time (%) rate
(km/h) boil (min) (g/min)

3.1 15 40 4.2 41.8
3.3 11 47 5.1 40.0
- 11 47 4.4 40.0
2.8 18 45 3.9 36.5
4.4 18 50 3.8 33.8

Siwatibau (1981) also reports the results of WBT’s carried out on the 

traditional Fijian fireplace - which she terms the ’’open fire’’. Very 

brief details are given of the tests carried out. Values of the 

measured PHU are in the range 5-10%; these are higher than the values
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obtained by Weir and Richolson (1980) and may be a result of the type of 

tests used. The values given by Siwatibau were obtained by averaging 

the results of two test procedures; one in which water was brought from 

ambient to 60°C, and in the other from ambient to 100°C.

(e) Bangladeshi Chulha*s

Islam (1980) reports the results of WBT's on the "one mouth" and "two 

mouth" Bangladeshi chulha's. In addition, a survey of villagers' cook

ing practices and stoves was also carried out; data on cooking practices 

was based on the observation of the daily cooking of one family over a 

period of two months.

Stove testing involved heating a known mass of water until all the water 

had been evaporated. The hearth depth was varied in the initial tests, 

and two aluminium pans (one with a flat bottom and the other with a 

round bottom) were used. Subsequent testing involved using three dif

ferent species of firewood.

Higher PHU's were obtained with the round bottom pan compared with the 

flat bottom pan (Fig 4.7); for the round bottom pan, as the stove depth 

decreased from 0.7m to 0.28m, the PHU increased from 6% to 10%; for the 

flat bottom pan, efficiencies as low as 4.5% were measured. The impor

tant finding here is that decreasing the hearth depth increased the PHU.

Smoke was produced as the hearth depth approached 0.43m. Further reduc

tions in the depth of the hearth, led to a rapid increase in the amount 

of smoke. Moreover, decreasing the hearth depth below 0.43m, increased 

the time required to completely evaporate the water. The latter effect 

is a consequence of a fall in combustion efficiency with decreasing
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hearth depth; the degree of incomplete combustion (evidenced by the 

incidence of smoke) would lower the power output. On the other hand, 

the PHU would increase as the pan bottom would be nearer the flames 

(Bussmann et 1983). Decreasing the hearth depth below 0.43m in

creased the amount of smoke.

In effect, maximization of the PHU means a high degree of smoke 

production.

Survey results showed that for villagers who had "one mouth" stoves 

inside the sheltered kitchen, more than half (55%) had a stove depth 

between 0.38m and 0.58m, whilst only 22% had a stove depth less than 

0.38m and 23% a stove depth of greater than 0.58m. A similar percentage 

(52%) of those who had their stove outside had a stove depth between 

0.38m and 0.58m, whilst only 11% had a depth less than 0.38m and 36% a 

depth greater than 0.58m.

Islam (1980) reports a similar relationship between PHU and the depth of 

the stove hearth (Fig 4.8) for the two-mouth chulha. However, the 

hearth depth in this case when smoke was produced was slightly greater 

(0.51m) than for the one-mouth version. The values of PHU are signifi

cantly higher than with the one mouth chulha. However, because of 

problems in synchronizing the pots, the effective PHU is lower. The 

two-mouth chulha is used when several pots need to be heated at the same 

time.

Islam argues that stove designs acceptable to villagers involve trade

offs between a variety of aims which may conflicting (e.g. maximizing 

PHU, minimizing smoke production and speed of cooking). Design parame

ters such as the actual hearth depth is reflected in the compromises
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reached.

However, other factors also need to be taken into account. For example, 

stoves inside the sheltered kitchen are used during the wet season and 

those outside during the dry season. Associated with this seasonal 

change in cooking area is a change in the fuel mix. Firewood provides 

80% of the cooking energy requirements in the wet season and only 32% in 

the dry season when crop residues play a much more important part. The 

depth of the stove has to accommodate both the fuel that is used as well 

as the amount of ash that is produced. Since the proportion of cooking 

energy supplied by firewood (a high density fuel producing little ash) 

in the wet and dry seasons is 80% and 32% respectively, the stove 

outside would be expected to have a larger stove depth on average com

pared with the stove inside, since a significantly higher percentage of 

low density bulky fuel is used outside. This appears to be borne out by 

the data - whilst only 23% of the stoves inside the kitchen have a stove 

depth greater than 0.58m, the figure is 37% for stove used outside 

(despite lowering the PHU).

(f) Indian and Sri Lankan *U* Chulha

Details of the earliest experimental tests on single pot ’U’ shaped (or 

hemi-spherical) Indian chulhas are given in two reports by the Indian 

National Council of Applied Economic Research (NGAER, 1959;1965) - the 

latter merely quotes the results from the former. Results are also 

reported by Salariya (1978, 1983). Joseph and Loose (1982) give results 

of WBT's carried out on the Sri Lanka 'U' chulha.

In the NGAER tests firewood ("logs" as well as in "small pieces") was 

burnt in a "brick chulha closed from three sides", whilst cow manure (in
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the form of "cow dung cakes") was used in a "hemi-spherical mud chulha". 

Diagrams of these stoves are not given by the NCAER, however, Salariya 

(1983:32) provides illustrations of both a three sided brick chulha and 

a hemi-spherical chulha (which he refers to as a "portable mud chulha") 

(Fig 4.9). Tests by Salariya were carried out on the mud chulha.

Joseph and Loose refer to tests conducted on a Sri Lankan "traditional 

stove", which is a 'U* shaped (ie hemi-spherical) chulha (Fig 3.9).

In the NCAER (1959) study, calorific values of 19.6 MJ/kg and 8.9 MJ/kg 

(determined with a bomb calorimeter) were found for firewood and cow 

dung cakes respectively. According to Bialy (1979) the calorific value 

of virtually all oven dried tropical woods is around 20MJ/kg, hence, 

these tests were either carried out using oven dry wood or the calorific 

value was not corrected for the moisture content. Salariya (1983) 

quotes a calorific value (corrected for moisture content) of 15.3MJ/kg 

for the firewood used in his tests. If the calorific value used by 

Salariya (1983) is assumed, the PHU's obtained by NCAER (1959) will be 

almost one-third higher.

Joseph and Loose used firewood with moisture content (Table 4.12) 

ranging from 13-45% (dry basis), with a mean value of 24.3% and standard 

deviation of 9%.

Whilst all test data are from WBT's, it is difficult to compare the 

results, as different stove designs may have been used; the work by 

Bussmann et ^  (1983) shows the dramatic effect of simply changing the 

distance between the fuelbed and pan. Details of the test conditions 

are given below.

For the NCAER (1959) test, a known mass of fuel was burnt, and the PHU
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(a) brick chulha

(all dimensions in cm)

(b) "portable mud chula"

Fig 4.9 Indian chulhas
(Salariya, 1983)
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was defined in raising the temperature of water from "room temperature" 

(18°C) to 80°C or 90°C, and did not include energy associated with 

evaporated water. In these tests water was not heated to 100°C, as this 

led to considerable evaporation giving "high efficiency values" (NCAER, 

1959:54). Several vessels were heated consecutively during the burning 

period of the fuel. Initial tests were carried out using cooking pots 

with and without lids, but the results were only reproducible in the 

former case. Rates of heat loss by radiation were determined from 

cooling curves of the pots. These heat loss rates were used to calcu

late the total heat radiated by the pot during each test.

Salariya (1978, 1983) does not define the temperature range over which 

the water is heated or the simmering time at which the PHU is measured. 

The PHU in his case does not include the energy in evaporated water.

Joseph and Loose give values of the PHU at BP1S30 (ie after allowing the 

water to simmer for 30 minutes), but do not say whether heat energy 

associated with evaporated water is included.

Details of the types of cooking vessel are not given by either Salariya 

or Joseph and Loose. In the NCAER (1959) study, two cooking vessels 

were used in the tests: a brass cooking vessel with a curved base of 

21.5cm diameter (capacity 5 litres) and a flat bottomed aluminium pan 

with a base of 20.3 cm diameter (and 3 litres capacity).

For the brick chulha (NCAER, 1959), PHU's between 13% and 15% were 

obtained when logs of firewood were used. The highest value of PHU 

(19.1%) was obtained when the firewood was in the form of "small pieces" 

(NCAER, 1959:57). This finding is in agreement with the work of Visser 

et al (1979) who reported that decreasing the size of firewood (with the
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3-stone fireplace) increased the PHU; though Joseph and Shanahan report 

that large pieces of firewood give higher efficiencies. If a calorific 

value of 15.3 MJ/kg (Salariya, I983) is assumed the range of PHU's 

increases to 17% - 19% with firewood logs, and 24% with small pieces of 
wood.

For the hemispherical mud (or 'U' shaped) chulha, PHU's of 10.1% and 

10.7% were obtained using cow manure (NCAER, 1959). Slightly higher 

values (viz. 11.3% and 11.7%) were obtained by including the estimated 

heat loss due to radiation from the cooking pot. Salariya (1978, I983) 

gives a similar value for the PHU (12.3%) using firewood - the addition 

of a grate (Fig 3.25) increased the PHU to 15.8%.

Field measurements of PHU (including water of evaporation) at BP1S30 

given by Joseph and Loose (1982) are in the range of 10-16%, with an 

average PHU of 14% and standard deviation of 2% (Table 4.12).
Table 4.12

WBT's results on traditional Sri Lankan stove (ie «Ü* chulha)
(Joseph and Loose, 1982)

Pot  ̂wood m.c.2 Initial water wood charcoal time PHU2
type (%) water evap used (g) boil (%)

T (°c) (g) (g) (min)A Veera 23 28 82 559 20 21 13.2
A Veera 23 29 61 902 44 30 14.0
C Veera 23 27 690 1388 20 47 15.1
A Veera 23 22 181 1071 59 19 15.0
A Veera 23 24 72 981 18 25 13.3
A Veera 21 21 198 1393 30 40 10.4
A Veera 13 23 42 1191 32 34 12.5A Veera 45 22 42 930 30 20 16.2
'a -0 - aluminium; C - clay.
- moisture content (dry basis)

For a brick chulha, PHU's between 13 and 24% have been obtained with 

firewood. PHU's between 10 and 11%, have been reported with WBT's on 

'U' chulha's when using cow manure, and around 12% using firewood.
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(g) 'Keren Stove'

This one pot stove (Fig 3.6) is reported to be widely used in parts of 

central Java (Joseph et al, 1980). Initial test results are quoted in 

Joseph et al (1980): WBT's were carried out in which 2kg of water was 

brought to the boil in an aluminium pot. Firewood in the form of 1 x 1  

X 20 cm sticks and a moisture content of 16% were used. PHU values were 

in the range 16-20%. Details such as the total time of the test, 

whether or not evaporated water was taken into account, are not given.

(h) Multi-Pot Stoves in Egypt, Indonesia, and India

Experimental work on multi—pot traditional stoves has been reported by 

Theodorovic (1954), Singer (1961), Geller (1980, 1982), and Joseph 

(1983).

The earliest experimental work found was carried out by Theodorovic 

(1954) on the traditional Egyptian 3-hole stove (Fig 3.16). In the 

WBT's, 1kg water was brought to the boil in tinned brass pots. Although 

the stove design allowed three pots to be heated simultaneously, only 

two pots were used in the experiments: one pot was placed on the center 

hole (directly above the fire) and the other on the left pot holder.

Five consecutive tests were performed, using corn stalks and husks as 

fuels. The PHU did not include energy associated with evaporated water.

An average value of 3% was obtained for the PHU in bringing the water in 

both pots to boiling point. A slightly higher PHU of 4.4% was obtained 

if the water was only brought to boil in one pot directly above the 

fire. These very low PHU's may be a consequence of using crop residues 
rather than firewood as the cooking fuel.
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WBT'S by Singer (1961) were conducted on a two-hole and three-hole 

cooking stoves; these stoves were constructed from burnt bricks 

consisting of 50% clay and 50% sawdust.

Each test involved heating 2kg of water in an aluminium pan (20cm in 

diameter) using 2.1 kg of wood. The precise details of the water boil

ing test methodology are unclear: for example, though Singer says that 

2kg of water were heated, the quantity of heat released from the fire

wood is sufficient to heat six or more litres of water from around 25^C 

to IOOOq! This may mean that 2kg of water were heated to boiling point 

and then allowed to simmer - hence a significant quantity of water would 

have been evaporated. However, this does not agree with Singer's state

ment in the report that the temperature of the water was taken at the 

beginning and at the end of each test: there is no need to take the 

temperature of the water at the end of the test since it would have to 

be 100°C. Though, Singer may well have measured the end temperature 

simply to make sure the water was boiling. Overall, Singer obtained 

PHU's around 7% (Table 4.13).

Table 4.13
Results of WBT's tests conducted by Singer (1961) on multi-hole stoves
Stove Quantity duration energy energy B.R. PHU N„type firewood

(Kg)
test

(min)
absorbed 
by water 
(kcal)

in wood 
(kcal)

(g/min) (%) (1)

3-hole 2.1 120 534 7312 17.5 7.3 7.12.1 105 509 7312 20.0 7.0 6.82.1 70 468 7312 30.0 6.4 6.2
2-hole 2.1 105 448 7312 20.0 6.1 6.02.1 75 468 7312 28.0 6.4 6.22.1 90 490 7312 23.3 6.7 6.5

(1980) conducted WBT's end monitored the cooking in Ungra village 

in southern India. The WBT's simulated the cooking process. In the

150



these tests three-pot and two-pot traditional stoves was used. For the 

stove with two openings, a pot containing between 2kg and 3kg of water 

was placed on each of the openings. Once the pot on the main opening of 

the stove reached boiling point, it was switched with a pot from one of 

the side openings. A similar procedure was adopted for the stove with 

three openings, except that a third pot was kept on the third opening 

and not moved throughout the test. Geller obtained values of PHU bet

ween 6% and 9%; higher values between 9% and 14% were obtained if the 
energy associated with evaporated water was included in the PHU (Table 
4.14).

Table 4.14
Results of tests on multi-hole stoves by Geller (1980)

Stove Pot Fuel moisture Test Time to PHÜ1* PHU2*Type type content 
(dry basis) 

(%)

time
(min)

boil
(min)

(%) (%)

3-hole clay wood 10 38 23 7.9 14.1
3-hole A1 wood 10 39 24 8.9 13.5
2-hole A1 wood 10 42 27 8.2 14.1
2-hole A1 wood 20 50 35 5.9 10.62-hole A1 dung

cakes
92 77 6.4 9.3

*
PHU1 treats evaporated water as an energy loss, whilst PHU2 does not.

Geller also monitored the cooking of the evening meal of seven Ungra 

households (Table 4.15). Though villagers were reported to use both 

clay and aluminium pots, Geller does not make it clear which pots were 

used in the monitored meals. This is important since clay and aluminium 

pots will significantly affect the PHU (see for example, Geller (1982)).

A later report by Geller (1982) details results of tests carried out in 

13 households during the preparation of their evening meal in Ungra 

village (South India): each family used a traditional 3-hole stove. The
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Table 4.15
PHU of monitored meals (adapted from Geller, I98O)

House Quantities of firewood cooking PHU1 PHU2
size^ food cooked^ consumed time (%) (%)(kg) (kg) (hours)
3 0 - 1.0 

0 - 0.5
2.89 1.12 4.3 9.6

4 c - 1.5 
0 - 0.3

3.40 1.00 5.3 11.3
6 C - 2.4 

0 - 0 .2
3.51 1.00 6 .2 9.4

6 C - 2.6
0-0.3

4.15 1.17 4.3 11.1

9 c - 3.9 
0 - 0.7

4.00 1.50 9.8 17.1
9 C - 4.6 

0-0.5
8.73 1.25 3.7 7.4

10 C - 4.0 
0 - 0.8

8.G2 2.17 4.2 6.8
Average c - 2.9 4.96 1.32 5. 10.4
^ adults and children counted equally.
C - cereals; 0 - pulses and vegetables.

Table 4,16
Characteristics and "efficiencies" of 13 monitored meals (Geller, 1982)
House
size

Pots& Quantities of 
food cooked^ 

(kg)
firewood
consumed

(kg)
cooking
time
(hours)

cooking
efficiency

(%)
3 3C1 c - 0.96 

0 - 0.59
2.90 1.25 3.2

4 • 2A1, ICI c - 1.45
0 - 0.84

1.58 1.08 7.7
4 2A1, ICI c - 1.47 

0 - 0.26
3.40 1.00 3.9

5 2A1 c - 1.63 
0 - 0.72

2.15 1.05 7.4
6 3A1 c - 2.35 

0 - 0.12
3.51 1.00 5.8

6 1A1, 2C1 C - 2.62
0 - 0.25

4.15 1.17 3.8
7 1A1, 2C1 c - 1.87 

0 - 0.52
2.16 1.25 6.7

8 2A1 c - 2.38 
0 - 0.64

2.08 1.25 9.2
8 3A1 C - 3.28 

0 - 1.14
2.35 1.20 8.4

9 2Al, ICI c - 3.87 
0 - 0.68

3.99 1.20 7.0
9 1A1, 2C1 C - 4.59 

0 - 0.48
8.12 1.25 3.4

10 1A1, 2C1 C - 4.02 
0 - 0.80

8.03 2.17 3.6
11 2A1 c - 2.15 

0 - 0.81
2.51 1.00 8.3

Average - 
(6.9)

f Cl - clay, A1

C - 2.51
0 - 0.6 

- aluminium

3.61 1.24 6.0

0 C - cereals (rice and ragi). 0 - other (pulses, vegetables, mea 
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equation for determining the overall efficiency of cooking included 

terms such as the energy required to raise the temperature of the cook

ing pots and contents, and the energy required to chemically convert the 

raw food into its cooked state (e.g. the gelatinization of rice - see 

Eqn 4.2). Evaporated water was regarded as an energy loss.

......

The energy summation in the above equation is taken for each food 
item:
Mpi; and Mf^ - the masses of each food
Cpi, Cjni and - the specific heats of the pot, cooking medium (ie
water) and food, respectively.
T^ - the initial ambient temperature
Toi - the temperature at which the food item is cooked.
Kfi - is a term to take into account the energy associated with the 
chemical reactions which take place in the cooking process.
Mw, Mp - the mass of wood consumed and charcoal residue left at the end 
of the experiment
Ey and Ep - the calorific values of the wood and charcoal respectively. 
In the calculations the following values were assumed: Cp^ = 0.21 
kcal/kg/K (clay pots); Cp^ = 0.22 Kcal/kg/K (aluminium pots); Cf^ = 0.45 
kcal/kg/K (for rice, ragi, flour, and dried pulses); = 0.93
kcal/kg/K (for fresh vegetables); K̂ ^̂  = 4l kcal/kg (for rice, ragi flour 
and dried pulses) whilst set to zero for fresh vegetables; finally T«i = 
97°C.

Using clay pots gives a lower value of PHU than with aluminium pans: the 

average value of the PHU for meals in which one or more clay pots were 

used was 4.1%, whereas for meals prepared with aluminium pans the 

average PHU was 7.2% (Geller, 1982).

The highest PHU’s for a traditional (two-pot) stove, the Tungku Muntilan 

(Fig 3.13) (used in both central Java and Indonesia) were obtained by 

Joseph (1983). The WBT’s involved heating two aluminium pots (each 

containing 2 litres of water) to the boil and simmering for 30 minutes 

(ie PHU2 at BP1S30). PHU2 was 12% for the first test, and 17% for the 

third test (by which time the stove was hot). These results are 

summarized in Table 4.17.
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Table 4.17

Stove
Type

3-hole

2-hole

WBT's on multi-hole mud stoves

Pot& Fuel water
heated

(litres)

PHU id 
(%)

PHU2C
(%)

Source

clay wood 2-3 7.9 14.1 Geller (1980)
A1 wood 2-3 8.9 13.5 !I II

A1 wood 2 7.3 Singer (1961)
A1 wood 2 6.9 - !I II

A1 wood 2 6.4 - II II

tinned
brass

corn
stalks
/husks

2
2

4.4
3.0 -

Theodorovic (1954)

A1 wood 2-3 8.2 14.1 Geller (1980)
A1 wet

woodd

2-3 5.9 10.6 II II

A1 dung 2-3 6.4 9.3 II II

A1 wood 2 6.1 Singer (1961)
A1 wood 2 6.4 - II II

A1 wood 2 6.7 - II II

A1 wood 2 12 Joseph (1983)
A1 wood 2 17 II II

Al - aluminium 
 ̂PHU1 - water of evaporation treated as energy loss 
 ̂ PHU2 - energy associated with water of evaporation taken into 
account.
^tests conducted by Geller (1980) moisture content of "wood" and 
"wet wood", 10% and 20% respectively

Values of PHU (excluding water of evaporation) are reasonably close for 

both Geller (1980) and Singer (1961). These figures are also in line 

with the higher values of efficiency obtained by Geller (1982) for the 

monitored meals in Ungra village.

Theodorevics's work gives the lowest values fo PHU (3-4%), which are 

comparable with the lowest efficiency figures obtained by Geller (1982). 

The low values by Thedorovic may be a reflection of having used a
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different pot material (ie tinned brass) and type of fuel (corn stalks 

and husks) from both other authors; the PHU's with animal manure also 

tended to be lower than those with firewood in the tests carried out by 

Best (1979a, 1979b). The highest PHU's were obtained by Joseph (1983).

4.3 Summary; major findings

The widespread assumption in the literature and elsewhere that the 'open 

fire' and traditional stoves have a low heat utilization only holds true 

for certain geometrical arrangements (see also Chapter 3). For 

instance, WBT's on a number of traditional stoves and fireplaces (e.g. 

Fijian two stone fireplace, a fire under a three-legged pot, the one- 

mouth Bangladeshi pit chulha, and some multi-pot traditional stoves used 

in India, Indonesia and Egypt ) have given PHU's around 10% or less. 

However, changing the values of critical design parameters (see below) 

of these stoves would increase the measured PHU. Thus traditional 

stoves and fireplaces with optimum values of these critical parameters 

have higher PHU's e.g. 3-stone fireplace, the Bangladeshi two-mouth pit 

chulha, Keren stove, and both the Indian and Sri Lankan 'U' chulhas.

The most important parameters which affects the PHU significantly are 

the distance between the fuelbed and pan, and pot material. Other 

parameters are power output, size of firewood, presence of wind, 

moisture content of firewood, pan shape and material. For example, the 

higher values of PHU1 are obtained using an aluminium pan instead of a 

clay pot (Geller, 1980, 1982). Other work highlights the effect that a 

simple parameter such as the shape of the cooking pot can have on the 

PHU (e.g. Islam, 1980). However, whilst some researchers found that the 

PHU with small pieces of firewood was higher than with large pieces 

(e.g. NCAER, 1959; Visser and Verhaart, 1980) the opposite has also been
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reported (Joseph and Shanahan, 1981). PHU's are also affected by the 

type of fuel (see Thedorovic, 1959; Singer, 1961; Best, 1979a, 1979b) 

as the burning rate of dense fuels (e.g. wood) is different from bulky 

fuels (e.g. crop residues). This would give rise to different flame 

heights and hence a different optimum value of fuelbed/pan distance.

It was stated in the previous chapter that cooking efficiency is only 

one parameter of interest to stove users, who may be prepared to 

sacrifice fuel economy for other needs, e.g. fast cooking, space heat, 

social focus, presence or absence of smoke. Villagers have to decide 

which trade-offs they are prepared to make. For example, whilst the 

PHU's of the one-mouth and two-mouth Bangaldeshi pit chulha's are around 

10%, villagers build a stove which balances smoke production and fuel 

efficiency. Moreover, villagers use pots with a spherical bottom in 

preference to ones with a flat bottom, thereby increasing the PHU. 

Overall, the choice of stove by any user depends on their felt needs 

(eg. low cost, easy to maintain, simple to use, and son - see Chapter 3)*

Hence, any mode of cooking is a system comprising of;

(a) user preferences;

(b) fuel (type, size, moisture content);

(c) stove;

(d) pot (size and material);

(e) cooking procedure (preparation and food type).

As the literature had shown that traditional stoves and fireplaces were 

not inherently inefficient, it was decided to test some traditional 

designs. The next chapter gives details of the methodology employed, 

and results obtained for the various stoves tested.
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Chapter 5 

Laboratory tests on cooking stoves

5.0 Introduction

The previous chapters have shown that not all traditional stoves and 

fireplaces are as inefficient for cooking as commonly quoted in the 

literature. Hence, it was decided to test some traditional stove 

designs. This chapter details WBT's which were conducted at the Open 

University on the 3-stone fireplace (Fig 5.1a) and the Indian 'U' chulha 

(Fig 5.1b). WBT's were also carried out on an "iron frame" stove 

(Fig 5.1c); a stove which had displaced the traditional 3-stone 

fireplace in Zimbabwe. Initial tests were carried out on the 3-stone 

fireplace to develop the experimental method, become familiar with WBT's 

and obtain consistency with other work. Tests were then conducted on a 

common traditional type of stove; the »U' chulha was chosen as it is 

widely used (in India and Sri Lanka) and had not been so thoroughly 

tested as the 3-stone fireplace. Finally tests were carried out on the 
iron frame.

5.1 Methodology

An Indian 'U' chulha was built out of clay (15%), sand (31%), ash (8%), 

"grog" ie brick dust (31%), and cow manure (15%) mixed with water. The 

dimensions were obtained from photographs of a 'U' chulha.

A base 1cm in thickness was made, on top of which the body of the »U' 

chulha was placed. An additional 'U' shaped section was also made, 

which could be placed on the top of the chulha (Fig 5.1b) to increase
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(a) 3-stone fireplace

4.5 17.7

12.0

(«11 dimensions in cms)

(b) Indian 'Ü' chulha

23
25

Plan

Section (c) unmodified iron frame 
(measurements in cms.)

Fig 5.1 stoves used in WBT's
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the height. This arrangement allowed an aluminium cooking pan (Fig 5.2) 

to be placed at 9.5 cm and 14.5 cm above the firewood. A clay pot was 

also used in these tests: because of the spherical bottom of the clay 

pot it was closer to the firewood than the aluminium pan.

The "iron frame" stove used in the tests was bought in a market place in 

Harare (Zimbabwe) and brought back to England. WBT's were carried out 

on an unmodified iron frame (Fig 5.1c) as well as with limited wind 

shielding (by placing metal sheets around 3 sides of the iron frame Fig 

5.3a) - these tests were conducted at the Open University.

McGarry (1985) also introduced wind shielding into the iron frame by 

constructing the iron frame from sheet metal (Fig 5.3b); this is 

referred to, here as the McGarry stove. Village women in Zimbabwe 

reported that firewood consumption with this modified iron frame was 

half that of the original iron frame according to McGarry (1985). In 

order to test this claim a series of WBT's were carried out at Reading 

University on the iron frame and the McGarry stove.

All WBT's on the 3-stone fireplace and 'U' chulha were conducted at the 
Open University.

5.1.1 Test conditions

All tests at the Open University were carried out in a fume cupboard: an 

extractor fan on the roof of the cupboard removed any smoke that was 

produced. Two wind speed settings were obtained whereby the mouth of 

the fan was either completely uncovered or half covered.
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lid

11.0

15.0 13.5
20.0

20.0(a) aluminium pan
fb) enamel pan

25.5
(all dimensions In cms)

(c) clay pot

25.0

Fig 5.2 Cooking pans used in WBT’s

(a) iron frame windshielded with 3 metal sheets

(b) ’’McGarry stove" (taken from McGarry, 1985)

Fig 5.3 Modifications to iron frame
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An aluminium pan was used for all the tests on the 3-stone fireplace and 

most of the tests on the *U’ chulha: a small number tests on the ’U' 

chulha were conducted using a clay pot. An enamel pan which had been 

bought in Zimbabwe was used in all WBT’s for the iron frame. All 

tests carried out on the iron frame at the Open University were 

conducted with the bottom of the pan at 10cm from the firewood - this 

was close to the optimum height found by Visser and Verhaart (1980) for 

the three stone fireplace.

WBT’s carried out at Reading University on the iron frame and McGarry 

stove were conducted under conditions of "no wind", "slight" wind" (1 

m/s) and "moderate" wind (1.5 m/s). WBT’s at the various wind speeds 

were carried out with the wind blowing directly at the flames (ie open 

side of the McGarry stove) and repeated with one windshielded side 

placed in the way of the wind (by rotating the McGarry stove through 

90°). All tests were carried out in a laboratory at Reading University, 

with a fan to provide the 2 wind speeds; these wind speeds were obtained 

by covering the air intake of the fan by an appropriate amount. Wind 

speed was measured with a thermal anemometer (Airflow Developments model 

TA3000); with an accuracy within 5% of the reading over the range of 
wind speeds measured. The average wind speed was obtained by taking 

measurements along the side of the stove. The distance between the 

enamel pan and the fuelbed was approximately 6 cm. All other test 

conditions are as described on the WBT’s carried out on the iron frame 

at the Open University.

The tests carried out at Reading University also considered the heat 

transfer from the fuelbed to the cooking pot. In this analysis it was 

assumed that heat was transferred from the fuel to the pan by convection 

and radiation only. The magnitude of the radiative component was
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calculated from the fuelbed/pan dimensions and measurements of the 

surface temperature of the fuelbed: ten readings were taken of the 

surface temperature of the fuelbed using a thermocouple. Another ten 

readings were taken with the thermocouple inserted into the fuelbed.

All these temperature measurements were carried out using a Comark 

stainless steel sheathed mineral coated Ni-Cr/Ni-Al thermocouple. The 

following equations were used to calculate the transfer of heat from the 

fuelbed to the cooking pot by radiation and convection:

Heat transfer by radiation.

Qr
fl_20
A
Tl
T2

Qr = Fl_2 0 A (Ti^ - T2 )̂ equation (5.1)
the rate of transfer of heat by radiation;
related to the interchange coefficient, F (see below);
Stefan Boltzmann constant (5.6697 x 10“  ̂W/m=K^); 
the area of the pan (0.3l4m=); 
the temperature of the fuelbed (758K); 
the temperature of the pan (336K)

1 -2 =
+ (1 - 1)D= +

®2
( 1 - 1 ) 
ël

equation (5.2)

Fl-2

ei
02

Dl
D2

the interchange factor (from McAdams (1954:69) this has been 
taken to be 0.45 for the parameters in the WBT’s carried out); 
the emissivity of the fuelbed (assumed to be 0.9 - see 
Karlekar and Desmond (1977));
the emissivity of the black enamel pan (assumed to be 0.85, 
see Karlekar and Desmond (1977)); 
the diameter of the fuelbed (0.2m); 
the diameter of the enamel pan (0.2m);

The convective heat transfer coefficient h, is given by the expression:

A &T
equation (5.3)

Qq - the heat transfer by convection;
A - the area of the enamel pan (0.03l4m=);
AT - the temperature difference between the flames and pan (assumed to 

be 937K).

Two species of firewood were used: Jelutong (Diera Costulata) - a 

Malaysian hardwood and Iroko (Chlorophora regia) a hardwood from the
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West African state of Cameroon. Jelutong is a fast burning wood which 

produces long flames, whilst Iroko is a slow burning wood and produces 

short blue flames. Sticks of Jelutong and Iroko (2.5cm square and 30cm 

in length) were used in WBT's on both the 3-stone fireplace and 'U' 

chulha. Thinner sticks of Jelutong (0.6cm square) were used in the 

tests on the iron frame; it was possible to obtain higher power outputs 

(up to 9kW) with the thinner sticks than the thicker sticks.

The moisture content of the firewood was determined by drying samples in 

a ventilated oven at 105°C for 24 hours. The average moisture content 

(dry basis) of 5 samples of Jelutong and Iroko were 9.7% (0.2) and 9.2% 
(0.2) respectively; the figures in brackets refer to the standard 

deviation

5.1.2 Measurement of PHU

A procedure similar to that outlined by Joseph and Shanahan (1980a), was 

adopted and (unless stated otherwise) was as follows:

A small amount of kindling - 40g of Parana Pine and 6g of newspaper - 

was placed in the stove. A cooking pot of known mass containing 2kg of

water at around 25°C was placed on the stove. The kindling was lit,

and thirty seconds later, the sticks of firewood were placed on the

fire. The temperature of the water was recorded at two minute periods

(starting from the time the kindling had been lit) until the water 

reached boiling point. At this point the pot, charcoal, and the burning 

firewood were removed from the stove and weighed separately. These 

measurements were used to calculate the values of PHU in bringing the 

water to boiling point (ie BP1) using equation 3.6 and 3.7 (see Chapter 

3), viz PHU1 and PHU2; PHU1 treats steam as an energy loss, whilst PHU2
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does not. The calorific values of the firewood was corrected for the 

moisture content using equation 3.8 (derived in Appendix B), and a 

calorific value of 29MJ/kg was assumed for the residual charcoal.

The pan and the fuel were returned to the stove and heating continued 

such that the temperature of the water was above 95°C. After 10 minutes 

the cooking pot and contents, firewood and charcoal were again weighed 

separately. These measurements were similarly used to calculate the 
values of PHU at BP1S10.

The cooking pot and fuel were returned to the stove and again weighed 

after allowing the water to simmer for another 20 minutes and a 

subsequent 30 minutes after that.

The PHU's obtained at BP1, BP1S10, BP1S30, and BP1S60 refer to the 

values of PHU obtained in bringing the water to boil, and subsequent 

simmering for 10 minutes, 30 minutes and 60 minutes, respectively.

The average power output, during the WBT's, was calculated by dividing 

the heat energy of the consumed firewood (less the heat energy in 

residual charcoal) by the time for which the fire had been burning.

The cooking pot, water, firewood and charcoal were all weighed on a 

Salter LM10 multi-revolution scale (maximum capacity 5kg in 2g 

divisions). A Comarck digital thermometer type 3002 (accuracy +0.5°C) 

was used to measure the temperature of the water. A digital timer 

(Casio FX-8100) was used to give an audible signal at every two minutes.

A total of 8 WBT's were carried out on the 3-stone fireplace.
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A total of 39 WBT’s were carried out on the *U’ chulha: 8 with the clay 

pot and 31 with the aluminium pan. The effect of four parameters 

(height, wind speed, fuel type and pot material) on the PHU was 

investigated on the ’U' chulha using a factorial design experiment; a 

factorial design described in detail by Bialy (undated) was used. Two 

different values were used for each of the four parameters (Table 5.1).

Table 5.1
Values of parameters in factorial designed stove tests

Parameter Value
level 0 level 1

Fuel Jelutong Iroko
Height 12.0cm 17.0cm
Pan material aluminium Clay
Wind speed ’’low” "high”

A total of 39 WBT's were carried out on the iron frame at the Open 

University: 19 of these were on the unmodified stove, whilst another 20 

were carried out with 3 sides of the iron frame shielded with pieces of 

sheet metal. At Reading University a further 8 WBT’s were conducted on 

the unmodifed iron frame and McGarry stove.

PHU's for the iron frame were measured at BP1 and BP1S10; measurements 

at BP1S10 were taken, as the staple food in Zimbabwe (see Chapter 6) 

involved bringing water to the boil and simmering for about 10 minutes.

5.1.3 Energy losses

Steady state radiative heat losses from the pot and stove were estimated 

from the variation of the time for the water to reach boiling point with 

power output: the reciprocal of BP 1 was plotted against power output, a 

curve was fitted to these points using the method of least squares; the 

steady state energy losses were then obtained from the intercept on the
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power output axis (Fig 5.6).

5.1.4 Energy flows

Energy flow diagrams were based on the calculations of the heat energy, 

in the water, steam, residual charcoal and the heat energy radiated from 

the pot and stove during the test. The method used to calculate the 

heat radiated from the pot and stove is given in section 5.1.3. These 

radiative heat losses were assumed to be negligible in bringing the 

water from ambient to boiling point, and hence are not included in the 

energy flow diagrams at BP1. The energy lost in the stack gases was 

calculated by subtracting the sum of the heat energy in the water, 

steam, residual charcoal and the heat radiated from the pot and stove, 

from the heat energy in the firewood burnt.

5.1.5 Statistical analysis of PHU data

(a) chulha

A statistical programme (available on the DEC-20 computer at the Open 

University) was used to analyse the PHU data obtained from the factorial 

design experiment on the ’U' chulha. This programme used standard 

statistical analysis of variance techniques. The output of the 

programme gave the level of significance of the main factors and two-way 

interactions.

(b) Iron frame

A t-test was used to analyse the PHU data with and without the 

3 metal sheets on the iron frame (see section 5.2.3).

166



5.2 Results

5.2.1 Traditional 3-Stone Fireplace

At BP1, values around 20% were obtained for both PHU1 and PHU2 with 

Jelutong for power outputs from 2.1kW to 2.6kW. Slightly lower values 

for PHU1 (16%) and PHU2 (18%) were obtained with Iroko for power outputs 

around 2kW (Table 5.2).

Table 5.2 
3-Stone Fireplace; PHU data

(Fuel; Jelutong)

BP1 BP1S10 BP1S30 BP1S60
Time PHU1 PHU2 Pq mg 

(%) (kW) (g)
PHU ?o mg PHU Po mg PHU Pg mg

to
boil
(mins)

(%) (%) (kW) (g) (%) (kW) (g) (%) (kW) (g)

24 19.5 20.4 2.21 12 19.4 1.84 9.5 16.1 1.43 62 14.5 1.13 90
26 18.7 19.3 2.14 9.5 16.1 1.95 24 14.1 1.51 39.5 11.9 1.19 45.5
21 19.0 19.7 2.60 11 18.0 2.24 56 15.9 1.62 74 13.7 1.21 81
20.3 19.6 20.4 2.61 12.5 17.5 2.35 16.5 15.2 1.48 23.5 13.4 1.12 43.5

Key 
P - Power Output of firewood;

- mass of water evaporated

Table 5.3
3-Stone Fireplace: PHU data

(Fuel; Iroko)

BP1 BP1S10 BP1S30
Time PHU1 PHU2 Po mg PHU Pg mg PHU Po mg
to (%) (%) (kW) (g) (%) (kW) (g) (%) (kW) (g)
boil
(mins)

35 15.9 16.7 1.86 13.5 14.6 1.68 17 12.5 1.41 29
32 17.3 17.7 1.89 6 15.5 1.79 33 13.2 1.59 68
30 17.8 18.2 1.96 6 15.3 2.01 49 13.3 1.67 76
33 16.8 17.8 2.01 16 15.5 1.66 49 13.8 1.64 89

For Jelutong, PHU2 varied from 16% to 19% and PHU1 from 15% to about 17% 

at BP1S10, whilst for Iroko PHU2 varied from 14.5% to 16% and PHU1 from 

13% to 14%. At BP1S30, for Jelutong PHU2 had fallen to between 14% -
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Fig 5.7 Energy flows in 3-stone fireplace using Jelutong as fuel
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16%, and to 12% - 14% for PHU1, whilst for Iroko PHU2 was between 12% 

and 14% and PHU1 between 10% and 11%. At BP1S60, for Jelutong, values 

of PHU2 had fallen to between 12% and 14.5% and PHU1 between 10% and 

11.5% (Fig 5.4 and 5.5).

The mean values of PHU fall for both Jelutong and Iroko as the simmering 

time increases; the mean value of PHU2 for Jelutong was around 20% for 

both BPl and BPISIO, 15% for BP1S30 and 13% for BP1S60. Similarly, the 

mean values of PHU1 also decreased with simmering time, though PHU1 fell 

much more rapidly than PHU2: for Jelutong, whilst the mean value of the 

energy associated with evaporated water is 4% of PHU2 at BPl this has 

risen to 20% at BP1S60.

Steady state energy losses from the aluminium pan and stove at BPl were 

estimated to be around 0.9kW (Fig 5.6). Estimated radiative heat losses 

were 0.4% and 0.9% of the energy input for Iroko {at BP1S30) and 

Jelutong (at BP1S60) respectively.

Most of the heat energy lost is contained in the stack gases (Fig 5.7 

and 5.8). At BPl, between 16 and 19% of the input energy was absorbed 

by the water; less than 1% was lost in the steam. Energy contained in 

the residual charcoal at BPl was about 10% for Jelutong; with Iroko the 

residual charcoal contained 16% of the energy.

Stack and steam losses both increased with simmering time.

5.2.2 »U* Chulha

Unless otherwise stated the text refers to tests carried out with the 

aluminium pan.
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(a) Summary; test data

PHU data for the WBT’s conducted on the ’U’ chulha are summarized in 

Table 5.4 and 5.5.

It was difficult to obtain high burning rates with Iroko and a maximum 

of 4kW (cf 6kW with Jelutong) was obtained in the tests. More smoke was 

produced with Iroko than Jelutong and it took longer to bring water to 

boiling point. Smoke and small flames were characteristically produced 

at low power outputs for both Jelutong and Iroko. As the power output 

was increased; less smoke was produced and the flame length increased. 

Flames from Iroko were usually smaller than with Jelutong, and hence did 

not always reach the pan bottom. However, with Jelutong at the highest 

power outputs (at the low height) flames tended to go around the sides 

of the aluminium pot.

Generally, under the same test conditions, PHU’s with Iroko were lower 

than with Jelutong. At the ’’low” and ’’high” heights the maximum values 

of PHU2 with Iroko were 12% and 18% respectively, compared with 15% and 

23% with Jelutong.

At the ’’low” and ’’high” height the maximum values of PHU2 with the clay 

pot were 17% and 23%; small flames could reach the bottom of the clay 

pot though not the aluminium pan owing to the curved bottom of the clay 

pot.

(b) Statistical significance of the main factors and interaction effects

According to the statistical analysis of the factoral experiment, the 

effect on the PHU of "wind” and two-way interactions (e.g. wind-pot.
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Table 5.4
PHU data from complete factorial design on *U* chulha

BPl BPISIO BP1S30 BP1S60
Level Time PHU1 PHU2 Po PHU Po PHU Po PHU Poof factor 
(see Table 
5.1)

F H P W

to
boil
(mins)

(f)
1

(f) (kW) {%) (kW) (%) (kW) (%) (kW)

0 0 0 0 20 21.5 22.7 3.2 17.5 2.5 15.0 1.9 11.9 1.5
0 0 0 1 13 20.3 22.0 3.8 18.6 3.0 15.8 2.2 14.1 1.5
0 0 1 0 28.5 11.4 22.6 3.3 21.1 3.2 21.3 2.6 20.9 2.0
0 0 1 1 16 12.1 18.3 5.2 19.2 4.2 19.3 3.3 19.0 2.6
0 1 0 0 28 11.4 12.4 3.2 11.6 2.9 10.6 2.3 9.6 1.7
0 1 0 1 18 13.6 14.6 4.3 12.5 3.4 10.8 2.6 9.2 2.0
0 1 1 0 34 5.7 17.2 5.4 17.3 4.9 16.0 5.0 16.1 3.8
0 1 1 1 29.5 8.3 15.0 4.4 14.1 4.8 13.7 4.0 13.3 3.6
1 0 0 0 35 15.1 16.0 1.9 15.2 1.8 13.0 1.5 11.6 1.3
1 0 0 1 35 15.8 16.4 1.9 14.8 1.7 13.1 1.4 10.7 1.2
1 0 1 0 80 5.9 19.7 2.2 20.1 2.2 19.4 2.1 18.9 1.9
1 0 1 1 34 12.2 19.9 2.5 19.7 2.4 19.0 2.2 18.2 1.9
1 1 0 0 40.5 10.1 10.7 2.5 10.6 2.6 10.2 2.4 9.2 2.1
1 1 0 1 52 9.1 9.6 2.2 9.2 2.1 8.5 2.0 7.6 1.7
1 1 1 0 42 7.4 12.2 3.4 12.0 3.3 12.2 2.9 11.2 2.8
1 1 1 1 52 6.2 11.7 3.2 11.5 3.4 11.6 3.2 11.5 2.9

Table 5.5
PHU's for follow up WBT’s on *0* chulha
(all tests conducted with aluminium pan)

BPl BPISIO BP1S30 BP1S60
Level Time PHU1 PHU2 Po PHU Po PHU Po PHU Poof factor to (2) (2) (kW) (2) (kW) (2) (kW) (2) (kW)
(see Table boil
5.1) (mins)

F H P W
0 0 0 0 11 17.2 19.5 5.5 19,1 4.3 15.6 3.1 17.5 2.2
0 0 0 0 12 14.7 16.3 5.9
0 0 0 0 12.8 19.1 20.6 4.4
0 0 0 0 26.5 17.2 18.5 2.3
0 0 0 0 37 15.2 16.4 1.8 14.3 1.8 14.1 1.4 12.5 1.1
10 0 0 26.5 15.7 16.4 2.5 16.2 2.4 15.9 2.3 15.4 2.0
10 0 0 25 16.6 17.8 2.5 17.7 2.4
10 0 0 27 15.1 16.0 2.6 10.0 3.6
10 0 0 23.5 16.1 17.1 2.7 17.6 2.5 17.2 2.4 17.1 2.0
0 1 0 0 13.5 12.6 13.5 6.1 14.2 4.6 14.6 4.6 14.9 3.2
0 10 0 15 12.8 13.6 5.4 14.2 4.2 13.7 3.7 14.3 3.0
0 10 0 12.8 13.1 13.8 6.2 15.1 4.6
0 10 0 23 11.9 12.6 3.8 12.4 3.4 12.1 3.0 11.1 2.4
1 1 0  0 37 9.3 10.0 3.0 9.5 2.9 8.4 2.4 7.9 2.2
1 1 0  0 25 10.5 11.5 4.0 11.2 3.5 10.3 2.7 9.3 2.4
1 1 0  0 32 10.4 11.1 3.1 10.7 3.1 10.0 2.7 9.3 2.3
1 1 0  0 23.5 11.7 12.6 3.8 11.3 3.3 10.0 2.7 9.3 2.3
1 1 0  0 28.5 11.1 11.8 3.3 11.6 3.0 10.3 2.6 9.5 2.3
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fuel-height, height-wind and so on) were not significant (Table 5.6).

Table 5-6
Statistical level of significance of changing various factors for PHU2)

Factor BPil BPISIO BP1S30 BP1S60
fuel 1.4% (3.2%) 1.9% 1.4% 2.2%
height 0.2% (0.3) <0.1% <0.1% 0.1%
pot material n.s.2 (0.2%) 1.0% <0.1% <0.1%
wind n.s. (n.s.) n.s. n.s. n.s.

 ̂figures in 
 ̂n.s. - not

brackets refer to PHU1 
statistically significant

At BPl the effect on PHU2 of changing either the firewood species or 

height on PHU2 was statistically significant at the 3% and 0.2% level 

respectively.

The effect of changing from the clay to aluminium pot was statistically 

significant at times greater than BPl (Table 5.6). Increasing simmering 

time tended to increase the statistical significance of the main 

factors.

(c) Effect of fuel

Iroko was difficult to burn, especially in the initial stages of 

lighting the fire and the flames were easily extinguished; Jelutong 

burnt very easily. In some cases, bellows were needed with Iroko to 

prevent the fire from being extinguished. The range of power outputs 

obtained with Iroko (2-4kW) was smaller than with Jelutong (2-6kW)

(Fig 5.9 - 5.12). A smokey fire was evident at low power outputs and 

the early stages of combustion for both firewood species.

At BPl, the PHU tended initially to increase with power output, reach a 

maximum and then fall; there is insufficient data to confirm whether 

this was the case for Iroko at the "low" height.(Fig 5.9 - 5.12).
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PHU’s at BPl with Iroko (Fig 5.11 and 5.12) were lower than those with 

Jelutong (Fig 5.9 and 5.10).

The maximum value of PHU2 fell with simmering time - this was especially 

noticeable with WBT’s using Jelutong (Fig 5.9 and 5.10).

<d) Effect of height

Iroko burnt with small flames and lower power outputs, hence, the flames 

did not always reach the pan bottom: this was particularly pronounced at 

the ’’high’’ height and the flames did not reach the pan bottom at power 

outputs less than about 3kW. In addition, a dark brown oily liquid 

(creosote) was deposited on the bottom of the aluminium pan.

With Jelutong, the flames reached the pan bottom at the ’’low’’ height; 

the flames tended to go around the aluminium pan at power outputs 

greater than 5kW. At the ’’high’’ height, the flames only reached the pan 

bottom at power outputs of around 5kW.

For Jelutong, increasing the distance between the firewood and pan 

decreased the proportion of flames reaching the pan bottom and had three 

effects on the PHU as a function of power output at BPl (Fig 5.9 and 

5.10): firstly, the maximum value of PHU2 fell from 23^ to 15%; PHU1 

fell from 21% to 14%. Secondly, the PHU vs ?q curve was much flatter. 
Thirdly, the peak values of PHU1 and PHU2 ocurred at a higher power 

output, viz from 3kW at the lower height to 4.5kW at the greater height.

For Iroko, increasing the height decreased the PHU (Fig 5.11 and 5.12). 

There was little change in the energy associated with steam as a 

proportion of the total energy.
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(e) Effect of pot material

Less time was taken for the .water to reach boiling point with an 

aluminium pan compared with the clay pot at either height (Fig 5.13): 

with an aluminium pan the time to bring the water to boiling point was 

about 50 minutes at 1.?kW, begining to level off at around 10 minutes 

for 6kW.

As the bottom of the bottom of the clay pot was nearer to the fuelbed, 

flames reached the bottom of the clay pot more easily than of the 

aluminium pan: values of PHU2 obtained for the clay and aluminium pan 

were similar.

Owing to the large mass of water evaporated, the lowest values of PHU1 

were obtained when a clay pot was used; several hundred grammes (up to 

600g) of water were evaporated when a clay pot was used compared with 

typically 20g to 30g with the aluminium pan.

Overall, the lowest and highest values of PHÜ2 were of similar magnitude 

with both types of cooking pot (Table 5.4).

(f) Energy losses

The reciprocal of BPl plotted against power output for both heights are 

shown in Fig 5.14. The best fit lines to these data have been drawn 

using the standard techniques of linear regression. The correlation 

coefficients at the low and high heights are 0.970 and O.989 

respectively. Intercepts on the power output axis (ie estimated rates 

of heat loss at BPl) are 0.69kW and 0.95kW for the ’low’ and ’high’ 

height respectively; in the ’low’ height case the data points at the two
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highest power outputs have been excluded.

(g) Energy flows

Theoretically the energy required to heat 2kg water from 25°C to 100°C 

is 625kJ. Because the water was heated from a temperature slightly 

different from 25°C the energy absorbed in heating the water (the 
sensible heat) is not exactly 625kJ. The percentage heat energy 

absorbed by the water is slightly smaller than PHU1 or PHÜ2 as energy 

associated with the residual charcoal is included in the energy flow 

diagrams (Fig 5.15 to 5.18).

Energy losses due to radiation from the pot and stove have not been 

included in the energy flow at BPl: estimated radiative energy losses at 

BP1S60, as a proportion of input energy are small (4l.4kJ and 57kJ at 

the "low" and "high" heights respectively) - these are less than of 

the input heat energy. However, all the energy flows are dominated by 

the energy lost in unburnt hot gases which increase with time: more than 

two-thirds of the heat energy given out by the firewood was lost in the 

stack gases (Fig 5.15 - 5.18).

At BPl, the amount sensible heat absorbed by the water in the clay pot 

was comparable to the heat content of the escaping steam. Heat lost in 

steam with the aluminium pan was an order of magnitude smaller (compare 

Fig 5.15 and 5.16 & Fig 5.17 and 5.18). Overall, energy losses 

associated with steam increased with simmering time with both types of 
pan.

At BPl, up to 20^ of the input energy was stored in the residual 

charcoal. The mass (and hence energy content) of this charcoal
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Table 5.7 
PHU* data from WBT's 

(iron frame without windshield)
BPl BPISIO

PHU1 PHU2 Power time Charcoal Wood PHU1 PHU2 Power Charcoal Wood
(%) (̂ ) Output to boil left used (̂ ) (%) Output left used

(Kw) (min) (g) (g) (Kw) (g) (g)11.3 12.0 3.58 26 25 356 9.2 11.7 3.18 14 418
12.5 13.3 4.03 20.75 20 322 9.3 12.1 3.65 21 422
11.9 12.7 4.80 18.33 23 342 8.6 10.9 4.30 16 44711.8 12.6 6.21 14.33 21 340 8.9 12.3 4.85 14 430
12.5 13.4 7.16 11.66 33 343 9.0 11.1 5.34 21 434
9.8 10.3 8.53 12.5 20 355 7.5 10.5 6.16 24 472
11.7 12.6 7.69 11.50 27 350 8.4 12.0 5.82 19 46311.4 11.9 7.12 12.75 24 353 8.1 10.6 5.63 17 47011.6 12.4 4.64 19.33 22 346 8.2 11.0 4.33 24 478
12.1 12.9 4.29 20.25 23 338 8.0 11.4 4.33 27 497
11.3 11.7 4.94 18.67 27 363 7.5 10.5 4.83 27 523
11.7 12.9 5.07 17.5 26 349 7.3 11.7 5.15 26 532
12.9 13.7 5.97 13.5 27 323 7.8 11.8 5.65 24 498
12.1 13.0 6.24 13.67 27 339 7.2 11.7 6.06 31 546
11.2 11.8 3.59 26 18 352 8.7 10.3 3.32 13 434
12.1 12.9 7.14 16 16 322 7.6 12.3 6.23 27 518
12.6 13.6 7.38 11.17 31 336 7.6 12.6 6.42 32 522
10.3 11.1 2.80 36 18 377 8.4 9.6 2.67 15 44911.3 12.4 9.01 10.25 34 375 6.7 11.2 7.7 34 596
9.8 10.6 2.86 37.25 23 406 7.3 9.2 3.05 23 535

Table 5.8 
PHU* data from WBT's 

(iron frame + windshield)
BPl BPISIO

PHU1 PHU2 Power time Charcoal Wood PHU1 PHU2 Power Charcoal Wood
(%) (%) Output to boil left used (̂ ) (%) Output left used

(Kw) (rain) (g) (g) (Kw) (g) (g)10.0 10.6 6.39 1.6.5 35 422 6.8 9.2 5.8 22 56710.8 11.4 4.17 22.83 28 436 6.6 8.7 4.8 22 5349.0 9.8 6.46 17.75 31 447 6.2 8.8 6.03 29 6259.4 10.0 5.56 20 29 432 6.9 9.0 5.01 26 562
8.6 9.3 7.09 17 34 472 6.2 8.7 6.17 28 57510.5 11.7 7.09 14 34 399 6.2 0.6 6.93 37 6358.4 9.2 8.10 15.25 36 486 8.4 9.2 6.50 25 608
9.7 10.3 5.70 18.75 29 417 7.2 9.6 5.00 22 528
8.8 9.6 4.08 19 23 446 7.1 9.0 3.76 20 539
9.7 10.8 6.59 16.25 34 426 6.9 9.1 5.79 23 562
9.7 10.3 3.90 27.5 22 406 7.4 9.1 3.72 22 518
11.0 11.6 4.70 20 22 361 7.7 0.2 4.47 20 496
10.7 11.3 5.37 18 24 373 7.3 0.1 5.03 21 521
11.2 11.9 6.70 14 25 365 7.6 1.0 5.75 27 521
10.5 11.2 7.34 13.25 26 387 6.8 1.1 6.51 27 534
9.4 10.5 2.94 37.5 17 409 7.8 9.1 2.8 8 476
9.4 9.9 3.08 36 17 410 7.4 9.5 3.04 16 509
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decreased from BP1 to BP1S60.

5.2.3 Iron frame

(a) PHO as a function of power output

PHÜ data from the WBT's for the iron frame are summarized in Table 5.7 

and 5.8.

The plots of PHU vs power output at BP1 and BP1S10 without a windshield 

are shown in Fig 5.19. Corresponding PHU’s vs power output without a 

windshield are given in Fig 5.20.

(b) the effect of the windshield on the PHO

A t-test was carried out to determine the effect on the PHU of having a 

windshield on the iron frame. The PHU's were split into 3 sections by 

vertical lines corresponding to power outputs in the range below UkW, in 

the range 4-8kW and power outputs above 8kW (Fig 5.21). Only PHU's in 

the power output range of 4kW and 8kW were used in the statistical 

analysis; PHU's outside these power outputs showed a great deal of 

variance. This t-test gave the following results:

Table 5.9
Statistical tests on PHU data for iron frame

No. of Mean S.E.
data points PHU (%)

without windshield 14 12.8 0.58
with windshield 13 10.7 0.86

The t-test shows that the effect of the windshield is to significantly 

(p<0.001) reduce the PHU.
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The flames were very sensitive to cross winds with the addition of the 3 

metal sides, and were continually creeping around towards the sides 

rather than directly underneath the pot.

(c) Energy losses

Estimated steady state energy losses at BPl for the iron frame with and 

without the 3 metal sides were 0.5kW and 0.6kW respectively;

(d) Energy flows

Energy flow diagrams for the iron frame at BPl with and without the 3 

metal sides are shown in Fig 5.21 and 5.22. Energy flows are dominated 

by the energy lost in the hot stack gases: around three-quarters of the 

input energy was in the stack gases. Up to 16̂  of the input energy was 

contained in the charcoal which liad formed at BPl, and hence was greater 

than the energy which had been absorbed by the water. Energy carried 

away by steam was less than 155 of the input energy.

5-2.4 Effect of wind on iron frame and McGa^ry stove

PHUl at BPl for the iron frame and McGarry stove were both around 20%. 

Significantly lower PHU's were obtained with both stoves with "slight" 

wind when the wind was blowing directly at the flames; in both cases 

PHUl was around 5%. The wind had the effect of increasing the burning 

rate of the firewood as well as blowing away the flames from beneath the 

bottom of the pan. However, having a windshielded side of the McGarry 

stove placed in the way of the wind had the effect of doubling the PHU; 

PHUl at BP 1 was around 1055 - the shielding was observed to have reduced
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Table 5.10

iron frame and McGarry stove; PHU data

Level of McGarry stove iron frame
wind BPl BP1S10 BPl BP1S10

PHUl PHU2 Po PHUl PHU2 Po PHUl PHU2 Po PHUl PHU2 Po
(%) (%) (kW) {%) i%) <kW) (%) (%) (kW) (%) (%) (kW)

none 19.0 19.8 5.02 10.9 17.9 4.57 19.5 20.1 6.09 11.1 18.8 5.06
16.9 17.6 5.17 9.5 14.7 5.00 19.1 19.9 6.30 10.5 18.2 5.36

"slight" 4.5 4.9 9.08 3.4 4.8 8.77 5.9 6.3 8.35 4.4 5.4 7.74
(Ira/s) 5.2 5.8 9.15 3.8 5.0 8.60 5.8 6.3 7.80 4.5 5.6 7.11
(flames 
exposed 
to wind)

(flames 10.3 11.1 6.96 
shielded) 10.1 10.8 7.27

7.0 9.5 4.76
7.6 9.8 5.56

"Moderate" 
(1.5m/s) 
(flames 
shielded)

7.9 8.5 8.00 6.1 7.6 6.49
9.2 10.1 6.68 6.3 8.9 6.19

Table 5.11

Iron frame and McGarry stove; heat flux, radiative* and 
convective heat transfers

Level of 
wind Heat

none

(W/m= )

3.2

"slight" 2.3 
(1 m/s)

"Moderate" 2.0 
(1.5m/s)

McGarry stove
Convective heat

iron frame
Heat Convective heat

flux (a) transfer (b) power flux (a) transfer (b) power
coefficient

(W/m=K)

26.5

17.5

13.9

input (W/m* ) (W)
780

515

410

3.2

1.2

coefficient
(W/mfK)

26.5

5.3

input(W)
780
155

radiative heat input to the pan was calculated to be 220W in all cases
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the effect of the wind on the flames. With the "moderate" wind blowing 

at a windshielded side of the McGarry stove, the PHU was still higher 

than with the unmodified iron frame; PHUl was between 8% and 9% (Table 

5 . 10).

A summary of the heat fluxes, convective and radiative heat transfer 

with the various arrangements are given in Table 5.11. Heat transfer by 

radiation was around 220W. Under conditions of "no wind" heat transfer 

by convection was dominant (around 800W), however, convective heat 

transfer fell as the wind blew the flames away from the pan bottom, and 

the total heat transfer approached the radiative component.
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5-3 Discussion

5-3-1 Performance of "stoves" tested

(a) 3-stone fireplace

Values between 17% and 20% were obtained for PHU2 in bringing 2kg of 

water to the boiling point. These are in agreement with WBT's conducted 

by Joseph and Shanahan (1981).

No comparable data on PHUl by other authors has been found. However, 

PHUl falls with increasing simmering time, as the wood consumed 

increases.

At BP1S30, the mean value of PHU2 was 15-4% at 1.51kW for Jelutong - 

this is close to the expected value of 15%, according to data from 

Joseph and Shanahan (1981). For Iroko, the mean value of PHU2 was 13%.

Values of PHU2 at BP1S60 are much lower than reported by Brattle (1979) 

and, Joseph and Shanahan (1981) (see Chapter 4). In this study, once 

the water had been brought to boiling point, the power output of the 

fire was reduced to obtain gentle simmering sufficient to maintain the 

temperature of the water above 95°C. A higher average simmering 

temperature would result in a higher value for PHU2, as more water would 

be evaporated. Hence, these difference in PHU2 may be a result of 

different test conditions. Joseph and Shanahan observed that the longer 

the simmering time the greater the sensitivity of the PHU to the 

operating conditions and tending skills of the user - (see for example 

the differences between PHU data at BP1S60 by Brattle (1979) and Joseph 

and Shanahan (1981)).
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(b) 'U* chulha

PHU's of between 8% and 23% (depending on test conditions) were obtained 

in WBT's conducted on the 'U* chulha. This range ecompasses values 

obtained by other authors (e.g. NCAER, 1959; Salariya, 1978, 1983). At 

BPl, the optimum values of PHU were around 20%. Salariya (1978) 

obtained a PHU around 12% at BPl. This is not unexpected since Salariya 

had a greater fuelbed/pan distance for the 'U' chulha he used in his 

tests. PHU's obtained by the NCAER (1959) were also around 20%, which 

suggests that their *U' chulha had similar values of critical parameters 

(e.g. fuelbed/pan distance) however this cannot be confirmed as the 

dimensions of the chulha tested are given.

At BPl, steady state radiative energy losses with an aluminium pan are 

estimated to be around 0.65kW and 0.95kW at 'low' and 'high' heights 

respectively. The minimum power output required to maintain simmering 

at BP1S60 (around IkW) was above these values.

Heat losses from the stove and pot, after simmering for one hour, were 

estimated to be 39kJ and 57kJ at the "low" and "high" heights 

respectively; the effect of height on the PHU are discussed in more 

detail in the section 5.3.4. These estimates of heat losses are less 

than 1% of the input energy; similar values were obtained in WBT's 

conducted by the NCAER (1959) using metal pans on a 'U' chulha.

(c) iron frame/MoGarry stove

Estimated energy losses due to radiation from the pan and iron frame are 

slightly lower than those obtained for both the 3-stone fireplace and 

'U' chulha. This may be a result of differences in the thermal
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capacities of these stoves.

The pattern of energy flows for the iron frame are similar to those with 

both the 3-stones and 'U' chulha: at BPl, the energy flows with the iron 

frame are dominated by losses due to hot stack gases; up to three- 

quarters of the energy input was lost in this way. Up to 16% of the 

input energy was contained in the charcoal formed (some implications of 

this were discussed with regard to the *U' chulha) — this is comparable 

to the energy transferred to the water. In Zimbabwe, however, the role 

of charcoal is believed to be virtually non-existent (Banks, 1980); this 

was confirmed in the villages visited (see Chapter 6).

With the fuelbed/pan distance set at 10cm, the PHU's for the iron frame 

were around 10-13%: these are much lower than those obtained in WBT's 

carried out on both the 3-stone fireplace and 4-stone fireplace in the 

field; this finding is in line with the perceptions of village women in 

Zimbabwe that the iron frame used considerably more fuel than their 

traditional 3-stone fireplace. However, decreasing the fuelbed/pan 

distance to 6cm increased the PHU at BPl to around 20%. This is very 

close to the optimum values of PHU (at BPl) obtained for both the 3- 

stone fireplace and 'U' chulha (at the "low" height). This is important 

since it suggests that (under the same test conditions) stoves with the 

same values of critical parameters, such as fuelbed/pan distance will 

have very similar PHU's.

PHU's fell at the lowest and highest power outputs - a similar 

observation was made with the 3-stones and 'U' chulha.

Slightly lower PHU's were obtained with the addition of the 3 metal 

sides. This may be a consequence of the extractor fan above the iron
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frame, drawing air through the open side of the iron frame at a faster 

rate than without the windshield. In the WBT's carried out at Reading, 

without the presence of wind, the PHU's of both the iron frame and 

McGarry stove were much the same. However, the McGarry stove gives rise 

to significantly higher PHU's in windy conditions compared with the 

unmodified iron frame. Indeed with a wind speed of around 1 m/s the 

PHUl of the iron frame fell from 20% (with no wind present) to 5%, 

whilst the PHUl of the McGarry stove was around 10%. Observation showed 

the effect of wind on the flames was reduced by the shielding but not 

eliminated. This shielding was also effective at higher wind speeds. 

Whilst these results suggest that the McGarry stove would use 

considerably less fuel than the unmodified iron frame this only applies 

to windy conditions - with no wind the PHU's are about the same.

Under conditions of "no wind", heat transfer is primarily by convection. 

The effect of wind reduced the PHU by lowering the heat transfer by 

convection (see Table 5.9 and 5.10). As expected using a windshield 

reduced the effect of wind, resulting in higher PHU's (and transfer of 

heat by convection) than without sheltering.

Women in rural Zimbabwe tend to use the iron frame in a cooking hut (see 

chapter 6) hence there are likely to be very little differences in 

firewood consumption with the two stove types due to thermodynamic 

considerations alone.

Users said that headloads of firewood lasted longer with the McGarry 

stove compared with the iron frame. This may be a result of changes in 

the cooking practices of villagers (see Chapter 6): (a) it was found 

that villagers from one kraal in Zimbabwe only used about half their 

daily firewood consumption for cooking - the other half simply burned
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away (b) it was also noted that villagers using the iron frame were not 

particularly careful in ensuring that burning firewood was directly 

underneath the cooking pot - with the modified stove users may have to 

be more careful since the flames cannot be seen unless they are directly 

underneath the pot holes.

McGarry's statement that the modified stove used around half the 

firewood of the iron frame is based on rural women saying that this was 

the case. Obtaining such information by this method is not reliable, 

since villagers can often give the answers they think the questioner 

wants, for instance, French (1984) reports that whilst women in Malawi 

claimed the "improved" stoves they had been given used half the firewood 

of their traditional stove, physical measurements showed that there were 

no differences in consumption (see Chapter 3).

5.3.2 Source and magnitude of Errors

Sources of error are connected with the determination of the accuracy of 

the measurement of the mass of the firewood, charcoal and water. Errors 

due to these measurements will be very small as the mass was determined 

to within Ig (the error in the PHU due to an error of 1g in each of 

these parameters is considerably less than 1%). No significant error 

would have been introduced in measuring the temperature of the water 

with the digital thermometer which was accurate to within 0.5°C.

The major variation in measurements of PHU would be expected to arise 

after BPl for the following reason: the mass of water evaporated during 

simmering would depend on the simmering temperature. As the vapour 

pressure of water increases rapidly as the temperature approaches the 

boiling point, small variations in the simmering temperatures would have 

a large influence on the mass of water evaporated. Obviously, the
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longer the simmering period the larger the likely variation in the PHU. 

5-3-3 Energy flows

Most of the heat energy from the firewood is lost in the escaping hot 

gases - this energy loss increases (both as a proportion of the total 

energy as well as in in absolute terms) with time.

At BPl, up to 20% of the input energy was contained in the residual 

charcoal - and was comparable to the value of PHU2. Whether or not this 

energy is "lost", depends on actual cooking practices. For example, 

after BPl the power output of the burning fuel may be reduced to achieve 

gentle simmering, and result in a smaller quantity of charcoal left at 

the end of the cooking process (compare the magnitude of energy in 

charcoal at BPl and BP1S60 in energy flow diagrams). In Thailand, 

charcoal left at the end of the cooking process is put in an air-tight 

tin and re-used (Dunn, 1984; pers comm). Similar practices of saving 

charcoal have been reported for the Gambia (Loose, 1984; pers comm). 

However, this practice may be a restricted to those who use charcoal 

burning cookers (as for example in Thailand); users of wood burning 

stoves may not engage' in this practice.

In any case, the potential for utilizing the heat energy in the residual 

charcoal exists; not all this energy can be usefully employed as some 

energy will be lost due to incomplete combustion and the radiant energy 

captured by a pan will depend on the distance between the fuelbed and 

pot.

LL
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5-3.4 Expected effect of power output and height

There are two major mechanisms of heat transfer from the burning wood to 

the cooking pot: convective transfer from the flames and radiation from 

the bed of char. Heat transfer from the flames will be dominant, (as 

generally), close to 70% of the heat energy in firewood is contained in 

the burning volatiles (Bussmann e^ aJL, 1983). However, the temperature 

falls rapidly with increasing distance from the tips of the flames 

(Bussmann ^  al, 1983).

According to Bussmann et a2 (1983), the power output, Po does not affect 

the maximum flame temperature, but simply the flame height: the flame 

height is proportional to the power output to the power 0.4.

For a given height, there is an optimum power output which will lead to 

the maximum convective heat transfer from a single flame. At other 

heights the temperature of the gas temperature is less, and hence also 

the driving power (ie temperature difference between the pot and hot 
gases).

Altering the power output would have the effect of changing the optimum 

height for maximum convective heat transfer.

The PHU at BP 1 would be expected to be low at small power outputs for 

two reasons: firstly, the flames would be unable to reach the pan 

bottom, and secondly, owing to low combustion efficiency; a visual 

indication of combustion efficiency is given by the quantity of smoke 

produced. As the power output was increased the PHU would also increase 

reaching a maximum when the flames just touched the pan bottom, and then 

fall as the flames began to go around the sides of the aluminium pan.
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Increasing the height should shift the PHU maxima to a higher power 

output (and vice versa).

In the 'U' chulha experiments, this expected variation PHU with power 

output was observed for Iroko at the 'high' height (data at the 'low' 

height is over too small a range of power outputs) and at both heights 

for Jelutong: low power outputs were characterized by the production of

a lot of smoke (a sign of poor combustion), whilst at the higher power 

outputs, the flames tended to go around the sides of the pot. The 

latter may only have a small effect on the PHU: at power outputs greater 

than about 5kW at the "high" height not all the flames were directly 

underneath the pan. Hence, a smaller proportion of heat would be 

captured by the pot.

For the »U' chulha, using Jelutong the maxima in PHU is observed at 

around 3kW at the "low" height setting, whilst the maxima at the high 

height has been shifted to a higher power output (as expected). Data at 

higher power outputs is required in order to determine whether a shift 

in PHU with respect to power output occurs with Iroko.

5.3.5 Effect of fuel

Values of PHU (whether PHUl or PHU2) were generally lower with Iroko 

compared with Jelutong. This would be expected, primarily due to the 

signs of lower combustion of Iroko under the test conditions: Iroko was 

much more difficult to light and produced more smoke than Jelutong; 

constant blowing was required to maintain burning in some of tests.

Hence, the lower values of PHU may be a consequence of a lower 

combustion efficiencies with Iroko. Although Bussmann et ^  (1983) did 

not observe any significant difference in the tests using different wood
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species (Jelutong and Iroko were among these), this may have been a 

result of better combustion efficiencies since they used pieces of wood 

that were smaller ( 2 x 2 x 5  cm) and oven dried, both conditions which 

would aid combustion.

Owing to the low power outputs obtained with Iroko, the flame lengths 

were smaller than with Jelutong, thereby decreasing the temperature at 

the pan base and lead to incomplete combustion of the volatiles - one 

sign of which was dark brown volatiles deposited on the bottom of the 

pan. This would reduce the driving power for heat transfer.

5-3-6 Pan material

The lower thermal conductivity of the clay pot compared with aluminium 

reduced the rate of heat transfer into the pot. In addition, a large 

proportion of the energy transferred to the clay pot was lost in 

evaporation of water: several hundred grammes of water were evaporated 

with the clay pot (up to 700g) compared with around 20 to 40g with the 

aluminium pan. There are two reasons why a large quantity of water is 

evaporated: firstly clay pots are highly permeable to water and 

secondly, because of the gaps between the pot and lid]

Both the low thermal conductivity of the clay pot and the evaporative 

losses means it takes much longer to bring the water to the boil, or to 

maintain simmering, compared to using an aluminium pan: simmering losses 

are higher and hence require a higher power output.

The "efficiency" (in terms of sensible heat gained by the water) of a 

"stove" can be changed significantly simply by substituting clay pots 

for metal ones (or vice versa).
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5.3-7 Effect of wind

In the plots of PHU vs power output for the *U* chulha, it was assumed 

that the PHU was not affected by having the wind speed at the 'low' or 

'high' setting. This assumption was made on the basis of the initial 

analysis of the factorial design data, as well as the observation that a 

anemometer gave a zero reading on both wind settings- However, it is 

expected that changing the the wind speed would have affected the PHU in 

four ways: (1) By altering the burning rate (and hence the power 

output). (2) By altering the combustion efficiency. (3) By diplacing 

the flames from the optimum position underneath the pan. (4) By 

cooling the pan. It was assumed that changes to the PHU by both these 

factors were marginal; further investigation is required to determine 
this.

5-3-8 Use of factorial design

From the values of PHU obtained for the 16 tests in the factorial 

design, the effects of the four main factors (ie Fuel, Height, Pan and 

Wind) and interactions between any two of these factors can be 

determined.

As the PHU is affected by the power output, in order for the factorial 

analysis to be valid, tests have to be carried out at the same power 

output (see below) - this condition considerably weakens the use of 

factorially designed experiments in stove testing. In the 'U' chulha 

WBT's, the power output of the firewood varied from 2kW to 5kW.

However, in the factorial analysis only the value of PHU for each test 

was used - the value of the power output was not included in the 

analysis, and hence, would lead to erroneous predictions.

205



Theoretically, it is possible to overcome this problem by employing 

covariate (since there are two dependent parameters, namely, PHU and the 

power output) analysis, but this would require more data than was 

obtained.

Another way of overcoming this problem would be to have a complete 

series of factorial tests at a number of power outputs. For example, 

three power levels - "low", "intermediate", and "high" - could be 

chosen. In a factorial design with four main factors each at two levels 

and one replication would involve 96 (ie 3 x 4 x 4 x 2 )  tests.

There may still be other problems, for example in the tests carried out 

it was very difficult to burn one of the species of firewood (Iroko) at 

power outputs beyond 4kW, whilst the other species (Jelutong) could be 

burnt at power outputs up to 6kW. Another problem would be in 

conducting tests at the same power output. This could be achieved by 

feeding small pieces of firewood at a known rate (e.g. Visser and 

Verhaart, 1980), but would be open to the criticism that it did not 

reflect conditions in the field, where large logs of firewood are 

commonly used.
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5.4 Conclusions

The most important finding was that the maximum values of the PHU 

(excluding water of evaporation) at BPl for the 3-stone fireplace, 

Indian 'U* chulah, "iron frame" and McGarry stove were all around 20%. 

This is not unexpected because of their similarity of geometry 

arrangement.

PHU’s between 17% and 20% were obtained for the 3-stone fireplace at BPl 

- these agree with values obtained by other authors.

A much wider range of PHU's were obtained in tests on the 'U' chulha; 

this wide variation ecompasses the values of "efficiency" given by other 

authors on tests on the 'U' chulha (e.g. NCAER, 1959; Joseph and Loose, 

1982; Salariya, 1978, 1983). Differences in PHU's by other authors is 

due to differences in critical parameters such as fuelbed/pan distance.

Under wind-free conditions the PHU's of the iron frame and McGarry stove 

are about the same. The McGarry stove performs much better than the 

iron frame in windy conditions by shielding the flames from the wind. 

Cooking with either stove in a sheltered hut would give rise to similar 

levels of firewood consumption. The claimed savings may be due to 

villagers either giving the answer that they believe the questioner 

wanted or by changing their cooking practices.

Field based measurements during cooking (by village women) are required 

to establish the nature and change (if any) in firewood consumption.

For the 'U' chulah and iron frame the PHU fell at the lowest and highest 

power output; at low levels of power output this seems to be a
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consequence of low combustion efficiency. A fall in PHU at the high 

power outputs appears to be a result of energy losses due to the area of 

the fuelbed being greater than the area of the pan bottom.

PHU was affected by stove height, operating conditions, and cooking pot 

material. Stove "height" (ie the distance between the fuelbed and pan) 

and pot material were the most important parameters governing "stove 

efficiency". These results highlight the importance to stove 

performance of specifying critical parameters, as well as operating 

conditions (e.g. power output, pot material, length of time over which 

the PHU is measured), definition of "efficiency" and so on.

In all cases, energy losses were dominated by stack losses (up to four- 

fifths of the input energy). The potential exists to reduce these 

losses by increasing the combustion efficiency (e.g. by using a grate).

Steady state energy losses from the "stove" and metal pan were estimated 

to be between 0.5 and 0.9Kw.

In all cases, the energy associated with the residual charcoal was 

comparable in magnitude to the sensible energy in the water.

Potentially, this charcoal could be saved and re-used (though this is 

debateable in the case of Zimbabwe, as charcoal does not appear to be 

used as a cooking fuel).

Because of the porosity of clay, the energy loss in steam with clay pots 

can be comparable to the energy associated with sensible heat in the 

water. Thus with the *U' chulha, much lower steam losses were evident 

with the aluminium pots. Fuel consumption could be significantly 

reduced simply by substituting metal pans for clay ones. However, this
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may meet with resistance due to socio-cultural factors, (e.g. tradition 

or because of a change in the taste of the food - see for example 

Chapter 6).

The application of factorial analysis to stove testing is limited by the 

variation of PHU with power output, necessitating covariate analysis.

In practice this type of analysis may be applicable in cases where the 

PHU shows little scatter and is independent of power output. The most 

important contribution of factorial design and analysis would be in 

determining the importance of factor interactions (e.g. fuel 

type/cooking pot, stove height/fuel type, and so on); these interactions 

cannot be determined with the standard scientific experiments where one 

parameter is varied at a time. The most important factors to vary are 

the pan material and the distance of the pan from the fuelbed.
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Chapter 6

Firewood and Cooking Stoves in Zimbabwe

6.0 Introduction

Earlier chapters have drawn together information on rural energy from a 

number of developing countries. It was shown that on the surface, the 

problem of introducing "improved stoves" seems simple, on further inves

tigation it is much more complicated, involving;

(a) accurate experimental work;

(b) socio-cultural and anthropological studies;

(c) consideration of economic and political factors;

(d) stove design and development;

(e) diffusion of innovations into social use.

It was considered useful to examine in detail the potential for 

disseminating "improved" stoves by visiting a developing country - 

concentrating on one country would mean that factors (b) (c) and (d) 

above would be easier to handle. The research visit would give access 

to information only available in that country as well as provide contact 

with researchers and institutions working in the field. In addition, 

the situation in the field could be observed directly without having to 

rely just on secondary sources.

Zimbabwe was chosen as the country to be visited. The visit lasted from 

October 1981 to January 1982. Field data was collected from rural areas 

from early November to mid December (1981). The following will show 

that the firewood "problem" and proposed solutions in Zimbabwe parallel
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the analysis of the "firewood crisis" in developing countries, as dis

cussed earlier in Chapter 1. According to various Government Depart

ments, Forestry Commission officials, and researchers in Zimbabwe, the 

rural areas of the country are suffering from a shortage of firewood for 

cooking. This firewood shortage is expected to become more acute. 

Government strategies to overcome this shortage are based on the 

assumptions that traditional cooking stoves are very inefficient and 

that firewood collection is an increasing burden for the rural popula

tion; this burden falling particularly on women and children of poor 

families. Rural development programmes assume that cooking stoves with 

a high efficiency will be highly desirable to the rural poor.

This chapter gives a preliminary analysis of rural energy systems in 

Zimbabwe, in terms of seasonal variations as well as socio-economic and 

political factors; the latter will be seen to have played an important 

role in soil erosion, deforestation and choice of cooking stoves.

The chapter is divided into 6 parts; part 1 gives background informa

tion, the national energy profile and proposed solutions to the firewood 

"problem" in Zimbabwe. The aims of the field visit and methodology used 

are detailed in part 2. Part 3 details the field data, which are 

discussed in part 4. Part 5 assesses the various causes and history of 

deforestation in Zimbabwe. The conclusions are given in part 6.

6.1 Socio-economic and political profile of Zimbabwe

6.1.1 Background

Zimbabwe, in central Africa, (Fig 6.1) has a land area of nearly 400,000 

square kilometres. Its population at the end of 1977 was estimated at
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6.86 million, the predominant groups being roughly 6.5 million Africans, 

0.25 million Europeans, 10,300 Asians and 23,000 Coloureds (Ndlela, 
1981).

From 1977 onwards Zimbabwe has been divided into 8 provinces (Fig 6.2); 

Manicaland, Mashonaland Central, East and West, Matabeleland North and 

South, Midlands and Victoria. Each of these provinces is further sub

divided into a total of 50 districts.

Table 
Division of Land in 

(Ndlela,
6.1
Zimbabwe in 
1981) 1973

Category Hectares Proportion of 
total land area

European Area;
General Land 
Parks and Wildlife 
Forest Area
Specially Designated Land

15,613,344
1,744,674
737,273
7,656

40.6%
4.4%
1.9%
0.2%

Total European Area 18,132,947 47.2%

African Area:
Tribal Trust Land* 
Purchase Area 
Parks and Wildlife 
Forest Area
Specially Designated Land

18,217,705
1,486,142
255,274
172,000
121,570

47.4%
3.8%
0.66%
0.44%
0.31%

Total African Land 20,252,691 52.7%
TOTAL OF ALL LAND 38,385,638
* now referred to as Communal Land

Land in Zimbabwe is divided into African and European areas (Table 6.1). 

Zimbabwe’s economy has a ’’dual” structure (Ndlela, 1981), with a 

relatively highly developed ’’modern” sector and a stagnating 

traditional” sector. This dualism is reflected in the distribution of 

land, labour, as well as access to agricultural credit and produce 

markets. One feature of this economic dualism is the high incidence of 

(African) male migrant labour away from the Tribal Trust Lands (rural 

areas) to the European urban areas and mines. This is reflected in the
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African age-sex population pyramid in the Communal Lands and European 

areas (Fig 6.3).

6.1-2 Agriculture; past and present

The African peasant farming population is the largest single group in 

the economy - 4m in 1977> primarily growing maize (the staple diet for 

the African population). The average income level per capita per annum 

was estimated to be Z$ 28 in 1977, with an average of 5% growth rate 
over the previous decade (Whitsun Foundation 1978). Assuming the same 

growth rate the average income level per year would be Z$ 38 by I98I. 

(In 1981 the exchange rate was approximately £1= Z$1.30).

In the early I800*s "Zimbabwe" was thinly occupied by shifting cultiva

tors. These consisted of small settlements supported by shifting 

cultivation and hunting (Weinrich, 1975:5).

At present there are three types of African agricultural settlement, 

referred to as Communal Lands, Purchase Areas, and Irrigation schemes 

(Weinrich, 1975:4). Communal Lands before Independence in I98O were 

known as Tribal Trust Lands (TTL’s); TTL’s are a modification of the 

traditional system. Communal Lands are the most important type of 

peasant settlement and account for the largest number of African 

cultivators (Weinrich, 1975:4).

Communal lands are based on a subsistence-type economy (Whitsun 

Foundation, 1978) where production is primarily for domestic consumption 

rather than for the market, though cash crops (e.g. groundnuts, sun

flower, oriental tobacco, and cotton) are also grown. The majority of 

the Communal Lands are in regions which are unsuitable for cash crops
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and have low rainfall; yields in these areas are well below the national 

average (Whitsun Foundation, 1978).

"Purchase areas" are settlements in which Africans can buy land and 

hence become owners of their farms. "Irrigation schemes" refer to 

agricultural land that is under both intensive irrigation and cultiva

tion. These schemes are situated in Communal Lands but are highly 

capital intensive. Irrigation schemes were introduced by the Colonial 

government to "relieve the rapidly increasing pressure on tribal lands" 
(Weinrich, 1975:12).

There are four major seasons: hot (September to early November), main 

rainy (November to late March), post rainy (April to May when the chance 

of rain decreases and temperatures start to fall), and winter (May to 

August). Agricultural activity is structured around these seasons (Fig 
6.4).

(a) Sexual Division of Labour

Rural women in Zimbabwe provide labour for agriculture (eg ploughing, 

planting and weeding) as well as domestic chores such as cooking, col

lecting fuel and fetching water (Weinrich, 1975; Muchena, 1977, 1981; 

Riddell, 1981; Gelfand, 1982)).

According to Weinrich (1975), women do not traditionally engage signifi

cantly in ploughing. Ploughing is heavy work and although Weinrich 

found that women in Karangaland (SE Zimbabwe) did plough, they preferred 

it to be done by men. In the ideal team, the man leads the plough and 

the women and children lead the oxen. Sowing and planting tended to be 

done with family labour. Whilst,
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"weeding is burdensome to all peasant families.

Women ‘and children are expected to do most of this 

work, for men shy away from it. Some men even go off 

to seek urban employment, and if their wives need

additional help, they are encouraged to call in work

parties" (Weinrich, 1975)

Weinrich (1975) also observes that although harvesting requires much 

labour it is a much more pleasant activity for the following reasons; 

migrant labourers have returned, there is less work pressure since 

harvesting can be done over several months and food is plentiful.

(b) Seasonal Variation in Labour Demand

Two periods in the agricultural cycle make very high demands on labour 

(Weinrich, 1975) (Fig 6.4). The first period is from November to 

January when the sequence of events is ploughing, sowing or planting,

and weeding. Ploughing takes place when the first rains fall, ie.

around the end of October or early November. After this the second 

period of high labour demand arises when the harvest begins; high labour 

requirements for the harvest begin in April and trail off in July. 

Similar findings have been reported by other researchers (Cheater, 1974; 

Johnson, 1964a, 1964b; quoted in Weinrich, 1975).

Field work by Muchena (1981) further confirms these months as periods of 

high labour demand: longer hours were worked by villagers and the inci

dence of truancy amongst schoolchildren to help with agricultural tasks 

were both observed.
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(c) Strategies to Cope with the High Labour Demand

Both early planting and weeding are important since they are critical 

activities which determine the agricultural output Weinrich (1975). The 

effect of the high demand for labour during these periods is that

"many migrants come home in November to help their 

wives to prepare the fields or, if they cannot come 

home and if they have no relative in the village to 

help the family, they send some money to hire a 

ploughing team from neighbours" (Weinrich, 1975:91)

Other responses are to call work parties, work longer hours or withdraw 

children from school (Muchena, I98I).

Agricultural work is a contribution to the workload of rural women, in 

addition to activities such as fuel collection. If the husbands are not 

able to return home during this time of year, or send money to hire 

labour, then women have to do more work. An increase of this nature was 

observed in a field study by Muchena (1981), who found that more women 

than men were engaged in ploughing activities. This meant that some 

women were doing the ploughing, work which has traditionally been 

considered as "men's tasks".

6.1.3 Zimbabwe's Energy Profile

In 1978, firewood was estimated to supply almost one-third of national 

energy consumption, and as such was comparable to the energy obtained 

from coal or hydro-electricity (Table 6.2). Little data is available on 

charcoal production and transport but its consumption is believed to be
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virtually non-existent (Banks, 1980; Whitsun Foundation, I98I).

Table 6.2
Energy Consumption in Zimbabwe by Source 

(Johnston, 198O)
Energy Source Proportion of National

Energy Supply
Hydro-electricity 33%
Coal 27%
Firewood 28%
Liquid Fuels 10%
Bagasse 2%

Overall, around 85% of the population (ie 6 million people) use wood as 

a primary source of energy for cooking and heating (Whitsun Foundation 

1981). Firewood consumption is dominated by the rural African popula

tion: more than three-quarters of the energy from firewood was consumed 

in rural areas (Table 6.3) (Johnston, I98O) where it was collected by 

women and children.

Table 6.3
Firewood Consumption in different Sectors 

(Johnston, 1980 — based on Forestry Commission Data)
Sector Annual Firewood Estimated Annual % Used in

Consumption Firewood Consumption* each Sector
(m3 X 10°) (kg X 1q9)

Rural Areas 3.50 2.38 76.3
Commercial Farms 0.68 0.46 14.7
Mines 0.13 0.09 2^9
Urban Areas 0.28 0.I9 6.1

Total 4.59 3.12

* assuming density of indigeneous timber = 680 kg/m^

Firewood is collected primarily in the dry seasons, with some reliance 

on maize cobs as a fuel supplement when available (Whitlow, 1979 a) Wood 

is also used for construction (e.g. building huts and fences) (Whitlow, 

1979 a) but this is only estimated to be around 10% of wood consumption.

Average annual firewood consumption per person is estimated to be about 

1m3 (Forestry Commission 1978). If this is air dry wood with a moisture
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content of 25% (Fuller, 1980), the calorific value will be 14.50 MJ/kg 

(using the equation derived by Bialy (1979) relating moisture content 

and calorific value). Assuming the density of local indigeneous timber 

to be 680 kg/m3 (Johnston, 1980), then Im^ represents 10 GJ consumption 

per year per person.

Estimates of annual per capita firewood consumption range from 370 - 

1240kg (Table 6.4). There is much uncertainty about the data, (see 

Appendix C for a detailed analysis of these studies). Hence, the share 

of firewood in Zimbabwe's national energy budget may be greater than 

that shown in Table 6.2 which uses data from Johnston (1980).
Table 6.4

Summary of Annual Firewood Consumption Estimates
(per capita basis)

Annual Consumption 
mass of (a) assuming (b) assuming
firewood Calorific Value Calorific Value

Source (kg) = 14.2 MJ/kg = 15.6 MJ/kg

Banks (1980) 502 7.1 8.0
Johnston (1980) 632 9.0 10.1
Furness (1979):
(a) Anon, (undated) 591 8.4 9.4
(b) Anon (1978) 1244 17.7 19.8
Walsh (1979) 1131 16.1 18.0
Whitlow (1979) 371 5.3 5.9
Forestry Commission 
(1978):
(a) Mondoro 580 8.2 9.2
(b) Chiwundura 625 8.9 9.9

Hosier et al 
(1980) 1088 15.4 17.3
Mean 752 10.7 12.0
(Standard deviation) (314) (4.5) (5.0)

6.1.4 Deforestation

According to the Zimbabwe Forestry Commission (e.g. Wiltshire, 1977; 

Banks, 1980:3; Furness, undated), and the Department of Natural 

Resources (e.g. Mutsiwegota, 1983) problems of deforestation have arisen 

because of the growing needs of agricultural land and firewood by an
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expanding African population. Deforestation is expected to become more 

acute as the African population increases further.

The Whitsun Foundation (1980) estimated that a critical firewood 

shortage (ie only 50% of national average consumption per head being 

used) had already affected 58% (2.3 million people) of the Communal Land 

population.

This firewood shortage has increased the firewood collection burden on 

rural women and children (Chavunduka, 1980, 1982; Makoni, 1983). In 

some cases, it is reputed that around 36kg of firewood has to be carried 

for distances of up to 2km (Whitlow, 1979a:9). Chavunduka (1982:289) 

further contends that the amount of time spent by women and children in 

agricultural activity has fallen in some rural areas as a result of 

these long firewood collection trips. According to Chavunduka (1980:3), 

the rural population has shifted to 'inferior' cooking fuels such as 

maize cobs and animal manure in order to reduce the time spent in 

gathering firewood. In effect, potential fertilizer would be lost, 

thereby depressing potential crop productivity (Chavunduka, 1980:3). 

Moreover, according to Chavunduka (1980:4), as shortages of firewood 

become more acute the village fireplaces where people sit and talk after 

meals will be abandoned. Hence, the traditional social functions of the 

village fireplace will be disrupted.

There is much concern by the Zimbabwean Government about the depletion 

of the supply of firewood. The Minister of Industry and Energy 

Development (Makoni, 1983:59), in the official opening of the SADCC 

(Southern African Development Coordination Conference) energy seminar, 

declared that.
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"the search for energy to meet the modest require

ments of our rural population has become a burdensome 

and agonising chore ... the spectacle of our women

folk travelling long distances to collect small 

bundles of firewood has become a common feature of 

our rural life"

6.1.5 Strategies for tackling the firewood problem

Solutions put forward by policy makers, researchers and government 

departments emphasize the need to increase the supply of firewood and/or 

decrease the demand for firewood.

Supply orientated strategies advocate firewood plantations (Arnold, 

1980b; Whitsun Foundation, I98O) or agroforestry (Banks, I98O). Fast 

growing trees (e.g. various Eucalyptus species) have been promoted by 

the Forestry Commission, to be harvested for fuel (Furness, undated). 

Traditional tree species used for firewood are too slow growing to make 

a significant impact on forest resources in the short term (Furness, 

undated).

Demand orientated strategies are concerned with reducing the demand for 

firewood by using firewood more efficiently or by fuel substition. 

According to Chavunduka (1980, 1982) the traditional "open fire" is very 

inefficient, hence, one way of reducing firewood demand is by promoting 

fuel efficient stoves (Arnold, 1980b; Furness, I98O; Chavunduka,

1982:292). Other strategies advocated to decrease firewood consumption 

have been the promotion of fuels such as gas, paraffin and electricity 

(through subsidies) (e.g. Chavunduka, 1980:6; 1982:292), solar cookers 

and biogas plants (e.g. McGarry, 1981).
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6.2 Research visit to rural areas of Zimbabwe 

6.2.0 Objectives

Joseph and Shanahan (1980c) outline a design strategy to implement an 

"improved" stove programme in developing countries. The following is a 

schematic of their six stage approach:

Stage (1) An assessment of cooking practices and fuel usage.

Stage (2) Field testing of existing stoves (and collecting 

information to design a laboratory stove testing 

methodology).

Stage (3) An assessment of available stove designs (to decide 

whether or not alternative designs are culturally 

acceptable and better than indigeneous stoves).

Stage (4) Laboratory testing of available designs.

Stage (5) Field testing of stove designs chosen.

Stage (6) Large scale dissemination if stove designs are proven in 

stages (4) and (5).

The aim of the field work, which was carried out in the rural areas of 

Zimbabwe was to undertake the first two stages of the stove programme 

dissemination strategy outlined above, and to determine the rural 

women's perceptions of firewood collection.

6.2.1 Rural energy surveys

It is clear from the previous chapters that cooking stoves and fuel 

collection are connected to environmental, economic and sociocultural 

factors. Thus for example, Bhatia (1980) comments.
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"an energy survey should attempt to consider the full 

spectrum of energy related activities. It is not 

enough to examine production, distribution and 

consumption of traditional and commercial fuels.

Rather this information needs to be seen against the 

social, cultural, political and ecological background"

Hence, the energy survey needs to shed light on the linkages and inter
relationships between domestic energy and other parts of the village 
system. From this information an energy model of villages in general 
can be constructed. This model can then be used to determine the likely 
impacts of intervention strategies as well as minimize their probability 
of failure.

This type of approach to the issue of rural energy in developing 

countries is not new: work has been done in tracing energy flows within 

different societies (Thomas, undated). Energetic analysis of 

traditional agricultural systems in developing countries were reported 

in the mid '70s - a brief review of which is given by Schahczenski 

(1984). Briscoe's (1979) study of a Bangladesh village showed that the 

socio-economic position of villagers structured their access to fuel and 

cooking energy consumption. Dunn et ^  (1983) provide insights into 

energy use in rice production both on and off the farm. An extremely 

detailed study of food and energy flows (over a period of a year) in an 

Indian village has also been reported (Ravindranath et al, 1980).

Rural energy survey methodologies described in the literature, whether 

in terms of the sociological aspects of forestry (Spears, 1980) or 

fuelwood surveys (Thomson, 1979) highlight the sheer complexity of 

linkages which may hold in villages in developing countries.
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Survey data can be gathered by direct observation, direct measurement, 

the Recall Method or a combination of the previous three methods.

(White (1984) examines the Recall Method, whilst Stubbs (1984) discusses 

the application of the "life story" method to research on rural women).

These methods can be used, for example, to obtain information on cooking 

fuel consumption for rural households relying on traditional fuels (see 

also Chapter 3).

In Zimbabwe, firewood consumption data is largely based on the methods 

outlined above (a number of additional methods have also been used and 

are included here for the sake of completeness). This data falls into 

five categories: (a) apparently 'anecdotal' data, (b) averaging the 

firewood consumption in other developing countries, (c) asking each 

household how long a bundle of firewood will last and extrapolating to 

annual consumption, (d) measuring (with a ruler) the volume of firewood 

in a headload and counting the number of headloads collected over a 

known period, (e) asking each household the quantity of firewood (either 

in weight or bundles) used over a specified length of time. A detailed 

analysis of these methods and the firewood consumption data obtained are 

given in Appendix C.

Data on annual consumption can be obtained by surveying households over 

the complete year. In order to reduce disruption to the families being 

surveyed, as well as survey costs, data collected for part of the year 

can be extrapolated to annual consumption. By using standard 

statistical techniques, data can be gathered by sampling and projected 

for the rural sector within known confidence limits.
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It may not be possible to use methods relying on direct observation or 

measurement because of limited resources. Moreover, whilst valuable 

information can be obtained by direct observation or measurement, White 

(1984:18) warns that even 'participant-observation’ can mean emerging 

from the study area with "information of whatsoever preconceived notions 

had been brought there in the first place". A systematic study based on 

the Recall Method can be carried out through the use of questionnaires. 

Questionnaire surveys may be faster (ie can collect more information on 

more cases in the same length of time) at lower cost than direct obser

vation though with possible losses of accuracy. There are, however, 

problems with questionnaires. For example, respondents may not do what 

they say they do. In other cases, questionnaires may be badly worded 

and the questions misinterpreted. However, the accuracy of reponses 

obtained by questionnaires may be evaluated through direct observation 

and through similar studies which have relied on direct observation.

Howes (1984) undertook out a detailed analysis of a number of rural 

energy surveys and recommends that surveys should be carried out using a 

"stratified cluster" methodology. These terms are explained below (more 

detailed explanations are given in general texts on statistical methods 

in the social sciences (e.g. Goode and Hatt, 1952; Hansen et al, 1966; 

Yeomans, 1968).

If a population is divided into groups, a sample of groups can be drawn 
to represent the population. These groups serve as sampling units and 
are referred to as clusters. A cluster refers to a sample which is 
representative of the subpopulation from which it is drawn. Clustering 
is normally undertaken by areas (e.g. street, villages or towns) in 
order to decrease the area to be covered by the survey team. For 
example, in a rural energy survey, the developing country could be
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divided into areas (ie clusters) with different levels of fuel supply.

"Stratified" surveys, unlike random ones, divide the sample population 

into a number of categories on the basis of selected characteristics of 

the population as a whole. This is usually done to ensure that either a 

given proportion of the population can be represented in the sample or 

that a specific characteristic of the population can be over-represented 

in the sample to provide more data for analysis. In a rural energy 

survey, concerned with consumption of traditional fuels, the population 

could be stratified according to the socioeconomic grouping of the 

households. A stratified methodology assumes prior knowledge about the 

population, which is replicated into the sample. This is not a method 

of random sampling and the results generated are not necessarily typical 

of the total population.

Stratification is normally by a characteristic of the population (e.g. 

socio-economic grouping and gender), whereas clustering is usually 

undertaken in spatial terms (assuming that the characteristic under 

examination is representative of the population as a whole). For 

example, a stratified cluster methodology applied to rural energy 

surveys could divide the country into areas (ie clusters) of different 

levels of fuel scarcity and stratify the data in each cluster according 

to the socioeconomic position of the households.

6.2.2 Field Data Collection

Given the many objectives of the research visit (e.g. literature survey, 

measurement of firewood consumption, survey of attitudes to firewood 

collection and so on) and the limitation in resources (e.g. time, 

funding, personnel, etc.) a rapid rural appraisal approach was adopted;

228



for an assessment of such approaches to fuelwood studies see Bajracharya 

(1979). Research methodologies appropriate to rapid appraisal (based on 

two field studies in China) are discussed by Croll (1984).

Three sites in Zimbabwe (with different levels of fuel stress) were 

studied in the fieldwork, Inyanga North Communal Land, Inyanga Intensive 

Cultivation Area and Seke Communal Land. (These are detailed in section

6.2.4 and 6.2.5). Data at these sites were collected primarily in three 

ways; direct measurement, by means of questionnaires, and direct 

observation (taken to include the standard anthropological techniques of 

listening, observing and asking questions).

(a) Direct Measurement

At two sites (Inyanga North Communal Land and Inyanga North Intensive 

Cultivation Area), direct measurements were carried out for the 

following: daily firewood consumption, consumption of firewood over 

three consecutive meals, the PHU’s (during food preparation) of stoves 

and fireplaces used, and the distance to firewood collection sources.

Two traditional types of fireplace and one type of "stove" were 

encountered in the villages visited: the 3-stone fireplace, a "4-stone 

fireplace" and an "iron frame" stove; the iron frame had largely dis

placed the traditional 3-stone fireplace. PHU’s of each of these were 

measured during the initial stages of cooking when water was being 

heated.

Firewood Consumption

The following method was used in this study to measure firewood 

consumption: selected households were left a weighed quantity of fire-
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wood outside their cooking hut. Each household was asked only to use
this firewood for heating water and cooking from this pile. These
households were selected on an opportunistic basis (see section 6.2.3). 
Each pile was weighed in the afternoon, (after lunch but before the 
evening meal). Additional firewood was added after the weighing to 
ensure that there was sufficient firewood till the next weighing.

It was not always possible to measure the firewood consumption over one 
day, hence consumption was sometimes measured over a two day period. On 
these occasions daily consumption was assumed to be half this 
consumption.

For each household a record was also made of the number of people at
each meal, and the type of food cooked.

Household firewood consumption data was expressed in terms of "adult 
units" as well "per capita", since data on energy consumption expressed 
in per capita terms may be misleading as the cooking fuel requirement 
will be different for children than for adults. In order to take dif
ferences of food consumption for the different ages of people in the 
household, the United Nations Dietary Table (Table 6.5) was used to 
determine the number of "adult units" in the household - on the 
assumption that the amount of cooking fuel required was directly 
proportional to the quantity of food cooked.

Daily firewood consumption data (kg) was converted to units of energy by 

multiplying by the calorific value corrected for moisture content - 

according to equation 3*8 (derived in Appendix B). Projections to 

annual consumption were based on the reported variation in firewood 

consumption over the year.
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Scale of Coefficients
Table 6.5

on Relative Amounts of Food Energy Consumption
(League of Nations, 1932)

Age Coefficient
(years) Male Both Female
0 and 2* 0.2
2 and 3 0.3
4 and 5 0.45 and 7 0.5
8 and 9 0.6
10 and 11 0.7
12 and 13 0.8
14 to 59 1.0 0.8
over 60 0.8

from birth up to and including the twenty-fourth month of age.

Firewood consumption in the cooking process was determined as follows: 

the pile of weighed firewood left for cooking was weighed before and 

after cooking had taken place for three consecutive meals (evening meal, 

breakfast and lunch). This firewood consumption was expressed as a 

fraction of the total firewood consumption over that period. These 

measurements were carried out once only for 1 household in Ellenvale, 

and 4 households in Mukweva.

Measurement of PHÜ and power output

PHU’s of the ’’stoves’’ at the study sites were restricted to measurements 

during the initial heating of water in the preparation of ’’sadza" (the 

staple food comprising a paste of ground maize boiled in water). The 

firewood, charcoal, pots and water used were all weighed using a Salter 

scale (see below). A Comark digital thermometer was used to determine 

the temperature rise of the water. Both the thermal capacity of the 

ground maize and evaporated water were ignored in the calculation of the 

PHU (see equation 3.6). The calorific value of the firewood used by 

each household was corrected for moisture content (see equation 3.8), 

and a calorific value of 29 MJ/kg was assumed for the residual charcoal.
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The average power output of the fire during cooking, was calculated 

from the firewood consumption and the cooking time; the initial quantity 

of firewood and kindling (straw) were weighed. The cooking time was 

measured with a Casio Fx-8100 timer. Timing was started when the 

kindling was lit, and stopped once the food was cooked. At the end of 

cooking, the charcoal and the remaining firewood were weighed 

separately. The energy consumption during cooking was calculated by 

subtracting the heat content of the fuel at the end of the cooking 

process from the heat energy in the initial quantity of fuel. The 

calorific value of the firewood was corrected for moisture content (see 

below); this calorific value was also used for the kindling. A 

calorific value of 29MJ/kg was assumed for the residual charcoal from 

the fire. The mean power output of the fire was calculated by dividing 

the heat energy consumption during cooking by the cooking time.

A Salter model 2005 scale (maximum load 5kg, 20g divisions) was used for 

all the above weighings.

Moisture Content of Firewood

Five samples of wood were taken from the firewood store of each house

hold involved in the direct measurement of firewood consumption. These 

samples were immediately placed in plastic bags. Each sample was then 

weighed on a chemical balance to within O.OOIg. On returning to the 

Harare, the firewood samples were placed in a ventilated oven at 105°C 

for 23 hours and reweighed. The moisture contents (dry basis) were 

calculated using the equation below;

jjj _ wood sample mass - oven dry sample mass 
oven dry sample mass
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Distance to firewood collection site(s)

Whenever possible a member of each household was accompanied on their 

firewood collection trip. The time taken and the number of steps taken 

(by the researcher) were recorded, as well as the time spent in the 

collection area. The following method was used to calculate the 

distance to the areas of firewood collection used by households of 

children at St Elim Mission; the number of steps each pupil took to walk 

100m was recorded. Each pupil was then asked to walk to the source(s) 

of firewood and record the number of steps taken. From these two pieces 

of information the firewood collection distance was calculated.

(b) Questionnaire Survey

Two questionnaires (administered by the author) were used in the survey 

to obtain information on agricultural and domestic activities (e.g. fuel 

collection, cooking practices), during the year, as well as perceptions 

of various tasks undertaken by women. In the first study area a 4 page 

pilot questionnaire was used (Appendix D). (The pilot questionnaire 

dealt with cooking fuels, stoves, and practices in detail). Based on 

the answers given by villagers in the first study area, this was modi

fied to a 2 page questionnaire (Appendix E) and used in the other study 

areas. The nature of the latter questionnaire was to make explicit, 

seasonal variations in women’s (domestic and agricultural) tasks. The 

questionnaires served mainly two functions; firstly to obtain basic 

demographic and socio-cultural data. Secondly, to obtain information of 

any seasonal patterns in rural women’s lives (e.g. cooking practices, 

agricultural activity, fuel collection) - changes which could not have 

been observed given the brief length of stay in each area. The 

evolution of the first questionnaire to the second is given below.
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The pilot questionnaire was designed to obtain a broad view of the 

issues surrounding women's roles in collecting fuel and domestic 

activity. Hence, this questionnaire was characterized by open-ended 

questions. In the field, responses by women raised further questions, 

which were pursued. This questionnaire was found to have a number of 

weaknesses once it was administered in the first study area. Firstly 

the questionnaire assumed a large degree of invariance in womens 

activities over the year. (The crucial importance of women's 

agricultural activities in affecting domestic activity became apparent 

at this stage - see below). Secondly, the questionnaire was difficult 

to administer as it had been designed in England, based on hypothetical 

villages in Africa. In the field, it was found that respondents did not 

have the type of detailed and precise information required by the 

questionnaire. Thirdly, the open-ended structure of the questionnaire 

meant that filling in the details was time consuming.

A number of these problems were surmounted through the design of the 

second questionnaire which included questions on women's agricultural 

activity. This questionnaire structured and ranked women's responses 

(see below) on a number of issues (e.g. perceptions of tasks, advantages 

of the new "stove" adopted) as well as drawing out seasonal variations 

in domestic practices, fuel collection, agricultural activity and fuel 

consumption. Moreover, this questionnaire was much more efficient to 

administer, and its structure enabled it to be filled in more quickly 

than the pilot questionnaire, despite containing more questions. 

Follow-up questions were still asked when necessary.

Women who had changed from the 3-stone fireplace to other stoves were 

first asked the reasons for the change, secondly to rank these reasons 

in order of importance and thirdly the fuel consumption of the new
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"stove" relative to the Sstone fireplace. Women who still used the 3- 

stones were asked why they continued to use this traditional fireplace, 

the advantages they perceived the iron frame to have and the fuel 

consumption of the iron frame relative to the 3stones.

The following methodology was used to determine rural women's attitudes 

to firewood collection (in the context of other tasks they performed): 

perceptions of tasks were divided into four categories: "hard", "easy", 

"liked" and "disliked". A list was made of all the tasks performed by 

rural women (a few blank lines were left on the questionnaire so that 

tasks not already included could be added). Women were asked which of 

these tasks were the hardest, the second hardest, and so on. These

answers were recorded on the questionnaire in the appropriate column by

placing the number "1" against the "hardest" task, a "2" against the 

second hardest task, and so on. Women were then asked to identify the 

easiest task, then the second easiest, and so on, and the results 

recorded in the same way as for the "hard" tasks. Women were similarly 

asked to rank the tasks they "liked" and "didn't like", with the answers 

being recorded in the same way.

The reason for asking women to rank tasks was to locate the position of

firewood collection, relative to other tasks, such as ploughing, 

cooking, grazing cattle, and so on. However, there are problems with 

the method that was used in the field. Firstly, differences between 

each rank may not be the same. For example, the hardest task may be 

regarded as being extremely hard, the second and third hardest tasks 

regarded as being equally as hard. Secondly, a task which is seventh 

"hardest" could also be regarded as being fifth "easiest" (similarly so 

with the categories of "liked" and "disliked"). In this case, it is 

more illuminating to know that a task is regarded as being neither
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particularly hard nor easy, than a task is seventh "hardest". These 
problem could be surmounted by having one scale ranging from "very hard" 
to "very easy", with intermediate categories such as "moderately hard", 
neither hard or easy, and "moderately easy".

Rural women's perceptions of seasonal variation in firewood consumption 
were obtained as follows: women from each household were asked the
number of days a "bundle" of firewood would last; a bundle of firewood 
(which they had collected previously) was placed in front of them. 
(Whilst the size of the bundle varied between households this was not 
particularly important since the parameter of interest was the relative 
level of firewood consumption over the year). Recall for the women was 
apparently easier if they were first asked about consumption during the 
hottest and coldest months of the year. The data on the length of time 
each bundle of firewood would last was converted to absolute consumption 
(in "bundles") for each month for each household. For each household, 
this absolute consumption was divided by the level of firewood 
consumption in the month of November, to obtain the relative variation 
in firewood consumption over the year. Consumption in November was 
arbitrarily designated the value of unity and the results plotted for 
each household.

To obtain information on seasonal variation of firewood consumption, 
women were asked the number of firewood "bundles" collected (on average) 
per week during the various months of the year.

(c) Direct observation

Wherever possible answers obtained by respondents were checked by direct 
observation. This technique was invaluable and without which neither
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the seasonal variation in cooking practices nor the importance of the 

role of women in agriculture would have been noted: in the first study 

area (Inyanga North Communal Land) women said that the reason for 

changing from the traditional 3-stone fireplace to the iron frame was 

because the new stove allowed cooking to be done more quickly, since 

several pots could be heated simultaneously. However, when villagers 

were observed cooking, only one pot was being heated at a time. When 

asked to explain, women said that fast cooking was only required during 

the months when they were busy in agriculture.

6.2.3 Application of Roger's diffusion theory to new stoves

Villagers in Zimbabwe were found to have shifted from the traditional 3- 

stone fireplace to other types of stove. These stoves were assessed in 

the light of Roger's diffusion of innovations.

Roger's (1983) identifies 5 attributes of innovations which govern their 
rate of adoption: relative advantage, compatibility, complexity, 
trialibility and visibility.

Relative advantage is the degree to which an innovation is perceived (by 

the adopter) as being better than the device or idea ^hich it replaces. 

Compatibility is the degree to which an innovation is congruent with 

existing values, past experiences and needs of potential adopters. 

Complexity is the degree to which an innovation is perceived as being 

relatively difficult to understand and use. Trialibility is the degree 

to which an innovation can be experimented with on a limited basis. 

Observability is the degree to which an innovation is visible to others.

237



Relative advantage, compatibility, trialibility and observability are 

all positively related to the rate of adoption, whilst complexity is 

negatively related.

6.2.4 The study sites visited

Field work was carried out in three study areas with varying degrees of 

firewood scarcity; an area where there was no reported problem with 

firewood (Inyange North Communal Land), one with a moderate shortage 

(Inyanga North Intensive Cultivation Area) and thirdly, one with an 

acute shortage (Seke Communal Land) (Table 6.6).

Table 6.6 
Areas Surveyed in Zimbabwe

village/kraal Agroecological Firewood
Region Situation

Mukweva and Munondo IV no shortage
Ellenvale and Doornhoek III-IV moderate shortage
Chitsvatsva Ila acute shortage

Selection of Areas

The three areas visited during the field work are located in Fig 6.5.

It is important to point out that the study sites (and households) were 

chosen on an opportunistic basis and not on a random basis; contacts 

were known in the three areas chosen.

Given the resource constraints already mentioned above, households 

selected for measurement of fuel consumption were chosen such that each 

stove type was represented in the sample. Income levels was a sensitive
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issue (and difficult to determine given the nature of the rural economy) 

and so this was not pursued directly (average annual earnings were 

estimated by projecting from data from 1978). However, the type of 

stove used by each family could be used as a crude 'surrogate* measure 

of income level.

It was envisaged that 2 - 3  weeks would be spent in each area.

Although, it was possible to stay 3 weeks in the first study area, 

Inyanga North Communal Land (I.N.C.L.), owing to lack of time, adverse 

weather conditions and transport it was only possible to stay for 8 days 

in the second area, Inyanga Intensive Cultivation Area (I.I.C.A).

Direct measurement of fuel consumption was not possible in the third 

study site in Seke Communal Land (25km south west of the capital, 

Harare), in which a questionnaire survey was undertaken on a small 

number of households.

6.2.5 Description of Study Areas

Table 6.7 and 6.8 give an overview of the study areas and the fieldwork 

carried out in each.

Table 6.7 
Location of Villages in Survey

village/
kraal

Mukweva/
Munondo

Latitude

17°36’S

Longitude Height above 
sea level 

(m)
32°48'E 900

Annual
rainfall

(cm)
45 - 65

Ellenvale/ 
Doornhoek

17°57'S 31°42*E 1200 65 - 80

Chitsvatsva 18°1*S 32°7'E 1400 75 - 1000

Women in all the kraals (ie villages) visited, provided labour for 

agriculture (eg ploughing, planting and weeding) as well as domestic
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chores such as cooking, collecting fuel and fetching water. Studies by 

other researchers (Muchena, 1977, 1981; Riddell, 1981; Weinrich, 1975) 

confirm the role of women in agriculture for rural parts of Zimbabwe.

(a) Study Area A; Inyanga North Communal Land

Inyanga District is in Manicaland (east Zimbabwe) and estimated in 1980 

to have a population of 66,000 people, or 8,300 families assuming an 

average family size of 8 people (Whitsun Foundation, 1981). The 

population density in Manicaland is estimated to be between 11 and 

20/Km2 (Whitsun Foundation, 1978). The annual rainfall is between 460 

and 600 mm (Vincent et 1961 - quoted in Ndlela, 1981).

Table 6.8 
Survey Details of kraals

INCL
Mukweva^
kraal

Total No. 
of

households

8

No. of households^ in survey with:
(a) stove type (b) detailed questionnaire

8 (43) 5 (25)

Munondo
kraal

8 8 (73)

Households 
within 5km 
of Mission

n.a 19 (124)

IICA
Ellenvale^ 11 11 (66) 5 (21)
Doornhoek
kraal

11 1 (8) 10 (72)

Seke C.L.
Chitsvatsva
kraal

n.a. 5 (35)

 ̂figure in 
 ̂firewood 
households

brackets refers 
consumption was 
in Ellenvale

to population of households surveyed 
measured for 4 households in Mukweva and 5
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Two kraals - Mukweva and Munondo (Fig 6.6) - were surveyed in the first 

study area. The 8 households in Munondo only took part in the survey of 

the type of stove(s) they had inside and outside the cooking hut. A 

small number of local pupils (19 in total) at St. Elim Mission school 

took part in a survey of the stove type (Table 6.8) and distance to 

firewood collection sites.

Inyanga North Communal Land (the northern part of the district of 

Inyanga) is a Plain 800m (2600 feet), above sea level. This Plain is 

drained by the River Musuridzi which flows into the Matisi river to the 

north. Chigura mountain range runs NNW to SSW forming a barrier to the 

west, rising to over 1250m (4100 feet). For the survey in the first 

study area the author stayed at St. Elim Mission which is at the foot of 

this mountain range. Though the Mission is only 200km away from Harare, 

it took the author 10 hours by bus to get there from the Capital 

(Harare).

Whilst the mountains are still forested, the woodland in the Plain has 

been cleared for agriculture around the settlements, though fields are 

bounded by trees. Patches of forest remain along the river bank. On 

the settled parts of the plains most villages are within 2 or 3 km of 

uncleared undulating woodland.

Mukweva kraal is about 1.5 km from the Mission. There are two small 

patches of 250 metre square (ie 6Ha) of woodland within a 1km walk to 

the north of Mukweva. Mukweva consists of 8 households with a total 

population of 43 (17 adults and 25 children).
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Munondo is an adjoining kraal, and consists of 8 households, with a 

total population of 73 (33 adults and 40 children under 16 years of 

age).

Migrant labour was a common feature in both these kraals; at least 4 

households in both Kraals had husbands who were in urban areas as 

migrant labourers at the time of the survey. The status of two 

households in Mukewva was not known whilst in the other two the husbands 

were dead. In Munondo, the husband in one of the households was dead. 

Hence, in most cases women were running the household alone.

In the hot season the tributaries near the Mission tended to become dry. 

During August and September the streams close to both Mukweva and 

Munondo dried up necessitating a longer trip to the water tap at the 

Mission.

(b) Study Area B; Inyanga Intensive Cultivation Area

The author stayed at St. Mary Magdalene Mission (a Catholic school), for 

the survey in the second study area. Although the school is primarily 

for boarders, there were a small number of children from local kraal*s. 

Two of the boarder's at the St. Mary's School acted as translators 

during the visits to the kraals nearby.

Two kraals (Ellenvale and Doornhoek), were surveyed in the second study 

area (Inyanga Intensive Cultivation Area - IICA). According to the
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Whitsun Foundation (1978) the population density of IICA is between 21 

and 40 p e r s o n s / k m 2  with an annual rainfall ranging from 460 - 700 mm 

(Vincent et al, 1961 - quoted in Ndlela, 1981).

Ellenvale is approximately north of St Mary’s Mission (Fig 6.7), the 

nearest huts being about 2 km away. To the west is the main dirt track 

road which runs approximately north - south. Ellenvale consists of 11 

households - there are 14 separate cooking huts, as three husbands each 

have two wives - with a total population of 66 people (26 adults and 40 

children). Huts in Ellenvale are clustered close to each other in the 

form of a circle.

Doornhoek is a linear settlement to the South of the Mission in which 

the huts of the various households are scattered along the main dirt 

track road (Fig 6.8). A total of 11 households lived in Doornhoek with 

a total population of 80 (30 adults and 50 children).

The area surrounding Ellenvale, Doornhoek and the Mission School the 

landscape is undulating with scattered trees. Tree cover is present on 

hills and river banks, though this is significantly sparser than in 

Inyanga North Communal Land.

No concentrations of heavily wooded area were evident within 10 - 12 km 

of Ellenvale. The nearest sparse woodland was a strip 0.75km away, 

along one of the tributaries of the River Pendeke, stretching from the 

settlement to the east. Two scattered patches of sparse woodland lay 

within 1km of Ellenvale.
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(c) study Area C: Seke Communal Land

In the third study area (Seke Communal Land) the author stayed at 

Harare: only one kraal (Chitsvatsva) was visited. Seke has an annual 

rainfall ranging between 700 and 800 mm (Whitsun Foundation, 1978), and 

a population density of 80 p e r s o n s / k m ^ .  Despite being in a high 

rainfall region, the area surrounding the Chitsvatva Kraal was sandy 

with very sparse vegetation, giving the area a desert-like appearance. 

Each of the households did, however, have a tree in their compound, 

which provided shade from the sun.

Five of the households in Chitsvatsva were interviewed using the 

detailed questionnaire. The population of these five households was 35 

(15 adults and 20 children).

A researcher from the University of Zimbabwe had attempted earlier in 

the year to introduce a "more efficient" cooking stove in response a 

request by villagers; these villagers were very worried about their 

firewood consumption. The new stove was shaped in the form of a 

cylinder, similar to a brazier. This had not proved to be acceptable - 

the major reason given was that this design allowed only one pot to be 

heated at a time.
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6.3- Results

6.3-1 Food and agriculture

(a) Food crops

Virtually all the food eaten in Mukweva, Munondo, Ellenvale, Doornhoek 

and Chitsvatsva was grown by the villagers. All villagers grew crops 

such as maize, groundnuts, peanuts, and vegetables (pumpkin, rape, 

cabbage and tomatoes). Some villagers also grew potatoes, Nyemba 

(haricot beans), Mafunde and Munga (both local grains).

Maize was the staple food in all the kraals, and ground at the local 

mill. For villagers in Doornhoek and Ellenvale the local mill was about 

3km away; the local mill for households in Mukweva and Munondo was 

between 1 and 2km away. Villagers in Chitsvatsva sometimes bought 

ground maize; this was necessary in years when their supply of maize was 

depleted (as in the previous year - 1980) owing to low crop yields.

Ground maize was used to make sadza which was eaten with a "relish"

(e.g. boiled pumpkin leaves, cabbage, or meat).

Only food items which could not be supplied locally such as tea, sugar, 

salt, powdered milk, cooking oil, bread flour and baking soda were 

bought from local stores.

(b) Patterns of daily food consumption

All the villagers interviewed in Mukweva, Ellenvale, Doornhoek, and 

Chitsvatsva, said sadza was cooked twice a day - this was in approximate
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agreement with cooking practices reported during the survey period for 

the households in Mukweva and Ellenvale (Table 6.9).

Table 6.9
Incidence of sadza cooked for the evening and midday meal

(in Mukweva)

Household Survey Period* No. of times Sadza
(days) cooked

A 16 29
B 16 26
C 13 21
D 12 22

* Note the maximum no. of times Sadza would be cooked is twice a day.

Sadza was prepared by heating water to about 80 °C at which point a small 

quantity of maize meal would be added. Once the mixture started to boil 

more maize meal was added whilst stirring continuously for about 10 

minutes. Vigorous stirring was required during the final stages of 

cooking sadza. Stirring the mixture was easier if the pot was stable on 

the stove since both hands were needed to stir the mixture; stability 

was a feature considered desirable by women and one reason given for 

changing from the 3-stone fireplace to a "iron frame" stove (see section 

6.3.3). A meal for a family of five or six required about 1kg of maize 

meal and 3kg of water.

The vegetable "relish" took around 15 minutes to cook. Vegetables such 

as cabbage, rape or pumpkin leaves were cut into thin slices, and heated 

with a little water.

Leftover sadza from the previous evening was sometimes eaten in the 

morning with tea. A dilute watery mixture of ground maize was sometimes 

drunk in the morning, this was termed "porridge" when freshly made and 

"naMahewu" when prepared the previous evening.
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A similar pattern of food consumption was also reported by the 19 local 

pupils (living within 5km) at St. Elim Mission School, and villagers 

surveyed in Ellenvale.

(c) Cooking pots

Three types of pot were used for cooking: three legged metal pots, 

enamel coated metal pans (with a flat bottom), and clay pots (with round 

bottoms).

Enamel coated metal and clay pots were used by villagers in all five 

kraals. A few villagers also had three-legged metal pots. Some 

villagers in Ellenvale also used paint cans (5 litres capacity). These 

were used for the preliminary heating of water. This water was then 

transferred to an enamel pan to make sadza. This extended the life of 

the enamel pan (an expensive investment).

Pots of different sizes were used depending on the number of people at 

the meal (Table 6.10).

Table 6.10
Dimensions of pots used in Mukweva

Pot type and size height of pot diameter of pot Household
(cm) (cm)

Three-legged pot 17.0 22.0 A
18.0 22.0 C

Enamel pot 16.5 20.5 A(large) 14.0 18.5 B
Enamel pot 15.0 12.5 A(medium) 17.5 13.0 A

15.0 11.2 B
17.5 13.0 C

Enamel pot 10.0 12.0 A(small) 10.0 13.5 B
10.5 14.0 D
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Lids were not used in the preparation of sadza as almost constant 

stirring was required. However, lids were used when simmering the 

relish.

Different items of food were cooked in the various pots (Table 6.11). 

Some villagers did not like using an enamel pot for cooking beans as 

they felt the long simmering time would damage the pot; one villager in 

Ellenvale said that it would have been difficult to replace as her 

husband was out of work. Others commented that beans cooked in a clay 

pot tasted "sweeter" or "twice as good", compared with those cooked in 

an metal pan. One villager said that whilst she did not notice any 

difference in taste with a clay or metal pan, her mother preferred the 

taste of food cooked in a clay pot.

Table 6.11
Food cooked in each type of pot in Mukweva

Pot Type Food Item Comment
3-legged pot sadza used when cooking for

a lot of people
Enamel pot sadza
(large and medium)

Enamel pot vegetable relish
(small)

Clay pot heating water for
(large) washing

Clay pot sadza, relish. some villagers preferred
(medium and beans food cooked in a clay
small) as it tasted "better"

Women were aware that cooking with clay pots used more fuel, than with 

metal pans.

Village women said cooking beans required a lot firewood to cook, and 

gave three methods wherby less firewood would be required: firstly, by 

using metal rather than clay pots; secondly, by soaking the beans
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overnight; and thirdly by cooking with the addition of bicarbonate of 

soda. These methods were usually not used as they changed the taste of 

the beans: using clay pots and not soaking meant that the beans tasted 

"sweeter". Another reason was that they sometimes simply forgot to soak 

the beans.

(d) Procedure after cooking

The fire was not put out immediately after cooking, despite the high 

temperature in the cooking hut: temperatures of up to 29°C were 

measured. Instead, the fire was allowed to go out of its own accord.

In both Mukweva and Ellenvale the fire was often observed to be 

smouldering. The male head of one of the households in Mukweva said 

that this was done because matches were expensive; whilst the cover 

price was 2 Zc (1.5p) per box the actual price paid was 5 Zc (3*5p). 

Similarly in Ellenvale, a villager explained that she did not put out 

the fire after cooking because her husband smoked, and matches were 

expensive. She put water on the firewood at the end of cooking, in 

order to conserve fuel, when her husband was away (working). A child in 

Ellenvale was observed carrying red hot embers from a neighbours cooking 

hut to light the fire for the evening meal.

Only one village women in Mukweva and a few women in Doornhoek, said 

that they usually put water on the firewood after cooking, in order to 

conserve wood.

In Mukweva, only about half the firewood was used directly for cooking 

(Table 6.12) - the rest just burned away. These figures were similar 

for all four households, irrespective of stove type. For the household 

using the 3-stone fireplace in Ellenvale around 80% of the firewood was
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used in cooking.

Household 
Proportion of 
daily energy used 
in cooking

Table 6.12 
Cooking energy consumption

Mukweva 
A B C D
47% 52% 45% 48%

Ellenvale
0
80%

6.3-2 Effects of seasonal variation in demand for agricultural labour

(a) Patterns of labour in agriculture

Women were responsible for agricultural as well as domestic tasks (Table 

6.13).

Table 6.13
Sexual division of labour

Agricultural tasks Carried out by;
planting men and women
digging/weeding men and women

Domestic Tasks
washing clothes/pots women
carrying water II
sweeping II
cooking II
pounding rice II
collecting firewood II
(by headload) II
collecting firewood 
(by "scotch cart"*)

*see section on fuel collection

men

Ploughing and planting were started when the first rains fell, (usually 

in November) and continued till December. Weeding took place from 

January to March, and harvesting in May and June.

Most women said that they were busiest from November to around May or
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June, and least busy from June to October (Fig 6.9). However, only the 

months from August to October were usually spent resting, as "winter 

ploughing" was done in the vegetable gardens in June and July.
month

S O N D J F M A M J J  A
<post>

season <hotXmain rainyXrainyX— cold->
firewood collection [////] [////////]
busiest months for agriculture [/////////////////]
no. of pots on iron frame* <oneX two or three X — one— >

* see text

Seasonal Variation in Agricultural and Domestic Activity
Figure 6.9

In Chitsvatsva, harvesting took place slightly earlier - from March 

through to April - winter ploughing was from May to July. Most 

villagers in Chitsvatsva also regarded the months fom November to May as 

the busiest; one households reported being busy all year round.

This variation in labour demand over the year affected firewood 

collection and cooking practices (Fig 6.9).

(b) Firewood collection

Firewood was collected in the agriculturally slack season when women 

were not busy in the fields; seasonal weather conditions also affected 

firewood collection (see section 6.3.6).

(c) Cooking practices

Cooking practices were affected in two ways when women were busy in 

agricultural labour.

Some villagers cooked in the fields at times of peak agricultural labour 

demand (cooking was also done outside for other reasons - see
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section 6.3*6).

Fast cooking was considered to be extremely useful at times of the year 

when the women were busy in agriculture. Village women said that the 

number of pots they heated simutaneously on the stove varied over the 

year; two or more pots were heated simultaneously when they were busy, 

whilst only one pot was heated at a time during the slack months 

(Fig 6.9).

Most of the villagers had replaced their 3-stone fireplace inside the 

cooking hut with either a "4-stone fireplace" or "iron frame stove" (Fig 

6.10). These latter stoves enable several cooking pots to be heated 

simultaneously, thereby reducing cooking time. This time saving feature 

was given as one of the most important reasons for adopting the new 

stoves (see also section 6.3*4).

One household in Mukweva had modified her 3-stone fireplace by placing a 

small additional stone (Fig 6.11), enabling her to heat two pots 

simultaneously - this entailed having two fires close to each other.

All other households who used 3-Stones said they always heated one pot 

at a time throughout the year, because it was not possible to heat more 

than one pot simultaneously on the traditional 3-stone fireplace.

6.3.3 Types of cooking stove

All householders interviewed in Mukweva, Munondo, Doornhoek and 

Chitsvatsva had a separate cooking hut. Some cooking huts in Ellenvale 

had still to be built; villagers in Ellenvale and Doornhoek had recently 

been resettled (one household in Ellenvale had arrived 4 months ago).
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(a) 3-Stone Fireplace

(b) 4 -Stone Fireplace

2728
2622

Plan

) Iron Frame

23
25

Plan

Section

(measurements in cms.)

Fig 6.10 "stoves" found in rural Zimbabwe
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and were in the process of building their huts.

Every household in all five kraals had placed its stove at the centre of 
their cooking hut.

During cooking family members (in Mukweva and Ellenvale) were observed 
to gather around the central fireplace.

Three types of 'stove' were observed on the fireplace in the center of 

the cooking hut (Fig 6.10): 3-Stones, '4-Stones' or an "iron frame".

Households using the 3-stone fireplace sometimes placed the cooking pots 

directly on the burning firewood rather than the stones.

Villagers visited in Chitsvatsva had placed bricks on one side of the 

iron frame to act as a wind shield (Fig 6.12).

None of the stoves were higher than about 30cm; this meant that young 

(female) children were not prevented from cooking.

One villager in Chitsvatsva also used a "mbaura": a one pot stove, 

consisting of a five gallon cylinderical container with holes punched 

into the sides and bottom to provide air for the burning fuel. This was 

sometimes instead of the iron frame as the user perceived it to use 

slightly, less fuel.

The 4-Stones fireplaces were user built and consisted of 4 pillars of 

clay (or termite mound) fixed to the ground. These pillars were linked 

by 4 metal bars in the shape of a square with two additional metal bars 

forming the diagonal supports: termite mound was mixed with water and
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Fig 6.11 modified 3-stone fireplplace
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formed into pillars into which metal bars were embedded. This structure 

was left to dry for about 10 hours. The 4-stone fireplace had to be 

rebuilt or repaired every 4-6 months, as it deteriorated with use 

(Fig 6.13).

The iron frame was made by urban artisans and available in towns: in 

Harare (the Capital) the iron, frame cost around Z$ 4 - equivalent to 

nearly 5 weeks of the (estimated average) rural income in 1981.

The earliest reported purchase of the iron frame was 1961 in Doornhoek, 

1965 for Chitsvatsva, 1971 for Mukweva, and 1978 for both Munondo and 

Ellenvale respectively (Table 6.14). Most households had purchased 

their iron frame in the 70's.

Most of the households in Mukweva, Munondo, Ellenvale, Doornhoek and 

Chitsvatsva had an iron frame stove inside their cooking hut (Table 

6.15). There was a similar pattern of stove ownership in the households 

of 19 local children attending St Elim Mission school.

Virtually all the villagers using the iron frame or 4-Stones reported 

having 3-Stones inside the cooking hut prior to the change in cooking 

'stove'. Following the adoption of the iron frame, the vast majority of 

these villagers had moved their 3-Stones outside the cooking hut, where 

they were sometimes used to heat water for bathing and to brew beer (a 

few times a year) (Fig 6.14).

Women who continued to use the traditional 3-Stones inside the cooking 

hut expressed a desire to change to the iron frame, but said that they 

could not afford to buy one.
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kraal
Mukweva

Table 6,14 
Date of purchase of iron frame 

and construction of 4-stone fireplace
Household

A
B
C
D
E
F
G
H

Stove Inside

3-stones 
iron frame
4-stones 
iron frame
3-stones 
iron frame
4-Stones 
iron frame

When bought/built^
n.a.
1971 
n.a. 
n.a. 
n.a.
1975
1975
1972

Munondo

Ellenvale^

iron frame 
4-Stones 
iron frame 
iron frame 
iron frame 
iron frame 
iron frame 
4-Stones

iron frame 
iron frame 
3-Stones 
iron frame 
3-Stones

1981
1978
1978
1981
1980
1980
1981
1981

1978
1980

1980

Doornhoek
iron frame 
iron frame 
3-Stones 
3-Stones
3-Stones 
iron frame 
iron frame
4-Stones 
iron frame 
iron frame 
iron frame 
iron frame

1975/76
1979
n.a.
n.a.
n.a.
1971 
1979

long ago 
1961 
1979
1972 

before 1975

Chitsvatsva
iron frame 
iron frame 
iron frame 
iron frame 
"mbaura"^

1976
1965
1979
1969

made 3 months ago

 ̂ the date of purchase or construction was not known for households A, C 
and E.
^the iron frame is purchased whereas the 4-Stone fireplace is built at 
home
^the other 6 households in Ellenvale had an iron frame, but the date of 
purchase is not known.
"mbaura" is single pot metal brazier-like stove.
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Table 6.15 
Cooking stove ownership

No. of 
households 
surveyed

No. with each No. with each 
stove type inside stove type outside 

cooking hut cooking hut
INCL
Mukweva 8 5 - Iron Frame; 

2 - "4 Stones"; 
1 - "3 Stones".

6 - "3 Stones"

Munondo 8 5 - Iron Frame; 
2 - "4 Stones"; 
1 - "3 Stones".

6 - "3 Stones"

Households 
within 5km 
of Mission

19 19 - Iron Frame 7 - "3 Stones"

IICA
Ellenvale 11 9 - Iron Frame; 

2 - "3 Stones".
4 - "3 Stones"

Doornhoek 10 7 - Iron Frame; 
1 - "4 Stones"; 
3 - "3 Stones".

4 - "3 Stones"

Chitsvatsva
*see text

5 5 - Iron Frame 3 - "3 Stones" 
1 - "mbaura"*

6.3.4 Villagers reasons for changing from the 3-stone fireplace

Overall, the iron frame was perceived to have a number of advantages 

compared with the traditional 3-stone fireplace: the ability to heat 

"many things" at the same time; a "modern image"; it produced less 

smoke; pots were more stable; it gave out more heat and bigger logs 

could be used. A ranked list of villagers reasons for changing or 

wishing to change from the 3-stone fireplace to the iron frame are given 

in Table 6.16. In contrast the 4-stone fireplace had only the first 

advantage.

A villager in Ellenvale who had a 3-stone fireplace inside her cooking
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hut summarized her perceptions of the advantages of the iron frame as 

follows: the most important was that no (or little) smoke was produced. 

Another, the ability to heat several pots at the same time (in summer 

this meant that "many maize cobs" could be roasted - with 3-stones she 

was limited to 3 at a time). Finally, pots on the iron frame were more 

stable. In her case a lot of smoke was produced during cooking. Smoke 

built up inside the hut - despite the door being left open. This 

irritated the eyes, especially when the fire had just been started. In 

her view, the 3-stone fireplace had only the advantage of having half 

the fuel consumption of the iron frame.

(a) Multi-pot cooking and modern "image"

One of the most important reasons for changing from the 3-stone 

fireplace was that the iron frame allowed several pots to be heated at 

the same time: women in Mukweva gave only this reason for the change, 

whilst some women in Ellenvale regarded the modern "image" of the iron 

frame as being more important; these latter households regarded 3-stones 

as being "old fashioned" and by moving away from this traditional 

fireplace they were (literally) moving out of the "Stone Age".

Two households in Doornhoek still used the 3-stone fireplace - for them 

the ability to cook food more quickly was the most important reason for 

wishing to acquire an iron frame.

(b) Smoke

Cooking with 3-Stones was observed to create more smoke than with the 

iron frame. This was especially noticeable during the initial stages of 

lighting the fire. Smoke was not considered to be a problem by any of
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the women using the iron frame. Direct observation of the cooking 

process showed that little smoke was evident except during the first few 

minutes of lighting the fire, and when firewood was added to the fire. 

Nearly all the cooking huts had one or two windows. Hence, smoke tended 

to escape through these windows and roof of the hut. Smoke which was 

present was predominantly at heights above 1m from the floor. However, 

this was at a level above the head of a person sitting on the floor - 

the usual position for cooking and eating.

Smoke was a problem in two households who used the iron frame, in 

Mukweva, where the cooking hut had no windows - this made it expecially 

difficult to use fuels such as maize cobs which burnt with a lot smoke.

(c) Stability of pots

Cooking pots were fairly unstable on the 3-Stones fireplace, especially 

during the final stages of cooking sadza, when vigorous stirring was 

required. Much greater stability was apparent with the iron frame.

(d) Space heat

During winter (around June and July) the stoves were used for providing 

space heat as well cooking.

More heat was lost to the surroundings with the iron frame than with 3- 

stones. Firewood could be burnt at high rates in the iron frame - power 

outputs of up to 21 kw were measured (see section 6.2.2). Sometimes this 

high power output was a problem, as the heat from the fire, in 

combination with the vigourous exertion required to stir the thick sadza 

mix, meant that the person stirring the mixture could become very
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uncomfortable. In response to this, some of the families in Ellenvale 

placed a round flat piece of metal in front of the cook, to act as a 

heat shield whilst stirring the sadza.

Villagers commented that the 3-Stone fireplace gave very little space 

heat.

(e) Size of logs

The iron frame could accomodate larger pieces of wood than three stones. 

Two reasons were given by villagers in Doornhoek for the desirability of 

being able to use large logs: a higher heat output (so food could be 

cooked more quickly) and that wood had to be put onto the fire less 

frequently.

6-3.5 Relative firewood consumption of stoves

All the women using the iron frame considered that it consumed 

significantly more firewood than the 3-stones: the iron frame was 

perceived to use between one-and-a-half to three times as much firewood 

as 3-stones (Table 6.17). No villager reported a decrease in fuel 

consumption in changing from the 3-Stones to the iron frame.

Table 6.17
Consumption of new stove relative to 3-stones

(user perceived)

kraal Ellenvale Doornhoek Chitsvatsva
Household A B C D E E G H I J K L M N P QStove type Z Z X Z Z X Z Z Z Z Z Z Z Z z W
Consumption relative 2 2 1 .5 1.5 2 2 2 2 2 3 3 1
to 3-Stones

Stove Type
W - Mbaura, X - 3-Stones, Y - 4 Stones, Z - Iron frame.
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Moreover, villagers observed cooking (using the iron frame) in Mukweva, 

Ellenvale and Chitsvatsva, did not appear to be particularly concerned 

about minimizing fuel consumption by ensuring that the flames were 

directly under the pot. In Mukweva and Ellenvale, the firewood logs 

were adjusted during cooking about once every 15 minutes or so.

Between 2 and 5 litres of water could be brought to the boil in 10 

minutes or so with the iron frame. With a metal pan, PHU’s (see section 

6.2.2.) of the iron frame, varied from 8% to 10/5, whilst a value of 3̂ /5 

was obtained for 4-Stones (Fig 6.10). Using a clay pot on the 4-Stones 

fireplace gave a reduced PHU of 11%. Perhaps not suprisingly, the 

household using the 4-stone fireplace had the smallest daily per capita 

firewood consumption.

The PHU has only been calculated for one household that used 3-Stones; 

fuel consumption data during the cooking process was incomplete for five 

out of the six families under observation in Ellenvale, as cooking was 

already underway before any measurements of the initial quantity of 

firewood, kindling, temperature of the water heated and so on, could be 

made. Repeat measurements would have inconvenienced these housholds. 

PHU’s of 15% and 19/5 were obtained in heating water on the 3-Stones 

(Table 6.18).

For comparison, in laboratory, values of PHU (excluding water of 

evaporation) of up to 20% and 13% were obtained in laboratory tests on 

the 3-stone fireplace and iron frame stove respectively (see Chapter 5).

Despite the relatively higher fuel consumption, none of the women using 

the iron frame or 4-stone fireplace thought that having a 3-stone 

fireplace inside the cooking hut had any advantages. In addition, all
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the women who still had 3-stones inside their cooking hut expressed a 
desire to have an iron frame but were prevented from purchasing one for 
lack of money.

Table 6.18 
Percentage heat utilization data

House- Tf 
hold (Oc)

Ti
(°C)

Time to 
Tf (min) (Kg)

Po
(kWj

Pan PHU
(%)

Stove

Mukweva 
A 80.0 27.5 9.7 4.95 21.2 metal 8.8 Iron frame
B 87.5 28.5 11.0 2.56 9.3 metal 10.3 Iron frame

C 93.5 
92.2

29.1
25.2

9.0
22.5

2.68
2.68

4.2
5.1

metal
clay

33.8
11.0

4-Stones
It

D 81.6 
97.0

24.6
23.4

11.8
10.9

4.48
2.10

15.8
12.0

metal
metal

9.6
8.2

Iron frame
If If

Ellenvale 
C 96.6 

96.6
21.0
24.0

14.2
14.4

1.98
2.57

4.4
6.1

paint can 
paint can

18.9
14.9

3-Stones
II

Key
Tf - final temperature of water; 
Ti - initial temperature of water 
M^ - mass of water being heated; 
Pq - power output of burning fuel 
PHU - percentage heat utilization 
evaporated water (see Chapter 3).

Î

Î
excluding energy associated with

6.3-6 Effects related to seasonal and climatic variations in weather

(a) Cooking out of doors

One villager in Mukweva said she cooked outside on her 3-Stones from May 

till July, whilst she was drying maize inside the cooking hut. It was 

possible to cook outside during this time as the rains stopped in April.

Some villagers in Doornhoek and Mukweva cooked outside on a 3-stones 

fireplace in the hot season (ie August to October). Three out of the 

five households in Chitsvatsva cooked outside in the hot season when 

using animal manure, since it burnt with an unpleasant smell and a lot
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of smoke.

(b) Fuels used for cooking

Firewood and maize cobs were used as cooking fuels in four kraals 

(Mukweva, Ellenvale, Doornhoek and Chitsvatsva). Three households in 

Mukweva did not use maize cobs because they produced "too much smoke" 

and burned "too quickly"; there were no windows in the cooking huts of 

two of these households in which the level of smoke built up very 

quickly (see also section 6.3.4).

Firewood consisted of tree branches and logs varying from 0.5 - 1m in 

length and 2 - 10 cm in thickness. The quality of the firewood was not 

the same for all the kraals: whilst villagers in Mukweva, Ellenvale and 

Doornhoek used tree branches, villagers in Chitsvatsva also dug up tree 

roots. Some villagers said that they preferred thick logs as they 

required less attention and did not have to be replaced so often during 

the cooking process (see also section 6.3.4).

Average moisture contents (dry basis) of the firewood samples (see 

section 6.2.2) obtained from households in Mukweva and Ellenvale, ranged 

from 10% to 37% (Table 6.19).

Table 6.19 
Moisture content of firewood samples

Mukweva Ellenvale
Household A B C D  A B C D E
Firewood moisture content 10.0 10.5 37.0 12.5 10.7 27.1 12.5 16.8 21.6
(%) -dry basis
standard deviation 2.6 3.3 11.0 1.3 1.0 4.4 1.3 2.6 8.1

Sun dried cattle manure was used as a fuel only in Chitsvatsva. This 

was collected and burnt in the (3-stone) fireplace outside the cooking 

hut during the post-rainy and hot season: manure could not be collected
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during the rainy season as it was washed away by the rain. Only manure 

that was found outside these kraals was burnt as cooking fuel; villagers 

said that manure from the cattle kraal - the enclosure where cattle were 

kept - was needed as fertilizer. Some villagers said that they had 

insufficient cattle manure to use as fertilizer.

None of the villagers reported using paraffin or charcoal as cooking 

fuels. In Chitsvatsva villagers said that they did not cook with 

charcoal because it produced a "bad atmosphere" ie carbon monoxide.

Both animal manure and charcoal were used for non-cooking activities: in 

Mukweva, Ellenvale and Doornhoek cattle manure was principally used as a 

fertilizer. One villager in Doornhoek also used manure as a polish for 

the floor of two huts (three times a week); another preferred to use mud 

as a floor polish as she did not like the smell of manure. A few 

villagers in Doornhoek and Ellenvale reported saving charcoal from the 

fire to use in their clothes iron’s; ironing was done between one and 

three times a week.

(c) Patterns of fuel collection

Firewood was collected in all the kraals by women and girls and carried 

as headloads, or by men and boys and carried by cart (Fig 6.15). In 

Mukweva, the weight of firewood per headload ranged from 12kg to 36kg; 

the larger amounts being carried by young women whilst the older women 

carried much less. The weight of firewood collected by scotch cart 

(measured on only one occasion) was just over 170kg.

Firewood was reported to be collected from June till October - the 

agriculturally slack season: during the rainy season, women were busy
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Fig 6.15 loading firewood onto "scotch” cart

é

F i g  h . l h  f i r e w o o d  s t o r e  of l i o u s e h o l d  in E l l e n v a l e
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with agricultural work (see section 6.3.2). Moreover, wet wood was 

"very heavy" and "difficult to burn". The usual practice was to collect 

enough firewood during the dry months (and store it in a pile) to last 

through to the end of the rains (Fig 6.16 - 6.18).

Some villagers in Ellenvale were observed to have continued to gather 

firewood during December. However, the rains had been delayed and did 

not arrive till mid-December. Women questioned about this said that 

they preferred to use as little as possible of their stored firewood, 

which they would need during the rainy season.

Villagers in Chitsvatsva started collecting firewood a few months 

earlier than in Ellenvale, Doornhoek and Mukweva.

Firewood was used all year round by every household questioned in 

Mukweva, Ellenvale and Doornhoek, and three households in Chitsvatsva.

Two households in Chitsvatsva said they were only able to use firewood 

during the rainy season, as their store of firewood lasted about half 

the year entailing the use of animal manure for the rest of the year; 

firewood stockpiles in Chitsvatsva were generally considerably smaller 

than those in the other two study areas (Fig 6.16 - 6.18). These 

households bought firewood: one said that she was too ill to collect 

firewood, and so bought all the firewood she used over the year; the 

other bought firewood to supplement the firewood she had collected.

Maize cobs were generally collected and burnt during August and 

September in all kraals, though, one of the households in Chitsvatsva 

reported using maize cobs from June to August.

273



Fig 6.17 firewood store of household in Mukweva
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(d) Variation in firewood consumption over the year

All the villagers said that their level of firewood consumption varied 

over the year, mainly as a result of requirements for space heat in 

winter; for villagers in Chitsvatsva, firewood consumption fell due to 

the substitution of animal manure for firewood for part of the year. As 

noted in section 6.3*4, one reason given by villagers for changing to 

the iron frame stove was its better space heat capability compared with 

the 3-stones.

The mean variation (relative to the level of consumption in November) 

for each kraal is shown in Fig 6.19 (see section 6.2.2). Some villagers 

also said that firewood consumption increased after harvesting as more 

food was available for cooking.

In Mukweva, fuel consumption during the cold months of June and July was 

said to be one—and—a—half to twice as high as the rest of the year.

In Ellenvale and Doornhoek firewood consumption was perceived to 

increase from around the beginning of March and peaking in the winter of 

June and July. After July, the relative consumption fell and remained 

fairly constant from September to February. According to respondents, 

fuel consumption was between one-and-half to three times as high in 

these cold months as the other months. On the basis of these estimates 

of consumption, the average level of consumption in winter was 

calculated to be about two-and-a-half times the consumption during the 

months from September to December (Fig 6.19).

In Chitsvatsva, the mean consumption of firewood was fairly constant 

bill July, after which it fell to about two-thirds of the value during
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the months from August through to October. Firewood consumption was 

perceived to increase for two of the households around winter. Two 

other households reported a fall in consumption: in one case, no 

firewood was reported to be consumed during April to October, whilst for 

the other, firewood consumption was half its usual value. Both these 

villagers said that firewood consumption during these months fell as 
animal manure was being substituted for firewood.

6.3-7 Firewood collection site(s)

All five households surveyed in Mukweva said they went to the same 

firewood collection source (about a 10 minute walk away). On two 

occasions that village women were accompanied on their firewood 

collection trip, around 10 minutes were spent in the collection area 

itself. Dry branches of wood were gathered: these had been cut earlier 

in the year and left to dry out. A total of 30 minutes was taken in 

going to the collection area, collecting the wood, and bringing it back 

as a headload. Firewood was collected on these trips by individual 

women rather than in groups - it is not known whether this is the norm 

cr not.

The firewood source was 30 minutes away for an observed trip to collect 

firewood with a Scotch cart. Only a few minutes were spent in loading 

the cart since the firewood had been put in a pile on a previous trip.

All the households in Mukweva reported cutting firewood and leaving to 

dry for a few months before coming to collect it - there were no reports 

of others taking this firewood.

Additional data on the distance to firewood collection areas obtained in
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the questionnaire from 19 local children who attended St Elim Mission 

school is shown in Fig 6.20; around three quarters of these households 

had more than one firewood collection source (Fig 6.21). The distance 

to firewood collection areas was in the range 70 - 1500m.

In Ellenvale, the surrounding area was sparsely populated by trees.

There were very few trees at the nearest collection point (about a 15 

minute away). The main collection area was a 20 to 25 minutes walk away 

(ie between 2000-2500m) and took the form of a linear trail along the 

nearby river’s bank to the east. Another forested area was evident to 

the west. All the villagers interviewed in Ellenvale said that firewood 

was collected from the trees along the river bank.

A few villagers in Doornhoek who were questioned collection sources said 

that they went to the mountain range (about 3km away) for firewood.

Villagers in Chitsvatva were not asked about distance to sources of 

firewood collection, however, very few trees could be seen from the 

village.

Overall, the larger distance to firewood collection sites in Ellenvale 

compared to Mukweva supports the view that Ellenvale is in an area of 

greater fuel stress than Mukweva. The tree-less landscape around 

Chitsvatsva further confirms this village to be in an area with an acute 

shortage of firewood.

6.3.8 Perceptions of fuel collection vis a vis other tasks

Women’s perceptions of tasks they regarded as being "hard", "easy", 

"liked" and "disliked" are summarized in Fig 6.22 - 6.25; data from the
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women in Mukweva is only for the tasks they regarded as being hard or 

easy. Whilst all villagers regarded at least one activity as being 

hard, easy or liked, some villagers gave the response that there was 

nothing that was disliked.

(a) Agricultural tasks

All the women surveyed in Mukweva, Ellenvale, Doornhoek and Chitsvatsva, 

felt that ploughing was hard.

Ploughing was regarded as being the hardest activity as there was little 

time to rest; villagers woke up at 4am and worked till about 10am, and 

then from 4pm till 6pm, as it was too hot to work late morning and early 

afternoon. One household in Chitsvatsva only had 2 cattle - ideally 4 

cattle were required. In another case, the wife had to do the ploughing 

as the husband was working.

Other agricultural tasks (harvesting, weeding and planting) were also 

felt to be hard by nearly all the women surveyed.

In Doornhoek, 9 out of the 10 women interviewed felt grazing cattle was 

hard.

Some villagers liked harvesting and ploughing. In Doornhoek, 9 out of 

the 10 households interviewed liked ploughing, despite it being the 

hardest task. To explain liking the hardest task, all these villagers 

said that "we have to like it [ploughing], because if we don’t plough we 

won’t survive’’.

In Doornhoek, 7 out of the 10 households disliked taking cattle to the
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dip.

(b) Collecting fuel

Cutting and collecting firewood was likewise considered to be a hard 

task by most of the women surveyed. All the women in Doornhoek found 

cutting firewood hard. Three households (out of the five surveyed) in 

Mukweva felt firewood collection was very hard; two were grandmothers, 

whilst the third said collecting firewood was hard because her children 

were too young to help her.

One women in Ellenvale (who had only one small child) said that cutting 

and collecting firewood was difficult, as she had to bring back the wood 

on her head; she would have preferred collection via cattle and cart. 

Other women in Ellenvale said that although firewood collection was hard 

they had grown used to it.

Some women in Chitsvatsva said they found it hard to dig for roots.

In Doornhoek, women in 4 households disliked collecting firewood.

(c) Domestic tasks

All the villagers regarded domestic tasks such as washing pots, washing 

clothes and cooking as being easy. However, one villager in Doornhoek 

did not find cooking very easy because the cooking process had to be 

carefully watched in order to minimize fuel consumption.

Domestic tasks such as cooking, washing pots and clothes were liked by 

nearly all the villagers.
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6.3-9 Magnitude of daily firewood consumption

Data from two households were discarded: one in Mukweva owing to a very 

large variation in the moisture content of the wood samples taken; the 

other in Ellenvale as measurements were taken for only two days.

Daily firewood consumption measured over survey period ranged from 1 - 

3kg per capita (or 1.5 - 4kg per adult unit). Generally, slightly less 

firewood was consumed for the households monitored in Ellenvale compared 

with Mukweva. Details of the daily firewood consumption (in terms of 

energy) for all the households surveyed in Mukweva and Ellenvale are 

given in Appendix F. The highest firewood consumption was generally 

recorded when beans or meat had been cooked.

The household with the 4-stone fireplace consumed the least firewood per 

day (the highest PHU was also recorded for the 4-Stone fireplace - see 

section 6.3.5).

6.3-10 Projected annual cooking energy consumption

Projections of annual energy consumption have been made for households 

in Mukweva and Ellenvale on the basis of their perceived variation in 

firewood consumption over the year: firewood consumption was measured by 

the author in November for Mukweva and December for Ellenvale (see 

section 6.2.2). Any contribution to cooking fuel by maize cobs was 

neglected in these projections. ^

Per capita annual firewood consumption ranged from 450 - 1050kg (700 - 

1800 kg per adult unit) in Mukweva (Table 6.20). Annual per capita 

consumption in Ellenvale ranged from 600 - 1500kg (1200 - 2100kg per
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adult unit) (Table 6.21).
Table 6.20

Firewood consumption in Mukweva

Household A B C D
No. of adults* 3 1 2 3
No. of children 3 5 4 3
No. of "adult units" (AU) 4.7 3.3 3.8 4.3
No. of days firewood consumption measured 17 15 13 15
Mean daily firewood consumption (kg) 14.8 11.8 6.3 18.1
Mean daily " " (per capita, kg) 2.5 2.0 1.1 3.0
Mean daily " " (per AU, kg) 3.1 3.6 1.7 4.3
Projected annual firewood consumption (kg) 6302 5025 2683 7708

" " " " (per capita. kg) 1050 838 447 1285
" " " " (per AU, kg) 1341 1523 706 1793

Calorific Value (Q.V.) of firewood (MJ/kg) 16.8 16.7 13.0 16.4
Per capita annual energy consumption (GJ) 17.6 14.1 5.8 21.1
Annual energy consumption (per AU) (GJ) 22.5 25.6 9.2 29.4
Stove Type Inside Cooking Hut IF IF 4S IF

KEY;
persons over the age of 16.

Stove Type - IF; iron frame; 4S; 4-Stones.
Calculations based on this data of annual (per capita) 

consumption for cooking, range from 6 to 22 GJ (Table

energy 

6.20 - 6.21). On

the whole most of these figures are substantially higher than the 

average figure of 10GJ per capita calculated using the data from other 

researchers. Projections of annual energy consumption per "adult unit" 

range from 10 to 30GJ (Table 6.20 - 6.21).

Table 6.21 
Firewood consumption in Ellenvale

Household A B C D ENo. of adults* 2 2 1 2 1
No. of children 3 1 4 3 2
No. of "adult units" (AU) 3.5 2.2 3.8 4.4 1.7
No. of days firewood consumption measured 4 8 8 6 5
Mean daily firewood consumption (kg) 10.7 6.5 10.0 10.1 5.0
Mean daily " " (per capita, kg) 2.1 2.2 2.0 2.0 1.7Mean daily " " (per AU, kg) 3.1 3.0 2.6 2.3 2.9
Projected annual firewood consumption (kg) 5858 4626 5080 4147 1931

" " " " (per capita. kg) 1171 1541 1016 829 644
" " " " (per AU, kg) 1673 2102 1337 1155 1136

Calorific Value (C.V.) of firewood (MJ/kg) 16.7 14.2 16.4 15.7 15.0
Per capita annual energy consumption (GJ) 19.6 21.9 16.7 13.0 9.7
Annual energy consumption (per AU) (GJ) 27.9 29.9 21.9 14.8 9.7
Stove Type Inside Cooking Hut 

KEY;
persons over the age of 16.

IF 3S IF IF IF

Stove Type - IF; iron frame; 4S; 4-Stones; 3S; 3-Stones.
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6.4 Discussion

6.4.1 Fuel Situation in the kraals visited 

(a) Mukweva kraal

Mukweva appears to be in an area with the least fuel stress. Firewood 

was reported to be used in all the months of the year by the villagers, 

whom the author visited. Moreover, the largest stockpiles of firewood 

(of all the kraals visited) were in Mukweva. Firewood was supplemented 

by maize cobs when they were available. Animal manure was not used as a 

cooking fuel, and the maximum reported distance to firewood collection 

was a 30 minute walk.

(b) Ellenvale and Doornhoek kraals

Ellenvale and Doornhoek appear to be under slightly greater fuel stress; 

tree cover was sparser, and the size of firewood piles were smaller than 

those observed in Mukweva. There was no acute shortage - no shift to 

animal manure had been reported. Firewood was said to be used all year 

round, and hence, was the major source of cooking fuel. Maize cobs

were used as a fuel supplement during August and September, as in 
Mukweva.

(c) Chitsvatsva kraal

There are a large number indicators that suggest that Chitsvatsva is in 

an area with an acute shortage of firewood. The area surrounding the 

kraal had very sparse vegetation; villagers were searching for tree 

roots as a fuel not just tree branches; animal manure was used as a
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cooking fuel; and the firewood piles for use in the rainy season were 

considerably smaller than those observed in Mukweva, Ellenvale or 

Doornhoek. In addition, some villagers did not have enough firewood to 

last them through the year. Two (out of the five households surveyed) 

bought firewood; one bought all the wood required whilst the second 

bought wood to supplement firewood that had been collected. These 

purchases means that in Chitsvatsva firewood can no longer be regarded 

as a "non-commercial" fuel.

Animal manure was used by all the households in Chitsvatsva as a cooking 

fuel for a minimum of 3 months of the year and in some households up to 

7 months (this may be an upper limit owing to the incidence of rain). 

Villagers were prepared to use manure as a fuel despite their dislike of 

the smoke and smell of burning manure.

6.4.2 Change in types of cooking stove used by villagers

The most important finding is that in Mukweva, Munondo, Ellenvale and 
Doornhoek there has been a major shift from the traditional 3-Stone 
fireplace either to a user built '4-Stones* or to an iron frame 'stove',
with the vast majority of the villagers adopting the iron frame. This 

shift has also taken place in Chitsvatsva and the kraals close to St. 

Elim Mission.

It is culturally significant that both the iron frame and 4-Stones were 
placed on the traditional fireplace at the centre of the cooking hut. 
Hence the social aspect of gathering around a fire had been retained.
In addition, the height of both these types of new stove was similar to 

that of the traditional 3-stone fireplace - the transfer to new stoves 
has thus taken place without displacing traditional cooking postures.
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The iron frame may be based on the 4-stone fireplace; the earliest 

report of the iron frame being purchased was 1961, whilst the 4-stone 

fireplace had been in use for many years previously.

Villagers changed to these types of cooking 'stove* despite additional 

costs involved: 4-Stones require a morning or so to construct, and then 

have to be repaired every four to six months, while the iron frame stove 

costs Z$3-5. The cost of the iron frame represents around 13-20% of the 

average (estimated) per capita rural income of Z$ 38 per year.

According to women in Ellenvale, Doornhoek, and Chitsvatsva with whom 

the author spoke, changing to the new stoves meant an increase in fuel 

consumption: the 4-Stones was estimated to use one-and-a-half to twice 

as much firewood as 3-Stones, whilst the iron frame was said to use 

between 1.5 to 3 times as much firewood as 3-Stones. It would not be 

unreasonable to expect the women concerned to be aware of such 

significant increases in cooking fuel consumption. In addition, the PHU 

measurements suggest that the iron frame consumed more firewood than the 

3-stone fireplace, but enabled food to be cooked more quickly, owing to 

the higher burning rates of the wood.

Despite its relative fuel efficiency none of the villagers thought that 
the 3-Stones had any advantages: the primary reason why the two women in 
Doornhoek continued to use 3—Stones was lack of money to purchase an 
iron frame.

6.4.3 PHU's of stoves: field measurements

Field measurements gave PHU's of around 10% for the iron frame. Follow- 

up water boiling tests in the laboratory undertaken at the Open
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University on the iron frame with a fuelbed/pan distance of 10cm gave 

maximum PHU's around 14%. In the field, the distance between the 

fuelbed and pan for the iron frame was larger and hence its PHU would be 

lower. Given this geometrical arrangement the iron frame would have a 

higher fuel consumption than the 3-stone fireplace. An additional 

finding was that the iron frame is extremely sensitive to side winds 

resulting in the flames moving from under the pot and reducing the heat 

transfer to the pot (see Chapter 5).

In the field, PHU's (excluding evaporated water at BP1) of 15% and 19% 

were obtained for the 3-stone fireplace. Laboratory tests by Brattle 

(1979), Joseph and Shanahan (1981) and Prasad (I98O) have indicated 

efficiencies ranging from 12 - 30 %, for the 3-stone fireplace, 

depending on factors such as wind speed, size of the firewood, height of 

the pot above the fire, and so on (see also chapter 4). Data from tests 

in the field would be expected to be lower, and is not inconsistent with 

that obtained from laboratory tests.

The highest values of heat utilization measured by the author in the 

field , viz 34%, was obtained with the 4-stone fireplace, which fell to 

11% when a clay pot was used instead of a metal pan and took two-and-a- 

half times as long to heat the water. However, this would not be 

unexpected since clay is not as good a conductor of heat as a metal, and 

substantially more water would be evaporated during heating; the energy 

associated with evaporated water was ignored in the calculation of heat 

utilization. Both these would increase the time to heat the water 

(compared with the metal pan) and reduce the calculated value of heat 

utilization. The value of the PHU measured with the 4-stones is not in 

agreement with the perceptions of the villagers in Doornhoek. This 

requires further investigation.

291



6.4.4 Villagers rationale for adopting new types of cooking stove

Village women in Chitsvatsva perceived a tripling in fuel consumption 

for the iron frame compared to the 3-Stones. As discussed earlier, the 

costs of fuel collection in Chitsvatsva were high (villagers burnt 

animal manure and were involved in digging for roots). Therefore, it is 

suprising that these users were willing to sacrifice fuel economy and 

bear the especially high labour cost for the benefits of the iron frame.

It will be argued that the reasons for the change from the 3-Stone 

fireplace are as follows; Zimbabwean women provide labour for 

agriculture as well as for cooking and fuel collection. As agricultural 

labour demand varies over the year, increases in this workload is felt 

more acutely during the period of peak labour demand. The busiest time 

of year is from November to April when the women prefer to cook quickly 

and have transferred to the iron frame or 4-stone fireplace.

Though time is saved because cooking can be done more quickly, this has 

to be offset against the additional labour time spent in fuel collection 

owing to the relatively higher fuel consumption of the iron frame. 

However, since fuel is collected during the slack season whilst fast 

cooking is required in the peak agricultural season, higher fuel 

consumption costs incurred are affordable, because they are borne during 

the part of the year when labour is not in high demand. It is crucial 

to note that the villagers are able to do this because they can collect 

and store sufficient firewood during the slack season to last them 

through the busy months.

One effect of this increased workload would be to decrease the amount 

time available for day to day activities such as cooking. A stove which
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enabled cooking to be done more quickly would, under these conditions be 

highly desirable.

Since agricultural labour demand varies over the year, increases in the 

workload of women would be felt most acutely during the period of peak 

labour demand. The busiest time of year is from November to around 

April: in these months women were able to save time by heating several 

pots simultaneously rather than one pot at a time. This has resulted in 

transferring to the iron frame (or 4-Stones) even in an kraal with an 

acute fuel shortage. This correlates with the major reason given for 

changing to 4-Stones or the iron frame, namely the change enabled the 

users to cook many things at a time (ie faster meal preparation): for 

the iron frame wood was calculated to be burnt at power outputs of up to 

21kW; this would contribute to a speedier cooking time.

Other additional user perceived benefits brought about by the change to 

the iron frame were less smoke, a modern 'image', more space heat and 

stable pots, which no doubt added to its attraction.

6.4.5 Innovation diffusion

In terms of Roger's (1983) theory of the diffusion of innovations, 4 out 

of the 5 elements governing diffusion were favourable for both the iron 

frame and 4-stone fireplace. As the iron frame was perceived to have a 

many more advantages than the 4-stone fireplace it would be expected to 

have a higher level of diffusion - this was borne out in the villages 

visited.

In terms of relative advantage, the iron frame had a number of 

advantages compared with the traditional 3-stone fireplace (e.g. faster
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cooking, status, greater space heat); the 4-stone fireplace was 

perceived only to have the advantage of allowing several pots to be 

heated simultaneously. However, both the iron frame and the 4-stone had 

disadvantages: the iron frame cost Z$4 and used more fuel; the 4-stone 

fireplace took half a day or so to construct and then had to be repaired 

every 6 months or so.

Both the new stoves were compatible with existing values and practices: 

the technical and social functions of the 3-stones had been retained 

whilst, traditional cooking postures had not been disrupted.

A low level of complexity was evident for both the new stoves as they 

were simple to use and did not have any baffles or complicated controls.

Both the 4-stones and iron frame had a high degree of visibility: the 

iron frame was regarded by a number of village women as conferring a 

modern image hence a visibility would be desirable.

The iron frame has been observed to be very widely disseminated in 

Zimbabwe (Ascough, 198l:pers comm; McGarry, 1982:pers comm): the high 

level of ownership of the iron frame in these three kraals is not 

unrepresentative of the rest of Zimbabwe. This is not unexpected as 

migrant labour and the division of labour in villages are not restricted 

simply to the kraals visited. Additional survey work needs to be 

carried out to document the exact extent of the dissemination of new 

stoves and the users perceptions of benefits.

In summary, fuel efficiency does not appear to be the main determinant 

of choice of cooking method in these villages, hence stove designs are 

more likely to be acceptable to users if they also take into account
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factors such as convenience, 'image', provision for space heat etc.

6-4.6 Applicability of the findings to other countries

Changes in rural agricultural labour demand through the year which 

affected domestic activity are not restricted to Zimbawe.

Using survey data from 25 African villages Schofield (1974) found that 

as more female labour is spent in the agricultural work there is a 

decrease in time spent in domestic activity. This had several other 

consequences;

"cooking practices change, especially where quick 

easy-to-prepare meals (usually of the nutritionally 

poorer staples such as cassava) are produced once a 

day or in bulk and vitamins are destroyed by food 

kept simmering in the pot. Intra-family distribution 

of food is affected, where children are asleep before 

the daily meal has been prepared and women have no 

time to either prepare special foods or effect the 

proper distribution of foods. Food gathering may be 

inhibited so that some types of food (e.g.green leafy 

vegetables) are suddenly excluded from the diet.

House cleaning, essential in overcrowded and insani

tary conditions, may be inhibited. Fuel and water 

collection is constrained by lack of time. Finally 

mothers devote less time to the care of their chil

dren who are left in the charge of other siblings or 

elderly grandparents (Schofield, 1973) (emphasis 

added)
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In a field study in highland Peru, Skar (1982:74) found that as the time 

spent by women in gathering fuel increased, they spent less time in 

cooking.

The finding that stove users rated features such as faster cooking and 

convenience as more important than fuel savings has also been reported 

in Indonesia and Sri Lanka (Joseph 1982 pers comm), and in Senegal 

(Evans 1982 pers comm). This may be a result of the increasing burden 

on rural women. These findings suggest that stove programmes in 
Zimbabwe (and possibly in other developing countries) will have to take 
into account the perceived needs of users. This is of crucial 

importance since 'improved* stove programmes tend to emphasize fuel 
savings and reduction in smoke above all else.

6-4.7 Patterns of fuel collection and consumption

(a) Fuels gathered ,

Firewood is the main source of cooking fuel in all the kraals visited; 

maize cobs are used as a fuel supplement when available. In addition, 

use of charcoal as a cooking fuel is non existent. This is in agreement 

with the field findings of other researchers (e.g. Whitlow, 1979a; 

Hosier et 1982) for other parts of Zimbabwe. Hosier ^  ̂  found 

that around 40% of the total of 194 rural households surveyed (in 10 

Communal Lands) said they used "crop residues", whilst Whitlow reports a 

total of 24 out of 30 households surveyed (in 2 Communal Lands) used 

maize cobs.

Fuel collection in the kraals visited is predominantly done by women and 

girls collecting by headload, whilst men and boys use cattle drawn
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"scotch carts". Similar survey findings have been reported for other 

parts of Zimbabwe (Hosier et al, 1982).

(b) Fuel collection

Firewood collection is structured by seasonal variations in agricultural 

labour demand and weather conditions.

A similar seasonality of firewood collection in 5 Communal Lands is 

reported by Whitlow (1979a): collection in the dry season took place in 

order to stockpile wood for use during the rainy season. According to 

Whitlow (1979), though firewood -collection took place in the rainy 

season, much less time was spent in gathering - a few hours per week, 

compared with a few days per week in the dry season.

Whitlow's study suggests that whilst the villagers in the present study 

said they did not collect firewood in the rainy season, some limited 

gathering is likely to have taken place - this is supported by villagers 

in Ellenvale observed bringing firewood during the November.

Overall, these patterns of collection means that firewood collected in 

the slack season had to be sufficient to last through the rainy season.

The patterns of fuel collection in all the kraals are similar, with the 

exception of the use of animal manure as a cooking fuel in Chitsvatsva.

(c) Women's perception of fuel gathering vis-a-vis other activities

Concern with the increasing burden on rural women has focussed on their 

role in gathering cooking fuel. This perception of women's role in
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Zimbabwe is one-dimensional and ignores the multi-faceted nature of 

womens work. Since one of the major reasons given for the change by 

rural women interviewed in the survey for changing to stoves which allow 

faster cooking (despite the perceived increase in fuel consumption which 

would mean more time spent in gathering fuel) it is informative to look 

at the reasons that the workload of village women may have increased 

(see also Fig 6.26).

Muchena (1981) argues that this increase in burden has occurred 

primarily for three reasons:

Firstly, the effect of migrant labour owing to men going away to work in 

towns or mines. According to field research in two Communal Lands, 

carried out by Muchena (1981), out of a sample of 90 women, 44% of the 

women were the head of the household for the whole or part of the year. 

In addition, 51 out of 90 (i.e. 57%) women interviewed in the research 

undertaken in one of the Communal Lands said they were ploughing by 

themselves using hoes, whilst in the other more women were involved in 

ploughing activities than men. Hence, women were doing work 

traditionally regarded as being "men's tasks".

Weinrich (1975) observed that women provided 40% of the labour force 

amongst peasant cultivators, as men were away working in urban areas.

Muchena (1981) found that women's main problems with ploughing were

"the lack of adequate or proper implements, lack of 

time, and sheer physical effort in the field using 

hoes or pushing ox-ploughs" (emphasis added)
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In addition, women consistently mentioned the time and the "back 

breaking effort" required in weeding. At the time of Muchena's survey 

the workload of these tasks was accentuated as the survey was carried 

out during the first year of free primary education for children.

Around half the respondents in Doornhoek said that ploughing was the 

activity they disliked the most, the other half said it was the one they 

liked the most. The reason given for liking ploughing was that 

villagers had to like it, because if they did not plough they would not 

survive. Hence, a sense of fatalism may have developed. Some women 

said that they regarded fuel collection as being hard, but they were 

used to it; perhaps displaying a similar sense of fatalism.

Most of the women in Doornhoek did not like grazing cattle. This may be 

because this activity places an additional strain on women during the 

time of peak labour demand: Weinrich (1975) observed that herding duties 

are seasonally distributed, and four-fifths of the total time in herding 

occurs between October and May" when workers are ugently needed in the 

fields". Whilst herding is traditionally undertaken by men and boys 

almost one-third of the time spent in herding was provided by women as 

men were away as migrant labourers whilst children were at school.

Secondly, as a result of the introduction of cash crops which not only 

increased the agricultural workload of women but also reduced their 

status: women are traditionally concerned with food crops and the 

routine aspects of agriculture eg. planting, weeding, harvesting and 

processing. These tasks are also done by women for cash crops, even 

though these crops are owned by men. Cash crops were prestigious since 

they generated income, relied on new farming methods, hybrid seeds and 
so on.
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Thirdly, rural women were constrained by the lack of agricultural 

information which could be given by extension workers leading to 

increases in their productivity and lessening their workload: in the 

Communal Lands extension services are directed at Master Farmers, and 

women Master Farmers are an exception (Weinrich, 1977). Muchena ( 198I )  

argues that this neglect was primarily due to social values whereby 
planners regarded women

"essentially as domestic workers, whose primary 

responsibility should be in the home and not in the 

fields" (Lele, 1975, quoted in Muchena, 198I).

Perceptions of the difficulty of gathering firewood in Mukweva are not 

coherent. Firewood collection was regarded as being "hard" by women in 

3 households, and "easy" by women in 2 households. Of the 3 who had 

problems, one found firewood collection hard as her children were too 

young to help her: this villager said that she tried to save fuel by 

putting water on the firewood at the end of cooking.

Possibly because Mukweva is in an area under less fuel stress than the 

other two sites, women in Mukweva are not particularly careful about 

conserving fuel: it is startling to note that for all four households 

only half the total firewood consumed was utilized in cooking (Table 

6.12), the other half simply burned away! This is a cause for concern, 

since these measurements were taken in the hot season when space heat 

would not be required. Further work needs to be done to confirm this, 

as these measurements were only conducted once for each household.

In Doornhoek, 8 out of 10 respondents found firewood collection hard, as 

did 4 out of 5 respondents in Ellenvale.
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Firewood gathering is not generally disliked: in Doornhoek and Ellenvale 

more that half the women did not mention firewood collection at all in 

this respect. Only 5 out of the 11 households were interviewed in 

Ellenvale, hence these findings may be atypical; though the perceptions 

in terms of attitudes to firewood collection are not disimilar, to those 

in the nearby kraal (Doornhoek) where 10 out ot the 11 households were 
interviewed.

In Chitsvatsva, no household disliked firewood collection despite it 

being hard and only one villager said she disliked collecting animal 

manure for fuel. Agricultural tasks such as ploughing, weeding, and 

planting were disliked more. This is unexpected since firewood 

collection is difficult. Again though the sample size is small these 

perceptions are not disimilar to those found in the other two kraals.

In general, activities which were the hard were disliked, whilst those 

regarded as the easiest were liked. Cooking, washing pots and clothes 

were generally regarded as being the easiest and also the most liked, 

whilst, activities such as ploughing and weeding were the most disliked.

Hosier et al (1982) also report that village women have a number of 

burdens, and not simply those related to fuel collection. Hosier asked 

a number of households to rank the difficulty of obtaining "seven 

fundamental necessities": housing, education, health care, food, fuel, 

and transport. Tranport, fuel and health care were regarded as being 

the three most difficult needs to obtain, by half the respondents - 

Hosier points out that some respondents "tended to give answers biassed 

toward the fuel alternative on a fuel supply questionnaire".
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6.4.8 Fuel consumption and projected levels of annual consumption

One source of error in energy surveys is the very act of measuring fuel 

consumption, since the monitoring would be expected to draw attention of 

the households to their fuel use. It is not clear whether this would 

increase or decrease fuel consumption.

In a fuel survey conducted in Burkina Faso (formerly Upper Volta) (Wood, 

1981, 1982) it was observed that the average consumption fell by 6% in 

the second week of observation (after a weeks gap) - the total variation 

ranged from an increase of 11̂  to a decrease of 25%. This variation may 

simply have been a reflection of different quantities or types of food 

being cooked. In Mukweva, data on the number of people and food being 

cooked was gathered during the survey period, hence, variations due to 

these factors can be taken into account.

As most of the firewood is collected during the dry (slack) season any 

methodology attempting to determine the annual firewood consumption by 

only measuring the firewood collected for part of the year could be open 

to considerable error. The methodology used in this study to determine 

daily firewood consumption measured the depletion per day of a known 

quantity of firewood left outside the cooking hut. Errors would be 

introduced if wood from elsewhere was used for cooking, or if another 

household used wood from this pile. The latter is believed to be 

unlikely as each of the households (in Mukweva and Ellenvale) had large 

firewood piles of their own.

Errors would be introduced in projections to annual consumption if the 

variation of firewood consumption over the different seasons is not

taken into account.
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As measurements of firewood consumption were carried out during hot 

weather, very little consumption owing to space heat requirements would 

be reflected in these data.

Projected levels of annual (per capita) firewood consumption range from 

450- 1540kg (Table 6.4). The highest figures are outside the range 

obtained by other researchers. The sample size (and data taken in 

Ellenvale) are too small to enable meaningful comparisons between the 

level of firewood consumption in Ellenvale and Mukweva.

In energy terms, projections of the daily firewood consumption give 

figures of annual energy consumption per capita ranging from 6 to 22 GJ. 

The mean annual projection of cooking energy consumption for Ellenvale 
was 16 GJ per capita.

Recent work by Hosier et ^  (1982) gives annual energy consumption as

1.5 m3 (equivalent to 15 GJ per capita). This is close to the figure of

16 GJ obtained in this study, and suggests that the commonly used

estimate of 10 GJ may be an underestimate of the true consumption of 
firewood.

A study on the required afforestation in Zimbabwe (Whitsun Foundation, 

1980) calculated that 27 out of the 50 districts in Zimbabwe had an 

acute deficit of firewood i.e. a deficit of more than 4.0 m3 per family 

(of 8 people) per annum, and 13 districts were in the situation of a 

firewood surplus. This was based on population data and the assumption 

that annual per capita firewood consumption was 1.0 m3 and wood growth 

at between 0.8 and 1.0 m3, if data from the present study is used, i.e. 

firewood consumption is 16 GJ (1.6m3) then only 3 districts have a 
firewood surplus.
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6.4.9 Practices affecting fuel consumption

The following findings are based on measurements of firewood consumption 

in cooking three consecutive meals on only one occasion for one 

household in Ellenvale and four households in Mukweva. In effect, 

considerable caution has to be exercised in generalizing from this data. 

However, if these measurements are representative of cooking practices 

there are important consequences for strategies to reduce firewood 

consumption. These findings suggest that it may be possible to make 

considerable savings in firewood consumption simply by altering cooking 

practices. In Mukweva, around half the firewood consumed was simply 

allowed to burn away. This practice may have served a social function, 

with the family eating around the fire. In Ellenvale (an area of 

greater fuel stress) only one—fifth of the firewood was consumed after 

the cooking had been done.

It is likely that villagers would reduce the amount of firewood "wasted" 

by tending the fire with more care in response to a growing shortage of 

firewood; villagers under fuel stress put water on the burning firewood 

at the end of the cooking.

A low cash income appears to be another factor which can affect fuel 

consumption. Some villagers in Ellenvale went without breakfast because 

they could not afford to buy tea. Conversely, the villager who cooked 

sadza and relish in the morning in response to this would consume more 

fuel than if she was simply boiling water for tea. The practice of - 

leaving the fire burning at the end of a meal in order to conserve 

matches would also increase fuel consumption.
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6.5 Deforestation in Zimbabwe

6.5.1 Impact of agricultural practices on deforestation

Kay (1972; 1975) and Whitlow (1979b) argue that rural deforestation has 

arisen due to changes in land use patterns by a growing African 

population engaged in subsistence agriculture;

"as the population increases so the area under 

cultivation is extended to produce more food ... 

prolonged cultivation (will result) in declining 

yields , and so the area under cropping is extended 

at the expense of the grazing lands. The areas taken 

over for cropping ... are likely to be characterized 

by less fertile soils and steeper slopes, that is 

marginal lands" (Whitlow, 1979b)

Vicious cycle effects are brought into play as the ensuing deforestation 

and shortage of firewood decrease crop productivity further. Firstly, 

deforestation will contribute to soil erosion as it is associated with 

an increased incidence of floods. Secondly, through the diversion of 

animal manure as a fertilizer from the fields to be burnt as a cooking 

fuel.

An indication of the pressure on agricultural land was obtained from an 

analysis of aerial photographs of Zimbabwe for the period 1972-1977 

(Whitlow, 1979b); in nearly one-fifth of the Communal Lands the 

proportion of cultivation was greater than half the available land.
Using the data from these photographs to calculate the cultivated area
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per person and compare with estimates for I9OO - the latter data is 

estimated for the whole population of Zimbabwe since the present day 

Tribal Trust Lands were in their inchoate form - he concludes that

"there has been a considerable extension in the area 

under cultivation...but more significantly, this has 

involved an increase in area of land cropped per 

person, a feature which is symptomatic of a 

subsistence cultivation system under pressure and 

attempting to maintain production levels in the face 

of declining soil fertility." <Whitlow, 1979b)

6.5.2 Political factors

In order to understand how the problems of soil erosion and 

deforestation arose in Zimbabwe it is necessary to adopt a historical 

approach. A detailed study of this nature is outside the scope of this 

thesis. However, much has already been written which sheds light on the 

root causes of these ecological problems (e.g. Arrighi, I966, 1970; 

Loney, 1975; Moyana, 1975; Ndlela, I98I; Palmer, 1977; Riddell, 1978), 

and summarized below:

Lands occupied by a growing African population were forcibly seized by 

European settlers in the late I890's. Land assigned to the African 

population (initially termed "Reserves", then "Tribal Trust Lands" - or 

TTL's - and now "Communal Lands") was of low quality and signs of soil 

erosion were evident as far back as the very early 1900»s (Palmer,

1977). Successive Colonial Governments systematically neglected
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conditions in African areas, forcing Africans to enter the cash economy, 

primarily as migrant labourers to work in the mines and towns (Ndlela, 

I98I; Palmer, 1977) - one result of the increased burden on African 

women left behind in the rural areas has been their receptivity to 

cooking stoves which enable cooking to be done more quickly than their 

traditional 3-Stone fireplace even at the cost of higher fuel 

consumption.

By the 1920's and 30’s signs of serious land degradation were becoming 

increasingly apparent in many African areas ( Ndlela, 1981:194). Whilst 

pressure on land due to the African population in the reserves increased 

in the 40’s (Ndlela, 1981), in the European areas almost two-thirds of 

the best land in the country was left unused (Riddell, 1978): "by 1943 

63^ of the reserves were classified as 'overpopulated' and 50% were 
carrying excessive eattle stock" (Ndlela, 1981; Arrighi, 1970).

Needless to say, the situation in the "TTL's" became even more acute by 

the 60's and 70's (Cross, 1977): by this time successive Land 

Apportionement Acts had effectively allocated 47^ of the land set aside 

for farming to the Europeans W  of the population) and 5756 to the 

Africans (96% of the population) (Ndlela, 198I).

Based on an analysis of changes in woody vegetation from aerial maps 

(1963 - 1977); it was observed that there had been no overall change in 
the extent of woody vegetation cover (Whitlow, 1980). Extensive tracts 

of woodland remained. However, these were confined to areas of "steeply 

sloping, inaccessible terrain and/or sparsely populated regions". In 

addition, decreases in woody vegetation were mainly recorded in areas of 

"high to moderate population densities" particularly in the Communal 

Lands.
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In effect, peri-urban deforestation has occurred as a result of demand 

for firewood by urban Africans. Most importantly. Whitlow (1980) 

concludes that rural deforestation since the early 60*s had resulted 

from demand for agricultural land, not firewood gathering activities:

shortages of firewood being a consequence of deforestation.

In summary, these studies highlight the political and economic roots of 

deforestation and soil erosion, hence intervention strategies need to 

address themselves to issues beyond technical fixes. In addition, 

different responses to rural and urban deforestation will be required, 

as the major causes are different. Programmes of afforestation and 

reduction of demand for firewood are more likely to be successful in 

urban areas than in rural areas where forest land may come under 

pressure to grow crops. Strategies designed to cope with rural 

deforestation will need to consider the dynamics of demand for 

agricultural land rather than just simply growing more trees or reducing 

the demand for firewood.
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6.6 Conclusions

According to villagers in the study sites visited there are seasonal 

variations in cooking practices, the provision of food, and fuel 

collection and the level of consumption of traditional cooking fuels. 

These effects appear to be a result of seasonal variation in demand for 

agricultural labour, and changes in both climate and weather over the 
year.

During the months of peak agricultural labour demand there is less time 

for other tasks; less time is spent in cooking during these months using 

the iron frame or 4-stone fireplace. In addition, firewood is generally 

not collected owing to the heavy agricultural workload, (as well as the 

difficulties of carrying and burning wet wood). Firewood is collected 

predominantly in the agriculturally slack season (and stockpiled for use 

in the rainy season) and supplemented by maize cobs (when available); 

firewood and maize cobs were used in all the kraals visited even though 

they had varying levels of firewood scarcity. Cooking is done at a more 

leisurely pace during the slack months.

Climatic changes affect both the level of fuel consumption and the type 

of fuel that can be used. In the cold months, firewood consumption 

increases because of the need for space heat. Sun dried animal manure 

was used in the kraal in an acute firewood shortage, but restricted to 

the months when the manure was not washed away by the rain.

Animal manure burnt for cooking was not taken from the cattle enclosure 

but collected from around the homestead. This suggest that manure which 

previously had marginal utility was burnt. However, if firewood 

supplies become further depleted, these villagers may have to increase
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both their consumption of manure and level of firewood purchases.

In all the villages visited there has been a significant shift from the 

traditional 3-stone fireplace either an iron frame stove or 4-stone 

fireplace; the vast majority of villagers having adopted the iron frame. 

A similar shift in cooking stove has been reported for other parts of 

Zimbabwe. These changes appear to have taken place despite the extra 

costs involved: 4-stones take about half a day to construct and then 

repaired every 6 months or so; the iron frame costs around Z$4 and was 

perceived to use significantly more fuel than 3-stones. The major 

reason for this is the greater fuelbed/pan distance of the iron frame. 

The fuel consumption of the iron frame could be reduced by decreasing 

the distance between the fuelbed and cooking pot.

The major reason for the change to new cooking stoves appear to be the 

desire to cook quickly when rural women are busy in agriculture; 

Zimbabwean women provide labour for agriculture as well as for cooking 

and fuel collection. One prediction of these findings is that both 

solar cookers and hay boxes will meet with resistance from the rural 

African population owing to the slow cooking speed of these devices.

Historically, a number of factors have served to increase the workload 

of rural women (e.g. the introduction of cash crops, the provision of 

formal education for children and male migrant labour away from the 

rural areas). These changes are rooted in the colonization of Zimbabwe, 

initiated in the I890's, whereby a growing African population was 

forcibly removed from the fertile highlands and moved onto marginal 

land. Consequent requirements for food produced in African areas led to 

soil erosion and the destruction of forest cover. Hence rural 

deforestation has its origins in the colonial political economy.
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Forestry programmes per se initiated in the African areas are likely to 

fail for two reasons. Firstly, it will only be a matter of time before 

land used for growing trees will come under pressure for agriculture. 

Secondly, the labour requirements of tree species such as Eucalyptus 

(promoted by the Forestry Commission in Zimbabwe) compete with 

agricultural labour. Since women in these areas already appear to be 

very busy in agriculture and have adopted time-saving stoves, it is 

unlikely that any spare labour capacity exists for them to take part in 

planting and tending tree crops.

The above analysis suggests that intervention strategies to cope with 

deforestation in rural areas involves more than the introduction of fuel 

efficient stoves and forestry schemes, but have to be part of a broad 

based rural development package. A three-fold strategy to tackle rural 

deforestation consisting of increasing agricultural productivity, 

forestry programmes and reducing firewood consumption is detailed below.

Agricultural productivity can be increased in Communal Lands through 

investment in technical inputs (e.g. increased use of fertilizer, 

irrigation, increased commerical energy inputs). Employing female 

agricultural extension agents would facilitate communication with 

village women. Another way of increasing productivity is by resettling 

villagers onto fertile land. Though, resettlement may initially mean 

stress on forests, since wood is required to build huts. These measures 

may reduce the incidence of male migrant labour to the urban areas, 

mines and European farms and so further aid productivity in the rural 

areas as well as lessen the workload on village women.

Forestry programes need to take into account the competition between 

labour required for food and fuel production. Schemes incorporating
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agroforestry are more likely to be successful than reforestation alone. 

Involvement of the villagers could usefully aid these programmes of 

rural development by identifying desired tree species as well as 

articulating user needs: village women in Kenya were interested in 

multi-purpose trees (e.g fruit, firewood, medicinal) rather than just 

for firewood (Thrupp, 1982, 1983). In addition, seedlings were 

requested by women and bought by tree nurseries for planting in arid 

areas - this programme had the added advantage of allowing the rural 

poor to usefully engage in income generating activity.

Firewood consumption can be reduced in a number of ways: shifting from 

clay to metal pans; subsidizing matches; increasing fuel consciousness 

of villagers. Another method would be to design and promote fuel 

efficient stoves. However, fuel economy did not appear to be the main 

determinant of choice of cooking method in the villages visited. Hence, 

stove designs are more likely to be acceptable to users if they also 

take into account the key features identified from the measurements of 

PHU (such as the ability to bring 2-5 litres to boiling point in about 

10 minutes), fuel efficiency and the following:

- allow up to 4 pots to be heated simultaneously;

- provide space heat (only required a few months of the year);

- produce little smoke;

- have a long lifetime;

- not cost more than about Z$4;

- and have a modern "image".

Given the scale of the problem of food and fuel, it would be expected 

that the rural development programme described above would first be 

carried out in areas with an acute shortage of firewood.
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Chapter 7

Conclusions aind Future Work

Chapter 1 detailed six propositions which were examined in this thesis. 

These propositions, the conclusions reached, and further work which is 

required are presented in this chapter.

(a) there is a shortage of cooking fuels in rural areas of developing 
countries

There appears to be a shortage of traditional cooking fuels in a number 

of developing countries. However, the level of this shortage varies 

considerably between and within developing countries. Further work 

(especially micro level surveys) needs to be carried out to provide 

detailed evidence of cooking fuel scarcity and adaptations in developing 

countries.

(b) deforestation is caused by the rural population in using fuel wood 
for cooking and exacerbated by population growth

In developing countries population pressure is believed to have placed 

increasing stress on agricultural land and forests to meet the dual ' 

needs of food and firewood. However, when examining deforestation in 

detail, it is apparent that there are a number of other contributions to 

the destruction of forest cover, e.g. timber exports, road construction, 

not just the demand for agricultural land or the collection of 

traditional cooking fuels.

A historical analysis is invaluable in understanding the dynamics of
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land degradation as well as to highlight the complexity of issues 

involved. In Zimbabwe, the processes of land degradation, deforestation 

and the ensuing shortage of firewood were set in motion as far back as 

the late I890's when the Africans who had settled on the fertile 

highveld were pushed onto marginal land to eke out a meagre existence 

and provide labour for the Colonial economy. Pressure for food 

production on poor land has led to the clearance of forest and marginal 

land for agriculture. Further pressure on Zimbabwean forest cover has 

arisen because of the shift from the traditional 3-stone fireplace to 

the iron frame stove; the latter because of its greater fuelbed/pan 

distance is a much less efficient cooking device. Elements of a 

successful rural intervention strategy must encompass broader issues 

such as land tenure, inputs to increase crop productivity, as well as 

questionning the role of migrant labour in the economy.

(c) traditional stoves and fireplaces are highly inefficient; (d) 
traditional stoves and fireplaces are causes of ill health because of 
smoke production

Traditional stoves and fireplaces are widely believed to be inefficient 

as modes of cooking, and unhealthy because of the smoke they produce 

inside the kitchen. Designing and promoting stoves that are highly 

efficient (and often smokeless) were believed to hold the promise of 

reducing firewood consumption considerably.

Defining and measuring the "efficiency" of cooking using firewood is 

beset with difficulties. Most stove testing has involved heating water 

to simulate cooking. PHU’s obtained depended on parameters such as 

the fuelbed/pan distance, moisture content of the wood, fuel type (e.g. 

firewood, crop residues or animal manure), wind, and the power output.
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Fuel consumption in the field depends not only on the "hardware" (ie 

stove, fuel type, cooking pot material) but also on the "software" such 

as the skill of the cook and cooking practices. Hence, cooking is a 

system involving a number of components all of which have to be 

considered in reducing fuel consumption rather than just the "stove".

Other contributions to fuel consumption arise from villagers using the 

stove (or fireplace) for space heat or as a social focus. These 

manifold functions of traditional designs have yet to be integrated into 

"improved" stove designs.

In areas of fuel stress, villagers would be expected to reduce their 

fuel consumption by changing their cooking practices, e.g. leaving beans 

to soak before cooking, or being more careful with the process of 

cooking. These areas would be regarded as prime targets for fuel 

efficient stoves. However, introducing more efficient modes of cooking 

in these areas may not save much fuel, as users may simply revert to 

less fuel conscious practices.

However, traditional stoves and fireplaces are not inherently 

inefficient, (as has been widely claimed in the literature). Moreover, 

traditional designs are not necessarily designed for maximum cooking 

efficiency: firstly because other practical features are considered 

desirable (e.g. ability to use different fuels, provision of space heat, 

fast cooking; and secondly because of other non-technical functions of 

traditional stoves (e.g. social focus and symbolic value).
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(e) the low thermal efficiency of traditional stoves and fireplaces 

aggravates the burden of fuel collection

As outlined above, traditional stoves and fireplaces are not inherently 

inefficient. Moreover, the task of fuel collection is not universally 

regarded as a burden. In the case of Zimbabwe (see below) the situation 

is much more complicated than considered by many observers, and rural 

womens workload has a number of contributions.

(f) technical interventions will solve the problem of fuel wood energy

The review of field and laboratory testing has shown that not all 

"improved" stoves were more efficient for cooking than traditional 

designs, because of poor design. Some improved mud stoves did use less 

firewood than traditional designs. However, a number of these improved 

mud stoves deteriorated with use and their firewood consumption 

increased. Interest has shifted to the production and dissemination of 

improved ceramic designs. These can be made in large quantities much 

more quickly and accurately by skilled potters at low cost. It is too 

early to say whether or not these stoves will displace traditional 

designs - this will become clearer by 1985/6.

Working with rural women and identifying user needs would aid 

dissemination. Designing stoves based on traditional stoves is likely 

to minimize sociocultural resistance. In addition, a high cooking 

efficiency is only one of a number of features that is considered 

desirable by stove users. Women in a number of developing countries are 

especially keen on stoves which allow cooking to be done quickly - in 

Zimbabwe, women were prepared to sacrifice fuel economy for benefits 

such as fast cooking, even in areas with an acute firewood shortage.
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The collection and consumption of cooking fuel has to be seen as an 

integral part of the rural energy system.

This thesis highlights the importance of studying the existing situation 

in depth before embarking on technical solutions. One of the most 

important ways in which this can be done is to carry out multi

disciplinary research in the field. Desk-based studies (whether in 

developing or developed countries) in themselves are insufficient. In 

the research visit to Zimbabwe, the questionnaire designed whilst in the 

U.K. was found to be of limited value in the villages surveyed; answers 

by villagers raised further questions which were usefully encompassed in 

the second questionnaire. It was also found that there was conflict 

between declared and observed cooking practices: in the first village 

visited, women said that they had adoped the new stove because it 

allowed them to "cook many things" simultaneously. However, villagers 

were observed to be cooking items of food sequentially. When asked to 

explain, villagers said that fast cooking was only required during the 

time they were busy in agriculture. This explanation made explicit the 

labour linkage of women’s role in agriculture and domestic work, and the 

structure imposed in village life by the changing seasons.

It is clear that the introduction of fuel efficient stoves in rural 

areas are unlikely to have much impact on deforestation on their own. 

Given also the field experience of improved stove programmes, the 

manifold functions of traditional stoves, and the desirability of stoves 

allowing fast cooking by rural women, there is a need to reassess the 

design characteristics of "improved" stoves and the rationale for their 

introduction.

Moreover, the analysis of rural energy in developing countries needs to
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include the multiple role of women in the rural economy, and the 

variation in their labour in agriculture, fuel collection and domestic 

activities over the year.

In this thesis data was gathered from parts of rural Zimbabwe. An 

intensive study of two small sites to an extensive survey requires that 

sampling is carried out in stratified clusters; review work on rural 

energy methodologies was done recently by Howes (1984). Further 

questionnaire surveys are needed in Zimbabwe. One low cost method would 

be to administer the questionnaires to schoolchildren and students from 

rural areas to fill out for their home village and surrounding villages.

Further work needs to be done in measuring fuel consumption (using the 

sampling techniques above) in areas with different levels of fuel 

scarcity. Data on observed (and villagers perceptions of) seasonal 

variations in consumption of firewood and other cooking fuels e.g. maize 

cobs and animal manure, would usefully contribute to a database on rural 

energy.

To summarize, the probability of successful intervention in developing 

countries in the field of rural energy would be aided by the following; 

user participation in defining needs; adoption of a multi-disciplinary 

systems approach; gathering data (and living) in villages as well as 

gathering data from the country under study; awareness of the limitation 

of purely technical solutions; a historical analysis of the "problem"; 

and finally the realization that both the "problem" and "solution" has 

more than one dimension.
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APPENDIX A



Moisture content in wood

A .1 Introduction

Water is an essential component of living trees. Variation in water 
content occurs between trees of the same species, during different 
seasons, as well as in different parts of the same tree. This water 
content can be expressed as a percentage of the total mass of the wood, 

and is termed the ’moisture content’. The moisture content, m, can be 

defined in two ways:

M <ar, b.U.) . g "  : . f  ̂ « 100 I <„. ».2)dry niaSS

The wet basis is used by heating engineers, whilst most foresters and 

wood technologists use the dry basis, (Curtis, 1976). However, it is 
fairly straightforward to go from the wet to the dry basis (and vice 
versa):

mM„ .  ̂ - (eqn A.3)

(where m and Mw are the moisture contents at dry and wet bases 

respectively).

The moisture content, on the dry basis, can exceed 100%. The water 

content of a freshly cut tree is also referred to as the ’green ’ 
moisture content. As this green wood is exposed to air, it will dry, 
and its moisture content will change until it is in dynamic equilibrium
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with the surrounding atmosphere. The moisture content attained is 

termed the 'equilibrium moisture content', (EMC). The value of the EMC 
depends on factors such as the relative humidity, temperature, presence 
of mechanical stress, and the previous sorption history of the wood. Of 

these, the single most important factor, is the relative humidity of the 
surroundings.

Wood which has been cut into planks and stacked, (usually in the open 
is referred to as 'air dried'. The time period for this drying 

process is of the order of six months to one year. Moisture contents of 
air dried wood (dry basis) vary from about 20% to 30%. Wood can be 
further dried under conditions of elevated temperatures, and fast air 

circulation - this is termed kiln drying. With kiln drying it is 
possible to acheive any desired moisture content, (Forest Products 
Laboratory, 1974:14-6). However, it must be borne in mind that wood is 

a hygroscopic material and will spontaneously absorb moisture from the 

atmosphere, (or lose moisture), until dynamic equilibrium is reached.

A-2 Measurement of moisture content by oven drying

From the definition of moisture content, it follows that the basic 

method involved in its measurement is gravimetric. There are a variety 
of methods for determining the moisture content of wood. According to 
Kollman and Hockele (1962), there are up to fifteen. Skaar (1972:32) 

describes a few additional methods not mentioned by Kollman and Hockele 
( 1962).

The simplest method involves recording the moist and dry mass of each 
wood sample.
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According to the Forest Products Laboratory (U.S. Department of 
Agriculture),

"oven drying has been the most universally accepted 
method for determining moisture content, but it is 

slow and necessitates cutting the wood" (Forest 
Products Laboratory, 1974:14-2).

The American Standard (ASTM D2016, 1977) recommends oven drying at 100°C 
(plus or minus 2°C), until constant mass is attained. However, ovenight 

drying is usually sufficient, although this depends on the size of the 
sample, viz. the larger the surface are to volume ratio, the faster 
drying will occur. This method relies on introducing a sample into an 
environment with a relative vapour pressure very close to zero, and 
allowing the sample to attain an equilibrium moisture content. However, 
the precise value of the moisture content may not be attained owing to:

(a) the relative vapour pressure departing significantly from 

zero;

(b) possible effects of previous sorption history;

(c) volatile compounds other than water evaporating during oven 
drying.
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Effects of relative vapour pressure 

According to Skaar (1972:32),

"the dry weights of thirty - eight different woods 
native to Venezuela were 0.42 per cent lower on 

average when dried in an oven in Syracuse, New York 
in January compared with their oven dry weight in 

Merida, Venezuela. The difference in retained 
moisture is attributed to the higher ambient vapout 

pressure in Venezuela compared with Syracuse, in the 
middle of winter".

These differences are negligible. However, the effects of room 
conditions can be reduced considerably by use of a vaccuum oven, (there 
is also the added advantage that lower oven temperatures can be used). 
Another method, is to use a strong dessicant such as phosphorous 
pentoxide, which will produce a very low relative humidity environment - 

however, in this, much longer ’drying’ times are required, (typically of 

the order of days).

Previous sorption history

The relative vapour pressure of the surrounding atmosphere is the single 
major factor which affects the equilibrium moisture content of the wood. 

However, the previous sorpton history of the sample is important, as the 
relationship between EMC and the relative humidity (rh) shows hysteresis 
(Skaar, 1972).
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Non water volatilization

According to the Forest Products Laboratory (1974:14-2),

"(oven drying)...gives values slightly higher the 

true moisture content with woods containing volatile 

extractives"

Moreover,

"oven drying and vacuum drying yield correct results 

only with woods which in addition to water do not 
contain any volatile constituents like resins, oils 
fats or volatile preservatives like creosote"
(Kollman and Cote ,1968:181).

If non water constituents are evaporated during oven drying, this will 
lead to an overestimation of the moisture content.

"at high temperatures volatilization of organic 

compounds and various chemical changes such as 
protein dénaturation can occur which would lead to 

underestimates of calorific value" (Woodland,
1972:23).

Sihce, the moisture content affects the net heat of the wood, this will 
lead to inaccuracies in the measured calorific value of the firewood 

used (see Appendix B).
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APPENDIX B



Heat Values

This work draws heavily on a report by Bialy (1979) and British Standard 
526 (1961).

Heat is released when any organic fuel is burnt in oxygen. The quantity 
of heat released per unit mass depends on both the chemical composition 
of the fuel and the conditions under which combustion takes place.

Hence, for the purposes of comparison, the heat values of fuels have to 

be defined under standard conditions. These conditions define the 
temperature at which combustion takes place, and are either performed at 

constant pressure or constant volume.

Water may be present at the end of the combustion process; firstly, 

because any hydrogen in the fuel will oxidize to water; secondly, 
because the fuel may contain water. In either case, the water at the 
end of the combustion process can (in the extremes) be in the form of 
liquid or gas. If all the water is condensed, then any heat it absorbed 
during vapourization will be re-released. The total quantity of heat 
released under this condition is termed the gross or high heat value.

If all the water at the' end of combustion is in the form of vapour, then 

the total heat released will be less than in the former case by the 
amount of heat required to vapourize the water. Under these conditions, 
the heat output is termed the net or low heat value. Heat values, where 
the water is in an intermediate state, (e.g. partly liquid and partly 
vapour), are not defined.

Since, heat values are defined under conditions of constant pressure or 
volume, this leads to four different heat values being defined for any 
solid or liquid fuel;
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Hhv - High heat value (constant volume)
Hiv - Low heat value (constant pressure)
Hhp - High heat value (constant pressure)
Hip - High heat value (constant pressure)

In practice only one of these heat values is experimentally measured,
the others are then calculated from this value. For solids and liquids,

the value normally measured is the high heat value at constant volume

since it is much easier to maintain the volume constant rather than the
pressure during controlled combustion. According to BS 526 (1961),

combustion should take place isothermally, under an initial pressure of
25 to 37 atmospheres of oxygen.

Hhp will not be the same as Hhv for any given fuel if the number of
moles of gas are not the same at the end of combustion as at the
beginning. Under conditions of constant pressure an increase or 

decrease in the volume, will lead to work being done - this will absorb 
or emit heat energy. If the volume change is positive, then work will 
be done on the surroundings by the system, and vice versa. Usually for 

solids and liquids, the volume of the products is less than the volume 

of the reactants.
work done = PdV + VdP (eqn B.1)
V - volume;
P - pressure;
dV - change in volume;
dp - change in pressure.

Under conditions of constant pressure, dp = 0, hence,

work done = Pdv (eqn B.2)

= nRT (eqn B.3)

n - change in number of moles of gas per unit mass of fuel 
R - universal gas constant 
T - temperature

Many organic fuels commonly contain carbon, sulphur, hydrogen and
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oxygen. The oxidation reactions for these are:

C(s) + Og (g) = CO (g) dn = 0 (eqn B.4)
S(s) + 0^ (g) = SOg (g) dn = 0 (eqn B.5)
C(s) + &0g (g) = CO dn =+i (eqn B.6)
CO(g) + iOg (g) = CO (g) dn (eqn B.7)

dn z 0
For the above reactons, there is no change in volume. Now consider the 

oxidation for hydrogen:

H^Cs) + = H^O dn = 5 (eqn B.8)

(As this is the high heat value liquid water is formed)

From the above, one mole of hydrogen reacts with half a mole of oxygen 

for complete oxidation. Work is done since there is a net change of 

volume in this process. There is half a mole change in volume for every 

mole of hydrogen in the fuel. If the fuel contains H percent hydrogen, 

by mass, then the molar concentration of hydrogen is

H X  0.01 ,
2.016 (sqn B.9)

The net change in volume is half of this:
n = 0.5 X H X 0.01/2.016 (eqn B.10)

work done = nRT
= 0.01 X  RT X  (0.5H/2.016) (eqn B.11)

If the material contains oxygen, then less molecular oxygen will be 

required to react with the hydrogen. This will mean a smaller change in 

volume. For a material with P % oxygen (by mass), the amount of oxygen 

required will be less by the amount equal to:
I

= 0.01 X P/32.00 (eqn B.12)
Hence, the net change in the number of moles during combustion will be 

dn - (O'OI x _0.5H) - (0.01 x_P) (eqn B.13)
2.016 32 

= 0.01 (0.5H/2.016 - P/32.00) (eqn B.14)
(but as the work done)

= nRT
= 0.01 RT (0.5H/2.016 - P/32.00) (eqn B.15)
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The work done, in this case is the difference between the high and low 

heat values at constant pressure, ie

Hhp - Hip = 0.01RT (0.5H/2.016 - 0/32.00) (eqn B.16) 

for a material with H% hydrogen and ?% oxygen (by mass). The difference 

between the high and low heat values simply relates to the latent heat 

of vapourization of the water produced in the combustion process, at the 

reference temperature of 298K.

For water at 25®C, its latent heat at both constant pressure and volume 

is 2.30 MJ/kg (44.0 kJ/Mol), and 2.44 MJ/kg (41.5 kJ/Mol) respectively. 

The water produced by a fuel containing H% hydrogen (by mass) is

0.01 X  H/2.016 moles per unit mass of fuel (eqn B.17)

If the fuel also contains W% moisture (by mass) then an additional 

quantity of water produced will be given by

0.01 X  W/18.016 (moles/unit mass of fuel) (eqn B.I8)

Total no. of moles produced = 0.01(H/2.016 + W/18.016) mol/kg

(eqn B.19)
Heat required to vapourize this quantity of water

= 0.01L(H/2.016 + W/18.016) kj/kg

(eqn B.20)
L - molar latent heat of water; L = 44.00 kJ/Mol 
H - percentage by mass of hydrogen in the dry fuel;
W - percentage by mass of water in fuel;

Hence,

Hhp - Hip = 0.01 X 44 X 1000 (H/2.016 + W/I8.OI6) kJ/kg
= 218.25H + 24.42 W kJ/kg.
V 218H + 24W (eqn B.21)

If a fuel contains water the high heat value will have a lower value, as

not all the material is fuel; the water will not make any contribution 

to the calorific value. Hence, the high heat value is directly 

proportional to the quantity of dry fuel per unit mass of material. If 

the moisture content of the fuel m% (dry basis), then the proportion
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which is dry fuel is

100/(100 + m) (see Appendix A)

If the high heat value of the dry fuel is E MJ/kg, then the high heat 

value of the same fuel with a moisture content m% (dry basis) will be 

given by

Hhp(m) = [100/(100 + m)] E MJ/kg (eqn B.22)

The moisture content W is expressed as a percentage of the total mass of 

fuel and moisture. Now,

W (wet basis) = m (dry basis) x [100/(100 + m)3
W = 100m/(100 + m) (eqn B.23)

If the hydrogen content of the dry fuel is h percent. Then the hydrogen 

content of the fuel and moisture,

H = [100/(100 + m)] h (eqn B.24)

since,

[100/(100 + m)] = fraction per unit mass which is dry fuel.

and (as calculated earlier)

Hhp - Hip = 218H + 24 W kJ/kg (eqn B.21)
Hip = Hhp - (218h + 24W) (eqn B.25)

Substituting for Hhp (eqn B.22), H (eqn B.24) and W (eqn B.23),

Hip = - ° ^  MJ/kg (eqn B.26)

In the case of wood, the value of E and h are approximately 20MJ/kg and 

6% respectively (Bialy, 1979), whence:

Hip (wood) =2.1) ~ MJ/kg (eqn B.27)
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APPENDIX C



Firewood consumption data in Zimbabwe 

Data on firewood consumption in Zimbabwe falls into five categories:

(1) those in which the figures of consumption are apparently anecdotal-

Banks (I98O) assumes that firewood consumption in rural areas of 

Zimbabwe is 0.85 m3^ but gives no literature source for this figure.

(2) Using data on firewood consumption from other developing countries.

Johnston (I98O) estimated firewood consumption to be 0.93 m3 (632 kg) 

per capita per annum using "comparative data from other countries" - the 

conversion of volume of wood to mass, uses Johnston's assumption that 

the density of local timber is 680 kg/m^* This estimate is based on a 

previous study, though Johnston does not quote the source. In support 

of this figure, Johnston quotes a comparable figure of 0.83 m^ (564 kg) 

obtained by the Forestry Commission - though again no literature source 

is given.

(3) Asking each household how long one bundle will last.

According to Furness (1979)

"One of the first recorded assessments of firewood 

consumption was made by finding out from tribespeople 

how long an average headload of firewood would last.

This was given as three days, and with the average 

headload estimated at 34 kg, the yearly consumption 

worked out at 4147 kg"
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However, repeating this calculation (assuming 365 days per year) gives a 

figure for annual consumption of 4137kg, but this is insignificant 

relative to the ommission of other information: the number and size of 

the households surveyed, where and when the survey took place, and 

moisture content of the firewood are not given.

To convert this to per capita consumption requires the household size. 

According to Furness (1979), whilst early studies of firewood 

consumption in Zimbabwe assumed an average household size of 5 people, 

the "latest evidence" suggested 5.5 people would be more accurate.

However, both these seem to be underestimates since an earlier study by 

the Forestry Commission (1978) obtained values as high as 8.4 people per 

household (Table C.1). More recently data from 200 households in 10 

Communal Lands (Hosier et al, 1982) gave a mean value of 6.8 people per 

household (the standard deviation was not given). This figure is very 

close to 6.9 obtained in the present study. The mean household size for 

all the studies is 7.0 people.

Table C.1
Household Size Obtained in Studies of Firewood Consumption

author village/area population mean

Forestry

surveyed of survey household
size

Commission (1978) Mondoro 54 7.7

Anon (quoted
Chiwundura 84 8.4

in Furness, 1979) Inyati C.L.& 45 9.0

Hosier et al (1982) (see Table C.3) 1360 6.8b
6.90

Total

Key
^C.L. - Communal Land

1799 7.0^

mean household size for all 10 areas 
Cmean for all 5 villages surveyed 
V̂/eighted mean for all studies

surveyed
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Assuming that the mean household size is 5.0, 5.5 and 7.0 gives the 

annual per capita firewood consumption as 827kg, 752kg, and 591kg 

respectively. Assuming the moisture content of the firewood is 27.5 % 

gives per capita energy consumption of 11.7GJ, 10.7GJ and 8.4GJ, 

respectively.

(4) Measuring the volume of firewood in a headload and counting the 

number of headloads collected over a known period.

Two studies fall into this category (Anon, undated quoted in Furness, 

1979; Forestry Commission, 1978).

Furness (1979) quotes the results of the measurement of firewood 

collected in Inyati Communal Land for a period of four weeks by a 

scholar at the University of Zimbabwe in July 1978: all the firewood 

collected by 5 households (with a mean size of 9 persons) was measured. 

The mean annual volume of firewood sticks collected per capita was 

estimated at 2.1 m3 (1244 kg). Furness regards this as overestimating 

actual consumption as the measurements took place during the cold 

months.

Firewood consumption collected under the auspices of the Forestry 

Commission (1978) was obtained for one village in Mondoro Communal Land 

and another in Chiwundura Communal Land. The survey took place from 

December 5th 1977 to February I4th 1978 and December I8th 1977 to 

February 12th 1978 in Mondoro and Chiwundura, respectively.

Mondoro and Chiwundura are in areas of "great land pressure" and 

"extreme land pressure" respectively (Whitsun Foundation, 1981). 

According to the Whitsun Foundation (1981) the population density in
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Mondoro is 38 persons/km2 and 24 persons/km^ in Chiwundura.

The magnitude of firewood consumption were 0.984 m3 (58lkg) and 1.059 m3 

(625kg) per capita for Mondoro and Chiwundura respectively. In energy 

terms the annual projections for firewood consumption range from 8.3 GJ 

per capita for Mondoro and 8.9 GJ per capita for Chiwundura (assuming a 

moisture content of 27.5% for the firewood.

The methodologies employed to measure the firewood consumption in the 

two areas were similar; firewood brought into the village by scotch 

cart, wheelbarrow or as individual logs were "measured" to give data on 

the volume of wood. However, in Mondoro only the headloads were 

"weighed"; no measurements were made of the firewood piles. Hence, it 

had to be assumed that there was no net change in the firewood piles 

during the period of the survey.

As firewood is stored so that it can be used during the rainy season

when villagers are busy, casts doubt on the validity of the assumption

that there is no net change in the firewood pile - this would lead to an 

underestimate for the data on Mondoro.

Moreover, even "measuring" the firewood piles would have been fraught

with problems, such as how to take into account the different packing

densities, uneveness of the pile, and the moisture content of the 

different pieces of firewood.

Another source of error is that the projections of annual firewood 

consumption in both villages take no account of variations in the level 

of firewood consumption over the year.
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It is likely that these values understate the actual level of annual 

firewood consumption.

(5) Asking each household the quantity of firewood (either in weight or 

bundles) over a known period, for example 1 day (Hosier et al, 1982; 

Hosier, 1983 pers comm; Walsh, 1978) or 1 week. This can be further 

refined by taking into account any variation over different seasons, for 

example summer and winter (e.g. Whitlow, 1979).

Walsh (1978) undertook measurements of firewood consumption in Chikwaka 

Communal Land for a total of 216 families. Measurements of the volume 

of firewood each family estimated it would use the following day were 

carried out by 6 agricultural extension workers in the course of their 

work in January and February of 1978. Walsh does not seem to have 

gathered any information on the size of the households visited - whereby 

he has to rely on an earlier study (Walsh, 1977) to convert the data on 

household consumption to per capita consumption. The mean daily 

household consumption was calculated to be 0.042 m3 with a standard 

deviation of 0.035 m3 1 Projected to annual per capita consumption 

(assuming the mean household size is 8 persons (Walsh, 1977)) gives a 

value of 1.916 m 3  (1131 kg) - Walsh quotes a figure of 1.825 m^ caused 

by rounding the daily per capita consumption before extrapolating to 

annual consumption.

Walsh estimates for the standing crop and annual increment are 1 1 ,564 m 3  

and 6107 m3y respectively. Using the estimate of the total population 

of Chikwaka he obtains a figure of 2 6 , 7 0 9  m 3  which is rejected as it is 

higher than the standing crop and annual increment ! Even assuming 

annual firewood use of 0.62 m 3  and O .98 m 3  per capita, leads to total 

annual consumption of 9,073 m 3  and 14,342 m 3  respectively - both
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comparable to the estimate of standing crop.

Owing to the discrepancy between the total estimated consumption and 

other estimates, Walsh recommends that this methodology of firewood 

consumption is not used.

Whitlow's (1979) study involved students from the University of Zimbabwe 

(formerly University of Rhodesia). Five areas were chosen for the 

questionnaire based survey and corresponded to the home areas of the 

students: Mangwende, Nuanetsi, Ndanga, Que Que and Matoba. Using this 

method gave a range of projections of annual consumption per capita from 

0 . 2 6 8  m 3  (158 kg) to I.638 m 3  (966 kg) with a mean of 0 . 6 2 9  m 3  ( 371 kg) 

(Table C.2)

Table C.2
Annual firewood consumption in five study areas

(adapted from Whitlow, 1979)
assuming assuming

Study Area Whitlow's bundle size = 16.5kg bundle size = 36kg
data (kg) (kg) (A) (B) (kg) (A) (B)

Nuanetsi 378 173 2.5 2.8 378 5.4 6.0
Que Que 286 286 4.1 4.4 624 8.9 9.9
Ndanga 158 158 2.2 2.5 344 4.9 5.5
Matoba 966 444 6.3 7.1 966 13.7 15.4
Mrewa 565 260 3.7 4.1 565 8.0 9.0

Mean 371 264 3.7 4.2 576 8.2 9.2

(A) - calorific value of firewood = 14.2 MJ/kg
(B) - " II II " = 15.6 MJ/kg

Estimates of firewood consumption were based on the frequency of 

collection of firewood "bundles" by the households in the survey.

A further refinement was added by asking the household of the frequency 

of collection over the "winter period" (May to August) and "summer 

period" (September to April). From this information on the total number 

of bundles collected over the year could be calculated. Multiplying by 

the mass of the average bundle in each study area would give a figure
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for the annual firewood consumption. But, the major weakness of the 

study methodology is that no measurements were undertaken on the mass of 

bundles collected in any of these areas.

In order to circumvent this problem, data of the mean bundle size was 

obtained from an earlier study of the firewood consumption in two 

villages by the Forestry Commission (1978). Unfortunately the mean 

bundle size in one village was 0.061 m3 and 0.028 m3 in the other ie 

differing by a factor of 2! This difference in mean bundle size was 

taken in to account by classifying each area according to which of the 

villages each was thought to be most similar: Mangwende, Nuanetsi and 

Ndanga were equated with the village with the higher bundle size, with 

Que Que and Matoba equated with the area with the lower bundle size.

Assuming that the average bundle in all the areas is 16.5 kg and 36kg 

gives rise to a mean firewood consumption of 371 kg (0.629) and 576 kg 

(0.976 m3) per capita, respectively.

Whilst, Whitlow has collated useful data from a number of areas, his 

methodology has two weaknesses: a failure to determine the "bundle" 

sizes for the different households and the moisture content of the 

firewood.

In a later study by Hosier et al (1982) 136O people (20 households in 

each of 10 Communal Lands - see Table C.3) were surveyed using a 

questionnaire. Firewood consumption data from rural areas was collected 

in December I98I (cf November and early December 198I in the present 

study).
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Table C.3 
Areas surveyed by Hosier et al (1982)

(1) Inyanga North (6) Zaka (Mariraira)
(2) Old Umatali (7) Chiwundura

" (3) Rugoyi (8) ZimutoW Chibi Mahangove (9) Zvimba
(5) Gutu (10) Zaka (Jichidza)

A range of values for different income levels were obtained (6800kg to 

7800kg per household per annum), with a mean of 7400kg per household per 

annum; Hosier points out that these differences are not statistically 

significant. Since the mean household size is given as 6.8 the mean 

annual per capita energy consumption is 1058kg. In energy terms the 

mean annual consumption of firewood per household is 15.4GJ per capita, 

assuming the moisture content of the firewood is 27.5/5.

In each area the household was asked to put in a pile the quantity of

firewood that would be consumed in one day (Hosier, 1983, pers comm): 

this pile of firewood was then weighed, though no indication is given of 

the accuracy of the weighings.

In addition, no mention is made of any seasonal variation in firewood

consumption over the year - since'firewood consumption would be expected 

to vary over the year (being higher in the cold than in the hot months) 

data which is collected in the the hotter months and projected to annual 

consumption without taking these variations into account will 

underestimate the actual consumption.

In conclusion, data commonly quoted in the literature in Zimbabwe (a 

summary of firewood consumption is given in Table C.4) is likely to 

underestimate actual firewood consumption.
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Table C.4
Summary of annual firewood consumption obtained in studies

(per capita basis)

Annual firewood consumption
mass of calorific value calorific value
firewood (= 14.2 MJ/kg) 

(GJ)
(= 15.6 MJ/kg) 

(GJ)
Source
Banks (1980) 502 7.1 8.0
Johnston (1980) 632 9.0 10.1
Furness (1979)
(a) Anon, undated 591 8.4 9.4
(b) Anon (1978) 1244 17.7 19.8
Walsh (1978) 1131 16.1 18.0
Whitlow (1979)
(a) bundle size=l6.5kg 264 3.7 4.2
(b) Whitlow's data 371 5.3 5.9
(c) bundle size=36kg 576 8.2 9.2
Forestry Commission
(a) Mondoro 580 8.2 9.2
(b) Chiwundura 625 8.9 9.9
Hosier et al (1980) 1088 15.4 17.3
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COOKING SURVEY
This survey is attempting to find the cooking patterns, (primarily in rural areas) 
in order to help design more efficient stoves. The person who normally does the 
cooking would probably be able to answer the question best.

Note
Use diagrams wherever you think necessary, however all questions marked with an * 
indicate that a diagram would be especially useful. La±»el the diagram with 
dimensions if possible. If there is not enough room by the question, draw the 
diagram on page 4.
Stove

What do you normally use to cook on ?
Sketch this stove and label it on page 4. Include its main dimensions eg height.
What is the stove made from ?
Was the stove bought from someone or home built ?
If it was homemade:

Who built it ?
How long did it take to build ?
How much did the materials cost ?
Where did the materials come from ?
Where is the stove normally used eg. inside, outside ?
Is it sometimes used elsewhere ? Yes/No. Why is that ?
How long does the stove last before it needs replacing ? (If only part of
it needs replacing, say what it is).
What do you like aUbout the stove ?

What are the things you do not like about the stove ?

Fuel
What are the main fuels used for cooking ?

Describe the fuels giving its shape and size.

If each of the fuels is usually used in a.standard shape and size, sketch on 
page 4 of this survey, indicating the dimensions.

Is anything done to the fuels before they are used, eg chopped up, dried ?

Are any of the fuels bought ? Yes/No. If so, what are they, and how much 
do they cost ?

Fuel
Cost per week

Which fuels are collected, if any ?

If auiy are collected:

Who collects each of these fuels ?
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How mamy people in your family collect each fuel ?

How much time is spent by each person in collecting fuel per week ?

Does the amount of time spent in collecting fuel vary over the year ? If so, 
how does it vary ?

At what time of day is each fuel normally collected ?

Is any of it stored ?
What do people like about collecting fuels ?

What eure the things disliked about collecting fuels ?

What are the main advantages of the fuels you use ?

What are the madn disadvantages of the fuels that you use ?

What is the best fuel for cooking ?
Why is this ?

If you do not use this fuel, why not ?

Besides cooking what else do you use fuel for ?
How much fuel per week used. What fuel?

heating bathwater 

boiling drinking water 

heating water 

other
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Cooklng

How many people do you cook for regularly ?

How many of these are adults ?

Who does the cooking ?

* How is the cooking done ? eg standing up, sitting down on a stool ... ? If 
possible sketch on other side of the paper, showing stove, cooking pot(s) and 
person cooking.
What meals are usually cooked each day ?

What time is each meal cooked ?

What is cooked for each of the meals ?

How many cooking pots are normally used for each of the meals ?

Do any of these pots have lids ?

What, if anything is cooked in a pot plus lid ?

What materials are the pots made from ?

Were the pots made at home or bought ?

* Sketch the shapes of the cooking pots and indicate the materials they are made 
from, as well as the main dimensions (eg height, diameter) on the other side of 
this page.

Additional information, write or draw here anything which you think is 
relevant but has not been asked '
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Thank you for your help.

Jas Gill, Energy Research Group, The Open University, Walton Hall, Milton Keynes 
MK7 6AA, Englzmd.
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QDESTIONNIlIRE
NAME AGE
HOME ADDRESS u C |  Ik J 'fA  MSA IK fO iA iV C  CtAtT»vHn^->» AftCA

NO. OF PEOPLE IN HOUSEHOLD If’ ' ADULTS 2.
CHILDREN ^  n0\r\y 2. .-0‘irO

MONTHŜ P’ • M M
1* CROPS ^ VJ VJ 6\4 Vt -Ceih

MAIZE • v/
fU'P A4. P

MILLED
RAPOKO V/’
WHEAT
RICE
GROUNDNUT
PEANUTS
CORN
NYFMBA
MAFUNDE
MDNGE ; V  :

2 VEGETABLE
POTATOES %k-
PUMPEEN
•RAPE
CABBAGE x/
 :— ^TOMATOES

POTS ON « STOVE* "2-
COOKING • : f
(INSIDE/OUTS^) 

DNîjlSBUSIEST M3NTpS. ̂  
■ LEAST BUSIEsb

1

v/

v/ IZ

2,
a.

%7" "17- IZ
P - PLANTED C-CÜLTIVATED E-EATEN S-STORED D-DRIED

♦Advantages of • 
new stove
(b(£) f

@  »w%î-< -Ktal' 

►V* 3 )

=  o -No. of 
) I Bundles 

” 0 H -No. of days 
—  1 Bundle

will last. .

Vvt p«e
STOVE WHEN BOUGHT? • USED FOR

INSIDE OA.kf A* ktot,
OUTSIDE • •
•Diagrams of Stoves (and Dimenaions) Reaaon(s) for changing to different •—  

'stove' (in order of importance).

S ® l h I ♦Advantages 
Relative Fuel 
consumption.

3 Stones 4 Stones 
*\.e>

Iron Stove 
’ 2 %.
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I^eaa questions .to. be enswered-hy-.the.-^'-eraal-e-members-of the household
.. TASKS

Ploughing
Cultivating
Weeding

Plantlmr -
Grinding Mealie Meal

Millet
Maize

Crushing Maize.
Gutting Firewood

(• . Carrying Firewood
Carrying Water
Washing Clothes'
Washing Pots
•Cooking
Grazing Mbmbe

Taking Mombe to 
Din

Hard Easy Liked

A.

I _

-:2;:

Not 
Liked

\
\

■8

T

■a

Cooking -Household

Best Wood rvviAj a
2nd Best • >v\uU,owf
3rd Beat M vajaV vi

JWhich ones
do you use? . _

Which fuel(a)
.woi^d you like .
•to .use?; t.,r<w*4e(
■Is. firewood ix)ught- 
.collected.^ '

JîâS. a_i/'_in the boxes above.

Sadza e^en in one- month? (Assume month = 30 days). • A o  
how 1. colclng a.n. l.ltting .fa noor/.tLdlhg)?
Cooking Pots
Diagram & Dimensions
(Draw in lid if 

used)

iH***

Q I .

t̂erial 
(ç.g. Clay)

Food Usually
Cooked in Pot

Food Purchased,

C\a

T e a f s «IV, Ur 9^,

Additional information. 

Firewood Collection

cl

Now

mcoklr

ĈA-

1 Year ago T e^Vwe^ l>tev\ 

10 Years ago.J
Ihimber

Mombe - Adults-Male
-Fem ale

Calves-Male
Female .■

' Goats Yes/No 
Chickens Yes/No,

368



APPENDIX F



03NT3
03
W

0 T )
N r—3X) 0 0
03 0 0

T 5
0

to

1
1

+ î

1
0 *
tM CO 00 H

to
bO 03 
C  «M -H
C  03 O  (DOC > t, 3 0) JD rH

> »  03 0> Ohd B

r>o+»f.d

■» î
rvnj>«i +sn]j 4-L4-T
>i»M 4-ç

J. j
»''V>a 4.5
y»x»j«̂ + I

4-TO Xi H
JO 4-1.

«̂ow J-5

TU»>c^ 4,J
V>o>j<» 4. I

V >V >J. + 5

SV«Q 4-J
P«»-»ê  4-J.
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_Q V5 w

y  a t - o r j , b j  45 
^  aC .oi«i » o 45

JO >Cye^r{V  ̂ 4 y

<u C»A 45 

_  af*<^«l»o4 s

X  JA»ft®43»| 

o r d o j 4 5

—I aG»,^<^t,0 4 5

X  !X A 043^^

o;

—I aÇ .*\« \w :>4 - 5
X  Î4 > A « U 4 \

C 45

- ,  G )r 45 
X  S>»ao4j , j

o 45
r-, t>A 4 5
X  A '’ ? W  -f ç 

 ̂ 41») w( 45

E
p o o ;

00
k
60
•Hbu

d©.3dOO0
d

g

1
0X•Ha
g
g
o .

a
o•HXa,
B3 w-N W O 
C

8 3
M ©
: )  g

bO ^  C ©ÿ 0 
8 êü © X
rS'Ü•H0 d Ô  -H
C—
bu*
bO•H(d

3 74



w
d
©
©
d

w bO
©
1—1d

0 X ©
N 0 •H
d X d
0 © d

0 w bO
N © 1
d d  0 >
0 X  © ©
W o X 1 d

d o ©
o 1 1 bO d
o K © 0

<M CO CO H > d

s i

X
CObO 0 d <M 

•H 3d Xd 0 o © © d > d 3 © X X
I I I
© X X

( f H )  uo-jîdm nsuoo X Saaus 8 p ;jjo o o

—1 r u -a y q  + 5 >

X X «A

V

•—1

X w*

0> yJvj 4 5
; :

•o

ijuvfp +y , ^

X N
V > 45

—* %

X CvvN ^rvVi -
0

«0
01

G)A t i j p  4  J  

p o o j

>,<0

d
©3dOOü
doo
Cm

dd0
0
X
•H
CU0O
d
©
a.

do
•H
Xdu
S3m ado do 1—1oXbo ©d n© 3d o
© X
bOd ©
•H 1—13d 0O >O dO ©

1—1
>> 1—1
X Ci3
•H0 d
Q •H

cr»

bO
•H
Cli

375


