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Some Topics In the Analysis of Spherical Data 
Ph.D. Thesis by Andrew T.A. Wood

ABSTRACT

This thesis is concerned with the statistical analysis 
of directions in 3 dimensions. An important reference is 
the book by Mardia (1 9 7 2 ). At the time of publication of 
this book, the repertoire of spherical distributions used 
for modelling purposes was rather limited, and there was 
clearly a need to investigate other possibilities. In the 
last few years there has been some interest in the 8 para
meter family of distributions mentioned by Mardia (1 9 7 5 ), 
which is known as the Fisher-Bingham family.

In Chapter 1 an outline of the thesis is given. The 
Fisher-Bingham family is discussed in Chapter 2, and an 
effective method for calculating the normalising constant 
is presented. Attention is then focussed on an interesting 
6 parameter subfamily, and a simple rule is given for class
ifying the distributions in this subfamily according to 
type (unimodal, bimodal, ’closed curve'). Estimation and 
inference are then discussed, and the Chapter is concluded 
with a numerical example.

In Chapter 3> the family of bimodal distributions pre
sented in Wood (1 9 8 2) is described. Other bimodal models 
are also mentioned briefly.

The problem of simulating Fisher-Bingham distributions



is considered in Chapter 4. Some inequalities are derived 
and then used to construct suitable envelopes so that an 
acceptance-rejection procedure can.be used.

In Chapter 5» the robust estimation of concentration 
for a Fisher distribution is considered, and L-estimators 
of the type suggested by Fisher (1 9 8 2) are investigated.
It is shown that the best of these estimators have desirable 
all-round properties. Indications are also given as to how 
these ideas can be adapted to other contexts.

Possibilities for further research are mentioned in 
Chapter 6.
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CHAPTER 1

INTRODUCTION

In a number of scientific fields, including Geology, 
Meteorology, Astronomy and Biology, data consisting of 
directions or orientations often arise. There has been a 
corresponding need to develop statistical methods for 
analysing such data. In this thesis attention is limited 
to directions, as opposed to orientations; and the main 
concern is with directions in 3 dimensions (the spherical 
case). However, some of the results presented here also 
have implications for directional statistics in 2 dimensions 
(the circular case), and when this is so it is indicated in 
the text.

The book by Mardia (l972) provides an excellent account 
of the more theoretical aspects of directional statistics, 
and includes a number of applications to scientific problems. 
Some historical detail, and an extensive pre-1972 biblio
graphy, are also given there. At the time of publication 
of Mardia*s book, the repertoire of spherical distributions 
used for modelling purposes was rather limited, and there 
was clearly a need to investigate other possibilities. In 
the last few years there has been some interest in the 8 
parameter family of distributions mentioned by Mardia (l975), 
which is known as the Fisher-Bingham family. This is a rich 
family of distributions, but there are a number of technical
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difficulties involved in its use. Interesting subfamilies 
have been discussed by Bingham and Mardia (1978) and Kent 
(1 9 8 2).

In Chapter 2, the Fisher-Bingham family is discussed, 
and in particular an effective method for calculating the 
normalising constant in the general case is presented.
Then attention is focussed on an interesting 6 parameter 
subfamily, and a relatively simple rule is given in terms 
of the parameters for classifying the distributions in the 
subfamily according to type (unimodal, bimodal or 'closed- 
curve’). Estimation and inference are discussed and, in 
the unimodal case, an approximate confidence cone for the 
modal direction is given. The Chapter is concluded with a 
numerical example.

In Chapter 3 ,  ̂ 5 parameter family of bimodal distribu
tions is described. In this family, there is no constraint 
on the angle between the modal directions, but the modes 
are equal. Estimation and inference are discussed in some 
detail, and a practical example involving paleomagnetic 
data is presented.

We return to the Fisher-Bingham family irr Chapter h 
and discuss how one might simulate these distributions.
Some inequalities are derived, and are used to construct 
suitable envelopes so that an acceptance-rejection procedure 
can be used.

As in other areas of statistics, it is desirable to
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have robust estimation procedures available. In the case 
of the Fisher distribution, the maximum likelihood estimator 
of the mean direction is fairly robust against extreme ob
servations, but it is generally acknowledged that the maxi
mum likelihood estimator of concentration is not. In Chap
ter 5, follow Fisher's (1 9 8 2 ) suggestion and use certain 
L-statistics to estimate concentration. The asymptotic 
properties of these estimators are obtained, though there 
are a number of technical difficulties to be overcome in 
the derivation, and use needs to be made of Dudley's (l978) 
recent work on the convergence of empirical processes. It 
is shown, using Hampel's (1974) influence curve, that these 
estimators have desirable robustness properties; and the 
results of a simulation study indicate that the best of the 
L-statistic estimators have good small sample properties 
when the Fisher distribution is correct. Finally, suggestions 
are given as to how these ideas can be adapted to other con
texts, for example to the robust estimation of the eigen
values of the covariance matrix of a multivariate Normal 
distribution.

Possibilities for further research are indicated in 
Chapter 6.
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CHAPTER 2 

THE FISHER-BINGHAM FAMILY

2.1 Introduction

The Fisher-Bingham, or von Mises-Fisher-Bingham, 
family of distributions on the unit sphere, , has
densities which can be expressed in the form

{ c ( k , y ,A)} ^ e x p ( < x ' y +x  ’ A x  ) (2.1,1)

at a point x  ̂ . k , a scalar, y , a unit vector, and
A , a 3x3 matrix, are the parameters. This family has been 
named so because each of the densities is proportional to 
the product of a Fisher density and a Bingham density.

Most distributions in current use in directional 
statistics possess a considerable amount of symmetry, for 
example rotational symmetry (Fisher distributions) or 
antipodean symmetry (Bingham distributions). While for 
many datasets such symmetry assumptions may be reasonable, 
it would seem desirable to have distributions available 
that are more suitable for data which do not exhibit any 
obvious symmetry. The Fisher-Bingham family is of interest 
from this point of view, because it contains distributions 
which possess no symmetry at all.

However, the difficulties involved in its use are 
correspondingly greater. One of the main practical problems 
is the calculation of the normalising constant, which is
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needed in the maximum likelihood estimation of the parameters, 
A practicable method of calculating this is outlined in 
section 2,2 and discussed in more detail in 2.5.

The Fisher-Bingham family was first mentioned in 
Mardia (l975), who observed that the maximum entropy dis
tributions for given E(x) and E(x x ') are the Fisher- 
Bingham distributions.

Beran (l979) proposed a hierarchy of families of 
directional distributions. In 3 dimensions, the p^^ family 
in the hierarchy is that with distributions whose densities

P
are proportional to exp{ z S,(x)} , where each S,(x) is

j = l  ̂ ^

a linear combination of the spherical harmonics of order j .
When p = 1 , the Fisher family is obtained, and when
p = 2 , the Fisher-Bingham family. However, there appear
to be certain theoretical and practical problems with the
regression estimator that he proposes, which will be briefly
mentioned in 2.2.

Kent (1 9 8 2) has discussed the Fisher-Bingham family, 
with particular emphasis on a five-parameter subfamily which 
he suggests is a suitable analogue to the bivariate Normal 
on the plane. He shows that, for this subfamily, estimation 
and inference are tractable.

The Fisher-Bingham family on , the unit hypersphere
in n dimensions, is defined as in (2 .I.I), but with y 
and A replaced by n dimensional counterparts. In the
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main, only the three-dimensional case will be discussed 
here .

2.2 Calculation of the Normalising Constant

In this section, an alternative parametrisation for 
the Fisher-Bingham family is given. Using this alternative 
parametrisation it is readily seen that the normalising 
constant can be expressed as a relatively simple 1—dimensional 
integral. We need to prove the following straightforward 
result.

Lemma (2.2.1) Any Fisher-Bingham density f can be written 
in the form

T(x I K ,p ,y ,y ̂ ,y 2 ) = C ^exp{ k x *y + p (x » y ̂ ) (x ' y 2 ) } (2.2.2)

where k and p are scalars and y , y ̂ and y 2 are unit 
vectors, not in general orthogonal.

Note: the converse is obviously true.

Proof Since the elements of A in (2 .I.I) only occur in 
the quadratic form x ’Ax , we can without loss of generality 
take A to be symmetric. Also, since only unit vectors x 
are being considered, we can replace A with A+el^ , 
where e is an arbitrary scalar and I^ is the 3x3 identity 
matrix, without affecting the density in (2 .I.I).

It follows that we can restrict attention to matrices
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A of the form Q'XQ , where Q is orthogonal and 
X = diag{0,Xi, X2 } with X1X2  ̂0 . Now define

= (0 ,sinY»cosY ) and v = (O,— sinY,cosY) •

Then if P and Y are chosen to be solutions of

-Psin ̂ Y = ^1 , Pcos^Y = X2

and we put y % = Q'v^ and y 2 = Q*v , it is easy to check
that

p(x'yi)(x'y2 ) = x'Q'xQx = x'Ax for all x e S ^  • 000

We now make some comments:
i) The density of any Fisher-Bingham distribution on , 
the unit circle, can be written as

c"”̂ exp{ Kx * y 1+p (x'y 2 }

where x* = (sin6,cos0) • In fact c , the normalising 
constant, has a convenient series expansion:

c = 2 tt{ S I (k)I (p)cos"^(2rcos*’^(yi'y2))} 
r=0

I^ being the modified Bessel function of order r •
Further details of the circular case are given in Yfantis 
and Borgman (1 9 8 2 ).

ii) Not every Fisher-Bingham density on , n > 3 > can
be parameterised as in (2.2.2): in general, additional terms 
in the exponent are needed. In fact, only densities for 
which the nxn matrix A in (2 .I.I) has at most rank 3 have
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a representation of the form (2.2.2).

iii) Kent (1982) lists some of the important Fisher-Bingham 
subfamilies, defined by imposing simple constraints on the 
parameters. The corresponding constraints expressed in 
terms of the new parameters are as follows:

(a) Uniform ; K = P = 0
(b) Fisher: P = 0
(c) Dimroth -Watson : K = 0 , y 1 = ± y 2
(d) Bingham : K = 0
(e) FB^ : ± y = ± y 1 = ± P2

(f) FB^: y » y 1* y 2 mutua lly orthogona1

iv) A 6-parameter subfamily of some interest, which we 
shall be discussing later, is obtained by imposing the con
straint y 1 = ± y z  , so that the exponent in (2.2.2) reduces 
to the sum of a Fisher and a Dimroth-Watson terra. This 
subfamily, which we shall call FDW^ , contains a fairly 
broad range of skew distributions. It has a 5-parameter 
subfamily, which we shall call FD¥^ , obtained by imposing 
the additional constraint y ’yj = y'y? = 0 * FDW^ was 
mentioned by Kent in Barndorf-Neilson and Cox (l979, dis
cussion ).

We now use (2.2.2) to express the normalising con
stant, c , as a 1-dimensional integral. The axes can be 
chosen so that yj = (0,0,l) , y2 = (sin2y,0,cos2Y) and
y' = (sinacos6,sinasin3 »cosa) . Then, expressing x in 
polar coordinates, i.e. x* = (sin0cos({),sin0 sin (f),cos 6) ,
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integrating with respect to # , and using the substitution 
u = cos 0 , we find that

c = 2it

2where { . } = uKcosa + u pcos2Y
and [[ . 2 = K^sin^ot + 2up Ksina cos 3sin2Y + u^P^ sin^2Y , 

being the modified Bessel function of degree 0 .

This integral can be speedily calculated with high 
relative accuracy using a suitable numerical integration 
procedure. Practical aspects are discussed in 2.5.

Two other methods for calculating the normalising con
stant will now briefly be mentioned.

(a) An obvious, but crude, way of obtaining c is to 
integrate the density (2.2.2) over the sphere numerically. 
However, when the log-likelihood is being maximised numeri
cally, it is likely that the normalising constant will need 
to be evaluated at a large number of points in the parameter 
space. It would seem somewhat preferable to be required to 
evaluate a 1-dimensional, rather than a 2-dimensional, 
integral numerically a large number of times. On the whole, 
there should be a large reduction in the computer resources 
used.

(b) The normalising constant can be expressed as a series 
involving certain moments of a trivariate Normal distribu
tion. This is a particular case of a result given in
De Waal (l979) (that in which p = 1 and m = 3)*
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If, without loss of generality, we take A in (2.1.1) 
to be negative definite, and let (-A)*"^ be the (real) 
positive 'square root' of (-A)~^ , then, using Corollary 
4.1 in De Waal (op.cit.)

c = 2 E Q / [(2r + l)lJr»] (2.2.4)
r=0

where = E{ (u+^(-A ) ̂  y ) ' A ( u+-^(-A )“^y ) } ̂

and u is a zero-mean trivariate Normal with covariance 
the identity matrix, and (2r+l)!i = 1.3..•.(2r+l) .

De Waal notes that each can be expressed as a
polynomial function of the cumulants C^,...,C^ (these 
polynomials are given in Kendall and Stuart (1 9 6 3 , p.6 9 ), 
though it would seem to be preferable to use the formulae 
given in Morris (1982, Theorem 2)) where each cumulant is 
given by the formula

C. = 2 ‘̂ "^(j-l) »tr(-A)'^-K2.2'^‘"^.j*y'(-A)'^” ^y.

If either k or the maximum of the differences between
the eigenvalues of A , or both, are large (e.g. greater
than 1 0 ), then a large number of terms may have to be in
cluded in (2 .2 .4 ) before convergence occurs. However, in 
view of the formulae in Morris (1 9 8 2 ) this should not pose 
too much of a problem, and we would guess that, overall, 
there should not be much to choose between De Waal's method 
and the one suggested here.

We conclude this section by mentioning the method
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proposed in Beran (l979) for parameter estimation in the 
hierarchical families of directional distributions which 
he defines (recall that the Fisher-Bingham is one of these 
families)* This estimator, which he calls a regression 
estimator, is based on a non-parametric ('window') density 
estimator of the true density. However, the validity of 
the asymptotic results given seem to be in doubt, because 
the crucial Lemma 1 in Beran (op.cit.) is wrong. In partic
ular, statement 3.10 in the proof of Lemma 1 is invalid.
(The incorrectness of Lemma 1 was pointed out by a referee 
for Wood (1982)).

A practical problem is that it is not clear how to go 
about choosing the sequence {c ^ } of positive numbers which 
are to converge to zero at a certain rate (see Beran (l979, 
section 3 « 2)). In our own experience, the regression esti
mate shows great sensitivity to the choice of {c^} .

2.3 Fisher-Bingham densities t Stationary Points and
Distribution Types in the General Case

Given a Fisher-Bingham density, for convenience para
metrised as in (2 .2 .1 ), the number and type of its station
ary points can be determined numerically : generally, it 
involves finding the real roots of a polynomial of degree 
6 .

Assume without loss of generality that the matrix A
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in (2 .1 .1 ) is of the form A = diag{ a ̂ , a ̂  } * Then,
adding a Lagrangian term for the constraint x'x = 1 , with 
Lagrangian multiplier X , to the exponent in (2 .I.I), 
differentiating with respect to x and equating to zero, 
we obtain

Ky + 2(A-XI^)x = 0 (2 .3 .1 )

where is the identity matrix.

Now, a unit vector x will be a stationary point of 
the density if and only if there exists a X such that X
and X satisfy (2.3.l)« Suppose that X and x are such
a pair. Then two cases can arise:

(i) X = j=l,2 or 3 and A-XI^ is singular, or

(ii) X ^ Oj j=l,2 or 3 and A-XI^ is non-singular.

In (ii), X = -<(A-XI^)” ^y/2 . Using the constraint
x'x = 1 , it is seen that

P 3
( K /4) E y /(a .-X) = 1

j = l  ̂ ^

is satisfied or, equivalently

Q( ̂ (9 ) (^2“  ̂̂  ̂ ®3~  ̂ ^

where y ' = (ŷ  ,y2 ,y3) and

Q(X) = (a^-X)^(a2-%) (a^-x)

-(c^/4)[yi (a2“ A)^(a^-X)^ + yg ( a ̂ -̂X ) ̂  ( a^-X ) ̂

+ y3 (a^-X) (sg-^) ] (2 .3 .2 )
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is a polynomial of degree 6,

To find the stationary points of the density, we solve 
the polynomial Q(^) = 0 , Then for any real solution 
X ^ Sj , X = - k(A-XI^) ^y/2 will be a stationary point.
In exceptional cases, there may be stationary points, 
possibly an infinite number (consider the subfamily ,
which contains symmetric small circle distributions), 
corresponding to X = a^^Sg or a^ . These can easily be 
found by inspection of (2.3«l). The nature of each station
ary point, X , is determined by the nature of (a -XI^) , 
restricted to the tangent plane at x .

There are three broad types of distribution in the 
Fisher-Bingham family: (i) unimodal, (ii) bimodal and
(iii) 'closed curve' i.e. the probability is concentrated 
on a closed curve on .

2.4 Stationary Points and Distribution Types in the
Fisher-Dimroth-Vatson subfamily

The motivation for focussing attention on Fisher- 
Bingham subfamilies remains, because it appears that con
ditions, expressed in terms of the parameters, for a dis
tribution in the full Fisher-Bingham family to be of a 
particular type would be very difficult to obtain. In this 
section we shall discuss what we have called FDW^ , the 
Fisher-Dimroth-Vatson subfamily, obtained by imposing the
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constraint yi = y2 in (2*2.2). It contains a broad range 
of distributions: unimodal distributions, with and without 
rotational or elliptical symmetry; a wide range of bimodal 
distributions; and 'closed curve' (c.f. small circle) dis
tributions .

For convenience, we shall use the following para
metrise tion :

f(x I K ,p,a ,3,Y ,6) = c ^exp{KX'Ry + p(x'V)^} (2.4.1)

with K and p scalars, y and v unit vectors and R 
an orthogonal matrix, where

y ' = ( sin acos 3, sin as in 3, cos a ) ,

V ' = ( sin Ycos Ô, sin Ysin Ô, cos y )

and R = cos Ycos 5 -sin Ô sinY
cos Ysin 6 COSÔ sinY
-sin Y 0 COSY

The parameter space is defined by k g [[o ,“) , p E (-°°,°° ) ,
a E [o, n/2] , 3 £ [0 ,2 -̂ ) , Y e [o,tt] and 6 e [o, 2 n) .

3 , Y and 6 are rotation parameters, (y,^) being 
the polar coordinates for the 'Dimroth-Watson'■axis. a , 
which is the acute angle between the 'Fisher' direction and 
the 'Dimroth-Vatson' axis, and p and k , are shape para
meters.

When a = 0 , FB̂  ̂ is obtained. This subfamily was 
discussed by Bingham and Mardia (1978), who were interested
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in it as a model for data concentrated about a small circle. 
When a = 1T/2 , „e obtain the subfamily that we have named 
FDW^ above. In fact, the part of this subfamily defined 
by a = 7i/2 and P ) 0 has the same qualitative features 
as FB^; we would expect to be able to approximate closely 
any distribution in FB^ with a distribution in FDW .

(Note: we can define the Fisher-Dimroth-Watson subfamily
in n dimensions as the collection of distributions with 
densities of the form (2.4.1), but with w , v and R 
replaced by n dimensional counterparts. In 2 dimensions 
the Fisher-Bingham and Fisher-Dimroth-Watson subfamilies 
coincide. When n > 3  , the normalising constant for the 
latter can be expressed as a 1-dimensional integral similar 
to that in (2.2.3), though with a different Bessel function.)

When 6 = Y = 0 in (2.4.1) and x is expressed in
polar coordinates, the density takes a particularly simple 
form:

f(x|K,p,a) = c exp{Ksinasinecos()>+Kcosacose+pcos^0} . (2.4.2)

Our aim now is to determine which ranges of values of k ,
P and o correspond to which qualitative types of dis
tribution. We do this by determining how the number (and
type) of stationary points of the density f(x) depend on 
K , P and a , Let

0 , IK , p, a) = Ksinasin0 cose})+Kcosacos 0+pcos^0 , (2 .4 .3 )

Then
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3H/30 = Ksinacos 0cos(|.-Kcosasxn0-2psin6cos0 (2,4.4)

and = - K s l n a s i n 0 s i n *  . (2 4 5 )

Any point (8 ,*) is a stationary point if and only if 
3H/38 and 3H/3<t are zero there. It is clear from (2 .4 .5 ) 
that, unless Ksina = 0 , any stationary point can only 
occur on a great circle, which can be defined as 
{(8 ,*):0 e[o, 2 w ) , 4, = 0 } .

When Ksina = 0 , (2.4.2) reduces to an FB^ density. 
For FB^ and FDW^ (r.e. when a = 0 or a = tt/2 respec
tively) our problem is easy to solve. We only mention here 
that in these two cases, the density will have precisely 
two stationary points (one a maximum, and one a minimum)
if and o n l y  if 1C  ̂ 2 |p I .

Now suppose that Ksino> 0 . Then, putting = O ,

we substitute t = tan(8/2) and o = 2 p/ k in (2.4.4), and
after some manipulation it can be seen that 3H/30 = O if
and only if

K(l+t ) ^[(sina )t'*+2(cosa-o)t3+2(cosa+o)t-sina] = 0 . (2 .4 .6 )

Since KSina is assumed to be strictly positive, the 
term multiplying the brackets can be ignored, and the problem 
becomes that of determining how the number of real zeros of 
quartic equations of the form

P(t| a, cr) = (sina)t^+2(cosa-a)t^+2(cosa+cT)t-sina = 0 (2 .4 .7 )
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depends on a and a . We give two results for the collec
tion ofquartics { P} ={P(t|a,o):a E(0,n/2),OE(-m,m)} .

Proposition (2.4.8) For any P(t|a,a)e { P } , there is 
precisely one root in each of the intervals (0 ,l) and 
(-a>,-l) . Further, if o < 0 these roots lie in 
(tan(a/2 ),l) and -cot(a/2 ),-1 ) respectively; if a = 0
at tan(a/2 ) and -cot(a/2 ); and if a > 0 , in
(0 ,tan(a/2 )) and ( - <»,-cot (a/2 ) ) .

Proposition (2.4.9) There exist continuous curves 
E__(a),S^(a) defined for a e (o,n/2) such that if 
(7 $ E_(a), then P(t|a,a) has two roots in (-1,0) and 
none in ( 1 ,°° ) ; if cr ̂  E^(a) , P(t|a,a) has no roots in
(-1,0) and two roots in (l,™); and if E (a )< a < E^(a) ,
then P(t|a,o) has no roots in either (-1,0) or (l,°°) •

In the proof of these results, we shall make use of 
Sudan's Theorem (see Dickson (1945)), which we state here.

Sudan's Theorem Let P(t) be a polynomial of degree n
with real coefficients, and suppose ĉ  ̂ and c^ are real 
numbers. Then, if is the number of variations in sign
of the sequence P(c^) , P'(c^) , P''(c^)...P^")(c^)
(i=l,2) , the number of roots between c^ and c^ is
Iv^-Vgl , or less than this by a positive even integer. A 

root of multiplicity m is counted as m roots.

Proof of (2.4.8)

Let G ( e | a , a ) = - ^ ^ = sin(0- a )+(a/2)sin20 .
=0
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It is easy to show that

(i) G( Tr/2-e I a ,a ) = -G(0 | ir/2-a,-a ) (2.4.10)

and (ii) G(8 + w|a,a) = -G(0|a,-o) . (2.4.11)

It follows from (i) that P(t|a,a) and P( 11 ir/2-a ,-a ) 
have the same number of zeros in (0,l) . And from (ii),
it is seen that P(t|a,o) has the same number of zeros in 
(0,l) as P(t|a,-o) has in (-™,-l) . So to prove the 
first part of (2.4.8), we simply need to show that when 
a ^ O  and ae(o,TT/2) , P(t|a,a) has precisely one root 
in (0,l) . We do this using Sudan’s Theorem, taking
c = 0 and c^ = 1 . It is readily seen that when a  ̂0
and a z (0,Tr/2) , = 1 and = 0 • Hence there is
precisely one root in each of the intervals (0,l) and 
( - 00, -1 ) .

To prove the second part of (2.4.8), we put

P(t|a,a) = Q(a,t)+R(a,t) (2.4.12)

where Q(a,t) = (sina)t +2(cosa)t +2(cos a)t-sina and
R(a,t) = 2crt(l-t^) . It is not difficult to show that
Q(a,t) < 0 for t e (0,tan(a/2)) , Q(a,t) = 0  at
t = tan(a/2) , and Q(a,t) > 0 for t e (tan(a/2),l) . And 
clearly, for t e (0,l) , R(a,t)> 0  if a > 0 , R(a,t) = O 
if a = 0 and R(a,t)< 0 if a < 0 .

So, when a = 0 the root in (0,l) is at 
t = tan(a/2) . And when a < 0 and t e (0,tan(a/2)] ,
P(t|a,a)<0 since Q(a,t)^0 and R ( a ) < 0 .  So in this
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case, the root must lie in (tan(a/2),l) . The corresponding
assertions for a> 0 and the interval (-°°,-l) are proved 
in a similar fashion. 000

Proof of (2 .4 .9 ) We can deduce the following from Sudan's 
Theorem: when o $ cos a + sina , there are no roots in
(1 ,°°); and when a > cos a + sina , there are either no roots 
or 2 roots in (l,“ ) . (Put c^ = 1 , Cg = ™ # Then

= 0 if a $ sina + cosa , and = 2 if a > cosa + sina ;
and Vg = 0.)

We observe that for any P(t|a,a )E {P } , P(l|a,a)> 0
and P(°°[a,a) > 0 . Using (2,4,12) it is clear that for any
t^ E (1 ,00) and a e (0, tt/2) we can find a such that
P(t I a ,o ) < 0 (take a > Q (a,t )/{2t (t ^-l)}) . Secause' 0  0 o ' ' o 0 0
of its continuity, P(t|a,a^) must then have one root in
(l,t^) and one root in (t^,™) , Also, for any e > 0
P(t I a, a + e ) <0 since P(t |a,o + e ) = P(t | a , o )+R(E,t )' 0  0 0 0 0 0 o
and both the latter terms are strictly negative. Therefore, 
if P(t|a,a) has two roots in (l,°°) , then, when e > 0 ,
so does P(t|a,o+E) and in the latter case they must be 
distinct,

For each a e (0,7t/2) , define

Z^(a) = inf{a Ip(11 a,a) has two roots in (l,™)}. (2,4,13)

From above, E^(a)% sina + cosa> 0 • Clearly E has the 
desired properties. To obtain E (a) , we note that
(2 ,4 .1 1 ) implies that the number of roots P(t|a,a) has
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in (1 ,00) is the same as the number of roots P(tIot,-a) 
has in (-1,0) . As a consequence E (a) = - E^(a) • It 
also follows, from (2.4.10), that E (a) = _ E^(n/2-a) ,
so that E^(a) = E^(ir/2-a) , 000

It is possible to determine E(a) ( = E^(a)) analyt
ically, We already know (from the proof of (2,4,9)) that 
if I cr I >E(a) , then P(t|a,a) can not have a double root. 
In fact, an argument by contradiction shows that when 
cr = ± E (a ) , P(t|a,a) does have a double root. So
P(t|a,a)£ { P } has a double root if and only if o = ± E ( a) ,

It can be shown that if P(t|a,a) has a double root 
at t* = tan(0*/2) , then both 3 H / 9 0 and 9^H/90^ are
zero at 0 = 0* and  ̂ = 0 , So at any double root, a
and a must satisfy

- (a/2 )sin(2 0*)-sin(0*-a) = 0 (2,4.14)

and - acos(2 0* )-cos(0* - a) = 0 , (2.4,15)

A little manipulation shows that (2,4.l4) and (2,4,15) 
are simultaneously satisfied if and only if

[tan^0*+tana]/{tan0*[tan0*"tana]} = 0 , (2,4,16)

The only real solution of (2.4,I6 ) is
0 * = tan ^( -( tana ) ̂ '̂  ̂) , It follows that
E(a) = 2sin(a-0*)/sin(20*) , It is sensible to define the
end points by E(o) = e (tt/2) = 1 ,

All the discussion concerning stationary points of
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Fisher-Dimroth-Watson distributions applies in any dimension. 
So, we have in fact extended the results given in Yfantis 
and Borgman (1 9 8 2), whose interest is in the circular case.

It is a straightforward matter to determine the manner
in which any P(t|a,a) changes sign in the vicinity of its
zeros (bearing in mind certain statements made in the proof 
of (2 .4 .9 )). Using this information, we can determine the 
nature of the Hessian matrix for H( 6 , c|) | k , p ,a ) , at any 

stationary point; therefore, we can determine the nature 
of any stationary point.

We are now in a position to make the following state
ments for distributions of the form (2,4,2), when k > 0
and a z (0 ,7t/2) , We omit the cases k = 0 (Dimroth—Watson),
a = 0 (FB^) and a = tt/2 (FDW^) for convenience, since
the corresponding details are easily filled in. Firstly a 
word on nomenclature: if we say that a function f(x,y) 
has an "A" - ”B ” stationary point at (xQ,y^) we mean
that f(x,y^) as a function of x has a type ”A ” station
ary point at x^ , and f(x^,y) as a function of y has
a type "B" stationary point at y^ .

(a) There is a mode at (8,#) = (0^ ,0) , where if 
p> 0 , then 61 e(0,a) , if p = 0 then 0 % = a , and 
P <0 then 81 E(a,n/2) ,

(b) There is an antimode at (8 ,^) = (62 ,'rr) , where 
if P > 0  , 0 2 ^('iï-a,‘iï) , if p = 0 , 02 =TT-a and if 
P <0 , 82 E(n/2,w-a) ,
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(c) If 2 p > K ,z(a) , there is a min-max stationary
point at (e,(j)) = (63,0) , and a mode at (8^,0) , where
tt/2 < 8 3 < 8 < IT • These distributions are of bimodal type,
with modes at (0 i,o) and (84,0) .

(d) If -K.z(a)$ 2 p < K,z(a) , there are no further 

stationary points unless 2p =± ic E ( a) . If 2p = kE (a ) , 
there is an inflection-max stationary point at
(8,(f)) = (83,0) , where 8 3 £(7t/2,tt) . And if 2 p = - c E ^ )  ,
there is an inflection-min stationary point at (83 ,it ) ,
where 83 e (o ,tt/2) , These distributions are of unimodal
type, with mode at (81,0) .

(e) If 2p< -KE(a) , there is an antimode at
(8 ,(f) ) = (83,^) and a max-min stationary point at (84 ,7r ) , 
where 0 < 03 < 04 < "n/2 . These distributions are unevenly 
concentrated about the union of the two curves of steepest 
ascent, with respect to the density, from (0^,^) to 
(01 ,0) • In this sense, these are closed-curve distributions.

Note: When icsina is greater than about 5 , these distribu
tions are practically indistinguishable from unimodal dis
tributions, though for convenience we still refer to them 
as closed-curve distributions below.

To summarise: FDW^ distributions fall into one of 
three categories: if 2 p >K.E(a) , they are of bimodal type;
if 2 Ip I^ E (a ) , they are of unimoda 1 type ; and if
2 p <-KE(a) , they are of closed-curve type.

One of the interesting features of the FDW^ subfamily
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is that it contains unimodal distributions with skew con
tours of constant density: that is, densities with no 
rotational or elliptical symmetry, though they do have 
'half-elliptical' symmetry. The exact form of the depend
ence of the shape of the contours on k , p and a seems 
to be complicated. However, we offer a rule-of-thumb, 

based on limited practical experience,

( i ) When 0 < a < 7r/2 and 0 < 2 p $ K , s ( a )  , the con
tours are like ellipses which have been distorted into a 
2-dimensional egg-shape, but with symmetry about the major 

axis retained,

(ii) When 0 < a < it/2 and -ic,E(a)< 2p < 0 , the con
tours are again like distorted ellipses, but this time with 
symmetry about the minor axis retained.

2,5 Maximum Likelihood Estimation and some Hypothesis Tests

The full Fisher-Bingham family (FBg) is a regular 
exponential family (in the sense of Barndorf—Nielson (l9?8)) 
and so, from the point of view of maximum likelihood esti
mation in particular, it will have some desirable properties. 

We state two of these:

(i) The log-likelihood is strictly concave in any natural 
parametrisation, Therefore, if the maximum likelihood 

estimates (MLE's ) exist, they are unique.
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(ii) If , where n >3 , is an independent sample
from any spherical distribution which is absolutely contin
uous with respect to Lebesque measure, then the Fisher- 
Bingham MLE's exist with probability 1,

However, most of the subfamilies we have mentioned, in 
particular Dimroth-Va tson, FB^^ , FB^ , FDW^ and FDW^ , 
are curved exponential families. Geometrically, each of 
these subfamilies can be regarded as a curved hypersurface 
embedded in the natural parameter space of FBg (which is
QR ) , In general, likelihood functions for curved exponen

tial families may have more than one local maximum. So, 
since the aim of the maximum likelihood procedure is to 
find the global maximum of the likelihood, there is a prob
lem: to establish whether or not MLE's for one of the sub
families, obtained numerically, are the global MLE's,

A graphical procedure, which gives the necessary infor
mation about the number and approximate location of the 
local maxima of the likelihood for these curved exponential 
subfamilies, is suggested below, though it tends to require 
quite a large amount of computer resources. Firstly, we 
mention that the likelihood function for the Dimroth-Watson 
subfamily almost always has precisely 2 maxima: one in the
region p> 0 and one in p < 0 (Mardia (l972, p,253))*
For the other 4 subfamilies, although we have no theoretical 
results to offer, practical experience suggests that the 
likelihood functions for FB^ and FB^ generally only 
have one maximum; but for FDW^ and FDV^ two maxima:
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one in the region p > 0 and one in p < 0 .

The graphical procedure is based upon the following 
simple observation: for each fixed y and 6 , (2 .4 ,1 ) is
a 4-parameter exponential family, which satisfies (i) and
(ii) above (though obviously these families are not of 
statistical interest because they are not closed under 
rotations),

For a sample Xj^,,,,,x^ of unit vectors, the log— 
likelihood based on (2,4 ,1) is:

n
L„(< ,P , a, B.y.O = Ï log{f(x |K,p,a,B,Y,6)} . (2 .5 .1)

j=l J
Then for each fixed Y and 6 , maximised over

K , p , a and 6 has a unique maximum, L*^( y ,ô ) say, at

K = K ( y ,<S),p = p (Y,a),a = a*(Y,<5),6* = 6*(y,6) .

(2,5 .2)
*

Clearly, L ^ has a local maximum at a point

(y ,<S) if has one there: so all the required inform
ation concerning the local maxima of L is contained in
* *
^ , The function L ^ can be computed over a grid of

points numerically, and its contours, which yield the re
quired information concerning the local maxima, can be 
plotted using a graphics routine.

We now mention some practical aspects of the procedure 
we suggested in 2,2 for obtaining the MLE's, To maximise 
the log-likelihood function, we have used routine E04JAF
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from the NAG library (see NAG), a routine which does not 
require specification of the functional form of any of the 
partial derivatives. This routine allows one to impose 
simple constraints on the variables of the function being 
maximised. So, by imposing appropriate constraints, we can 
fit any of the subfamilies we have mentioned, using essen
tially the same procedure. However, when fitting PBg , 
it appears to be better to use a natural parametrisation, 
though for the subfamilies, the parametrisation (2,2,2) 

is adequa t e ,

At each point in the parameter space at which the log- 
likelihood is evaluated, the normalising constant must be 
calculated. In practice, it is crucial to bear in mind 
that we only need be concerned with relative accuracy, and 
not absolute accuracy, in the following sense: if c is 
the true value of the integral, and c* is an estimate of 
c such that c = c*(l+e) , then we only require that e ,
the relative error, be small, and we do not need to worry 
about the magnitude of |c—c*| , the absolute error, because

we only need to calculate log c ,

The integration routine we have used, DOIAJF from 
NAG, allows one to choose which aspect of the error is to 
be controlled, and it can also cope with integrands with 
sharp peaks, a possibility that may arise when the para
meters are large. Since each time the integration routine 
is called, the integrand is calculated at a number of points, 

it is important that the modified Bessel function, I^ * be
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calculated efficiently. This can be done using routine 
S18AEF (n a g ), in which is expressed as a sura of
Chebyshev functions, and different expansions are used for 
different ranges of values of the argument.

We make two further practical points. Firstly, it is 
better to maximise the log-likelihood without imposing re
strictions on the permitted ranges of the parameters, and 
then to choose the maximum likelihood estimates such that 
they lie in suitable ranges afterwards, in order to avoid 
'solutions* which lie on an artificial boundary.

Secondly, the question of initial estimates. If a 
natural parameterisation is used for FBg , the choice of 
initial estimates does not seem to significantly affect 
the performance of the procedure. For FDW^ and FDW^ , 
initial estimates can be obtained from the graphical pro
cedure mentioned above. If the graphical procedure is not 
used, then a number of different initial estimates, perhaps 
based on the Fisher or Dimroth-Watson MLE's, should be 
tried.

The procedure has worked well, even when the maximum 
values of the arguments of I^ and the exponential in
(2 ,2 ,2 ) approach I5 0 , approximately their maximum permitted 
values on the computer we have used,

Kent (1 9 8 2) mentions some hypothesis tests for the 
Fisher-Bingham family. Also, an omnibus goodness-of-fit 
test for the Fisher distribution, against an unspecified
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Fisher-Bingham alternative, is given in Mardia, Holmes and 
Kent (1 9 8 4 ), These tests are based on 'score* statistics. 
Computationally, such tests tend to be simpler than the 
corresponding likelihood ratio tests, though in general 
they have less power asymptotically.

We mention a sequence of likelihood ratio tests suit
able for data which we have reason to believe are generated 
from a unimodal distribution# The reason(s) may be due to 
prior knowledge, or based on the outcome of a test of uni- 
modality (see 3 ,5 ), or the result of a graphical study of 
the data. See Lewis and Fisher (1 9 8 2) for a discussion of 
some graphical methods for spherical data. Tests appropriate 
for bimodal models and closed-curve models are mentioned in 
the next Chapter,

Below, L(Hj) will denote the globally maximised log- 

likelihood under hypothesis H^ ,

(a) H^:FDW^ versus H^:FBg ,

Under , -2[l (H^)-L(H^)] is asymptotically •
Reject if this statistic is too large. In the unimodal
case, this can be interpreted as a test of whether the con
tours have a 'line* of symmetry, as opposed to no symmetry,

(b) Hg:FDW^ versus H^:FDW^ ,

Under , -2[]l(H^ )-L(Hj^)] is asymptotically x^l »
reject if this statistic is too large. Interpretation:
a test of elliptical symmetry versus symmetry about only
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one line.

(c) H tFisher versus H,:FDW , o 1 5

Under , -2 [l(H^ )-L(H^ )3 is asymptotically x 2
2 *

reject if it is too large. Interpretation: a test of
rotational symmetry versus elliptical symmetry.

In 2 , 7  the usefulness of these tests is discussed.
It appears that very large samples are required if test
(a) is to be effective.

It may sometimes be desirable to include FB^  ̂ in this 
sequence of tests, as it is a more general rotationally 
symmetric model than the Fisher distribution. The exten,t . 
to which FB^^ is a useful unimodal, rotationally symmetric 
generalisation of the Fisher distribution is not yet clear 

(see section 6,l),

2,6 A confidence Region for the Modal Direction

Suppose we are given an FDW^ distribution 
f (x| K ,p ,a, 3» Y» <S) parametrised as in (2 ,4 , l) with 
0 < a < 7t/2 , If ip is the acute angle between the modal 
direction and the ' Dimro th-V/a t son ' axis, then the modal 
direction, X say, is given by X = Rç , where 
Ç = ( sini|; cos 3» sin ̂ 'sin 6 , CO sip ) and R is as in (2 ,4 ,1),
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Straightforward computation yields

X =

s i n i p c o s 3 c o s Y c o s ô - s i m p s i n 6 s i n ô + c o s i p s i n Y c o s 5  

s in ip c o s Y s i n ô + s i n i p s i n 3 c o s ô  +cos ip s in Y s in ô

-sinipcos 3sin Y + cosipcosY

(2.6.1)

Now suppose we are given a random sample of n unit
vectors from the above distribution, and that we have ob-

A. A  A  A  A<tained maximum likelihood estimates K , p , a , 3 » Y  and 6 
under the FDV^ hypothesis. Then an approximate (lOO-e)^ 
confidence region for A , the modal direction is given by

{x I xeS^ , (x'(1)1 )^/V^ + Z'^2^ t^/n} (2,6,2)

A z;' A Awhere: a)̂ is the unit vector in the direction X-v/cosip ,
w 2 is the unit vector in the direction of the vector pro-

A  A  A A / I \duct of X and v , X xv ; v is as in (2 ,4 ,1), and the
MLE's of X , V and ip are defined implicitly; and t

. ----------..d
E

is given by Pr(x^^ > t^) = e , and V„ are estimates
of positive numbers and determined below.

The derivation of (2,6 ,2) is essentially very straight
forward, if a little involved, so we shall only give an out

line,

(i) From the standard asymptotic theory for MLE's,

(a) the MLE's are consistent,
i,e, ^ , p , a ,  3,Y,^)^(K,p,a,3,Y,&) in probability,

(b) /n[K/p,a,3;Y\&)-(K,p,a,3,Y)&Xl^N(0,I ^ ) in distribu

tion, where I = l( ic, p , a , 3 , Y , <S ) is the information matrix.
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for a sample size of 1, evaluated at the true parameter 

va lues •

(ii) For computational convenience, we choose a 
coordinate system such that the true values of the rotation 
parameters, in the new coordinate system, are B = 6 = 0  

and Y = tt/2 ,

(iii) In this new coordinate system we expand the
AMLE of A , X , in a Taylor series about the true modal 

direction and obtain

A A
A = A 4-A (̂ A A A— K ,p — P,CX — Otj p A A

- B,Y— Y,G —G) '+ °p(i) (2.6.3)

where the 3x6 matrix A is given by

r . , 9^-sinip —9 K
. , 9ip -sinip -—9p -sin* 9 a -sin ip 0 0

0 0 0 0 cosip sin ip
9ip-cosip --9 K

9 ip-cos Ip --
9p

9 ip— C 0 s ip --9a -cos (ip ) 0 0

and the derivatives in A are evaluated at the true para-

meter values. In fact (2, 6.2) can be written

/n ( A -A ) ' = -(sinip,0,cosip) ,Z^ + (0, 1,0),Zg (2.6.4)

where Z_ = /n(<-K)— -+ /n ( pt 9 k
\9ip / /A -p )— +/n ( a-9 p

.dip , /A 
a )— + /n ( Y-9 a Y)

and Zg = /n(ô-ô)cosTp + /nCB-B)sinip •
A
A , and the two vectors on the RHS of (2.6.4), are three

mutually orthogonal unit vectors,

(iv) We can obtain expression for 9ip/9i< , 9ip/9p
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and dip/da by differentiating (2.4,7) implicitly, where 
t = tan ( ip/ 2  ) ,

(v) It follows from (i) that and Z^ are
asymptotically Normal, When Y = tt/2 and B = 6 = 0 , it 
is easy to see that the information matrix takes the form

I =
J 0
0 K

(2.6.5)

where J = J(K,p,a,y) Is 4x4 and K = K{s,b) is 2x2 .
As a consequence, Z^ and Z^ are asymptotically independ

ent ,

(vi) Z^^N(0,V^) and Z2^N(0,V2) , where = g'J ^g

g = (9ip/9k, 9\p/9p ,9ip/9a, l) , and J as in (2,6,5), evalu
ated at the true parameter values; and

V2 = ( sin ip, cos ip )K  ̂( cosip , simp ) ' , with K as in (2,6,5) *
Clearly and do not depend on the coordinate
system chosen,

(vii) Asymptotically, Z^ can be interpreted as the 
angular error of the estimate along the great circle in the 
plane defined by the Fisher and Dimroth-Watson axes (i,e, 
along (1)1) , and Z2 as the angular error in the perpen

dicular direction (i.e, along 0)2) • Since
(Z^^/V^ + , (2,6,2) is appropriate as a con

fidence region for the modal direction,

(viii) In practice we shall need to estimate ,
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Vg and ü3i , 0)2 • We can do this by replacing the true
parameter values with their MLE's in the appropriate form
ulae.

2,7 Some Numerical Results

Two Fisher-Bingham distributions, which we shall call 
and were selected such that, in parametrisation

(2 . 1 . 1 ),

(i) has parameters < = 4  , y' = (1//3,1//3,1//3) 
and A = diag{0,3»6} and

(ii) Dg has parameters k = 8 , y' = (l/V3,l//3,i//3) 
and A = diag{0,6,12} ,

Using the method outlined in 2.3, it was shown that, 
in both cases Q(x ) has only two real roots. So and
Dg have only two stationary points, a maximum and a mini
mum, and are therefore unimodal distributions. These par
ticular distributions were chosen as they might be expected, 
in each case, to be among the more asymmetric unimodal FBg 
distributions of similar degrees of concentration.

The first two moments tj = E(x [D^) and 
Sj = E(xx'|Dj) of Dj (j=l,2) were calculated by suitably 
adjusting the integrand in (2,2.3), Then treating (tj^,S^) 
and (tg^Sg) as though they were the first two sample
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moments, obtained from independent, identically distributed 
samples, FBg , FDW^ , FDW^ and Fisher distributions were 
fitted to each, by maximum likelihood. Of course, this can 
be done because the first two sample moments are sufficient 
statistics for the FBg family, A selection of the results 
are presented in Tables 2.1 and 2.2.

Put îî.(ic,y,A) = -log( c/2 tt)+K t . * y+tr ( AS , ) , (j=l,2)J J J

Then, if (tj,S^) had been obtained from a sample size of
n , n̂ ĵ would be the log-likelihood function. Now, in
Table 2.1 Ai is evaluated at the true parameter values,
and A(FBg) , a(FDW^) , A (FDW^) and A(Fisher) are the 
global maxima, obtained using the numerical procedure de
scribed earlier, of üi over the FBg , FDW^ , FDW^ and 
Fisher hypotheses respectively. The integer-valued function 
m is defined as follows: m(FBg,FDW^,0.05) , for example,
is the smallest sample size such that, given sample moments 
(ti,Sj) , the hypothesis FDW^ would be rejected in favour 
of FBg , at the 95^ level, using the standard large sample 
likelihood ratio test. (in other words, m is the smallest 
integer that that 2m ̂ A(FBg) — A(FDW^^ > a where

Pr(x 2̂ “ 0,05 • And so on,

SK^ and SK^ are non-parametric measures of skewness 
about the mean direction which are described later.

We note the closeness of the true values of the nor
malised likelihood Aj and A 2 and the estimated values 
A(FBg) in Tables 2,1 and 2.2. In both cases, the initial
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TABLE 2.1

D 1 : K = 4,y' = (1//3 , 1//3, I//3 ) A = diag{ 0,3,6}

modal direction: (0 .1 6 , 0,274, 0.948)*

t^» = (0 .2 0 7 , 0 .3 2 , 0,7) =
0 , 1 1 9  0 , 0 6 3  0 ,1 2 3' 
0 , 0 6 3  0 , 2 3 0  0 . 1 6 9  
0 , 1 2 3  0 , 1 6 9  0 , 6 5 1

(ti»ti)^/^ = 0 . 7 9 6  SK^,= 0 , 0 7 SKg = 0 , 1 9 9

= 0 , 8 5 7 0 a(FBq) = 0 . 8 5 7 0

A(FDW^) = 0,8223 A(f D¥^) = 0,7335

m (FBg,FDW^,0.05) = 86 m(FD¥^,FDW^,0.05) = 22

Note: Definitions are given on pages 33 and 34,
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TABLE 2.2

D : K = 8,y* = (1//3, 1//3, 1//3) A = diag {0,6,12}

modal direction: (0.l6, 0.2?4, 0,948)*

tg* = (0,197, 0,303, 0,863) = 0,075 0.059 0 .1 61'
0 , 0 5 9  0 . 1 5 6  0 . 2 3 7
0 , 1 6 1  0 , 2 3 7  0 , 7 6 9

(tg'tg)!/^ = 0 , 9 3 5 SK^ = 0 , 0 3 4 SKg = 0 , 0 7 5

Ag = 1,8548 A(FBg) = 1.8548

A(FDW^) = 1.8341 A(FDW^) = 1,8148

m (PBg,FDWg,0.05) = 144 m ( F D W ^ , F D ¥ ^ , 0 , 0 5 )  = 100

Note; Definitions are given on pages 33 and 34,
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estimates were some distance from their final values, so 
that the maximisation procedure has clearly worked well.
The final parameter estimates were also accurate to at 
least 4 significant figures. In both 2,1 and 2,2 the likeli
hood functions for FDW^ and FDV^ had two maxima, In 
all cases the global maximum was chosen.

In so far as and are good representatives
of the more asymmetric unimodal FBg distributions with 
similar degrees of concentration, these results seem to 
suggest the following: that for unimodal data, if the con
centration about the mode is moderate, departures from 
elliptical symmetry can be detected, when present, using 
the likelihood ratio test, even in reasonably small samples 
(e.g, in Table 2,1, m(FDW^,FDW^,0.05) = 22) , But for data 
sufficiently highly concentrated about a point, very large 
samples will be required to detect such departures (e,g, 
in Table 2,2, m(FDW^,FDW^,0,0 5 ) = lOO) .

We shall now describe the measures of skewness SK^ 
and SKg , Suppose that F is a distribution on ,
If we express the points x e in polar coordinates ;
( 6 , (p ) , relative to a frame of reference defined by y 1 ,
y2 and y 3 , three mutually orthogonal unit vectors, so
that

X = sine coscpy 1 +sin0 sin (py 2+cos 0y 3

then SK^ and SK^ are defined by
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1
SK^ = SK^(y3 ,F)= { Te ( cos cp  ̂+ [̂ E ( s in <P )J ^

and SKg = SK^ (y 3 ,F ) = E{ [e( cos <p | 6 )] [e( sin cp | 0 )] ̂ }^ .

SK^ and SK^ do not depend on the choice of y1 and y2 •
It is easily shown that 0 ̂  SK^(y3 ,F) $ SK^Cys,F) $ 1 .

A meaningful choice for y3 is the median direction
of F . In this case, SK^ and SK^ are zero for any
Fisher, Bingham, FB^ or FDW^ distribution. SK^ is of 
more practical interest than SK^ because it can be defined 
for sample x^y...,x^ of unit vectors. Since SK^ = 0 
when y3 is the median direction, the point for which the 
sum of the arc lengths to x^,...,x^ is a minimum, when 
y3 is the mean direction SK^ is a measure of skewness
based on the discrepancy between the mean and median 
directions•

The fact that SK^ and SK^ are smaller in Table 2.2 
indicates that the contours of the densities (which are the 
same for and D^) sufficiently close to the mode are only 
mildly skew. Of course, this is to be expected on theoret
ical grounds, because of the smoothness of FBg densities.

We conclude this section with a vague conjecture: that 
asymmetries will generally be easier to detect in data from 
bimodal or closed-curve distributions, than in the unimodal 
case. This is because for unimodal data, especially highly 
concentrated unimodal data, the mean direction will be 
'close' to one of the eigenvectors of the matrix of second



- 39 -

moments, but for bimodal and closed-curve data, this need 
not be so to the same degree.
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CHAPTER 3 

BIMODAL MODELS

3 • 1 Introduction

In the analysis of directional data, there are 
occasions when a bimodal model is required, Schmidt (1 9 7 6 ) 
gives an example of spherical data which seem to be of a 
bimodal nature.

We shall be focussing attention on two bimodal models: 
one is the family of distributions described in Wood (1 9 8 2 ) 
and the other is the Fisher-Dimroth-¥atson family, described 
in the previous chapter.

We begin by briefly mentioning some bimodal models on 
the circle. Mardia and Spurr (l973) discuss m-modal dis
tributions (where m is an integer) with densities of the 
form

{ 27Tl^(K)}"^exp{K cos(me-y^) ) } (3 .I.I)

obtained by rescaling von Mises distributions. The modes 
occur at y^ + 2ïïr/m (r=0 ,...,m=l) and are of equal mag
nitude, When m = 2 (the bimodal case) the modes are 180^ 
apart,

Another model, the 'discrete mixture' model, is given 
by mixtures of two von Mises distributions. Conditions 
under which such mixtures are bimodal, as opposed to unimodal.
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are given in Mardia and Sutton (l975)» However, in the 
general (^-parameter) case, inference proves to be awkward. 
Marida (1972, p.7i) discusses the special case in which the 
modes are 180° apart; in this case, these difficulties do 
not arise .

A third possibility is to use the Fisher-Bingham 
family on the circle, which contains both symmetric and 
asymmetric bimodal distributions; though there do not 
appear, as yet, to be examples of the use of this bimodal 
model in the literature.

The spherical models we shall be considering here can 
be viewed as analogues of the first and third circular 
models mentioned above. To obtain the first, we "double 
the longitude" of a Fisher distribution (analogous to 
"doubling the angle" of a von Mises distribution). The 
spherical construction gives bimodal distributions with 
equal mode strengths (as does the circular construction), 
and distributions with modal directions having any angular 
separation can be obtained (unlike the circular case, for 
which they will always be 180° apart).

The other bimodal model that we shall be discussing, 
the Fisher-Dimroth-Watson family, can be regarded as an 
analogue of the Fisher-Bingham distribution on the circle 
(for the reasons given in the previous chapter). It con
tains bimodal distributions with modal directions of any 
angular separation, and also with differing mode magnitudes
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We omit discussion of the 'discrete mixture' model on 
the sphere. In the general (7-parameter) case there are 
difficulties in inference corresponding to those on the 
circle, but more severe, And rather than consider simpli
fications of the mixture model, we have decided to concen
trate attention on the two models mentioned above.

3 , 2  A 5-parameter family of Bimoda1 Distributions

Consider the distribution on the unit sphere, ,
which is given by

f'(0,(|)[a, 6, K)dS=c(c) exp {iccosacos0+Ksinasin0cos(2(j)-B)} dS, •
(3 .2 .1 )

where (0,^) are the usual polar coordinates for a point
on , dS = sin0d0d^ , and c (k ) = K/{2n(e^-e ^ )} .
Denote the family of distributions of this form by D* •
The density f  resembles the density of a Fisher distribu
tion whose modal direction is (a ,B) , the difference being
that cos(2^-B) replaces cos(^-B) « In fact, the marginal 
density of 0 for the distribution in (3.2,l) is the same 
as that of 0 for a Fisher distribution whose modal direct
ion is (a ,B ) .

We note the following properties of the distributions 
in D ’ ,
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(i) When k = 0 , we obtain the uniform distribution. 

In (ii) - (ix) it is supposed that k > 0 .

(ii) When a > 0 , the modes occur at (8,^) = (a,B/2)
and ( 6 , (j) ) = (a , (b +2 7t/2 ) ) . They are of equal magnitude.
The anti-modes occur at (e,^) = (it-a , ( B+tt )/2 ) and
(e ,(j) ) = ('IT - a, ( B+3it )/2 ) . These are also of equal magnitude.

(iii) The angle between the modal directions (and anti- 
modal directions) is 2a .

(iv) When a > 0 it follows from (ii) that the pro
jections of the two modal directions onto the X-Y plane 
make angles g/2 and (3+2tt)/2 with the X axis. Hence 
3 is a rotation parameter.

(v) K is a concentration parameter - it specifies 
the concentrations about the modal directions (the larger 
K , the larger the concentration).

(vi) When a = 0 , we obtain the Fisher distribution 
P((0,0,l)',r) .

(vii) The effective parameter space can be taken to be:
0 $a 3 w/ 2  , 0< 3< 2n and k > 0 .

(viii) The mean direction is (0,0,l)' , i.e.
Ex = x(0,0,l)’ where x = ( sinB coscj), sin Bsincf) , cos6 ) * and 
X = X (a ,K )  ̂0 . In fact, it is straightforward to show 
that X = B(i<)cosa where B(k ) = coth(i<)-K  ̂ . So X = 0 
if and only if either k = 0 or a = tt/2 .
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(ix) For the Fisher distribution, the contours of con
stant density are small circles, i.e. the sets 

{(8,4):cosacos8+sinasin8cos(*-6)=const.} are small circles 
on . For f ' in (3.2.1), the corresponding sets are
given by = { ( 0 , (|> ) : cosa cos 0+sina sinB cos ( 2 <{>-6 ) =cos e } .
When £ < a , C^ will be the union of two non-intersecting
closed curves on , each one surrounding a mode.

The unit vectors e^ = (l,0,0)' , e^ = (0,1,0)* and 
«3 = (0 ,0 ,l)' play a special role in distributions of the 
form ( 3 .2 .1 ). If we put x = (sinBcos^ , sin0 sin cf),cos 0 ) * ,
then x'e^ = sinBcos^ , x'Sg = sinBsin# and x'e^ = cosB .

To obtain the form of f* after an arbitrary rotation of 
axes, we generalise from e^ , e^ and e^ to three 
mutually orthogonal unit vectors

1 = ( cos YCOSÔ , cosysinô ,-siny ) ' , p 2 = (-sin 6,cos 6,0 )* and
VI3 = (sinYCOs6,sinYsin6 ,cosy)' , say, where 0 $ y $ it and 
0  ̂6 < 27T (only two parameters, y and 5 , are required
here as 6 plays the role of the third rotation parameter). 
Using standard trigonometric formulae, we obtain

f(x|y,&,a,B,K) = c( k ) e x p | K C o s a ( x 3 ) +

+ Ksinacosg
(x'y 1 ) -(x 'y2 )

2 ?(l-(x'ys) )

+ icsinasinB
2(x » y 1 )(x *y2 )

Jl-(x»ya) )
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where f is the general form of f  • Also, we replace 
D ' with D • Note that (y,6 ) are the polar coordinates 
for the mean direction, y 3 •

3 . 3  Estimation and the Information Matrix. Hypotheses 
Testing

Consider a sample of n unit vectors x^,...,x^ . 
Then the log-likelihood function with respect to D , 
say, is given by

L^(Y;8,a, 6,K)= -nlog2iT-nA (k )+ k ( u c o s  a+(vcos6+wsinB )sincx)
(3 .2 .3 )

n
where u ( y ,^) = Z (x. 'y^) ,

i = l

v ( y ,<5) = z { C(x. ' yi)^-(x *y2 )^]/[l-(x ♦ yg)^] } ’
i = l 1

w(y,ô) = Z {2(x. * yi)(x. 'y2 )/[l-(x. »y3 )̂ ] } and
i = l

a ( k ) = log[(e^-e ^)/c] .

A word on the notation in this section: for each 
(Y ,5) , a*(Y»ô) will denote the MLE of a calculated as
though (y ,8) were the known true mean direction.
Similarly for 3 * ( y »8) and K*(Y#8) . 'A' will be used
for the full MLE's. It is clear that cl = a*(Y,8) ,
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A /A A  \6 = 3 * ( y ,8) and k = k:*(y ,ô ) ,

Equating 9L^/9a , 9L^/93 and 9L^/9 k to 0 , we

obtain
JLP 2 2tana* = (v^+w ) /u , a* = a*(Y»8) ;

tan3* = w/v , 3* = 3*(y »8) (3.2.4)

and B ( k*) = (u^+v^+w^) /n , k * = k *(y »8 ) , where the

function B(.) is defined in 3 * 2 , (viii).

We now consider the function

L^*( y ,8) = L^(y ,8,a*,6*,K*) . (3.2.5)

Clearly L^*% and supL^* = supL^ . Using (3.2.3)
and (3.2.4) L^* can be obtained explicitly. In fact, it
takes the same form as for the Fisher distribution:

L^*( y »8) = -nlog27T+n (ic *B( k * )-A (k * ) ) . (3.2.6)

The RHS of (3.2.6) is an increasing function of k * ; and 
B( k*) is an increasing function of k * . So finding 
(y »8 ) to maximise L^* is equivalent to finding (y »8 ) 
to maximise B(k*) = (u^+v^+w^)^/n , or, equivalently,
(u^+v^+w^) . That is, to find (y ,8 ) we only need to
maximise (u^+v^+w^) , which can be done using a numerical
maximisation procedure. We have found it a little easier 
to use a procedure which does not require specification of 
the functional form of the partial derivatives (e.g. sub
routine E04JAF of the NAG library).
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The question of an initial estimate for (y,5) remains. 
The sample mean direction, ( R^ ® consistent estimator
of (y,ô) , would appear to be the most sensible initial 
estimate, at least when the length of the sample resultant 
is not close to zero. However, when the "true" modal 
directions are widely separated, that is, a is close to 
tt / 2  , it may be that the length of the sample resultant is 
close to zero. When this is the case, it may be better to 
obtain the eigenvector, t^ t corresponding to the middle 
eigenvalue of the matrix of sums of products of the sample 
(see Mardia (l972, equation (8.4.16)) and then to use the 
procedure twice: in one case, taking the direction of t^ 
as the initial estimate, and the other, the direction of 
-t2 . Then the final estimate of (y,5 ) which gives the
larger value of (u^+v^+w^) should be taken as (y>8 ) ,A A

Let I = {E(-92L/9^^9^j)} be the information matrix, 
where (ip̂  ,...,%pg ) — (Y>8,oc)3toi) and L is the log— 
likelihood for a sample size of 1 . Then straightforward 
calculation gives

0 0

A 0 0

I = 0 0 (3.2.7)
0 0 0 K B( K ) 0

0 0 0 0

is 3x3 matrix, with elementwhere A

a (3,3) = E(-9^L/86^) = KB(<)sin a . As functions of x , 
9L/9y and 9L/98 are bounded, and continuous except at
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X = ± y 3 > and 9 L /9 a » 9 L/ 9  3 and 9L/9k are bounded and 
continuous. However, three of the second partial deriva
tives, namely 9^L/9y^ , 9^L/96^ and 9 ̂ L/9 y 9 ô , are in
finite at X = ± y 3 , when a > 0 . Nevertheless,
E(9^L/9y^) , E(9^L/9ô ^) and E(9^L/9y9ô) all exist.
This can be shown by straightforward, but laborious, cal
culation.

The important point is that there is sufficient regu
larity for the asymptotic normality of the M L E 's to hold 
when I is non-singular, and in this case they have co- 
variance matrix I  ̂ . In fact, I is non-singular as long 
as K > 0 , 0 < a <  7t/ 2  and 0 < y < tt • However, when a = 0 ,
ct and 3 are not asymptotically normal. When I is non-

— 1 Asingular, it follows from the form of I that k and 
'a will be aymptotically independent of each other, and 
the other three estimates 3 , *y and 5 . (Of course, in
this paragraph we have implicitly assumed that the M L E 's 
and I are based on observations generated from a dis
tribution in D) .

There are several hypotheses concerning this bimodal 
family which could be of interest. Four are mentioned 
below, and large sample tests of these hypotheses against 
the more general alternative, D , are suggested.

For any hypothesis K , L^ will denote the maximum of 
the likelihood function when K is assumed. In cases (i)-
(iv) below, the alternative hypothesis, G , is that the
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observations are from a distribution in D with no restric
tions on the parameters (other than that they lie in the 
effective parameter space),

(i) Null hypothesis HI: the modal directions are 
v^ and Vg , where v^ and v^ are prescribed unit 
vectors.

Specifying v^ and v^ is equivalent to specifying 
a, 3,y and 6 ; so , and hence the test statistics
Xj = - 2 l o g j  should be easy to obtain. Under HI ,
X 2 is asymptotically x̂ i+ (chi-squared, with four degrees 
of freedom); and HI should be rejected if X % is "large" 
compared with a random variable.

(ii) Null hypothesis H 2 : a = a^ , where ^^(>0) is 
specified.

Asymptotically, a is independent of the other M L E *s 
when G is true. When n is large, n^fa-a^) is approx
imately N(0 , (kB( k) )~^ ) if H2 is true. H2 should be 
rejected if | a-a ̂  | > M/(n kB( k ) )^ , where M satisfies 
P(IN(0,1)1 > M > = £ , and £ is the chosen size of the
test. This test is asymptotically equivalent to the cor
responding likelihood ratio test.

(iii) Null hypothesis H 3 : a = 0 (i.e. the Fisher 
hypothesis).

L„_ is the maximised likelihood under the Fisher H3
hypothesis. To check the degrees of freedom, it is helpful
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to reparameterise by putting = sinacosB and
= sinasing . Then the Fisher hypothesis is equivalent 

to H 3 Î = Lg = 0 , and points in the parameter space
corresponding to Fisher distributions are in the interior. 
H3 should be rejected if X3 = -21og[L^^/L^] is "large"
compared with a x^2 random variable.

In fact, a simpler test statistic is available, 
whose calculation does not involve numerical maximization.
In the notation of (3.2.5), we define

L ^ * ( y , ô ) = s in a* ( Y , 8 ) cos 6* (y » 8 ) and

L2*(y,8) = sina * (y ,<5 ) sin 3* ( Y , 8 ) .

Then, when the Fisher hypothesis is true (but not otherwise):

X»^ = n K * ( Y R , 8 ^ ) B ( K * ( Y R , 8 ^ ) ) [ ( L ^ * ( Y % , 8 ^ ) ) 2 + ( L 2 * ( T R , 8 ^ ) ) ^ ] ^ X 3 ,

in probability, where B(.) is defined in 3.2(viii), and
(Yr *8ĵ ) is the direction of the sample resultant. Results
of this nature can be found in Cox and Hinkley (l9?4, pp.
3 2 3-3 2 4 ).

The hypothesis H3 is likely to be of interest mainly 
when the true value of a is small; and when . a is small 
the power of the test based on ^ * 3 should not be substan
tially less than the power of the full likelihood ratio 
test.

( iv ) Null hypothesis H4 : a ^ $a $7 r/ 2 (or 0 < a $ a ̂  ) 
where a^> 0 is specified.
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The recommended test for H4 is similar to that for 
H2 , except that a one-sided, rather than two-sided, test 
should be used.

3*4 Further Points

i) It was noted earlier that the distribution in the D 
family have equal mode strengths. In fact, each of these 
distributions has reflective symmetry about two perpendic
ular planes. Frequently, however, there will be no a 
priori reason for supposing that the underlying distribu
tion (assumed bimodal) from which a given set of data is 
generated possesses such symmetry. So, given a set of 
data, assumed to be of a bimodal nature, we may ask: to 
what extent are these symmetry assumptions justified?

We shall not attempt a full discussion of this problem, 
though we do propose two simple non-parametrie tests which 
should give useful indications.

Suppose x^,...,x^ are independent identically dis
tributed unit vectors from some bimodal distribution G , 
with density g , the theoretical modal directions of G 
being v^ and v^ , say. Define
S^ = { x:xeS^ and x'v^% x'v^} and
2 1 2  S = {x:xeS^ and x'v^^ x'v^} . The S and S are

complementary closed unit hemispheres. We define marginal
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densities on (j = l,2 ) by h.(u) = g(x)dx (j-1 ,2 ),

w h e re  a ( j , u ) = { x :xeS'^ , x  * = u } , w i t h  c o r r e s p o n d i n g  d i s 

t r i b u t i o n  and •

We now consider the null hypothesis:

K: P(x eS^) = P(x e S^) and = Hg . (3.4.1)

(The dependence of (3.4.1) on and has been sup
pressed.) Any bimodal distribution with modal directions 

and Vg , and the double reflective symmetry mentioned 
above, will satisfy this null hypothesis. In particular, 
it will be satisfied by any distribution from D with 
modal directions v̂  ̂ and v^ . However, it seems that it 
is possible to construct bimodal distributions with modal 
directions v^ and v^ which satisfy the null hypothesis 
but do not have this double reflective symmetry; but, 
since only quick diagnostic tests are being proposed, we
shall not pursue this point further.

n I
Put r = z u(x.) , where u(x) = 0 if x a S

1 if X e Sj=l J . - 2

Then, under the null hypotheses, r ~ Bi (y,n) i.e. r is 
binomially distributed with parameters y and n . Under 
any alternative, r ~ Bi(p,n) for some p e j[p, l] . Using 
suitable estimates of v^ and v^ , such as their maximum 
likelihood estimates under D , we can test the hypothesis 
that p = i (i.e. that P(xeS^) = P(xeS^)) using r , in 
standard fashion. If this hypothesis is firmly rejected.
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then we should infer that the double symmetry assumption 
is inappropriate.

The second test is a Wilcoxon two sample test, con
ditional on the value of r , of whether .
Suppose, without loss of generality, that

i  2x.,...,x c S and x _^_,...,x_E S . Define 1 n—r n—r+1 n
s. = x.*v_ (j=l,...n-r) and t. = (j=n-r+l,...n) •J J j j
Then the s's are i.i.d. from and the t's are
i.i.d, from . A version of the Wilcoxon statistic for
two samples (conditional on the value of r) is given by 

r n-r
w = E E sgn(s.-t.) , where

1=1  j=l ^ J

sgn(a) = 1 (-l) if a > 0 (a < O) . Under the null 
hypothesis, w is asymptotically Normal, with mean 0 and 
variance r (n-r)(n + 1 )/3• So, again using suitable estimates 
for v^ and v^ , the null hypothesis, and therefore the 
double symmetry assumption, should be rejected if 
|wI. {3/(r(n-r)(n+1 ))}^ > $(l-a/2 ) where $ is the standard 
normal distribution function and a is the chosen size of 
the test.

ii) Consider the density on given by

f(e,^,m) = c ( K ) exp{ Kcosacose+Ksina sin0 cos (m<|)-3 )} .

When m = 2 , we obtain a member of D . For general m , 
where m is a positive integer, this will be the density 
of the m-modal distribution in which the modes are equally 
spaced on the small circle 0 = a . It is straightforward
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to obtain the general form of these distributions, with 
the functions v and w of 3*3 suitably re-defined. Of 
course, as m increases, v and w become correspondingly 
more complicated, and the model more specialised. Never
theless, the results given in 3 * 3 for the case ra = 2 

hold for any integer greater than 2 ,

iii) In principle, the Dimroth-¥atson distributions can be 
extended in the same way that the Fisher distributions 
have been here. However, neither the maximum likelihood 
estimation of the parameters, nor the information matrix, 
simplify as in the Fisher case.

iv) Bimodal distributions on , n > 3 , can be con
structed by ’doubling the longitude' of von Mises-Fisher 
distributions in analogous fashion.

Any point x e can be expressed in polar coordinates
as follows:

X ' = (sin8i...sin8^_2C0s^,sin8i...sin8^_2sin^ ,

sin8i...sin8^_2Cos 8̂ _2 ;...,sin8iCOs82 ,cos6i )

where 0 i, . . . , 0^_2 £ [[o, tt] and (j) £ [o,2tt ) . von Mises-
Fisher densities, expressed in polar coordinates are of 
the form

c^ ( K )exp{K X ' y } sin*^ ^©1 , . . . , sin6^_2 (3.4.2)

where x is as above and y is an n-dimensiona1 unit 
vector.
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If we ’double the longitude', i.e. replace  ̂ by 24) 
in (3 .4 .2 ), then the normalising constant remains unchanged 
and, analogously to the 3-dimensional case, 
have the same marginal distribution as 2 from
the corresponding von Mises-Fisher distribution.

After an arbitrary rotation of axes, and expressed in 
Cartesian coordinates, these distributions are of the form

f ( x )  = c ^ ( k )e x p { K C o s a ( x ' v ^ ) +  ,,.

... +Ksina[(x'v^)^-(x'v2)^]/[(x'v^)^ + (x'v2)^3

where v^ , v^ and v^ are any 3 orthogonal unit vectors. 
There are (3n-4) parameters. The modal directions are 
COSO V ± sina v^ .

3.5 The Fisher-Dimroth-Vatson family as a Bimodal Model

In 2,4, it was shown that a Fisher-Dimroth-Vatson 
distribution is bimodal if and only if 2p > K , E ( a )  ,

where k  , p and a are defined in (2,3*l) and the curve
Z(.) is obtained from (2,4.16), In the special cases 
a = 0 , a =  7T/4 and a =  t t / 2  , this condition reduces to
2 p  > K , p > K and 2 p  > k  respectively.

With choice of axes as in (2,3.2) we have shown that 
the modes, expressed in polar coordinates, occur at 
(0 1 ,0 ) , where 0  ̂01  ̂a and (0^,0) where 7t/2<0i^$7t
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(we include here the possibilities that k = 0 and a = O) •

. Intuition should suggest that the value of the density 
(2 .3 .2 ) at the mode (©i ,0) is greater than (or equal to) 
that at the mode (6 4 ,0 ) , and in fact it is easy to show
that this is the case.

Proposition (3.5.1) If 2 p > K.z(a) , then
(i) H [ 8 i,o|K,po]% H[e4 ,o|K,p,a] where H is defined in
(2 .3 .6 ) and (ii) 0y $ w- ©i.

Proof
(i) H [0, o] “H[7t - 0 , 0] = K ( cos ( 0-a )-cos (0 +a ) ) = 2KCOS0cosa 
which is non-negative for 0 e [0 ,11/ 2] .
So, since (w-0^)E [o,ir/2] we have:

B[ 0i,o] = sup H] 0 ,o] % H [ n - 04,o]% H^ 0it,o] .
0e [o ,7t/2]

(ii) It follows from results in 2.3 that:

| ^ [ 0  ,6]% 0 when O 3 0  2 01

[[0,0]^ 0 wh en 0 i $ 0 $ir/ 2  

|-“ ]tt-0 ,0] ̂  0 when 0 $ G $ (n-0 4) 

and ^  [iT - 0 ,0]^ 0 when (iT-0y ) $ 0  ^it/ 2  .

But from ( i ) , ^,o] - |-“ ( it-0,q] = -2Ksin0cosa$O for

0 e [[9 ,71/2] . As a consequence 0 $  n - 0 % . Equality occurs
only when either k = Q , a = Q or a = it/ 2  .
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We now mention some statistics and hypothesis tests 
of interest. Suppose we are in the situation of 2 .6 : that 
the M L E 's under FDW^,k ,p ,a ,y » 8 ,B , have been obtained, and 
that the true parameter values are K,p,a,B,y and 8 .
It would clearly be desirable to have a statistic which 
distinguishes between unimodality and bimodality. In view 
of the results given in 2.4, a suitable statistic, based 
on the M LE’s of the shape parameters would be

T = T ( K,p,a) = (K.E(a)/2p)“^ . (3 .5 .2 )

For bimodal distributions, '^(K,p,a)> 1 , for unimodal 
distributions —1 ^x(K,p,a)^ 1 , and for closed curve dis
tributions x ( K , p , a ) < - l  . Then, the hypotheses of interest 
would be :

: T > 1 H g  : - 1 <  1 : x < - l  .

TT X > 1 , we may wish to assess the extent to which 
this value is compatible with the underlying distribution 
being unimodal. To do this, we could test (null
hypothesis) against ; similarly, when - I 3 x 3 1 we
could test the null hypothesis (or H^) against ,
using the asymptotic normality of f , Asymptotically, 
v̂ n( t -  x( K , p , a  ) ) is N(0,V) , where

V = L'l'^L and L» = 9x 9x 9x
9k 9p 9a

and I = l ( K , p , a )  the information matrix for a sample of 
size 1 , are both evaluated at the true parameter values.
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H

In practice it will be necessary to estimate V , for
Aexample with its MLE , V .

Formally, the tests are as follows, though probably 
the real feature of interest will be the significance 
levels. For versus : reject if /n(x-l)> CV
where C satisfies p(n(0 ,V)< C) = , ot̂  being the
chosen size of the test. And for versus : reject

if /n(f-l)< CV^ , where here P(n (0,V)< C) = ot̂  ,
The corresponding details for the closed curve hypothesis 
are similar.

A test of the double symmetry assumptiom, discussed 
in 3.4, is readily available in the FDV^ bimodal model.
In view of proposition (3.5*1), the double symmetry assump
tion is satisfied if and only if Kcosa = 0 . For this, 
we can use a standard likelihood ratio test; the resulting 
likelihood ratio statistic is under the hypothesis
that KCosa = 0 . So we should reject the double symmetry
assumption if this statistic is too large.

An estimate of the angular distance between the modal 
directions, based on the M L E *s is given by

2[tan-’-(t,,(î,p,«))-tan-^(t^(î,';,'5))] ' (3-5.3)

where t^ and t̂  ̂ are, respectively, the smallest and 
largest positive roots of the quartic equation P(t|a,a) 
(see 2 .3 .1 0 ). To test hypotheses concerning the angle 
between the modal directions, such as the second and fourth
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hypotheses mentioned in 3*3 for the D family, or to 
obtain an approximate confidence interval for this angle, 
one can use the asymptotic normality of the statistic 
(3 *3 .3 ). It has asymptotic mean

2[tan“ ^(t^(ic , p,a ) )-tan  ̂( t ̂  ̂( k, P, a ) )]

and variance given by

4L»I~^L/n

where 

L> = - d + t / ) - ’-
rati 9t^ 9t^'

, > » »
9k 9p 9a 9k 9p 9a

As in similar cases above, I = 1(K,p ,a ) and L should in 
theory be evaluated at the true parameter values; but in 
practice, they will need to be estimated. The terms
at.
— - (etc) can be estimated by implicitly differentiating 
P(t|a,a) , rearranging, and then substituting 
t = t^^K,p,a) , a = a and a = 2 p / k  (etc).

We conclude this section by noting that to test 
whether two prescribed unit vectors are the modal directions 
(the first hypothesis given in 3*3) is a rather awkward 
problem in the (full) PDW^ model. This is because the 
modal directions depend on all 6 parameters, in a fairly 
complicated way. In the context of the parameter space, 
any such hypothesis corresponds to a (complicated) 4- 
dimensional hypersurface, embedded in a 6-dimensional 
rectangle. However, the details are somewhat simpler when
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double symmetry is assumed (i.e. under the constraint
Kcosa = O) .

3.6 A Pa laeotnagne tic Example

Table 3 , 1  gives a set of estimates of a previous mag- 
netic pole position (Table 2 in Schmidt, 1 9 7 6) obtained 
using palaeomagnetic techniques. Each estimate is associ
ated with a different site, the 33 sites being spread over 
a large area of Tasmania. A plot of the data is given in 
Figure 3 .1 .

Schmidt shows that a Fisher model is not appropriate 
(using the test described by Watson and Irving, 1 9 5 7 ) and 
says that "the data [i.e. pole estimates] appear to fall 
into two main groups which are derived from two distinct 
geographical regions". But since it is not known a priori 
how these two regions should be defined, it is not clear 
how the data should be separated into two groups. This 
indicates the need for a bimodal model.

An analysis using D was performed. The length and 
direction of the sample resultant were found to be 3 0 . 7 6  

and (37.7 ,155.7°) respectively. The M L E 's were obtained 
numerically, using NAG routine E04JAP, to a satisfactory 
approxima tion:

(y,8) - (3 7 . 7  ,1 5 2 . 5 ), a = 1 0 .7°, 6 = 1 7 8° and k  = 1 9 . 3  ,
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TABLE 3.1

Estimates of a previous magnetic 
pole position of the Earth

0° 4)° 0° 4)°

1. 3 4 . 3 148.3 18. 42.2 1 5 9 . 6

2. 42.8 1 7 6 . 5 1 9 . 37.4 164.8
3. 2 6 . 2 1 6 2 . 2 20. 2 7 . 0 1 6 8 . 6

4. 40.9 1 9 6 . 5 21. 48.5 1 9 3 . 6

5 . 38.0 1 4 7 . 3 22. 38.1 164.4
6 . 3 3 . 3 1 7 8 . 5 2 3 . 5 0 . 7 1 3 8 . 5

7. 59.8 183.9 24. 41.1 1 0 7 . 8

8. 5 6 . 5 184.1 2 5 . 40.7 1 7 3 . 3

9. 6 7 . 7 1 0 9 . 4 2 6 . 4 5 . 9 1 7 0 . 8

10. 4 7 . 1 1 3 3 . 4 2 7 . 3 6 . 7 1 7 4 . 4

11. 42.7 1 2 5 . 9 28. 38.9 1 7 4 . 6

12. 3 4 . 4 124.4 2 9 . 44.6 144.7
1 3 . 3 7 . 5 148.5 3 0 . 4 9 . 5 1 2 5 . 6

14. 4 4 . 3 75.2 3 1 . 4 9 . 2 . 1 7 3 . 5

1 5 . 40.5 142.0 3 2 . 3 6 . 7 1 6 5 . 7

1 6 . 3 0 . 5 9 4 . 9 3 3 . 48.1 187.8
1 7 . 21.3 2 0 9 . 2

(9 0- 0 ) is the latitude (S°) and <j) is the longitude (E°)
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X 3 , the statistic for testing : Fisher versus G :
the bimodal alternative D , was calculated as 17.8. Under 

, X 3 has distribution for large n • Hence the
conclusion is that the Fisher hypothesis should be rejected 
strongly, since P(x^ > 10,597) = 0 , 0 0 5  * X 'g , the altern
ative test statistic given, was found to be 19.37* So the 
alternative test rejects the Fisher hypothesis even more 
empha tica1ly *

Confidence intervals for a and k can be obtained 
using the large sample normality and independence of a 

and K • For n large, /n(1<-K)~ N(0,1/B*(k)) and, when 
a > 0 , /n(a-a) ~ N (O, l/( kB( k) ) ) . So, estimating k with
1c , an approximately 95^ confidence interval for a is 
[6.1°,15.3°] and for k is [l2.7,25.9].

The estimates for the modal directions based on the 
M L E ’s are (39°,135*7°) and (39*5°,170°). The non-parametrie 
tests, described in 3,4(i), were performed using these 
estimates for the modal directions, to assess the appropri
ateness of the double symmetry assumption. It was found 
that r = 14 and w ./3/(19x14x34) = 0.0364. Under the
hypothesis of double symmetry, these statistics have dis
tributions Bi(^,33) and N(O.l) respectively. So the 
values of r and w are quite compatible with the double
symmetry assumption.

These estimates of the modal directions are in fairly
reasonable agreement with results obtained from a more
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recent investigation by Schmidt and McDougall (l977) (they 
give (42.3°,1 2 3 .5°) and (39.3°,174.5°)), except that in 
the later investigation the angle between the modal direc
tions is somewhat larger. X/ , the test statistic for 
Hf : v^ = (42.3°,1 2 3 .5° ) and v^ = (39.3°,174.5°) versus 
G : D , unrestricted, was calculated as 8.8. Hence the 
null hypothesis, H^ , is (just) accepted at the 5 per cent 
level, and the two investigations appear to corroborate 
each other at least to some extent.

An analysis was also performed using the Fisher—Bingham 
family. Maximum likelihood estimates were obtained under 
the FDW^ and FDW^ hypotheses. However, in both cases 
the distributions fit were unimodal (for FDW^ , t = 0.97 
and for FDW^ , t = 0.99 ; see (3.5.2) for the definition 
of t ) though they were close to the 'borderline* between 
unimodal and bimodal distributions. We should bear in 
mind that, since FDW^ and FDW^ contain unimodal dis
tributions which do not have rotational symmetry, there 
will be a tendency for 'best-fit' distributions to be uni
modal when the angle between the modes is small. So the 
values of x are not that surprising, since the angle 
between the modes, as estimated using D , is in fact quite 
small.

We conclude by suggesting that analyses using the D 
family are preferable (and far simpler) in cases in which 
there is a priori, or graphical, support for an assumption 
of bimodality, except when there is a considerable
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difference in the mode magnitudes, in which case FDV^ 
should be used.
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CHAPTER k

THE SIMULATION OF DISTRIBUTIONS 
IN THE FISHER-BINGHAM FAMILY

4.1 Introduction

We return now to the Fisher-Bingham family, described 
in Chapter 2, and discuss how one might draw psuedo random 
samples from these distributions. As, in the most general 
case, there are five shape parameters involved, and there 
is no obvious way to proceed, it appears that compromises 
of one sort or another have to be made. Two distinct 
approaches, vaguely specified, are as follows: one might
look for a computationally quick-and-simpie acceptance- 
rejection procedure, likely to be substantially more 
efficient than those based on the crudest envelopes, but 
which perhaps, in the more extreme cases, would have small 
acceptance ratio. Alternatively, one might look for a 
globally efficient procedure, in which a substantial amount 
of prior computation may be required.

As long as the acceptance ratio is not too small, the 
first approach will be preferable if a s m a l l — to—moderate 
simulation study is to be performed, and the second will 
be preferable in sufficiently large simulation studies.

Mos t of our attention is focussed on the first approach.
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A relatively simple two-stage simulation procedure is pre
sented. The first stage involves simulating from the mar
ginal distribution of the colalitude, 6 , in an appropriately
chosen coordinate system, and the second stage involves 
simulating from the conditional distribution of ({) (the 
longitude) given 6 . Envelopes for the marginal densities
of u = cos6 , and (p given u (which, in the most general 
case, has a circular Fisher-Bingham distribution), are pre
sented in section 4.2. The envelopes for the marginal den
sity of u are based on the marginal Fisher distribution, 
which has density

f*(u|<*,a*) = [^K*/(2sinh K*)] I^( K*sina*v)exp{ K*cosa*u}

(4.1.1)

where I is the modified Bessel function of degree zero, o 2 TK* and a* are the parameters, v = (l-u ) , and the
-1differential is du . If we were to put 0 = cos u , 

then (4.1.1) would be the marginal density of the colatitude 
of a unit vector from a Fisher distribution with concen
tration parameter k * , and mean direction with colatitude 
a* • The envelopes for the circular Fisher-Bingham dis
tribution are based on the von Mises distribution.

As the technical details will not be spelt out in 
later sections, we mention here that it is easy to generate 
a variable u with marginal Fisher distribution (4,1.1): 
it simply involves generating a Fisher unit vector, with 
concentration parameter k* , by inversion (Mardia (l972.
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p, 2 3 2 )) and then calculating the scalar product of the 
vector so generated with ( sin a* , 0 , co sot * ) * . The genera
tion of von Mises variables is less straightforward, but 
globally efficient methods are available (Best and Fisher 
(1 9 7 9), Ulrich (1984)).

In section 4.3 the procedure is described and in 
section 4.4 special cases of interest are discussed. 
Indications are given as to what happens to the acceptance 
ratio in limiting cases. As might be expected, the accep
tance ratio is not bounded away from zero.

In section 4.5, it is noted that any Fisher-Bingham 
distribution can be represented as a mixture of Fisher dis
tributions. Implications of this observation are mentioned 
briefly. However, the mixing distribution is fairly com
plicated, so the mixture representation does not appear to 
be of much use from the point of view of simulation. 
Finally, in section 4.6, a summary and a further discussion 
are given.

Note: in an earlier version of this Chapter, and in
Wood (1984), envelopes based on the bimodal distribution 
described in Chapter 3 were suggested. The referee for 
Wood (1 9 8 4 ) made some helpful general suggestions which 
have led to a substantial change in the method proposed.
I am responsible for all the technicalities in the new 
version, such as the formulation and proof of the Lemmas 
in section 4.2. Nevertheless, I am pleased to acknowledge
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his contribution.

4.2 Some Envelopes

In this section we shall obtain envelopes for an 
appropriate marginal density of a general Fisher-Bingham 
distribution. Envelopes will also be given for the 2- 
dimensional analogue of* the Fisher-Bingham distribution. 
As a preliminary, we shall introduce several inequalities 
which are needed in the derivations of the envelopes. It 
is likely that these inequalities are well-known, but we 
have been unable to find suitable references, so their 
validity will also be proved.

Lemma ( 4. 2 .1 ) If p 0 , then

(e^" + e ^")/(l + e e^" for u e £ - l , l ] .

Proof Because of the symmetry, we need only consider 
u e []o, l] . If p = 0 , there is nothing to prove, so 
assume p is positive and fixed. Consider the function 
g(u) = log(e^^ + e"^^) - pu^ and its derivatives 
g'(u) = psinh(pu)/cosh(pu) - 2pu and 
g*’(u) = p /cosh (pu)- 2p , Two cases can arise.

(i) P S 2 .
Here, g"(u)< 0 for U£(0,lj . So g'(u) is strictly 
decreasing for u e(0,l[] and therefore has only one zero
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in £ 0 ,1]] , at u = 0 ; this zero corresponds to a stationary
maximum of g • Therefore g(u) takes its minimum value 
on [0 ,1 J at u = 1 ,

(ii) P > 2 .
It can be checked that there is a ip e (0,l) such that 
g ”( u )>0 when ue(0,i|j) and g"(u)< 0 when ue(i|^,l]] .
Therefore g can not have a minimum on (0,l) since 
g ’(u) is strictly positive on • It happens that
g has a stationary minimum at u = 0 ; but it is easy to 
see that g(l)$ g(o) .

So in both (i) and (ii) the minimum occurs at u = 1 , 
and the result follows. 000

Lemma (4.2.2) If p ̂  0 , then

2 |(l+e"^P)l^(p/2 )|"^0p/^I^(pv) Ï for v e [-l.l] .

Proof Let u = vcos^ in (4.2.1). Then after putting 
coŝ cf) = ( 1+COS2 (j))/2 on the RHS of (4.2.1), and integrating
both sides with respect to (p over [0 ,11] , it is seen
tha t

2
Io(pv)/(l+e"2P)% /2l^(pv2/2)/2 . (4.2.3)

Since the function e ^I^(x) is monotonie decreasing for 
X   ̂0 , it follows that

I^(pv2/2)% , (4.2.4)

and (4.2.3) and (4.2.4) together yield (4.2.2). 000
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Le rum a (4. 2 .3 )

(i) For X ,

(ii) ('p ( p)l

Proof of (i)
the functions

Proof of (ii)

o o

(ii) |lj,( p)|“ ^[lo(2p)] ̂ Iq (p v )> [lg(2pv)] ̂  for veQ-l.l]

Proof of (i) This follows easily from the monotonicity of

since I (o) = 1 ; and because I is an even function, o o
we can restrict attention to ve [jO, 1J . For fixed p> 0 , 
consider the function h(v) = 21og(l^(pv)) - log(l^(2pv)) • 
Since for v E (0,1J , h'(v) = 2[A(pv) - A(2pv/] < 0  , h
takes its minimum value in [̂ 0, l]] at v = 1 . Therefore

I^(2p)[l^(pv)/I^( p)]^ Ï I„(2pv)

and (4 .2 .5 ) part (ii) follows when square roots are taken.
000

Ve shall now obtain some envelopes. Consider the 
Fisher-Bingham distribution for convenience parametrised 
as follows :

f(u,*|x) = [c(x )]~^exp{ X^vcos (j)+X2vsin<l) + X^u

+ X^v^cos2({)+X^u^ } . (4.2.6)

The ranges of u and cp are Q-1,!Q and [0,2ir ) 
respectively; v = (l-u ) ̂ , X = (x^^.«*X^) is the
vector of parameters, and, without loss of generality.
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’ X 2 » and X ̂  are assumed to be non-negative; and
the differential is dud# . Usually one would use the 
colatitude, 0 = cos ^u , instead of u •

Let g(u) be the marginal distribution of u , i.e.
fZ"

g(u) = I f(u,^|x)d* , ue [-1, l] .
•’#=0

Two general envelopes will be obtained for g(u) , one
for when X is positive, and the other for when it is 

A

negative. Putting f^(u,#) = exp{ X ̂ ^vcos# + X2VS in# } and 
fgfu,#) = exp{X^v^cos2# } and using the Cauchy-Schwartz 
inequality, it is seen that

' (4.2.7)

Since is a monotonie increasing function and
V  E [ 0̂,12 , we can replace 1^(2 X^v^) by I^(2X^v) and
still preserve the ii 
Lemma (4.2.5) on j I
still preserve the inequality. So using part (ii) of

^^2v(x2 + x2 ) ^ j ?  and |l^(2X^v)}^ , 

and then using part (i) of Lemma (4.2.5), a more convenient 
bound for the LHS of (4.2.7) is obtained, namely

where B(X^, X^, X^) =

2ir[lo(2(X^+X^)^)lo(2Xi^)J ( (̂  1 + ̂ 2  ̂  ̂H  (4.2.8)

2 2 “Note: if X^ or is zero, take B = 2 ir .

Two cases now arise, X ̂  ̂  0 and X^< 0 .
2(i) X ̂  ̂  0 . After using Lemma (4.2.1) on exp(X^u ) ,
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the following inequality is obtained:

g(u)s {c(x)}"’-B(Xj,X2,Xj^){l+exp(-2x )}“  ̂ x ...

... X I^( [( X^ + X^) ̂ +Xj^]v) [exp{ ( X^+X^)u}+ ...

... + exp {(X^-X^)u }] . (4.2.9)

The RHS of (4.2.9) is proportional to a discrete mixture 
of two marginal Fisher distributions, with the modal 
directions of the two original Fisher distributions lying 
on the same axis.

(ii) X^< 0 • From Lemma (4.2.2), it is seen that

D(X^)lo(-X^v)5 exp(X^u^) (4.2.10)

where D(X^) = 2exp(X^/2)|(l+exp(2 X^))l^(X^/2)|“  ̂ . So, 
in this case, an envelope for g(u) is given by

{c(x) r^B(Xj^,X2 ,Xi,)D(x^) X ...

... X I o ( [ ( X i + X 2 ) ? + X ^ - X ^ ] v } e x p ( X _ u )  (4.2.11)

which is of marginal Fisher form.

We shall discuss the use of envelopes (4.2.9) and 
(4 .2 .1 1 ) in the general case in section 4.3, and specialise 
to Fisher-Bingham subfamilies of interest in section 4.4.

To complete the simulation procedure, it will be 
necessary to have a method for generating # , conditional 
on the value of a previously generated u . The conditional
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distribution of # can be obtained from (4.2,6). Four 

cases a r i s e .

(a ) (X^ + X^)^ = X^ = 0 .
In this case, # is uniform on ̂0,2-n) .

( b )  ( X ^ + X g ) ?  /  0 , X^ = 0 .

Here, # given u is von Mises.

(c) (Xi+x2)i = 0 , / 0 .
In this case, 2# given u is von Mises.

(d) (x^+Xg)^ / 0 , X^ ^ 0 .
In this case, # given u has a 2-dimensional Fisher-Bingham 
distribution.

Case (a) poses no problem; cases (b) and (c) can be 
dealt with using the procedure described in Best and Fisher 
(1 9 7 9 )» in which a wrapped Cauchy envelope is used. An 
alternative would be to use the procedure described in 
Ulrich (1984).

As case (d), the simulation of the 2-dimensional 
Fisher-Bingham distribution, appears not to have been dis
cussed in the literature, we shall suggest a procedure here. 
The acceptance ratio for the procedure will not be globally 
bounded away from zero. However, it should be reasonably 
efficient for all but the very highly concentrated dis
tributions in the family.

Consider the general 2-dimensional Fisher-Bingham
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density

h ( # | a , 3 ^ , 3 2 )  = » ̂ 2^} ^ e x p j  3 ^ c os  # + 3 2 C o s £ 2 ( # - o t ) 3  I
(4.2.12)

where # e[]o,2iT) , 3^, 6 2% ̂  , and a e [̂ 0,ir/2j . Three
envelopes will be presented.

(i) (for a ̂ tt/ 2 )

h(#)3 jd(a,6^, 32)j"^exp{ ̂ 2) ®^P {g^cos#} (4.2.13 )

(ii) (for a < tt/ 2 )

With an application of Lemma (4*2.1) it can be seen that

h (# ) ̂ |d (a , 3 ̂  2sin2a + ( 6 2^o®2 ô ) / 2  I X •••

... X I l + exp(-3^cos2a^^  ̂expj(3^ + (g2Cos2 a)/2 )cos#j + ... 

... + exp|( 3^-(g2Cos2 a)/2 )cos#I (4.2.14)

(iii) Transform to # = # - a . Then, using Lemma (4.2.1)
again, it can be seen that

h(#+a)3 |d(a , 3̂  , 3^ )| "*^exp| 32/2II l+exp(-32)|  ̂x •••

... X exp|(3^cosa+32/ 2 )cos#-3^sinasin#| + ...

... + expj(3^cosa-e^/2 )cos#-3^sinasin^j . (4.2.15)

Envelope (i) is proportional to a von Mises density, 
and envelopes (ii) and (iii) are each proportional to mix
tures of two von Mises densities. We recommend (iii) as 
an all-purpose envelope, and, in particular, it should
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usually perform better on average than envelopes (i) and
(ii) when the parameters a , 3^ and 3^ in (4*2.12) are
different for each # generated. However, there do exist 
particular cases in which (i) and (ii) have larger accept
ance ratio than (iii).

4.3 The Simulation Procedure

We begin this section with a general point. Suppose 
that we transform in (4.2.6) to cartesian cooordinate,

X = vcos# , y = vsin# and z = u .

Then it is seen that the eigenvectors of the ’Bingham' 
matrix (that is, the eigenvalues of the matrix A in (2.1.1)) 
are parallel to the coordinate axes. Since in (4*2.6)
is assumed non-negative, there are three (as opposed to six) 
ways of reducing a general Fisher-Bingham density to the 
form (4*2.6) by orthogonal transformation, each one corres
ponding to the alignment of a 'Bingham' eigenvector with 
the Z-axis . In each case, the X-axis lies parallel to the 
remaining 'Bingham' eigenvector with larger eigenvalue, so 
that X , % 0 is satisfied. The positive directions on the 
coordinate axes are also determined since X ̂  ̂  0 , X^^ 0 
and X^ 3 0 .

In general, these three permutations of the coordinate 
axes lead to different envelopes and different acceptance
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ratios. Therefore, one should check which of the three has 
largest acceptance ratio, and then choose the corresponding 
envelope. In what follows, we shall assume implicitly that 
this has been done.

The simulation procedure will now be described. The 
general case will be dealt with first, and then in section
4.4 the procedure will be discussed further in four special 
cases of interest: those in which the distribution to be 
simulated lies in either PB^ , FB^ , FDV^ or the Bingham 
subfamily. Throughout, it will be assumed that the Fisher- 
Bingham density to be simulated is of the form (4.2.6) with 
parameters ,...A^ ; and that g(u) is the marginal den
sity of u .

(i) The General Case (X^> 0 )

From (4 .2 .9 ), it is seen that the envelope for g(u) 
is proportional to a mixture of two marginal Fisher distribu
tions. This envelope is given by

(a ) f (u| )+(l-p )f ("IcgiOgH (4 .3 .1 )

where f is the marginal Fisher density given in (4.1.1),
p is the mixing proportion and a* is the acceptance

* * * * *  * ratio. The envelope parameters k ^, a ̂ , k ^» OgfP and a
are given by:

={ (4.3.2)

*  . —  1 a ̂  = tan
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*
2 = ( 4 . 3 . 4 )

«3 —1

a 2 = t a n ” ^ I  ( X^  + X 2 ) ^ + X ^ j / | x ^ - X ^  I  ( 4 . 3 . 5 )

* _ * *-i / r *  * *  *-| f t t' \p = ̂ K^sinhK^J/LK^sinh <2+K^sinh J ( . 4 . 3 . o)

a* = p K^c(x)[]l+exp(-2x^)3/[2B( X^, X2 »X^)sinh K^] ( 4 . 3 . 7 )

In (4 .3 .7 ), c(x) is the normalising constant in
(4.2.6) and the function B(X^,X^,X^) is defined in (4.2.8)

The simulation procedure is as follows:

Procedure (i)

* * * *  *Step 0. Calculate k ^,a ^ >P and a using (4.3.2)-
(4 .3 .7 ).

Step 1. Generate a uniform variable s e [o,l] . If s $ p
*  * * *  ̂ * put K = , a = a^ ; if s > p , put

*  *  *  *K = <2 , a = Ü2 .

Step 2. Generate a variable u e [-l,l] from a marginal
* *Fisher distribution with parameters k and a 

(calculated in Step l).

Step 3 . Generate a uniform variable te [o,l] and check
whether

* / X /F * */ . * *x / *\ */ I * *na g(u)/ p f (u|K^,a^)+(l-p )f (ujcg.ag^ Ï *

( 4 . 3 . 8 )
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is satisfied. If it is, accept u ; otherwise, 
return to Step 1. (Note: the calculation of g 

and f will be discussed at the end of the 
section . )

(ii) The General Case (X ̂  ̂  0 )

From (4.2.11), it is seen that the envelope for g(u) 
is proportional to a marginal Fisher distribution. This 
envelope is given by

(4.3.9)

where, as before, f is the marginal Fisher density and
* * a is the acceptance ratio. The envelope parameters k ,
* * a and a are given by :

K* = X2j 2 (x^-x^)(x^ + X2)^-x^x^+ Xjjz (4 .3 .1 0 )

a = tan ( X^ + x|) ̂ + X^-X J / X^| (4 .3 . H )

a* = k *c (x )/[2B(x ^,X^jX ̂ )D(x^)sinhK*] (4.3.12)

where again c ( x )  is the normalising constant in (4.2.6), 
and B and D are the functions defined (4.2.8) and 
(4.2.10) respectively. In this case, the simulation pro
cedure is :

Procedure (ii)

Step 0. Calculate k* , a* and a* using (4.3.10)-(4.3.12)
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Step 1. Generate a variable u E 1,l] from a marginal
* *Fisher distribution with parameters k and a 

(calculated in Step 0).

Step 2, Generate a uniform variable s z [o, l[] and check 
whether

a g(u)/f (u|K ,a )% s (4 .3 .1 3 )

is satisfied. If it is, accept u ; otherwise 
return to Step 1.

We now specify how to generate the longitude, # , for 
a given value of u . The von Mises density will be denoted 
by

*m (#|a*,Y*) = |2'îTl^(cr )| ^expjo cos(#-Y ) j" (4.3.14)

2 2 ?where # e [0 ,277) . When (^1+^2  ̂ " ^ ’ the distribution
of 2# given u is von Mises; and when X = 0 , the dis
tribution of # given u is von Mises. In both cases it

*  *is easy to obtain the appropriate values of a and y 
in terms of ^^*^2*^4 the given value of u . For con
venience we shall omit these formulae, and just deal with

2 2 ~the case in which both (X^^^^)^ and X are non —zero.
When this is the case, we recommend that envelope (4.2.15) 
be used unless there is concrete evidence to suggest that 
envelope (4.2.1 3 ) or (4.2.14) will perform better.

For fixed u , define



—  81 —

2 -3- * * ^ 2V  = (l-u )2 ; = X ^ V  , X^ = XgV , x^ = X,.v ;4
(4.3.15)

Then the conditional density of # given u is, in the
/I \ / .N * I * * * \notation of (4.2.12), h(#+5 | -6 ,n ,X^J . The envelope

(based on (4 .2 .1 5 )) for this density is:

( r b - '
* *  , *  * * * , * * 

q m (# I a^,Y j^)+(l-q )m (^1«^2’^2^ (4.3.16)

where m is the von Mises density given in (4.3*14), r
*is the acceptance ratio for given u and q is the mixing

* * * * proportion. The envelope parameters a^, y ̂  * ^2 ’ ^2* ^ and
*r are given by:

o^ = (n )̂  + (x^)^+n X^cosô (4.3.17)

y ̂  = tan ^([n cos 6 +X^/2]/[-n sin6 ^  } (4.3.18)

o* = (n*)^+(X^)^-n*X^cos6* (4.3.19)

y 2 = tan cos 6 -X^/2]/[-n sinô ]} (4.3.20)

q* = Io(ci)/[lo(ci)+lo(c^^] (4 .3 .2 1 )

r"^ =  q ^ d ( - ô * , n * , X ^ ) e x p ( - X ^ / 2 ) [ l + e x p ( - X ^ ) ]  ( 4 * 3 * 2 2 )

In (4 .3 .1 7 ) - (4 .3 .2 2 ), X^ , n* and 6* are defined in 
(4 .3 .1 5 ); in (4 .3 .2 1 ), I^ is the modified Bessel function 
of degree zero; and in (4 *3 *2 2 ), d is the normalising
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constant in (4.2,12), The procedure for generating a pair 
(u ,#) from the Fisher-Bingham distribution (4.2.6) can now 
be given.

Procedure (iii)

Step 0. Generate u e[-l,l[ using Procedure (i) if > 0 . 
If X ̂  ̂  0 , use Procedure (ii).

*  * * * * * * *  *Step 1. Calculate X^,n , 6 » a , Og » Y2 ♦ ̂  and r using
(4 .3 .1 3 ) and (4.3.17)-(4.3.22).

Step 2. Generate a uniform variable se [o,]Q . If
*  * *  * * * s  ̂q , put a = , y = y^ . If s > q ,

* * *  * put a = 02 , y = Yg .

Step 3 . Generate a von Mises variable # e [o,2n) with
* * ydistribution parameters a and y (calculated 

in Step 2).

Step 4. Generate a uniform variable te [ o ,ij . Check
whether

*  , * ,  *  *  * .  — * * , , *  *r h(# + 6 1-6 ,n ,X^)/[q m (#|a^,y^)

+(l-q*)m*(#Ia*,y2 )n (4.3.23)

is satisfied. If it is, accept # . Otherwise,
return to Step 2.

Then (u,#) will have been generated from the Fisher- 
Bingham distribution (4.2.6).
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Comment; in evaluating the LHS of (4.3.23), there is no
> *  *  *vneed to calculate the normalising constant d(-o ,n 

since it cancels out. This comment also applies to c(X) 
in (4.3.8) and (4.3.13).

We return now to the evaluation of the LHS of (4.3.8).
Note: all that we say below also applies to the LHS of
(4 .3 .1 3 ); but for simplicity we assume X^> 0 . A speedy
method of evaluating the modified Bessel function is

*required, since this is needed in the evaluation of f 
(the marginal Fisher density), and g (the marginal dis
tribution of u) if either (X^ + X^)^ or Xĵ  is zero.

2 2 ~We have used NAG subroutine SI8AEF. If neither (^1/ ^ 2 ^^ 
or X̂  ̂ is zero, the evaluation of g is more problematic, 
because it involves the evaluation of d , the normalising 
constant for the circular Fisher-Bingham distribution. How
ever, there is a short cut available. To see this, observe 
that

g(u) = ( c ( x ) }  ^exp{X^u+X^u — X^v } w ( u ; X^, X^ , X ̂  ̂)

r2n 2 2
where w ( u ; X^, X^ » X̂  ̂) = e x p {  X ̂ vcos # + XgVsin#+2 X̂ v̂ cos #}d#
It is not difficult to check that, when X^, Xg and X̂  ̂

are non-negative, w(u;x^,X2 *X^) is an even function of u 
and a monotonie decreasing function of |u| .

We suggest the following: as a preliminary, calculate
w ( ;X^,X^fX^) at appropriate points

0 = < 3̂̂ . . . < ? N + 1 “  ̂ • It is desirable that
^1 ,...^N be chosen such that
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Prob(|u|% Sj) - j/(N+l)

Then for a given u (generated in Step 1 of Procedure (i)) 
find the integer p such that  ̂< |u| $ , and then
replace w (u ; ) in g(u) by w ( C X X ^ , X ^ ) . If
(4 .3 .8 ) is satisfied, then accept u ; otherwise, replace

w(u;X^, A^jXi^) in g(u) by *(5p_i'^i'%2'^4) * (4*3.8)
is still not satisfied, reject u ; otherwise evaluate 
w(u;X^, X̂ f X|̂ ) using the formula presented in comment (i) 
of section 2,2. This involves the computation of Bessel 
function ratios, and can be done comparatively quickly using 
the method proposed in Amos (l9?4).

In effect, the test of whether (4.3.8) holds has been
decomposed into a quick check and a slow check, such that 
the quick check will be used with high probability, and the 
slow check with low probability. When are
equally spaced on the probability scale, the probability 
that the slow check will be used is N ^ . The larger the 
choice for N , the more initial computation will be re
quired (though note that will only need to be
computed once for given X^, X^ and Xĵ ); but the greater 
the probability that the quick check will be used. For 
many purposes, N = 64 or N = 128 should be a reasonable 
choice for N .
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4.4 The Procedure in Some Special Cases of Interest

The simulation procedure will now be discussed in more 
detail in four special cases of interest: those in which
the Fisher-Bingham distribution to be simulated lies in 
either FB^ , FB^ , FDW^ or the Bingham subfamily. In 
particular, the behaviour of the acceptance ratio in the 
simulation of the marginal distribution of u is indicated. 
The Dimroth-Watson subfamily is the only one in which the 
acceptance ratio is bounded away from zero. In each of the 
other cases, the acceptance ratio will in general converge 
to zero when the shape of the distribution to be simulated 
is held fixed, but the concentration about the mode(s) is 
allowed to tend to infinity. It is not difficult to see 
why this should happen: in general, the mode(s) of the 
envelope will not exactly coincide with those of the dis
tribution to be simulated, and for sufficiently highly con
centrated distributions one pays the price. We know of no 
way around this except at a heavy cost in prior computation 
(see section 4.6),

As above, X^,... refer to the parameters in (4.2.6).
In none of the subfamilies discussed below are both

2 2 —(Xi+X2 )^ and X^ non-zero; therefore we can take 
^(x^xXgrX^) to be 277 .

(a) = Xg = X^)

When X^ < 0 , u has a Normal distribution, with mean
%X /[2(-X )^3 and variance -l/X , which is truncated at
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u = ± 1 . So when X ̂  < 0 , an alternative simulation pro
cedure is to generate u from the Normal distribution with 
mean and variance given above, and accept it if it lies in 
[-1,l] , but reject it otherwise. From (4.3.lO) and (4.3*12), 
it can be seen that the condition for this alternative pro
cedure to have greater acceptance ratio than the procedure 
based on envelope (4.2.11) is:

(X^ + X^) ̂ /{2D( X^)sinh [(X^ + X̂ )"̂ ] } < 1 (4.4.1)

where D is defined in (4.2.10).
Condition (4.4.1) will be satisfied if either X^ or — X_3 D
is sufficiently large.

Let X ^ = p  , X ^ = p t  . Then holding t fixed and 
allowing p to vary is equivalent to keeping the distribu
tion shape fixed, and allowing the concentration to vary.
When t  ̂0 and envelope (4.2,9) is used, it can be checked 
that as p tends to infinity, the acceptance ratio tends 
to (l+t)/(l+2t) , which is always greater than l/2 for
t ^0 . We omit the technical details, which are straight
forward. Therefore, for X^  ̂0 , the acceptance ratio is 
bounded away from zero.

When t< 0 , two procedures are available: the one 
mentioned above, and that based on envelope (4.2.11). If 
the procedure with larger acceptance ratio is chosen, two
cases arise: when -l/2 <t <0 , the acceptance ratio is
not bounded away from zero; but when t < -1/2 , it is.
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The calculation of these positive lower bounds appears 
not to be straightforward. When - l / 2 < t < 0 and p tends 
to infinity, the acceptance ratio converges to zero at the 
same rate as ^[p^((“t)^-(-t)^/2)] , where 0 is the
standard Normal cumulative distribution function.

It should be clear from this discussion that the accep
tance ratio for the Dimroth-Watson subfamily is bounded 
away from zero.

(b) F B ^  ( X ^  = X g = = 0)

In this case, D = 1 . Let = p , X^ = pt . For
fixed t , the acceptance ratio converges to zero as P 
tends to infinity, but the rate at which it does so depends 
on t . When 0 < t < 1/2 , the unimodal case, it is not 
too difficult to show that the rate of convergence to zero 
is given by

[(l+t^)/(l-4t^)]2exp{p[l-(l+t^)2]}

When t  ̂1/2 , the calculation is more complicated.

(c) FDWg (X^ = 0)

As in the other cases the acceptance ratio is not 
bounded away from zero. Because of the lack of symmetry of 
these distributions, it appears to be difficult to calculate 
the rate at which this occurs. However, it is straight
forward to perform these calculations for unimodal FDW^ 
distributions, and the rates are similar in form to those
for FB_ .

3
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(d) The Bingham Subfamily (X^ = = O)

The acceptance ratio is not bounded away from zero 
except in the Dimroth-Watson case (X^ = O) • The rates 
are, again, similar in form to those for PB^ .

In some of these cases it should certainly be worth 
’permuting the axes’, as described at the beginning of 
section 4.3, in order to find a better envelope. One would 
particularly expect this to be so for Bingham and bimodal
PB_ and PDW_ distributions.5 5

4.5 A Mixture Representation for the Fisher-Bingham family

We now briefly describe a mixture representation for 
the Fisher-Bingham family. Only the 3~dimensiona1 case 
will be referred to, but all the results in this section 
have analogues in other dimensions. Although this repres
entation seems not to be of much use from the point of 
view of simulation, because the mixing distribution appears 
to be difficult to simulate, it does have some interesting 
implications.

Consider the Fisher-Bingham density
3

j
ind without loss of generality assume that X^ , X^ and

c'"^exp|K(x * y) + X (x'v ) ^ 1  X E (4.5'i)
I .1 = 1 J J

X^ are positive; and let h(x,y) be the density on
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3X R given by

^exp|ic(x*y)+ I X /^z ( x ’ v )-|-z ’ z | (4,5.2)I j_2 J J j

with X E and z = (z^jZ^fZ^)’ e R^ , and c the same
as in (4 .5 .1). Then it is easy to check that

(a) h(x|z) , the density of* x given z , is a Fisher 
density with parameters k (z ) e R , y(z)e given by

k(z) = {  (<y + I X 2z V )'(icy + I X. = z V )lz (4.5*3)V. j _ 2 y j j j=i y y y
3 1

and y(z) = ( K y + J  X .̂ z . v . )/k (z ) .
j = lJ  ̂ ^

(b) The marginal density of x is precisely (4.5*i), 
a Fisher-Bingham density.

(c) h(z|x) , the density of z given x , is Normal.

(d) The marginal density of z is

[(2/7r)^sinh(K(z) )/(c k (z ))3 exp{ --J-z ' z } (4.5.4)

with k (z ) given in (4.5*3). So, the Fisher-Bingham 
density (4.5*1) is a mixture of Fisher distributions 
with parameters <(z) and y(z) , and the mixing dis
tribution has density (4.5*4).

We now mention two implications of this representation 
of the Fisher-Bingham distribution. Firstly, by entirely 
elementary methods one can easily obtain a neat expression 
for the normalising constant of the Fisher-Bingham distribution.
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Replacing sinh(k (z ))/ k (z ) by its Taylor series
00
I t(z)] ^/(2r + l):

r=0
and integrating term by term with respect to z , it is 
seen that c , the normalising constant, can be expressed 
as a (weighted) sum of the moments of a non-central quad
ratic form in Normal variables. In fact, given a minor 
reparametrisation, this expression is identical to that 
given in De Waal (l979) and discussed in section 2.2 above, 
though he obtains it via some complicated distribution 
theory.

A second implication of the mixture representation is 
that any Fisher-Bingham distribution can be represented as 
a (fairly complicated) mixture of the spherical Brownian 
motion distributions, discussed in Roberts and Ursell (1 9 6 0 ), 
though the mixing is both over 'fixed stopping time' and 
initial position. This follows immediately from results in 
Hartman and Watson (1974), who show that the Fisher dis
tribution is a mixture over 'fixed stopping times' of 
spherical Brownian motions.
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4,6 Summary and Discussion

In this Chapter a method for simulating distributions 
in the Fisher-Bingham family is presented. The required 
envelopes are derived in section 4.2 and details of the 
procedure are given in section 4.3. The proposed method is 
rather more simple and effective for the FB^ , FB^ , FDW^ 
and Bingham subfamilies than it is in the general case. In 
none of these subfamilies is the acceptance ratio bounded 
away from zero, though the method should prove adequate if 
the distribution to be simulated is not too highly concen
trated about its mode(s).

The question arises as to how, if one were prepared to 
perform heavy prior computation, one might arrive at a 
globally efficient procedure. One possibility would be to 
use the integrand in (2.2.3) as an alternative marginal 
distribution. The form of this distribution is too compli
cated for there to be much hope of deriving good envelopes 
by theoretical means. But it would, of course, be possible 
to obtain a good envelope numerically for any given para
meter values, though presumably heavy initial computation 
would be required. However, since the conditional distrib
ution of the longitude is always von Mises in this case, 
the second part of the simulation would be straightforward.
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CHAPTER 5

ROBUST ESTIMATION OF THE CONCENTRATION 
PARAMETER OF A FISHER DISTRIBUTION

5,1 Introduction

It has been noted by several authors, including 
Mardia (1972), Watson (l973) and Collett (1978), that the 
maximum likelihood estimator of concentration, for both 
the von Mises distribution on the circle and the Fisher 
distribution on the sphere, can be dramatically influenced 
by extreme observations. This is especially true when the 
majority of observations are highly concentrated about a 
particular direction, which frequently happens with direct
ional data occurring in practice. In many contexts, the 
concentration parameter may be viewed as a nuisance para
meter; however, even in these situations it would still bo 
desirable to have a robust estimator available, so as to 
avoid making inferences about the mean direction which are 
sensitive to changes in a small proportion of the observa

tions •

A promising class of potentially robust estimators of 
concentration would seem to be the L—statistic estimators 
which were suggested by Fisher (1982) in a brief note.
Here we follow Fisher's suggestion and investigate their 
properties in the spherical case in some detail.
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An outline of the chapter is as follows. A brief sur
vey of estimators of concentration, with reference to 
robustness properties, is given in section 5«2, In sections 
5*3 and 5*^ it is shown that if the underlying distribution 
has oval symmetry, and mild regularity conditions are sat
isfied, then the asymptotic distributions of L-estimators 
of concentration do not depend on whether the mean direction 
is known or estimated. This result is not at all surprising, 
but its proof does require some work.

Results from a simulation study of the small sample 
properties of some L-estimators are presented in section 
5.5* These indicate that the best of the L-estimators may 
be expected to perform rather well for a Fisher distribution 
with at least moderate concentration.

Finally, in section 5*6, the possibility of using 
estimators broadly of this type in other contexts is dis
cussed, in particular as robust estimators of the eigen
values of the covariance matrix of a multivariate Normal 
distribution.

5,2 A Brief Survev of Estimators of Concentration

We now briefly mention some estimators of the concen
tration parameter, k , of a Fisher distribution, with ref
erence to their robustness properties. To assess the
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robustness of estimators we have used their influence 
curves, and in particular the gross error sensitivity, 
which is defined to be the supremum of the absolute value 
of an influence curve (Hampel (l97^))*

(i ) The MLE and related estimators. Schou's estimator
(Schou (1978)).
The maximum likelihood estimator (MLE) is given by 

< = B ^(R/n) where B(.) = coth(.)-l/(.)

and R is the sample resultant length for n observations.
AThe related estimators are of the form p^ , where the

multiplier p ̂  depends only on n and is introduced to 
reduce the bias of the MLE. Mardia (l972), McFadden (1 9 8 0) 
and Best and Fisher (1 9 8 1 ) have suggested

3/2
p^ = (n-l)/n , (n-2)/n and {{n-l)/n}

respectively. These estimators perform well when the Fisher 
model is correct, but their robustness properties leave 
something to be desired. In particular, the gross error 
sensitivity is approximately 2<^ as < increases. This 
supremum is, not surprisingly, attained at the point dia
metrically opposed to the mean direction.

The estimator suggested by Schou (1978) is the maximum 
likelihood estimator. Kg say, based on the marginal dis
tribution of the resultant length, R, and is the solution 
of

B(Kg) = (R/n)B(<gR) ,
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This estimator has reasonably good small sample pro
perties when the Fisher model is correct, and as n-̂ °° it 
becomes indistinguishable from the full MLE; however, it 
suffers from a similar lack of robustness.

(ii) An eigenvalue estimator,

This estimator is defined to be the solution of

X/n = 1 - 2B(k ^)/k^

where X is the largest eigenvalue of the matrix of sums 
and products (see Mardia (1972, 8.4.16))* It is related, 
though not quite analogous, to Collett's (1978) estimator 
for the circular case.

K is certainly robust against extreme outliers, but
2the gross error sensitivity is again proportional to < ,

when K is not too small, the most influential directions 
being those perpendicular to the mean direction.

(iii) Estimators based on the set of resultants of pairs 
of observations

Suppose we are given an independent sample of unit 
vectors x^,...x^ from a Fisher distribution. Then the 
set of resultants of pairs of observations is

R = {r%j : 1  ̂i < j  ̂n} where r^^ = 2cos(0^j/2)

and 8^j = cos'^(x^'Xj) . It so happens that the marginal 
distribution of r^^ is quite simple (Mardia (l972, 8.6.32)) 
though the joint distribution of the pairs (r^j,?^^) is
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rather complicated.

One plausible estimator of this type is based on the 
median, say, of the set R , (This was suggested by 
T. Lewis in a private communication.) We would certainly 
expect this estimator to have good robustness properties. 
It can be shown that with probability 1

^cosh  ̂( [[l+cosh2K^/2) ,

the RHS being the median of the marginal distribution of 
j Î snd is asymptotically Normal (using results in

Serf ling (1984)). However, the asymptotic variance of ipn
depends on the joint distribution of (r^j,r^^) , and 
appears to be a very complicated function of k . This 
seems to be a feature of estimators based on the set R : 
their asymptotic variances are difficult to calculate.

We now discuss the L—estimators suggested by Fisher 
(1 9 8 2 ). It will be helpful to introduce some notation.
Let {F} be the space of distribution functions on ,
the unit sphere in 3 dimensions, and for any F e { F } and 
Y e , define

Fy(t) = probp{x E S : x'y  ̂t} for t e [-1, l] . 

Consider the functionals T : {F} x R of the form

T(F,Y) = I tj(PY(t))dPY(t) (5.2.1)
—  1

for fixed J : [o^l] ^ R . The choice of J will be dis
cussed shortly.
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Suppose we are given a sample of independent
unit vectors from a Fisher distribution F(w,<) . Let F^
be the empirical distribution function for the sample, and 

some estimator of y such as the sample mean or median 
direction. Then an L-estimator of k  is, by definition, 
of the form

K = H"^(T(F^,ÿ^)) where H(<) = T(F(u,K),y). (5.2.2)

Now T(F^,y) is a linear combination of order statistics 
from a sample of independent, identically distributed 
variables. In sections 3 and 4 we show that

n^[T(F^,p^) - T(F^,%)] ^ 0 (5.2.3)

in probability when the underlying distribution is Fisher, 
and mild restrictions are imposed on J • In fact, the 
same result also holds for any suitably well-behaved dis
tribution with oval symmetry about y . It is worth noting 
that if the underlying distribution does not have oval 
symmetry, then in general (5*2.3) is false.

An immediate consequence of (5*2.3) is that the asymp
totic distribution of n^K , where k is defined in (5*2,2), 
does not depend on whether y is known or estimated, so 
that in particular we can calculate the variance and in
fluence curve of k as though y were known.

We shall be considering three types of J-function, 
each parameterised by a e(o,l) .
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Case I (Trimmed estimators)
J^(y) = 0 if 0 ̂  y < a and J^(y) = (l-a)  ̂ if a ̂  y ̂  1 . 

Case II (Quantité estimators)
1 2 (7 ) = 3g(y) , where 5g(y) is the Dirac delta function 
with unit mass at y = a .

Case III (Winsorised estimators)
= (l-a)j^(y) + aJ^(y) .

The corresponding functions and , which
will be monotonie because and are non
negative, the functionals T^ , T^ and T^ , and estimators 
•<1 , Kg and K^ are defined by (5.2,2), Straightforward 
calculation yields the functions and , and
expressions for the asymptotic variances and influence 
curves for k  ̂ , k^ and k  ̂ can be obtained. In the 
situation of most practical significance, that in which 
K , the concentration, is at least moderately large, e.g.
K  ̂3 , it is reasonable to ignore terms of order e ^ ,
and in this case the formulae have simple approximations. 
However, when k < 3 , these approximations are likely to 
be unreliable. If there is some doubt as to their validity 
the function H should be inverted numerically to obtain 
the estimate. This will not be a problem for the three 
types of L-estimator we are considering, because , Hg
and have reasonably simple closed form.

The approximate formulae, for k  not too small, are 
given below. For convenience, we have presented the
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inverse functions , rather than H,(.) , and

expressed the influence curves as functions of probability

values, rather than quantités on [_l,l] . i(.) aenotes
the indicator function.

Case I

^ 1  (y) = {l+aloga/(l_a)}/(i_y)

lim var(n^T^) = (2aloga^l-a^) / ( 1 . 3 )2] 

lim var(n^K^) = (2 al o g a.l-a^)/(i_3 .3 loga)^

IC^(y) = {K/(l-a.aloga)}{l-a+l(yÿa)ioga + l(y>a)logy}

Case II

^2 ( y ) -  “  i o g a / ( l _ y )

lira var(n=T ) = { l - a ) / { K ^ a )n->oo ^

lim var(n^K^) = k ^{ l-a ) / [a ( l o g a  )

/(-aloga ) }{a-l(ySa )}

Case III

'3H o “ ^(y) = (l-a)/(l-y)

lim varfn^T ) = (l-a)A^n-xx)

lim var(n^K ) = K^/(i-a)n->- 00

iC3 (y) = {K/(l-a)}a-I(ysa) . l(yja)loga . l(y>a)logy}

The gross error sensitivity of each of <
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is proportional to k , This is in contrast to esti
mators based on the sample resultant and the eigenvalue 
estimator, mentioned earlier, whose gross error sensitivities 
are proportional to . This indicates that these L-
estimators will be substantially less influenced by obser
vations lying some way from a concentrated cluster of 
points.

The maximum and minimum values of the influence curves, 
scaled by k  , and the asymptotic efficiencies of the three 
estimators relative to the maximum likelihood estimator, 
are given in Table 3»1« Tt can be seen that there is some, 
though not a dramatic, increase in the asymptotic variances, 
compa red with the maximum likelihood esti ma to r , which 
should be acceptable for the more sensible choices of a ,

3.3 Convergence of the Empirical Process

To prove (5.2.3), an approach close to that in 
Randles (1 9 8 2) can be used. Although his results are not 
directly applicable, they can be modified.

The main preliminary task is to choose a suitable 
psuedo metric, d say, on {E} , the space of distribution 
functions on S , which satisfies

i ~

n^d(F^,F) = Op(l) as n (5 .3 .I)
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TABLE 5.1

The maximum and minimum values, GES_^ and GES respect
ively, of the influence curves scaled by k , and the 
asymptotic efficiencies of the estimators end < ̂  ,
for different values of a ,

a = 0 . 1 0.15 0 . 2 0.25 0.3 0 . 3 5

GES /c 1 . 3 4 1.50 1.67 1 . 8 6 2.07 2.30

K, G E S  /k 1 — - 2 . 5 4 -1.85 -1.69 -1.58 -1.49 - 1 . 4 2

A E 0 . 8 5 0 . 7 8 0.72 0.67 0.61 0.56

G E S ^ / c 0 . 4 3 0.53 0.62 0.72 0.83 0 . 9 5

Kg G E S _ / k -3 . 9 1 - 2 . 9 9 -2.49 -2.16 -1.94 - 1 . 7 7

A E 0 . 5 9 0 . 6 4 0.65 0 . 6 4 0.62 0.59

GE S  /K 1 . 1 1 1 . 1 8 1.25 1 , 3 3 1.43 1.54

K« G E S _ / c -2.56 -2.32 - 2 . 0 1 -1.85 -1.72 — 1.62

AE 0.90 0.85 0 . 8 0 0 . 7 5 0.70 0.65
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where F is the underlying distribution and 
-1 "F = n  E Ô  (.) is the empirical distribution function 

" i=l ^i
for a random sample from F • The naturalI n
(psuedo) metric for our problem is based on the spherical
caps, the collection of sets of the form

A(y,t) = { x eS^ : x'Y  ̂t } YES^,t e[jT,l] . (5*3.2)

This metric is defined by

d(F,G) = sup I probp{ A ( Y , t )} - prob^{ A ( Y , t ) } | F , G e { F >
(5.3.3)

or, in the notation of section 5*2,

d(F,G) = sup|F (t) - G (t)| F,G e{F} (5.3*4)
Y,t Y Y

That d is a psuedo metric is obvious. Also, d(F,G) = 0
implies that F = G , since if d(F,G) = 0 , F and G
agree on {A } , the set of spherical caps, and therefore 
(since this is a probability space) on the completed - 
field generated by {A } , which is precisely the usual 
Lebesgue o-field. Hence d is a metric.

Note: in certain simple cases this distance between 
two distributions can be calculated. If F^ and F^ are 
Fisher distributions with common mean direction y and 
concentrations and respectively, then if

K K Ç K -K K K Ç K -K
d(F^,F^) = (e -e )/(e -e )-(e -e )/(® "■® )

where C. = [log{ ( K2sinhK^)/( K^sinh ) }]/( k ) . However
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except in such special cases, these distance calculations 
cannot be handled analytically*

It will be necessary to consider the empirical process 
associated with d • The empirical process, indexed by 
the spherical caps, is defined as

v ^(a ) = n^ [probp (a ) - probp(A)] A e Ca ) (5.3*5)
n

It is easy to see that

e [v ^(a )3 = 0 for a l l A e { A }

and cov(v^{A^) ,v ^{A^)) = probp(A - probpfA^jprobpfAg)

(5.3.6)

Our aim is to check that (5*3.1) holds, which is equivalent 
to

sup |v (a )| = 0 (l) as n (5.3.7)
A e {a } "

This will follow if statements (Dl) and (D2) below are 
valid:

(Dl) The empirical process v ^(a ) converges in distribution 
in the supremum norm to a zero-mean Gaussian process, Gp(A) say 
indexed by the spherical caps, and with covariance function 
given by (5.3*6). In particular, this implies that

sup|v (a ) I sup|Gp(A)| in distribution.
A " A

(D2) The supremum of the limiting process Gp(A) is
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bounded in probability, i.e. sup|G (a )| = Op(l) ,
A

Certain measure-theoretical difficulties arise in the 
checking of (Dl) (see Billingsley (1 9 6 8 , section 18)), 
which are bound up with the non-separability of function 
spaces with the ’uniform’ topology. However, a weak con
vergence theory, described by Dudley (l978), has been 
designed specifically to cope with such problems. We shall 
explain how his results can be applied in this case.

The first point to note is that (Dl) and (D2) ,
plus (0 3 ) which is stated below, are tantamount to 
necessary and sufficient conditions for the set of spherical 
caps, {A} , to be a Donsker class (Dudley (1978, p.902)). 
(NB: the measurability condition referred to by Dudley in 
his definition of Donsker class is clearly satisfied by 
{A} .)

From Corollary 7.18 in Dudley (op. cit.) it follows 
that {A} is, in fact, a universal Donsker class: in 
particular, (Dl) and (D2) are satisfied for any under
lying distribution F . Three things need to be checked.

(i) is a Polish space.

(ii) {A} is a Vapnic-Cervonenkis class in .

(iii) {A} is a ’Suslin measurable collection of closed 
sets for the Effros Borel structure’.

A Polish space is a topological space metrizable by a 
complete separable metric (Dudley (op. cit., p.9 0 9 )). So
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s

clearly is Polish, and (i) is satisfied. That (ii)
is also satisfied follows immediately from the definition
of Vapnic-Cervonenkis class (see Dudley (op. cit., p.9 2 0 )j
the Vapnic-Cervonenkis number, in his notation V({A}) ,
is 5). Condition (ii), in effect, means that {A} is not 
’too large’.

A set in a metric space is, by definition, Suslin if 
It is the range of a continuous function on a Polish space 
(Dudley (op. cit., p.909)). Since we can parameterise the 
pherical caps by ( Y , t ) e S^ x [-l,l] , it follows that

{A} is Suslin, and a ’measurable collection of closed sets’. 
Then Corollary 7.18 follows directly from Propositions 3.2 
and 4.3 and Theorem 7.1 in Dudley (op. cit.).

To summarise: the statements (5.3.7), and therefore
(3 .3 .1), are true for any underlying distribution F on

s -

The third characteristic of a Donsker class may be 
stated as follows:

(D3) The sample paths of the limiting process G^(a )
(have versions which) are uniformly continuous with proba
bility 1. (This is the ’GpUC’ property in Dudley’s term
inology.)

Continuity is with respect to the psuedo metric m_F
on (a } defined by
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m p C ^ i i A ^ )  = p r o b p ( A ^ \ A g )  + probp(A^\^A^) A ^ , A ^ e { a }

or course, it is also possible to define a fixed metric 
m on { A } by

mq(a(Yj,t^),A(Y^,t^)) = nCYi-Yg't^-tgïM (3 .3 .8 )

whei'G II , II i s the Euclidean metric on . When F is
absolutely continuous, the metrics m^ and m^ arc 
equivalent: but if F has atomic points they lead to 
different topologies on {A} . Since we shall only be
considering absolutely continuous distributions F in 
section 5.4, this difference need not concern us.

In the next section, we shall need to make use of the 
fact that v ^(a ) is asymptotically uniformly continuous, 
i.e. given e > 0 there exists a 6 = 5(e) such that

probp sup |v^{Aj^)-\)^(Ag)|5;e: A ̂ ,A ̂ e { A }, (A ̂ ,A^) < 6
I'^2

(5.3.9)
as n . “ . This follows from Theorem 2 in Vichura (1970)»
which implies that for almost all fixed ’outcomes’ w , 
v^(A)(w) (A)(w) uniformly over A e { A }  as n->“ ;
plus property (D3) .

It should be clear from the discussion in. this section 
that the circular arcs in 3p , the hyperspherica1 caps in

, p > 3 , and the closed balls in R are all universalq

Donsker classes, so that in particular (5.3.1) and (5.3.7) 
hold in these cases, with no restriction on the underlying 
distribution F .
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2 he Asymptotic behaviour of L-statistic Estimators of 
Concentra tion

In this section it is shown that, when the underlying 
distribution F has oval symmetry about y , (5 .2 .3 ) is
true if some mild conditions are satisfied by J , F and

, the estimator of y . These sufficient conditions 
may be stated as follows.

(Jl) The function J in (5.2.1) is non-negative, and
piecewise continuously differentiable with at most a finite
number of points of discontinuity, the jumps being bounded 
both in J and J ’ ,

(J2) J is a non-negative linear combination of a finite
number of delta functions,

J(.) =EXj6^^(,) Aj % 0 , e(0,l)

(FI) F has a continuous density f which is bounded 
away from zero.

(F2) F has a continuously differentiable density f .
In other words, the tangent plane to f at every point
^ ̂  ’̂611—defined, and these tangent planes vary con
tinuously as X varies.

(m ) The estimator y^ is n^ - consistent, i.e.

i- -1n cos (y^yy) = 0 (l)
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(f i ) implies that, in the notation of (5*2.1)

(i) F^(t) and f^(t ) = 9F^(t)/3t are jointly continuous
in Y and t , and the latter is bounded away from zero, 
i.e.

inf f (t)> 0 (5*4.1)
Y,t y

(F2) implies that:

(ii) P (t),fy(t) and fy'(t) = 9f^(t)/3t are jointly 
continuous in Y and t , and therefore bounded since 
they are defined on compact sets. (5*4.2)

(iii) If F has oval symmetry about y e then

lim|T(F,Y) - T(F,y)| = o ( cos”’’( Y * P ) ) Y E S (5*4.3)
Y->y

It is in principle a very straightforward matter to prove
(5 .4 .1 ) - (5 .4 .3 ), though the details tend to be a little 
me ssy.

Our strategy is as follows: firstly, we shall show 
that either conditions (Jl) and (Fl) , or (J2) , (FT)
and (F2) , ensure that an expansion of the form

T(P^,Y)-T(P,Y) = S(P,Y ;F^-F)+Rj,(Fj,,F,y ) (5.4.4)

is valid where the functional S , which will be given 
explicitly in each case, is linear in (F^-F) , and plays
the role of a derivative; and in addition,

—  1
sup I R (F ,F,y )I is Op(n"2) .
YES "
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Now consider the identity 

n^[T(F_^,P^) - T(F^,y)]

= n^[T(F,p^)-T(F,y)] + n^[s(F,ÿ^îF^-F)-S(P,y;F^-F)]

+ n3%Rn(F,F^,;^) - R^(F,F^,y)] (5.4.5)

Then, if F has oval symmetry about y , all three 
terms on the RHS of (5.4.5) will converge to zero in prob
ability: the first because of (5*4.3) and (m) ; the third, 
because of the validity of the expansion (5*4.4); and the 
second because (Fl) and (F2) are sufficient to ensure 
that we can apply Theorem 2.8 in Randles (1 9 8 2 ), about 
which further details will be given later. This will be 
sufficient to ensure that (5*2.3) holds.

Theorem (5*4.6) If J satisfies (Jl) and F satisfies 
(Fl) then T(F^,y ) has an expansion of the form (5*4.4)
with differential

S(F,Y;F^-F) = - J (F^^^(t)-F^(t))J(F^(t ))dt (5.4.7)
—  1

Proof Without loss of generality, assume that J (or J*) 
has one point of discontinuity, at a e (0,l) .* It will be
shown that T(F,y ) is uniformly Frechet differentiable 
(see Randles (1982, section 3) for definition). Namely, 
tha t

sup |T(G,y)-T(F,y)-S(F,y!G-F)| = Op(d(F,G)) (5.4.8)
yes^
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Then the theorem will follow as an immediate consequence 
of (5 .3 .1 ).

Using integration by parts (as in Boos (1979» Theorem 1)) 
on [t(G , Y )-T(f, Y )]] , it can be seen that

f 1
T(G,y )-T(F,y ) = - [K(Gy(t))-K(F^(t)]dt

-1
rywhere K(.) is the function K(y) = j(u)du • Hence
o

[T(G,y)-T(F,y)_S(F,y;G-F)] , where S is given in (5.4.7),
is equal to

 ̂[K(G^(t))-K(F^(t))-[G^(t)-F^(t)] j(F^(t)] dt (5.4.9)
-1

Now suppose d(F,G)< e/2 where e is small. On the
intervals [-1,F^ ^(a-e)) and (F^ ^(a+e),l2 we can use
Taylor’s theorem. Therefore, since (Jl) implies that

sup |j'(u)I = M < 00 , the absolute value of the integrand
u e[o,l]
in (5 .4 .9 ) is bounded above by d (F,G)M/2 . Therefore the 
absolute value of (5.4.9) is bounded above by

(l-(-l))d^(F,G)M/2 = Md^(F,G)< Me (5.4.10)

To bound the integral over [f ^ ^(a-e),F^ ^(a + e)] ,
define

VG,p_y(t) = [K(G^(t))-K(F^(t))]/[G^(t)-F.^(t)J-J(Fy (t))

if G^(t) / Py(t)

= 0 if Gy(t) = F^(t)

Because J is bounded, and K is continuous, it is clear
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that p is bounded over t , by V say. There
fore the integrand in (5*4.9) is bounded by Vd(F,G) ; and
the integral over [Fy ^(a-e),Fy ^(a + s)] is bounded by

Vd(F,G)[F^"^(a+c) - P^-l(a-e)] , (5.4.11)

Then (5*4.1) plus an application of the Mean Value Theorem
ensure that (5*4.11) is bounded above by

V£^/4m (5 .4 .1 2 )

where m >0 (independent of y) is a lower bound for 
fy(t) . Finally, putting (5*4.10) and (5.4.12) together, 
it is seen that (5*4.8) holds. 000

Theorem (5*4.13) If J satisfies (J2) and F satisfies
(Fl) and (F2) , then T(F^,y) has an expansion of the 
form (5 .4 .4 ) with

S(F,y ;F„-F) = Ca-F„^^(F^"^(a))][f^(F^-’-(a))] (5.4.14)

where (without loss of generality) j(.) = 5 ̂ (.) for some
a e(O,l) .

Proof It happens that T(F,y) is not uniformly Frechet 
differentiable in this case. A more direct approach is 
required. Now when J = 5 ̂  , it is immediate that

T(F^,Y) - T(F,Y) = F"|y(a) - Fÿ^(a) .

Expressing F~|'^(a) as F”  ̂(a + [F^(F^ ̂ (a ) )-aj] ) and, for 
each fixed y using Taylor's Theorem to expand F^^(.) 
about a , it is seen that
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- r[FY(P^_^-l(a))-a]2[f^(c*)/fJ(c*)] (5.4.15)

where c* = 6F^(F^ ^ ^(a)) + (l-2e)a and 9(y) e [ o , l ]  .
(Fl) and (F2) ensure the validity of this expansion.
Since f ’/f is bounded above, the theorem will follow Y Y
from (5 .3 .1 ), provided it can be shown that, in probability, 

nFsup|[F^(F'^^(a))-a3-[a-F^^^(F"^(a))] I ^ 0 (5.4.16)

Define V^(y ) = n^ (a )-F” (a)] and

W„(y ) = n^[a-Fj^^y (F“ ^(a))]/f^(F“^(a)) . Dependence of

and on a is suppressed, since the latter is fixed.
An application of Taylor’s Theorem (a second order expansion 
is required) plus (5 # 3 « 1), (5 # 4.1) and (5*4.2) show that
(5 .4 ,1 6 ) is equivalent to

sup|V^(y) - V^(y)| 0 (Pr*) (5.4.17)

where Pr* , the outer probability, is needed because sets 
involved in the statement of (5*4.17) will not in general 
be measurable.

Now define ?^^y(Y) = n ̂ [f  ̂( h* )-F^ ̂  ̂( h* )]/f^ ( F^ (a)) 

where h* = F”^(a) + V^(Y)/n^ . We need three lemmas.

Lemma (5.4.18) If F satisfies (Fl) then for any k> 0 , 
1 ~n^sup|F^ y(t) - F (t)| $ k implies that 
Y » t ’
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suplV (y ) I  ̂ (k+n ^)/m where m = inf f (t) •
Y " Y , t  Y

Proof Put t = F  ̂ (a) and for each fixed Y use -----  n,y\
Taylor's Theorem to expand Fy(t) about Fy^(a) , noting

that If (F  ̂ (a)) - a I < n  ̂ 000' n,y n,y '

Lemma (5.4.19) If F satisfies (Pl) and (F2) , then 

I V^(y ) - y ) U  [ I  V^(y) I + l]/(n2m)

where M = sup|f'(t)| and m is as above.
Y,t ^

Proof Again, this involves a straightforward application 
of Taylor's Theorem, A second-order expansion is required 
here. 000

Lemma (5.4.20) If F satisfies (Fl) and (F2) then 

I?n,v(Y) - W„(y )I - 0 (Pr*) .

Proof y(y) and (y ) can be expressed in the form

v^(A(y,t^)) , v^^A(y,tg)) respectively where t^ = Fy^(a)

and t^ = t^ + V^(y)/n^ . It follows from lemma (5.4.18)

and (5 .3 .1 ) that

sup m (a (y , t., ) , A(y,t_)) 0 (Pr*)
y  O  i

because then | t^ - t^ | = I ( y  ) |/n^ 0 (Pr*) uniformly

in Y • Here, tn is the metric on { A } defined in

(5 .3 .8). 000
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Now consider the inequality

Pr*(supIV^(y ) - W^(y )I)
Y

$ Pr*(sup| V ( y )-Y y(Y)|)+Pr*(sup|Y (y)-W (y)!)y U  n , v  y “

(5.4.21)

That the first term on the RHS of (5.4.21) becomes small 
for n sufficiently large follows from lemmas (5.4.18), 
(5 .4 .1 9 ), plus (5 .3 .1). That the second term becomes 
small follows from lemma (5.4.20). 000

Finally, we need to check that the second term on the 
RHS of (5 .4 .5 ) converges to zero in probability. Observe 
that (Fl) implies that both sup|Fy(t) - F^(t)| and

sup|F”^(t) - F~^(t)| are o(cos ^(Y'y)) as y y ; and

(F2) implies that sup|fy(t) - f^(t)| is o(cos ^(Y'y))

(the details are straightforward). With these results, it 
is then easy to show that the conditions for Theorem 2.8 
in Randles (1 9 8 2 ) to apply are satisfied.

We now make some comments.

(i) Since the functional T is linear in J , our
results also apply to linear combinations of the form

+ X^Jg where and satisfy (Jl) or (J2) .
The differential S is then the corresponding linear com
bination of the differentials of and J^ .

(ii) The proof that sup|v^(y) - W^(y)| -> 0 (Pr*) in
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Theorem (5.4*13) is based on the proof of an analogous 
(though simpler) result in Ghosh (l971, Theorem l).

(iii) Theorems (5.4.6) and (5.4.I3 ) apply if is

replaced by , p = 2 or p > 3 » they also apply in

R' if J : [ o , l j  ^ R has support on |jp , l] for some ^ > 0 .

(iv) Clearly (5.4.6) and (5.4.13) could be proved under 
weaker assumptions, but such extensions seem to be un
interesting.

5 . 5  Small Sample Properties

The form of the influence curves of the L-estimators 
presented in section 5.2 lead one to expect that these 
estimators will be substantially more robust, in large 
samples, than the maximum likelihood estimator. As it 
seems safe to assume that these robustness properties 
transfer to the small sample case, attention will now be 
focussed on their small sample properties when the Fisher 
distribution is in fact correct.

A simulation study was undertaken to investigate the 
performance of these estimators when the concentration 
parameter, «: , is at least moderately large. In the simu
lation procedure, use was made of the fact that if ç is 
the colatitude, measured from the mean direction, of a
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unit vector from a Fisher distribution, and is the
Longitude, then, for k  at least moderately large

= sin0cos(f) and = sin0 sincf) (5 ,5 *1 )

will, effectively, be independent zero-mean Normal vari
ables with variance K  ̂ .

A large value of k , Kq = 100 , was chosen for con
venience. For sample sizes n = 10,20,30,40 and 5 0 , n 
pairs of N(o,0.01) variables were generated using routine 
GO5DDF from NAG (1 9 8 3). For each pair (z^jZ^) generated, 
polar coordinates (0,^) were obtained from (5 .5 *1 ), and 
for each sample, the estimators K q  ( =  k  , the maximum 
likelihood estimator), and , based on the
sample mean direction, were computed. This was repeated
3,000 times for each sample size, and for a = 0.1, 0.2 
and 0 . 3  t and, in each case, estimates of the variances 
and mean square errors of '̂ o*'̂ l*'̂ 2 ^ were obtained.
The estimates of the variances and mean square errors were

2 4then normalised by multiplying through by n/c^ (= n/lO ) ,
so that, as a consequence of (5*5*l), corresponding esti
mates for other values of k not too small, say ic > 3 ,

2can be obtained by multiplying by k  . The results are 
presented in Table 5*2.

Crude and somewhat pessimistic calculations suggest 
that, with high probability, the most inaccurate estimates 
in Table 5*2 should be within 10% of the true values; but 
most of the estimates should be rather more accurate than
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TABLE 5.2

Normalised estimates of the variances and mean square
errors, nvar (k and nE(Kj/ K -1)2 0 ' respectively, fc

j = 0,1,2,3 •

n = 10 20 30 40 50

Var 2,24 1.53 1,28 1,22 1,14 1,0
o MSE 2.89 1.77 1,42 1 , 3 2 1,21 1 , 0

Var 1,00 1,09 1,08 1,12 1,10 1,18
MSE 1 . 2 6 1 , 2 6 1,20 1,21 1 . 1 9 1,18

a = 0,1
<2 Var 2,42 2,00 1,81 1 , 8 5 1,82 1 , 7 0

MDR 2,46 2,02 1,82 1 , 8 5 1 . 8 3 1 , 7 0

Kg Var 1.13 1.13 1,08 1,10 1 , 0 9 1,11
MSE 1,27 1.23 1 , 1 7 1 , 1 6 1,14 1,11

~ Var 2,35 i,4o 1 .3 4 1 . 1 5 I,l4 1,0
O MSE 2,99 1,67 1 , 4 9 1,24 1,21 1,0

Var 1,23 1,24 1.31 1 , 2 6 1.28 1,38
MSE 1,44 1 , 3 6 1,40 1 , 3 4 1 , 3 6 1 , 3 8

a = 0 , 2
<2 Var 2,20 1,78 1,82 1,66 1,63 1 , 5 4

MSE 2,29 1,80 1,84 1 , 6 7 1,64 1 , 5 4

Kg Var 1,38 1 , 2 5 1 . 3 1 1,22 1 , 2 3 1 . 2 5
MSE 1,43 1 , 2 9 1 , 3 4 1 , 2 5 1 , 2 5 1 , 2 5

Var 2,53 1 . 5 5 1 . 3 2 1.20 1 , 1 6 1.0
O MSE 3.20 1,81 1 , 4 7 1,28 1 , 2 3 1,0

Kl Var 1.73 1,48 1,41 1 , 5 2 1 , 6 2 1 . 6 3
MSE 1,94 1 , 6 3 1 . 5 3 1 , 6 2 1.69 1 , 6 3

a = 0 , 3
<2 Var 2,81 2 , 0 6 1,88 1,66 1.75 1 , 6 1

MSE 2,93 2,12 1 . 9 1 1,66 1 . 7 5 1 , 6 1

Kg Var 2,02 1 . 5 7 1,46 1,40 1 , 5 0 1 , 4 3
MSE 2,04 1.59 1 , 4 7 1,42 1 . 5 1 1 , 4 3
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this .

As one might expect, the normalised estimates of the 
variance and mean square error of the maximum likelihood 
estimator decrease monotonically to their asymptotic value 
of 1,0, For each fixed a , the same appears to happen 
with the quantile estimator • However, the trimmed
and Winsorised estimators, and respectively,
appear to behave differently: for each fixed a , they 
fluctuate, moderately, about their asymptotic values as 
the sample size increases.

It is interesting to see in Table 5»2 that for 
sufficiently small sample sizes, and have esti
mated variance and mean square error which are somewhat 
smaller than those of the maximum likelihood estimator; 
though of course the large sample optimality of the maximum 
likelihood estimator implies that the reverse should be the 
case in sufficiently large samples. The results in Table 
3,2 appear to suggest that, at least for the range of 
values of a considered, the smaller the value of a , 
the larger the sample size needs to be for the maximum 
likelihood estimator to perform better on these two 
criteria,

There appears to be little to choose between the 
trimmed and Winsorised estimators, though both seem to 
perform somewhat better than the quantile estimator. An 
estimator which, overall, should be as good as any is
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, when a = 0 . 2  ,

An attempt was made to improve the performance of 
these estimators by reducing the bias, in similar fashion 
to Best and Fisher (1 9 8 1 ). The fact that y , the mean 
direction, is being estimated does complicate matters, but 
multipliers (see section 3 *2 ,(i)) can still be obtained, 
assuming (incorrectly) that the bias of each order statistic 
due to the estimation of y is the same.

However, the estimators and k ^ , in each case
considered in Table 3*2, were negatively biased (unlike the 
maximum likelihood estimator and K ̂ ); and although the 
’multiplied* estimators usually did have less bias, their 
mean square errors never decreased noticably, and in some 
cases even increased. So there seems little to be gained 
from this approach, at least for the L-estimators we have 
considered.

3 . 6  L-estimators in Other Contexts

As mentioned earlier, (3*2.3) has analogues in other 
situations. In particular, this includes the Von-Mises 
distribution on the circle; and it would be reasonable to 
expect that the best of the L-estimators of concentration 
have favourable properties in this case as well. However, 
computational matters are a little less straightforward;
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essentially because the and Von-Mises distribution
functions are somewhat less tractable than those of the 
exponential and truncated exponential distributions. The 
position is similar for the Von-Mises-Fisher distribution 
in more than three dimensions*

We recall that FB^ , described by Kent (1 9 8 2) has a 
density which may be written

c'^expfcx'yg + s[(x‘yi)^ - (x'yg)^^} ,

where , yz and yg are three mutually orthogonal unit
vectors. One would expect the maximum likelihood estimators 
of the shape parameters, k and 6 , to suffer from a lack 
of robustness similar to that of the maximum likelihood 
estimator of the concentration parameter of a Fisher dis
tribution. For a random sample x^,...x^ of unit vectors 
from FB^ , consider the squares of the scalar products

^1 “ »••• "n “ (*n*%l)^

It is not difficult to show that estimators of k  and 3 
based on (u^, ...u^) and (v^,...v^) , with y and y^
replaced by suitable estimates, satisfy a property analo
gous to (3 *2 .3 ). In other words, the asymptotic properties 
of such estimators of k and 3 doe not depend on whether 
 ̂1 3Ĵ d y2 sre known or estimated, suitable estimates for 
 ̂1 3nd ]i 2 being the appropriate normalised eigenvectors
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of the matrix of sums and products (Mardia (1 9 7 2)) for the 
sample•

As a consequence, one could, in principle, construct 
robust estimators of k and 3 based on linear combina
tions of the order statistics

n n
Za.u/.\ and E b  .V/ .A d .u / . \ dna A u .V / . \

i=i J (j) i=i J (j)
with suitable choices for and bu,...b , IfI n  I n
the underlying PB^ distribution were highly concentrated 
about its mean direction, then u^,...u^ and
would be effectively independent variables, and so

1

the calculations would not be daunting if the J-function 
were reasonably simple. However, if the underlying dis
tribution were not highly concentrated, the calculations 
would be prohibitively complicated, and for this reason 
estimators of k and 3 of this type appear unattractive, 
because one does not want to have to make an a priori 
assumption of high concentration.

We conclude by briefly mentioning the possibility of 
using L-estimators for the eigenvalues of the covariance 
matrix of a multivariate Normal distribution. For Normal 
distributions whose covariance matrices have no special 
structure, one could follow a broadly similar approach to 
that suggested for FB^ . In other words, one could pro
ject the observations onto estimates of the canonical axes, 
and use linear combinations of the squares of the projected 
values to estimate the corresponding eigenvalues. The
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squares of the projected values would, asymptotically, be 
independent with distribution, because elliptical
symmetry, plus some mild regularity conditions, are suffic
ient to ensure that a result analogous to (5»2.3) holds in 
this case as well.

However, it is important that the estimators of the 
canonical axes be robust. For situations in which the com
ponent Normal variables were, in some sense, measured on 
compatible scales, a sensible choice of estimator for the 
mean would be the spatial median, described by Brown (1 9 8 3)» 
if the ratio of the smallest eigenvalue of the covariance 
matrix to the largest were not too close to zero. Then one 
could estimate the orientations of the canonical axes using 
the normalised eigenvectors of the matrix of sums and pro
ducts, referred to above, but formed from the projections 
of the observations onto the hypersphere with centre the 
estimate of the mean, and radius 1. These estimators of 
the orientations would be consistent, asymptotically Normal, 
given a suitable parameterisation, and should be robust 
against extreme observations. The computation of L-estimators 
of the eigenvalues of the covariance matrix, given estimates 
of the canonical axes, is particularly straightforward, 
because function inversion is not required.

The estimators of the mean and covariance matrix of a 
Normal distribution described here are translation and 
rotation invariant, but not affine invariant, unlike the 
M—estimators suggested by Maronna (1976) and Campbell (1 9 8O).
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Nevertheless, it would be interesting to know how the esti
mators described here compare with these M-estimators in 
situations in which affine invariance is not a strict re
quirement .
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CHAPTER 6

FURTHER RESEARCH

6,1 Rotationally Symmetric Distributions

The Fisher distribution is, for statistical purposes, 
the most commonly used spherical model. In some situations 
encountered in practice, it may be reasonable to suppose 
that the population distribution is unimodal and rotationally 
symmetric; however, the particular choice of distributional 
form is usually one of practical convenience. Specifically, 
the maximum likelihood estimates of the parameters have 
explicit form, and methods of inference based on the Fisher 
distribution are quite well developed (see Mardia (l972))«
The same comments apply to the von Mises distribution on 
the circle.

An obvious but important question is: how restrictive 
is the assumption of a Fisher distribution? Before we can 
discuss this, it is necessary to specify an alternative 
class of distributions. If, in this alternative class, we 
include distributions which do not have rotational symmetry, 
or even distributions which have rotational symmetry but 
are not unimodal, then the answer is likely to be : very 
restrictive. If, however, we define the alternative class 
to be precisely the unimodal rotationally symmetric dis
tributions, the answer is not so clear. In particular, it
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is not obvious how to define a measure of ’restrictiveness’ 
in 8 fruitful way.

One aj-'proach would be to find the distribution (in the 
class of unimodal rotationally symmetric distributions) 
with given first moment which maximises the distance 
(according to some suitably chosen metric) to the Fisher 
distribution with the same first moment. Expressed math
ematically, the problem is:

max d(f,g) where f(u) = [̂ k/( 2s inh k)̂  e
S

KU

g ̂  0 , g ’ > 0 ,

g ! [-1 ,1] ->R ; (6 .1 .1 )
1 rl

g(u)du = 1 , ug(u)du = t (= b(k))
-1 -1

where d is a metric, perhaps related to the metric defined
in Chapter 5» in which case bounds on the error in probability
statements would result. Problem (6.1,1) appears not to
have an analytic solution, in view of the constraints
g  ̂0 , g ’ ̂  0 . However, it may be possible to obtain good
approximations to the solution of (6 .1 ,1 ) numerically,
though exactly how one would do this is not clear.

There are other possible approaches to measuring the 
’restrictiveness’ of the Fisher distribution. For example, 
something along the lines of Efron and Olshen (1978)» who
consider the broadness of the class of Normal scale mixtures.
Or, alternatively, it might be helpful to express the problem 
as one in discrimination, in which case the ideas in Collett 
and Lewis (l98l), who consider the problem of discriminating
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between the von Mises and wrapped Norma] distributions, may 
prove useful.

It may well turn out that in some contexts, particularly
those in which very large samples are available, the Fisher
family is inadequate, even within the class of unimodal, 
rotationally symmetric distributions, Solomon and Stephens, 
in the discussion of Kendall’s (1974) paper, express the 
opinion that (on the circle) it would be helpful to have 
access to distributions which are more (and less) 'peaked' 
than the Von-Mises distribution, and suggest the need for 
a rotationally symmetric family with 2 shape parameters.
If this applies on the circle, one would also expect it to 
apply on the sphere. One such generalisation, FB^ , was
referred to in Chapters 2 and 4. There are other ad hoc
generalisations which we have looked at in some detail (but 
which have not been referred to in earlier Chapters), The 
FBĵ  family seems to be the most attractive generalisation, 
but it would perhaps be worth mentioning other possibilities 
briefly,

If 0 is the colatitude of a Fisher distribution, 
measured from the mean direction, then u = (l-cos6 ) / 2  

has negative exponential distribution, truncated at u_ = 1 , 
Two obvious possibilities are to generalise from truncated 
negative exponential on [o,l] to truncated Gamma and 
Weibull distributions on [o,l] . One can do something 
similar with u^ = (l+cosO)/2 , These families are not 
without interest, but several difficulties do arise. One



- 127 -

of these is that the ^-parameter likelihood function 
(2 shape parameters and 2 location parameters) is unbounded 
above. The problem is similar to that which arises in max
imum likelihood estimation for the 3-Parameter Gamma and 
Weibull distributions.

Another possibility is the Fisher 'mean-mixture*, If 
the mean direction, y , of the Fisher distribution F(y,<) 
is itself assumed to have Fisher distribution F(y^,K^) ,
then the 'mean-mixture* has density

g(x|K,K^,y^) = p(t)/[p(K )p (k^)] X e (6,1,2)

2 2 “  where p(.) = [4wsinh(.)]/(,) and t = (k +k^+2 k k^x 'y^)  ̂ ,
At first (naive) glance, the likelihood function based on 
this family looks as though, while complicated, it should 
be well-behaved. However, empirical evidence suggests that 
the maximum always occurs at a boundary rather than a 
stationary point. Two cases occur: (i) = k and (ii)

= oo (or K = 00 ) , In view of the properties of the 
analogous Normal mixture, this is not at all surprising,
T. Lewis, in some unpublished notes, has provided approxima
tions which illustrate clearly what is happening. This 
'degeneracy* in the likelihood problem seems a serious draw
back, and it indicates that the mixture is not much different 
from a Fisher distribution.

So FBj,̂  does appear to be the most attractive 
2-parameter rotationally symmetric generalisation of the 
Fisher distribution. As in the Fisher case, it would be
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useful to have an idea of how 'general' this family is.

There is an interesting generalisation of the 'mean- 
mixture'. If are independent F(y,k ) and y
is then the joint marginal distribution of
X t ,...x is:1 r

g(x^, . . .X^l K , K̂ , y^) = p(t)/[[p( k )] ̂ p( K^)] (6.1.3)

where p(.) is the same as in (6.1.2), and

t = (K^ + rK^+2KK y » y x ,+2k^  ̂x.'x.)^ ,o O J 1 j'

When r> 1 , degeneracy in the likelihood problem does not
occur. This model is closely related to the 'two-tier' 
model of McFadden (1982); the latter appears to be an approx
imation of (6 .1 .3 ) based on the assumption that k  and 
are large. McFadden's two-tier analysis allows the separa
tion of 'between site' variation (determined by k ^ )  and 
'within site' variation (determined by k  ), and may be re
garded as a simple 'random effects' model.

Mixtures of this type and others (e.g. concentration 
mixtures) have obvious modelling possibilities, and deserve 
further investigation. Much of the discussion in this 
section also applies to the von Mises distribution on the 
circle.
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6,2 Spatial Unit Vector Processes

This is an area in which little or no work appears to 
have been done, Ĵe shall just offer a few naive observations, 
and mention some unsolved problems.

Let S be an index set, assumed to be a subset of p- 
dimensional Euclidean space. For example, S may be a 
lattice, or the unit hypercube. In some applications, one 
may wish to consider unit vector processes defined on S , 
i.e. a family of (dependent) unit vectors

x(s) ; x ( s ) e S  , s e S Ç R  r .n

An interesting question is: what is a suitable unit vector 
analogue of a Gaussian process on S ?

If n = 2 , so that each x(s) is a circular variable,
then there is a straightforward answer. For any real-valued 
Gaussian process z (s ) defined on S , there is an associated 
circular process obtained by 'wrapping' at each s eS given 
by x(s) = z(s) (mod 2-rr) . Several properties of the 
wrapped process follow immediately.

(i) If the original process has continuous or differ
entiable sample functions, then so does the wrapped process.

(ii) The marginal distribution of each x(s) is wrapped 
Normal.

(iii) The finite dimensional distributions can be written 
down as infinite sums, in similar fashion to the wrapped
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Norma 1.

(iv) The conditional distributions are not of wrapped 
Normal form.

When n = 3 » so that each x(s) is spherical, a
wrapping procedure is not available. The problem is now
much more difficult, and so far we have not been able to 
make substantial progress. In fact, we have not even 
succeeded in constructing a joint distribution for x(s^) 
and xfsg) such that the marginal distributions of x(s^) 
and x(s2 ) are of spherical Brownian motion form (as de
fined in Roberts and Ursell (1 9 6 0)). It would be nice to 
see a solution to this problem.

There is, however, a unit vector process on S which 
is in principle easily constructed in all dimensions. In 
the three dimensional case: let z^(s) , z^is) and z^(s)
be Gaussian processes defined on S . Then define the unit
vector process

x ( s )  = ( z ^ ( s ) , Z 2 ( s ) , z  ( s ) ) / r ( s )
(6.2.1)

a(s) = ([zj^(s)]^ + + [23(3)]^)^ .

If S contains an open set, the question arises as to
whether inf R(s ) > 0 almost surely. We do not know the 

seS
answer. If the answer is yes, the sample functions will be
continuous or differentiable df those of z^(s) , Zgfs)
and zy(s) are; but if not, the unit vector process will 
have singularities. This problem can not arise if S is
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countable .

If z^(s) , z^is) and z^(s) are Independent,
homogeneous processes with zero mean and the same covariance 
function, then the finite dimensional distributions simplify 
considerably.

It would be interesting to know whether the process 
x(s) constructed via (6 ,2 .1 ) is infinitely divisible, when 
a suitable extension of Kent's definition of spherical 
addition is used (see Mardia (1975» discussion)).

There are many interesting and challenging problems in 
this and related areas such as 'spatial orientation processes', 
Kingman (1984) mentions a problem concerning the orientation 
of grains in a crystalline substance.
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