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Abstract

The motivation for this work has been the development of 
knowledge about the b^iaviour of human problem-solvers that 
would enable an intelligent machine tutor to be designed. In 
the domain of Newtonian Mechanics, this breaks down into two 
necessary sub-tasks; how do people decide vhat equation to 
generate; and Wiat do they produce #ien they do try to generate 
an equation? Although these are psychologically separate 
questions, an automatic tutor for the demain would need to make 
use of both kinds of knowledge.

Therefore, strategies for controlling search in physics 
problem-solving are investigated, and a carputational model of 
erroneous solutions is described. Experimental data is used to 
evaluate the model. Errors in the domain are classified, and 
the behaviour of problem-solvers predicted under certain 
circumstances.

Ihrediction of Novice errors is a crucial ability for an 
intelligent tutorial system, and the error analysis implemented 
in the NEWT program is the main contribution of this thesis.



The investigation has two principal aims;

(1) To develop a model that allows a student's future 
behaviour to be predicted from an analysis of his past 
actions. It is argued that this is a necessary pre
requisite for the construction of an intelligent 
tutorial system.

(2) To identify the psychological mechanisms used by 
problem-solvers working in the domain.

The thesis attempts to achieve these aims in two main ways;

(1) A caiputer program called NEWT has been constructed, 
which solves problems of Newtonian Mechanics 
correctly, or in one of a number of erroneous ways. 
This allows human errors to be matched, classified, 
and in some cases predicted.

(2) An analysis of published data leads to the formulation 
of a control strategy termed "planstacking". This is 
compared to alternative control strategies, and shown 
to explain existing data more adequately.



The pi?ogram is evaluated both as a psychological theory, and as 
a proposed student itodel for use in a carputer-based tutorial 
system. The NEWT program was developed from the MECHO program 
written by Bundy, Byrd, Luger, Mellish and Palmer ( 1979 ), 
at the Department of Artificial Intelligence, Edinburgh 
University. This program was adapted to produce erroneous 
problem solutions by the inclusion of procedures to implement 
malrules observed in the domain.
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Chapter Abstracts

I Introduction

This chapter gives an overview of the project. It 
motivates the selection of the tasks undertaken and 
describes the contributions of the work to the fields 
of Artificial Intelligence and Educational Technology.

II Solving Statics Problems

This chapter delineates the problem demain, and 
possible methods for solving problems in it. The 
problems used in the experimental study are stated in 
English, and in the internal representation used by 
NEWT.
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III Literature Review

This chapter reviews the relevant literature on 
Computer Assisted Learning and Error Generation in 
procedural skills.

Representation of erroneous procedural knowledge is 
identified as a crucial catponent of an effective 
student model in a tutorial program, and attempts to 
develop principled representations of erroneous student 
knowledge are examined.
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IV Control Strategies and Problem Representation for
Solving Statics Problans

Control strategies and knowledge representation 
formalisms used by other researchers are examined, and 
compared to published experimental results.

A control strategy termed "planstacking" is introduced 
and defined, and compared to other control strategies. 
Other outstanding and hitherto unexplained observations 
are related to a proposed mechanism called "sketch 
construction", and to a principle termed the "hidden 
curriculum principle of non-redundancy". These are 
required to explain some of the observations of initial 
problem pre-processing by problem-solvers.
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V Methodology of Ccmoutational Modelling

This chapter looks at possible relationships between 
psychological descriptions and carputational models 
that implement them.

Three distinct psychological frameworks are proposed 
for the analysis of problem-solving in the domain of 
statics ;

- a procedural framework for competent problem-solving,

- a procedural framework for consistently erroneous 
problem-solving.

- a procedural framework for inconsistently erroneous 
problem-solving.
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The relationship of each of these to the NEWT program 
is described. The abstract relationship between 
computational models and experimental data is 
investigated. The inadequacy of conventional 
statistical techniques is demonstrated, and necessary 
criteria for an adequate numerical measure of 
experimental adequacy are defined.

A numerical measure applicable to the domain is 
proposed, called the "micro-theory evaluation 
quotient". It is compared to the proposed criteria.

The proposed methods of evaluating the three 
psychological frameworks and the use of NEWT as a 
student model are explained and justified.
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VI Design of the NEWT System

The top-level control algorithm of NEWT is defined, and 
its relation to the output ( in the form of a list of 
equations ), explained. The three procedural 
frameworks implanented by NEWT are defined; and a list 
of "malrules", or erroneous problem-solving procedures, 
is given. The malrules are categorised into five 
categories on the basis of their relationship to the 
structure of the problem-solving process.

The procedural framework for competent problem-solving 
is related to NEWT without any malrules.

The procedural framework for consistently erroneous 
problem-solving is related to NEWT peturbed by the 
addition of one or more malrules.

The procedural framework for inconsistent problem
solving is related to NEWT peturbed by the absence of 
an appropriate procedure at a particular level of the 
program.
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VII The Experiment

The results of an experimental study are presented in 
detail. This data is compared to the output of the 
NEWT system, modified appropriately.

Evaluation measures are presented for each of the three 
psychological frameworks and for NEWT as a student 
model.
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VIII Conclusions

New ideas have been proposed to explain the control 
strategy and problem representation of problem-solvers 
These have been related to existing data, but further 
experimental work is necessary to verify them.

Several points of the space of possible errors in 
Statics problem-solving have been mapped, but more 
remain to be discovered. The genesis of these errors 
remains a mystery.

A program has been written Wiich has demonstrated its 
ability to act as the basis for a student model, and 
vhich implements three psychological frameworks for 
procedural problem-solving. It is better at predicting 
some kinds of behaviour than explaining it in detail.

The limitations of NEWT are mentioned and avenues for 
further research described.



19

Illustrations
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Chapter I - Introduction

This Chapter gives an overview of the project. It motivates 
the selection of tasks undertaken, and describes the 
contributions of the work to the fields of Artificial 
Intelligence and Educational Technology.

Selection of Tasks

A survey of the literature on Computer-Assisted learning, 
presented later on in Chapter Three, leads to the conclusion 
that effective machine tutors necessarily require some form of 
detailed analysis of the person using them, or 'student model'. 
This, it is argued, must include all the knowledge necessary to 
select and implement whatever tutorial strategies are available 
to the system.
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The iirplennentation of such a system implies the selection of a 
domain satisfying the following requirements;

the demain should be formally taught in the educational 
system

the domain should be non-trivial

the problems of knowledge representation should not 
be intractable

These properties are satisfied by the subject of Newtonian 
Mechanics. It is taught in schools and colleges, it is non
trivial ( many students find it insuperably difficult ), and it 
possesses a well-developed formal representation which can be 
handled with reasonable ease. For these reasons, it is an 
appropriate domain to choose for investigation.

Tutors in this domain need to be able to identify and correct 
two kinds of non-optimal actions on the part of students ;

-generation of incorrect equations

-selection of irrelevant plans for generating equations.
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In the terminology of Bundy et al. ( 1979 ), the generation of 
equations is an "object-level" operation, and the selection of 
plans is a "meta-level" operation. That is, the structures 
manipulated by search at the meta-level are themselves 
operators in the object-level search space. The object-level 
structures are the elements in terms of vhich the final 
solution plan is given.

Of course, the ability to correct non-optimal actions on the 
part of the student irrplies an ability to recognise correct 
equations and relevant plans when they occur. Without the 
capacity to do these things, the tutor is severely restricted 
as to the range of tutorial strategies that can be implemented.

Debate still continues as to the most effective tutorial 
strategy, and therefore progress in the development of 
intelligent tutorial systems depends on the existence of 
programs which can identify errors at the object level and also 
the control strategies used by the problem-solver.
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Chronology of the Project

The development of this thesis took place in approximately the 
following stages;

1979 Literature survey in the field of Computer-Assisted 
learning, leading to the conclusion that 
sophisticated student models were a necessity for 
further progress. Selection of Newtonian Mechanics 
as an appropriate demain, largely influenced by the 
MECHO project at Edinburgh.

1980 Visited Edinburgh and used MECHO. Collected seme 
experinrtental data on Physics problem-solving, and 
started to consider how errors could be represented 
procedurally.

1981 Collected more experimental data, and read about 
the work of Larkin, McDeimott, Siæn and Simon
( 1980 ), dealing with control strategies in 
Physics problem-solving, and the work of Sleeman 
( 1981 ) on representing errors as malrules in 
the algebra domain.
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1982 Analysed the errors in the collected scripts in 
terms of malrules, and started to implement them 
as additions to the MECHO program. Read the paper 
by Chi, Feltovich and Glaser ( 1981 ) about control

. strategies.

1983 Visited Edinburgh University and completed the 
additions to MECHO corresponding to the observed 
malrules. Started to consider the issues of 
methodology in validating the model against the 
experimental data.

1984 Analysed the reported conclusions of Larkin et al 
and Chi et al; resulting in the formulation of 
alternative hypotheses for control strategy, for 
explaining the interleaved nature of problem 
interpretation and problem solution, and for the 
mechanisms used in interpreting questions about 
impossible object configurations.

1985 Defined the micro-theory evaluation quotient and 
completed the data analysis. Started writing up 
the thesis.

1986 Completed writing up the thesis.
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Approaches to the Main Aims of the Thesis

There have been three ccmplementary approaches to the 
achievement of the aims of this thesis. These were;

Literature survey.
This was necessary to identify the iirportant issues 
in computer assisted learning, justifying the 
selection of control strategy and equation errors 
as relevant and appropriate areas to focus on. It 
also yielded a number of experimental results and 
hypotheses by other experimenters, vAiich are 
analysed at length later on. It would not have 
been practically feasible to have considered all 
the areas looked at in this thesis experimentally, 
and hence some of the results are derived from 
the literature analysis.

Collection of Experimental Data
The decision to deal with the analysis of errors 
in Physics problem-solving led to a need to 
identify typical errors in the domain. This had to 
be done experimentally, since no published analysis 
existed.
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Carrputational Implementation
The guarantee of the carpleteness of a theory of 
procedural skill is its computational 
implementation. Otherwise, as Winston ( 1984) 
says, "Much difficulty may be lying under a rug 
somevAere". The NEWT program shows that the 
malrules identified in the data analysis are in 
fact capable of generating the behaviour ascribed 
to them. Such an approach introduces problems of 
validation which will be considered in Chapter V.
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Topics to be Considered

There are four topics which will be considered in this thesis. 
A consideration of the literatme on Student Modelling will 
lead to the related areas of intemediate knowledge 
representation, control strategy, and erroneous behaviour. 
Existing work in these areas will be related to the aims of the 
thesis, and to the results put forward in later chapters.

Student Models in Ccmputer-Assisted Learning

Several investigations into Computer-Assisted Learning 
described in Chapter III have investigated the importance of a 
psychologically accurate representation of the skill to be 
learned, in order to give effective tutorial interaction.

This thesis focusses on the learning of one specific skill- the 
solution of problems in Newtonian Mechanics- and concentrates 
on elucidating the psychological mechanisms used by novice and 
expert problem-solvers, with the intention of developing 
results relevant to the construction of a computer-based tutor 
for this demain.
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Considerable work has been done on the psychological methods 
and representations used to solve problems in this domain 
( Hinsley, Hayes and Simon 1977; Larkin, McDermott, Simon and 
Simon 1979, 1980; Chi, Feltovich and Glaser 1981 ), and in 
Chapter IV this material will be examined in depth.

In these papers, data has been reported vMch places strong 
constraints on any theory of psychological representation one 
may wish to put forward. However, there is little work as yet 
that reflects directly on one issue of major importance for any 
computer-based tutor; the nature and generation of errors.

Existing theories deal at some length with intermediate 
knowledge repiesentations and with control strategy, but 
contain little or nothing that would explain erroneous 
behaviour by problem-solvers.
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Intermediate Khcwledge Representations

Larkin, McDermott, Simon and Simon ( 1979, 1980 ), have 
postulated the existence of a number of intermediate knowledge 
representations used by the problem-solver. These will be 
considered in Chapter V, together with the experinental data 
they relate to. Other workers, such as Chi, Feltovich and 
Glaser ( 1981 ) infer the existence of such internalised 
knowledge structures, but have not elaborated their theory to 
the extent that unambiguous predictions can be derived from it.

An intermediate knowledge structure called a "sketch" is put 
forward in Chapter IV as a possible explanation for some of the 
results found by other workers, especially Paige and Simon 
( 1966 ). This structure closely resembles the class of 
"spatial mental models " described by Johnson-Laird ( 1983 ).
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Control Strategy

A variety of mutually exclusive control strategies have been 
put forward to explain the experimental data at the level of 
order of equation generation. These include:

- Backward Inference ( Marples 1974 ) 
based on an analysis of sought quantities

- Forward Inference ( Larkin 1980 ) 
based on object recognition

- Forward Inference ( Chi, Feltovich and Glaser 1981 ) 
based on schemata corresponding to physical principles

in this thesis, the existing data is re-analysed to yield 
support for a fourth control strategy:

- generation of equations from plans generated by 
backward inference and stored on a push-down stack.

This strategy is here termed "Planstacking", and is compared 
for explanatory adequacy to the alternative strategies in 
Chapter IV.
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Erconeous Behaviour

Novice problem-solvers frequently produce erroneous behaviour, 
although the errors they evince have not been explicitly 
taught.

Larkin ( 1980 ), describes a ccnputational model ̂ lich can 
duplicate a small proportion of the observed errors, but vÆiich 
is inherently incapable of generating others. No other work in 
this demain has put forward any explanation for erroneous 
behaviour.

Errors have, however, been extensively studied in the demain of 
arithmetic ( Van Lehn 1981; Young and O'Shea 1981; Brown and 
Burton 1978 ) and linear algebra ( Matz 1982; Sleeman and Smith 
1981 ).

One approach to the explanation of errors is to propose the 
existence of consistent but incorrect procedures termed 
"malrules", vhich generate erroneous behaviour. The malrules 
of a domain bear a generic resemblance to correct rules, and 
have been extensively studied by Sleanan ( 1984 ), and by 
Sleeman and Smith ( 1981 ) for the domain of equation solution. 
This is the approach taken in this thesis : it is assumed 
initially that errors are caused by incorrect but well-defined
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œrrputational procedures whose nature can be inferred from the 
student's output. Since no other researchers have published 
data on errors in this domain, a study was undertaken to 
identify malrules in the work of novice subjects.

The NEM* System as a Model of Erroneous Problem-Solving

Malrules collected from scripts of novice problem-solvers were 
included in a problem-solving program called NEWT, which was 
adapted from the MECHO program ( Bundy, Eyrd, Luger, Mellish 
and Palmer 1979 ); and this was compared to the behaviour of a 
second set of students solving problems of Newtonian Mechanics.

It was found that six malrules were sufficient to account for 
about 70% of the consistent errors made by students, but that 
there was evidence that not all erroneous behaviour could be 
explained in this way. In addition to stable erroneous 
procedures, many students appeared to posses seme mechanism 
which caused erroneous solutions to be produced vhich varied in 
an inconsistent and unpredictable way. Since the essence of a 
malrule is its coherence and stability, such behaviour is 
inherently impossible to ©plain in terms of malrules.
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The explanation of errors in terms of malrules unifies many 
different observed behaviours by the introduction of a small 
number of well-defined processes, but this is still only an 
intermediate level of explanation. The question of how 
malrules arise ( and indeed, how they demise also ) is not 
addressed in this thesis, but remains an area for future 
investigation. Priest ( 1987 ) has put forward some 
speculative hypotheses to account for malrule generation, based 
on the 'Repair Theory' concept of Van Lehn ( 1981 ); but these 
have not yet been tested experimentally, nor given a 
computational implementation.

It is also relevant to note here that the theories examined in 
this thesis are theories of behaviour, and do not have anything 
to say about the mental processes of students who do not 
produce any behaviour. Such students remain outside the scope 
of all the theories here examined.
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Contributions of the Thesis

This thesis makes contributions to the fields of Artificial 
Intelligence and Educational Technology. Its main contribution 
to Artificial Intelligence is the definition and study of a new 
control algorithm suitable for solving problems in Newtonian 
Mechanics, or other similar domains. It also contributes to 
the field by considering the issues of validating a 
computational model against observed behaviour, for which 
purpose a measure termed the "micro-theory evaluation quotient" 
has been defined and used.

The main contribution of this work to Educational Technology is 
an analysis of errors in the domain of Newtonian Mechanics.
The errors have not only been identified, but classified as to 
type, consistency and frequency; and the accuracy of their 
formulation has been verified by a computational implementation 
Wiich demonstrates the extent to ̂ diich a machine tutor may be 
expected to be able to predict novice behaviour. This data 
lays the basis on v^ch an effective tutor in the domain may be 
constructed.



i' 10
ser: PS0000417 
h2.th

-at LASER

**************************^***************************************^**********************
*****************************************************************************************

WWW WWW WWW WWW WWW w w  w
w w w w w w w w w w \ w w  w
w w  w w w  w w  w w  w w

WWW WWW W W W W W W W W W W W  WvWWWWW
w w  w w  w w  w w  w \  w

w w w  w w  w w  w w  w \ w
WWW WWW WWW WWW WWW

WWW W  W  WWW
w w w w w
W W W
wwwww w
W W W

w w w w
WWW w w wwwww

wwwww w w

ww
ww

w
w
w
w
w
w

w w 
w w 
wwwww 
w w 
w w 
w w

*****************************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/abel; PRT003 -form / \
pened from: <SYSF01>MSCR>PS0000417>THESIS. DIR

pooled: 87-09-10.09:47:48.Thu [Spooler rev 19.4c]
tarted: 87-09-10.11:29:12.Thu on: AMLC by: LASER
Laser Printer 2 /

\

\
\



35

Chapter II - Solving Statics Problems

This chapter delineates the problem demain, and possible 
methods for solving problems in it. The problems used in the 
experimental study are stated in English and in the internal 
representation used by NEWT.

The Domain

The problem-solving domain investigated in this thesis is that 
of statical equilibrium in Newtonian Mechanics. This concerns 
the physical relationships involved in situations involving 
idealized objects such as rigid beams, light inextensible 
strings, points with and without mass, surfaces with and 
without friction, springs that obey Hooke's law, and so on.

From now on, the characters "mu" and "lambda" will be used to 
stand for the Greek letters of the same name. These symbols 
are used to denote the coefficient of friction and the 
coefficient of elasticity respectively. The convention used in 
this thesis will be that concatenated groups of symbols will be
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used to indicate single quantities. The multiplication 
operator will be represented explicitly as an asterisk.

Physical Principles ümplemented in the NEWT System

A-level questions in this demain involve finding one or more 
physical quantities such as a particular force, length, angle, 
or mass from a description of a configuration of physical 
objects and a knowledge of some of the objects involved in the 
problem.

The physical principles applicable to the domain are:

- Resolution of forces ( Newton's Second Law )
- Principle of Moments
- The Friction Law ( F = mu * R )
- Hooke's Law ( tension = lambda * exctension )

It was decided not to investigate problems involving Hooke's 
Law, since this was often taught separately from the rest of 
the principles mentioned to the students available to the 
study. It was therefore difficult in practice to obtain a
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large enough sample Wio had covered Hooke's Law as well as the 
other physical principles.

Some work was done on the investigation of errors involving the 
Principle of Moments. It eventually became apparent that a 
significant number of errors involving the Principle of Moments 
depended on the subject assuming a sense for the magnitude of a 
force vector. This corresponded to the direction of the 
arrowhead marked on the diagram of the problem. In cases v^ere 
the assumed sense of the force was incorrect, certain errors 
were made that depended on the fact that the assumed and actual 
senses were different.

To model such an error computationally, it is necessary for the 
program to maintain a representation of forces that corresponds 
closely enough to that of the subject to have an "assumed 
sense". The method used by MECHO to represent forces defines 
the line of a force, but does not specify the assumed sense of 
the force with respect to this line of action. Altering MECHO 
to do this would require ©ctensive rewriting of all procedures 
that handle vector quantities- essentially rebuilding the 
system from scratch.
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Therefore the malrule investigations of NEWT have been confined 
to the subdomain of statical equilibrium defined by the 
principles :

Resolution of Forces

Friction

Physical Objects and their Properties

The physical objects which NEWT can represent in a problem 
configuration are those corresponding to the following 
idealized objects:

Fixed point - does not move, and has no size.
if any force acts on it, a
force of reaction keeps it stationary.

Point - has no size or mass. Points can be used
to label parts of bodies
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Particle - has mass but no size. Gravity acts upon
it, and it can be attached to other 
objects so that forces can be 
transmitted to it.

Rod - has a ( possibly zero ) mass and a
length. The rod can transmit forces of 
tension or compression, and also 
transmit moments from one end to the 
other. The idealized rods used in these 
problems never break or bend, even 
though they have no thickness. A rod 
has two endpoints, vAiich are points, 
and it has an inclination defined by the 
vector separating its endpoints. Other 
points may also be defined along a rod.

String - A string is light, inextensible, and has
no thickness or stiffness. It is not 
hairy. It can exert a force of tension, 
but cannot transmit moments. A string 
has two endpoints, and other points 
along it may also be defined.
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Surface - A surface is fixed, and may be smooth or
rough. If it is smooth, no force of 
friction acts on it, only forces of 
reaction are possible. If it is rough, 
then the friction law F <= mu * R can be 
applied to bodies resting on it.

These principles and ideal objects define the domain in which 
NEWT operates. There is no limit to the ccnplexLty of the 
problems that can be solved within these limitations.
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As well as the principles defined above, NEWT will take the 
following things 'for granted', Wien generating equations;

- If a body has a mass M, then a force M * g acts on it in 
a downward direction. This does not apply to fixed 
bodies, which are regarded as part of the ground.

- If two things are in contact, a force of reaction acts 
between them. If one of the things is a surface, the 
force of reaction is normal to the surface. This does 
not apply to strings, for which the concept of 'reaction' 
is included in 'tension'.

- any string is automatically assumed to have a tension. 
This may be zbto, but cannot be negative.

- objects attached to each other may transmit forces to 
each other.

MECHO possesses a well developed mechanism for listing the 
forces acting on an object, and summing their ccmponents in a 
given direction. There is no inbuilt limitation to the number 
of forces Wiich may act at a given point.
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Physical Problems Investigated

In the initial stages of the project a number of problems were 
investigated; while in the final studies of student problem- 
solvers, four particular questions were considered. These will 
be referred to as;

The Strut

The Unsliding Block 

The Slope

The Angle of Friction

Of these four, solutions to the 'unsliding block', problem have 
been investigated by Larkin ( Larkin, 1980 ). The other 
problems do not appear to have been investigated 
psychologically before.

These problems are now presented in both their natural language 
forms, and in the predicate calculus formalism used by NEWT.



hinge 40

ma

Figure 1. The Strut Problem
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A particle of mass Ma hangs from the end of a horizontal strut 
v^ose other end is hinged to a wall. The stinit is supported by
a string making an angle of 40 degrees to the strut. Find the
tension in the inclined string.

The internal representation of this problem used by NEWT is as 
follows:~

isa ( period, now ). 
isa ( particle, a ).
cue linesys ( string,strut, [lend, rend] ).
cue linesys ( string, stringl, [topi, bottoml] ).
cue linesys ( string, string2, [top2, bottom2] ).
concavity ( strut, stline ).
concavity ( stringl, stline ).
concavity ( string2, stline ).
tangent ( strut, 180 ).
tangent ( stringl, 140 ).
tangent ( string2, 90 ).
fixed-contact ( rend, bottcanl, now ).
fixed-contact ( rend, top2, now ).
fixed-contact ( a, bottam2, now ).
fixed ( lend, now ).
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fixed ( topi, now ). 
tension ( stringl, tl, now ). 
mass ( a, ma, now ). 
given ( ma ). 
sought ( tl ).

assert ( minimal-part( string, str, Pt, str ) ), 
assert ( static (_,_) ).

In this formalism, the constant "now", is introduced because 
MECHO is capable of dealing with dynamic behaviour. In statics 
problems, this becomes redundant. The "cue" lines indicate 
that when the problem is read in, a schema is automatically 
used. When MECHO is told that an object is a string or a rod,
it immediately makes the "common sense", inference that the
object has two ends, vMch it creates names for if they are not
already specified in the question.

The final line of the problem states that all objects are 
static, and the line before it asserts that none of the strings 
needs to be considered as mde up of two other strings joined 
together. When dealing with questions about strings passing 
over pulleys, MECHO needs to be able to conceptualise the 
string as consisting of two separate strings, one each side of 
the pulley. In this case, such a reconceptualisation is not 
required.



t2

table

Figure 2* The Unsliding Block Problem



47

A block of mass mb rests on a rough horizontal plane, vdiose 
coefficient of friction is mu, the block being in limiting 
equilibrium. The block is pulled by a horizontal string 
attached to two other strings, one at an angle of 45 degrees to 
the horizontal \^ose other end is fixed, and one hanging 
vertically. On the other end of the vertical string a mass of 
ma is suspended. Find ma.

The internal NEWT representation is:

isa ( period, now ). 
isa ( particle, a ). 
isa ( particle, b ).
cue linesys ( path, table, [lend, pt/moving, rend] ).
cue linesys ( string, stringl, [ptl, pt2] ).
cue linesys ( string, string2, [pt3, pt4] ).
cue linesys ( string, stringS, [ptS, pt6] ).
concavity ( table, stline ).
concavity ( sturingl, stline ).
concavity ( string2, stline ).
concavity ( s-tring3, stline ).
tangent ( table, 180 ).
tangent ( sturingl, 180 ).
tangent ( S"tring2, 225 ).
tangent ( s-tring3, 90 ).
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fixed-contact ( b, pt, now ).
fixed-contact ( b, ptl, now ).
fixed-contact ( pt2, pt3, now ).
fixed-contact ( pt2, pt5, now ).
fixed-contact ( pt6, a, now ).
fixed ( pt4, now ).
static ( a, now ).
static ( b, now ).
vdi-side ( b, table, left, now ).
mass ( a, ma, now ).
mass ( b, mb, now ).
coeff ( table, mu ).
solid ( table ).
given ( mb ).
given ( mu ).
sought ( ma ).

In this representation of the problem, the ejq)ression 
"pt/moving", refers to the body being in limiting equilibrium, 
and carries no implications of actual movement. The statement 
"v^-side ( b, table, left, now ). " is used to conclude that the
body is above the table rather than below it, and so will not
fall off. The "left", is interpreted with regard to the 
tangential direction of the table to infer this.



3.2 kg

Figure 3 . The Slope Problem
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A block of mass 3.2 kg in eguilibriim on a rough plane sloping 
at 35 degrees to the horizontal. Find the force of friction, 
f, and the force of normal reaction between the plane and the 
block.

The internal representation of this is:

isa ( period, now ). 
isa ( particle, body ). 
mass ( body, nb, now ). 
measure ( mb, '3.2', kg ). 
solid ( slope ). 
concavity ( slope, stline ). 
tangent ( slope, 215 ). 
incline ( slope, 215, pt ).

assert ( current-period ( now ) ).
Tdi-side ( bocfy, slope, left, now ). 
static ( bocfy, now ). 
static ( slope, now ).
cue linesys ( path, slope, [lend, pt, rend] ). 
fixed-contact ( body, pt, now ). 
coeff ( slope, roughness ).
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No quantities are marked as "sought", because no names have 
been assigned to the desired quantities in this problem. If 
NEWT is instructed to resolve forces parallel to and 
perpendicular to the slope, it will generate names for 
the desired quantities, and also use physical principles to 
generate equations to find their values.



6 kg

Figure 4. The Angle of Friction Problem
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A block of mass 6 kg. lies on a rough plane inclined at an 
angle of 40 degrees to the horizontal. If the block is in 
limiting equilibrium, find the coefficient of friction between 
the block and the plane.

The internal representation is;

isa( period,now ). 
isa( particle,block ).
cue linesys ( path, plane, [ lend, pt/moving, rend ] ).
concavity( plane,stline ).
incline( plane,40,pt ).
static( block,now ).
vh_side( block,plane,left,now ).
mass( block,mb,now ).
measure( mb,6,kg ).
coeff( plane,mu ).
solid( plane ).
fixed_contact( block,pt,new ). 
given( mb ). 
sought( mu ).
;-assert ( static (_,_) ).
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Example Solution

Here is an exairple solution of the strut problem. It requires 
the application of the principle "Resolution of Forces", to 
produce a single equation containing the sought quantity and 
various known quantities.

The problem-solving process described in this thesis halts at 
the point vAiere an equation with only one unknown quantity is 
produced, on the assumption that this equation can be solved.

Sought quantity; tl

Resolving vertically at "rend";

tl * sin 40 = ma * g

In this example, "tl * sin 40" is the upward component of the 
tension in the supporting string, "ma * g" is the weight of 
mass "a". Since no other force acts in a vertical direction on 
the right-hand end of the strut, these forces must be equal. 
This yields the equation from which tl may be found.
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Relative Difficulty of Problems

It may seem at first sight that this problem is too simple to 
yield any interesting behaviour or consistently erroneous 
procedures. Not a bit of it- the students in the experimental 
sample often found this problon impossible to solve unaided. 
The hardest of the test problems is undoubtedly the "unsliding 
block" problem, which was successfully solved ty the smallest 
proportion of subjects of any of the problems.
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Chapter III - Literature Review

This chapter examines the literature relevant to the 
development of computer-assisted learning and the psychological 
modelling of human problem-solving.
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The chapter is structured as follows;
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Computer-Assisted Learning

Corrputer-assisted Learning ( GAL ), has a history almost as old 
as the cortputer, and is currently undergoing a revival with the 
widespread distribution of programs aimed at microcomputers.

There are five main approaches to using the computer as a 
learning aid:

(1) Programrred Learning ( Author Languages )

( 2 ) Powerful Environments

(3) Simulation and Game Programs

(4) Generate-and-Test systems

(5) Demain Experts with Student Models.
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Programmed Learning

This is the oldest GAL approach, deriving from the programmed 
learning textbooks and "teaching machines", that were first 
developed in the 1950s ( Annett 1966 ).

The psychological basis for this approach was originally the 
behaviourist psychology of Watson and Skinner ( Skinner 1954 ) 
but later practitioners of programmed learning have adopted a 
more pragmatic approach. Essentially, à programmed learning 
program ( or text ), is a series of unitary screen displays 
called "frames"; after each of which, the user is required to 
answer a question in a format which only allows a restricted 
range of answers, such as multi-choice questions.

Depending on the answer given, a different frame will follow 
next, until the user has conpleted the prepared teaching 
sequence. Such programs are conceptually simple to design, 
although they require considerable care and detailed planning 
in organising and selecting the "frames" to be displayed. 
Exarrples of large- scale developments along these lines are the 
PLATO ( PLATO IV Software Group 1974 ) and TICCIT ( Bunderson
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1974 ) systems, both of which were designed to run on special- 
purpose hardware, both of vhich were originally designed to 
replace rather than supplement human teachers.

The main difference between the two systems from the 
educational point of view is that \Ailst TICCIT lessons were 
prepared by teams involving professionals from a variety of 
backgrounds, the PLATO project relied from the first on 
practising teachers producing their own teaching material. 
Consequently, there is a vast amount of PLATO teaching software 
now written, seme of better quality than others.

The results of these two large-scale projects have been dis
appointing when viewed in the light of their original 
projections;

- Programmed Learning courses have not been able to 
replace live teachers to any significant extent.
They therefore form an add-on cost to conventional 
instruction rather than a cut-priced alternative, or even 
a high-priced alternative ( Hooper 1975 ).
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- Classes taught exclusively by such teaching programs 
rarely achieve better results than control classes, 
and frequently suffer from higher drop-out rates ( O'Shea 
and Self 1983 ).

Since the inception of the PLATO and TICCIT projects, many, 
many programmed learning programs have been written for use on 
standard hardware, and similar conclusions apply to them as 
well ( Self 1974 ).

In order to facilitate the swift and easy production of frame- 
based teaching programs, a number of special-purpose languages, 
such as TUTOR ( Ghesquiere, Davies and Thompson 1974 ) and 
COURSEWRITER ( IBM Corporation 1971 ), have been developed. 
These have enabled ccmputer-naive subject eĵ )erts to produce 
programmed learning programs faster, but not to produce 
fundamentally different systems ( Sleeman and Brown 1982, see 
introduction ).
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The limitations on greater effectiveness for this type of 
teaching seem to be twofold:

( 1 ) The program does not "understand" its subject matter 
in any way.

(2) The program does not usually have any idea of what the 
learner does or doesn't know. Attempts to index topics 
leamt via flags set by answers to particular frames 
have proved cumbersome and inflexible to use.

Any apparent "understanding" exhibited by the program is the 
result of careful forethought by the designer of the frames 
displayed. He is required to predict in advance what answers 
a user will make to the questions, deduce from this what the 
user's state of knowledge is, (or will be), and what action the 
program should take from that point on. Not only is this a 
very difficult thing to do, especially when one only has such a 
coarse instrument as a multi-choice question to diagnose errors 
by, but the task is in principle an enormous one relative to 
the size of the teaching sequence.
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This follows from the fact that if at each stage of a sequence 
there are N possible choices, then the number of possible 
frames needed to allow for every conceivable path through a 
teaching sequence of X frames is:

Stage No of Frames at this Stage
1st 1
2nd N

2
3rd N

(X-1)
Xth N

2 (X-1) X
1 + N  + N +  . . . + N  = N - 1
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For example, let us suppose we have a teaching program in which 
every frame can lead to four possible student responses. Then 
the number of frames required is;

Length of teaching sequence No. of frames
in Stages

5 1023

10 1,048,575

15 1,073,741,823

20 1,099,511,627,775

Even with a limited branching rate ( and hence a rather coarse 
information feedback mechanism ), the number of frames needed 
becomes unmanageably large after even a short lesson sequence. 
If an author were able to complete a frame in ten minutes, then 
it would take eighty-five years to complete the frames required 
for a ten-lesson sequence ( assuming the author works forty 
hours a week for fifty weeks a year ). The disproportionate
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increase in workload compared with increase in the task 
undertaken is termed "comibinatorial explosion", and is an 
insuperable difficulty for any system based on pre-stored 
responses to student actions.

Powerful Environments

A radically different approach to the use of computers in 
education is to provide an interactive computing environment 
in which the user can investigate the space of possible actions 
available to them. The philosophical underpinning of this is 
the concept that people leam more by doing than by being done 
to ( Piaget 1971 ).

Projects taking this approach have varied in the extent to 
\diich the student's actions are structured. At one extreme is 
the belief that the students should decide entirely for 
themselves what direction to take, and should not be guided 
even implicitly in any particular direction. At the other 
extreme, the interactive environment can be seen as an aid to 
learning a particular syllabus, and the student can be given 
explicit instructions as regards vhat type of problems to 
solve, and how to go about solving them.
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It is essential in this approach that the interactive language 
should be easy to use; and also that it should be a natural 
medium for the expression of the kind of concepts that it is 
designed to deal with. The LOGO language has been developed at 
MIT ( Papert, Watt, diSessa and Weir 1979 ), and its 
application to teaching investigated at Edinburgh University 
( Howe, O'Shea and Plane 1980 ) as a medium for the expression 
of programming and problem-solving concepts in general, and 
graphical concepts in particular. Papert ( 1980 ) speaks of 
"powerful ideas" which develop naturally when a student uses an 
interactive environment in which they are naturally 
expressible. These "powerful ideas" are high-level problem
solving concepts hard to define in any specific way, but vital 
for the development of general problem-solving skills.
Examples might be the idea of breaking a problem down into 
inter-connected subproblems, the ideas of recursion and 
iteration, or the idea of formally specifying algorithms for 
problem solution.

The approach to LCGO propounded by researchers at MIT is to 
introduce the language to children in a non-directive way, in 
the belief that student-motivated action and interaction will 
inevitably lead to the development of powerful ideas and in 
inprovement in general problem-solving skills ( Papert 1984 ).
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At Edinburgh, a more structured approach was errployed, in which 
LOGO concepts were related to the secondary Mathenatics 
curriculum. Worksheets and exercises were produced, and 
students were given lessons in the use of LOGO. There was a 
considerable latitude for student experimentation as well, 
which supplemented the more directed parts of the student's 
LOGO experience ( Howe, Ross, Johnson, Plane and Inglis 1982 ).

A major problem with LOGO projects has been the difficulty of 
evaluating them. The more closely the use of the language has 
been tied to an existing syllabus, the easier it is to evaluate 
as a tool in learning that topic. Evaluations conducted at 
Edinburgh have shown some benefit to student's mathematical 
abilities, especially to students with learning difficulties 
( Goldenberg 1979 ) ; but it is not clear whether these 
improvements could not have been obtained by the same amount of 
effoirt expended on traditional forms of teaching.
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Evaluating unstructured LOGO use by students is virtually 
iitpossible, because it is impossible to know what is being 
claimed. Soræ people introducing LOGO into education in this 
way even argue that evaluation is irrelevant or in some way 
harmful. Papert ( Papert 1984 ) describes the ideal 
educational environment in the following terms;

"Society will be able to face the task of inventing 
environments in which children can develop as social, 
loving, honest human beings wdthout distorting this goal 
by the crudely technical one of stuffing the 
multiplication tables into their heads. "

The other language which has been proposed for use as a 
"powerful environment" is PROLOG ( Briggs 1982 ). This is not 
designed as a graphically ejq)i?essive language like LOGO; but 
its strong points as an educational tool are that it is easy to 
develop relational databases in PROLOG, and that much of its 
syntax and semantics are derived from logic ( i.e. the 
predicate calculus ). Database query systems are easy to 
develop in PROLOG, and its similarity to predicate calculus 
allows the user to develop what soræ PROLOG users consider to 
be a powerful idea- the fact that a statement in PROLOG has a
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dual interpretation. Any PROLOG statement ( or "clause" ), can 
be read "declaratively", as a statement that some relationship 
is true; or "procedurally", as an instruction to perform some 
set of operations ( Kowalski 1984 ). Unlike LOGO, PROLOG is 
also used outside the classroom for writing large programs; but 
like the work with LOGO, the PROLOG projects are hard to 
evaluate, and for similar reasons. It is not clear what would 
constitute success for a scheme that involved teaching PROLOG 
in schools, unless learning PROLOG were seen as an end in 
itself.

Simulation and Game Programs

A separate approach to computer assisted learning is given by 
simulations and game programs.

In a simulation program, some real-life system is modelled by a 
computer program. The user is able to choose various initial 
parameters, and see how the model develops, the purpose being 
to illustrate and explain whatever is being simulated. Such 
programs are widespread, for example there are simulation 
programs dealing with atomic and molecular orbitals ( Buist
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1978 ), population dynamics ( Boyle and Anderson 1978 ), 
biological simulations ( Murphy 1981 ), and so on. In many 
cases, these programs represent things that are difficult, 
slow, expensive, or impossible to model in laboratory 
experiments. Unlike programmed learning systems, a simulation 
program does not necessarily require a "correct answer", from 
the student- the task of the program is to supply the answers 
itself.

Evaluating the student's knowledge is not usually the function 
of such systems, and the choice of different material 
appropriate to a student's needs may not arise- a simulation is 
designed to illustrate rather than test.

Ccnputer games may resemble simulations superficially, but they 
have the added factor that the student can win or lose; and 
that therefore he can make better or worse moves. This makes 
it possible in principle to infer the student's knowledge 
state, and therefore to act in such a way as to refine or 
extend it.

Two examples of computer games intended to be used in a CAL 
context, ( rather than as amusement arcade novelties ), are 
WEST ( Burton and Brown 1982 ) ; and WUMPUS ( Goldstein 1982 ).
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The WEST piogram sets up an interactive game for the user 
called "How the West was Won". In this, a pictorial 
representation of a winding road appears, and the user has to 
conduct a "stagecoach" from one end to the other, taking 
advantage of short cuts if possible.

In every move, the user is presented with three randomly chosen 
integers, and is required to make a "move" corresponding to the 
result of arithiretical operations on the numbers. For 
instance, if the numbers available were 3, 2 and 5; he could 
select the move values;

( 3 + 5 ) / 2 = 4 

3 * 2 - 5  = 1

3 * 5  + 2 =17

and so on,

When a value is selected, the stagecoach moves forward that 
number of spaces, and then takes a shortcut if it lands on one. 
The idea is to familiarise the student with basic arithmetic 
operations.
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Burton and Brown realised that in practice, many students were 
settling for a particular strategy that sometimes predicted 
suboptimal moves. Giving students a game and letting them get 
on with it did not necessarily lead to a full comprehension of 
the domain. They concluded that a "coach" was necessary which 
would model the student's knowledge state, and make suggestions 
and comtents as necessary. Knowing when to interject was 
regarded by Brown and Burton as a difficult problem, whose 
solution depended on an accurate student model.

Extensive testing of WEST with both real and simulated 
students showed that it developed accurate student models when 
the students behaved consistently, and that coached students 
performed better than uncoached ones. Browzn and Burton 
expiBssed caution about the possibility of transferring their 
techniques to more cortplex wforlds because of the limited nature 
of the WEST environment.

Goldstein's WUMPUS program was designed as a test-bed for 
theories of knowledge representation and tutoring, rather than 
for teaching a specific skill. In this game, the player visits 
various caves in a labyrinth, seeking the deadly Wumpus, and 
slaying it with arrows if possible. Since the caves are dark 
as drainpipes, the player can't actually see anything, but is



73

informed of squeaks ( for bats ), draughts ( caused by pits ), 
and smells ( caused by the Wumpus itself ). The skill in 
playing the game consists of being able to evaluate evidence 
from multiple sources regarding danger, and of inferring the 
location of the Wunpus.

Absence of indicators such as smells and draughts also needs to 
be evaluated to infer which caves are safe to enter. Goldstein 
drew up a procedural representation of the knowledge necessary 
to play the game, and structured it in the fom of a directed 
graph.

This procedural graph was intended to model not only a 
student's knowledge, but also the growth and development of his 
strategic knowledge as he learned more sophisticated WUMPUS 
playing strategies. This is done by representing the student's 
knowledge at any one time as a subset of the nodes of the 
Genetic Graph which corresponds to the expert's procedural 
knowledge.

The goal of the program was firstly to develop an adequate 
formalism to describe the growth and development of procedural 
knowledge; and secondly to compare the effectiveness of 
diffeiænt tutoring strategies. Goldstein was convinced that a 
competent tutoring strategy could only be built if it could
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make use of a student model. As Goldstein says, "To offer 
appropriate tutorial advice, a teacher must accurately model 
the student."

Goldstein did not ccnpare the effects of learning MJMPUS Wiile 
tutored by his program to the effects of learning WUMPUS from a 
human tutor. Therefore any evaluation must be tentative. His 
own conclusions about the effectiveness of the tutorial program 
based on the genetic graph ( referred to as "GG" ), "were:

"It provides a more powerful foundation for modelling 
than either a script of correct answers or a set of 
expert skills. Nevertheless, the GG does not solve the 
modelling problem. While the process of constructing a 
model gains guidance from the graph, it remains complex."
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GŒierate-and-Test Systems

For the teaching of procedural skills such as subtraction or 
circuit analysis, an alternative to storing large numbers of 
questions on a file is to generate questions by some process 
internal to the program, ask the student for his answer, and 
then compare his answer with that of another process capable 
of solving the problem. On the basis of this comparison, 
feedback can be given to the student about his performance.
An exairple of a generate-and-test syston which has been 
developed is SOPHIE, which teaches fault analysis in electronic 
circuits ( Brown, Burton, and deKleer 1982 ).

Unlike frame-based teaching programs, generate-and-test systems 
do have an understanding of what they atterrpt to teach, in the 
sense that they can solve the problems they expect the student 
to cope with. Another advantage of such systems is that they 
are in principle capable of asking an indefinitely large number 
of questions- they are not limited to a pre-stored list of 
exairples ( Palmer and Oldehoeft 1975 ).

Since the program has to generate problems, solve them, and 
then catpare the student's answer with the computed solution.
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such systems require more sophisticated programming than frame- 
based systems, and their production cannot be streamlined by 
the use of special purpose languages like the author languages 
already mentioned. This makes them significantly more 
expensive, and in many cases too large to run on a small 
computer.

Although generate-and-test systems are complex from the 
programming point of view, in some ways they offer less 
opportunity for incorporating sophisticated educational 
insights into their behaviour. Since the control and 
remediation strategies of a frame-based program are inherent in 
the pre-stored frames, it is possible for an author with a 
sophisticated understanding of what is being taught to 
anticipate the most likely errors on the part of the future 
users of the system, and to incorporate frames intended for the 
clarification of particular expected errors. This is not 
possible with a generate-and-test system, because the creator 
of the system will not know exactly what questions will be 
asked. The system's reaction to the student's input is 
therefore more likely to take the form of a sirtple 
indication of whether the answer is right or wwong. If the 
demain is appropriate, the student could be infonæd of the 
consequences of his intended actions.
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For exaitple, the SOPHIE program simulates the behaviour of an 
electronic circuit. A fault is chosen, and the behaviour of 
the faulted circuit calculated. The user can ask for voltage 
and current readings at various circuit locations, and is 
expected to work out the nature of the fault.

He can instruct the program to replace cortponents he believes 
faulty, and it will calculate the consequences of this action. 
The program can be said to have a good working knowledge of 
circuit analysis, but the original version had no knowledge of 
the student, and could not adapt its chosen exairples or 
explanations to the level appropriate to the student's 
knowledge, ( later versions of SOPHIE have been developed in 
this direction ).

Another exairple of a generate-and-test system is ACE ( Sleeman 
and Hendley 1982 ), which teaches students to interpret nuclear 
magnetic resonance spectra. This selects a problem which 
consists of a fonralised numeric representation of a nuclear 
magnetic resonance spectrum for sorre chemical. The system has 
access to a module which is able to determine the chemical 
structure of the molecule by an algorithm involving qualitative 
reasoning and backtracking. The student is then asked to make 
statements about the molecule on the basis of the spectrum, and 
these are corrpared with the conclusions of the problem-solving
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mcxiule. The system can confirm the student's hypothesis, or 
indicate why it is wzrong ( i.e. what contradictory evidence is 
present ). It can also explain why inccmplete student 
statements are defective.

Since the ACE system solves the problems in a similar manner to 
an expert, it can also give a partial or complete demonstration 
solution to the student if required.

However, although ACE identifies incorrect steps in a student's 
arguments, it has no way of irepresenting systematic student 
errors or misconceptions, and is therefore unable to predict 
problems which will occasion difficulty in the future, or to 
classify general topics in need of remedial explanation.
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Domain Experts with Student Models

A program that actively teaches a student, rather than one 
which gives him practice in something he alreacty has a basic 
corrpetence in, must have seme way of inferring the student's 
knowledge state ( Self 1974, Ohlsson 1986 ). This is necessary 
for the tutorial program to be able to select appropriate 
questions to present to the student, and for it to select 
appropriate remedial actions in the event of the student being 
unable to solve a problem.

Frane-based programs have no explicit student model ( other 
than perhaps cumulative scores of right and wrong answers ), 
but they can embody considerable tutorial sophistication in the 
design of their frames and their sequential relations with each 
other. Any such analysis depends on the subject expert v^o 
defines the teaching sequence. Its usefulness is in practice 
limited by the combinatorial explosion described earlier to 
dealing with only a handful of the conceivable cross-product of 
knowledge states and exairple problems.

Therefore a natural development from generate-and-test systems 
are domain experts incorporating student models. Such programs
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are sometiræs referred to as "intelligent" tutorial systems, 
because they have the potential for adaptive ( i.e. 
"intelligent" ) interactions with the student.

As an elaboration of generate-and-test systems, intelligent 
tutorial systems are even more complex, and consequently they 
are expensive to write in terms of the time needed ( at least 
two orders of magnitude dearer than frame-based programs ); and 
typically they require large systems on vAiich to run. This 
last feature is becoming of decreasing importance as the cost 
of computing declines, but the cost of writing the software 
remains a large overhead.

In order to conpare the student's answers with those of the 
demain expert module, it is of course necessary that the demain 
expert should solve problems in the way that it is desired that 
the student should do. A "black box" expert which produces 
answers by a method having no relation either to the student's 
actual or target thought-processes cannot be used as the basis 
of an Intelligent Tutorial Systen. A degree of psychological 
validity is required of the problem-solver, especially as 
regards the generation and sequencing of its high-level goals. 
If this is not the case, then the task of caparing the 
student's output with that of the expert module in order to 
identify the student's errors becomes impossibly difficult.
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Types of Student Model

The representation of the student's knowledge, or "student 
model" can be:

(a) Implicit

(b) Stochastic

(c) Overlay Model

(d) Malrule Model

(e) Student Simulation
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Implicit Models

A system can be said to have an implicit student model if it 
behaves as if there were a model of the student's knowledge 
embedded in the program, while there is actually no explicit 
data-structure fulfilling such a role. Such models are catmon 
in frame-based programs, but the dissociation of domain 
knowledge from specific pioblems inherent in programs with 
domain experts makes an implicit model unrealistic for more 
sophisticated systems.

Stochastic Models

A program has a stochastic model if it represents the student's 
knowledge as a set of conditional probabilities that given 
particular input states, they will respond with particular 
outputs. Such a model is only applicable to domains with 
enumerably many states, such as vocabulary learning.
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Overlay Models

An overlay model is one in which various parts of a correct 
procedural demain knowledge representation are marked as 
"known" or "unknown" by the student. That is, it assumes the 
student's knowledge is a subset of the demain expert's.

A correct answer by the student to a problem for which the 
demain expert uses facts FI, F2, and F3; and rules R5, R6, and 
R7; would therefore constitute evidence that the student knew 
FI, F2, F3, R5, R6, and R7.

If the tutorial goal of the system were to ensure that the 
student knew all relevant facts and rules in the domain, it 
could select the next problem for the student by choosing a 
question whose solution would involve facts and rules not known 
to have been learned by the student. Also, at the end of a 
tutorial dialogue, the program can in principle inform the 
student of what elements of the syllabus they are known to have 
mastered, and which elonents they are not.
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An exairple of a tutorial program with an overlay student model 
is the BIP systen ( Barr, Beard and Atkinson 1976 ), which 
teaches programming in the BASIC language. The program has a 
"curriculum" of concepts which it is intended that the student 
should leam, and it selects problems for them to solve in such 
a way as to check their corrpetence in all topics on the 
curriculum with a minirrrum of redundant effort. This is done by 
maintaining a list of topics which may be used in a question - 
the MAY set. This corprises all topics at the current level of 
difficulty in the curriculum or less. It is therefore 
implicitly assumed that the student wn.ll have been taught these 
topics, and so they may be made use of in questions.

A list of topics on which the student needs further work, on 
his own estimation or that of BIP, is called the MUST set 
because they are topics that he MUST leam more about. In 
general, the MUST set will be a proper subset of the MAY set.

A problem is selected for the student using only skills in the 
MAY set, which maximises the number of skills required from the 
MUST set. This aisures that he will be directed to work on 
topics that need practice, without introducing topics he hasn't 
yet covered.
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The main problem with overlay models is that in general, a 
student's knowledge will not consist sinply of a subset of the 
expert's knowledge, but will include errors and misconceptions : 
errors of fact and misconceptions as to how to carry out 
algorithmic procedures. These cannot be dealt with by an 
overlay model, and yet from the tutorial point of view, the 
errors and misconceptions in a student's knowledge are perhaps 
the most important features of that knowledge - good 
educational practice demands that they be sniffed out, hunted 
to earth and destroyed like rabid foxes; and not just ignored 
in the frivolous hope that they will go away.

Modelling errors of fact is fairly straightforward- if the 
program contains a list of the capitals of different countries, 
and the student appears to think that Gorgonzola is the capital 
of Italy, all that is required as a student model is a list to 
record that the student thinks Gorgonzola is the capital of 
Italy.

Representing erroneous procedural beliefs is more challenging. 
Firstly, the program will probably not have access to 
intermediate levels of working, but will have to infer the 
error fmm its result. Secondly, more than one erroneous 
procedure may produce the same result. Thirdly, some erroneous 
procedures may rresult in there being no output at all. How do
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you tell vdiat procedure produced the behaviour when there is no 
behaviour? This is an example of the so-called "assignment of 
credit problem" ( Sleeman and Brown 1982 ), and is a major 
unsolved problem for cognitive science as a whole.

In order to represent erroneous procedures in a student model, 
it is necessary to have an accurate and largely corrplete theory 
of what erroneous procedures are possible in a given domain.
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Malrule Models

If a procedure carried out by a human problem-solver is 
represented by a set of rules in a formal language, then an 
incorrect procedure can be represented by a procedure 
containing one or more incorrect rules. These are known as 
"malrules" ( Sleeman 1981 ). The essential features of a 
malrule are:

(1) In the context of the correct problem-solving rules, 
the malrule-containing procedure is capable of 
generating the incorrect target behaviour.
i.e. Malrules are generative.
It is this feature vhich distinguishes malrules from 
other forms of error description, and makes them more 
precise and more useful.

(2) Malrules are in some sense minimally psychologically 
representative. That is, they cannot be factored into 
smaller units which are themselves psychologically 
accurate, but in themselves are intended to represent 
psychological processes that take place in human 
problem-solving.
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Thus, a description of a student's problem solution in a 
chemical demain as "The student is unable to distinguish 
different halides in ionic solution", is not a malrule, because 
it does not explain what the student actually does do in a 
given situation.

A procedure \hich could account for a wd.de range of correct and 
incorrect behaviour, but which had nothing in common wdth a 
totally correct procedure would not be considered a malrule 
either, because it would not be a replacement for a small part 
of the correct procedure, but rather an alternative theory.

In this wTork, the wrord "misconception" is used in a vague way 
to mean "incorrect fact, algorithm or heuristic"; while 
"malrule" is used in the more specific sense given above.

Student Simulations

Ohlsson ( 1986 ) has proposed a category of student model 
called "student simulations", which go beyond the inclusion of 
malrules into a correct procedure. Such a Student Model would 
also incorporate knowledge of the student's heuristics, goal
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structure, and other meta-level control concepts. In 
principle, such a simulation would be executable. As yet, no 
published results describe systems which go beyond the "domain 
expert with malrules" level of student model.

Are Malrule Models Necessary?

An intelligent tutorial system incorporating a malrule model 
should in principle be able to recognise and note, not only 
correct student actions, but also incorrect ones. In several 
domains, the only method yet discovered for representing 
erroneous behaviour is one based on malrules. At present, 
therefore, only a malrule-based approach is capable of 
analysing and diagnosing erroneous student algorithms, and 
therefore only a malrule-based tutor is capable of correcting 
them. Although this is a significant potential advance, it is 
bought at a high cost in programming effort. Not only must a 
procedure be wvritten that embodies a correct problem-solving 
procedure, but procedures must be written that ertibocfy all, or 
nearly all, the incorrect methods that occur in real-life 
students. These may be numerous and obscure and can only be 
found by ej^riment. Thus to the task of writing one correct
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method is added that of finding N incorrect methods, and then 
writing the N incorrect methods as formal procedures. It seems 
that with every step towards more effective and intelligent CAL 
programs, there is a massive increase in the intellectual 
overhead involved.

Tait, Hartley and Anderson ( 1973 ) claimed that the 
effectiveness of an instructional program is largely determined 
by the program's ability to locate the causes of students' 
errors, and to provide feedback which draws the student's 
active attention to these causes. Self proposed a teaching 
program in which "An embodirtent of these errors as procedural 
bugs gives scope for various kinds of feedback processes"
( Self 1974 ). He advocated the development of student irodels 
capable of representing erroneous procedures as a key factor in 
developing more effective CAL programs.

Thirteen years later, few programs have been written using any 
student modelling system more complex than an overlay model. 
This must largely be attributed to the size of the task 
involved in collecting, identifying, and procedurally 
representing a significant proportion of the errors that occur 
in any non-trivial domain.

One system that has attempted to build a malrule model of the
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student working in its demain is HELPERR ( Jones and Tuggle 
1979 ). This system has been developed as a working system to 
teach addition, subtraction, multiplication and division of 
integers. The program, written in the PORTED language, 
generates arithmetical problems of the appropriate type for a 
student to solve at a terminal. The student's answer is 
analysed, and if it is not correct, the answer is compared to 
the possible outputs that would be generated by the errors 
in the program's taxonomy. These are derived from previous 
non-carputational analyses of arithmetical errors in the 
demain. In the event that a systematic error is diagnosed, the 
student is immediately informed of the nature of the error, and 
given a step-by-step demonstration solution of the problem. As 
questions are generated rather than stored, a student can be 
given indefinitely many problems to solve. The "student model" 
here consists of a list of those skills the student has 
covered, together with a list of the systematic errors 
( or "malrules" in our terminology ), which he has exhibited.

It was hoped by the creators of HELPEÊ R that the error 
diagnosis would be helpful to the student's teacher on its own, 
whether the automatic remedial actions of HELPEE^ wvere 
effective or not. Interestingly, Jones and Tuggle reported 
that the remedial actions of HELPEEIR were not very effective.
It was expected that immediate description to the student of
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the nature of his error would in itself be an effective form of 
treatment, but his expectation was not borne out by experience. 
Jones and Tuggle report "This did not appear to work very well. 
Quite probably several factors are involved".

Anderson and his co-workers have developed tutoring systems 
guided by student models for the domains of LISP tutoring 
( Farrell, Anderson and Reiser, 1984 ), and Geometry 
( Anderson, Boyle and Yost, 1985 ). In these systems, the 
demain expertise is represented in the form of production 
rules, and malrules are represented in the same format. The 
LISP tutor, for example, contains 325 correct rules, and 475 
malrules, which have been extracted from protocols. The 
student model is an overlay of this collection of correct rules 
and malrules, and the tutorial goal of the system is to 
ccramunicate all the correct rules and none of the malrules to 
the student. The student's internal state is inferred by 
monitoring each step, and comparing it wd.th the results of 
every possible applicable rule; a process termed 'model- 
tracing' by Anderson. Every time the student makes an error, 
he receives correction based on his inferred malrule or lack of 
a correct rule in his current situation.
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Test on small numbers of students have been claimed to show 
excellent results, both in terms of objective scores and also 
of student motivation.

Other researchers have also been convinced that accurate 
identification of the precise malrules operating within a 
student's knowledge base are essential to effective tuition. 
Stevens, Collins and Goldin ( 1982 ) analysed protocols of 
tutors discussing the causes of rainfall with individual 
students, and concluded that "Our analysis of dialogues shows 
that tutors spend a good part of their time diagnosing 
conceptual bugs frcm errors manifested in the dialogue. We 
believe that much of the teacher's skill as a debugger depends 
on knowledge about the types of conceptual bugs students are 
likely to have, the manifestations of these bugs, and methods 
for correcting them. At the present time, there does not exist 
a large enough body of research to answer with any confidence 
questions about the level of detail of student model needed for 
effective teaching, either by humans or machines. Such a body 
of research could only be done if there existed domain expert 
programs incorporating highly sophisticated student modelling 
components able to act as a test-bed for different tutorial 
strategies."
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Error Modelling in Problem-Solving Domains

Although few teaching programs have to date incorporated 
malrule-based student models, there have been a number of 
systems which attempt to model both correct and incorrect 
problem-solving behaviour as an end in itself. One domain in 
which considerable work has been done is that of the 
subtraction of integers.

Brown and Burton ( 1978 ) collected several thousand scripts by 
school students solving subtraction problems. From these, they 
analysed about a hundred and ten malrules ( which they term 
"bugs" ), each of which leads to specific wrong answvers when 
used wdth subtraction problems. They wrote a LISP program 
called DEBUGGY which, when given the answvers of a student to a 
set of problems, diagnoses the state of the student's knowledge 
in terms of the malrules present. This wms done by comparing 
the answvers produced by the student to the answers produced by 
LISP procedures contained in the program, each of which 
produced the same answers as one of the malrules.

Because the diagnosis takes place off-line after all the 
student's solutions have been produced, the program is able to
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compare its student model ( i.e. set of malrules hypothesized 
as being present ), with the whole of the student's output- not 
just with one answer at a time. DEBÜ3GY can not only be used 
to diagnose individual students, it can also analyse a proposed 
test in order to see if the questions given would distinguish 
different possible student malrules.

The DEBUGGY model of subtraction deals only with procedural 
knowledge as it exists at one ironent in time. It embodies no 
theory of how such knowledge may have developed, ( in this it 
resemibles HELPERR ). Such a theory is clearly called for, 
because many of the malrules identified by DEBU3GY correspond 
to actions which are not taught explicitly in arithmetic 
classes. Therefore the question arises : where do they come
from? This issue wvas tackled by Brown and Van Lehn ( 1980 ), 
who developed a theory of malrule genesis called "Repair 
Theory". A later version of this is to be found in Van Lehn,
( 1981 ).
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The essence of Repair Theory is as follows:

(1) A procedural skill is made up of subskills, which may 
be leamt independently.

(2) At any time, a student possesses a "core" of correct 
subskills which have been leamt.

(3) If the student tries a problem which cannot be solved 
using the correct core procedure in his possession, he 
wd.ll at some stage reach an "impasse", that is, a point 
at which his core knowledge cannot be applied to 
proceed wdLth the problem.

(4) When a student reaches an impasse, he applies one of a 
small number of domain-independent procedures called 
"Repair Rules", to his incomplete core procedure. The 
repair rule generates an extension to the procedure 
which may be correct, but may be a malrule.

(5) The "repaired" procedure is then executed, producing a 
( possibly incorrect ) result.

The initial rationale behind this theory w?as the insight that a
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typical defective cotputer pirogram exhibits halting behaviour 
when executed, but human problem solvers often do not. For 
seme reason, people avoid halting behaviour, even when equipped 
wTith inadequate problem-solving procedures.

Brown and Van Lehn believe that the particular repair rule 
selected is independent of the inpasse that made it necessaiy. 
They further make the strong claim that repair rules are 
domain-independent. It is not clear how they arrive at this 
conclusion, since their published wvork relates exclusively to 
subtraction, a domain in which the algorithms correspond only 
indirectly to intuitive concepts.

Van Lehn believed that from the nature of the repairs one could 
gain insight into the structure of the underlying knowledge 
representation used by the human problem-solver. He chose to 
examine two particular operators- the deletion operator that 
"forgets" core procedures, and a repair rule called "backup", 
that returns the solver to an earlier state when an impasse is 
reached.

Alternative underlying control structures wvere considered which 
might account for these repairs, and any that wvere clearly 
insufficient to produce the relevant behaviour wvere rejected. 
Any which required unlimitedly large resources in the wvay of
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memory or other requirements were also rejected. This left 
only one possible underlying architecture to be considered- a 
result that did not depend sensitively on estimations of 
algorithmic efficiency. Van Lehn says, "By studying the kinds 
of changes they make, their carputations, one can understand 
what requirements must be placed on the mental representations 
that they manipulate." The control architecture inferred by 
Van Lehn for a human problem-solver using repair rules 
possessed the following features :

- it must be possible for the interpreter to return to an 
earlier execution state, frcm which an alternative 
control path to that chosen previously, ( this is the 
constraint that backtracking should be possible ).

- when control is returned to an earlier state, the data 
values are reset to the values that obtained in the 
earlier state as well.

- the interpreter must be capable of coping wvith recursive 
procedure calls.



99

- the procedure representation language must be 
hierarchical in that it supports the notion of goals with 
subgoals. When backtracking occurs, the interpreter 
searches up the hierarchy sta2rting from the current goal, 
going up from goal to supergoal, until it reaches one 
that can return an alternative result. This is 
equivalent to keeping the procedure goals on a stack.

Van Lehn says " . . .  the execution state should be a stack, 
which entails that the knowledge representation for core 
procedures has a goal-subgoal calling hierarchy".

- the goals are typed as AND goals or OR goals. An OR goal 
succeeds if any of its subgoals succeeds, and an AND goal 
succeeds if all its subgoals succeed. Clearly, #ien the 
interpreter starts backtracking, it must backtrack as 
far as an OR goal.

- the language used is applicative. That is, all data is 
passed via procedure parameters, and there are no comnon 
variables at all. The only other way data can be 
accessed by different goals is by being stored externally 
on paper, for example.
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Interestingly, all of these features are possessed by the 
PROLOG language, a fact which Van Lehn does not mention.

Young and O'Shea ( Young and O'Shea 1981 ) examined the same 
field of subtraction problems, and also produced a corputer 
model to account for the errors made by students. Its coverage 
of student errors was comparable to that of DEBU3GY, but its 
representation was different. Instead of LISP procedures, the 
student's method was represented by a set of production rules 
( Davis and King 1977 ). A correct subtraction strategy on the 
part of the student corresponded to the presence of all 
the relevant production rules. Erroneous results are obtained 
by the emission of productions, or the inclusion of incorrect 
productions- most of which relate to calculations involving the 
zero digit. Young and O'Shea claim that ".. .the algorithm 
errors can without exception be accounted simply by emitting 
rules from the correct set", and hence the need to repair 
defective procedures does not feature highly in their work.
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A similar approach towards accounting for systematic student 
errors has been taken by Sleeman and Smith ( 1981 ), with 
respect to the solution of linear algebraic equations. The 
Leeds Modelling System ( IMS ) represents the solution of 
linear algebraic equations such as:

2 * X  + 4 * X  + 4 = 16

by production rules vhich successively simplify the expression 
until a solution is reached. Only eleven such rules are 
required, and in order to generate systematically erroneous 
solutions, some incorrect "iralrules" are necessary; one or more 
of which are added to the rule set. In this domain, Sleeman 
and Smith were unable to represent erroneous solution paths by 
simply omitting rules or including rules for other domains.
Nor did they hypothesize an independent repair mechanism. The 
malrules used bore a marked syntactical resemblance to the set 
of correct rules, but this resemblance has not been formalized 
in such a way as to enable their generation.
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Problem-Solving in Physics

Conputational systems able to solve problems in the domain of 
Physics have been developed by Larkin, McDermott, Simon and 
Simon ( 1979, 1980 ), and by Bundy, Byrd, Luger, Mellish and 
Palmer ( 1979 ). Of the two, the system developed by Larkin et 
al is more concerned with psychological and educational issues, 
especially with structural differences between the knowledge of 
experts and that of novices.

Since these systems relate directly to the topics dealt with by 
NEWT, they will be studied in more detail than the other 
systems described, and will be dealt with fully in the next 
chapter.
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Conclusion

This chapter has looked at some of the different types of 
computer-assisted learning that have evolved over the past 
twenty years; and has examined the case for basing computerised 
tutorial systems on an accurate psychological model of the 
student- including a model of the student's errors and 
misconceptions.

Some different approaches to modelling student expertise and 
student errors have been examined, and in particular the 
malrule approach has been investigated with respect to the 
domains of integer arithmetic and the solution of linear 
equations.

In the next chapter, work on the computational modelling of 
physics problem-solving will be looked at, and compared to 
existing experimental data. Conclusions about the problem
solving structures used by experts and novices will be inferred 
from this analysis, which have implications for the 
construction of tutorial programs in this area.
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Chapter IV Control Strategies and Problem Representation

in Physics Problem-Solving

This Chapter examines published studies of human problem
solving in the domain of Newtonian Mechanics; with particular 
reference to theories of control strategy and problem 
representation.

Existing theories in this area ai^ compared with the data 
available, leading to the formulation of a control strategy 
termed "Planstacking", and to two mechanisms for knowledge 
representation termed "Sketch Construction" and the "Hidden 
Curriculum Assumption of Non-Redundancy".
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The Problem Domain

There is a wide range of problems in Physics, vhose solution 
may be described like this:

Problem — > Generate — > Solve — > Answer
Statement Simultaneous Equations

Equations

Domains for which this applies include kinematics, dynamics, 
statics, thermodynamics and DC circuit theory. Here is an 
example:
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/

* fixed point
/
/ string]

_stringl_

Table Strings

Problem; A block of mass mb rests on a rough horizontal plane, 
Wiose coefficient of friction is mu, the block being 
in limiting equilibrium. The block is pulled by a 
horizontal string attached to two other strings, one 
at an angle of 45 degrees to the horizontal vAiose 
other end is fixed, and one hanging vertically. On 
the other end of the vertical string a mass of ma is 
suspended. Find ma.

As this particular example has been studied by a number of 
researchers, I shall use it here as a "test-bed", to 
demonstrate various possible solution methods.
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All solutions lequire a number of applications of the 
"resolution of forces" principle applied in a number of 
different situations. Each application of the principle 
generates an equation, and the set of equations generated allow 
one to solve for the sought unknown. We shall not dwell on the 
question of how the problem is translated from natural 
language, or how the equations are solved, but will focus on 
the intermediate "Physics" stage of the solution.

Three possible control strategies for generating equations are 
described; backward inference, forward inference, and backward 
planning followed by forward equation generation ( referred to 
here as "planstacking" ). These are the strategies that have 
been proposed by various workers as descriptions of human 
problem-solving methods.

Backward Inference

When using this method, the problem-solver starts with the 
sought unknown, and generates an equation which contains that 
unknown ( and preferably no other unknown ). If there is still 
another unknown left to find, this procedure is repeated until 
an equation has been generated for every unknown.
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If the tensions in the three strings, stringl, string], and 
Strings are taken as tl, t], and tS respectively; and the 
reaction of the table on object b is called "R", then this 
leads to the following solution:
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Remaining
Principle Context Ecruation Ikiknowns
Resolve
Forces

vertically 
at a

t3 - ma * g = 0 t3

Resolve
Forces

vertically 
at the junction

t2 * sin 45 - t3 = 0 t2

Resolve
Forces

horizontally 
at the junction

t2 * cos 45 - tl = 0 tl

Resolve horizontally 
at b

tl - mu * R = 0 R

Resolve vertically 
at b

R -- mb * g = 0 nil

Forward Inference

With this method, equations are generated if they allow for the 
evaluation of an unknown quantity. This process is repeated in 
the hope that eventually the sought unknown will be generated.

Known
Principle Context Eouation Quantities
Resolve
Forces

Vertically 
at b

R -- mb * g = 0 mb. R

Resolve
Forces

Horizontally 
at b

tl - inu * R = 0 mb,
tl

mu. R,

Resolve
Forces

Horizontally 
at the junction

t2 * cos 45 - tl 
=0

mb,
tl.

mu,
t2 Rf

Resolve Vertically t2 * sin 45 - t3 mb. imu. R/
Forces at the junction =0 tl. t2. t3
Resolve Vertically 

at a
t3 - ma * g = 0 mb,

tl,
ma

mu,
t2. R.t3.



110

Planstacking

With this method, a principle is chosen vhich would generate an 
equation able to solve for the currently sought quantity. 
Instead of being used to generate the equation immediately, the 
principle and its relevant context ( which will be called a 
"plan" ) are stored on a stack. If the equation that the plan 
would generate would include another unknown quantity, a plan 
is developed to find this as well.

Successive plans are pushed on the stack until no sought 
unknowns remain. Then the plans are successively unstacked, 
and as each plan is popped off the stack, it is used to 
generate an equation.



Ill

Soughts Equations
Planstack Remaining Generated
Resolve forces vertically at a t3
Resolve forces vertically at junction t2
Resolve forces vertically at a
Resolve forces horizontally at junction 
Resolve forces vertically at junction tl
Resolve forces vertically at a
Resolve forces horizontally at b
Resolve forces horizontally at junction R
Resolve forces vertically at junction
Resolve forces vertically at a
Resolve forces vertically at b 
Resolve forces horizontally at b
Resolve forces horizontally at junction - -
Resolve forces vertically at junction 
Resolve forces vertically at a

No remaining sought unknowns - now pop stack
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Equations
Planstack Generated

Resolve forces vertically at b R - irib * g = 0
Resolve forces horizontally at b
Resolve forces horizontally at junction
Resolve forces vertically at junction
Resolve forces vertically at a
Resolve forces horizontally at b tl - mu * R = 0
Resolve forces horizontally at junction 
Resolve forces vertically at junction 
Resolve forces vertically at a
Resolve forces horizontally at junction t2 * cos45 - tl = 0
Resolve forces vertically at junction 
Resolve forces vertically at a
Resolve forces vertically at junction t2 * sin45 - t3 = 0
Resolve forces vertically at a
Resolve forces vertically at a t3 - ma * g = 0
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Canparison of the three methods

Of course these three problem-solving control strategies are 
not the only ones possible. It is quite possible for someone 
to generate the relevant equations in any order. In 
particular, they could generate one or two equations by forward 
inference, and then finish the problem by backward inference, 
or they could start by backward inference and then finish by 
forward inference, or they could build a planstack and pop it 
before all unknown quantities were accounted for. However, we 
shall restrict this analysis to these three well-defined 
strategies.

Backward Inference

This method guarantees that only relevant equations are 
generated. Any new unknown introduced can be identified hy a 
simple syntactic check of the equation generated. It is not 
possible to solve any of the equations until the last one has 
been found, because only the last one will contain a single 
unknown. It is similarly impracticable to collapse equations 
together by substituting expressions for one unknown into a 
subsequent equation.



114

Forward Inference

Irrelevant equations may be generated if irrelevant information 
is present. Note that the given problem, like many textbook 
problems, does not contain irrelevant information, so that this 
question does not arise here. New unknown quantities can be 
identified easily. Each equation can be solved as it is 
generated, and the value of the corresponding quantity 
substituted into the next equation when it is generated. This 
makes the equation solution a much easier process than for the 
backward inference method. Notice that on the example given 
above, forward inference generates equations in exactly the 
opposite order from backward inference- an observation which 
holds for many problems in this domain.

Planstacking

This will not generate irrelevant equations, and each equation 
can be solved as it is generated. Equations are generated as 
the stack is popped in the same order as by forward inference. 
It is necessary for the problem-solver to be able to infer what 
quantities would be present in an equation without actually 
generating the equation, and it is also necessary for the 
problem-solver to have enough working memory to hold the 
planstack.
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General Comments

I have worked through the implications of these three control 
strategies in some detail, because knowledge of the problem- 
solver's methods can most reliably be inferred from their 
actions. It is therefore necessary to be familiar with the 
consequences of all possible hypotheses in order to know what a 
given observation implies. Larkin ( 1979 ), Luger ( 1977,
1981) and Van Lehn ( 1981 ) all make claims as to the nature of 
the human problem-solving processor, based on inferences from 
subjects' solution traces. As we shall see, these claims are 
incompatible with each other, and can only be evaluated by 
considering the consequences of the different problem-solving 
strategies that these researchers use in their respective 
models.
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The MECHO program

The MECHO program was developed by Bundy, Eyrd, Luger, Mellish 
and Palmer ( 1979 ). It was designed to take a statement of a 
Physics problem and generate from it a set of equations that 
would solve for the sought unknown or unknowns in the problem. 
In concert with this, the MECHO team developed a natural 
language interface able to translate problems in English into 
predicate calculus assertions which the problem-solver uses as 
its database. They also developed an equation-solving program 
known as PRESS, vhich was able to solve the sets of equations 
that MECHO generated.

MECHO was written in PROLOG, and was intended as an efficient 
domain expert rather than as a psychological model. However, 
the basic control strategy derives from the work of Marples 
( 1974 ), who devised the "Marples Algorithm" as a teaching aid 
for undergraduate Engineering students, and so is based on an 
analysis of human performance. The Marples Algorithm is a 
specialised form of "means-ends" analysis- that is, it works by 
backward inference.

Firstly, a plan is selected which will generate an equation 
containing the sought unknown, and if possible, no other
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unknown quantities. The plan consists of a principle, together 
with a context in which the principle can be applied. When the 
plan has been created, it is used to generate an equation 
involving physical quantities. This equation is then checked 
to see if it includes the sought unknown. If it does not,
MECHO backtiHcks and creates an alternative plan. If the 
equation contains only the sought unknown, MECHO has finished. 
If it contains the sought unknown and another unknown, MECHO 
marks this new unknown as "sought", marks the original 
sought as "known", and the Marples Algorithm is called 
recursively in order to solve for the new quantity. Thus MECHO 
contrives to generate new equations until no sought unknowns 
remain.

Thus the algorithm depends crucially on three things:

- selecting a principle;

- finding a context in which to apply the principle;

- applying the principle in the context in order to 
generate an equation.
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Selecting a Principle

Everything dealt with by MECHO has a type. Thus, all forces 
have type "force", all velocities have type "velocity", and so 
on. The type of a quantity can be deduced from its original 
definition- that is, from the original assertions in the 
problem statement that introduced the quantity. MECHO also 
knows which types of quantity are related together by each 
principle. Thus the "conservation of momentum" principle 
relates together quantities of types "mass" and "velocity", 
while the "taking moments" principle relates together 
quantities of types "force" and "distance". Since this is 
knowledge about principles rather than objects, it is termed 
"meta-level knowledge" by the MECHO team, as opposed to 
"object-level knowledge".

MECHO uses its meta-level knowledge to create a shortlist of 
principles that involve quantities of the same type as the 
sought unknown. The principles on the shortlist are used in 
succession in attempts to form equations containing the sought 
unknown.
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Finding a Context

In the "test bed" problem, MECHO would first note the type of 
"ma", the sought unknown. This quantity has the type "mass", 
and the meta-level knowledge about principles allows MECHO to 
shortlist "Resolve Forces", and "Take Moments", as possible 
principles to use. Each principle requires a different kind of 
context in which to be applied.

"Take Moments" needs to be applied to a rigid body about a 
point. "Resolve Forces" needs to be applied to a physical 
object in a particular direction. Again, the type information 
about the objects is used to find an applicable context. The 
only rigid object mentioned in the question is the table. This 
is not in contact with an object having mass ma, and so the 
"Take Moments" principle cannot be used.

"Resolve Forces" can be applied to body "a" because it is a 
physical object.

Thus meta-level reasoning about the types of objects in the 
problem, and the contexts required for the application of 
particular principles, are used to produce a plan.
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■Ax3plving the Plan to Generate an Equation

There are different procedures for generating equations from 
different principles. In the case of "Resolve Forces", a list 
is made of everything connected to the object being resolved 
for, and then the force due to each is calculated. To these 
are added the weight ( if any ) of the bocty, its reaction on 
the surface on #iich it lies ( if any ), and the frictional 
force ( if it exists ). The sum of these forces is equated to 
zero when the object is known to be stationary, and this total 
is the desired equation.

Database Inference

When MECHO accesses its database of facts about the problem, 
it needs to recognise things vhich a person would take to be 
"obvious", but vdiich are not explicitly stated in the problem, 
and which do not correspond to the application of physical 
principles to generate equations.
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Examples of such knowledge might be;

- recognising that if ABC is a straight line, and AC 
and AB are given, then BC = AC - AB.

- recognising that the tension in a string is the same on 
each side of a light frictionless pulley.

- recognising that if two particles are in fixed contact 
over a period of tiire, their relative accelerations and 
velocities are zero throughout that period.

MECHO has two ways of generating such information;

(a) When the problem is first read in, a number of special- 
purpose schemata recognise particular object 
configurations, and create database assertions to fill in 
some "obvious" facts about them. For instance, one 
schema asserts that if a string passes over a light 
frictionless pulley, the tensions are the same on each 
side of the pulley.
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(b) When a particular quantity is required by the equation- 
generating procedure, it is not simply looked for in the 
database, but accessed by a special-purpose database 
inference mechanism. This mechanism performs "obvious" 
inferences, such as the first of the examples given, and 
is also responsible for creating new names for quantities 
it cannot evaluate.

The choice as to vbich "obvious" inferences are handled by 
vbich mechanisms has largely been one of practical convenience- 
such inferences as seemed certain to be necessary were handled 
by schemata, vÆiile others were left to the database handler.

MECHO and Human Problem-Solving

MECHO was designed as a system which would implement a number 
of computational techniques in a ccmplex problem-solving 
domain. These techniques included the control of search by 
meta-level inference, the use of object-related schemata to 
provide default values for quantities not explicitly mentioned 
in the problem, and a number of domain independent but special
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purpose mechanisms for reducing search when accessing the 
database
( Bundy, Byrd and Mellish 1982 ). It was not intended mainly 
as a psychological model.

However, since the central solution strategy was derived from 
an analysis of human problem-solving, MECHO has been compared 
by Luger with human problem-solvers in an atterrpt to test the 
similarity between MECHO's solutions and those of experimental 
subjects ( 1977, 1981 ).

Luger found that subjects generated the same equations as 
MECHO, and introduced names for the same intermediate values as 
MECHO. They picked the same idealisations of physical objects 
as MECHO, and selected the same default values. Thus, falling 
objects were idealised as possessing no air resistance, beams 
were idealised as being infinitely stiff under bending moments, 
and so on. As Luger remarks:

"These necessary assumptions are not stated in the 
problem, but must be understood for a successful 
solution."

To an expert, these idealisations come wdthout conscious 
effort, but they are almost never explicitly stated in the
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problem. Default values as used by MEŒO are similar to 
idealisations, except that they deal with object knowledge 
\diich might contingently be otherwise; and so default values 
are not used unless no alternative has been explicitly stated 
in the problem. Examples are: the default properties of a 
string being light and non-elastic, and the default values of a 
surface being that it is straight and has no friction.

Sometimes Luger's subjects generated equations in the same 
order as MECHO, and sometimes not, but Luger did not relate the 
order of equation generation to any other particular factor.

Luger's study suggested a considerable degree of congruence 
between MECHO and human problem-solvers at the level of 
selecting physical abstractions and generating equations.

It might naively be thought that such questions as "How do 
people decide which equations to write," were open to 
introspective analysis- but we shall see presently that 
completely incompatible interpretations of human problem
solving are possible, and therefore such questions must be 
investigated more formally.
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In addition to Luger's claims for the psychological validity of 
the Marples Algorithm, and the physical object schemata, we 
should consider the plausibility of the separation of the 
system's knowledge into object- and meta-rules. This 
separation permits knowledge to be held in modular units, each 
with a declarative interpretation as well as a procedural one. 
It is hard to see how the psychological accuracy of such a 
separation could be tested rigorously, but the motivation for 
such an assumption is supplied by the facts that:

(1) People leam skills gradually- it is hard to see how 
this can be done without a modular representation of 
procedural knowledge.

(2) People can generalise problem-solving skills to 
related domains. It is hard to see how this could 
happen unless much of their problem-solving knowledge 
were domain-independent. The separation of object- 
knowledge from meta-knowledge expressed in MECHO 
makes it possible to consider modifying part of the 
problem-solver in isolation, and therefore such a 
knowledge representation would be appropriate to a 
system that could generalise its skills.
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As Bundy says " controlling search by using meta-level
inference is superior to built-in smart search strategies 
because the search information is more modular and transparent. 
The argument is for systems to make explicit the full knowledge 
involved in their behaviour, Wiich in turn aids the 
modification of their data and strategies, thus improving their 
robustness and generality. This leads the way to systems \diich 
could automatically modify their strategies and explain their 
control decisions. " ( Buncfy et al 1979 )

Chi, Feltovich and Glaser

These authors conducted a study on the methods used by experts 
and novices to solve physics problems ( Chi, Feltovich and 
Glaser 1981 ). They did not construct a computer model, but 
relied on subject protocols, solution traces, and an exercise 
in wMch experts and novices were asked to categorize problems 
without solving them.

Their elegantly planned experiments were able to complement 
each other by approaching expert behaviour from different 
perspectives. The experimental data may be summarised thus:
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(1) Ejqjerts took longer to classify problems than 
novices.

(2) Experts often tentatively hypothesized the principle 
that would solve the problem before reading the whole 
question.

(3) Experts classified problems by the principle that 
would be used to solve them, and novices classified 
problems by the surface features mentioned in the 
question. Mien experts were given questions \diich 
referred to the same objects, but required a 
different sought unknown, and were therefore solved 
by a different principle, they classified them by the 
different principles required.

(4) There were signs of intermediate stages of expertise 
between novices and experts- the distinction was not 
all or nothing.

(5) Mien asked to explain how they had solved a problem, 
experts talked about principles, and novices talked 
about the knowns and givens in the problem.
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The authors explained these findings by proposing a 
nonccirputational model of the process by vhich both experts and 
novices solve problems. They summarized their model thus:

" . . .  experts engage in qualitative analysis of the 
problem prior to working with the appropriate equations. Vie 

speculate that this method of solution for the experts occurs 
because the early phase of problem-solving ( the qualitative 
analysis ) involves the activation and confirmation of an 
appropriate principle-oriented knowledge structure, a schema. 
The initial activation of this schema can occur as a data- 
driven response to some fragmentary cue in the problem. Once 
activated, the schema itself specifies further ( schema-driven) 
tests for its appropriateness. When the schema is confirmed, 
that is, the expert has decided that a particular principle is 
appropriate, the knowledge contained in the schema provides the 
general form that specific equations to be used in the solution 
will take."

It was thought that novices lacked such powerful data-driven 
schemas, and therefore had to fall back on weak general methods 
such as backward inference. Experts' schemata were thought to 
contain applicability conditions in terms of high-level 
features, while those of novices were in terms of lower-level 
features. High-level features are relations between the
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physics quantities involved, and low-level features are defined 
in terms of physical objects.

This work extends the findings of Hinsley, Hayes and Simon 
( 1977 ) from the domain of algebra word problems to that of 
Newtonian Mechanics. Hinsley et al identified eighteen 
categories of problem, one of which was "Physics". The problem 
categories found by Chi et al correspond to sub-categories of 
this single category- it is not clear whether they regard this 
as a different level of categorisation, or a finer grain of 
categorisation at the same level.

Seme of the examples given by Hinsley et al are hard to imagine 
being categorised by any process other than schema recognition. 
For example, some subjects categorised a problem after hearing 
only the words "A river steamer... " The problem was 
categorised as a "River Current" problem. One subject said 
"Its going to be one of those river things with upstream, 
downstream, and still water. You are going to compare times 
upstream and downstream- or if the time is constant, it will be 
the distance". Since no physical quantities were mentioned, 
this does not appear to be a classification based on 
an inference about quantities or physical principles.
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Possible interpretations of these results as applied to the 
Physics domain might be;

-Hinsley, Hayes and Simon's subjects corresponded to Chi, 
Feltovich and Glaser's novices, vdio classified problems 
by the words that appeared in them.

-There are two or more levels of problem categorisation; 
the more general levels being done by cueing schemata or 
keyword recognition, and the more detailed levels studied 
by Chi et al being performed by other mechanisms.

-Some objects appear only in problems of a certain type, 
and hence cue schemata based on keyword recognition.
Other objects appear in many types of problem, and do not 
do so. This would account for the large difference in 
the number of words needed to recognise problems of 
different types. Hinsley et al found that on average 
only three words were needed to recognise a "scale 
conversion" or a "river current" problon, but seventeen 
were needed to recognise a "work area" problem, and 
fifteen to recognise a "progessions area" problem.
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The Model as an Explanation of the Data

Experimental findings (1) and (2);
This model succeeds well in explaining the two curious findings 
that experts can guess the principle they will use to solve the 
problems, and yet take longer than novices to categorise 
problems.

As the problem is read, fragmentary information cues a relevant 
schema, which enables the expert to make a plausible guess as 
to which principle will prove relevant. He does not commit 
himself to this, however, until all the relevant applicability 
tests contained in that schema have been performed- which will 
not be until the \hole problem has been read in. The two 
findings about the timing of problem solution provide an 
extremely narrow gap for any theory to squeeze through.

They both appear to rule out straightforward backward inference 
on the MECHO basis as the solution method used fcy experts .
This happens firstly, because a backward inference problem- 
solver will not know which principles it is likely to use until 
it has read in the nature of the sought unknown ( which 
typically appears at the end of the problem ). Secondly, such 
a problem-solver is unable to identify any principles it wn.ll
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use after the first one, without actually generating equations. 
Therefore it could not categorize problems it had not solved 
except in the case that they could be solved by a single 
equation. The first objection, but not the second, applies to 
a problem-solver based on a planstacking control regime. 
However, it would be perfectly possible for a problem-solver to 
use schemata for the purpose of producing a shortlist of 
possible principles to use, and then to plan the problem 
solution by a planstack. The initial shortlisting would serve 
to constrain search during the secondary planning phase. This 
would have the advantage that the schemata used could be 
fallible ( they could propose principles that were later 
rejected as unhelpful ), wMlst Chi, Feltovich and Glaser 
propose a model of expert behaviour that becomes untenable if 
infallible schemata cannot be found ( because they call for 
equations to be generated as soon as a principle has been 
selected ). On the other hand, if infallible schonata CAN be 
found, the planstacking stage would seem to be superfluous.

Can these contending strategies be tested experimentally?
The authors imply that the schana-cued conditions of 
applicability are tested wdiile the question is being read. A 
protocol from the paper by "expert J.L.", appears to show a 
principle being decided on at the same time that the problem is 
read in. Therefore one would assume that problem
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categorization will be substantially complete vdien the problem 
has been read in, and that experts take longer than novices to 
categorize problems because they take longer to read them.

If, however, an expert uses only simple syntactic clues to 
suggest possible principles, but follows the reading of the 
problem by creating a planstack, he would have a significant 
processing task to complété after reading the question, and one 
would expect the expert to read the problem quickly, and then 
pause for a certain time before categorizing the problem.

The timing data published by Chi, Feltovich and Glaser 
unfortunately do not allow this sort of analysis to be made.

Priest and Lindsay ( 1986 ) carried out an experimental study 
to compare the theories of Planstacking and Schema-Guided 
Forward Inference. Their results are described in Chapter 8.
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Experimental finding (3):
The model explains vhy novices classify problems by their 
surface features- they have no high-level schema conditions to 
work with. Experts have, and classify their problems 
accordingly. Thus the model successfully explains the data 
presented. However, it has implications beyond those mentioned 
above which need to be examined.

Firstly- the novices described in this study are all able to 
solve most of the problems they are given. This means that 
they are able to apply physical principles correctly in order 
to produce equations- and therefore that they must be able to 
recognise the contexcts in #iich principles can be applied. The 
authors give no explanation as to why novices are unable to 
recognise contexcts in which principles can be applied when 
reading or categorising the problem, yet are able to do so when 
solving it. It is suggested that novices classify problems in 
terms of objects and forces explicitly mentioned in the 
question, and that they move straight from this data to 
generating equations. Yet no evidence is given that it is 
possible to select principles to apply without first 
constructing a problem representation of forces, accelerations 
and so on.
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This could be done if one were to suppose the novices had a 
schema for every configuration of objects- but that would imply 
that a novice could not solve a problem that was even slightly 
different from one he had tackled previously- clearly, such is 
not the case. The onus must thus rest on Chi, Feltovich and 
Glaser to show that there is some way of using physical 
principles without having a high-level description of the 
context in which they can be applied.

Secondly- it is stated that experts classify problems by the 
principles which wn.ll be used to solve them.

A very interesting protocol by "expert J.L. " is included, in 
which she reads and discusses the following problem;

"A block of mass M is dropped from a height X onto a 
spring of force constant K. Neglecting friction, ^Aat 
is the maximum distance the spring will be ccmpressed?"

When reading this problem, J.L. guesses after reading as far as 
"X", that the principle "conservation of energy" will be used- 
and in fact it is. This is interpreted by the authors as the 
data "mass in falling from height X", cueing the "conservation 
of energy" schema, whose application conditions are 
subsequently fulfilled.
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How did J.L. know after the first phrase that "conservation of 
energy" would be the right principle? It is easy to believe 
that such a schema might be cued, but then so might others. 
Here are seme of the principles that might be relevant to a 
problem involving a mass in falling a distance X

(i) Conservation of Momentum

(ii) Elastic Rebound
(iii) v = u + a * t  )\
(iv) S = f U + V   ̂* t )

2 ) \

(V)
/

2 )s = u*t + (l/2)*a*t )\ the constant

(vi)
)

2 )s = v*t - (l/2)*a*t )
\

acceleration

(vii)
2 2 ) 

V = u + 2 * a * s ) formulae
(viii) Conservation of Energy
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How did J.L. know vhich would be the right one? Unless the 
protocol is atypical, there must be some reason why principles 
(i) - (vii) are not likely candidates.

Since the principle was guessed before the sought unknown had 
been read in, no form of backward inference could have been 
responsible. An alternative possibility is that J.L. was using 
a (possibly subconscious ) "hidden curriculum assumption" to 
eliminate the first seven candidates. A possible candidate for 
such a Hidden Curriculum Assumption might be:

"Irrelevant quantities are not mentioned in questions."

Since the height X is mentioned explicitly, this constraint is 
sufficient to eliminate principles (i) ..(vii), leaving 
Conservation of Energy as the only principle that mentions both 
known quantities. This gives this principle priority as the 
next principle to be considered.

Hidden curriculum assumptions are not explicitly taught, and 
one could easily imagine a question which violated them- but it 
would look rather a peculiar question, like this one:
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"A block of mass M is dropped fron a height X onto a 
spring of force constant K. Neglecting friction, how 
long will it take before the block touches the spring?"

If the experts were using a hidden curriculum assumption to 
prune forward search, it would explain why novices do not 
classify problems by solution method- they have leamt the 
applicability conditions of physical principles, but not as yet 
the "hidden curriculum assumptions" for the demain which 
determine what principle wn.ll be the most useful to apply.

Another possibility is that experts are capable of the 
qualitative meta-level inference necessary to infer what 
quantity could be found from an application of which principle, 
and a novice cannot do this without first using the principle 
to generate an equation.

Interestingly, the authors ( Chi, Feltovich and 
Glaser), examined what happened when people were asked to 
classify problems that looked alike, but were solved by 
different principles ( in some cases, different questions 
differed only as to the sought unknown ).
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In all such cases, experts correctly identified the principle 
which would solve the problem, while novices classified 
superficially similar problems as alike. In a case like this, 
schemata which only checked for the applicability of physical 
principles would duplicate the novice behaviour rather than the 
expert behaviour. A schema that distinguished problems 
differing only as to the sought unknown would need to be a very 
different sort of vegetable- but what? The authors are 
remarkably ccy as to the way in which the sought unknown 
affects the solution- they do not say whether it is relevant 
to the schema structure or not. As they put it:

"Although the problem unknown obviously cannot be ignored 
by the experts, the status of the unknown in the expert 
solution method appears secondary to that of deciding vÆiich 
physics principles have their condition of applicability met 
in the problem. "

Yet vhat are the implications of expert's abilities to 
categorise differently problems to which the same principles 
could apply? Do we assume that there is not only one schema 
per principle, but one schema per possible unknown per 
principle? This would make rather a large number of schemata 
necessary. Or do we assume that each schema itself can check
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the status of the unknowns it will contain, and use this 
knowledge in deciding its own applicability?

Either of these possibilities- multiple schemata or schemata 
that check the status of relevant quantities - would be 
adequate to explain the selection of the correct principle in 
problems requiring only one application of a principle to 
produce a solution. However, in multi-stage problems like the 
earlier "testbed" problem, data-driven schemas could not know 
the status of seme of the quantities involved, as they are not 
explicitly defined in the problem. Thus reliance on data- 
driven schemata to select solution principles involves schemas 
capable of making use of quantity status Wien available, but 
also of selecting the right principle in the absence of such 
data. How a schema Wiich needs to know the status of the 
relevant quantities in order to select the correct principle 
can function without this data is not clear. Since the authors 
have not subjected themselves to the discipline of producing a 
working program, they have not had to deal with the question.

An alternative explanation for the ability of exqxerts to choose 
the correct solution strategy would be that they create a 
planstack of principles and contexts, guided by backwards 
inference at the meta-level ( Priest 1986 ). Novices might be 
assumed to be unable to do this, either because they could not
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infer Wiat quantities a given plan would solve for, or because 
they could not maintain a whole planstack in short term memory, 
or because their lack of hidden curriculum assumptions led to 
an excessively large search space Wien constructing a plan.

Experimental Finding (4): There were intermediate stages of 
expertise between expert and novice level. This clearly 
suggests that Wiatever knowledge experts possess and novices 
don't is modular. Therefore, it is possible to leam some of 
it but not all. Since the structure of schemata is not 
described in great detail, the model is consistent 
with either a modular or a non-modular implementation.

This data is therefore neutral as regards the model ( but would 
be relevant to testing any implementation of it ).

Experimental Finding (5); When asked to explain how they solved 
a problem, experts talked about principles, and novices talked 
about the known and given quantities in the problem. This was 
interpreted as showing that experts concentrated on the 
applicability conditions of schemata, Wiile novices 
concentrated on the status of physical quantities.
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On examination, some of the "key features" cited by experts do 
indeed look like applicability conditions- for example, the 
paper quotes "speed-distance relation", and "inelastic 
collision", as examples. These would appear to resemble 
possible high-level schema conditions. Others, however, are 
not so clear. "Force too complicated", for example, does not 
sound much like the conditions of a prestored schema- more like 
the conclusion of someone Wio has tried to solve a problem by 
using Resolution of Forces and failed. If a schema is truly 
data-driven, then trying to solve the problem in order to 
classify it, in order to solve it; should not be allowed. Of 
course a schema could be made arbitrarily powerful by including 
a "do-it box"- a subprocedure Wiich itself solved the problem- 
but then there would be no point in having a schema in the 
first place. Another "key feature" cited is, "Don't need 
details of motion", which is again a reasonable description of 
a solution after it has been completed- but is this a data- 
driven problem description? The features mentioned in the 
paper are not explicitly related to named schemas, and Wiile 
some resemble "high-level slots", of a prestored schema, others 
appear more like descriptions of a solution that has been 
already completed- or at least planned.
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Conclusion to the Evaluation of this Model

Chi, Feltovich and Glaser have proposed a non-corrputational 
model of physics problem-solving. It has been tested against a 
variety of experimental data.

It is good at:
- Explaining why experts take longer to categorise 

problems than novices.
- Explaining why experts can guess the relevant physics 

principle before reading all of the question.
- Explaining why experts described their pixxblem 

solutions in terms of applying physical principles.

It is less good at explaining:
- Why experts did not consider irrelevant principles in 

the solution of a problem.
- How novices were able to apply principles to solve 

problems they did not categorize by solution principle.
- How experts used the status ( "sought" or "given" ) of 

unknown quantities to decide between different 
applicable principles.

- How experts correctly choose principles to solve multi
stage problems, in cases where more than one principle 
could be applied to a situation in which "soughts", and
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"givens" are not explicitly stated in the pixxblem.

Larkin, McDermott, Simon and Simon

J. Larkin has written a number of papers on the solution of 
physics problems by experts and novices, some by herself alone, 
seme in collaboration with others ( Larkin 1979; Larkin 1980; 
Larkin, McDermott, Simon and Simon 1979, 1980; Larkin 1977; 
Reif, Larkin and Brackett 1976; McDermott and Larkin 1978; 
Larkin and Reif 1979 ). I shall deal with these as a Wiole, 
since a strong thread of continuity runs throughout all of 
them.

Unlike the previous authors, Larkin has been concerned to test 
her theoretical ideas on working programs. This useful 
discipline supplies a sufficiency argument to her work- the 
program is sufficient to produce the behaviour it produces, and 
therefore the theory is sufficient to produce this behaviour as 
well, inasmuch as the program is an implementation of the 
theory. In particular, a working program cannot include a "do
it box", without the fact being clear from any reasonably 
detailed program description. This is a great advance; because 
the use of "do-it boxes" is both extremely tempting and very
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hard to prove Wien constructing non-computational theories.
This discipline is bought at a heavy cost, however. Not only 
is it a great deal of work to produce working programs Wiich 
model psychological theories; but their use introduces 
methodological problems of its own. These will be considered 
in more detail later on.

Larkin has produced a number of models, all of Wiich were 
written in a production system language called 0PS2. This was 
chosen because Larkin and her collaborators believed that human 
problem-solvers confonned with three constraints:

- they possess a limited short-term memory

- their knowledge, both procedural and declarative, is 
modular in structure

- long-term knowledge is activated only when it is cued by 
the contents of short-term memory.

Since these constraints also apply to production systems,
Larkin has used them extensively for modelling human behaviour. 
As she herself puts it:
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" . . . . they are fairly transparent representations of 
verbal theories." ( Larkin 1979 )

The various connputational models have been compared with a 
number of novice and expert protocols. Such factors as order 
of principle selection, and the timing of equations as they are 
produced, were used to test the models.

All the models constructed attempt to mirror the assumed 
structure of human memory in that they have components 
representing;

short-term memory - this is the working memory of the 
0PS2 production system

long-term memory - this is the set of productions 
themselves

external "paper" memory - this consists of a sequential
list of assertions made by 
productions during the execution 
of. the model.
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In practice, both the "short-term memory", and the "paper 
memory", are segments of computer memory, but they are accessed 
differently. The "paper memory" is only accessible if a 
production specifically reads seme of its contents into working 
memory. The contents of working memory are assumed to be 
available at all times to all productions.

In "Models of Competence in Solving Physics Problems",
( Larkin, McDermott, Simon and Simon 1980 ), the authors 
consider the different strategies of forward and backward 
inference. A group of novices and a group of experts solved 
various physics problems, and the order in Wiich they used 
physical principles was noted. The authors constructed a 
problem-solver that worked by forward inference, Wiich had a 
94% correlation with the expert protocols in terms of order of 
principle generation.

They also produced a problem-solving model that worked by 
backward inference, Wiich had an 89% correlation with the 
novice protocols in terms of order of principle generation.
The conclusion drawn from this was that novices solved problans 
by backward inference, and experts solved it by forward 
inference. They also noted that novices mentioned explicit 
formulae ( i.e. - principles that look like equations, such as
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v * v  = u * u + 2 * a * s i n  dynamics ), and then substituted 
quantities into the relevant slots in the formula. The 
resulting equations were then written down, and no attempt was 
made to solve them until the final one had been generated. As 
noted earlier, this is usually inevitable with a backward 
inference solution method.

In contrast, experts collapsed the stages of formula selection 
and equation generation into one, and frequently did not even 
write out the generated equation explicitly, but substituted 
previously found quantities into it as it was written down. 
Sometimes, the equation was even solved before being written 
down.

Since the order of principle generation of a planstacking 
problem-solver will be the same as that of a forward inference 
problem-solver, this evidence does not distinguish between the 
two.

Structure of the Models

The two models will be referred to here as the "novice", and 
the "expert" models. Both models read in the problem from a 
syntactically formalised problem lepresentation, emitting any 
natural language analysis.
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The models start by assigning an appropriate symbol to each 
description of a known or desired quantity in the problem. The 
symbol assigned needs to be appropriate, because it will be 
used to match a symbol appearing in a relevant physical 
formula. As the authors put it: "For example, given a time
interval and an object's velocity at the beginning of that 
interval, a human assigns to it a symbol like Vo."

The next stage is to select a formula to use to develop an 
equation. At this point the two models differ.

The Novice Model

This uses backward inference, beginning with the sought 
quantity and looking for equations that contain the quantity. 
When one has been found, it is placed in the "paper memory", 
and any unknown quantities in the equation are marked as 
"sought". Then the process is repeated to find equations that 
solve for the new sought unknowns. The model will give 
priority to equations vhich involve only one new unknown. An 
equation can only be applied in a particular context. For 
example, the equation:

V = u + a * t
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can only be applied to a time interval- so its context will be 
a time interval.

The Expert Model

This uses forward inference, starting with the given quantities 
in the problem, and generating equations from them that contain 
at most one unknown. These are placed in the paper memory 
until all quantities have been solved for.

As far as principle selection is concerned, the authors state;

"Its principle-selection mechanism is merely to note #iat 
values for variables are known, and to select a principle 
\Aich allows the finding of a new related variable."

In addition, the equations formed are automatically solved as 
they are generated. As we saw earlier, this is often possible 
with a set of equations generated by forward inference.

The principle-selection mechanism described above leads to 
irrelevant equations being formed unless it is constrained in 
seme way. The method of constraint chosen is to divide up the 
available principles into groups called "methods". Examples of 
"methods" include kinematics, force equations, energy
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equations. The fiirst equation is chosen without constraint. 
Subsequent equations are constrained to be chosen from the same 
method as the first one unless a point is reached viiere no 
further equation can be generated from that method.

For most of the problems investigated, only one context was 
involved. That is, there was only one object and one time 
interval to which principles could be applied. The model was 
then developed to handle multiple contexts by:

(1) Giving priority to equations relating to the same context 
as the previous equation. This focussed the model's 
attention on one context at a time.

(2) Introducing meta-level information relating particular 
types of context. Specifically, they include the 
knowledge that if two objects have the same position at 
both the start and the end of an interval, they must have 
travelled the same distance, and so the quantities 
representing the distances could be equated. This was 
used to solve a problem about the motion of two cars.
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The Model as Explanation of the Data

In the paper referred to, the data consisted entirely of the 
sequence of physical principles needed to solve various 
problems, nearly all of v^ch involved a single context. The 
model was outstandingly good at duplicating this data.

Since this psychological theory is formulated as a working 
program, it is clear that it is a sufficient determinant of the 
behaviour it generated. There can be no reasonable suspicion 
that any "do-it box" is lurking in the nether regions of the 
theory. Also, it is successful in explaining the data with 
which it is associated. There are, however, a number of 
questions which the description raises which retain open.
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These may be summarised as;

(1) E3q>lanatory power as regards other data

(2) Implications of Symbol Assignment

(3) Implications of grouping principles in "Methods"

(4) Semantic amibiguity of "Contexts"

(5) Ambiguous treatment of Variadic Formulae

(6) Possible Combinatorial Explosion of Context Relation 
Knowledge

1. Other Data

The expert model does not produce the behaviour found by Chi, 
Feltovich and Glaser as regards:

(a) Ability to guess the principle by which a problem will 
be solved before its completely read in.

(b) Ability to categorise a problem correctly without 
solving it.
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Conceivably, it would be possible to modify the model to cover 
behaviour (a). Duplicating behaviour (b), however, would be 
more difficult because of the possibility of "garden path" 
problems.

Chi et al. propose infallible schemata to produce this data, 
but Larkin et al. have had to restrict themselves to methods 
they could implement. On simple one-context problems, it might 
be expected that forward inference would usually identify the 
ideal solution principle- but with multi-context problems, the 
lack of ability of the forward inference mechanism to look 
ahead renders it fallible. Consider, for example, the question 
solved by "expert J.L." for Chi, Feltovich and Glaser.

Were the "expert" model to attempt this, it would have no way 
of knowing that the "Conservation of Energy" principle was more 
efficient than one of the kinematic formulae. Worse, if it had 
picked a kinematic formula, it would have committed itself to 
that method until an impasse had been reached. The same 
reasoning applies in principle to many other multi-stage 
problems.



155

Chi, Feltovich and Glaser clearly demonstrated the ability of 
experts to choose the correct solution principle, even in 
deliberately confusing and misleading problems. In the form 
described, the "expert model" of Larkin, McDermott, Simon and 
Simon, is incapable of producing such behaviour with any degree 
of reliability.

2. Assigning Symbols

The symbols assigned to various quantities at the start of the 
model are extremely important. MECHO can assign names to 
quantities when necessary, but they have no control 
significance. In the novice and expert models, however, 
quantity names serve as both types and tokens- that is, they 
indicate the type of a quantity ( time interval, mass, initial 
velocity, etc. ), and also identify individual quantities.

Principles are conceived of as equations ( and are referred to 
in the paper as "equations" ), whose elements are slots to be 
filled by quantities from the problem. This matching of 
equation slots with problem quantities is done hy matching 
their names. Thus a quantity named "t", cannot match a slot 
named "v". The names assigned to quantities fulfil the 
function of MECHO typing information and quantity names at the
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same time. Clearly, it is necessary to get the names of 
quantities right if a problon is to be solved. But a 
difficulty arises in the eventuality that a problem involves 
multiple contexts. For example, consider this question:

A tram accelerates from rest with an acceleration of 2 
m/sec/sec. It travels for 150 metres, and then travels at 
constant velocity for 20 seconds. How far has it gone?

In this problem, it is necessary to regard the speed of the 
tram after it has travelled 150 metres as "final velocity", 
with regard to one interval, and "initial velocity" with regard 
to a second. This makes the simple rules for symbol assignment 
described in the paper unworkable. The more complex the 
problems beccame, the more such situations will arise, and the 
greater will be the difficulties caused by the attempt to use 
the quantity names as both types and tokens.

3. Grouping Principles by Methods

The way the authors constrained principle selection during 
forward inference was to group principles into "methods", such 
as kinematics, energy, or force equations. The data seem to 
confirm the utility of this process. However, this can be 
interpreted in two ways:
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(a) Experts group their principles into methods- this is 
how they solve problems.

(b) Problems are usually constructed so that they only need 
principles frcm the same method for their solution.

If humans are asked to solve problems requiring only one method 
to solve them, the difference will not be apparent. But it is 
in principle possible to distinguish between the two 
interpretations by constructing problems requiring principles 
frcm moire than one method. The belief that experts rely on 
principle grouping to constrain search would imply that they 
made false starts in such problems, and needed to reject 
equations after they had generated them. The idea that 
"methods" are an artefact of problem construction suggests that 
this would not happen.

Until experimental data is collected to test this out, the use 
of "methods" has a dubious epistemological status.
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4. Where do Contexts come from?

Contexts are important to both the novice and expert models, 
but no mention is made of how they are identified. They might 
be assumed to be identified in the problem, or they might be 
constructed by the model- it is not stated. For the kinematic 
and dynamic problems described, a "context" is simply a time 
interval at whose ends an object has known quantity values- 
there is no need to search for the best of a number of possible 
contexts.

In more complex problems, however, considerable search and 
construction might be necessary to define an appropriate 
context. The "Testbed" problem described earlier, for example, 
requires use of several contexts, each of Wiich is an < object, 
direction > pair. Since there are not only several possible 
objects for which to resolve forces, but an indefinitely large 
number of directions in which forces could be resolved, the 
selection of an appropriate context is a non-trivial task. If 
the "expert model" has no mechanism for doing this, it is 
likely to run into difficulties on problems more difficult than 
those it has been demonstrated on.
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5. Use of Variadic Forimilae

Principles in the domain of kinematics look like equations with 
a fixed number of well-defined slots. Thus:

V = u + a * t

\—  time taken 
acceleration

/
/

final velocity 
of an object in 
an interval

initial velocity 
of an object in 
an interval

This formula has just four slots. From the way the paper is 
written, the authors appear to feel that all principles are of 
a similar form- they even refer to principles as "equations". 
However, many physical principles are variadic- that is, they 
have a variable number of slots. For example, the 
"Conservation of Energy" principle has as many slots as there 
are types of energy affecting the system- something that will 
vary frcm question to question.

A process of matching quantity names to slot names is 
straightforward Wien formulae have fixed slots, but is
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problematic in the variadic case. No mechanism for dealing 
with this is mentioned.

6. Connbinatorial Explosion of Context Relations

The authors mention one specific piece of meta-level 
information that has been incorporated into the model. This is 
the knowledge that if two bodies are at the same places at 
times tl and t2, they have travelled the same distance in the 
interval ( tl,t2 ).

This corresponds to the sort of result produced by the 
"inference mechanism" in MECHO. The MECHO team found that the 
use of equality relations in meta-level inference led to 
explosive search in any but the sirrplest problems. In general, 
reflexive and transitive predicates like "in the same place 
as", and "is distant frcm", led to severe difficulties with 
explosive search. This was dealt with by a sophisticated 
inference mechanism ( Bundy, Byrd and Mellish 1982 ), which 
relied on meta-level information about the relevant predicate- 
such as whether it was functional, transitive, reflexive, and 
so on.
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The "expert model" does not apparently do this- and it is not 
clear whether such processing could be incorporated into the 
model, or even written in a production system. Frcm the 
psychological point of view, it is implausible to propose a 
mechanism that may require extensive search as a model for 
human behaviour vhich does not.

Related Models; PH-100

A slightly different approach is provided by the PHIOO model 
( Larkin 1979 ). This is a production system model that 
solves problems in dynamics- including problems involving more 
than one context. The same model is used to attempt to model 
both expert and novice protocols in the demain.

As in the previous stucty, the model uses a restricted working 
memory coupled with an unlimited database termed a "paper 
memory". As before, the expert version used forward inference 
and the novice version used backward inference. Test data 
based on the order of principle generation supported this 
claim.
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Structure of the Model ( Expert Behaviour )

the model starts with a coded problem representation 
referred to as a "sketch". Larkin says: "This sketch is
intended to represent, in computer-readable form, 
information Wiich human solvers commonly abstract frcm the 
English problem statements and iinmediately write on their 
papers".

the model then constructs a "physical representation", for 
the problen. This involves labelling every body mentioned 
in the problem, and listing for each body the directions 
of all forces acting on it.

next, the model generates a "basic equation", for each 
body. This corresponds to an application of the 
"resolution of forces" principle in an undefined 
direction, yielding an equation with a defined number of 
terms, seme of Wiich will be unknown quantities.

seme unknown quantities are removed frcm the basic 
equations ty the use of such physical principles as the 
friction law or Hooke's Law.
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when all possible substitutions have been made, the model 
then solves the lemaining simultaneous equations.

Stinicture of the Model ( Novice behaviour )

the model starts with a "sketch".

It now looks for a principle that involves the sought 
unknown, such as "Resolution of Forces "

The model attenpts to instantiate the chosen principle 
with quantities from the problem. This should involve 
using the quantities relating to the relevant body, and 
hence should be equivalent to the "Constructing Physical 
Representation" phase of the expert behaviour version.
The novice behaviour version is unable to do this, 
however.

The fall-back procedure for the model when it cannot list the 
forces on a bocfy is described by Larkin thus: "students
generate forces corresponding to 'active' objects". Examples 
of 'active' forces included gravity, and the force due to a 
stretched spring. Whether reaction and tension in an 
inextensible string count as 'active' is not stated. In the 
exaitple shown, 'active' forces acting in different directions
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on different bodies were added together to give the F term of 
the Resolution of Forces principle "F = M * a".

This suggests that the novice behaviour model has the rule; 
"Add any active forces in the problem together to obtain F".

- The model now tries to substitute for unknown quantities 
in the equation. Again, it does this in a rather random 
fashion. When needing to find a mass to instantiate the 
F = M * a principle, it apparently chooses masses frcm 
the problem at random. Thus it makes errors, seme of 
which novices also make on occasion.

Features of the Model

The features of this model Wiich distinguish it frcm the 
previous ones are;

(1) The model starts with a "sketch", rather than siitply a 
formalization of the original problem. This is claimed 
to be a significant aid to the problem-solver.

(2) The model constructs a "physical representation" for 
every body before selecting any principles to use.
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This corresponds to a free-body diagram for each body 
mentioned in the problem.

(3) Every physical representation is used to generate a 
Basic Equation. This corresponds to using the
F = M * a principle, i^parently, no other principle 
( conservation of energy, kinematics, etc. ) will ever 
be used. We are not told how the direction of 
resolution is selected. Nor is there any indication of 
the order in which Basic Equations are generated.

(4) The novice is represented by a model that uses backward 
inference, and has trouble in instantiating the base 
equation.

Its method of instantiating is not specified, but I assume that 
it is done by type matching quantities in the sketch at random. 
Presumably the type matching is done by name, since separate 
typing information is not mentioned.
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Significance of the Features of the Model

(1) The Sketch

This consists of a list of qualitative statements about the 
problem. Sane of these correspond directly to statements in 
the problem, whilst others, such as information about 
directions, do not. This is not a sketch in the normal sense 
of the word, as it contains no metric information. Whether 
this is important or not will be discussed later.

(2) The Physical Representation

The model constructs a "physical representation", or free-bocty 
diagram, for every hody mentioned before choosing principles or 
generating equations. This makes it inpossible for this model 
to guess principles before the vhole problem description is 
read in. Since the model not only generates physical 
representations, but writes them in its "paper memory", this 
facet of the model should be testable in practice. If an 
expert is given a problan for which one body does not require a 
free-body diagram ( or its equivalent in terms of diagram
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labelling ), this model predicts that he would nevertheless 
create one.

For example, consider the following "garden path" problem 
( forces are measured in Newtons, or 'N' );

A seesaw ABCD is pivoted at B, its centre of mass. A child 
weighing 200 N sits at C. The seesaw is held horizontal by 
a light inextensible string attached to D, vhich is vertical 
at D and passes over a smooth pulley, P. The other end of 
the string, S, is attached to a rough block of mass 80 Kg. 
which rests on a rough sloping plane XY. The coefficient of 
friction between the block and the plane is 0.5. PS slopes 
at 50 degrees to the horizontal and XY slopes at 30 degrees 
to the horizontal. Find the tension in the string.

This model predicts a free-bocfy diagram would be generated for 
both the seesaw and the block on the plane. As Larkin has not 
tested such predictions, the justification of this feature must 
rest on its plausibility alone.
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(3) Principle Selection

It is simply not true that every dynamics problem is solved by 
the principle F = M * a.

The problem described by Chi, Feltovich and Glaser, and solved 
by "Expert J.L. " is an example of a dynamics problem solved by 
Conservation of Energy. The model predicts that Base Equations 
will be generated in a random order- and yet the evidence of 
the previous paper is that they are not.

(4) Novice Errors

If novices instantiate basic equations at random with 
quantities that appear to have an appropriate type, the model 
can serve as a generator of expected errors. Larkin claims the 
model has generated a number of erroirs that novices have 
displayed. However, the model generates a number of possible 
errors for each problem it attempts to solve. Do all of these 
occur in novice solutions? There is no data on this question.
A model which predicts errors that never occur is not 
necessarily better than one which does not predict any errors 
at all.
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Related Models - Expert and Novice Performance in Solving 
Phvsics Problems

Larkin et al ( Larkin, McDermott, Simon and Simon 1980 ), 
produced a paper entitled "Ejpert and Novice Performance in 
solving Physics Problems", which was intended to summarise the 
state of knowledge about expert performance in Physics.

This paper did not present a new computational model, but 
referred to previously described models ( especially by Larkin) 
to illustrate the theoretical points made.

The authors looked at Physics problem-solving as a special case 
of generalised problem-solving, and claimed that a common 
foundation underlay all problem-solving skills. As the authors 
put it;

"There is reason to believe that expertness has much the same 
foundations vherever encountered. As in genetics, we leam 
much about all organisms by studying a few intensively. Chess, 
algebra and physics are serving as the Drosophila, Neurospora 
and E. Coli of research on human cognitive skills."

They do not say what the reason is for believing that expertise 
in chess and physics have the same foundations.
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The authors of this paper have acted with commendable boldness 
in defining exactly what psychological claims they are putting 
foiward. They have not been seduced by the "gee-vhiz" approach 
of writing a clever program and then describing how it works 
without attempting to establish its connection to cognitive 
psychology. Neither have they mudged about with a haze of 
vague statements equally compatible with any one of a variety 
of different implenentations. By putting their conclusions 
with such estimable clarity, they have laid the grounds for 
future progress; whether their conclusions prove to be 
accurate or not.

Psychological Claims

(1) Short-term memory has a capacity of frcm four to six 
items, where an item is any stimulus recognizable as a single 
unit. This includes referencing complex problem-solving 
procedures frcm permanent memory, vAich can be indexed in 
short-term memory as a single item.

(2) The indexed memory is organized as a large set of 
production rules. Their condition parts are cotpared with the 
contents of short-term memory, and vAen a match is obtained, 
their action parts are executed.
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( 3 ) The data structures in the human memory which the 
productions manipulate consist of list structures.

(4) Experts solving mechanics problems construct 
representations equivalent to sketches of the objects in the 
problem. These representations are node-link structures 
isomorphic to physical diagrams.

(5) Experts solve problems about four times as fast as 
novices.

(6) Novices solve problems by backward inference.

(7) Experts solve problems by forward inference.

(8) The disadvantage of backward inference is that the 
management of goals and subgoals may occupy considerable time, 
and overload short-term memory.

(9) Experts merge the stages of stating a principle, 
instantiating it to an equation, substituting values into it 
and solving it. Novices do not.
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(10) The novice works directly from the objects given in the 
problem, whilst the expert works from an intermediate 
representation of "physics quantities".

(11) An expert's attention ( i.e. current goal ) is controlled 
by the knowledge in short-term memory only, and not by the 
identity of the last production executed.

Review of Psychological Claims

(1) The concept of a limited short-term memory for around 
4 - 6  items developed originally from research on the 
memorization of meaningless symbols. The authors have made the 
plausible inference that this memory limit applies to pointers 
to data structures residing in long-term memory as well.

Although such a claim is in principle testable, it is hard to 
see how it could be tested apart from a particular 
implementation, since different production system models might 
make different demands on short-term memory. The authors are 
unsure as to whether the current task goals have to be held in 
the short-term memory or whether they are held elsewhere.
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(2) and (3)

These are very strong claims for the psychological accuracy of 
production systems, going way beyond the belief that they are 
"fairly transparent representations of verbal theories". As 
such, it is inappropriate in the present state of knowledge to 
ask for proof or refutation of such claims. If it is felt that 
the concepts are fruitful, they will become widespread. If no 
useful results appear to flow from them, then they will fade 
away.

This approach provides a challenge, however, to the builder of 
cognitive models. If the highest level of their program 
organisation is claimed to be a psychologically accurate model, 
and the base level of the language structure is held to be 
psychologically accurate as well; then presumably all the 
intermediate levels of structure must reflect psychologically 
valid processes too.

It would then be a reasonable question to ask the author of a 
carputational model what was the psychological basis for any 
single production in the model. This is certainly not a 
question I would ever like to have to answer.
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(4) Sate exairples of "sketches", as "node-link stnictures", 
are given; and others can be found in the previous paper by- 
Larkin. The motivation for introducing a sketch is stated 
•thus;

"It is easy to see pictorial representa-tion is 
convenient. Much of -the difficulty wi-th mechanics problems 
lies in understanding the spatial relations among "the 
objects. Moreover, the pictures -that are drawn can be 
highly stylized, abs-tracting away irrelevant information in 
•the English problem s-tatement. "

However, -there is a significant difference between -the node- 
link structures the authors call "sketches", and -the drawings 
made by human problem-sol-vers : human sketches have metric
properties, and node-link structures do not.

The essence of creating a sketch for a person is that a 
qualitative relationship is processed to produce a particular 
metric instantiation of it. Whether -the problem-solver knows 
-the measurements of his sketch or not, -the lines on the paper 
have particular lengths, and intersect at definite angles.
This has seme advantages not mentioned by "the authors.
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For instance, iirpossible descriptions cannot by sketched, and 
are therefore seen to be impossible. Consider this description 
of this two-dimensional framework:

distance (A, B, 3) 
distance (B, C, 3) 
distance (C, A, 3) 
distance (A, P, 4) 
distance (B, P, 4) 
distance (C, P, 4)

Any procedure that tried to draw a metric sketch of that would 
fail. Of course, human problon-solvers are not able to 
distinguish small differences in length by using freehand 
sketches, but gross differences between label values and their 
representative components in the sketch will be readily 
apparent. Any program that could maintain a representation 
such as that given above; cannot therefore be said to "sketch" 
the system it deals with.
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The authors mention a similar problem in the paper, previously 
investigated by Paige and Simon ( 1966 ) :

A board was sawed into two pieces. One piece was two thirds 
as long as the vhole board. It was exceeded in length by 
the second piece by 4 feet. How long was the board before 
it was cut?

The contradictory nature of this problem statoænt would be 
exposed if a sketch was constructed with instantiations of 
metric measurements. If we assume that the phrase "It was 
exceeded in length by the second piece by 4 feet" cues a test 
to see if the second piece is longer than the first, then we 
have a mechanism for identifying the contradiction, the 
authors state that \dien asked to solve this problem, some 
students generate and solve the equation:

2 * x / 3 + 2 * x / 3 - 4 = x

- as if they had read that the second piece was four feet 
shorter than the first. They explain this by assuming that 
these students have already solved the "correct" equation:

2 * x / 3  + 2 * x / 3  + 4=x
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obtaining the solution x = -12; and then backtracked to try a 
different equation, on the grounds that no board is -12 feet 
long.

This explanation assumes an ability to solve such equations 
mentally, in vdiich case \diy should they write down any equation 
at all? For a survey of psychological investigations into the 
use of mental sketches or models, see Johnson-Laird ( 1983 ).

(5) The fact that experts solve problems four or more times as 
fast as novices is interesting. It would be even more 
interesting if we knew what stage of the problem solution they 
did faster. Chi et al. found that experts took longer than 
novices to categorise problems- so seme parts of the solution 
must be done more than four times as fast. An analysis of 
which stages took longest would be a useful indication of what 
stages involved much processing, and what stages involved 
little.

The authors are convinced that deciding \hat step to take next 
is what takes novices a long time to solve problems. By 
implication, one would assume that deciding what step to take 
next is something e3̂ )erts are fast at. This is compatible with
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the proposal that experts can tell before generating an 
equation what quantity it will solve for and what quantities it 
will introduce. This enables experts to select an appropriate 
principle swiftly, while novices, faced with many possible 
principles ( and often, many possible contexts also ), find it 
difficult to do this without actually generating the equation.

( 6 ) It seems now well-established that novices solve problems 
by backward inference.

(7) The claim that experts solve problems by forward inference 
rests only on the order of principle used. Therefore it is too 
strong, and should be replaced by the claim:

"experts use forward inference or planstacking".

Regarding the "forward inference" claim, the authors say:

"This was a bit surprising, since it is usually thought that 
working backward is a more purposeful and sophisticated 
strategy than working forward. The answer to the puzzle 
may be that experts work forward on easy problems, where 
their experience with the problem domain assures them that.
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without any particular planning, solving all equations that 
they have enough information to solve will lead them quickly 
to a complete understanding of the situation, including 
finding the particular quantity they are asked to solve 
for. "

(8) The authors claim that the disadvantage of backward 
inference is that the management of goals and subgoals may 
occupy considerable time, and overload short-term memory.
This is a very subtle and interesting point. In fact it is a 
claim for the psychological accuracy of production systems, 
because in a production system, goal management is organised in 
such a way that this claim about goal management is true.

Explicit data structures relating to goal scheduling are stored 
in memory, and can be read by productions. But in other 
computational formalisms this is not so. In PROLOG, goal 
scheduling is handled by the interpreter, and no data structure 
relating to goals is asserted into the database or passed as a 
parameter. A backward inference mechanism in PROLOG requires 
no more search or nemory than a forward inference mechanism.
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Therefore this is a claim about the internal representation 
language of the human problem-solver: but what claim is being 
made? Is it the claim that human processors keep track of 
goals via independent data structures ( wiiich would violate 
the applicative constraint proposed by Van Lehn )? Or is it 
just the claim that backward inference is harder than forward 
inference for unspecified reasons? Either way, it is hard to 
see how such a claim could be tested.

(9) Certainly at the level of behaviour, experts merge the 
stages of stating principles, instantiating them, substituting 
values and solving equations. The authors appeal to the 
distinction between ccirpiled and interpreted code for an 
explanation.

An alternative explanation might be that for an expert, the 
selection of a plan is preceded by a stage in which meta-level 
inference is used to analyse wiiich quantities the equation to 
be generated will contain. Also, the equation to be generated 
will contain at most one new unknown quantity, since it will be 
generated in the order of a forward inference process.

Thus when the principle is instantiated to form an equation, 
the expert knows in advance which quantities will be involved.
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and will already have available a substitution for one of them 
derived from the previous equation.

This extra information allows the various stages of equation 
generation and solution to be merged into one. The novice, on 
the other hand, has not the sophisticated meta-level inference 
mechanism that will tell him in advance ̂ diat quantities will 
appear in the equation. His only method of finding out is to 
generate the equation and then examine it. Nor can he do 
instant substitutions if he is using backward inference; nor 
would it be sensible of him to incorporate equation 
rearrangement and solution steps until he had checked Aether 
the equation contained the right quantities.

Of course, such an explanation is not incatpatible with certain 
parts of the process being corrpiled vdiilst others are 
interpreted.

(10) It is claimed that the novice works directly from the 
objects in the problem, wMlst the expert works from an 
intermediate representation of physics quantities. This claim 
can be interpreted in two ways;
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Firstly;

That the expert constructs an intermediate "physics" 
representation of the \diole problem before applying principles 
to generate equations. The novice does not identify the 
physics quantities until they are required. Thus the novice 
identifies the physics quantities relevant to the sought 
unknown first of all, and does not identify the others till 
later, if at all.

The main difficulty with this idea is that of reconciling it 
with the findings of Chi, Feltovich and Glaser, that experts 
guess or select principles before the Wiole problem has been 
read in- and therefore before the intermediate representation 
has been completed

Secondly;

That experts use principles to generate equations on the basis 
of the physics quantities relevant in a given context, ^Aile 
novices generate equations on the basis of the objects.
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So the experts would be using the forces, accelerations and so 
on, while the novices would be dealing only with blocks, 
strings, and physical objects like those.

It is quite inpossible that the novice could generate equations 
without using physics quantities- because this is Wiat 
equations consist of. So the claim must be that the principle 
used is selected on the basis of objects rather than 
quantities.

No-one has actually produced a model of novice behaviour that 
is able to select principles to solve problems by consideration 
of objects and not quantities. Nor has anyone explained how it 
could be done. The sought unknown is a quantity, not an 
object; and it is possible to ask questions involving the sane 
objects, but different sought unknowns, such that the questions 
require different solution principles.

Such questions cannot be answered at all by problem-solvers who 
do not relate principles to quantities- presenting a severe 
difficulty to anyone who claims novices do not choose 
principles by analysing physics quantities.
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There is a clear reason for thinking that novices concentrate 
more on objects than eŝ jerts- the problem categorisation data 
of Chi et al. This can be adequately e^glained by supposing 
that experts possess a mental mechanism ( i.e. - one that does 
not rely on external or paper memory ) capable of identifying 
the correct solution principle. Novices, not possessing such a 
mechanism, are unable to classify problems in this way, and so 
classify problems in terms of objects by default.

Such an explanation is not incortpatible with an ability to 
build up representations of physics quantities, and reason with 
them in order to select a principle to use.

(11) The final claim is that an expert's attention, or current 
goal, is controlled only by the contents of short-term mertory- 
there is no explicit ordering of productions. This is an 
extension of the earlier claims for production systems, and the 
same remarks apply to this as to them.
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The ABLE System

In "Skill Acquisition for Solving Physics Problems" Larkin 
( 1979 ) describes a conputational model called "ABLE". This 
is a production system which initially solves physics problems 
by backward inference, but which leams from its experience 
other methods of solution which Larkin compares with those of 
experts. The starting version is termed "barely ABLE", the 
partially experienced version "slightly ABLE", and the expert 
version "more ABLE".

Larkin does not in this paper make strong claims for the 
psychological validity of production systons, but justifies her 
use of such a system in these words;

"Production systems have the following major virtues ;

(1) They involve plausible and parsimonious assumptions 
about the human information processing system. All 
permanent knowledge is entered homogeneously without a 
priori distinctions between ( for example ) declarative 
and procedural knowledge.
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(2) Their architecture makes modelling learning easy. All 
knowledge is encoded in relatively independent 
productions, and adding knowledge just means adding 
productions. Thus knowledge can grow through small 
increments.

(3) Productions can be written so that each corresponds to 
a bit of knowledge that makes psychological sense.
Thus they are fairly transparent representations of 
verbal theories."

The Model

ABLE begins with a "sketch" of the problem ( in the sense used 
by Larkin, McDermott, Simon and Simon ). Then it labels all 
the physics quantities in the representation with names that 
will match the names in Physics principles. So initial 
velocities will be marked "Vo", accelerations "a", and forces 
due to gravity "Eg". Each quantity mentioned in the sketch is 
labelled "known" or "sought".
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Barely ABLE now looks for a principle ( \diich has the form of 
an equation involving unbound quantities ), relating a sought
quantity to other quantities. It binds the slots in the
equation to quantities in the representation, and lists new 
sought quantities if needed. It assumes an equation with one
variable is soluble, but it doesn't actually perform the
algebraic work of solving it.

Because barely ABLE selects principles only on the basis of the 
quantities they contain, it often selects a useless principle 
and needs to backtrack. Backtracking is constrained by the 
limited size of the short-term memory; and solutions requiring 
substantial backtracking result in seme of the contents of 
working memory being lost. This leads to circular behaviour or 
to an impasse situation in some problems. When ABLE generates 
a soluble equation ( i.e. - one with a single unknown 
variable ), it records the circumstances and the result. The 
"circumstances" are the known quantities, the objects involved, 
the desired quantity, and the principle used to find the 
desired value.

An automatic production is created and asserted into the 
production memory, to the effect that next time the same 
circumstances are present, the same result can be returned.



188

When ABLE solves a problem, it may create a new automatic 
production. So by experience, it builds up many automatic 
productions. When ABLE next solves a problem, the use of 
automatic productions takes precedence over the backward 
inference mechanism. This results in a slighty ABLE model with 
a few automatic productions, which starts by generating one or 
more equations in forward inference mode, and then returns to 
the backward inference method #ien no automatic pixDduction can 
take it further.

A larger number of automatic productions yields a more ABLE 
model, working all the time by forward inference. In this 
case, the backward inference mechanism hangs around in the 
background like a wallflower at a party, waiting in vain to be 
asked for its opinion.

All the physics principles except one are encapsulated in 
single productions. The exception is the so-called 
"Superposition Principle", which states that the resultant 
force on a body is the vector sum of all the separate forces. 
Because this is not e5q)ressed as an equation with a fixed 
number of slots ( i.e. - it is a variadic principle ), it is 
hard for ABLE to acquire automatic productions involving this 
principle.
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The difficulty is that if an automatic production is created 
for a situation involving a certain number of forces, the 
production may fire on another question where the situation 
actually involves more forces than the automatic production 
allows for. So an equation will be generated that emits terms 
corresponding to particular forces.
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The Data

The model was compared with scripts from experts, novices, and 
intermediate level problem-solvers. In terms of the order of 
equations generated, barely ABLE and more ABLE provided good 
descriptions of novices and experts respectively.

The results from the intermediate level problem-solvers were 
interesting. They frequently showed one or two equations being 
generated in a forward oirier, followed by the completion 
of the problem by backward inference. This is a striking piece 
of evidence in favour of Larkin's model, because the ABLE 
system predicts exactly such behaviour. For an intermediate 
level problem-solver, ABLE assumes that they will possess some 
schemata, and so will be able to start solving problems by 
forward inference. They will not always have enough schemata 
to complete the problem solution, and so they must finish the 
problem by backward inference.

Larkin attempted to duplicate each of these intermediate level 
solution traces by tuning up ABLE with particular automatic 
productions to duplicate each trace. This was usually 
possible.
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Some novice scripts included incorrect equations; seme of vdiich 
emitted forces, and others of which were incorrect in other 
ways. ABLE could generally duplicate the force emission errors 
by the use of appropriate automatic productions. Larkin wrote 
special purpose productions which were able to duplicate most 
of the other incorrect equations, but the paper does not state 
how general these productions were, or whether their existence 
would have led to different behaviour when solving other 
questions.

Larkin summed up the results of her study by saying;

"Clearly such a primitive model fails to capture much of the 
richness of human knowdng and learning. In particular, the 
primitive and algebraic problem representations are very 
limiting. However, the mechanisms of this very simple model 
account very well for the order in which principles are 
selected and used by human solvers of varying degrees of 
experience. In addition, the single principle that requires 
extra productions in the model and is prone to errors vdien 
the model leams, is the same principle that is aimost 
universally misused by inexperienced human solvers. "

( the principle that is almost universally misused being the 
Superposition Principle described on page 189 )
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Issues Arising

(1) The size of the space of automatic productions

(2) The adequacy of automatic productions in explaining expert 
behaviour

(3) The relevance of automatic productions

(4) Possible interpretations of intermediate level forms of 
problem solution

(5) The principle of superposition and alternative 
interpretations of the data

(6) Automatic productions and errors of superposition

The Six Issues Considered:

(1) If we ascribe an automatic production to every possible 
sought variable, in conjunction with every possible selection 
of known variables, for every possible system of objects, we 
end up with a very large number of automatic productions
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indeed. This is not in itself a problem, as there is reason to 
believe the human mind is capable of memorizing a very large 
number of meaningful patterns ( deGroot 1978 ).

However, it is likely to be significantly larger than the 
number of questions and examples in a textbook ( else it would 
be impossible to write a textbook without repeating questions ). 
If the number of such possible productions is larger than the 
number of practice questions needed to teach a novice to be an 
expert, then either there will be some questions the "expert" 
cannot solve in an expert way, or there are situations the 
expert solves in an expert way that he had no opportunity of 
acquiring a production for.

The ABLE mechanism could in principle be tested by estimating 
the number of possible automatic productions, and also the 
number of problems a novice will be exposed to before he 
becomes an expert. It the first number were greater than the 
second, a serious inconsistency would have been shown. If the 
two numbers were approximately equal, this would be suggestive 
evidence in favour of the model.

(2) A related point to the first is the necessary 
incortpleteness of the automatic productions. It is possible to
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devise ( rather funny-looking ) problems that involve contexts 
no expert is likely to have met. For instance:

Find X in this situation. All side weights hang from pulleys.
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Figure 5. The Pulley Problem
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If the ABLE mechanism is the method used by experts, one would 
not expect them to have a forward inference method of dealing 
with such problems. An expert v^o does deal with problems 
involving contexts new to him by the same irethod as other 
problems would therefore not be using an ABLE-type mechanism.

(3) Larkin admits that sometimes the expert version of ABLE 
cues irrelevant productions.

"If there are many automatic productions from several 
different domains of physics, then productions from 
different domains tend to act incoherently without 
progressing efficiently towards a single solution".

This expresses in a nutshell the difficulty with forward 
inference models in general- how do they know which principle 
to select? This difficulty could be overcone by dividing up 
the automatic productions into groups corresponding to the 
"methods" of Larkin et al.- but only if it could be guaranteed 
that a production from the correct method was selected first of 
all
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A problem involving more than one context, and requiring a 
principle fixxn a different method for each context, could not 
be efficiently solved by such a model. The limitations of 
short-term memory referred to by Larkin to account for novice 
difficulties might even prevent an expert model from solving 
such problems at all.

(4) The strongest point of the ABLE model is its ability to 
duplicate the principle ordering of intermediate level problem- 
solvers .

Could this be duplicated by another method? At first sight, 
one might expect a planstacking problem-solver that has 
generated one soluble equation to complete the solution in the 
same way- because to generate one soluble equation, it needs to 
build a complete planstack. If a problem-solver has built a 
complete planstack, there seems on the face of it no reason why 
he should not pop the stack and generate equations in forward 
inference order.

A possible explanation of this intermediate level behaviour 
might be that due to læmory limitations, the novice problem- 
solver is only able to use a planstack of limited size. As 
more plans are pushed on the stack beyond a certain limit.
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those at the bottom of the stack are lost. Thus when the 
conditions for popping the stack are satisfied, only the top 
few levels of the stack are available. This accounts for a few 
equations generated by forward inference, followed by an 
irrpasse. The obvious thing for the problem-solver to do next 
is to regrow the planstack from the beginning again- but this 
hypothesis is incompatible with the data presented by Larkin.

The equation ordering presented as typical of intermediate 
level problem-solvers can, however, be explained in the 
following way:

Intermediate level problem-solvers have a limited size of 
planstack. When the planstack is full, the addition of new 
plans causes the loss of the oldest ones. When the stack is 
popped, a few equations are generated by forward inference and 
then an iitpasse is reached, because the oldest plans no longer 
exist.

When this impasse is reached, the problem-solver abandons 
planstacking as a method of problem solution, and defaults to 
backward inference. This results in the rest of the relevant 
equations being produced by backward inference. In short, 
planstacks leak at the bottom when full, and a leaky planstack 
is not trusted. This would appear subjectively to the novice
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as if he had tried to plan a solution, but found that the plan 
failed to work. At this point, he would revert to what seemed 
to him the more primitive but reliable method of backward 
inference.

This would explain the data described above. Without 
experimental testing, this hypothesis rests only on its 
plausibility as an evidential foundation, and as yet no such 
study has been carried out.

One conclusion can be derived from this adaptation of the 
planstacking model though- it implies that either (1) experts 
have larger planstacks than novices ( which does not seem 
corrpatible with the invariance of short-term memory 
assumption ), or (2) a "plan", as handled by an expert probloti- 
solver consists of fewer "memory units" than a "plan" as 
handled by a novice. Of course, the elements of a plan are 
necessarily placed on the stack in conjunction- a context 
without a principle having no procedural meaning to the 
problem-solver. But that does not rule out the possibility of 
some form of plan compaction process \diich enables an expert to 
use fewer "memory units" to store a plan than a novice. This 
looks a more promising line of approach- one would expect the 
conceptual units used by an expert to be packaged into higher- 
level chunks than those of a novice. Assuming such "packaging"
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is dependent on experience, it can be argued that the frequent 
association together of elements from a plan leads to a 
structure being created in long-term memory vdiich combines them 
together in a single unit vhich can be manipulated by short
term memory.

What sort of elements could be frequently and reliably 
associated together in this way?

Let us consider the testbed pioblem mentioned earlier. One of 
the plans used was "resolve forces vertically at b". This 
contains the elements:

"Resolve forces"
"In the vertical direction"
"At b"

If this is held on the planstack as separate items, it will 
take up three slots in short-term memory. However, if "Resolve 
forces in the vertical direction" is held as a single unit, two 
memory slots will be needed instead. This could not be 
compacted to a single unit because the "b" is unique to this 
particular question, vhile "Resolve forces vertically" is an 
operator frequently used in similar problems.
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On the other hand, it is hard to see how plans like "use the 
formula:

2 2
V = u 4- 2 * a * s for the interval ( t3, t4 )",

could be compacted in this way, because the interval is 
particular to the question, and the rest of the plan is single 
data item anyway.

If this explanation of the experts' greater planstack capacity 
is accurate, it would suggest that an esqert has a greater 
apparent size of planstack when solving some domains than 
others. In principle this could be tested- but the 
interpretations of the tests would depend on the assumption 
that an impasse in planstacking causes default to backward 
inference, as well as the assumption that planstacks leak at 
the bottom.

So to extract any sensible conclusions finm data on how many 
successive forward inference equations an expert can generate 
before resorting to backward inference in a particular domain 
is hard. It involves piling the Ossa of plausible assuirption 
upon the Pelion of vigorous extrapolation of results. And of 
course it is a matter of personal taste whether the assumptions 
given here are found to be plausible or not. This is the
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weakest point of the planstacking hypothesis as regards its 
observational adequacy.

(5) Seme novices emit terms involving forces from equations. 
Larkin explains this as difficulties with the principle of 
super-position of forces.

An alternative explanation is that every time a force is 
emitted, it is because the novice has particular weakness 
involving forces of that particular type. So the emission of a 
friction term could be explained as "not knowing about 
friction", rather than "not knowing about superposition".

Frem the behavioural point of view, the Larkin hypothesis would 
suggest that in solving a number of problems involving the 
superposition principle, novices would emit different forces on 
different problems. The alternative view would suggest that if 
a force is emitted in one problem, then forces of the same 
type, and not others, will be emitted \Aien. solving subsequent 
problons. Seme experimental evidence supporting the "emissions 
related to type of force" approach will be dealt with later.
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A problem with the "superposition is difficult" theory ̂ Aich 
applies to the ABLE model is that ABLE starts with what Larkin 
calls a "sketch", and then proceeds to label all the quantities 
that affect objects in the sketch. The purpose of the sketch 
is supposed to be to clarify the spatial relationship of 
objects and quantities- so how is it that forces can get missed 
out?

(6) Superficially, it might seem that the biggest weakness of 
ABLE is that starting from a novice model that solves problems 
correctly, it generates automatic productions that are supposed 
to correspond to an intermediate level problem-solver- yet 
these very automatic productions can lead to errors.

So the process of developing from novice to expert seems to 
consist of starting without making mistakes, and then learning 
to make them. Neither Larkin nor any other worker in this area 
has suggested that this is in fact so. I do not believe this 
is a serious difficulty. Enough work at the implementation 
level should be able to ensure that automatic productions apply 
only in contexts Wiere the relevant quantities are the same as 
those in the problem vdiich the production was derived. Such a 
technical improvement would not affect the basic structure of 
ABLE, nor the validity of the psychological claims based upon 
it.
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■An Alternative Model of Human Problem-Solving; 
The Planstack Model

The basis of this model ( Priest 1986 ), is an attempt to 
conform with the experimental data presented in the papers 
discussed earlier in this chapter. No claims are made for the 
psychological validity of any representation language, other 
than the claim that certain data structures can be treated as 
"single units" when considering their demands on short-term 
memory.

A strong assumption underlying in the model is that people find 
seme things easy- such as dealing with qualitative 
representations of data structures; while other things are 
difficult- such as manipulating explicit equations. It is also 
assumed that people can master procedures consisting of a large 
number of sequential stages more easily than procedures 
involving significant amounts of search and backtracking. 
Therefore it will be taken as psychologically plausible to 
propose processes involving many steps of qualitative inference 
with familiar data structures. It will be taken as 
psychologically implausible to propose processes involving a 
lot of search and backtracking, or internal nenipulation of 
equations.
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As regards the differences between experts and novices, it will 
be assumed that the skills possessed by experts but not novices 
are exactly and only those processes which are not taught 
explicitly by textbooks or on courses. These will be 
identified as the ability to tell what quantity wall be found 
by inplementing a given plan; the ability to store and 
manipulate plans internally; and the hidden curriculum 
assumption of non-redundancy.

The arguments used in the previous sections can now be used to 
define an alternative model for physics problem-solving. This 
model is based on a planstack. Plans are stacked as they are 
generated by meta-level inference, until the planstack is full. 
Then the planstack is popped, and as every plan is popped from 
the stack, it is used to generate an equation. This process 
accounts for the observations that experts generate equations 
in a forward inference order. If we assume that experts find 
planstacking so easy that they can do it subconsciously, this 
also explains why experts are able to classify problems by 
solution method before solving them- the classification is a 
description of their planstack. It also explains how experts 
can select the right principle with which to generate their 
first equation.
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A plan is selected by meta-level inference about the quantities 
related by different principles, and the quantities appearing 
in different contexts in the problem. Such reasoning can also 
be performed by MECHO and ABLE, so there are definitely 
adequate methods of formalising this reasoning computationally.

Experts can analyse the consequences of their plan without 
generating equations; and form a complete stack before 
producing any equations. Novices, however, cannot tell vdiat 
quantities an equation would contain until they have generated 
it- so they pop the stack after every plan has been pushed onto 
it. This leads to a forward inference order of equation 
generation for experts, and a backward inference order for 
novices.

That is the core of the model. Other details are required to 
justify other experimental findings. To explain the ability of 
experts to guess the solution principle before the question is 
corrpletely read in, the model calls for a shortlisting of 
principles to be developed during the reading process. This 
relies on the Hidden Curriculum Assumption that all quantities 
in the question are relevant.

To explain the action of problem-solvers in drawing sketches, 
and in the actions of some people in reparsing contradictory
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questions in order to produce a meaningful representation, the 
model calls for a sketch to be produced. This is an arbitrary 
metric instantiation of the problem description. The model 
does not address the question of vdiether the sketch is 
expressed externally or not- it is ccnpatible with either 
implementation. Since the metric instantiation of the sketch 
is arbitrary, it is possible that a chosen sketch will not be 
consistent with the problem description- in which case it must 
be possible for the problen-solver to backtrack and produce an 
alternative sketch if needed. likewise, the question involving 
the sawn board described earlier shows that it must be possible 
for the problem-solver to back up its execution state in order 
to reparse the question. The planstack model described here 
does not deal with parsing natural language, but it requires 
that the parser be capable of alternate parses of a question 
Wien back-tracking. We shall assume that experts incorporate 
"consistency tests" in their behaviour via which they may 
identify contradictions in the sketch, and initiate 
backtracking. The novice does not possess such tests.

Experts use plans to generate equations differently from 
novices. Before expressing an equation externally, they 
substitute for quantities isolated in the previous equation. 
They also isolate the quantity the plan was formed to find. 
Novices do not do this. It is obvious Wiy experts substitute
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and novices don't- since experts generate equations in forward 
inference order, the previous equation will contain just the 
quantity required to substitute into the current one. If that 
quantity had been isolated Wien the previous equation was 
expressed, it will be easy to substitute for it in the current 
equation. This is why substitution is possible and isolation 
desirable.

There is, however, a problem with the isolation subprocedure.
We have assuned up to now that the problem-solver finds 
qualitative inference easy and equation manipulation difficult. 
This is why experts build up a planstack and generate equations 
in forward inference order instead of using the sinpler 
backward inference control strategy. This is also Wiy experts 
write equations down, Wiile their qualitative meta-level 
inferences and planstack are strictly internal. Even when an 
expert worites down the name of the principle he uses, this as a 
comrent to guide the interpretation of the equation, not 
because it is needed on its own. So how does the expert manage 
to perform internally an equation manipulation task like 
isolation of a quantity? There are three possible ways it 
could be done, and the planstacking model of search control 
does not itself discriminate between them.
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(1) The principle is stored in several different equation 
forms. Thus, Wiere the novice might have the kinematic 
principle;

V  = u  + a * t, 

the expert might maintain the representations

V  = u + a * t

u = a * t - V

a = V  - u

t = V  - u

as equivalent possible forms. Then when the principle was 
used to generate an equation, the form used would depend on the 
sought quantity.



210

(2) The principle might be stored in a qualitative form that 
was easier to manipulate than an equation. The isolation 
procedure might be applied at this stage, and the equation 
generated from the rearranged qualitative form. Thus, in the 
testbed problem, the plan "Resolve forces vertically at the 
string junction", might first be instantiated to:

Vertical Ccmponent of tensionl 
+ Vertical Ccnponent of tension2 
+ Vertical Conponent of tensions = 0

In this case, tensions is the sought quantity. So the 
qualitative form could be re-represented as:

Vertical Component of tensions =
- Vertical Component of Tensionl
- Vertical Ccmponent of Tension2

Then each of these qualitative terms could be instantiated to 
form the equation.



211

(3) It might be possible for an expert to remember and 
manipulate equations over short time-scales. There does not 
seem to be any direct evidence of this in the work described 
here.

These different approaches will be considered later, in the 
context of errors.

Whether novices are capable of such operations is a moot point- 
there is a reason Wiy they wouldn't use them even if they 
could. When a novice generates an equation, he may need to 
reject it and backtrack. So it is pointless to perform 
processing until the equation has been checked for the 
quantities it contains. This necessitates writing the equation 
explicitly. There is not even much point in isolating the 
sought variable at this stage, because he will not be able to 
substitute it into the next equation. This is because of the 
backward inference order of equation generation.

Either of the alternative expert methods of equation generation 
is capable of explaining Larkin's finding that novices write 
down principles explicitly, and experts usually don't.
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Experts don't maintain their principles in the same form as 
they ej^ress the equation, so an explicit representation would 
not be isomorphic to the equation. Thus it would be little 
help in checking the completeness of the generated equation. 
Novices generate equations iscmorphic to their stored 
principles ( the ones that look like formulae, that is ). 
Consequently, they can use the visible formula as a check that 
no term has been omitted. This fits in with Larkin's finding 
that the most troublesome principle for novices to handle is 
Resolution of Forces; because no ej^licit formula can be 
written down, and so novices cannot perform syntactic 
checks for the emission of terms in their equations.

Intermediate Level Problem-Solvers

The final experimental finding to be covered by the planstack 
model is that intermediate level problem-solvers typically 
generate a few equations in forward inference order, and then 
complete the solution by using backward inference. This is 
explained as due to the overloading of the planstack, and the 
loss of its oldest contents. That accounts for the first 
equations being generated forward inference, and then an 
impasse being reached. To account for the remainder of the
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equations being generated by backward inference, we must assume 
that he does not build up a planstack twice for the same 
problem- if a planstack doen't work, he resorts to backward 
inference for the remainder of the question.

But why should a novice's planstack fill up vhea an expert's 
doesn't, even on the same problem? The easiest answer would be 
that experts have larger planstacks, but this does not sort 
well with data on other areas of cognitive psychology. Larkin 
herself refers to studies of expert chess players which 
concluded, contrary to expectations, that they did not have 
larger or better memories for chess positions than novices- 
they recognised a greater number of high-level patterns. 
Remembering a board position for an expert involved remembering 
the same number of items as a novice- but each item 
corresponded to a larger number of chess pieces.

Similarly, it is proposed that experts and novices have 
planstacks capable of holding the same number of primitive data 
items- where "primitive" is used to mean "counting as a single 
unit of memory". However, a plan to an expert will consist of 
fewer primitive data items than to a novice. Thus an expert 
can stack more plans than a novice. The compacting of plans 
into a smaller number of primitive data items must presumably 
depend on commonly used components of plans being stored in
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long-term memory. Unfortunately, it is hard to infer the 
details of such a mechanism from the available experimental 
data, and no specific hypotheses about plan compaction 
are put forward ( this may be regarded as another weak 
point of the model ).

How many items can a planstack hold? I haven't the faintest 
idea. If one assîmes that experts, as well as intermediate 
level problem solvers, lose confidence in a planstack that has 
leaked, one could get seme kind of approximation by setting 
experts problems that required many stages for their solution, 
and seeing how many plans they could handle before reverting to 
backward inference, if one believed, however that experts 
generated replacement planstacks as required, then one would 
expect them to be able to handle problems involving unlimitedly 
large numbers of plans. The only sign of the planstack 
regeneration process would be a pause in the expert's 
working. After reading the question they would pause while 
they built up an initial planstack. Then they would pop the 
stack and produce a series of equations lickety-split.

At this point they would run out of plans, the oldest ones 
having leaked out of the bottom of the planstack. Then they 
would pause to regenerate the planstack. After this would come 
another burst of equations. The process would be repeated
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indefinitely. Each burst of equations would result from the 
popping of a full stackload of plans. Each burst of equations 
would be followed by a pause shorter than the one before.

Experimental data might disconfirm the model, or provide 
information on how many plans could be held on an ejp)ert's 
planstack. A ccatparison with the number that could be held on 
an intermediate level problem-solver ' s planstack might find 
indications as to the compaction factor of expert as opposed to 
novice plan structure. Alternatively, such timing data might 
suggest that experts and intermediate level novices held the 
same number of plans in a stack. In this case, the difference 
between them would be that the intermediate level problem- 
solvers lost confidence in leaky stacks, and the ejp)erts 
didn't.
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Specification of the Planstack Model

Control is guided at all times by the nature of the sought and 
given quantities in the problem. The Planstack model requires 
three types of control data to work with;

- Definite information on the sought / known status of 
quantities as specified in the question or derived 
from explicit equations

- Tentative information on what the sought / known status 
of various quantities would be if a plan were executed.

- Information as to which quantity a given plan was created 
to find.
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As the planstack is filled up, various quantities are marked as 
likely to be known or sought after the execution of each plan. 
At any time there will be a list of such quantities, and for 
every plan there will be a quantity it was intended to solve 
for ( but may not ).

As the planstack is popped, the soughts and knowns derived from 
the generated equations are developed. These are also held in 
a list. Thus the control data requires four lists of 
quantitites, plus one quantity attached to each plan.

Qsoughts- a list of quantities definitely sought. This
initially comes from the question. Every time an 
equation is generated, any new quantities 
introduced by the equation are added to the 
Qsoughts list.

Qknowns- a list of quantities definitely known. This
initially comes from the question. Every time an 
equation is generated, the quantity from which it 
solves is added to the Qknowns list.
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Psoughts- This is the list of quantities sought after a plan
has been formed. The list is initialised to the 
quantities sought in the question, and every time a 
plan is formed Wiich will introduce a new quantity, 
it is added to the list.

Pknowns- This is a list of quantities known after a plan has
been formed. The list is initialised to the known 
quantities in the question, and every time a plan 
is formed, the quantity it will solve for is added 
to the list of Pknowns.

Pfound- Whenever a plan is formed; the quantity that will
be found by the plan, referred to as "Pfound", is
attached to the plan.

In order to avoid excessive carplexity, the model is first 
described in the form it would take for an exgert problem- 
solver. The complete version follows afterwards.
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(1) If - Qsoughts in Qknowns - stop

(2) If - another phrase left read it 
parse it 
sketch it 
add Qsoughts and 
Qknowns
to Psoughts and Pknowns

(3) If - phrase just read - collect the principles 
which involve every 
quantity mentioned

- put them at the head of 
the Principle List

(4) If - sketch just updated - test sketch for 
consistency

(5) If - there's a Psought which is - search the principle
not in Pknown 
( the Pfound )

list for a principle 
involving the Pfound
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- search for a context 
where the principle can 
produce an equation 
involving the Pfound

- push the plan
< principle, context, 
Pfound > on the stack

(6) If - plan just pushed on stack - Add the Pfound to the
Pknowns

- Add the other 
quantities involved in 
the plan to the 
Psoughts

(7) If - planstack not etpty
- all Psoughts in Pknown

- pop the stack

(8) If - planstack just popped - use plan to generate an 
equation

- use the previous 
equation to substitute 
for one of the Qknowns 
in the equation.

- isolate the Pfound
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- write the equation
- and the Pfound to the 

Qknowns
- add any other 

quantities
to the Qsoughts

Adding procedures to deal with the novice and intermediate 
level behaviour leads to the ccmplete version of the model.
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In this version, procedures not possessed by novices are 
marked with a star.
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(1) If - Qsoughts in Qknowns - stop

(2) If - another phrase left read it 
parse it 
sketch it
add Qsoughts & Qknowns 
to Psoughts & Pknowns

*(3) If - phrase just read collect the principles 
which involve every 
quantity mentioned 
put them at the head of 
the Principle list

*(4) If - sketch just updated test sketch for 
consistency
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(5) If - there's a Psought ̂ Aich is - *search the Principle 
not in Pknown ( the P found ) List for a principle

involving the Pfound
- search for a context 

where the principle can 
produce an equation 
involving the Pfound

- push the plan
< principle, context, 
Pfound > on the stack

(6) If - plan just pushed - Add the Pfound to the
on stack Pknowns

- *Add the other
quantities the plan 
would use to the 
Psoughts

- mark the plan 
"tentative" if no 
quantities added to 
the Psoughts
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(7) If - stack just pushed 
- stack full

- forget oldest plan

(8) If - planstack not empty
- all Psoughts in 
Pknowns

or
- Last plan tentative

or
No confidence in planstack

- pop the stack

(9) If - planstack just popped 
- plan is tentative 

or
-no confidence in stack

- generate equation
- -write equation
- check equation contains 

Pfound
- add the Pfound to the 

Qknowns
- Add any other quantity 

to Qsoughts
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*(10)If - planstack just popped 
- plan not tentative

use plan to generate 
equation
use previous equation 
to substitute for one 
of the Qknowns 
isolate the Pfound 
write the equation 
add the Pfound to the 
Qknowns 
add any other 
quantities to Qsoughts

(11) If - planstack eitpty
- equation just formed
- Qsoughts not in Qknowns

lose confidence in the 
stack
replace Psoughts and 
Pknowns by Qsoughts and 
Qknowns
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Notes on the Planstack Model

These notes refer to the eleven numbered procedures of the full
planstack model.

(1) When everything that was originally sought is known, the 
problen has been finished. The result is then contained 
in the equations which can be solved to yield the 
quantities desired in the question. Quantities are added 
to the Qknown list only vdien an equation Wiich solves for 
them has been generated.

(2) If the sketch test fails, it may be necessary to backtrack 
on this procedure, producing alternate sketches. If this 
is not possible, alternate parses. If this is not 
possible, the problem-solver will f^l.

(3) This models the ability of experts to guess what 
principles will be involved before reading the whole 
question.
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(4) It is not presently clear what tests would be applied. 
Hinsley, Hayes and Simon's example of the sawn board 
suggests that the information "A > B" cues a test to see 
if their instantiations obey this relation.

(5) This is the procedure that builds up the planstack. For 
experts, once it has been applied, it will be applied 
repeatedly until the planstack has created plans to solve 
for all the sought quantities.

(6) This covers the claim that experts can tell what 
quantities a plan will involve but novices can't.

(7) This is the "leaky planstack" assumption introduced to 
account for intermediate problem-solvers ̂ ho appear to 
complete the construction of a planstack, but then find 
when popping it that it's incomplete, and doesn't provide 
a full solution.
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(8) The stack is popped if it's complete. A novice pops the 
stack after each plan is constructed ( and marked 
"tentative" ), and an intermediate problem-solver pops the 
stack after every plan if the stack has leaked ( and he 
has therefore lost confidence in it ). The problem-solver 
loses confidence in a planstack if he generates an 
equation, leaving the planstack empty, yet does not 
produce an equation ̂ hich solves for the original soughts.

(9) This procedure is used when the stack is popped after each 
plan. There is no substitution, because there will be no 
equation to substitute frcmi. There is no isolation, 
because there will be no equation to substitute into. It 
is assumed that the equation can be solved to find the 
Pfound, so it is now added to the Qknowns.

(10) The expert procedure for generating an equation from a 
plan.

(11) This is the procedure that gets activated when a leaky 
stack is popped, and it is found that the plans in it are 
insufficient for a complete solution. The intermediate 
level problem-solver gives up the planstacking approach, 
and by losing confidence in the stack, ensures that 
subsequent equations are generated by forward inference.
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The Hidden Curriculum Assumption

When people leam to solve problems, they are taught various 
explicit facts and skills. In addition, they infer things they 
are not explicitly taught, and which are not on the agreed 
curriculum. These may be called "Hidden Curriculum 
Assumptions".

One of them is the assumption that all the quantities in a 
question are relevant to its solution. Reliance on this 
assumption enables experts to reduce the number of principles 
they need to consider before selecting an appropriate one.
From now on, this will be referred to as the "Hidden Curriculum 
Assumption of Non-Redundancy"

Another assumption which will be made use of when dealing wdth 
error generation and error modelling is the assumption that the 
novice problem-solver is expected to produce a certain kind of 
behaviour- in this domain he is expected to produce equations.

So if a novice is unable to solve the problems, or even 
generate a single plan, he has the alternatives of producing 
nothing, or a random equation. If we accept that it is more 
stressful to produce nothing than to produce erroneous output.
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then we should expect the student to generate arbitrary results 
vaguely resembling equations that might result frcm the 
problem. This is essentially a random and syntactic process, 
yielding erroneous and unrepeatable results. From now on, this 
particular Hidden Curriculum Assumption will be referred to as 
the "Guess on failure" assumption.

Problem-Solving and Errors

The planstack model explains how people can solve problems, and 
what processes experts possess that enable them to exercise 
expertise.

It does not address the issue of how people leam to solve 
problems, how they leam the processes which result in 
expertise ( aside from the plan caipaction piecess ), and it 
does not explain how people make errors.

Any analysis of novice scripts will confirm that errors form a 
large part of a novice's initial output. It is hard to believe 
that anyone could reach a state of expertise in the domain 
without having made any errors. Therefore we must look at
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errors as an essential part of the learning process, and we 
must expect any comprehensive theory of how people leam such a 
skill to deal with errors as well as correct solutions.

In addition, there is a practical reason for studying the 
mechanisms underlying errors- if we want to teach people to do 
it correctly, we need to know why they do it wrongly. The 
overwhelming consensus of opinion in advanced CAL research, as 
dealt with earlier, is convinced that adequate remediation 
depends on accurate error analysis. Of course, the 
overwhelrning consensus of opinion may be wrong, but we need a 
method of accurate error analysis before we can test such a 
hypothesis. This itself is another justification for studying 
the commission of errors.

All the models considered so far involve a stage at which the 
problem-solver has identified a principle and a context, and 
decides to use the principle to generate an equation. This is 
one place where errors might occur ( and do occur ).

Are there any others? The novice might of course parse the 
problem wrongly, or sketch the problem wrongly. We shall not 
consider these processes furtdier in this paper. He might solve 
the equations wrongly ( but we shan't deal with this either ). 
But the internal nature of the planning carried out by the
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planstack model implies than an error in processing between the 
sketch and equation generation stages would not result in an 
overt error. It would result in a null output, or in the 
activation of the "Guess on failure" assumption.

Thus the implications of the model are that all structured and 
repeatable errors taking place in correctly parsed and sketched 
problem occur at the "generate equation" stage. Since this 
stage is not exclusive to the planstack model, it is possible 
to investigate the occurrence and genesis of errors 
independently of the control strategy used by the problem- 
solver.

Larkin has adapted the ABLE model to duplicate student errors. 
The ABLE model very naturally accounts for " limited-force 
bugs", in which one or more forces are omitted from a 
resolution equation. In addition, the model was adapted to 
individual students' behaviour by including special-purpose 
productions.
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As Larkin says;
"In a few cases, a subject siirply wrote an incorrect 
equation. In that case, the corresponding production in his 
version of slightly ABLE was modified to write that 
incorrect equation. Generally, a subject's work for the two 
problems was sufficiently consistent that productions acting 
in one problem did not have to be modified or deleted to 
account for work in the others. "

Larkin did not describe the errors ( other than limited-force 
bugs ), nor indicate whether they were repeated in different 
problems. Her subjects were relatively skilled novices solving 
dynamics problems.

The remainder of this paper deals with the identification of 
errors in the solution of statics problems. This is done by 
analysing novice scripts, and comparing them to the output of a 
caiputer model called NEWT, 'vihlch solves problems in the domain 
both correctly and erroneously.
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Chapter V - Methodology

This Chapter considers how ccarputational models can be 
evaluated by ccmparison with experimental data, and defines a 
method for doing so which will be used to evaluate the NEWT 
systen.

Structure of the Psychological Theory

The psychological theory presented in this thesis consists of 
three parts:

(1) A theory of competence

(2) A theory of consistent errors

(3) A theory of inconsistent errors
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Of these, (1) and (2) are Type I theories in Marr's Typology,
( Marr, 1977 ), while (3) is not a theory that generates 
behaviour, and hence does not count as an AI theory as such 
( there is no algorithm for modelling inconsistent behaviour )

The theory of ccmpetence deals with how problen-solvers solve 
problems correctly, but does not address the question of why 
they solve seme problems and not others- it is a theory of 
problen solution, not problem choice.

The theory of consistent errors deals with what problem- 
solvers do when they make consistent errors. It does not deal 
with the question of Wiy problems that cannot be solved are 
attempted.

The theory of inconsistent errors deals wdth the question of 
what problem-solvers do when they attarpt problems which they 
cannot solve consistently ( either correctly or incorrectly ). 
It does not deal wdth the question of #iy such questions are 
attempted.

None of these three theories deals wdth the question of what 
happens when a problem-solver does not attenpt a problem.
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The Theory of Competence

This deals with how problem-solvers solve problems correctly. 
Its irmplonentation is the MECHO program of Buncfy et al, and is 
presented as a theory of novice problem-solving rather than 
expert problem-solving.

This theory produces output which is matched to that of the 
subject investigated at the level of equation generation. It 
claims to predict the equations that will be generated, and the 
interrædiate quantities that will be introduced by competent 
novice problem-solvers.

The issue of equation ordering has been extensively dealt with 
in the previous chapter, and is not considered further in this 
study. Results supporting the claims of MECHO to duplicate 
human problem-solving behaviour in equation generation and 
quantity introduction have been presented by Luger. These 
claims will be looked at in more detail later.

The full implementation of MECHO deals with a variety of 
physical laws and problem types, but the problems investigated 
in this study were drawn exclusively frcm the field of statical
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equilibrium. This theory predicts consistent correct 
solutions.

The Theory of Consistent Errors

This claims that most consistent errors are produced by of one 
of a limited number of incorrect solution procedures. These 
incorrect procedures, or 'malrules', resemble correct 
procedures for generating equations from physical principles; 
and are applied consistently by the problem-solver whenever the 
principle is used, instead of the correct procedure.

The malrules hypothesized to exist are listed later on. Choice 
of principle is as for the theory of competence. This theory 
predicts consistent incorrect solutions.
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The Theory of Inconsistent Errors

The correct procedures and the malrules include nearly all the 
consistent procedures that can be applied to yield equations. 
Problems-solvers wbo do not possess either a correct or an 
incorrect procedure relevant to the context are hypothesized to 
produce random equations using the quantities mentioned in the 
question. Such behaviour was also proposed by Scanlon, 
Havdoridge and O'Shea ( 1983 ) in similar circumstances.

Being random, this behaviour is inconsistent, and if the 
problem-solver attempts the same question again, there is no 
reason to expect him to produce the same results. Generally, 
problem-solvers realise they are acting randomly, and v^en 
asked to repeat the question, they produce no output at all.

Presumably the reasons vAiy people attempt questions they know 
they cannot solve is to be found in their social expectations- 
the theory does not deal with this issue.

The predictions of this theory are that if, on the first 
attempt, a problem-solver does not use correct or malrule 
procedures, then the problem-solver will not produce the same 
result if asked it again.
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This theory does not attempt to predict or model the random 
output hypothesized as the behaviour when dealing with a 
question for the first time. There is consequently no 
computational implementation of this theory.

Derivation of the Malrules

The malrules implemented in NEWT were identified frcm problem 
sheets answered 28 students in 1981. The students were aged 
16-18, and were studying either 0-Level physics or TEC Level 1. 
This set of scripts will be referred to frcm now on as the 
"training set".

Subsequently, 23 other students were given problem sheets, and 
their solutions were ccmpared to those obtainable frcm NEWT. 
This second group of students will be referred to as the 
"validation set", and the results obtained will be considered 
in detail in Chapter VII.
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The Theories and the NEWT program

As we have seen, there is no consensus as to how to relate a 
theory to a program. The solution attempted in Ch VI will be:-

(a) to present the theory of competence, in natural 
language

(b) to present the top-level code in the NEWT program 
corresponding to the control algorithm

(c) to comment on the code presented in order to relate it 
to the theory of competence

(d) to list the malrules used by NEWT in natural language 
only. The theory of consistent errors consists of the 
theory of competence together with the available malrules.

As these are presented as Type I theories, it is the
relationship between the natural language theory and the data
wbich is the vital criterion of validity; the details of
implementation are relevant only in as far as they do or do not
produce the behaviour called for by the theory.
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Of course, in a large program such as NEWT, it has to be taken 
on trust that there are no procedures that invalidate the 
claimed correspondence between the theory and the code. In the 
last resort their non-existence can only be proved by having 
the program independently rebuilt from its description.

Relating the Model to the Data

The question will now be dealt with as to how the model is 
evaluated^wLth regard tb^the^îata.

In this study, the aim is to construct a "student model" for 
each student who makes consistent errors. The theory of 
competence is itself the student model of correct novice 
problem-solving, and the model for each error-making student 
thus consists of the competence model peturbed by the 
replacement of the correct equation generation procedure by one 
or more malrules selected from the pool of available malrules.

The set of data points over Wiich the model is kept constant 
will be termed the "span of consistency"; and the set of data 
points over vbich the data is compared to the output of the 
model will be referred to as the "span of comparison". These
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will differ between the three different psychological theories, 
and also between them and the evaluation of NEWT as a student 
model, as will be explained later.

Clearly, different error-making students will in general be 
represented by different models. Once a model has been 
selected for a particular student ( in the study, the 
appropriate malrules were selected by hand ), it is necessary 
to ccme up with seme measure to evaluate the model.

Because there is no alternative hypothesis- no theory of what 
the errors would be if the piopbsM thëoiÿ^were^ïotrtrue- the 
normally used tests of statistical significance cannot be 
applied to such a measure. Nor is there a well defined measure 
to be suggested by statistical theory. As Newell and Simon say 
in "Human Problem Solving";

"There is not even a well behaved euclidean space of 
numerical measurements in \diich to plot and compare human 
behaviour with a theory. Thus, this book makes very 
little use of the standard statistical apparatus. "

Another reason for the inapplicability of conventional 
statistical procedures is the fact that the models are 
constructed after the data has been collected, and are
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deliberately intended to maximise correspondence with that 
data.

Newell and Simon's comment remains true today, and it therefore 
beccmes necessary to select an arbitrary measure of evaluation. 
Of course, the "standard statistical apparatus", itself makes 
use of arbitrary conventions in choosing particular levels of 
significance at which to accept or reject a hypothesis.

There is no reason to suppose that any evaluation algorithm 
will yield an unambiguous answer to the question "Is the theory 
a good one? " without ref erring at some point to an arbitrary 
value of \tot counts as 'good' !

Theories of the type described above are described by Newell 
and Simon, who used the term "IPS", or "Information Processing 
System", in the sense that I have used the word "model";

"... the theory of human problem-solving as set out in this 
book produces a large number of highly specific little 
theories- microtheories would be an appropriate term. Each of 
these microtheories can be viewed as a single data point, at 
which a moie generalised theory is put to the test. Each data 
point requires this elaborate treatment because the data wdth 
which it makes contact are so sequentially independent that
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they cannot be unravelled meaningfully without the creation of 
a highly specific IPS".

Frcm now on, a psychological theory which requires to be 
"tuned up", to produce a micro-theory for every subject, will 
be referred to as a "micro-theory system".

What Newell and Simon refer to as "the standard statistical 
apparatus", is concerned with the answer to the question "How 
sure are you that the predicted results don't correspond to the 
data by chance?"

This is not a lelevant question in this demain ; the 
probability of a monkey at a typewriter coming up with the same 
equation as a problem-solver is so remote as to be negligible.

The question that needs to be answered is rather "How sure are 
you that the predicted results don't correspond to the data in 
a trivial manner?"

Since the theory may incorporate arbitrarily many procedures of 
arbritrarily great complexity, it is possible to posit a 
separate micro-theory for every data point. Such a micro
theory system necessarily accounts for all the target data, but 
in a trivial way that vitiates its explanatory power.
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Any proposed measure of evaluation needs to exclude such 
theories in an objectively definable manner. Frcm here on, we 
shall assume that each micro-theory consists of a core 
procedure, together with none or more variant procedures. In 
the NEWT system, the core procedure corresponds to MECHO, while 
the variant procedures are the irrplementations of the various 
malrules for the domain.

Criteria for an Evaluative Measure

Six criteria for an adequate evaluative measure for a micro
theory system are here proposed, as described by Priest and 
Young ( 1986 ) ;

(1) The Numeric Value Criterion

The measure consists of a single numeric value.
This ensures that measures for different theories are 
well-ordered.

(2) The Accuracy Criterion

The measure should increase every time the model 
matches the data.
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(3) The Inaccuracy Criterion

The measure decreases every time the model fails to 
match the data.

(4) The Parsimony Criterion

The measure should decrease for every time a new 
variant procedure is introduced to explain the data.

(5) The Prediction Criterion

The value of the measure over a given data sample 
should provide an unbiassed predictor of its value 
over a larger sample.

(6) The Assumption Criterion

The measure should not involve the assumption of any 
particular distribution of micro-theories- for 
instance, that the micro-theories corresponding to 
caramon behaviour are discovered before micro-theories 
corresponding to rare behaviour.
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Evaluation of Micro-Theory Systems

Seme micro-theory systems are easier to evaluate than others. 
One outstanding regularity of the domain under consideration is 
that it consists of independent units of behaviour, ( in this 
case equations ), each of which can either be fitted by the 
data ( a 'hit' ) or not ( a 'miss' ). So a measure calculated 
on the basis of a single count of 'hits' and 'misses' beccmes 
possible. Such a measure would not take any consideration of 
how "far" a miss was frcm a hit, and would regard all hits as 
equally important.

It would not take account of any relationship between hits and 
misses- this would be done by the model or not at all.

The Error Fit Measure

A micro-theory system such as this was produced by Young and 
O'Shea ( 1981 ), wbo considered the issue of evaluation. They 
produced a model of human subtraction problem-solving #iich 
combined correct procedures together in such a way that rule
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deletion produced many of the observed errors. Thus their 
theory could not be divided into a theory of corpetence and a 
theory of errors, and one measure had to cover the adequacy of 
the theory for both correct and incorrect solutions.

Output was matched to the data at the level of the numerical 
answer. Thus the mcdel produced the same answer as the subject 
( a hit ), or a different answer ( a miss ). Their chosen 
evaluation measure was described thus;

"Our evaluation technique is to subtract the false errors 
from the hits, i.e.; to calculate;

net score = ( hits - false errors )"

In this calculation "false errors", are errors predicted by 
the model on questions which the student solved correctly. The 
span of consistency for their model was the set of questions 
attempted in a single script, and therefore it was possible for 
their model to predict errors on questions where no error 
occurred. They did not take questions that were done 
correctly, and which were predicted by the model to be done 
correctly, as affecting the "net score".
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The net score was used by Young and O'Shea by comparing it with 
the number of errors in the data.

"Conparing the net score of 128 with the 178 errors 
provides the answer to the question of how well the PS 
accounts for the data. The answer is that the PS accounts 
for a little over two thirds of the errors".

Strictly speaking, this conclusion only follows if the net 
score of 128 is mde up of 128 hits and no false errors. If 
the score were the result of 178 hits and 50 false errors, then 
the model ( "PS" in their terminology ) would of course account 
for all the errors, not just two thirds of them. The figure of 
two thirds relates to the smallest possible proportion of 
errors accounted for.

Thus by iirplication. Young and O'Shea are making use of the 
measure;

Hits - false errors
errors observed

This is referred to as the "Error Fit Measure", and satisfies 
criteria (1), (2), (3), (5) and (6) given above, but not (4), 
The presentation of their results by Young and O'Shea implies
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that they consider a value of 2/3 as a "good fit", an 
implication vbich has not been disputed in the literature. 
Their defined measure does not take account of the number of 
variant procedures used in the stucfy, although they were 
extremely parsimonious about their introduction.

The Micro-Theory Evaluation Quotient

In order to evaluate the micro-theories proposed to model 
individual students by a measure that satisfies criteria (1),
(2), (3), (4) and (6) proposed above, I define the Microtheory 
Evaluation Quotient, or mu-quotient, of a micro-theory system 
as follows;

(a) The theory is adapted to form micro-theories over the 
appropriate span of consistency. No variant piocedure is 
introduced unless it accounts for at least one hit.

(b) The micro-theories are catpared to the data over the 
appropriate span of comparison. This must include any 
false errors for the particular micro-theory.
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(c) Each datum is compared to the corresponding output of 
the relevant micro-theory, whose output is classified as a 
"hit" or a "miss".

(d) The imu-quotient of the theory is defined as;

mu = hits - variant procedures 
data itemis

There are various points to be noted about this seemingly 
simple definition;

- the mu-quotient is a measure of the microtheory system, 
not any particular micro-theory

- the span of consistency and the span of comparison need 
to be chosen carefully with respect to the particular 
theoiy. This point will be considered below.

- it is not necessary to include a count of ' false errors ', 
in order to satisfy the proposed criteria. If the span of 
comparison is chosen so that such events count as data 
itens, then an increase in the number of false errors 
increases the denominator of the quotient, and hence 
reduces the overall value of the mu-quotient.
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- the imi-quotient will be a dimensionless number in the 
range 0 <= mu < 1. Since the introduction of a 
micro-theory only takes place if it results in a hit, the 
minimum value of the numerator is zero. The measure never 
reaches a value of unity however, but only approaches it 
asymptotically as the number of hits by the same set of 
micro-theories increases.

- The number of micro-theories looks at first like the 
number of degrees of freedom in other forms of statistical 
analysis. The two are not the same because a micro-theory 
has an internal structure- it is not a numeric variable. 
The measure proposed does not depend on the internal 
structure of the micro-theories used.

- The criterion not net by this measure is that of 
Prediction. Using this measure on a small sample 
necessarily yields a lower value for mu than would be 
expected from a large sample.
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The Span of Consistency for NEWT

For the theory of conpetence and the theory of inconsistent 
errors, no alteration is required in the micro-theory system 
when moving from one student to another. The span of 
consistency is therefore the entire set of data points.

For the theory of consistent errors and the student model, the 
appropriate span of consistency depends on how consistent the 
students themselves are in their solutions. If students are 
rigorously consistent in the errors they commit, the 
appropriate span of consistency would be all the solutions of a 
single subject. However, if students were not consistent 
between questions, but were consistent in dealing with irepeats 
of the same question, the appropriate span of consistency would 
be a single repeated question.

In advance, it is not possible to tell how consistent subjects 
will be, and therefore analyses at both spans of consistency 
will be performed. One of the results to be obtained should 
therefore be a measure of the consistency of the subjects in 
their problem solutions.
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The Span of Ccmparison for NEWT

Mien it canes to considering the span of comparison for NEWT, 
there are four separate theories to consider. Each of these 
operates over a different span of comparison, and consequently 
results in a different mu-quotient.

In the experimental study described below, each question was 
presented twice. It was therefore possible to distinguish 
consistent behaviour by the subjects, in which the same 
question resulted in the same behaviour, from inconsistent 
behaviour, in which the subject's behaviour was different on 
the different attempts at the same question.

The four theories to be considered are:

1) A theory of corpetence.

This predicts how people will solve questions that they 
solve correctly. The span of comparison for this theory is 
therefore the set of questions solved correctly on the 
first attempt.
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2) A theory of consistent errors.

This predicts how people will solve problems that are 
solved incoirectly but consistently. At first sight it 
might seem that the span of comparison should be the set of 
incorrect but consistent questions. This does not allow 
for "false errors", however. In order to reduce the 
mu-quotient for every error predicted where the subject in 
fact proceeds correctly, it is necessary to define the span 
of comparison to consist of the set of questions 
consistently answered for vhich the model predicts an 
error.

3) A theory of inconsistent errors.

This predicts that people who do not make errors 
corresponding to malrules in the theory vhen attempting a 
question the first time, will produce inconsistent results 
when given the same question again. It may be reformulated 
as that the theory covers all possible consistent errors, 
and that any errors not covered are not consistent.
The span of comparison consists of all those error 
questions which cannot be assigned a model by the system.
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4) A student model for predicting behaviour.

This is not a psychological theory as such, and so 
different mechanisms for producing different types of 
behaviour do not need to be differentiated.
The span of comparison consists of all those questions 
attempted the first time.

It was felt necessary to test the theory of competence and the 
theory of consistent errors separately, because otherwise an 
arbitrarily high mu-quotient could be obtained by including 
scripts from competent students vho solved problems correctly. 
It is obvious that such data should not affect the validity of 
a theory of errors.
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Summary of Evaluation Criteria

Theory
Competence

Consistency Comparison Prediction
single
subject

Consistent single
errors subject

Consistent single data
errors item
Inconsistent
errors

Student
model

Student
model

single
subject

single data 
item

all questions answered consistent 
correctly the first behaviour
time
all questions answered consistent 
consistently behaviour
and observed or 
expected to contain 
errors
as above as above

all questions that inconsistent
NEWT is unable to behaviour
model
all questions 
attempted the first 
time
as above

consistent 
or null 
behaviour
as above

Repeated Answers

Sometimes, a student answered a repeated question by repeating 
the answer they gave on the first occasion. In the absence of 
any theory to account for why seme questions were answered by 
solving again from scratch, and some by simply repeating the 
previous answer; this was arbitrarily designated as "consistent 
behaviour".
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Matching Output and Data

The evaluation described above depends on being able to match 
the output of the model to the data by a method that classifies 
the output as a "hit", or a "miss", for each data item in the 
span of comparison.

In this study, a "data item", is the student's attempt at 
solving a pair of identical questions and the matching between 
the output of the model and the data is at the level of 
equations generated.

In order to identify "hits", and "misses", a number of 
conventions are required to categorize the output in those 
cases where there is not a direct symbol-to-symbol congruence 
between the data and the output.

(1) Only equations resulting from the instantiation of a 
physical principle are counted. This is because NEWT is 
a theory of physics problem-solving, not algebraic 
competence.

(2) Two equations match if one can be derived from the 
other.
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(3) Two equations match if one can be derived frcm the 
other after a substitution of numerical values from the 
question.

(4) Only the equations produced in the data are targets for 
matching. Since NEWT does not incorporate a theory of 
halting, subsequent equations produced by the model are 
considered irrelevant when deciding if the output 
matches or not.

(5) Equations containing structured numeric data are 
considered as targets for matching, but not equations 
consisting of single number equated to a quantity.

Thus: X = 30 * 2  + 5 is a condidate for matching
but: X = 65 is not

This is because it is impossible to tell from the 
number alone what process led to its calculation. This 
convention does not hold for repeated questions. Here, 
a remembered answer counts as equivalent to the 
original working.
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(6) If no sought variable occurs in an equation, it is 
considered as "rough working", and not considered as a 
target for matching.

(7) Lines of working not having the correct syntactic form 
of an equation are not considered as targets for 
matching.
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Other forms of Evaluation of Theories

Van Lehn ( 1981 ), does not believe that relating a theory to a 
program and testing the program against the data is sufficient 
to validate the hypothesis. He feels that in addition, the 
technique of "competitive argumentation", should be used; and 
himself illustrates its use in considering the mechanisms 
underlying Repair Theory. As he says:

"Matching hypotheses is only a part of developing a theory. 
The other part is validating those hypotheses. An 
important validation technique used with this theory is 
competitive argumentation... One shows that a hypothesis 
accounts for certain facts, and that certain alterations to 
the hypothesis, while not perhaps without empirical merit, 
are flawed in some way. That is, the argument shows that 
its hypothesis stands at the top of a mountain of evidence, 
then proceeds to knock the competitors down".

In cases where there are alternative hypotheses proposed to 
account for the data, this seems appropriate. In the domain 
covered by NEWT, however, there are no alternative proposed
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theories, nor am I able to think of any. So there will be no 
competitive argumentation in this thesis.

Student Models in Intelligent Tutorial Systems

Sleeman and Brown ( 1982 ), identify three major problems with 
the use of student models in intelligent tutorial systems.
These are;

(1) The Assignment of Credit

(2) The Ccmbinatorial Explosion of Compound Concepts

(3) Discounting Noisy Data

The likely effect of these on the implementation of a student 
model based on NEWT will now be considered.

The Assignment of Credit problem occurs Mien the student halts, 
and does not produce output. To what mechanism or malrule 
should the "Credit", for this be assigned in the student model?

NEWT is unable to provide any solution to this, since it does
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not embody a theory of halting. It is sanetimes able to 
predict halting, but this does not enable it to "assign 
credit", to any student model mechanism, or to come to any 
conclusion about the student other than that he is unable to 
apply a particular physical principle at all. Whether this is 
sufficient information for a tutorial strategy to be able to 
work effectively must remain an empirical question.

The Combinatorial Explosion of Compound Concepts is a practical 
problem where students produce output to which a large number 
of possible malrules may apply. This is also a difficulty for 
a NEWT- based system in principle, but in practice, multiple 
malrule behaviour is relatively unccmmon in this domain. 
Furthermore, many of the possible malrules are incompatible, 
and so cannot be applied simultaneously.

As well as these ameliorating circumstances, the difficulties 
introduced by the possibility of multiple malrules are reduced 
by the fact that many malrules affect only certain terms of the 
output, and can be identified from the particular term they 
would affect, independently of other malrules.

Taken together, these facts suggest that combinational 
explosion of multiple malrules is not likely to be an 
insuperable problemi in practice.
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Discounting noisy data is a process partly accomplished ly the 
concentration on equations as the points of contact between the 
theory and the data.

If the input processor of a teaching program were to 
incorporate seme method of constraining the student's input to 
equations Miose syntactical correctness could be checked, this 
would allow noisy data to be reduced to a level comparable to 
that found in the data analysis that follows. This would be a 
non-trivial task, but appears to present no insuperable 
difficulties in principle.
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Conclusions

This chapter has considered two different approaches to the 
relationship between a psychological theory and a computational 
model, corresponding to Marr's Type I and lype II theories.

There are four separate theories to be considered and evaluated 
in the rest of this thesis :

(a) A Type I theory of competent problem-solving 
corresponding to the MECHO program.

(b) A Type I theory of consistently erroneous problem
solving corresponding to the NEWT program.

(c) A theory of inconsistent problem-solving which is not 
expressed ccmputationally.

(d) A Type II theory covering the whole range of problem
solving behaviour, intended as a basis for an 
intelligent student model. This also corresponds to 
the NEWT program, viewed over a different span of
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comparison frcm the theory of consistently erroneous 
problem-solving.

Methods of evaluating ccmputational models have been 
considered. The critical question to be addressed has been 
identified as how one can demonstrate that the program does not 
achieve its results trivially.

Six criteria for an ideal measure of the parsimony of a 
computational model have been proposed; and a measure has been 
defined which satisfies five of the criteria. This measure, 
the micro-theory evaluation quotient, will be used to evaluate 
the four theories in Chapter VII.
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Chapter VI - Design of the NEWT System

The NEWT system may be considered in two parts:

(1) The selection of physical principles and contexts 
in which to apply them.

(2) The generation of equations when given physical 
principles and contexts.

The mechanism corresponding to the first part derives from the 
MECHO program, and iirplements the major part of the framework 
for competent problem-solving.

The mechanism corresponding to the second part contains the 
correct equation generation procedures from MECHO, and also 
procedures corresponding to every identified malrule.

The set of procedures corresponding to malrules defines the 
theory of consistent errors and by extension defines the 
theory of inconsistent errors also.
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Selection of Principles and Contexts

When the problem representation has been read into the 
database, and NEWT has started solving the problem, it first 
identifies lists of 'sought' and 'given' quantities. It then 
applies the Marples Algorithm ( Marples, 1974 ), to generate 
successive plans for producing equations. Each plan contains a 
physical principle and a context in the problem representation.

Plans are generated as follows

(a) Take the first sought quantity.

(b) Frcm the problem description, identify the type of
the sought quantity.

(c) Choose a principle which relates a quantity of this 
type to other quanlrLties. The only principle available 
to NEWT in the Stiatics domain is the Resolution of
Forces Principle. The MECHO program is able to use a
wider variety of principles, such as the Principle of 
Moments, various kinematic principles, and so on.
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(d) Choose a context frcm the problem representation in 
which to apply the principle. For the Resolution 
of Forces principle, the context must be a point or 
a rigid body, together wâth a direction. The body or 
point is chosen from amongst those related to the 
sought quantity, and the direction will be that of 
one of the forces acting on the point or body.

A list of plans alreacfy used is kept, and it is 
forbidden to choose a principle and context that have 
been chosen before. This guarantees that the equations 
generated will be independent, and that a solution can 
therefore be found.

(e) Control is now passed to the mechanism for generating 
equations frcm plans. There are two of these;

- a mechanism to generate equations Miich 
does not allow itself to introduce new 
quantities.

- a mechanism to generate equations Miich
does allow itself to introduce new quantities.
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The control strategy is to use the first equation 
generating mechanism if possible, and the second 
mechanism if the first one fails.

(f ) If an equation containing the sought is generated, that 
quantity is removed frcm the list of sought quantities 
and added to the list of known quantities. The system 
then recurs frcm (a) until no sought quantities remain.

(g) If no equation containing the sought quantity is
generated by step (e), the system backtracks to (d) to 
choose an alternative context, or to (c) to choose an 
alternative principle if no alternative context can be 
found. If no alternative choice of principle is 
possible, the problem-solver fails.

These steps are ccmmon to the theory of correct problem-solving 
and the theory of consistent error generation. Errors in this 
basic control structure do not result in the generation of 
erroneous output, but in non-optimal solution paths or 
premature halting behaviour.
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Generation of Equations

For every allowable principle and type of context, NEWT 
maintains a correct procedure for generating an equation. For 
the Resolution of Forces principle, NEWT also maintains a 
procedure for generating an equation corresponding to each 
malrule identified. Thus a particular micro-theory consists of 
the plan selection mechanism, together with a subset of the 
equation generation procedures.

Each procedure can behave in one of two ways- either it can be 
allowed to introduce new quantities or it can be prevented from 
doing so. This choice is made by the plan selection mechanism 
when the procedure is called.

Equations are generated frcm the Resolution of Forces Principle 
as follows:-

(a) All known tension, compression and applied force 
components acting on the object in the direction of 
resolution, are collected.



272

(b) The component of the weight acting on the object, 
either known or inferred from the mass, is added to 
the collection of force coponents.

(c) If the object is in contact with another object or
surface, a force of reaction in accordance with
Newton's third law is inferred and added to the force 
component collection.

(d) If the object is in non-fixed contact with a rough
surface, a force of friction, either limiting or
non-limiting as required, is calculated and included in 
the force component collection.

(e) The force components collected are summed and equated 
to zero.

The final stage of equation generation is algebraic summation. 
Hence the final equation will contain a sum of terms, each of 
which represents the component of a force.
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Malrules

There aire five categories of malrule implemented in NEWT. Two 
categories are general malrules which may affect more than one 
term in an equation, and three are force-specific malrules 
Miich only affect terms relating to forces of a specific type. 
Twenty-four malrules in all have been induced frcm the training 
set. The categorisation into five groups has been chosen as it 
appears to correspond to the different procedural mechanisms 
involved in the operation of the malrules.

I Malrules of Weight ( 3 malrules )

II Malrules of Reaction ( 1 malrule )

III Malrules of Friction ( 4 malrules )

IV Malrules of Component Calculation ( 12 malrules )

V Malrules of Vector Addition ( 4 malrules )
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Each malrule has been numbered for ease of reference, but these 
index numbers are not intended to possess any significance.
The twenty-four malrules identified in the stucfy are;

Malrules of Weight:

1. Weight = mass

2. Wfeight - mass + 9.8

3. Weight = mass * 9.8 * 10

Malrules of Reaction:

4. Reaction = Weight 

Malrules of Friction:

5. Friction = mu * Reaction ( #ien the friction force
is non-limiting )

6. Friction = 0 ( vdien the friction force
is limiting )
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7. Friction = Reaction

8. Omit the vertical cortponent of friction.

Malrules of Component Calculation

When a force R is resolved parallel to a line inclined at an 
angle of a to its line of action, the magnitude of the resolved 
conponent C should be R * cos a.

9. C = R - cos a

10. C = a - cos a

11. C = R * cos theta ( Wiere theta does not appear in
the problem representation )

12. C = R * a

13. C = R + sin a

14. C = R / tan a
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15. C = cos a

16. C = R * sign( cos a ) where sign( x ) = 1 if x > 0
= 0 if X = 0
=-l if X < 0

17. C = R * sin a

18. C = R / a

19. C = cos theta

20. C = sin theta

Malrules of Vector Addition

21. When friction, weight and reaction are in equilibrium;

Friction = Wëight - Reaction
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22. When a hody lies at rest on a rough slope:

Friction = 9.8 - Mass

23; If three forces are in equilibrium at a point and one 
is known, each of the others are equal to it in 
magnitude.

24. When a known and an unknown force are in equilibrium 
together with a third force normal to the direction of 
resolution,and the angle between the unknown force and 
the direction of resolution is a;

Unknown Force = Known Force * cos a

For reasons of space and clarity, the malrules are only 
presented here in natural language form. The categorisation of 
malrules into five categories is based on the assumption of 
the existence in human problem-solvers of at least five 
distinct mechanisms;

- one to identify the weight
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- one to identify the reaction

- one to identify the friction

- one to calculate the conponent of a force at a given 
angle

- one to add vector quantities

The last two classes of malrule are mutually exclusive- either 
the problem-solver attempts to take components of all relevant 
forces and equate the sum to zero; or they use a "vector 
addition" method ̂ Aich does not rely on taking components.

Malrules in Operation

This section will look at the operation of malrules in 
practice, and consider sane of the possible mechanisms by \diich 
they might work.

Malrules of Weight; The first of these would appear to derive 
from a confusion between the concepts of mass and weight, \diile
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subjects evincing the second and third malrules clearly know 
that there is a difference between the concepts. They also 
know that mass and weight are related by a constant, but have 
not learned what the correct relationship is. One may also 
infer that the users of the second malrule do not recognise 
that mass and weight are measured in different units- they are 
siirply mis-remembering an algorithmic procedure.

Malrules of Reaction; Only one malrule has been included in 
this category. This does not mean that there is only one kind 
of error that can involve a force of leaction- malrules of 
components or vector addition m y  result in errors involving a 
reaction term as well. This mlrule is an oversimplification 
of the correct definition of reaction- in the case where a body 
rests on a horizontal surface, it yields the correct answer.

Malrules of Friction; The first of the friction mlrules is an 
overgeneralisation of the friction law to cover cases of non
limiting friction. The second mlrule involves the omission of 
limiting friction altogether. This might conceivably be due to 
an inability to deal with a number of forces simultaneously, 
leading to the emission of the least obvious force. 
Alternatively, this might result from a process of naive 
physical reasoning of the form "Friction is what tries to stop 
a body from moving; it hasn't been stopped from moving, so
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there is no friction". The malrule "Friction = Reaction", is 
apparently due to the incomplete recollection of the fact that 
the friction between a body and a surface depends on the normal 
reaction between them. The "Qmiit Vertical Component of 
Friction" is again an oversimplification, presumably generated 
from the recollection of examples vhere bodies were placed on 
horizontal planes, and friction did not have a vertical 
component.

Malrules of Component Calculation; Nine of these are 
variations on the theme that the magnitude of the carponent 
depends in some way on the magnitude of the force and its 
orientation. It is doubtful #iether all of these are malrules 
in the sense of being relatively permanent structures- many 
will probably have been created as temporary patches and never 
used again. The remaining three malrules ( Nos 11, 19, and 
20 ), have the appearance more of "formiulae" than of equations. 
From the context in which they were observed, it is clear that 
they were not intended as formulae, because they occurred 
within partially instantiated equations containing quantities 
mentioned in the problem description. There would seem to be a 
deep confusion between formulae and equations in the minds of 
the subjects \dio produced these errors.
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The distinction between a formula in which each symbol stands 
for a true variable, and an equation in which each symbol 
stands for a ( possibly unknown ) but definite value; is 
perhaps blurred in the minds of some inexperienced students by 
the archaic and educationally reprehensible practice of using 
syntactically similiar symbolic names for both cases. Thus 
novices may be introduced to the constant acceleration 
kinematic formula " v  = u + a * t  ", in which the symbol "v" 
stands for the final velocity of any object at the end of any 
interval. They may then go on to apply this formula to a 
question in which the symbol "v" is used to stand for the 
velocity of a particular object at the end of a particular 
interval. No wonder some students become confused between the 
two concepts.
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Malrules of Vector Addition; These are the most complex of the 
malrules, and are applied as an alternative to the summation of 
force components. The first of these is obscure in its 
derivation- all that can be said with any certainty is that the 
user does not understand the difference between vector 
quantities and scalar quantities. The second could 
conceivably be composed from two separate malrules;

Friction = Weight

Weight = 9.8 - Mass

There is no independent indication of the existence of these 
rules, and hence this is counted as a single rule. The fourth 
vector addition malrule is an oversimplification which yields a 
correct equation in the case vhen the three forces are inclined 
to each other at equal angles. The commonest malrule in this 
category is the last one. The correct equation to produce 
would be of the form;

Unknown Force * cos a = Known Force

which bears a superficial resemblance to the malrule version, 
but is harder to solve.
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Examples of Malrules

There follow examples of the equations generated by the twenty- 
four malrules, as applied to either the Strut Problem ( Fig 1), 
the Slope Problem ( Fig 3 ), or the Angle of Friction Problem 
( Fig 4 ).



hinge 40

ma

Figure 1. The Strut Problem



3.2 kg

Figure 3 . The Slope Problem



6 kg

40

Figure 4. The Angle of Friction Problem
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Malnilel ( Strut Problem )

t2 = ma

Malrule2 ( Strut Problem )

t2 = ma + 9.8

MalruleS ( Strut Problem ) :

t2 = ma * 9.8 * 10

Malrule4 ( Slope Problem ) ;

reactionl = 3.2 * g

MalruleS ( Slope Problem );

frictionl = mu * 3.2 * g cos 35
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Malnile6 ( Angle of Friction Problem )

6 * g = reactionl * cos 40

( v^ere reactionl is the force of reaction between 
the block and the plane )

Malrule? ( Angle of Friction Problem ) :

6 * g = reactionl * sin 40 + reactionl * cos 40

Malrule8 (Angle of Friction Problem ) :

6 * g = reactionl * cos 40

( Notice that in this exairple, the malrule yields the 
same results as Malrule6. The two malrules can be 
distinguished by the equations generated with other 
questions. )

MalruleS.. .Malrule20



289

These involve a variety of bizarre ways of 
calculating the components of a force. TVo of these 
will be selected as exaitples.

Malrule9 ( Strut Problem )

tl - cos 40 = t2

Malrulell ( Slope Problem ) :

reactionl = 3.2 * g * cos theta

Malrule21 ( Slope Problem ):

frictionl = 3.2 * g - reactionl

Malrule22 ( Slope Problem ):

frictionl = 9.8 - 3.2

Malrule23 ( Strut Problem ) :
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tl = t2

Malrule24 ( Strut Problem )

tl = t2 * cos 40

Relationship between MECHO and NEWT

The analysis of student errors presented in this thesis makes 
use of the MECHO program ( Bundy et al 1979 ) to provide a 
basis of problem-solving techniques. This system is capable of 
solving problems in the demain under consideration here, as 
well as in other domains.

The NEWT program \diich will be corrpared below to the student 
output, consists of the MECHO program supplemented by 
additional procedures corresponding to executable versions of 
the malrules described in this chapter.
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Conclusion

This Chapter has described the NEWT system in detail. The 
control strategy has been described ( and is related to the 
code by which it is irrplemented in i^pendix I ). The twenty- 
four malrules inferred from the training set have been defined 
and illustrated. In the next chapter, their output will be 
corrpared to the equations generated by the students in the 
validation set.
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Chapter VII - The Experiment

The results of an experimental study are presented in detail. 
This data is corrpared to the output of the NE97T system. 
Evaluation measures are presented for each of the three 
psychological frameworks, and for NEWT as a student model. In 
this study, the malrules inferred from the training set, and 
implemented as procedures in NEWT, were compared to the 
solutions of the students in the validation set.

The Subjects

TWenty-three students, here referred to as SI. .S23 answered a 
test containing questions on statical equilibrium. Fourteen of 
the subjects were in a class studying A-level Physics, and 
eight were in a class studying A-level i^lied Mathematics. The 
ages of the group ranged from 17 to 19.

The first test contained four questions and #ien this had been 
completed, the students were immediately asked to take another 
test. This contained the same questions as the first test, but
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in a different order. One hour was allowed for the completion 
of both tests.

NEWT was adapted to model each student by including any 
malrules necessary to duplicate the student's first set of 
solutions as closely as possible. The questions in the tests 
are those given as examples in Chapter II, and the experimental 
data is presented in ippendix I of this chapter.

The four questions used in the experiment involve calculating;

-limiting friction

-non-limiting friction

-weight

-reaction

-tension

-multi-step solution paths

-components of forces at various angles
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The questions therefore cover a significant part of the domain. 
Four questions were considered sufficient because it was felt 
that for a student to complete four questions twice was as much 
as could be expected in one session. Taking experimental data 
from more than one session was considered, but was rejected 
since it would introduce the possibility that students might 
leam between sessions, thereby affecting the results.

Another reason for avoiding extra data-collection sessions 
with the same students is the "bug migration" phenomenon 
( Brown and VanLehn 1980 ). This involves the presence of a 
consistent bug exhibited over a period of time, which changes 
to a different consistent bug at a later period. In order to 
avoid the problems of learning and bug migration, data 
collection was restricted to a single session, and therefore to 
a set of problems that could be done in this time. Four 
problems seemed to be as many as most of the students could 
cope with in the time available. There is no statistical 
procedure for calculating a miiiirnum neccessary number of 
questions in this case; but the experiment may be ccmpared with 
other data collection exercises intended to analyse the methods 
used by experimental subjects to solve physics problems.

Thus Luger ( 1977 ) used three questions to extract 
protocols from three subjects, which were corpared to traces
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frcm the MECHO program. Larkin ( 1980 ) used five 
questions with her subjects ( of Wicm there appeared to be 
eleven ). Larkin, McDermott, Simon and Simon ( 1979, 1980 ) 
carried out two studies. In one, two subjects solved 
eighteen problems; and in the other, twenty-two subjects 
solved two problems.

Thus the number of questions used in this study is broadly in 
line with the numbers used by other workers in this field.

Observations on the Data

It may be observed from the data summarised below, that many 
students, unlike NEWT, use the friction law as an independent 
principle to generate separate equations while others, however, 
incorporate this relationship into the relevant term of the 
Resolution of Forces principle. From the point of view of 
identifying erroneous equation generating procedures, we shall 
treat the equation F = mu * R as if it were used to substitute 
for F in a Resolution equation.

e.g. the conjunction of equations 

F = T F = mu * R
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will be treated as equivalent to the equation 

T = mu * R

Another observation that may be made is that several students 
solved problems by means of Land's Theorem. This was not 
provided for by MECHO, since MECHO's existing methods were 
sufficient to solve any problem on vdiich Land's Theorem can be 
used. None of the students in the training set made use of 
Land's Theoran, and hence it was not incorporated into NEWT. 
This reduces the goodness of fit of the model for all those 
students vdio used this method.

Interestingly, it seemed to be the better students who used 
Land's theorem- a point which will be investigated separately 
later.
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Identification of New Malrules

Several scripts appeared to contain a new malrule not observed 
in the training set. This had the form;

If a bocfy is resting on a horizontal surface

and

the body is in limiting equilibrium

THEN

F = mu * m

This may be distinguished from Malrule 1 because subject 82, in 
solving Q4, gives the weight of the hanging body as "a * g", 
vdiile the friction force on the stationary body is given as 
"mu * b" instead of "mu * b * g". If the subject had used 
Malrulel ( Weight = Mass ), he would have given the weight of 
the hanging body as "a" and the friction force on the 
stationary body as "mu * b".
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This new malrule was observed in five solutions ( S2Q4V1, 
S2Q4V2, S6Q4V1, S6Q4V2 and S21Q4V2 ). From here on, it will be 
referred to as the "F = mu * m" malrule.
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Description of the Data

With 23 subjects each presented with eight questions, there 
are 184 potential data points to consider. These can be 
broken down as follows:

Correct Solutions: 90

Incorrect Solutions: 41

Not Attennpted: 53
184

Of the solutions attempted, nine involved Lami's Theorem, and 
four used the angle of friction method. As these were not 
counted in the rest of the analysis, that left 118 solutions 
to be considered furtdier.
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Occurrence of Malniles

The frequency of occurrence of identified malrules in the 
validation set is given below. The newly identified 
"F = irm * m" malrule is not numbered because it was not 
induced from the initial training set. In the figures below, 
the occurrences of a malrule on a repeated question are treated 
separately.

Malrule Frequency of Occurrence
24 Unknown Force = Known Force * cos a 11
17 cos a -> sin a 7
1 Weight = mass 6
- F = mu * m 5
4 Reaction = Weight 1
12 cos a -> a 1

Others  0.
Total 31
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The fact that 23 new subjects produced only 1 identifiable new 
malrule, while previously identified malrules accounted for 
26/31 = 84% of the occurrences, suggests that the majority of 
consistent malrules in this demain have been discovered and 
identified. The suggestion cannot be statistically formalised 
because there is no reason to suppose that the probability of 
the next subject examined exhibiting a new malrule is 
independent of the previous subjects. For one thing, subjects 
are drawn from particular teaching groups, vhich vary 
considerably in regard to the distribution of malrules 
exhibited hy their members.

Of the twenty-four malrules identified frcm the training set, 
nineteen were not observed in the validation set. Subjects in 
the training set were not asked to do the questions twice, and 
hence there exists no way of telling whether these errors would 
have been repeated consistently. It is possible that many of 
these errors would not have been consistent. To identify every 
error as a malrule would appear to claim for it a more 
permanent and structured mental representation than may be 
justified: sane of the malrules identified from the training
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set may in fact result from the construction of tertporary ad- 
hoc patches similiar to those observed by Scanlon, Hawkridge 
and O'Shea ( 1983 ).

Hierarchies of Malrule Consistency

The difference in consistency of behaviour exhibited by 
problem-solvers may be used to categorise malrules into three 
different levels of consistency;

1 Errors observed but not repeated

2 Errors repeated in the same question but 
not in other questions

3 Errors repeated in other questions.

Errors of the first category would certainly appear, in the 
absence of other evidence, to be transient results not 
corresponding to permanent knowledge structures. Errors of the 
third category are prima facie candidates for forming part of 
the problem-solver's permanent skill repertoire, and their 
identification in a teaching situation is hence an important
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objective. These errors can be definitely identified as 
malrules.

Errors of the second category of consistency are in some ways 
the most interesting group. Their repetition inplies that they 
are remembered for at least half an hour, and that the 
problem-solver has some degree of confidence in them.. .yet 
they aiB not applied in all possible cases. In fact, in the 
data presented here, malrules vhich do not appear on every 
possible occasion do not appear in more than one question.

There would seem to be three possible explanations for the 
existence of this behaviour;

1 The second category errors have been incatpletely 
specified- they correspond to permanent knowledge 
structures that operate in more specific contexts 
than those as yet identified.
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2 They do not correspond to permanent procedural 
knowledge structures at all, but are temporary data 
structures vhich have been remembered, cued by the 
context of the identical question to that in vhich 
they v?ere generated.

3 The problem-solver maintains several permanent 
problem solving procedures for dealing with the 
relevant principle and context. If one procedure 
is used on a question, it is more likely to be 
used again on the same question, but it is not 
certain to be used on other problems.

The data available do not seem sufficient to pick out one 
explanation unambiguously as the correct one; however, the data 
do relate to the relative plausibility of different 
explanations.

1 The idea that these are incorpletely specified 
malrules seems a possible explanation. If so, 
however, the extra restrictions on the application of 
these malrules would need to be sensitive to the 
context of application in seme essentially irrelevant 
way. Such a malrule would not closely resemble a
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correct procedure, but would look more like a h^rid 
between a malformed correct procedure and a problem 
described in terms of its type hierarchy.

2 The idea that such errors are due to purely temporary 
data structures seems initially the most plausible, 
but is not unambiguously supported by the data. As 
will be seen later, there is a correlation between 
initial solutions vhich cannot be duplicated by the 
identified malrules, and solutions vhich are not 
repeated.

Errors of the second consistency category, vhere the 
error is repeated in the same question but not in 
other questions, differ frcm these solutions in being 
both representable as malrules, and consistent over 
identical questions. If they were simply ad-hoc and 
totporary procedure patches, there would be no reason 
to find a correlation between these two properties.

3 There seems to be no evidence against the 
explanation in terms of multiple problem-solving 
procedures- but to find evidence in its favour, it 
would be be necessary to give every subject many more 
than eight problems. If the malrule present in one
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solution was evinced in another, this would be 
supporting evidence for the existence of multiple 
knowledge structures in the problem-solver.

Relation of Questions to Potential Malrules

When attempting to fit a model to a problem-solver's output, it 
is necessary to know what malrules a solution could potentially 
involve. This is because if a problem-solver exhibits malruleS 
( say ) on one question but not on another where it could be 
applied, the convention for model fitting described in the 
definition of the mu-quotient demands that the malrule should 
not be included in the student model, and that the solution 
which exhibits it be deemed a "miss ".
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The relationship between questions and potential malrules is as 
follows

QL QL Q3. Q4_
Malrulel yes yes yes yes
Malrule4 yes no yes no
MalruleS yes no no no
Malrulel2 yes yes yes yes
Malrulel7 no yes yes yes
Malrule24 yes yes no yes
F = mu * m no no no yes

In order to distinguish malrules used only on a single question 
from malrules used consistently over several questions, it is 
necessary that at least two questions should potentially 
exhibit each malrule. This is not the case with the newly 
identified malrule, and consequently it is irtpossible to 
categorise its degree of consistency for particular problem- 
solvers. Since it was not anticipated vhen the validation set 
was designed, it was not possible to structure the questions in 
such a way as to obtain this data. MalruleS also appears in 
potentially just one question. In the data, this malrule is 
not exhibited except in a single instance of a single question, 
and so anbiguity of its scope is not in question.
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Summary of Results

In the summary of results, solutions will be described in the 
following notation;

Y correct solution

X incorrect solution

no solution

[L] done by Land's Theorem

[a] done by the angle of friction method

[1,2,3] solution exhibits malrules 1,2 and 3

[-] solution cannot be modelled

[M] solution exhibits the malrule
"F = mu * m"
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Every question will be noted twice- once for each of the times 
it could have been attempted. Remembered answers are counted 
as repeated working, expressions of general formulae are 
ignored, and solutions are described as far as they exist 
( i.e- no account is taken of halting behaviour ).
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QL QL QL QL
SI Y Y X[-] [“] Y Y - -
S2 Y Y X[24]X[24] X[17]X[17] X[M] X[M]
S3 X[-] - Y - - X[l] - -
S4 X[a] X[a,5] X[24]X[1] Y Y[a] - -
S5 X[-] X [-] X[l,12] - - - x[-] X[-]
S6 Y Y Y Y Y X[a] X[M] X[M]
S7 X[17]X [17] - - - - - -
S8 Y Y X[24]X[24] Y Y - Y[L]
S9 Y Y - - Y Y Y[L] Y[L]
SIO Y Y Y Y Y Y X[-] X[-]
Sll Y Y X[24]X[24] - - - -
S12 Y Y - - Y Y Y[L] Y[L]
S13 X[l] X [1] Y X [24] Y Y - -
S14 Y X [4] X[l] X [24,17] X[17]X[17] X[- ] X[-]

S15 Y Y Y - Y Y - -
S16 Y Y Y - Y Y - -
S17 Y Y - - Y Y - -
S18 Y Y Y Y Y Y - -
S19 Y Y - - Y Y - -
S20 Y Y Y Y Y Y X[-] -
S21 Y Y Y Y Y Y X[-] X[M]
S22 Y Y Y[L] Y[L] Y Y Y[L] Y[L]
S23 Y Y Y
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This data will new be analysed in six different ways. The two 
measures used will be the mu-gotient, where applicable, and the 
error fit measure defined in Chapter V. Because the students 
in the validation set never used a malrule consistently on two 
occasions vhere it could be used without using it consistently 
on all possible equations, there are no "false errors" in any 
of the data analyses, and consequently the error fit measure is 
numerically equal to:

hits 
data points
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Analyses Used

The six analyses performed on the raw data may be summarised as 
in Chapter V;

Span of 
Theory Consistency
Competence single subject

Consistent single subject 
Errors

Consistent single data item 
Errors
Inconsistent
Errors

Student
Model

Student
Model

single subject

single question

Span of 
Comparison
all questions 
correct first 
time

Prediction
consistent
correct
behayiour

all consistent consistent 
erroneous erroneous
answers plus behaviour
expected errors
as above

all answers 
NEWT can't 
model
all questions 
attempted 
first time
all questions 
attennpted 
first time

as above

inconsistent 
or null 
behaviour
consistent
behaviour

consistent
behaviour
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In more detail, the six analyses are:

1 An analysis of corpetent problem-solving. For this 
analysis, questions solved via Lami's Theorem or the 
Angle of Friction method were excluded.

The span of comparison used was the set of remaining 
questions correctly answered at the first attorpt. 
Answers NEWT was unable to model at the equation 
generation level, or vhich were not solved correctly 
the second time, were counted as misses, and answers 
vhich NEWT could model on both attenpts were counted 
as hits.

This tests NEWT as a model of competent problem
solving. Since there are neither malrules nor false 
errors in this analysis, both measures are numerically 
equal. The span of consistency is the vhole data set, 
since the model of correct problem-solving (equivalent 
to the MECHO program ), is invariant throughout this 
analysis.

2 An analysis of consistent errors. The span of 
corrparison is the set of questions solved erroneously 
in which the solution is identical at both attenpts.
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The span of consistency is a single subject. Hence a 
model is generated for each subject, giving the 
malrules they are identified as possessing. The newly 
identified malrule is not used in this analysis.

This tests the explanatory power of NEWT at dealing 
with consistently erroneous behaviour across different 
questions.

An analysis of consistent errors. The span of 
comparison is again the set of questions solved 
erroneously in which the solution is identical at both 
attempts. The span of consistency is relaxed to cover 
both attempts at a single question.

This tests the explanatory power of NEWT at dealing 
with consistent behaviour across a single question. 
Malrules in the second category of consistency, 
namely, errors vhich are consistent only within a 
single question, are counted as hits on this 
analysis, but not the previous one. If there were 
significant differences between this analysis and the 
previous one ( and the measures could only be higher 
for this analysis, as all hits on the previous 
analysis would count as hits on this one as well ); it
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would be evidence that problem-solvers were more 
consistent when dealing with identical questions than 
when dealing with different questions.

An analysis of inconsistent errors. Here, the span 
of comparison is the set of solutions vhich NEWT is 
unable to model at the first attempt. The prediction 
based on this is that the second attempt at each 
question will be different from the first ( and 
possibly non existent ).

This tests the ability of NEWT to identify questions 
which the problem-solver will solve inconsistently. 
Since no malrules are introduced into NEWT for this 
analysis, the span of consistency is the whole data 
set ( as for the analysis of competence ), and the 
mu-quotient is therefore equal to the error fit 
measure. It is not possible to predict in advance 
which solutions will fall into this category, only to 
identify them when they occur.

An analysis of NEWT as a student model ( single 
student span of consistency ). Here, the span of 
comparison is the set of all questions attempted in 
the first instance.
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The model predicts that if the first instance of a 
question cannot be modelled, the second will be 
inconsistent, or will not be attempted.

An analysis of NEWT as a student model ( single 
question span of consistency ). Here, the span of 
catparison is the set of all questions attenpted in 
the first instance.

Analysis 5 identifies the category 3 malrules held fcy the 
student, and analysis 6 identifies the category 2 and category 
3 malrules. For a population of wholly consistent students, 
these analyses would yield the same results. Recall that 
Category 2 malrules are errors consistent only on repeated 
solutions to the same question, while Category 3 malrules are 
consistent under all conditions.

Additionally, an analysis will be conducted on students using 
Land's Theorem. These have been excluded frcm other analyses 
because NEWT does not include a procedure implementing this 
method, but the data on such subjects are interesting in their 
own right, independently of NEWT. In the following tables, "H" 
is used to stand for a hit ( a student result corresponding to 
a NEWT result ), and "M" is used to stand for a miss.
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1. Analysis of Ccancetent Problem-Solving
QL 02. Q1 Qi.

SI H — H —
S2 H - - -
S3 - - - -
S4 - - M -
S5 - - - -
S6 H H M -
S7 - - - -
S8 H - H -
S9 H - H -
SIO H H H -
Sll H - - -
S12 H - H -
S13 - M H -
S14 M - - -
S15 H M H -
S16 H - H -
S17 H - H -
S18 H H H -
S19 H - H -
S20 H H H
S21 H H H -
S22 H - H -
S23 H
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imi-quotient = 36/41 =0.88 

error fit measure = 36/41 = 0.88

Notice that there are no entries for Q4. This is definitely 
the hardest question for most subjects, and was either not 
answered at all ( 12 subjects ), or answered incorrectly 
( 7 subjects ), or answered correctly by means of Lami's 
Theorem ( 4 subjects ).
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2. Analysis of Consistent Errors- Student Consistency Span 
QL Q2_ QL QL Model

51 — — — — —

52 - H[24] M M [24]
53 — — — ' — —
54 — — — — —
55 — — — — —
56 — — — M —
57 H[17] - - - [17]
58 - H[24] - - [24]
59 — — — — —
510 — — — M —
511 - H[24] - - [24]
512 — — — — —
513 M — — — —
514 - - H[17] - [17]
515 — — — — —
516 — — — — —
517 — — — — —
518 — — — — —
519 — — — — —
520 — — — — —
521 — — — — —
522 — — — — —
523 — — — — —
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mu-quotient = 3/10 = 0.3 

error fit measure = 5/10 = 0.5

Notice that in this analysis, only two different malrules are 
identified as applying over a whole span of consistency ( one 
student ). These are Malrules 17 and 24. All the other 
malrule instances are not counted as part of the model because 
they would lead to false errors.

Thus, for example, S2 is not counted as having malrulel7 in 
their student model, because malrulel7 could be exhibited in Q2 
and Q4. Hence its inclusion would lead to one more hit, but 
two false errors.
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3. Analysis of Consistent Errors- Question Consistency Span 
Q L Q 2 . Q 3 . Q L

SI — — — —
82 - H[24] H[17] M
S3 — — — —
84 — — — —
85 — — — —
86 — — — M
87 H[17] - - -
88 - H[24] -
89 — — — —
810 — — — M
811 - H[24] -
812 — — — —
813 H[l] - - -
814 - - H[17] -
815 — — — —
816 — — — —
817 — — — —
818 — — — —
819 — — — —
820 — — — —
821 — — — —
822 — — — —
823 — — — —
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mu-quotient = 4/10 = 0.4 

error fit measure = 7/10 = 0.7

At this level of consistency, there are of course more hits, 
and the number of malrules identified has risen from two to 
three.
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4. Analysis of Inconsistent Errors
QL QL QL 01

51 — H — —
52 - - - M
53 H - - -
54 — — — —
55 H - - H
56 — — — M
57 — — — —
58 — — — —
59 — — — —
510 — — — M
511 — — — —

512 — — — —
513 -
514 — — — H
515 — — — —
516 — — — —
517 — — — —
318 — — — —
S19 — — — —
820 - - - H(
821 - - - H
822 — — — —
823 — — — —
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Since no student models were constructed for this analysis, and 
therefore no malrules were incorporated into student models,

mu-quotient = 7/10 = 0.7

The error fit measure is not applicable to this analysis, 
because only questions incorrectly answered are included in the 
data. This makes the concept of a 'false error' inappropriate.

An alternative approach to calculating the mu-quotient is to 
look at the corrparison between error questions solved 
inconsistently (x), and solutions NEWT cannot model (y).

For this conparison, x takes a value of 1 for every question 
solved inconsistently, and zero for every question solved 
consistently. The value of y is taken as 1 for every erroneous 
solution NEWT can't model in the first instance, and zero 
otherwise. This gives the following distribution of (x,y) 
values:
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QL Q2_ Q3. QL
SI 0,0 1/1 0,0 -

S2 0,0 0,0 0,0 0/1
S3 1/1 1/0 - -
S4 - 1/0 0,0 -
S5 1/1 1/0 - 1/1
S6 0,0 0,0 1/0 0/1
S7 0,0 - - -
S8 0,0 0,0 0,0 -
S9 0,0 - 0,0 -
SIO 0,0 0,0 0,0 0/1
Sll 0,0 0,0 - -
S12 0,0 - 0,0 -
S13 0,0 1/0 0,0 -
S14 1/0 1/0 0,0 1/1
S15 0,0 1/0 0,0 -
S16 0,0 1/0 0,0 -
S17 0,0 - 0,0 -
S18 0,0 0,0 0,0 -
S19 0,0 - 0,0 -
S20 0,0 0,0 0,0 1/1
S21 0,0 0,0 0,0 1/1
S22 0,0 - 0,0 -
S23 0,0 — — —
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These results itay be summarised in this form;

X

y (NEWT)
1 0

1 7 9 16
0 3 44 47

10 53 63

If we assume that the probability of a student scoring a 1 or a 
zero is independent of the probability that NEWT does the 
same, we can calculate the expected frequencies given the rcw 
and column totals as;

1 0
X 1 2.54 13.46 16

0 7.46 39.54 47
10 53 63
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Using Fisher's Exact Test, the probability of obtaining a 
distribution at least as different from the expected one as 
this is 0.0031. Thus it is highly likely that the scores of 
NEWT and the student population are related- that is, if NEWT 
cannot model a student's output, then the student is likely to 
be inconsistent; while if NEWT can model their output, they are 
likely to be consistent themselves.

5. Analvsis of NEWT as a Student Model 

( Single Student Consistency Span )

For this analysis, the span of consistency is one student, and 
the span of catparison is the first instance of each question. 
When the first instance cannot be modelled by NEWT, the 
prediction made by the student model is that the second 
instance of the question will not be attoipted. Predicted 
correct solutions are counted as hits.
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SI
QL
H

QL
H

QL
H

QL Model

S2 H H M M [24]
S3 H M M - -
S4 - M - - -
S5 M M - M -
S6 H H - M -
S7 H - - - [17]
S8 H H H - [24]
S9 H - H - -
SIO H H H M -
Sll H H - - [24]
S12 H - H - -
S13 M M H - -
S14 M M H M [17]
S15 H M H - -
S16 H - H - -
S17 H - H - -
S18 H H H - -
S19 H - H - -
S20 H H H H -
S21 H H H M -
S22 H - H - -
S23 H M _
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mu-quotient = 42/62 =0.68

error fit measure = 44/62 =0.71

6. Analysis of NEWT as a Student Model

( Single Question Consistency Span )

For this analysis, the span of consistaicy is one 
question, and the analysis is otherwise identical to 
that carried out above.
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SI
QL
H

QL
H

QL
H

QL Model

S2 H H H M [17,24]
S3 H M M - -
S4 - M - - -
S5 M M - M -
S6 H H - M -
S7 H - - - -
S8 H H H - [24]
S9 H - H - -
SIO H H H M -
Sll H H - - [24]
S12 H - H - -
S13 H M H - [1]
S14 M M H M [17]
S15 H M H - -
S16 H - H - -
S17 H - H - -
S18 H H H - -
S19 H - H - -
S20 H H H H -
S21 H H H M -
S22 H - H - -
S23 H M
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imi-guotient = 43/62 =0.69

error fit measure = 46/62 = 0.74

Analysis of the Use of Lami's Theorem

Both groups of subjects had been taught Lami's Theorem. 
Subjects S8, S9 and S12 in the first group used it, and S22 in 
the second group. Since NEWT had not been given a procedure 
for using this method, solutions involving it have not been 
considered in previous analyses.

It is easy to see that the students vho used this method were 
better at problem-solving in general than the rest of the 
subjects. The people vho used Land's Theorem attempted 27 
questions and got 25 correct ( ie 93% ). The people vho did 
not use Land's Theorem attempted 104 questions and got 64 
correct ( ie 62% ). Even more strikingly, 100% of the 
questions done by Land's theorem were done correctly, as 
against 66% of the questions done by other methods. This is 
even though 77% of the questions done by Land's Theorem were 
question 4, the most difficult question of all
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In order to test the hypothesis that subjects using Lami's 
theorem were better problem-solvers than subjects who did not, 
a non-parametric test dealing with unequal saitple sizes is 
required. The Mann-Whitney U test is therefore an appropriate 
test to use- although the number of people using Lami's theorem 
are distinctly on the low side for obtaining significant 
results.

Dividing the population into subjects who do use Lami's 
Theorem, and subjects Wtio don't, the two relevant hypotheses 
are:

HO: the two populations have identical distributions.

HI: The population using Lami's Theorem has a higher 
median score.

The data for the calculation of this statistic are as 
follows :
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Si±>iect Score Use of Land Rank
SI 4 12.5
S2 2 17.5
S3 1 20
S4 1 20
S5 0 22.5
S6 6 5
S7 0 22.5
S8 5 Y 9.5
S9 6 Y 5
SIO 6 5
Sll 2 17.5
S12 6 Y 5
S13 3 15.5
S14 1 20
S15 5 9.5
S16 4 12.5
S17 4 12.5
S18 6 5
S19 4 12.5
S20 6 5
S21 6 5
S22 8 Y 1
S23 3 15.5



334

For this data: U1 = 10.5 and U2 = 65.5
The smaller of these is taken as the test statistic: U = 10.5

Since the 0.025 significance level for nl = 19 and n2 = 4 is 
13, the alternative hypothesis is rejected, and the population 
of subjects using Lami's Theorem scores significantly higher 
than the population of subjects not using it.

These figures support a correlation between expertise and the 
use of Lami's Theoran: either experts are more likely to use it 
than novices, or else students are only able to leam this 
method after developing a reasonable degree of expertise 
already.

Such a correlation can be looked at in the light of ideas on 
plans tacking developed earlier. The advantage of Lami's 
Theorem is that it allows what would otherwise be two stages of 
working to be condensed into one. Consider this physical 
situation:
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tension t2
/

/
_ /
/| tension tl

/
/ 45 degrees

90
degrees

weight 
V m  * g

Without use of Lami's Theorem, one can find t2 in terms of ma 
and g by resolving vertically and horizontally;

tl * sin 45 = ma * g

t2 = tl * cos 45 = ( ma * g * cos 45 ) / sin 45

t2 = ma * g



336

Whereas using Lami's Theoran, these two stages can be collapsed 
into one;

 t2______  = ma * g____
sin ( 90 + 45 ) sin ( 90 + 45 )

t2 = ma * g

Anyone \àio was consciously planning a solution, and hoping to 
minunise the number of steps used, would have a motive for 
selecting Lami's Theorem as the method of choice. Anyone vdio 
was solving the problem by applying whatever methods could be 
applied until an answer anerged would have no more reason to 
use this method than any other.

This finding therefore supports the idea that experts plan 
their solutions qualitatively before implementing than- \diich 
is the essence of the planstacking approach.
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Summary of Analyses

The results of the first six data analyses may be summarised 
thus;

Analysis Span of Span of Mu-quotient Error Fit
Comparison Consistency Measure

Competent
Problem-
Solying
Consistent
Errors

Consistent
Errors

Questions 
correct 
first time
consistent
incorrect
questions
consistent
incorrect
questions

Wiole data set 0.88

Inconsistent questions 
Errors which can't

be modelled
Student
Model
Student
Model

All
questions
All
questions

one student 0.3

one question 0.4

\diole data set 0.70

one studait 0.68

one question 0.69

0.88

0.5

0.7

N/A

0.71

0.74
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Effects of Considering New Malrules

If the new malrule identified from the validation set had been 
inplanented in NEWT, and included in the analysis, the figures 
would have been slightly different. Revised figures taking the 
new malrule into consideration are as follows ;

Analysis Span of Span of Mu-quotient Error Fit
Cotnparison Consistency Measure

Competent
Problem-
Solying
Consistent
Erroirs

Consistent
Errors

Inconsistent
Errors

Student
Model
Student
Model

Correct
questions

Incorrect
consistent
questions
Incorrect
consistent
questions
Questions 
which can't 
be modelled
All
questions
All
questions

vhole data 
set

one
student

one
question

whole 
data set

one
student
one
question

0.88

0.4

0.5

0.87

0.7

0.71

0.88

0.7

0.9

N/A

0.73

0.76

As can be seen, the values change only marginally when the new 
malrule is included in the analysis.
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Alternative Predictions of Behaviour for the Student Model

Since the analysis of NEWT as a student model involves the 
prediction of behaviour, it may be compared to the alternative 
hypothesis that the subject will repeat the solution to every 
question on the second attempt. This is here termed the 
'Repeat Hypothesis'.
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Analysis of the Repeat Student Model

SI
QL
H

QL
M

QL
H

QL

S2 H H H H
S3 M M M -
S4 - M - M
S5 M M - M
S6 H H - H
S7 H - - -
S8 H H H -
S9 H - H -
SIO H H H H
Sll H H - -
S12 H - H -
S13 H M H -
S14 M M H M
S15 H M H -
S16 H - H -
S17 H - H -
S18 H H H -
S19 H - H -
S20 H H H M
S21 H H H M
S22 H - H -
S23 H M
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mu-quotient - not applicable

Error fit measure: 47 / 62 = 0.76
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The different possible student models available for prediction 
of behaviour may be summarised thus;

Analvsis Malrules Span of Mu-quotient Error
Consistency

NEWT student Original Studeit 
model set

NEWT student Including Student 
model new rule

Repeat model Question

0.68

NEWT student Original Question 0.69 
model set

0.7

NEWT student Including Question 0.71 
model new rule

Fit Measure 
0.71

0.74

0.73

0.76

0.76

This table shows that NEWT used as a student model is 
comparable in predictive power to the Repeat Hypothesis. On a 
question by question basis, NEWT augmented by the new malrule 
is as good as the Repeat Hypothesis- yet it can yield 
information not available from the alternative; namely, 
predictions about solutions for previously unseen questions. 
These predictions ( student level of consistency ), are not so 
accurate because students themselves are less consistent 
between questions than when repeating the same question.
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Unlike the previous data analyses, the mu-quotient and the 
Error Fit measure for the student model may be contrasted with 
a Chi-squared analysis. For this analysis, the Repeat Model is 
taken as the alternative hypothesis, and the number of hits by 
that model is taken as the observed frequency. The student 
model version of NEWT is taken as the null hypothesis, and the 
number of hits by that model is taken as the expected 
frequency. Since there is a single class with no constraints, 
the number of degrees of freedom is one.

For NEWT as a student model using a single student span of 
consistency.

Chi-squared = 0.205

For NEWT as a .student model, using a single question span of 
consistency.

Chi-squared = 0.022
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Since both of these values are less than 3.84, the 5% 
significance level, either version of the NEWT Student Model 
may be considered to be comparable to the Repeat î^pothesis as 
a predictor of behaviour.

The real advantage of a NEWT-based student model over the 
Repeat Model is of course that it enables predictions to be 
made of student performance on problèmes not previously 
encountered.
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Conclusions

This chapter has considered the experimental data as presented 
in the appendix to this chapter, and has presented a number of 
statistical analyses on them. The results of these analyses 
show that:

- Students who use Lami's Theorem are better at solving 
problems than students who don't.

- NEWT used as a student model is comparable in 
predictive ability to the Repeat Hypothesis ( ie, the 
hypothesis that students repeat their solutions to 
identical questions )

- The new malrule identified during the analysis of the 
training set does not affect the figures very much.

- Most of the consistent errors were due to a handful 
of malrules, and most of the malrules incorporated in 
NEWT were not needed in the analysis of the 
validation set.
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- There was a significant correlation between incorrect 
solutions that NEWT could not model, and solutions 
that were handled inconsistently between the two 
instances of the question. This shows that errors 
that do not correspond to NEWT malrules are not 
caused by permanent knowledge structures held by the 
problem-solver.

- There was a broad agreement between the results 
analysed by the Error Fit measure and the Micro- 
Theory Evaluation Quotient over the analysis for 
which they were used.

- The fact that one new malrule was discovered in 23 
scripts from two separate teaching groups suggests 
that collection of data from more groups might lead 
to the identification of more malrules- but not very 
many, and not sufficient to affect the figures very 
much. It is not possible to formalise this 
prediction, because there is no reason to suppose 
that the distribution of malrules is independent of 
teaching groups.

The next chapter will consider the relevance of these results 
to the theories discussed earlier.
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Chapter VI11 - Conclusions

This project has identified three psychological mechanisms used 
by human problem-solvers, and has resulted in the construction 
of a program ̂ ose output coiresponds reasonably well with 
consistent human problem solutions.

Aims of the Project

The project has two aims:

(1) To identify the psychological mechanisms used by 
problem-solvers working in the domain.

(2) To develop a model that allows a student's future 
behaviour to be predicted frcm their past 
actions.
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The first of these aims has been pursued by an analysis of 
published work, and the second by the construction of a 
problem-solving program called NEWT. This has been ccmpared 
with the problem solutions of twenty-three students, each 
attempting to solve four problems twice.

Claims of the Project

Three mechanisms for solving problems have been identified;

- a control strategy termed "Planstacking", used by 
expert problem-solvers.

- a heuristic termed the "Hidden Curriculum Assumption 
of Non-Redundancy", used by expert problem-solvers to 
reduce the amount of search needed.

- an intermediate knowledge representation termed a 
"sketch", used by experts and novices alike to 
disambiguate syntactic parses of questions.
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A computational model has been constructed and analysed. The 
conclusions drawn from this are:

- the NEWT program is an effective and accurate basis 
for a student model.

- the NEWT program is reasonably successful at 
modelling consistent student errors. This 
demonstrates the existence of coherent and stable 
erroneous procedures used by students, termed 
"malrules". Six malrules are identified.

- questions #iich are answered inconsistently largely 
correspond to questions NEWT was unable to model.
This is taken as showing that seme errors are not due 
to coherent and stable procedures, but are ad-hoc 
results produced by random manipulations of 
quantities in the problem. This correlation allows 
NEWT to identify problems vvhose solution has been 
obtained by a weak general process, as well as 
identifying malrules ̂ en they occur.



350

Identification of Psychological Mechanisms

Planstacking

How do problem-solvers know lAat principle to apply next in 
order to generate an equation? Forward inference and backward 
inference have been suggested as possible control strategies. 
In this thesis, a third alternative called "Planstacking", is 
proposed. This involves the construction of successive plans 
#iich are placed on a stack as they are cireated. Each plan 
consists of a physical principle and a context in imM.ch it can 
be applied. Each plan is capable of generating an equation, 
and if the resultant equation contains only one unknown 
quantity, the plan therefore defines a means of finding that 
quantity. Plans are generated to find sought quantities by 
backward inference. When plans to solve for all sought 
quantities have been generated, the stack is popped and the 
equations are generated and solved in reverse order.

It is hypothesized that this method can only be applied by 
people able to use meta-level inference to tell v<hat quantity 
could be inferred from a plan. Therefore, this method is only 
available to experts.
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The proposal explains existing experimental data on problem
solving better than alternative hypotheses, though as yet only 
in a qualitative way.

The Hidden Curriculum Assumption of Non-Redundancy

Evidence suggests that expert problem-solvers can often guess 
the method of solution for problems they have not read 
cortpletely. To explain this, the Hidden Curriculum Assunption 
of Non-Redundancy is introduced. This is an assumption made by 
expert problem-solvers to the effect that every quantity 
mentioned in the problem is relevant. Such an assunption 
allows experts to rank their list of known physical principles 
in order of their likely utility in solving the problem. 
Principles that relate all the quantities mentioned in the 
problem statement so far are given priority over others.

This ordering reduces the amount of search needed later on in 
the solution process for problems that contain no redundant 
information. It also gives a basis for an expert to guess the 
relevant solution principle before reading the #iole question.
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The Use of Sketch Construction to Parse Questions

When given a question to solve in vdiich the objects described 
cannot physically exist, some subjects re-parse the question 
before solving any equations. These subjects construct a 
representation of a possible object which does not correspond 
to the description, rather than an impossible object which does 
correspond to the description.

This is explained by the hypothesis that subjects construct 
either internal or external sketches of problem contexts as 
they are described. A sketch is an arbitrary metric 
instantiation of the problem description, and its construction 
verifies the possibility of the objects described in it.
Failure to construct a sketch is taken as indicating an 
incorrect parse of the incoming description; leading to 
abandonment of the problem, or forcing re-parsing of the 
question.
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The NEWT Model of Problem-Solving

The NEWT program was constructed to model erroneous human 
problCTi-solving at the level of equation generation. The MECHO 
program ( Bundy et al. 1979 ), vhich was able to solve problems 
correctly, was adapted to produce errors corresponding to the 
malrules defined in Chapter VI.

NEWT was corrpared with twenty-three students solving four 
problems twice. Soietimes students solved the problems 
consistently ( produced the same results both times ), and 
sometimes they solved the problems inconsistently ( and 
produced different results on the two occasions ).
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NEWT was ccirpared to the students over:

(a) the whole set of questions answered, to evaluate 
its lærit as a student model,

(b) the set of questions answered consistently, to 
evaluate it as a model of consistent problem 
solution,

and (c) the set of questions answered inconsistently, to 
investigate the relationship between inconsistent 
problem solutions and the NEWT model.

For each analysis, the "span of consistency", is the set of 
data points over which the NEWT model is held constant.
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Siammarv of Results

Analysis Span of Mu-Cfuotient Error Fit Other

(a) Student 
Model

Consistency
Single
Student

(b) Consistent Single 
Errors Student

0.68

0.3

jyfeasure Measures
0.71

0.5

not
significantly 
different 
from Repeat 
Hypothesis

(c) Inconsistent 
Errors

Whole data 
set

0.7 probability 
of chance 
result = 
0.0031
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These figures show that NEWT was able to duplicate about 70% of 
the students' behaviour overall; about 50% of their 
consistently erroneous behaviour, and to recognise ( but not 
duplicate ) about 70% of their inconsistent behaviour.

This provides an adequate basis for a student model in a 
Ccmputer-Assisted tutorial program, and provides additional 
evidence to support the existence both of a limited number of 
principled and consistent errors, or "malrules", and of weak 
general methods that lead to inconsistent errors on the part of 
the student.
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Malrules Identified

The following malrules were identified in the training set, and 
confirmed in the validation set:

Malrule Frequency of Occurence

24 Unknown Force = 11
Known Force * cos a

17 cos a — > sin a 7

1 Weight = Mass 6

4 Reaction = Weight 1

12 cos a — > a 1

In addition, one new malrule was inferred from the validation 
set:

25 Friction = mu * Mass 5
( mu is the coefficient of friction )
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While nineteen other errors were identified in the training 
set, the figures suggest that these six are sufficient to 
account for most of the consistent errors likely to be 
encountered. It is interesting that these errors have the 
appearence of malfonæd formal procedures, rather than 
processes derived from naive physical intuitions. This 
suggests that the mental activities of naive and formal physics 
are largely disjoint, at least in the domain investigated here.
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Limitations of the Project

The work carried out in this project has a number of 
limitations. These are:

Computational Implementation

Experimental Validation

Methodological Incompleteness

Extension of Data Collection

Interpretation of Behaviour

The Assignment of Credit Problem

Causation of Inconsistency

Utility of the Student Model
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Computational Implémentation

The hypotheses advanced regarding Planstacking, the Hidden 
Curriculum Assumption of Non-Redundancy, and Sketch 
Construction; have been articulated discursively, but have not 
been given a computational irtplementation.

Until and unless this is done, it will be impossible to be 
certain vhether these defined procedures are capable of 
producing the expected results without non-trivial extensions 
in their structure. The discipline of corputational 
implementation is a demanding one, but it is ultimately vital 
for the validation of hypotheses of this type.
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Experimental Validation

The hypotheses on problem representation and control strategy 
described above have been related to published results of other 
researchers, but have not been tested here by comparison with 
experimental data collected for the purpose. Several 
predictions of behaviour can be derived frcm these hypotheses, 
which should therefore be expected to gain observational 
corroboration before they can be regarded as well-established. 
An attempt to compare the relative merits of Planstacking and 
Schema-Guided Forward Inference has been carried out by Priest 
and Lindsay ( 1986 ).

These authors carried out two studies to compare the 
predictions of the different control strategies with the 
behaviour of experimental subjects. In the first study, they 
investigated the latency of problem solution over different 
versions of the same problem; and in the second study, they 
looked at the extent to which different subjects were able to 
produce explicit plans to solve problems. These will be 
referred to here as Study A and Study B.
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Study A: Latency on Different Problems.

Consider a pair of problems, referred to as the "Study 
Version", and the "Test Version". Suppose that the subject is 
required to study the Study Version, and then to solve the Test 
Version. In such a situation, performance on the Test Version 
should be related to the amount of processing carried over from 
the Study Version. We shall assume that the two questions are 
identical as to the objects described in them, but that the
Test Version may or may not vary from the Study Version in
terms of the quantities sought or given. If the Test Version 
is identical to the Study Version, we shall refer to it as the
"Standard Version". If the Test Version is the same as the
Stucfy Version except that the quantity sought in the problem is 
different, we shall refer to it as the "Changed Soughts 
Version"; and if only the given quantities have been changed, 
we shall refer to it as the "Changed Givens Version". Now 
consider the predictions of the different control strategies as 
regards the solution of a Test Version question by a subject;



363

A problem-solver working by Schema-Guided Forward 
Inference would be able to use all their previous 
working on the Standard Version, sane of it on the 
Changed Soughts question, and none of it on a Changed 
Givens question. Therefore, performance should be 
better on a Standard Version than a Changed Soughts 
Version; and better on a Changed Soughts Version than 
on a Changed Givens question.

A problem-solver working by Planstacking would be able 
to use all their previous working on a Standard 
Version, sane of it on a Changed Givens question, 
and none of it on a Changed Soughts question. So 
they ought to be able to solve a Standard Version 
better than a Changed Givens Version, and a Changed 
Givens Version better than a Changed Soughts Version.

Thus the two control strategies lead to different predictions 
in solving slightly different questions. Improved performance 
on a particular question may take the form of either faster, or 
more accurate problem solution, since the student has the 
option of making a tradeoff between speed and accuracy. Thus 
significant interaction between either speed or accuracy and 
problem version is predicted by each of the two control 
strategies under consideration.
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Seventy-nine subjects with a variety of levels of expertise 
were given timed problem sheets to corplete, containing pairs 
of problems. In each pair, the first problem was the Study 
Version; and the second was either a Standard Version, a 
Changed Soughts Version, or a Changed Givens Version. The 
experiment was planned as a balanced repeated measures design; 
with level of expertise and problem version as independent 
variables, and solution time and inference direction as 
dependent variables.

The results showed no effects of version of problem on latency. 
There was an effect of problem version on accuracy, due to 
increased accuracy on Standard Version questions as predicted 
by both control strategies. This effect was not present Wien 
Changed Givens and Changed Soughts versions were considered in 
isolation.

Study B: Planning Problem Solutions

It is inherent in the Planstacking approach that the problem- 
solver builds up a detailed plan for solving the problem before 
generating any equations. Problem solution by Schema-Guided 
Forward Inference does not require such a step. Therefore an 
ability on the part of experts to write down explicit plans for
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solving problems without generating equations would support the 
existence of a Planstacking control strategy rather than a 
Schema-Guided Forward Inference strategy. An inability to 
produce such plans would have to be counted as conclusive 
evidence against the use of Planstacking.

Seventy-nine subjects were given a series of problems to solve, 
and asked to write down an explicit solution plan without 
generating any equations. The result was that experts were 
significantly more likely to be able to produce solution plans 
than novices.

Thus the e3̂ )erimental evidence is not conclusive. The planning 
experiment provides support for the use of a planstacking 
control strategy; but the latency experiment does not, although 
the increased accuracy of subjects on the Standard Version 
problems suggests that the experimental design was valid. Ihe 
results of Experiment A could be due to the use of another 
control strategy altogether, or to the effects of an 
unsuspected confounding variable. Alternatively, it could be 
that when subjects recognise that the question they are 
answering differs frcm the Study Version, they decide not to 
itBke use of their previous working. Thus there is a limited 
amount of support for the Planstacking control strategy, but 
none at all for the use of Schema-Guided Forward Inference.
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Methodological Incanpleteness

The methodology for evaluating micro-theory systems has been 
inadequate, and recognised as inadequate, for some time. The 
definition of the micro-theory evaluation coefficient is an 
atterrpt to find an answer to this problem. Six desirable 
criteria for such a measure have been defined, five of which 
are satisfied by this new statistic. The two respects in which 
it falls short of a complete answer to what is needed are;

there is no value of the statistic that can be taken to 
correspond to a "good fit" between the micro-theory system 
and the data. Thus the mu-quotient cannot of itself be 
used to answer the question "is the theory a good fit to 
the data?"

the mu-quotient does not take account of whether different 
micro-theories are very different or not. If some 
micro-theories were closely similar, and others were very 
different, this fact would not be reflected in the 
calculation of the mu-quotient.
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Conventional statistical techniques often give the superficial 
inpression of giving absolute measurements as to Wiether a 
theory is a "good fit", to sane data. This is possible because 
in most conventional statistical hypothesis testing, there is 
an obvious "alternative hypothesis", against Wiich the proposed 
hypotheses can be measured. In micro-theory system evaluation, 
there is no such alternative hypothesis .

The malrules identified in the two experimental data sets are 
organised into five groups, according to the correct procedure 
they replace. Malrules of the sane group may be considered to 
be closer together than malrules in different groups - but this 
structure is not made use of by the mu-quotient.
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Extension of Data Collection

Data was collected in two sets; a training set of 28 subjects, 
and a validation set of 23. Although these numbers seemed more 
than adequate in advance, they proved to be a limitation in 
three ways;

- the questions in the training set were not repeated. This
led to the inclusion of transient errors in the set of
implemented malrules.

- the analysis of consistent errors in the validation set
was hampered by the small number of data points (10),
compared with the number of malrules relevant to the 
analysis. The micro-theory evaluation quotient is not an 
appropriate measure to use in such cases, yielding 
extremely low values irrespective of the adequacy of the 
micro-theory system under evaluation.

- the validation set threw up one more malrule which was 
used with sufficient consistency to merit inclusion in 
the malrule set. Ideally, a new and updated version of 
NEWT, incorporating this new rule, should be compared
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with a fresh data set for validation, large enough that an 
analysis of consistent errors could take place over a 
sufficient set of data points. This has not taken place.

Interpretation of Behaviour

Although the production of output from a problem, given a 
student model as a set of malrules has been automated by NEWT; 
the initial identification of malrules and the ccmparison of 
student output with NEWT output are done manually.

In a computer-assisted learning program, automatic 
identification of errors in student output in terms of a model 
would be indispensable. The issues involved in such 
identification are non-trivial, especially if an efficient 
process is required, but they have not been addressed in this 
project.



370

The Assignment of Credit Problem

One of the major practical problems in analysing student output 
for the production of a student model is the assignment of 
credit problem. If a student produces no output, or halts 
before finishing the solution, how is the "credit" for this 
bWiaviour to be assigned amongst the various processes 
involved? This is an interesting theoretical issue, but the 
project has not addressed it.

Conceivably, halting behaviour could be due to an absent or 
malformed control strategy, to an ignorance of relevant 
physical principles, to an absence of the skills of meta-level 
analysis that relate abstract physical principles and specific 
contexts with the physical quantities they relate, or to an 
absent procedure for forming equations frcm a selected 
principle.

If the procedural structure of human problem-solving skills 
is as delineated in this thesis, these are the obvious reasons 
for halting behaviour as opposed to the production of erroneous 
equations. Confirmation or further analysis would, however, 
require a different experimental approach frcm that used in 
this project.
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Causation of Inconsistency

A separate analysis has been made of inconsistent problem
solving, and the results have been explained in terms of the 
existence of either semi-permauent knowledge structures 
corresponding to malrules, or the actions of a weak general- 
purpose answer-generating strategy. These two alternatives 
have been tentatively related to different degrees of 
confidence on the part of the experimental subject in the 
correctness of his answer, and to the tendency of solutions to 
be remembered or repeated.

The existence of a weak general question-answering strategy 
finds confirmation in other work, but there is no explicit 
data collected in this project that identifies such a strategy 
or relates it to the correlated distinctions of consistent vs 
inconsistent, or modellable vs unmodellable behaviour.

Any explanation for this correlation is therefore presented as 
a plausible hypothesis consonant with the known facts, rather 
than as one backed by any degree of evidential proof.
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Utility of the Student Model

There are a number of limitations on the practical utility of 
the student model as implemented in the NEWT program.

-NEWT does not analyse student input itself.

-NEWT does not attempt to model halting behaviour.

-The problem domain covered is rather narrow. The 
MECHO program on which NEWT is based is capable of dealing 
with a wider range of problems than NEWT, but malrules 
have not been analysed, identified, and implemented 
outside the demain described here.

-NEWT only identifies incorrect procedures- it has no 
explicit representation for identifying Wiich correct 
problem-solving procedures were used in a particular 
problem solution, though it would not be hard to 
extend NEWT in this direction, since the underlying MECHO 
program contains the necessary correct procedures for the 
demain ( apart frcm those necessary to implement Land's 
Theorem ).
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A student model for a CAL program would need to be able to 
identify the student's correct processes as well as their 
incorrect ones.
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Further Work

Further work is suggested by the investigations recorded here. 
Possible lines of development could be:

1 - Ccmputational inplementation of the planstacking control
strategy

2 - Computational implementation of the Hidden Curriculum
Assumption of Non-Redundancy

3 - Computational implementation of a sketch construction
algorithm and its interfacing with a natural language
parser to investigate the use of sketches in 
disambiguating syntactical parses.

4 - Collection of experinental data in order to test the
predictions of the Planstacking hypothesis, the Hidden 
Curriculum Assumption of Non-Redundancy, and the Sketch 
Construction Hypothesis.
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5 - Extension of the coverage of NEWT to deal with erroneous
problem solutions over a more widely extended domain.

6 - Repetition of the validation set data collection for the
existing version of NEWT augmented by the newly 
identified malrule- using a larger sairple size if 
possible.

7 - Construction and computational implementation of an
algorithm for interpreting student output and 
identifying a malrule-based student model from it.

8 - investigation of the halting problem by protocol
collection, interviews or other techniques.

9 - investigation into the psychological correlates of
inconsistent problem-solving and the consistency of 
malrules over time by means of longitudinal studies.

10 - extension of the student model to include a structured
representation of the procedures used in correct 
problem-solving.
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11 - Investigation of the genesis of malrules by generalising
the ideas of Repair Theory to appy to the domain covered 
by NEWT. This would involve restructing the problem
solving procedures so that each section deleted would 
result in the generation of set of possible malrules.
The generation of all and only the malrules observed in 
practice would be evidence for the psychological 
accuracy of the structure of the initial procedure.

The demain described in this thesis is both richer and 
more complex than that of the subtraction algorithms 
for v^ch Repair Theory was initially introduced. This 
may mean that a Repair Theory for this domain needs to 
be more conplex and less knowledge-free than that 
adumbrated by Van Lehn. Such a Repair Mechanism should 
not be confused with a knowledge-free general question- 
answering strategy- this of its nature would not be 
expected to yield experimentally verifiable results.

Jansweijer, Elshout and Wielinga ( 1986 ) have applied 
the concept of Repair Theory to the task of solution 
planning in the closely related domain of 
Thermodynaniics; but have not investigated its 
appliction to the generation of specific equations.
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Current Activities

Of these possible lines of development, numbers 1,2,4,10 and 11 
are currently being followed up by two projects being 
undertaken at Oxford Polytechnic. One project reported by 
Priest and Lindsay ( 1986 ) involves the collection of 
experimental data to test the predictions of the Planstacking 
Hypothesis, Hidden Curriculum Assumption of Non-Redundancy, and 
the Sketch Construction Hypothesis. Another project is based 
on the construction of a problem-solving program for the demain 
that will implement the Planstacking algorithm. Hidden 
Curriculum Assumption of Non-Redundancy, and also will 
hopefully contain a Rep>air mechanism enabling the generation of 
observed malrules from inccatplete dcmain-specific procedures. 
For an approach to the development of a Repair Mechanism for 
the demain, see Priest ( 1987 ).

It is clear from the results of this project and the findings 
of other researchers that there are still more questions than 
answers when it comes to describing formal problem-solving. 
There is a need both for a rigorous and testable psychological 
basis for describing such behaviour, and also for a useful 
application of such knowledge to educational practice. This 
project has attenpted to combine and relate these two aims.
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I believe that the most fruitful approach to these questions 
is to try to maintain an even balance between the two 
approaches, and the projects currently underway at Oxford 
Polytechnic attempt to maintain such a balance.

In 1980, Larkin wrote;

".. .there is still an enormous gap between the detailed limited 
theory-based tests we perform in cognitive psychology and the 
broad important tasks addressed by science educators. In the 
long run I think we shall bridge this gap with instruction 
that is tightly connected to theories, well tested in the 
laboratory, much as the design of a bridge is tightly connected 
to the well tested theories of mechanics. But tight connection 
between good theory and useful applications is probably at 
least five years in the future".

Now, six years later, the aims expressed are as valid as ever, 
and the evidence at hand strongly suggests that such a goal is 
ultimately possible. But tight connection between good theory 
and useful applications is probably still five years in the 
future.
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Appendix I

Implementation of the Control Strategy

In order to relate the control strategy to the working program, 
the code used in NEWT is included here. This is presented in 
accordance with the methodological approach described in 
Chapter V. Since the theoretical content of this thesis is 
contained in the natural language descriptions, it is necessary 
to relate these to the program that iitplements them in order to 
justify the validity of the experimental results as a test of 
the theory.

For simplicity, trace messages have been emitted, and for ease 
of reference, line numbers have been added ( PROLOG does not 
use line numbers ).

1 geteqns ( [ ] ,Gs,Types,Us,true, [ ] ).

2 geteqns ( [X|Xs],Gs,Types,Us, ( E&Es ),[X|Xsl] )
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flag( ccflag,_,off ),

chcx)seeqn( X,Types,Ez,U,Us ),

cleanup( Ez,E ),

wordsin( E,Ws ),

8 inemberchk( X,Ws ),

union( [X|Xs],Gs,Ys ),

10 subtract( Ws,Ys,[] ),

11 1,

12 geteqns( Xs, [X|Gs] ,Types, [U|Us],Es,Xsl )

13 geteqns( [X|Xs],Gs,Types,Us,( E&Es ),[X|Xsl] )

14

15 flag( ccflag,_,on ),
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16 chooseeqn( X,Types,Ez,U,Us ),

17 cleanup( Ez,E ),

18 wordsin( E,Ws ),

19 memberchk( X,Ws ),

20 union( [X|Xs],Gs,Ys ),

21 subtract( Ws,Ys,Zs ),

22 append( Xs,Zs,Nxs ),

23 get_types( Zs,Types,Ntypes ),

24 geteqns( Nxs,[X|Gs],Ntypes,[U|Us],Es,Xsl ).

25 chooseeqn( Q,Types,Eqn,Strategy,Used )

26

27 finddesc( Q,Qtype,Pred,Args ),

28 applicablejEormulae( Qtype,Types,Fonnulae-list ),
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29 mertber( Fomula^Fonruilae-list ),

30 plan( Fo23mila,Q,Qtype,Pred,Args,Strategy ),

31 indep( Strategy,Used ),

32 inakeeqn( Strategy, Eqn )
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Comments on the Code

When NEWT is asked to solve a problem, the procedure 'geteqns' 
is called. This has six arguments;

Argument 1; a list of quantities to be found ( the
' soughts ' ). This will be instantiated
when the procedure is called.

Argument 2; a list of quantities to be taken as given,
( the 'givens' ). This will be instantiated
when the procedure is called.

Argument 3; a list containing the types of the soughts
and givens, i.e. all the quantities mentioned 
in the question. This wri.ll be instantiated 
when the procedure is called.

Argument 4; a list of plans already used. This will be 
an ertpty list when the procedure is called.
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Arguitent 5; a conjunction of equations generated.
This will initially be empty when the 
procedure is called, and will contain the 
output of the system when the search of the 
problem space is completed. A conjunction 
acts like a list, with 'true' playing the role 
of the delimiting element.

Argument 6; this is an empty list when the procedure is 
first called. As an equation is generated 
to solve for a quantity, this quantity is 
added to the list. When the procedure is 
complete, the list contains all the quantities 
solved for by equations- either because they 
were originally sought or because they were 
introduced during the solution process.

The procedure 'geteqns' consists of three clauses ( line 1, 
lines 2-12, lines 13-24 ). The first clause ensures that if 
the list of soughts is erpty, the procedure terminates without 
generating any more equations.

The second clause attempts to deal with the case when there are
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remaining soughts, without introducing any new unknowns. If 
this cannot be done, the third clause of 'geteqns' is tried. 
This allows the creation of new sought quantities, but is 
otherwise similar to the second clause.

The Second Clause;

Line 2; this is the head goal of the clause. When it is 
called, its inputs will be;

- a list of soughts in Argument 1. The PROLOG 
pattern matcher will bind 'X' to the first 
sought, and 'Xs' to the list of remaining 
soughts ( which may be an empty list ).

- a list of given quantities in Argument 2 ( if 
any ).

- a list of types of sought or given quantities 
in Argument 3.
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The outputs of this clause will be;

- a list of plans used to construct equations in 
Argument 4.

- a conjunction of equations in Argument 5.

- a list of the quantities the equations 
were introduced to solve for in Argument 6.

Line 3; this is the symbol that separates the head goal of the 
clause from the subgoals which it calls.

Line 4; turns off the flag that lets other procedures know 
whether they can introduce new quantities. This 
prevents equations being formed vhich introduce new 
quantities.

Line 5; the 'chooseeqn' predicate is given 'X', a sought from 
the list of soughts, the list of types of quantities, 
and 'Us', the list of used plans which will initially 
be empty. It works out 'Ez', an equation containing 
the quantity bound to 'X', and no other unknown 
quantity. The plan used to generate this equation is
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put in 'U'. If no such equation can be generated, 
this ( second ) 'geteqns', clause will fail and 
control will pass to the third 'geteqns' clause on 
line 13, vhich will allow new unknowns to be 
introduced.

Line 6: this simplifies equation 'Ez' and places it in 'E'.
The PROLOG pattem-matcher matches the output of this 
procedure with the first element of the conjunction in 
Argument 5 of the head goal. Thus the simplified 
equation is added to the conjunction of equations 
being formed by the procedure.

Line 7: the quantities appearing in equation 'E' are put in a
list 'Ws'.

Line 8; this checks that the quantity in 'X' for which the 
equation was generated actually appears in the list 
'Ws '.

Lines 9 these two procedures form a list 'Ys' consisting of
& 10 all quantities currently sought and given. The

quantities in the current equation are checked against 
this list, and if the equation contains quantities not 
in the list, the 'subtract' procedure will fail. This
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will cause the program to backtrack to line 5 and 
attenpt to produce another equation.

Line 11; this prevents the choices made already from being 
changed by backtracking; if an equation has been 
generated and passed the tests in lines 8-11, then it 
must be correct.

Line 12; 'geteqns' is called recursively to generate equations 
to solve for the remaining unknowns ( Argument 1 ), 
having added the plan 'U' to the list of plans used 
( Argument 4 ).

The Third Clause;

Line 13; the head goal of the second 'geteqns' clause. This 
clause will allow for the introduction of 
intermediate unknowns.

Line 14; separates the head goal and the body of the clause.

Line 15; turns on the flag that allows creation of 
intermediate unknowns.
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Lines 16; are the same as lines 5-9. The 'chooseeqn' predicate 
-20 is now enabled to introduce new quantities, because 

the flag has been set at line 15.

Line 21; 'Zs' is instantiated to a list of quantities 
introduced by the new equation 'E'.

Line 22; the new quantities introduced are added to 'Xs', the 
old list of soughts, to give 'NXs', the new list of 
soughts.

Line 23; this gets the types of the new quantities and adds 
them to the list of types to give 'N_types'.

Line 24; 'geteqns' is now called recursively to find equations 
to solve for the remaining quantities.

Since the actual formation of the equation is done by the
'chooseeqn' predicate, the code for this has been included as
well. 'Chooseeqn' has five arguments;

Argument 1; the quantity that an equation is needed to 
solve for. This will be input v^en the 
procedure is called.
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Arguiroit 2; a list of the types of all sought or given
quantities. This will be input when the procedure 
is called.

Argument 3; the equation produced. This will be output by 
the procedure.

Argument 4; the plan used to generate the equation. This 
is output by the procedure.

Argument 5; a list of plans already used. This is input 
when the procedure is called, and is used to check 
that the same plan is not used twice. ( Otherwise 
non-independent equations will result ).

There is only one procedure for ' chooseeqns ' given in lines
25-32 above.

Line 25: the head goal of the procedure. When this is called.
Arguments 1, 2 and 5 will be instantiated and 
arguments 3 and 4 will be supplied by the procedure 
as output.

Line 27: the input to this procedure is the sought quantity
'Q'. The procedure finds the type of 'Q' and puts it
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in 'Qtype'. 'Pred' is the name of à predicate in the 
problem representation which contains the sought 
quantity and 'Args' is a list of its arguments. This 
information will be used in identifying a context in 
which to apply the selected formula.

Line 28; constructs a list of physical principles that relate 
quantities of type 'Qtype' to other quantities in the 
list 'Types'. This list is output as 'Formulae-list'

Line 29; selects a member of the list 'Formulae-list', and 
calls it 'Formula'. This selection can be re-done 
if necessary by the backtracking mechanism.

Line 30; forms a plan called ' Strategy' consisting of the 
chosen formula, and a context in #iich to apply it. 
The structure of the context is defined by the nature 
of the formula and will involve an object of a 
defined type. The objects of the appropriate type 
mentioned in the problon representation are scanned.

An object is selected which is related to the sought 
quantity, appearing in the list of arguments 'Args' 
derived from the predicate which introduced the 
sought quantity.
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The rest of the context is then supplied by reference 
to the problem representation and the list of 
arguments to the predicate introducing the sought 
quantity. This process differs for different types 
of context in which different physical principles can 
be applied.

Line 31; checks that the plan called 'Strategy' is different 
from previously used plans.

Line 32; takes the plan as input and constructs an equation 
frcm it. There are 'makeqn' clauses for every 
possible combination of principle and context type.

This is the full implementation of the backwaiDd inference 
problem-solving strategy used by NEWT. It defines the order of 
equation generation, and the introduction of new quantities. 
This forms the core of the NEWT syston, and underlies the 
frameworks for correct problem-solving and consistently 
erroneous problem-solving.

The correct and incorrect equation generating procedures are 
invoked by the "makeqn" predicate. These will not be given in
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detail, since their internal structure within NEWT is not 
claimed to be psychologically representative.
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Appendix II

Experimental Data

Since NEWT is only concerned with output of equations, the data 
are presented in a simplified form, with only the equations put 
down.

Since a repeated answer counts in this analysis as equivalent 
to the repetition of the equations, cases where repeat answers 
were given wri.ll be represented by a repeat set of equations. 
Lines of working derivable frcm previous equations are not 
included.

Question 1 - The Slope Question

Question 2 - The Strut Question

Question 3 - The Angle of Friction Question

Question 4 - The Unsliding Block Question
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The questions are labelled QlVl for the first version of 
Question 1, Q1V2 for the second version and so on.

Student Question Ecruations Produced

SI QlVl R - W * g * cos theta = 0
F - W * g * sin theta = 0

( theta is marked as the angle between 
the vertical and the normal )

Q1V2 R = 32 * cos theta
F = 32 * sin theta

Q2V1 R - m * g  + T *  sin 40 = 0
m * g * L - R 3 * L - T l *  sin 40 = 0 
R4 = 0

( R3 is the vertical force on the end 
of the vertical string due to the 
strut alone. Tl is the tension in 
the 40 degree string, and R4 is the 
force of compression in the strut )
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Q2V2 no equation

Q3V1 F = mu * R
R - 6 * g * cos 40 = 0 
F - m * g * sin 40 = 0

Q3V2 remembered answer counts as same
equations

Q4V1 no equation

Q4V2 no equation

S2 QlVl R = 3.2 * 10 * cos 35
F = 3.2 * g * sin 35

Q1V2 R = 3.2 * g * cos 35
W = 3.2 * g * sin 35

( since W is evaluated and presented as 
an answer, it is not clear whether it 
is intended to refer to the weight or 
the force of friction )
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Q2V1 T = sin 40 * in * g

Q2V2 T = sin 40 * m * g

Q3V1 F = 60 * cos 40
P = 60 * sin 40

Coefficient of Friction = F_
P

Q3V2 Coefficient of Friction = 60 * N cos 40
60 * N sin 40

Q4V1 imi * b = sin 45 * P
sin 45 * P = a * g

( P is not defined )

Q4V2 imi * b = P * sin 45
sin 45 = a * g 

P
( P is marked as a vector quantity 
collinear with the string at 45 
degrees to the horizontal )
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S3 QlVl W = 3.2 * 10
cos 35 =

RW

( RW is not defined )

Q1V2 no equation

Q2VL sin 40 = m * g
T

Q2V2 no equation

Q3VL FF = FS

( FF is shown parallel to the plane and 
moving up, FS is shown parallel to 
the plane moving down )

Q3V2 X = 6
cos 50

( X is shown as a vector parallel to 
the plane and moving down )
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Q4V1 no equation

Q4V2 no equation

S4 QlVl F = mu * R
F = m * cr * cos 35 
mu tan 35

Q1V2 F = mu * R
F = m * g * cos theta 
mu tan theta

Q2V1 T = m * g * sin 40

Q2V2 T = m * cos 40

Q3V1 F = mu * R
F_= m * g * cos 40 
R m * g * sin 40

Q3V2 mu = tan 40

Q4V1 no equation
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Q4V2 no equation

S5 QlVl F = m * A
r = w * F * m 

W

35 degrees = F * m 
w * r

35__ = F
3.2
F = 112
F = m * a * cos 35 
F = 3.2 * 9.8 * cos 35

( there is no definition of m, r, w, 
A or a )

Q1V2 A numerical value ( 26.2 ) is given
for F Wiich does not equal any of the 
piBviously obtained values ( 112, 
25.69 or 17.98 ). This is therefore 
not considered as equivalent to a 
restatement of any previous equation.
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Q2V1 T = m * theta
( there is no definition of theta )

Q2V2 no equation

Q3V1 no equation

Q3V2 no equation

Q4V1 im_= cos theta * a * p
P

a = mu ___
cos theta * P

b = sin theta * P 
b = a * mu

sin theta * cos theta * P
a =  b * mu___________

sin theta * cos theta * P

( there is no definition of P or theta)
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Q4V2 a = ________ mu____________
b * sin theta * cos theta

( theta is not defined)

S6 QlVl F - 3.2 * g * sin 35 = 3.2 * 0
R - 3.2 * g * cos 35 = 0

Q1V2 F - 3.2 * g * sin 35=0
R - 3.2 * g * cos 35=0

Q2V1 T * sin 40 - m * g = 0

Q2V2 T * sin 40 - m * g = 0

Q3V1 F - 6 * g * sin 40 = 0
R - 6 * g * cos 40 = 0
F = irai * R

Q3V2 tan 40 = 0.8390996
irai = 0.84

( Taken as: irai =tan 40 )



403

S6 Q4V1 F = mu * R
a * g * cos 45 = F 
a = mu * b

g * cos45

Q4V2 a = b * mu
g * cos 45

S7 QlVl F = cos 35 * W

Q1V2 F = cos 35 * W

Q2V1 no equation

Q2V2 no equation

Q3V1 no equation

Q3V2 no equation

Q4V1 no equation

Q4V2 no equation
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S8 QlVl R = m * g * cos 35

F = m * g * sin 35

Q1V2 R = 10 * 3.2 * cos 35

F = 10 * 3.2 * sin 35

Q2V1 T = m * g
sin 40

Q2V2 T = m * 10 * sin 40

Q3V1 R = m * g * cos theta

F = m * g * sin theta 

mu = F/R

( theta is clearly identified with 
the 40 degree angle, and m with the 
6kg mass )

Q3V2 R = m * g * cos 40
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F = m * g * sin theta

F = im * R

Q4V1 no equation

Q4V2 R = b * g
F = mu * b * g 
mu * b * g = a * g 
sin 135 sin 135

S9 QlVl R = W *  COS 35
F = mg sin 35

Q1V2 R = 3.2 * 9.8 * cos 35
F = 3.2 * 9.8 * sin 35

Q2V1 no equation

Q2V2 no equation
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Q3V1 R = 6 * 9.8 * cos 40
Pr = 6 * g * sin 40 
Fr = irai * R

Q4V1 T = F
F = irai * R 
irai*R = irai*b*g 
a * g = irai * b * g 
sin 135 sin 135

Q4V2 R = b * g
T = F
F = irai * R
irai * b * g = a * g
sin 135 sin 135

SIO QlVl F - 3.2 * g * sin 35 = 3.2 * 0
R - 3.2 * g * cos 35 = 0

Q1V2 F - 3.2 * g * sin 35 = 0
R - 3.2 * g * cos 35 = 0

Q2V1 T * s i n 4 0 - m * g = 0
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Q2V2 T * sin 40 - m * g = 0

Q3V1 F - 6 * g * s i n 4 0 = 0
R - 6 * g * cos 40 = 0 
F = irai * R

Q3V2 F - 6 * g * s i n 4 0 = 0
R - 6 * g * cos 40 = 0 
F = irai * R

Q4V1 F = a * cos 45
R - b * g = 0 
F = irai * R

( F is marked as the tension in the 
horizontal string, and R as the 
vertical reaction between b and the 
table )

Q4V2 a = b * g * irai
cos 45

( This is the same result as before, 
and hence is counted as equivalent to 
the same equations )



408

S U  QlVl R = 3.2 * 10 * cos 35
F = 3.2 * 10 * sin 35

Q1V2 F = 3.2 * 10 * sin 35
R = 3.2 * 10 * cos 35

Q2VL T = m * g * sin 40

Q2V2 T = m * g * sin 40

Q3V1 no equation

Q3V2 no equation

Q4V1 no equation

Q4V2 no equation

812 QlVl R = m * g * cos 35
F = m * g * sin 35

Q1V2 R = 3.2 * g * cos 35
F = 3.2 * g * sin 35
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Q2V1 no equation

Q2V2 no equation

Q3V1 R = 6 * g * cos 40
F = 6 * g * sin 40
ittu = F / R

Q3V2 R = 6 * g * cos 40
F = 6 * g * sin 40 
imi = F / R

Q4V1 T = F
F = mu *R 
R = b * g 
a * g = b * g * mu 
sin 135 sin 135

( T is given as the tension in the 
horizontal string )

Q4V2 a * g = mu * b * g
sin 135 sin 135
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S13 QlVl R - W *  cos 35 = 0
W * sin 35 = F

Q1V2 R = W * cos 35
F = W * sin 35

Q2V1 sin 40 = m * g / T

Q2V2 T = m * g * sin 40

Q3VL R = 60 * cos 40
60 * sin 40 = F 
irai = F / R

Q3V2 F = irai * R
F = 60 * sin 40
R = 60 * cos 40

Q4V1 no equation

Q4V2 no equation
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S14 QlVl F' = F * cos theta
2 2 2

R = W - F

( ^ere F' is defined as the force down 
the slope i.e, the friction force, 
and F is defined as the weight )

Q1V2 W = m * g
F = W * cos theta

( here, F is taken as the friction 
force )

Q2VL T = m * cos 50

Q2V2 T = m * g * cos 40

Q3V1 Force = m * g
Friction Force = F * cos theta

( theta is identified as 40 degrees, 
and F as "Force" )
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Q3V2 F = m * g
Ff = F * cos theta 
( Ff is identified as the friction 
force )

Q4V1 Force along a - > wall = a * g * cos 45
Force along P - > b  = a * g *  sin 90 
at b force = b * g 
due to friction = a * g * sin 90
a = b * g * im * cos 45

sin 90

Q4V2 a = m * g
FI = lïiu 
b = m * g
a = b * im * cos 45 

( m is not defined )
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S15 QlVl F - 3.2 * g * sin 35=0
N - 3.2 * g * COS 35=0

( N is defined as the normal reaction 
between the body and the plane )

Q1V2 F - 3.2 * g * sin 35 = 0
R - 3.2 * g * cos 35 = 0

Q2V1 T = m * g
sin 40

Q2V2 no equation

Q3V1 F - s i n 4 0 * 6 * g = 0
R - cos 40 * 6 * g = 0
F = mu * R

Q3V2 F - 6 * g * sin 40 = 0
R - 6 * g * cos 40 = 0
mu = F / R

Q4VL no equation
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Q4V2 no equation

S16 QlVl F - W * sin 35 = 0
R - W * COS 35 = 0

Q1V2 F - W * s i n 3 5 * g  = 0
R - 3.2 * g * cos 35 = 0

Q2V1 no equation

Q2V2 no equation

Q3VL F - 6 * g * s i n 4 0 = 0
R - 6 * g * cos 40 = 0
F = mu * R

Q3V2 F - 6 * s i n 4 0 * g = 0
R - 6 * cos 40 * g = 0
F = mu * R

Q4V1 no equation

Q4V2 no equation
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S17 QlVl R - 3.2 * g * cos 35 = 0

Q1V2 R - 3.2 * g * cos 35 = 0
F = 3.2 * g * sin 35

Q2V1 no equation

Q2V2 no equation

Q3VL R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0 
F = mu * R

Q3V2 R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0 
F = mu * R

Q4V1 no equation

Q4V2 no equation

S18 QlVl R - W * cos 35 = 0
F - W * sin 35 = 0
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Q1V2 R - W * cos 35 = 0
F - W * sin 35 = 0

Q2V1 T = m * g
sin 40

Q2V2 T = m * g
sin 40

Q3V1 R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0 
F = irai * R

Q3V2 R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0 
F = irai * R

Q4V1 F = irai * R

( F is defined as the surface friction 
between b and the table, and R as the 
normal reaction between them )

Q4V1 no equation
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Q4V2 no equation

S19 QlVl R - 3.2 * 9.8 * cos 35 = 0

Q1V2 R - 3.2 * g * cos 35 = 0
F - 3.2 * g * sin 35 = 0 
F = mu * R

Q2V1 no equation

Q2V2 no equation

Q3V1 R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0
38.56 = mu * 45.96

( F is evaluated to 38.56 and R is 
evaluated to 45.96. This is therefore 
equivalent to F = mu * R )

Q3V2 R - 6 * g * cos 40 = 0
F - 6 * g * sin 40 = 0 
F = mu * r
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Q4V1 no equation

Q4V2 no equation

S20 QlVl R = 3.2 * g * cos 35
F - 3.2 * g * sin 35 = 0

Q1V2 R = 3.2 * g * cos 35
F - 3.2 * g * sin 35 = 0

Q2V1 m * g - T * sin 40 = 0

Q2V2 T = m * g
sin 40

Q3VL R = 6 * g * cos 40
i t i u * R - 6 * g *  sin 40 = 0

Q3V1 R = 6 * g * cos 40
i n u * R - 6 * g *  sin 40 = 0
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Q4V1 T1 * cos 45 - T1 - mu * R = 0
R = b * g
b * g  + a * g - T l *  sin 45 = 0

( T1 is marked as being the tension in 
both the horizontal and inclined 
strings )

Q4V2 no equation

S21 QlVl R = 3.2 * g * cos 35
F = W * sin 35 * g

Q1V2 R = 3.2 * g * cos 35
F = 3.2 * g * sin 35

Q2V1 T = m * g
sin 40

Q2V2 T * sin 40 = m * g
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Q3V1 F = 6 * g * sin 40
R = 6 * g * cos 40 
F = irai * R

Q3V2 R = 6 * g cos 40
F = 6 * g sin 40 
37.795 = irai * 45.64

( F is evaluated to 37.795,and R is 
evaluated to 45.64. This is 
therefore equivalent to F = irai * R )

Q4V1 T * sin 45 = a * g
T * cos 45 = mu

( T is marked as the tension in the 
inclined string )

Q4V2 T1 * cos 45 = b * mu
a * g = sin 45 * T1

( T1 is marked as the tension in the 
inclined string )
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S22 QlVl R = W * cos 35
F = W * sin 35

Q1V2 3.2 * g * sin 35 = F
3.2 * g * cos 35 = R

Q2V1 R = T = m * g
sin 130 sin 90 sin 140

( R is defined as the compression in
the strut )

Q2V2 m * g = R = T
sin 140 sin 130 sin 90

Q3VL F = mu * N
6 * g * sin 40 = mu * N
6 * g * cos 40 = N

( N is defined as the normal reaction )

Q3V2 6 * g * COS 40 = R
6 * g * sin 40 = mu * R
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Q4V1 R = b * g
ma * R = T3
a * g = T1 = T3
sin 135 sin 90 sin 135

( T3 is the tension in the horizontal 
string, and T1 is the tension in the 
inclined string )

Q4V2 R = b * g
T3 = mu * R
a * g = T3 = T2 
sin 135 sin 135 sin 90

S23 QlVl F - 3.2 * g * sin 35 = 0
R - 3.2 * g * cos 35 = 0

Q1V2 F - W * sin 35 = 0
R - W * COS 35 = 0

Q2VL no equation

Q2V2 no equation
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Q3V1 no equation

Q3V2 F - 6 * g * s i n 4 0 = 0
R - 6 * g * cos 40 = 0
F = mu * R

Q4V1 no equation

Q4V2 no equation
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Appendix III - Sample NEWT Traces

A sairple of NEWT output is given below, showing solutions to 
the Strut Problem and the Unsliding Block problem. Since these 
printouts \ære made, the malrules in NEWT have been renumbered 
for greater consistency. The malrule numbers mentioned in the 
trace output therefore do not necessarily correspond to those 
in the headings.



hinge 40

ma

Figure 1. The Strut Problem
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The Strut Problem

Correct Solution



tt.e'TiDt i n-F t.o r»D i - r«r 'i-t ; '  n i e^n s  . of
a<T; n o w  T r y - n n  1 0  f n  .T- :% »\i;thour ; ni. m d y :  î a n  v u n ^ - n o w n s .
“I i uck - ; W : ! ! VsOW ac C AD". 1 Hi K nriwn B it! BO.' N'i V: B f O 1.1,
.et tension! he the tension of tit r i nsX.

3uat ion- ' : - t e n s  l o n * c o s (50> 4-t 1 =0 .
:TfTied by reso I vine forces at 16.0 to the horizontal for strut

fhis eq u a t i o n  s o l v e s  for 1 1 but introduces -t-tens i on i*-.
Bo now I Must solve for -t-tens i on le,

9 i ven f ti V Mae
ami now t r y ; n s  t o  s o l v e  for tens i onl w i thout introducing a n y 'unknowns, 
qua^ion— 2: t e n s ; o n l - m a # s = 0
Z'tmed by resolving forces at 90 to t he horizontal for a

This e q u a t i o n  s o l v e s  for tensioni.

quations extracted, t -
. — tens i on 1 f:cos (50) f-t 1 =0

t e n s i o n l - m a * 9 = 0  . ■ • • ~

?s
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The Stmt Problem

Solved using Malrulell

C = R * cos theta



assert ( Ma. y riiiip] i ),

es 
?- so.

ttematins to solve wnr < t j e ri i-s'-ns n-
am now t r ying to so I ye c, r t ] w i ihout introducing any unknowns,

o luck - I Hi I ! now accP'PT. u n know n s  in solving * o r  tl.
ILet t on s i or, \ he t he t s i ru'i o - st r i n s 2.

qu a t i o n -  1 : t e n s i o n t ^ ^ o s ( t h e t a ) f t y = M  '
ormed hv r e s olving -forces at "60 d e g r e e s  t o  the horizontal f o r  strut

T his eq u a t i o n  s o l v e s  for 1 1 hut introduces t-tensi onlsthetaf-.
E R R O R  T y p e  unknown — — t t h e t a e
( c o n t i n u e  after e r r o r )  ' ■

T o i f i n d  ^tension!, t h e t a s s  given ^ t l , m a e  - 
am n ow try i ns to s o l v e  for tension', w i t h o u t  introducing any unknowns,

q u a t i o n -  2s t e n s  i, on 1 - m a * g = 0  . . >
ormed by resolving forces at H'o d e g r e e s  to the horizontal for a

This e q u a t i o n  s o l v e s  for tens i o n i , .. ^
To find d--thetaf-ï - given t t e n s i o n l i t l ^ n a f '  , :
am now trying to s o l v e  for theta. wi t h o u t  introducing any unknowns, 

o luck - I wifi now accept u n k n o w n s  in solving for theta.

am unable to - so i ve fo^ theta. '

"wit I go back to s o l v e  for ti . asa i;n ‘ - ' : ."! ■

3.m unab l e to so I ve f o r i-. ̂
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The Strut Problem

Solved using Malrulel

Weight = Mass



H-rfa I ru I el s, 

yes
! s o.

Attempt I ne t.o- so '* r terms of r-Meo

I am now try î ns to sn i vr- + o tj wiihouT ; rit roduc : ns any un Knowns.

Aon liras le -f^o^nw i ae ' s moment s? reso i vet

No  luck - - j wi II n ow accept unknowns in souvins for ti,

A p p Ii cab Ie f o r m u i a e .: ^moments? resoJ v e t  .
Let t e n s i o n !  he th e  t e n s i o n  of strins2.
Note: tension! iof t y p e  force) was used in a tension d e f i n i t i o n  (2) 

E q u a t i p n - l  : - t e n s i o n l * c o s C 5 0 ) f t l = M
formed by appi y.ins : s t r a t e g y  (resol v e , s ! t u a t  i on ( r i g i d 1D, strut^t-typi cai_ 

poiintl? rend, lendf, 140,now))

T h i s  e q u a t i o n  s o l v e s  fOT tl hut introduces -t-tensionlf.

So n ow 1 must s o l v e  for t'tens ion If
si ven f t 1,maf

I am now t r 3 i n s  to s o l v e  for tension 1 w i t h o u t  introducing any unknowns. 

A p p l i c a b l e  f ormu I ae : -t-momerits, reso I vef 

E q u a t i o n - 2  :r“t e n s i o n i  + (-ma)=0
formed by a p p l y  i ns : s t r a t e g y  (reso ivê, si tuat I on ( part i cie, a, tbottom2, a.f, 

90, now)) ' ./T '

T h i s  e q u a t i o n  s o l v e s  for tension!. ' - v

So n ow I must s o l v e  for -tf-
given t-tens i o n ! , 1 1, maf

E quations e x t r a c t e d  :
-tens i on lf=co5(50)+t 1=0 
tensi on ! + (rma)-0

/es 
I ? .-
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The Strut Problem

Solved using Malrulel 6

C = R * sign ( cos a )



Mai rulAül,

t e mot ; ns t.o  so ■? ve for. d t if ? n Terms of -t-mae - . .

a.M n o w  t r y : ne fo s o l v e  for 1 1 without introducing an y unknowns.

iuck ~ X w : i l now a c cept u n k n o w n s  in s o l ving -or t Z .
,et t e n s i o n l  be the' t e n s i o n  of st r i ns2.

uat i oi)- ! r -tens i on 1 f-t 1=0 ;
rmed by resoi'v'ins f o r c e s  at' 140 to the horizontal for strut

hns e q u a t i o n  solves for tl but introduces ^tensionie.

o n o w  X must so ! ve f or/ t t e n s  i on 1 f , \ g i ven t-t 1, Mat- • : ' v

am n o w  t r y ; n s to s o l v e  for tension;, iuii-hout introducing ah y un knowns.

uat i o n- 2: t e n s i o n ! — M a * s = M
rMsd by resolving forces at 30 to th^ ho^- : : ont a  i f o -- -a 

his e q u a t i o n  so • ves -o-- tension:..

u a t i o n s  extracted i 
- t e n s i o n 1-t :=0 

- t e n s  i on i — Ma*s=M
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The Strut Problem

Solved using Malrulel?

C = R * sin a



a s se rt (ne '< r u ! .

so.

t t e m P t i n s  to s o l v e  for in t e r n s  of t-nee
am n o w  try ins to s o l v e  f o ’- tl without introducing any unknowns,

o luck - I wi I 1 h o w  accept u n k n o w n s  in solving for tl,
L_et t ens I on 1 be t he t ens i on of st r i ns2,

q u a t i o n -  is tensi o n i ’̂'s in (>-130) “ft 1=0
ormed by resolving f o r c e s  at 140 to 1h e  horizontal for strut

T hi s  e q u a t i o n  s o l v e s  for 11 but introduces f-tens i onl<-.
So n o w  I Must so I ve for ft ens i on if-, ^

given ft lima f-
am n o w  t r y i n g  to s o l v e  for tension! without i ntroducing any unknowns, 

q u a t i o n -  2: t e n s i o n l - M a * g = 0
ormed by resolving f o r c e s  at 30 to  the horizontal for a 

T h i s  e q u a t i o n  solv e s  for tensioni.

q u a t i o n s  e x t r a c t e d  : . ; ' '
t)ens i oni i n C-130) f 1 1=0 
t e n s i o n l - M a * g = 0

es



t2

table

Figure 2* The Unsliding Block Problem
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The Urisl.ld.i.na Block Problem

Correct solution



n f •

l'J ; 1. hr. lit

^pp 1 ! I- a h i e -?0 V l-r) .: ' F: --:' '
.et t ets i ot b-=’- the -î-f 
'et. t' t e'i'i s ; rp-, :i ( r.f t y pi

;p u « t i on -}, • Ma* e r os ( •
'P'"Med hy a o D i y i n s  f r/ \

::'t un<<noxr r -C; ' V : ma

' en o- st"';rîs3,
f c-'-'"ui.-vee user! : ri a sets i o t 

9(?) + t ens i c*n i ~ l ]
- t e s v  '■ reso v e . s i t u a t  ; .-v-: ( ps  r t i

h i S ecjîjat -^o’- Ma but i n t r o d u r e s  -ti.ens i on te.

:q  n o w  M U S S  s o  : v/e - r, -“-t s n s  : o n  1 1-
s i von •"■■Ma. Mb- MU-*-

aw now try ins to so ! vf. for tens i on : withou-

!PP ! ; cab le for MU ' as' : ^Moments, resoivet 

luck - I wi!! now acce p t  un k n o w n s  in s o ! vins too tension!,

PPi icable torMU Iae : ^MOMents? reso!vet
et t e n s i o n 2  he the te n s i o n  of strine2.
ote? t e n s i o n ^  ! of typ e  force) was used in a. t e n sion d é finit
et t e n s  ion3 he the t e n s i o n  of strinsl.
oteî t e n s i o n s  (of type force) was used in a tension définit;
f
I at i o n — 2 ” tensi on 1 f = c os ( — 1S® ) + ( t e n s l on 2 c os ( 45 ) 11 c= n s i on 3 f■■ c r 
o rmed by a.PP i y ins “ st rates y ( reso f ve? s i t uat ; on ( n r ps? Pt5? t-pt : 
? now) )

(2)

3£ ) ) =15 
3- Pt2e-

h I s e p u a t  i on so ! ves for tfns i on 1 h u t  i n t  r o d  ij ces -tt ens i on2? tens i on3t*

Q now I Must solve for t-tens i on2? tens i on3f
s i ven --ten-s Î oni 7 Ma? Mb? Mu-e

a M  n o w  t r y  i n g t o  s o l v e  f o r  i:ens I o n 2  w  i t h o u t  I n t  r o d u c  i n s  a n y u n K n o w n s ,

pp 1 i cable f o r mulae ‘ -t Moments? reso i vet '

p u a t i o n — 3 : t e n s i o n l # c o s ( —4 5 ) t ( t e n s i o n 2 *  — i f t e n s i o n 3 ^ c o s ( 4 5 ) ) = 0  
armed by app I y i ns : s t  rates y l reso ! ve? s  i t u a t  i on (n r ps? Pt-5? t-ptS? P t 3 ?  P t 2 t -  
3? now))

Pis equation solves for tension2.



am now frying io so ! ve for tens i or, 3 1*01. f.nut ; ns rod u : : ris anv unknowns, 

:pp! icab'e formulae : •■̂ •momsnts- r esr, ;
uck - T wi •: ' ( now accept unknowns r? so ■ v •; »■C — -, >"

i p p l ,  c a b l e  f  o r (Tl !j ! a -  ’ '-•nomants- '-aso ^
_et react : on":, ha th>=* rf^acr 1 r,n of 1 ah ' a • r- a : racp i r-n 5Zn
iota : reaction! ( o typf force) was used in a rs^rt,on daf i n : t ; on 03)

at i o n — -■!■ > t.ens < nno t  -n t-((Trj*’"'==*a.ct i on ! t-Mh*'s*-cos I— 93 ) )
= ormad hv aop i y ; ns r s-. ratesv ( reso '■ van s> i i-uat i on (. part i c ! O: h? “̂-Pt 1 -- pt- bt, 1 
) , n o w ) )

h i s  e q u a t i o n  s o l v e s  -^o " t e n s i  o n 3  b u t  i n t r o d u c e s  ■*'*-eact i o n  ) t,

>0 n o w  X m u s t  s o l v e  o r  + r e a o t i o n } t
g i v e n  t-tens ! o n 3 -tens i o n 2 - t e n s  i oni ? fria? mb? mu^

a m  n o w  t r y i n g  t o  s o l v e  f o r  r e a c t l o n i  w i t h o u t  i n t r o d u c i n g  a n y  u n k n o w n s .

A p p l i c a b l e  f o r m u l a e  " •t-frioments? r e s o  I vet-

L q u a t i o n— 5 3 re a c 11 o n i t M u * r a c t i o n 1 * = c c* s i — 9 0 ) t M b tg t: r o s I — 180)= l3 
=ormed by a p p l y i n g  ? s t r a t e g y ( r e s o l v e , s i t u a t i o n ( p a r t i c l e , b , t p t l , p t ? b ^ , 9 0  
now) )

" h i s  e q u a t i o n  s o l v e s  f o r  r e a c t i o n i .

L  now I must s o l v e  for -t-f
g i v e n  t r e a c t  i o n i , t e n s i  o n 3 -  t e n s  I o n 2 ?  t e n s  i o n  1 ? ma ,  m b ,  mu-a

luations ext r a c t e d  ”
(.Aa*:sf:cos ( -180) -I"tens i on 1 =0
t ens i oni *co s  (-180) + ( 1 ens i on2 tcos (c.3) - t e n s  i on 3 + cos (-90) ) =0 
tena : r,n 1 *cos C-a5) +■( tens i on2+ -) + t ens i ori3*cos (45) ) =0

react ; on 1 tm J * "'̂ 'cact i on 1 ecos (— 90 ) f m b * g e c D s (  — 193) =0
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The Unsliding Block Problem

Solved using Malrulel 2

C = R * a



assert (mal rç ; *a'c!3 ).

a:), n o w  f'-yiris t o  s o ' v e  - o -  m a  w i t h o u t  -nt " o t u c  n c  ar;v u n k f j o w n s .
r: i itrk — J ij \ ' \ r;C'W a c ’~ep* !!-"tk’'iow"is i so : V - ns Tor <-'tn\.

Let te'.;s :. r,n ■ he the tens î on of r.t r I r-so.

Q U & t : o n -  - m a * s * 3 e n s ! o n i = 0
rn-fned hy ’'esoivins -or ces at 90 degrees to th*=- hor i tontoi l fo.t ^

T h i s  e q u a t i o n  s o l v e s  - o r  n a  h u t  i n t r o d u c e s  + t e n s i o n l ^ .
T o  f i n d  h t e n s f o n l f /  g i v e n  d m a - M b c M U f  
a m ' n o w  t r y i n g  t o  s o l v e  t o -  t e n s i o n !  w i t h o u t  i n t r o d u c i n g  a n y  u n K n o w n s .

ri l u c k  —  1 w  i ! I n o w  a c c e p t  u n k n o w n s  i n s o  ! v  i n s  t o r  - t e n s  i u n  ;.
Let tension2 be.the tension of s t rinsLr
L e t . t e n s  i o n 3  b e  t h e  t e n s i  o n  o f  s t ’-i n s l .  '

■ q u a t i o n -  2 ï - t e n s i  o n i * - t e n s i o n 2 + 4 5 = 0  . ^
o r m e d  b y  r e s o l v i n g  f o r c e s  a t  9 0  d e g r e e s  t o  t h e  h o r i z o n t a l  + p r  Pt.j 

T h i s  e q u a t  i o n  s o l v e s  - o r  t e n s  i o n i  b u t  ,'i n t . r o d u c e s  t t e n s  I or,2-, t e n s  i o n 3 t .
T o  f i n d  •t-tens i o n 2 ,  t e n s i  or,3t, , g i v e n  t t e n s  I or, 1, m a, m b - m u t  .............
a m  n o w  t r y i n g  t.o s o l v e  f o r  t e n s i o n 2  w i t h o u t  i n t r o d u c i n g  a n y  u n k n o w n s .

" q u a t i o n -  3: tens i on I e 4 i 5 - t e n s  i o n 2 + t e n s  i oh3*i'i5=B  * , •
" o r m e d  b y  r e s o l v i n g  - o r c e s  a t  2 2 5  d e g r e e s  t o  t h e  h o r i z o n t a l  f o r  p o o

T h i s  equ-st i o n  s o l v e s  f o r  t e n s  i on.2.
T o  f i n d  -t-tens i o n o f r  g i v e n  - t t e n s : o n 2 ? t e n s i o n l ' M a ? m b , m u f
a m  e n o w  t r y i n g  t o  s o  I v e  f o r  t e n s  i d n 3  w i t  h o u t  i n t r o d u c i n g  a n y  u n k n o w n s .

40 l u c k  -  ! . wI II n o w  a c c e o t  u n k n o w n s  in s o l v i n g  f o r  t e n s  i o n o .
L e t  r e a c t  I oni. b e  t h e  r e a c t i o n  o f  t a b l e  in d i r e c t i o n  9 0.

É q u a t i o n -  4' - t e n s i  o n 3 + m u f = r e a c h  i o n   ̂ - -
• o f w e d  b y  . r es o lV i nS " ' f o r c e s  .at 1 B 0  d e g r e e s  t o  t h e  h o r i z o n t a l  f o r  b 

T h i  s  equ-at i o n  > o  I v e s  f o r  sens.i O n 3  b u t  i n t r o d u c e s  +  r e a c t  i o n
T e  f i n d  t-reart i n n  if? .g i v e n  -t-tens i o n 3 ,  t e n s  i o n 2 ,  t e n s i  o n l z  m a ?  m b ,  wu-*-
[ a m  n o w  t r y i n g  t o  s o l v e  for r e a c t i o n !  w i t h o u t  i n t r o d u c i n g  a n y  u n k n o w n s .

E q u a t i o n -  5: r e a c t i o n l - m b t g = 0  ' _
- o r m e d  b y  r e s o l v i n g  f o r c e s  a t  9 0  d e g r e e s  t o  t h e -  h o r i z o n t a l  .oi b

T  h i s  e q  u a t  i o n  s o l v e s  f o r  r e a c t i o n . . »  3  ■

Equat ions e x t r a c t e d  - ;  • .'"vL
- m a 4 : g + t e n 5 i  on.l=.0 ■ ! ' "'t " . , ' ' .  ̂ »'
-tensi oni+tensi on2*'45=0 '' ) ’ /  ' ' " h ’ '
t e n s i o n l * 4 5 - t e n s i o n 2 f t g n s i o n 3 * & 5 = 0  - , , "

■ ■ — t e n s r o n 3 f m u # r e a c t i o n l = 0 ^  . ' ' '
r e a c t  i o n  1 — m b H < g = 0  . • ,.c ' ■ ''' c
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The Unsliding Block Problem

Solved using Malrulell

C = R * cos theta



: r,g "'o CO ; w ; f h '":t I : 1 r t r r'f ; : = ns ( .n v

,v he - he re"‘="'ioe n- re r ; n

■Equation- % : —Ma*e+-ension!=L
F o r m e d  b y  r e s o ! V i n s  f o r c e s  at S 3  d e g r e e s  t o  t h e  h o r i z o n t a l  f o r  a

T h i s  e q u a t i o n  s o l v e s  +nr rra but introduces +*tension 1+,
T o -find -t-tens i on ?, e? g i ven mb? duf ,

I a m  n o w  t r y i n g  t.o so î ve fcv- t e n s  i on 1 -without introduc ins a n y  unknowns. 
N o  luck — 1 w> I ! now accept u n k n o w n s  in solving for tensioni. ,
L e t  t e n s i o n 2  he t he t e n s i o n  of string2. •
L et t e n s i o n 3  be the te n s i o n  of string 1. /

E q u a t i o n — 2: — ten s  i on l+tehs : on 2f: cos (t beta) =M ’ ' .
F o r m e d  by reso i v ; ng forces at 90 degrees to the horizontal for Pt-5

T h i 5 e q u a t i o n  so !ves for t e n s  ion 1 but Introdu ces t t e n s i o n 2 , t h e t a ? t e n s  io
■ : :  ̂ ■ : :■■■ ; ! , fy : ' : . ' ■

E R R O R  T y p e  unknown — - t t h ^ t a f  - 
( c o n t i n u e  after error )

T o  f I nd 1 1 e n s  i on2? theta, t e n s  i o n 3+, g i ven -^-tens i on 1, ma, mb, mut 
I am  n o w  t r y i n g  to solve for t e n s  i on2 w i thout i nt roduc i ns an y unknowns.

I E q u a t i o n -  3: tensionlf:cos(theta)f(-ten5i o n 2 + t e n s i o n 3 * c o 5 ( t h e t a )  )=0 
F o r m e d  by res o l v i n g  forces at 2 25 d e g rees to the horizontal for Pt5s

f Thi 5 e q u a t  i on so Ives for t e n s  i on2.
T o  f i nd  T t b e t a , t e n s  i on 3+, g i ven t t e n s  i o n 2 , t e n s  i on 1, m a , m b , m u f  

; I am n o w  t r y i n g  to solve for t h e t a  without introducing any unknowns.
; N o  i uck - I Hi I I now accept un k n o w n s  in solving for theta?

I am u n a b l e  to solve -o'- theta,

; I wi M  so back to solve fo'" tension! again

E q u a t i o n - 2  rejected-

: I am  u n a b l e  to solve for' tensi ont, \  -

I I will SO b a c k . to solve for na again

! E q u a t i o n - 1  rejected. . .

I E q u a t i o n -  4; 0=0 . L  : c ■ *
Î F o r m e d  by r e s o lving forces at 0 d e g r e e s  to t he horizontal for a

I T h i s  e q u a t i o n  s o l v e s  for ma but introduces +tensionlf-F V :
I T o  f i n d  -ttens ion if, g i ven t-ma, mb, mu f 2
I I am  n o w  t r y i n g  to solve for t e n s  i on 1 . w i t h o u t I  nt roduc ins any unknowns.

I' E q u a t i o n -  5s -ma*g+tensi,oni=0
I F o r m e d  by reso!vins forces at 9 0 -degrees to t h e  hor i z o n t a l : for a 

I. f T h  i s e d u a t  i on so I ves f or -t-ëris i'".nl., . '

? E q u a t i o n s  e x t r a c t e d  : - ' - r c
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The Unsliding Block Problem

Solved using Malrulel 6

C = R * sign ( cos a )



- . s ~
ns -- v. -- r - r,, •“■M;- Mv*-

:: n o w  i:ry :ns rn fk-"''-' f.-; - na cfr^no-t ;.r^frc'nj.-;y:g rny i.o'aiowns. .

rJo ! % :;-: - - i y:ow acceot un K:iown n - n .̂g". v : ns -o ' ma. : .
. ' ;..aT, of'VF i on ' ;■;- -.r-a t.enu : or- nf st r i nuo. ' --

: Equat; o n -  .

F o r m e d  by rest vire -ornes at 90 to iha licrlzonta' for a

T h i s  e q u a t i o n  s t ives -or ma but i nt reduces + tens ;onl+. .■ ■ :

; So n o w  ï must so ; ve fo- - t e n s  ion It, given f m a ? # b ? m u -

I am n o w  t r y  : ns to s o l v e  for t e n s  ; on I w : i hout . introducing an'-' unknowns. ;.;
/-  ̂ .. \ ia .'i - .3/ -.'V b-'TLFr i.T ' 3
M o  liuck - I Wi l l- n ow accept u n k n o w n s  i n solNo ns -^o r tension:. •
Let t e n s i o n s  he th e  tension of st ri ns2.
Let t e n s i o n s  be the tension of s t r i n g  1.

E q u a t i o n -  2: - t ens i on t t ens i or,2=0' 3
Pmrrned by r e s o lving forces at 90 t6  the hor i zonta ! for pt-5 ^

T h i s  e q u a t i o n  s o l v e s  for tens;oni hut introduces etension2, t e n s i o n 3 f ,

8m n o w  % must s o lve for t-tens ? o n 2 - t e n s  i onof, g i v e n  ■•«••tens i.on 1, ma, mb
. , . 3  : "3 :::3^3. :3 , 3 ' , - ■:

I am n o w  t ry i ns to so Ive for t e n s  ion2 w i thout i ntroduc i ns any unknowns. 

E q u a t i o n -  3: t e n s ; o n l + C - t e n s i o n 2 + t e n s j o n 3 ) = M
F o r m e d  by resolving forces at 2 25 to the horizontal for P t 5  

T h i s  e q u a t i o n  s o l v e s  ^ o r ■tension2.

Bo n o w  I must so Ive for ttensi onof, g iven ttension2, t e n s  i o n i ,m a , m
b 7 muf - 3 3 '■■ !, ■ ■ ■' - ' ■ . :
Î am n o w  t r y  ins to so 1 ve for tens.i on3 w it hout i nt roduc ins any unknowns.

N o  l uck - I W i  I I now accept unknowns, in solving f o r  tensions.
Let react i on 1 be the react i on of tab ! e in d i rect i on .90.

E q u a t i o n -  4 “ -tensi on3+mu:fr.eact ion 1=0 .
F o r m e d  by resolving forces at 190 to  t he horizontal for b

T h i s  e q u a t i o n  solves for t e n s i o n s  but introduces treactionlf. • • :

Bo n o w  X must solve, for •*-react i oni-hî g i ven -ttens ion3, t e n s  i onz? tens
i on i , ma, mb, m uf \ '

Î am n o w  t r y i n g  to s o lve for r e a c t i ont w i t hout Introducing an y unknowns.

E q u a t i o n — 5î react i on l-mb.Ts^B , / /.
I F o r m e d  by resolving forces at 90 to th e  hor'i zontal' for b • '

i T h i 5 equati on SO Ives for reactioni. ;

Equati on s  e x t r a c t e d  ? ‘
— m a * g f t e n s i o n l = 0  
- t e n s i o n l + t e n s i o n 2=0
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The Unsliding Block Problem

Solved using Malrulel

Weight = Mass



'S: '
gr,.

■ C  SO.: - r, r " M O -  : f; l e  " M S  CO " M 3 - ni"

am n o w  try ins to s o l v e  for na wjr.hout introrucins anv unknowns.

:' luck - : wi I I n ow accept; u n k n o w n s  in so iv • ns -or na,
.et tensi oni be the t e n s  i on of strineS,

luation- 15 - n a + t e n s i o n l = 0  .
Armed by r e s o l v i n g  f o r c e s  at 90 to the horizontal for a

"his e q u a t i o n  s o l v e s  -or na but introduces +tensi'onl+. . . •

>o n ow I must s o l v e  for t t e n s  ionie, g i ven -tna, nb? n u +  " • .

am n o w  tn y i ng to s o l v e  for tens I on 1 w !thout introducing any unknowns.

it^ck ~ I wi l l now a c c e p t  u n k nowns in s o l v i n g  for tension!^ 
et t e n s i o n s  be the t e n s i o n  of striTfg2. 
et t e n s i o n s  he the te n s i o n  of strinsi,

u a t i o n -  2: - t e n s i o n l f t e n s T o n 2 ^ c o s ( & 5 ) = 0
rmed by res o l v i n g  f o r c e s  at 90 to the horizontal for P t 5

his e q u a t i o n  s o l v e s  for tensionl but introduces t-tens i on2, t e n s  i o n 3 f . ;

D now I must so Ive for t t e n s ï o h 2 , tensi c m 3 + , . sjven t t e n s i o n  * ? ma? mb
ut /
am no w  t r y i n g  to s o l v e  for tensi o n 2  w i t h o u t  .introducing any Unknowns..

uat I o n- 3 : tens i on It cos (45) + (— tens i on 2*-tens i o n o t c o s  (4.5) ) =0 
rmed foy r e s o l v i n g  f o rces at 225 to the horizontal for pt5

his e q u a t i o n  s o l v e s  for tension2. - >

D now .. must s o l v e  for t t e n s  ion3e? given t t ens i on2? tens! oni ? ma? mnu+ - . • ' -
am n o w  t r y i n g  to sol y e  for tens ion.3 w i t h o u t  introducing any unknowns. (

luck - X will n ow accept un k n o w n s  in s o l v i n g  for tension3,
?t react 1 on 1 be the react i on of t a b l e  in d i rect i on 3)0, ' " •

lat ion- 4: - t e n s  i on.3+muereact i on 1= 0,
■med b y .resoI Vins forc e s  at 190 to t h e  horizontal for b

lis e q u a t i o n  s o l v e s  for t e n s i o n 3  hut i n t r o d u c e s  treactionle. .

' •". must so I v e  for treacti onle, g iven t t e n s  i on.3? t e n s  i on2r ten s
i 1 ? ma? mb? m u t  " - - ' - ' ■ " . : :

im n ow t r y ins to s o l v e  for reactioni w i t h o u t  introducing any unknowns.

at ion- 5: r e a c t i o n l - m b - 0  3
med by r e s o l v i n g  f o rces at 90 to the horizontal for b '

is e q u a t i o n  s o l v e s  for react!oni. ; . - ' '

at i o ns e x t r a c t e d  •* , . • •
— m a + t e n s i o n i = 0  -
- t e n s i o n i t t e n s i o n 2 t c o s (45)=0 - - c,-
t e n s  ir.nl’f:cris (45) t ( - t e n s  i on2+T,ens i on3^-cos C45) )=0 '
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The Ifrisliding Block Problem

Solved using Malrulel?

C = R * sin a



assert(ma !r ù i .
es
?- SD.

t ternit . ne te solve for ;n i-e -MS of
am now try î ns to solve f o" ma without ; r, - "or! u c i ns any un^nowns-

o luck - 1 will now accept unknowns -;r so:vins for ma.
Let t e n s  I on 1 be the t e n s i o n  of tStrinsS.

V . -
q u a t i o n -  is -maf=s+tens i on 1=0
ormed by resol vins f o r c e s  at 90 to th e  horizontal for a ’

T h i s  eq u a t i o n  s o l v e s  for ma but i ntroduces f^ensionl^.
Bo n o w  I must s o l v e  for t t e n sionle, '

s i ven tma-mb? muf-
am n o w  try ins to s o l v e  ^or te n s i o n l  w i t h o u t  introducing any unknowns, 

o luck - r.wii! n ow a c c e p t  u n k n o w n s  in s o l ving for tensionl.
Let t e n s i o n ^  he the t e n s i o n  of strins2.
Let tensi b n 3 be t h e  tensi on of stri n s l . '

quat i on— 2: -tens j onl+tens i on2f:s i n =0 '
ormed by resolving f o r c e s  at 90 to the horizontal for Pt5
This equat I on so 1 ves for t e n s  i on 1 but int. reduces t t e n s  i on2, ten s  i on3f.
Bo n o w  1  must s o lve for t-tens i on2*. tens i on3f ? ■ .

gi ven t-t^nsloro,T ma? mb? muf 
am n o w  try i ns to sol v e  f or t e n s  i on2 w i thout i fitroduc i ns any unknowns, 

q u a t i o n -  3: tens i o n l ^ s  j n C-45) f-t-tens i o n 2 + t e n s  i o n 3+s i n ) =0 '
ormed by resolving f o r c e s  at 2 25 t o  t h e  horizontal for Pt5

This eq u a t i o n  s o l v e s  for t e n s i o n 2 L  ’ L"
Bo n o w  I must s o l v e  for t-tension3f-? ; /

given t t ens i on2? t e n s  i onl ? ma? mb? muf- -
am n o w  trying to s o l v e  for t e n s i o n 3  w i t h o u t  introducing any unknowns, 

o luck - I  will n ow a c c e p t  u n k n o w n s  in s o l v i n g  for tensions.
_et reactioni be t he r e a c t i o n  of t a b l e  in dir e c t i o n  90.

quation- 4s -tens i on3+mu:freact i on i=0 , f
prmed by resolvin s  f o r c e s  at - 180  to t h e  horizontal for b •,

This eq u a t i o n  s o l v e s  for t e n s i o n ?  hut introduces t r e a c t i o n  if.
Bo n o w  I must solve for ô r e a c t l o n l ^ ?

si ven t-tens i on3- t e n s  i on2? t e n s  I on 3 ? ma? mb? muf- .
am n o w  trying to s o l v e  for reactions wi t h o u t  introducing any unknowns, 
quation- 5s react ionl - m b * s = 0   ̂ ' -
:>rmed by resolving f o r c e s  at 90 to t he horizontal f o r y b  .

Phis e q u ation s o l v e s  for r e a c t i O n 1.

ouations extracted s
—ma*9+tension1=0 , • ,
—tensi onl+tens i on2-f-s i n C45>=0 ■ . ; -
tens i onl>̂ :s i n (-45) t (-tens i on24-tens i bn3*s i fi (45) )=0 
-tens i on3+mu4:react i on 1=0 _
r e a c t  i on 1- m b * g =0 ■ \ .

?s
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The Unsliding Block Problem

Solved using Malrule6

Friction = 0



mot ins to s o l v e  -̂ ô - t mat in terms of -t-mb-mut
n ow *t’.ryjng to solve* for ma wit hout i nt, roduc i ns an y un known s.

uck - J will now a c c e p t  unknowns in so !v i ne for ma. 
t e n sionl he the t e n s i o n  of s t r i n g 3.

t i on- 1 : - m a * g f t e n s i o n l = 0
ed by resolving f o r c e s  at 90 to  the horizontal for a 

s e q u a t i o n  s o l v e s  for ma but introduces t-tens i on it.
n o w  I must s o l v e  for ttensionlt, ^

given f-ma? mb? mut
n o w  t r y i n g  to s o l v e  for tensionl w i thout intr o d u c i n g  any unknowns* 

uck - T wi I I n o w  a c c e p t  unknowns in s o l v i n g  for tensionl. 
t e n s i o n 2  be t h e  t e n s i o n  of strins2;
t e n s i o n 3  he t h e  t e n s i o n  of stringJ.

:t i o n - ’2 ï ""tens i onl-^tens i on2f=cos
led by reso!vi ne f o r c e s  at 90 to i he horizontaI for Pt5

s equat i on so i ves for tens i on 1 hut i nt r e d uces t-tens ; on 2? t e n s  i c<not. 
n o w  I must s o l v e  for t t e n s ion2?tension3t,

g i ven ttensionl, m a ? m b?Mwt _ . -
1 no w  t r y i n g  to s o l v e  for tension2 w i t h o u t  i ntroducing any, unknowns.
t̂ i o n- 3: tensi o n 1* c o s (45)f (-tens i o n 2 f t e n s io n 3 * c o s 1 4 5 ) )=0 
>ed' by resol Vi ns f o r c e s  at 225 to t h e  hor i zontaI for Pt5

s e q u a t i o n  s o i v e s  fc»r tensionZ. 
n o w  I must s o l v e  for t-tension3f-7

. given t t e n s i o n 2 ? t e n s i o n l , m a , m b ? m u f
V n ow t r y i n g  to s o l v e  for t e n s i o n 3  wi t h o u t  introducing any unknowns; 
uck - Ï wi Ii n ow a c c e p t  unknowns in s o l v i n g  for tensions.
; react ion! be t h e  reaction. of tab 1e in d i r e c t i o n  90.

at ion- 4: - t e n s i o n 3 = 0
rted by resolving f o r c e s  at 180 to the horizontal for b

i s equat i on so I ves for t e n s  i on3 but i nt r e duces -t-react i onl-e, 
n o w  I must s o l v e  for -t-react i on If,

g iven ttension3? t e n s  i o n 2 , 1 ens ion l , ma? mb, m u f  
n n ow t r y i n g  to s o l v e  for reactionl w i t h o u t  introducing any unknowns, 
ation- 5: r e a c t i o n l - m b # g = 0
tied by resolving f o r c e s  at 90 to the horizontal for b -

is equat ion s o l v e s  for reacxion'l. . , . L

at : ons e x t r a c t e d  t - t,,;,. • .. .■ ■. ■ ■ ■. ,
— m a * 9 t t e n s l o n l = 0  ‘ ./
- t e n s ; o n l + t e h s ; o n 2 * c o s ( 4 5 % = 0  /  •.'L.v - '
• t P - n s  i on l^H-os (45) *b(— tens-i on 2 + t e n s  i onof=cos < . 4 v j )  )  — 0

L-tens;on3=0\ Lx : ' L'\. ^ 'L / - -
react i onï-Mb*g=0 ■. .-r' : , , . '
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