ty

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

ITSY: an automated programming adviser

Thesis

tversl

How to cite:

Domingue, John (1987). ITSY: an automated programming adviser. PhD thesis The Open University.

For guidance on citations see FAQs.

(© 1987 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data [policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

DXBOEI3
UNRESTRICTED

ITSY
AN AUTOMATED PROGRAMMING ADVISER

John Domingue

Thesis submitted in partial fulfillment of requirements for Ph.D in
Psychology, April 1987.

Human Cognition Research Laboratory -
o The Open University‘
- ' Milton Keynes MK7 6AA

Dale of Subiussion: Aprd 1967
Date of Aparg: [ginJune. HET

ENEN

ProQuest Number: 27775998

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 27775998

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

ABSTRACT

This thesis presents an automated programming adviser. This system (called ITSY)
tutors students in Lisp. This is from the viewpoint of automated program debugging of
novice programs. Work within HCRL [Eisenstadt et al, Hasemer, Lewis] has shown
that novice programming students can benefit from relatively small changes to the
environment and from help via (intelligent) debugging tools. This thesis
investigates the use of these debugging techniques in tutoring. . The debugging
techniques described here rely totally on detecting patterns in the student's code which
represent erroneous concepts the student may have.

The thesis is divided into three pérts. Each part describes a separate area of
investigation.

The first part provides a detailed description of the types of errors that professional
programmers make when wusing a ‘'traditional' (i.e. glass teletype) Lisp
environment.

In the second part the concept of a programming cliche has been inverted and used as a
basis for a system designed to help overcome the difficulties described in the first part
of the thesis. This approach can be used in the design of computing systems built to
help novices in certain domains. The constraint on the domain is that students'
answers are complex enough to contain patterns of errors (so one word answers would
not suffice). This would include domains where students are learning procedural
skills - such as arithmetic, algebra or mechanics.

The third part describes a study involving professional programmers using the
system.

CONTENTS
IBACKGROUND

1. Introduction .

1.1 Motivation

1.2 Influences

1.3 Approach .

1.4 The System .

1.5 Target Users

1.6 Guide to the Reader .

2. Overview .

2.1 An Example
2.2 Spotting Errors
2.2.1 Transforming the Code

2.2.2 The Matching Process .

2.3 Presenting the Tutorial
2.4 The Student Model

2.5 The Environment

3. Scenario

3.1 First Scenario .
3.2 Second Scenario .
3.3 Third Scenario
3.4 Fourth Scenario
3.5 Fifth Scenario .

W NN R

%)

11

13
13
14
15

4. ITSY in the Context of Related Work
4.1 Empirical Studies of Programmers
4.2 Intelligent Tutoring/Computer Aided Instruction .
4.2.1 Spotting Errors .

4.2.2 Presentation Method
4.2.3 Student Model
4.2.4 Path Selection

4.2.5 Environments as a Whole

4.3 Intelligent Program Analysers and Debuggers .

4.3.1 Analysing the Code .
4.3.2 Finding the Bugs .
4.3.3 Finding and Fixing the Errors

5. Categorising Errors in a Traditional Lisp Environment

5.1 Motivation

5.2 Methods

5.3 Method of Analysis .
5.4 Results

5.4.1 Problems Caused by the Environment .

5.4.2 Algorithmic Errors .

5.4.3 Problems with the Language
5.5 Error Messages
5.6 Conclusions from the Study

II ITSY IMPLEMENTATION DETAILS

6. The Environment .

6.1 Overall Environment .
6.2 Lisp Environment

6.3 Editor Environment
6.4 The Status Line

6.5 Coaching .

7. Transforming the Code into Plan Diagram Form

7.1 The End Product - Internal Representation of the Code

7.1.1 Advantages of Using Plan Diagram

Representation .

H 8 823 B

3

B RRERRE

& 8

100
100
101
103
103
104

106

107

7.1.2 Representation of Lisp Objects .
7.1.3 Data and Control Flow: Connectives
7.1.4 Non Connectives .

7.2 The Transformation Process .
7.2.1 Application of Non-Connective Common Lisp
Functions . |
7.2.2 Application of User Defined Functions
7.2.3 Function Definitions
7.2.4 Forks
7.2.5 Loops

7.3 An Example of Code Transformation .

7.4 Current Limit of Analysis

8. Matching Error Cliches Against the Transformed Code .
8.1 Traversing the Transformed Code .
8.1.1 Common Lisp Functions .
8.1.2 User Defined Function Application .
8.1.3 Function Definitions
8.1.4 Forks
8.1.5 Loops
8.2 Returning Information About the Error .
8.3 Matching a Code Segment Against an Error Cliche
8.4 An Example of Matching
8.5 The Error Cliches

9. Presenting the Tutorial

9.1 Highlighting the Code .

9.2 Explanation of Errors and Concepts
9.2.1 The Explanation Frames .
9.2.2 The Message Controller
9.2.3 The Explanation Text
9.2.4 An Example of an Explanation Being
Displayed .

9.3 Conclusions

108
112
123
124

125

126
127
134
137
146

148
149
151
151
152
152
152
153
153
158
156

173
173
174
175
178
181

184
189

10. The StudentModel 19
10.1 Introduction 19
10.2 Representation 193
10.3 Updatingthe Model 193
10.3.1 Student Model Cliches 1%
10.3.2 Action Taken on Different Values of the
StudentModel 19

III EVALUATION OF ITSY

11. Study II: A Preliminary Evaluation of ITSY 197
11.1 Objectives 197
112Methods 197
11.3 Method of Analysis 197
114Results 198

11.4.1 Problems Caused By the Environment . 198
11.4.2 Algorithmic Errors 198
11.4.3 Problems with the Language 19
11.5 Conclusions 21
11.5.1 Comparison with Study I 202
11.52ChangestoITSY 20

12. Study III: An Evaluationof ITSY 21
12.1 Objectives 211
122Methods 21
12.3 Method of Analysis 21
124Results 22

1241 FErrors 22
1242 Messages 20
125ExtraErrors 22
12.6 New ErrorCliches 24
12.7 Conclusions 25

13. Conclusions and Extensions

REFERENCES

APPENDICES

A - Study I Instructions

B - Raw Data from Study 1

C - Dribble Files from Study I

D - Instructions from Study I and III

E - Total Number Errors for Study II

F - Results for Study III

G - Individual Results Study III

H - Dribble Files for Study III

I - Frame Times for Study III

dJ - Lisp Subset

K - Student Model Cliches

PREFACE

This thesis is divided into three parts. Part I both introduces and provides a
background for the project. Part II describes the implementation of ITSY in detail.

Part III contains an evaluation of ITSY as well as concluding remarks.

ACKNOWLEDGEMENTS

I'd like to thank the following:

First and foremost Marc Eisenstadt. Few students can have a supervisor able to inspire

confidence and motivate as he can.

Tony Hasemer for his support and encouragement.

Rick Evertsz for interrupting his own PhD work to help port and maintain his object-
oriented package. This saved a significant amount of time in the construction of

the system.

My parents deserve thanks for providing the perfect environment while drafts of this

thesis were prepared.

My subjects for giving up a considerable amount of their spare time. Special thanks go to
Anne, Cathy, Claire, Louise, Steve and Simon. I'd like to thank Claire for

getting some subjects when I was in desperate need.

This research is supported by a Science and Engineering Research Council CASE award
in collaboration with International Computers Ltd and has been carried out in the

Discipline of Psychology.

PART [

1. INTRODUCTION

1.1 Motivation

Today a growing number of commercial companies are becoming interested in both the
development and use of Artificia} Intelligence (AI) systems. In the Human Cognition
Research Laboratory there are collaborative projects with International Computers Ltd,
British Telecom, Expert Systems International, Sperry and British Petroleum. Because
of its built-in facilities for symbol-processing Lisp [McCarthy, Abrahams, Edwards,
Hart & Levin, 1962] is one of the most widely used languages of Al. An understanding of
Lisp is vital not only to build (and in some cases to use) Al software, but to understand a
substantial amount of the available literature. Because of this there are an increasing
number of conventional programmers who want to become competent Lisp
programmers. Unfortunately, because Al is still a young science, there are relatively
few expert Lisp programmers and therefore few Lisp tutors. This thesis describes a
system, called ITSY, to aid conventional computer programmers to learn Lisp. It is

hoped that ITSY will help fill the gap.

1.2 Influences

This thesis draws from work from two areas of Artificial Intelligence - Intelligent
Tutoring and Automated Program Understanding/Debugging. The overall structure of
the system and some of its components are based on existing Intelligent Tutoring
Systems. One of the components common to all Intelligent Tutoring systems is the
domain expert. In ITSY the domain expert is a Lisp debugger for novice Lisp

programmers.

The debugger is based on work carried out on the Programmer's Apprentice project at
MIT [Waters , 1982]. The aim of this project was to build a knowledge based editor. The
programmer would be able to converse with the editor in terms of programming concepts
instead of text strings. In order to do this the Programmer's Apprentice would have a
library of common programming cliches. A cliche is a standard form of code. These

cliches represented a common knowledge base amongst computer programmers. The

Chapter | Introduction 2

Programmer's Apprentice would be able to construct programs using these cliches and

analyse raw code into these cliches.
1.3 Approach

The first step in building ITSY was to study novice Lisp programmers. About 130 hours
of data were collected from professional programmers learning Lisp. During this pilot

study we noticed two things:
a) the errors made by the subjects fell into relatively few categories,
b) a substantial amount (12%) of the errors were caused by the environment.

We decided that the best way to cure b) was to improve the environment. The fact that the
errors fell into few categories led us to believe that novice Lisp programmers share a
common knowledge base of misconceptions and these misconceptions manifest
themselves as 'similar' segments of code. We call these 'similar’ segments of code
error cliches. As we said earlier a cliche is a standard form of code. By error cliche we
mean a standard form of code which is incorrect. We decided that ITSY should trap these

error cliches and explain the misunderstood concept to the student.
1.4 The System

ITSY has been designed to be used with a set text, "Lisp" [Winston & Horn, 1984]. Many

of the 'traditional' (unintelligent) CAI packages produced in the seventies were based on
the 'branching text' concept. That is pages of text with several branching points. It would
be a duplication of effort to produce long pieces of text and numerous exercises when there
are so many 'teach yourself Lisp' books available [Hasemer, 1984; Winston, 1984;

Touretszky, 1984; Wilensky, 1984].
ITSY provides help in two different ways:

1) Tutorial advice when a student makes an error.

Chapter | Introduction 3

2) A 'friendly' environment - including coaching on available Lisp tools.
These different sources of help will be explained in chapter 2.
1.5 Target Users

ITSY is intended for use by professional programmers, that is programmers who are
currently employed to program in a ‘conventional’ language and have had at least two
years' experience doing so. This makes a difference to the questions we have to
address. Students who were computer naive would have a different set of problems - one
example is the problem of students imputing too much "intelligence" to the machine.
The fact that the students will be professional programmers may cause problems as the
students will carry over knowledge that is not applicable to a language such as Lisp.
Most conventional programming languages do not have an interpreter toplevel present

in most Lisp systems.

The fact that a debugger is used as the domain expert gives ITSY advantages over the
frame-based CAI systems. As Johnson says [Johnson, 1985 p 10]:

Frame-based CAI systems may work in some domains, but they are ill-suited for
teaching programming ...

Incorrect answers from students provide an awkward problem for such systems - they
may have remedial frames but if the student continues to make the error they have no
further action that they can take. Mistakes are often made by novices learning to
program in a new language - in one of the studies conducted, 35% of the of the lines typed

in by subjects contained an error.

The main questions raised in this thesis are:

1. What misconceptions do professional programmers have when learning Lisp?
2. How can the misconceptions best be categoriéed into error cliches?

3. Will explaining these misconceptions when an error cliche is found help novice

programmers?

Chapter | Introduction 4

In describing the debugging system SNIFFER Daniel Shapiro comments [1981 p. 7]:

This approach defines an initial theory of bug recognition. It considers errors to be
positive entities around which knowledge can be organised, as opposed to representing
them as differences from an established norm.

As the approach used in SNIFFER defines a theory of bug recognition so error cliches are

a theory of the buggy knowledge that novice programmers are assumed to have.

The approach used here can be extended to other domains where studenfs make the same
types of error. One such area is children learning about arithmetic. Burton and Brown
[1978] studied 1300 school children attempting basic mathematical problems. They found
that rather than not following the correct procedures perfectly, the children were
following incorrect procedures. Each of these different incorrect procedures meant that

the child had a particular misconception.

The basic method used, in this thesis, is to collect a library of error cliches from students
learning in the domain. Then to determine what misconception a student must have in
order to produce a particular error cliche. The next step is to build a system that is able to
match error cliches against student input and then explain the misconception that the

student must have.
1.6 Guide to the Reader

The next chapter gives an overview of ITSY. Chapter 3 contains a scenario using screen
snapshots from the running system. Chapter 4 describes ITSY in the context of related
work. The last chapter in this part describes a pilot study, which involved looking at

professional programmers learning Lisp.

2. OVERVIEW

An overview of the structure of ITSY is given in figure 2-1. The arrows leaving the main
box show how the student can interact with ITSY. When the student types input at the
enhanced lisp environment the code analyser transforms the student's code into an
internal form (a surface plan Waters [1978]). If the input does not cause an error the
student model is updated. The student model is represented as a set of nodes. Updating
the student model involves changing the state of some of the nodes. The student model is
used to determine whether a particular mistake, made be the student, is due to a
misconception that the student has or is trivial. If the input does cause an error the error
cliche finder tries to match one of the error cliches in the error cliche library against part

of the student's transformed code.

The- remainder of figure 2.1 will be explained later in this chapter.

2.1 An Example

The following is a description of what happens 'behind the scenes' as a bug is detected
and a tutorial is presented. Suppose that the student has typed in the following function

definition, in an attempt to create a synonym for CAR:

(defun buggy-first (1)

(car (1)))
Once the student has loaded the function BUGGY-FIRST and typed in the form:
(buggy~-first '(a b c))
Lisp gives an error (the reason for the eﬁor is that the L in (CAR (L)) should not be
surrounded by brackets). Instead of entering the debugger ITSY displays the Lisp error

message and tries to spot the error.

The first part of spotting the error is transforming the students' code into an internal

Chapter Il Overview 6

ageyoed
IoYSIyYs uoneyuasard
mﬂ.%_m H ﬂmvww sawreIq
. BLIOIN,
I9POIN fepony
uspms a
Iapurd : P sonnnn
YOI [°PON I0JeUIpIo-0) A
IPPOW | yuopmyg [4——— by
juspnis
1 1
juswuoIrAuyg
X011 st <«
Arexqri ‘ pasueqUA
SYdID ISpury
1011H —> Ay J0LIy
] JUSWIUOITAUL
I01PH
yoeo) |@————| 19sfeuy spoy [Uooﬁﬁ%&"lv

q H

yoro) oL AYOIRIDNL]
sordol 193[q0
ds11

form. The internal form used in ITSY is close to the surface plans used the
Programmer's Apprentice [Waters, 1985]. The toplevel form is translated into the

network shown in figure 2-2.

2IMIINYIIY S, XSLI JO MIAIIAQ T-Z MBI

Chapter Il Overview 7

The following two figures show the internal representation used by ITSY. Each labelled

box represents a segment of code (usually a function). The arrows show dataflow.

Figure 2-2

ABOQ)

!

Quote

v

Function Application

Figure 2-2 shows the internal representation of the form (BUGGY-FIRST '(A B C)). The
box labelled Function Application represents the application of the function BUGGY-
FIRST. The input to this function is the QUOTE function - represented by the box labelled
Quote. The input to QUOTE is the list (A B C).

As ITSY analyses the toplevel form it also analyses any functions, defined by the
student, that are called. The function buggy-first is analysed into the network:

Figure 2-3

User Defined Function l

Function
Application

A 4
CAR

Chapter Il Overview 8

The network shown in figure 2-3 represents the definition of the function BUGGY-
FIRST. The box labelled User Defined Function represents the function BUGGY-
FIRST. The input to the function is represented by the line labelled L. Notice this line
does not lead to any of the internal boxes as the parameter L is not used within the
function body. The function CAR is represented by the box labelled CAR. The input to
this function is the box labelled Function Application. The Function Application box

represents the function call L, in the student's code, which of course is undefined.

The error cliche matcher then tries to match one of the error cliches against this network
(comprising of figures 2-2 and 2-3), starting from the toplevel form and working in the
same way as the evaluator. As the error cliche matcher traverses the network each error
cliche actively tries to match itself against a section of the network. The surface plan
representation and the error cliches are implemented in an object oriented manner. The
nodes in the network are implemented as objects, the labels on the boxes refer to the type or

class of the object. The error cliches are implemented as messages.

The error cliche which is called brackets around a variable matches. This error cliche

has the form:
Error Cliche Name: Brackets Around a Variable
Surface Code Segment: Function Application

Criteria: Function is undefined
The 'name' of the function is the same as one of the
input ports of the function definition the segment

occurs in.
Other Checks: The 'name’ of the function is not a function.

Each error cliche has four parts. The first is the name of the error cliche. The second is
the 'type' of object that the error cliche can match against. The third and fourth parts
contain tests that the object must satisfy in order to match against the error cliche. The

Criteria and Other Checks differ in that the former contain criteria that need to be

Chapter 1l Overview 9

satisfied in order for the error cliche to match and the latter contain tests that prevent

false alarms.

The error cliche shown above matches against the function application object in figure 2-

3. This error cliche matches against the function application object as follows:

a) The type of the object (function application) is the same as the Surface Code Segment,
b) the two Criteria are true,

c) the Other Checks are true. ‘

As indicated earlier each surface code segment (shown as-a labelled box in figures 2-2
and 2-3) is represented as an object. Each object has various slots which can be filled in.
The Criteria and Other Checks test the slots of the object. Three of the function
application object's slots are used. One of these slots contains the name of the function
being applied. The second slot contains the type of the function call, which can be one of
normal, recursive and undefined. The third slot that is used contains a pointer to the
surface plan representation of the function that the object appears in. The first Criteria

checks that the type of function call slot has the value 'undefined'.

The second criteria checks that the 'first atom' in the name of the function slot is the
same as one of the input ports of the function definition the function application appears
in. The input ports of a function definition represent the possible ways that data can flow
into a function. There are two possible ways this can happen, values can be passed via
variables in the parameter list or via global variables referenced within the body of the
function. The function definition shown in figure 2-3 has one input port L (represented
by the line labelled L). Because the student may put more than one set of brackets around
a variable the 'name’ of a function may be a list. By 'first atom' we mean the first atom
in a list, if the list is traversed in a depth first manner. For example, if instead of
writing (CAR (L)) the student had written (CAR (((L)))) the name slot of the function in
the function application object would have contained ((I)). The 'first atom' in the name

slot would be L.

The Other Checks uses the name slot and checks that the 'first atom' is not the name of a

Chapter Il Overview 10

function. The use of the Other Checks can best be described by an example. In function

definition below:

(defun buggy-fun (list)

((list list)))

The error cliche described above would match against the s-expression ((LIST LIST)) if
the Other Check did not exist. This error is caught by the extra bracket around a

function call error cliche.

Once the error has been found ITSY checks the student model. In this case the model

indicates that the student needs to be tutored (the second scenario (3.2) shows the action
ITSY takes when the student model indicates that the student does not need tutoring). '
The student model consists of an unconnected graph. Each node in the graph can have

one of several states. Some of the nodes are shown below in figure 2-4.

Figure 24

Brackets Around
a Variable

Non-list to
Car Cdr Cons
or Append

Wrong Number
of Arguments

Arguments in
the Wrong Form

The code highlighter receives information including the buggy piece of code and the
function the buggy piece of code occurs in. The code highlighter brings the function to the
top of the screen and highlights the buggy piece of code.

ITSY displays a set of message frames to explain the source of the error to the student.

There is a set of message frames for each error cliche. Information returned by the error

Chapter Il Overview 11

cliche finder is used to fill in various slots in the messages. In the example the name of
the function that the error occurred in (BUGGY-FIRST) and the name of the variable

surrounded by brackets (L) are inserted into different slots in the messages.
The remaining sections of this chapter provide an overview of how ITSY works.
2.2 Spotting Errors

ITSY spots errors using a variant of the code analyser in the Programmer's Apprentice
Waters [1978] (see section 4.2.1). A certain part of the analysis within the Programmer's
Apprentice involves replacing segments of code by a smaller number of segments, or by
a single segment. This involves matching segments of code against a pre-stored

cliche. In an analogous fashion ITSY attempts to match segments of code against a pre-

stored error cliche. This is carried out in two steps:

1. Transform the code into an internal form that abstracts out certain surface
features such as data and control flow. The internal form used in ITSY is
analogous to surface plans described in Waters [1978 p. 44] and consists of a

network of objects (see figures 2-2 and 2-3).
2. Try and match each part of the network against an error cliche.

Notice that the matching process can occur at either a low or high level of code
abstraction. In the Programmer's Apprentice code is transformed into surface
plans and then by matching these against cliches, plan diagrams are produced.
The plan diagrams can be matched against cliches to produce further (more
abstract) plan diagrams. This process can occur as many times as necessary,
each time a deeper undefstanding of the code is achieved. The same can occur
with error cliches. When matching occurs more than once each new round of

matching produces the source of deeper errors.

Error cliches are the central concept in ITSY. They represent typical student errors. A
pilot study of novice Lisp programmers was carried out at the start of this project (see
chapter 5). During this study we noticed that the errors made by novice Lisp

programmers fell into relatively few categories. From this we concluded that Lisp

Chapter 1l Overview 12

novices share a small set of misconceptions about the Lisp evaluator and that these
misconceptions lead novices to writing the same incorrect forms which we call error

cliches.
2.2.1 Transforming the Code

The code analyser (see figure 2-1) uses an object hierarchy. This contains the specific
knowledge about Lisp. The hierarchy is described in detail in Chapter 8. The analyser

uses the following algorithm:
Let O be the object to be analysed

If O is an atom then replace O with the surface plan representation of the value of the

atom.
If O is a list then it is of the form:

(f argl ... argn)
One of the following actions is carried out:

1. If the function f is a special form! replace f with the surface plan representation of f
and use the special form's analyser to analyse the arguments. ITSY contains a separate
analyser for the special forms COND and DEFUN. This is needed because special forms

do not evaluate their arguments in the same way as normal Lisp functions.

2. If the function f is a Lisp function then replace f with the surface plan representation of

f and analyse f's arguments.

3. The function f is not a special form or a Lisp function, so it must be a user defined
function. Analyse the arguments. If the function f has been analysed before then
retrieve the surface plan representation. If the function has not been analysed then

analyse and store the function definition. Create a surface plan representation of the

1A special form is a 'special' Lisp function, each special form has its own idiosyncratic syntax

Chapter Il Overview 13
function application.
2.2.2 The Matching Process
Once the relevant code has been converted into surface plan form the next step is to find
an error cliche. A set of candidate error cliches are chosen. Which error cliches are

included in the set depends on the type of error. ITSY then traverses the network of objects

created by the code analyser attempting to match each of the chosen error cliches.

2.3 Presenting the Tutorial

A tutorial involves explaining a concept. The explanation involves four parts. Before the
explanation is presented ITSY first checks that it has correctly diagnosed the cause of the
bug. ITSY does this by asking a question. If the student does not understand the question
s/he can ask for a rewording. These five parts are presented as frames, the top half
containing a message, and the bottom a menu. The five parts are:

a) The question - used to check the diagnosis.

b) The reworded question - in case the student does not understand the question.

c¢) The main explanation - this is a expanded version of the error message using terms

that a novice can understand.

d) A deeper explanation - this is an explanation of the error in terms of the evaluator.
From the first study (chapter 5) it is clear that students do not understand how the Lisp
evaluator works.

e) Examples - this is a set of concrete examples illustrating the misunderstood concept.

Each message contains slots which are filled with specific information about the error

such as the function the error occurred in.

The student moves through the frames using a menu. Included as an extra item on this

Chapter Il Overview 14

menu is an option to look up the definition of any technical term used in the

explanations.

24 The Student Model

The student model is used to determine whether or not a student requires a tutorial (this
can be seen in the second scenario (3.2)). Instead of launching into the tutorial

immediately ITSY just notifies the student that the tutorial is available on the Lisp menu.

The student model is closely linked to the error cliche library. The student model is
represented as a graph. There is a node in the graph for every error cliche in the library.
Each error cliche can be thought of as detecting a Lisp concept that a student may lack.

Each node indicates whether or not the particular student lacks that particular concept.

The student model is updated every time a student types in a toplevel form. Updating the
student model in ITSY is similar to finding an error cliche. The student model uses the
surface plan representation of the student code (see fig 2-1). If the student's input to Lisp
toplevel is correct ITSY traverses the surface plan representation of the code attempting to
match the student model cliches against segments of the student's code. The student
model cliches are derived from error cliches. A student model cliche will match against
a correct segment of code where the student could have made an error but didn't. For
example, the error cliche wrong type argument would match against the surface plan

representation of the code segment:

(car 'a)

The corresponding student model cliche would match against the surface plan

representation of the code segment:

(car '(a))

Every time a student model cliche matches against a segment of the student's code the

corresponding node in the network is updated.

Chapter Il Overview 15

2.5 The Environment

When building any environment in which users are expected to learn, certain aspects of
the whole environment need to be considered. The aim is to minimise the amount of
knowledge that the students will need in order to use the system. The tools available to
the students should be functionally, logically and syntactically simple (Du Boulay,
O'Shea and Monk [1981]). There are two main ways of providing the tools: via menus or
via user commands. Norman [1983] gives a table of trade-offs between these two systems.
Menu-based systems are easier for novices, but are not as fast for the expert user. In
ITSY, the tools are available on both pop-up menus and on single keys, the commands on

the single keys acting as short cuts.

ITSY's environment can be seen in the scenario. The basic configuration has three
panes. The top pane contains an editor, the middle a Lisp interpreter and the bottom
status information. The environment was designed to prevent some of the errors that
occurred in the pilot study (see Chapter 5). ITSY also provides limited coaching on the

tools.

3. SCENARIO

In this chapter we describe five different scenarios. Each shows a different aspect of
ITSY's behaviour. The scenarios are screen snapshots from a running implementation

of ITSY. Each screen shown is divided into three main areas.

The top area consists of an editor window, this is used by students to write and edit Lisp
functions. The editor window is divided into three sub-areas. The top part of the editor
window contains the title. The middle part of the editor window contains the area where
students can type their code. The bottom part of the editor wiﬁdow is used both to display
information such as the file a buffer has been saved to, and for students to supply

information such as the name of a file the student wishes to load into the editor.

The middle area is a Lisp toplevel window. Lisp forms can be typed into this window.
The forms are evaluated and a result returned as soon as they are typed in. The bottom
area is a status window. This give students information about what ITSY is currently

doing.

Students can carry out various actions, such as saving and loading files, by using
menus. A menu is brought up whenever a mouse button is pressed. There are two menus.
Which menu is brought up depends on which window the mouse is in when a mouse
button is pressed. If the mouse is within the Lisp toplevel window the ITSY Lisp Menu is
brought up. This menu enable the student to carry out actions such as loading a file or
obtaining documentation on a function. If the mouse is within the editor the ITSY Editor
Menu is brought up. This menu enables the student to carry out the same actions the

ITSY Lisp Menu as well as certain actions specific to the editor, such as saving a buffer.

When a student makes an error ITSY provides a tutorial via a set of frames. These
frames have a message in the top half and a menu in the bottom half. The menu is used to

either bring up more frames or leave the tutorial.

The scenario contains two extensions to the original design of ITSY which are not
described until chapter 13. The first extension consists of an extra frame, the fix frame.

The second extension is shown in the fifth scenario. This is the test a function tool.

Chapter 11l Scenario 17

These two extensions were added as a result of a pilot evaluation of ITSY. They are

described in chapter 13.

Each screen snapshot has been annotated using an extra window. This window appears
in the right hand side of the snapshot and has the title Scenario Annotation. This
window is not part of ITSY.

3.1 First Scenario

The first scenario shows the student defining a (buggy) function and ITSY's actions

when the function is called.

Chapter Il Scenario 18

4031P3 43 OPIEUT

mopuipy dsy ASLI

N -s

% (8) ONIdNL ANDL<3UapNIs(Uyol¢ dst| 0}Jeuans (dST) SouuzZ|

[RCCFFLEE

343 S3nes pue (uoj3anqg!
9snou @ Bujssadud 4q)!

NUaU Jo3pPa Wyl dn sBupuq!
uay3 Auoy °*3sJ| y-ABenq¢
uoE3IoUNS IYF U pun 3snf !
sey (duojl) uapnas ayy!

.nu.m FJInBLq4 ¢

, 4031p3 ({Bwg
4031p3 6ig

uoljoung B 183

suo1ouny pabuey) peoq

944 8 putd

nm__

(it
(1) 384} 4-468n

—g- UapPN3GQ :a6@oRd fdE}|-UouuWo] ixe3auAg Y :aseg {4SIT:9poU

L))
q unyap)

6!

MOpuUIM 1031pT ASLI

Chapter |1l Scenario 19

4034p3 8yl episuT
mopuip dspq ASLI

% (8) IONINNL ANDLCIUSPNISCUYOl¢ d8}1°0}JeuU398 (dST1) SIUWZ

4011p3 [|BwS
4031p] 619
uoljouny B 183
suoijouny pabuey) peoq
§4ajing ayl |(e 181

914 & pul4
dst]
‘wa3} 44 peoy aya!) . :
8380040 UIY3 AUO] PaNes ! : . (((L) ve3)
uasq sey 3114 3y3 Ioup ! (1) 38414-486ng unyop)
QI*g aJInBl4 ¢ & —%- qUIPN3G :36@0ed fds||-uUouwuog ixejudg gt iaseg “n_bun_"ovoz g {11

MOPUIM 3031pT. ASLI

Chapter lll Scenario 20

s r—

Mmopuip dsiT ASLI

__3ndul 4oJ Buj3jen ideiq -

3 (8) 3ONINNL AND1<3u3pn3scuyof¢

ds}|°0}JRUR28 (4ST7) SoHNZ

*dS}(*O}JRUIIS B|}J YI!
839998 AUO| *AJ03VUp!
844 U} sey Aduol jeyz !
83{}4 ds}] Y3 Jo [(e!
NnUad @ U} 8AR|dsIpP ASLII!

ds||*Ayied
dsl1| Auoy

-3- qUIPN3g 1aBexoed {ds}|-uUOuuOg Ixe3UAg fgY iaseg {43T7iapoy -3~ (8

(((1) 4e3)
(1) 384}4-486nq unjap)

o1°'¢ dJINBL4 ¢ &
D P d

0 0 ¥

MOPUIM 1031pT ASLI

'
!

Chapter Il Scenario 21

1

e g o 7

_________3U3UU0.1nU3 03U} dS L 0}4PU3DE CAND1<IUIPNIE CLOF CIINTUNL BUIPEOT

mopupm dsjT ASLI

3 (8) IONINNL AND1<IUSPNIBCUYOl¢ dB}|‘0}JRUIDS (dSTT) SIHNZ

*MOPULN SN3E3S ¢
Y3 @pn Auol sIgp30ul
AS1I SpEOL 3(}J 3y sy!

(((L) ve3)
(1) 384}-A66nq unsep)
-%~ 3UIPN3G 136RHORY [dB}[-UOWWD] I1XWJUAG {pT taseg {JSTi9poy -z~)

PI'E a4nB14 ¢ &

MOPUIM 103IpT XSLI

Chapter Il Scenario 22

B uouds aysz !

puly 03 Bujpdul s} 3} YIS
‘nopuln sn3e3s Y3 epn!
‘AUO| $3}4}130U AQLIT pue !
pade|dsp 8} aBessaId Jouda !
dsi 3yl *nopupm dsin!
Lana|do3 3y3 03 udoy e!

uj padAg 3enf sey Auoy !

W HOT1INN4-0INTSIONN, 340443 343 pujy 03 BUjALL

mopuipy dsyT ASLI

N PouULJpUN 8} 7 Uol3ouUNy BYL
((3 q @), 38J}4-4BBNQ) -x

% (8) PONIANL ANOLICAUSPNIBCUYOl¢ d8}|°0}J8USIS (dST7) GIUWZ

X (((L) ved)
(L) 3IsJ}j-ABBNQ ::;uv”
-~ JUIPNIG :9B@3ORd fds||-UouWUO] 1XWIUAg IpT iaswg {JSITipoY -3~ f8

AT AINBL4 ! N

MOpUTM 1011pF ASLI]

Chapter Il Scenario 23

mopuyy dsj1 ASLI

*PAULJIPUN 84 7 uopjouny By)
((° q ®), 384}4-4BBnQ) -3

paysnd jujoqg
[anoge aJoy] = (B) TONTANY Au02¢3UIPNIBCUYOf¢ d8}| O} ueuads (dSI1) 34yHZ

wiay v uyeidxyg
iopsand uividxal
ON
sax

uol3sang Agil
N' (Le+403Ny 3y3 s|aouea!
A19M}399449 ou Bupqoa|es)!
MOpULN dgL Y3 03!
U@ UIIq IRy pLnon Iy !
«OU, PaIDIL8 pey Auoyl 41!
*,9UBJy UCYIEIND Uye|dxs, ¢ $51] aneweavd ey uy 7T erquyva
Y3 $303(38 pue :o*unoaum oYy 0y 2050 AUyl paIYS[IYSY oy
duop 2, Bieas ubyaeaeianer ¢ uj 1T $00p LSYI4-ADDNY UojIauN} ok uf
ISJ}y Y3 pIde|dsp!
pue 3pod 329udoou} Y3
P33Y6LI4EY ‘mopuln wo3}paf
343 Jo dojz Iy3 o3 uoj3ouny
8,Au0| 3y6nouq S8y Ag1I¢
. («(80)

1o sanBls f o (L) 38J}J4-466ng unjap)
o - MOPUTM J0)IPT XSLI

Chapter I1l Scenario 24

mopuim dsyT ASLI

UGj3wuw|dxg uo}asang AS1I
[9noqe aJoy) :

WU} ® UR|dN3 03 ASIIY
8386 pue ,JajzaueJed, !
U433 Y3 puezsdapun’
0U S30p Auoy *IuRyy !
JUOjjeuR(OX uolasanb, ¢
Y3 pade|dsip ey ASII?

81°¢ aJ4nBL4 ¢ &

41 ©opIoun} v ([uwyl
Iayyea ‘euy] pmySIIYSIY oYy uf 11
SIqVIIvA 8y} SIPN|VAS 0) JuvMm hod PIa

Juaos (dS11) SoHWZ

8} q uojaouny syy
, 384} J-4BBNQ) -x

! paysnd ujod|

uo3IsINg ASLI

DI 1ewvaed ay) uj T ejqejiva
9y} 0} 19jas euil PaIYBYIYSY S
uf 7T $30p LSYIJ-XDDHNG wopouny mok uy

(L) _384}4-466nq ungap)

((4@2)

MOpUIM 1031PF XSLI

Chapter Il Scenario 25

N (J93aueued, udIdy Iy3!
$98004d Auo} ‘uje|dxaf
03 31qe $} 3} 3Py SUIIR!
Y3 LL® sAR(dS|p ASLI?
Yyr g 3JnByq4 ¢

mopujp dsy1 XSLI s

uol3oun 4
6u1do3G-|8I1x3)

UOISINIay
J|qslien

S} 7 uojaduny Byy
. 3844 4-AB6NQ) -x

aalﬁmmmué_ uo}Isang ASLI

[anoqe ®J0l]

{7 uopdun} v [[vd ueyy
1eyyel ‘auy] paSYSiy ey up 1
[qVIIvA oY) ejun(vad 0} Juvam nok piq

paysnd qujog

uads (dS11) SIuNZ

uo}asang ASLI

D81 101ewwvaed oyy uy 7 I[qUIvA
ay) 0 1ejex eujl PAYSIIYSY oy
uj 1 se0p LSUIJ-ADONT UOpoun) imos uj

q{ct) L]

MOpUIM 1031PT .ASLI

(L).384}J-466nq unyap)

Chapter lll Scenario 26

mopuim dsyT ASLI

S} 7 uoj3ouny ey
I . 384} J-ABBNQ) -3

Uo3euUR X3 UO}3sanD AGLI paysnd jujog
[anoge ®J0y] Jusos Wz

¢ dIJPURIRD, WUI3 Yy Jo!

Juotieuedxaf
ue sde|dsip ASLII?

1 :e_.ora v [[ed uvyy
2eyywa ‘suyl paSIIySiy eyy up 1
eqejiva oY) Sjen[vae 0} JuvM nod pia

eaowBY O UONNG OsNON Auy sseid

8§l 1ewvied o) 8f (£ X)

wopounj syy Jo sinewwivd ay) v £ puv x
uayy ‘((£ x 1511) (£ x) uopidunj-a1dwvxe unjap)
s¢ uopounj-ajduexa uoIdun} ay) wujap am JI

t1°€ @4n6yy4 ¢

MOPUIM 1031PF ASLI

Chapter Ill Scenario 27

A v 4 7%

mopupm dspT ASLI

*paulJapun 8} 7 UOj3dUNyY By}
((° 9 @), 384}4-466nq) -»

[3noqe BJoy] x (8) SONINNL ANDLcIUaPNISCUYOl¢ d8}(°0}Jeuads (JSIT) SOHHZ

paysnd 3ujog

+1@}J0aNg Y3 Y3} U0 Auued!
03 (834, UO sasnod uayjz !
Auo) *IueJy uojasanb!

Y3 03 Howq Wy axeq !

03 IUeJy ,uojjeuedxa !
uoj3sanb, ay3 uj o, uo!
paIsNou pue uojeue|dua!

SY3 Inouad 03 uolzanq!

asnou @ paIssaIdd sey Auoyf

wia), v upedx3y
vopsand upeidxy

oN

L Br_

1511 Inewvaed oyy Uy T o[qeiiea
ey 0y 19)a1 euyl POWYSTIYIIY oYy
|y 7T $90p LSUIA-ADDNY Wopoun) mod uy

uoj3IsaINg ASLI

(([AWM-e2)

(1) 38J}4-A66nG unjyap)

freg @4nBp4 ¢

MOpUIM 103PT ASLI

Chapter Il Scenario 28

mopupm dspp ASLI

*paujJepun 8} 7 uojaouNny Y|
((2 q ®), 38444-466nq) -3

% (8) 19NIAN1 ANOLC3UIPNIBUYOl¢ dstl®0}Jeuads (dSI1) SJuuz

IR

wiey v upedxyg

xid

vopeuvidxy zedesq

SILduUexa, ay3 dn Bujpug 03!
Salduex3, Uo sasnou Auo

T $14) Wi

Uo}3eus (O3 ASL]

uojjouny v sy

(U 10yeadiayuy ey,

‘LU UoLIRURIOxI ujed, !
Y3 pade|dsip sey ASLI!

(L) 38444-A66nq UnjaIp)

101pd ASLI

Chapter Il Scenario 29

[N - Jeouvyy

wie], v upvdxy

sjusunbue uojjoauny

(0 = p) J5 6 %)) pusdacp
sj3uaunBae uop3auny
® @ o)

83(duex3 ASlI

*pau}JIpUN 8} 7] UCE3OUNY BYL
((° q @), 384}J-4BBNQ) g

paysnd jujog
* (8) IONINNL ANO1<IUIPNISCUYOl¢ dSi|"0448U328 (dSTT) 99UNZ]

"3y3 padeldsip sey AgLI

‘ Moj3eue | dx] !
Jadaag, uo sasnou!
Auo| ‘aurJdy s3(duexa, !

Uopawuw(ang AS1T

uopounj © s§
T SE{Y WYY supyy Jeyeadiaguy eyl

((\e3)
(1) 38J}4-486nq_ungap)

1€ 9JnBy 4 ! &
¢ o1ieuad

MOPUIW 103IPT .ASLI

Chapter Ill Scenario 30

e oo

opuim dsiT ASLI

salduex3 ASLI

s3ueunBaw uojjouny

(0> P J6 6 @)))
sjuaunBae uoj3zauny

g OB Y

[eauv)
wiay v uyerdxy

UO|3QUR|dX3 Jedea] ASLI

oz syyy Supamoyyoy

8] 1aadiayuy ayy, "wojdouny ayy 03

sjuawnsie ayy arve s30ef{qo Sujujeusax

oY) ‘uopjouny v L[pensn sj j9)oviq
Sujuade uv 103j% 300fq0 81y} oy,

S}] uoj3ouny Byl
¢ A8J}4-4B6nQ) -3

paysnd 3ujog

us3os (dsI11) SouHZ

PRI (Npg, !

uopounj v s§
T I oy supyy dsexdiaguy ey,

uoj3eue|dxy ASLI

Y3 8309198 Auoj pue aueyy!
Juojjeueidxad Jadaap, !
43 padeids|p S8y ASLIf

[{

Juo)

(L) 38414-466nq unjap)

UT'E 3unBL4 ¢ &
v OJIRU3

MOpuUiM 1011pd A8LI

io 31

hapter Il Scenari

3
G

e

s9(duex3 4311

opuim ds§T ASLI

8} 7 uoj3ouny Byy
« 38d}4-46BnQ) -

uojjeuedxy Jedsag ASLI

*o[ni sjy3 Suymoqyo}

s} 110adiayuy ey], ‘MopIounj oay3 0y

sjuswmfiv oY) a1v soefqo Sujujvwes

oY1 'uopouny w Ljensn sy 1Ivig
Sujuado uv 101 308[q0 811} eYL

paysnd jujog
uwads (dSI7) SIuNZ

uojpjeuR|dx3 ASLI

uopoun} v sj
T I3 WYy opupyy anjardiaug ey

(L) 3sJ}y-466nq unjyap)

(q((1) SCEM

sjuaunBae uoi3oauny
((3 9 P) Q29 ¢e), usauvy
sjueunBae uojj3auny
@R o0 w
T
wie] v upvpdxy
Xid ASLI
(1 004)
eAvyY 0} 31281102 Inq (("I) 00d)
@Avy 03 Bucim eq pnom 3 1 yuewnSie
* L9oue], ¢ oY} 8ARY 03 OO4 WOJIAUN} 9Y) pajuEM
Buj309(38 Aq (96e3s ! noA J§ syl 3} punolins A[e1vjpawui} Yojym
AUR 3@ SUOp IARY PLNOI !
3y YILYN) (4a03ng B3 ! sjaaviq Jo 1ped 9y) saowal o) paau nok
S3IND AUO) *BuRdy Xig, ! [qviIvA v sv papivsal aq 0}] 104
343 pade|ds|p vy ASIT!
UT'g aunbiq4 ! &

MOpPUM

1031p3 ASLI

Chapter Il Scenario 32

The error in the first scenario would have changed the Bracket Around a Variable node
in the student model. This node would have moved from the Concept has not yet been

Encountered state to the Concept has been seen but not Learnt state.
3.2 Second Scenario
The second scenario shows Tony making the same error as in the previous scenario

some time later. The Bracket Around a Variable node in the student model is now in the

Concept has been fully Learnt state and ITSY changes its action according to this.

Chapter lll Scenario 33

WNOT10NN4-03INT430UNG—40443 3y3 puty 03 Bujday

mopujp dspT ASLI

J'Pau}4apun 8} 7 UOLIDUNY BY)
((° q ®), 3A84}4-466nq) -3

£ (8) IONINNL ANDLCIUIPNIScUYOf¢ da}|°0pueu3ds (JST1) SIuUZ

40449 Jues!
Y3 saxyeu duo] uo daje!

—3~ JU3PN3G :96@IoRd {dS||-UOWWO] iX@3udg BT :9seg {JSIiIPOM -2~ 14¢

(((L) ¥eo)
(L) Isd}y=-AB6nq unyapl

ez'g aunbi4 &

MOpuim 10313 ASLI

‘.u:nmu 404 Buiiten tdsi

Chapter Il Scenario 34

mopuipm dsy ASLI

A -
1IN
(nuUay ASLI ¥y3 396 03 uO33zNG ISNOUW AuR UO ¥2}|])

AUDY ASLI UO ,|R}JOIN| JUISIUJ, V9IS |R}JO3INY @ JUeN NOA 4T
‘paupJapun 8} 7 UGE3BUNG Yy
((° 9 9), 384}3-4B6nq) -x

3 (8) 19NIANL ANOL<IUapPNIS¢uyol¢ nnvp.ovunruoo (dSI1) SoHWZ

*Auo| sajjpaou’
pue nuauw dsi Y3z 03 Wy !
«l@}I03n] quIsSIUY, @ sppef

AS1I sweldy ,uopasanb, !

3y3 Gujde|ds|p Jo peajsur!
*Au0] Joy L@}AI3 9 PLNOD!
JOJJR 843 IRY3 833@0puU}
{9pou Juapnys ayy !

qQ2°g 3JnBi4 ! &
o 0 P g

(((L) we3)
(L) I8} 4-486nq unyapl

-3~ JUIPNIS :136eNoR4 !dS||-UOuuo] IX@3UAG f@T :eseg {JSITiIpPOY -z~ (I!

MOpPUIM 1031pT ASLI

Chapter 11l Scenario 35

“mopuip dsiT ASLI

uonduNJ € aqliosa(

! : -3
uojIoUng B 163 Sy
9|t4 peoT ASLI 943 398 03 U03ING ISNOW AUR UO 334{])
o INL JUISIUY, 3F0V[IS |@}JOING @ JUEN NOA 4T

*paujJapun s} T uopdUNy ay]
((2 q @), 384}4-486nG) -3

% (B) SONIANL ANDL<IUSPNISCUYOl¢ dS||°0}JRUIIS (4SI7) SOUWZ

-._n,Lon:» JURLIUd, PIIoR|as!
pue (uoizang IsnNou !

Bulssadd 4q) nuau dsj}!) . (L) Je2)
ay3 dn a:m:owa wey Auoy ! .) (L) 3asJ}j-466nq unjapl
9z'g @JnBi4 ! ™ -3~ JUIPNIAG :aBexoRd !ds)|-Uouuoy inejuAg g iaseg (JSIViIpoy -~ (1!
g O * d

MOPUIM I031pT ASLI

Chapter lll Scenario 36

“mopuppm dsp1 ASLI

TIN

(nuay ASLT 3yl 396 03 U03ING ISNOU AUR UO YI}|])

NUB ASLT U0 ,|B}JOIN| JUISIIG, D998 |B}JOINTY © Juen NOA 4T
: *paulIPUN S}] UOLIDUNG Y)Y

((® q @), 384} 4-468nq) ~x

paysnd 3ujog
[anoqe aJol) = (8) JONTdNL AND1<3USPNIBCUYOf¢ d8} L 0lJeuads AMMHJM mommw

wie] v uepdxy
uopsend) upedxyg

7T uoj3seINg ASLl

sl 1mewered ayy uj T ofquiiva
oYy 03 19501 eujl parySiIYSIY oy
uj 7T $90p LSNIJ-ADDNY Uopouny 1ok U]

*1@}J03n3 IYy3 Jo Iuedy!
ASJ}J Y3 83UISIUD AGLT¢
« 4@2)
‘e 3unBiy ! & (1) 384}4-466nq unyap)
vud MOPUIM 2011PT ASLI

0 0 Y O

Chapter Il Scenario 37

3.3 Third Scenario

The third scenario shows the student making a different error.

Chapter lll Scenario 38

904n08 ay3

T NOT1INNI-0INTII0NN, 340418 SuFEPULS 03 BUA4L

mopuipm dsiT ASLI

WPauLJapun S} TINOUN co-»u::u Yyl
(¢ € 16uoun) g

paysnd jujog
% (8) ONI¥N1 AUOICIUIPNISCUYOL¢ dS8}1*0}JRUIIS (dSTT) SIHNZ

' Jouda ay3 jo!
pujy 03 Bujhuy!

8} AS1I Pue padeids)p!
ulaq sey eBessauw JoJuda ayl!
*MOPULNM d8 |1 BY3 03U} WJ0jy !
Y3 U} padA3 3snf sey Auoy!

ep'g aunBl ¢ &

((2 9 s)
() 2Buodn unjap)

(((2Buodn) @ o)
(q @) 18uoun unyep)

(1) Juo)
(1) 384}4-4860q unyap)

|nnucovauw.0mnxucmann*_uco::oo_xoucxwNaﬂ,uunamuawnq.uuozlun -“E*
mopuipm 10)1pd ASLI .

Chapter Il Scenario 39

N°duedy uojqeue(dua !

SIS Y3 padeidsp!

PU® IPOI 3dauuoaul ¢

Y3 paY6} 1y6y fusavos !
43 Jo dojy ay3 o3 uop3aung ¢
A3LNRy 343 PINOU SRy ASIT¢

9g°E 34nBi4 ! &

Mopuim dspT ASLI

‘punoqun 8} g ILquluen By
(b € 18UOIN) —x

paysnd aujod
[2noge aJoy] s (B) ONI¥NL AUD3(UIPNIBCUYO[¢ OB} | °0}JUads (d9T7) SIUWZ

ri—

Wi v ujerdxy
uopsand ujeidxg
ON
Féa]

uoj3sang ASLI

LLONOYM UojIaun) ayy uj punoq sj 3} esnedaq
punoq oq pmom g 19y Yujy) nok pip aujp
POWYBIIYSIY oY) uf TONOYM HOpIdunj ok up

((2 Ells)

() 26uoun unjep)

MOpPUIM 1031pF XSLI

Chapter Il Scenario 40

sopuip dsy ASLI

‘punoqun 8} g alqejJen ayy
(¥ € TBuOUN) ~y

paysnd jujod
[3noqe aJoy] x (B) IONINNL ANQL<IUPPNIBCUYOf¢ OB} | 0} JeUads (dS17) SouWz

1eduv)

X4
sajdwexy

uoj3eue dxy ASLI

wia], v upedxg

. ‘IDONOYM uopounj ayy uf punoq Lquo sy 3§

*3uedy ,uojjeue|dxy Jadeag, ! (anva ou svy 3} 9°f) TONOUM W] Punoq jou sj g
3Y3 $309|88 puv Iuedy !
JUopjeuR|dnd upew, IY3 03¢
3464RJIIS Panou sey Auoj ! .

. ol &
og e 2unBid f &) mmcumm ﬂuwuv
v " MOPUIM 1031PT XSILI

Chapter Il Scenario 41

mopupm dsj1 ASLI

[eoue)
wia] ¢ upeidxy

Lqejden ayy
18uoun) -y

uojqeue|dxy Jadaag ASLI

‘19y3j0 JPaysnd ujog

[3noge 3.0y OU puv UOpIUNJ WY} epJsu} anva v savy J(IST1) SOUHZ

cauedy !
(lduexa, Iy3 8303198 Auoy !

£juo [[jm uopounj v jo 3sf[18)owvivd

¥ uj ojqujiva Auv og ‘paujjep aiv Leyy

elaym 9avid [edyxaf oyl uj L[uo enfea v

SAVY SO[qUiIva vy} suvaw sjy] ‘Bujdoas
[ea)xe| pej[va Bujyiswos svy dsji wowwo)

‘IDNOYM MOJjounj ayy uy punoq A[uo sf 3§
(9niva ou svy 3§ *9°}) TONOYM M| punoq jo0u 3§ g

Uoj3euv (dw3 ASI1

3
0 zousss BB

pE g 4By ¢

MO0puiM 1031p3 ASLI

Chapter lll Scenario 42

[9ouvy
wiay, v upeidxg

I . ¢ B

saduex3 ASi]

4 4O 9NIERA Y3 BABY [|}A B X JO SN(GA 9Y] 9ARY |L}A 4
((§ @ puedde) (s 4) Zaoy unjep)

A Jo entun oYy eney ||}n @
((@ 3s1L) (w) 004 unjep)

(W §§ 2994) () 904) (4 %) 4uq unyep)

mopujp dsiT ASLI

biqejuen ay)
' 18uoun) -3

uojjeue | dxy Jadaaq ASLI

“zaygyo [paysnd qujog
° 3Jo) OU PUV WO[JUNS IOy} SPJsu} an[vA w eavy J(dSIT) SOUUZ

A[uo |[m wopiaung v jo 38§ Jyaweavd

v uj o[qujiva Auv og ‘paupjep eiv Loy

e1oym edweid [voIxa] oYy uj A[uo en[va v

" waAvy se[quiiva jeyy suvow sy L ‘Sujdods
{voyxe| paj[va Suppiewos svy dsj{ uowwo)

‘oueuy !
Xbd, Y3 8309|898 Auo] !

uop3eu@ a3 ASLI

‘HONOYM wopounj oy uj punoq A[uo sf 1}
(onyva ou sey 3j 9']) TONOWM U punoq jou sy ¢

((z Els)
() 26uodn unyap)

SL°E IANbBL4 ' &
v O =

MOpuUiM 103IpF XSLI

Chapter Ill Scenario 43

mopuip dspq ASLY

$5(dueny AS11

A JO ONLEA Y3 PARY LA § X JO GNLEA QYT @ARY LA o
AAE] puedde) (s J4) gooy unjap)

A Jo enjen @yl eney |L|n @
((F 384L) (@) 00j unjep)

((@ § 2994) (g 90J) (4 x) 4eq unjep)

blgeiaen ay)
| t6uoun) -x

Uo|3eue[dx] wedes] ASLI

‘1eyjo Paysnd 3ujog

099 3-9) OU PUV UOIOUNJ Y} ePISU] enyvA ¢ savy JLdSIT) ST
Aruo (114 wopouny v jo sy iayowvivd
¥ uj ajqeyiva Auv og ‘paujjop eiv Loy

axoym aavid [edjxey ey) uj A[uo enva ¥
ARy so[qviiva ey} suvaw sjy], ‘Sujdoos
[earxe] pered Sujyieuwos sey dsj| uourwo)

fevv)

wie) v upedxy

®bd ASLI

‘A puv d JO ISF ¥ suInjel mou ﬁ(ﬂ. J__u—._

9q pinom (- (X € 004) (X €) ¥V¥ NNdaa)

03 Yy4d Sujfuvyo puv

((2 v LSI'T) (4 V) 004 NNJAQ) sv 004 Sujupjep
nq ‘Suoim aq pinom

((X € 1SI'D () 004 NNJIQ) % 004 Sujujjep uayy

s eouey, |- 004 uopauny ayy o3 (~ (X €) YVE NNAIA) VI
830998 pue X puv g jo sanyva ay) ssed 03 pajuvam | J| og
Le$J03ny 843 . ‘uopIouny ayy Jo is§f aeewervd ayy apysuy
apnb 03 3] epnjou} 03 peau nok uay) uofjouny v 0}

saploap Auo
um.vm* u.m._mI i ojquiiva jo anyea ayy ssed 03 yuem nof J1

Uo}3vue [dX3 A31T

‘FONOYM Uopoun) eyj uy punoq A[Uo sf 3
(anfva ou sey 3] *8°f) ZONOYUM Uf punoq jou sf g

((z Ells)
() gBuoun unyap)

uojieiouuy

MOPUTM 1031pT XSLI

io 44

1
i
i
i
i

Chaptef 11l Scenar

. andu] Joy Buyale

Mopuiym 81T ASLI

-X

(JIN
‘punoqun S} g Ilqeiden ayy
(b € TBUOUN) -x

paysnd 3ujog
[3n0qe SJou) x (B) PONINNL ANOLCIUIPNIBCUYOR¢ d8}(°0}JRUIIS (JSTT) SOUHZ

R Lonadoy dsn ayy o3 !
H99G Auo) SaxNe3 ASIT!
. : 2 qlls
6g¢ wcam’u H - () N@:Mmz mﬂuwnv
vV 0Heus Mopuiy 1031p3 ASLI

Chapter Ill Scenario 45

3.4 Fourth Scenario

The fourth scenario shows how students can call up documentation on Lisp functions.

Chapter Il Scenario 46

uoljouny € 463]

Eilin | ;
o:w peo’] ‘Punoqun 8} g ajqejJen umu

Lo¢_mm (b € T6UOUN) —x
[l 1

paysnd qujog
3 (6) IONTANL ANDI¢IUIPNIBCUYOL¢ dS}| 0} JeUaDs (JSTT) SIHWZ

((2 9 1)
() 28uoun unyap)

(((2Buoun) © +)

tJuop3oung © aqpuosaq, ! (3 %) 1ououn ungap)

$303(38 pue nuau! ’ ‘ Jeo
ds}7 ay3 dn sSujuq Auoj ! (L) ungvulhmmww ::uwvv

@ g dunBLy ¢ & -%~ 3UIPN3g :36eyoRd {ds}|-UOWWO] iXe3UAS a1 :eseg {4STV:9POY -z~ §]
v Ojleud MOpuim 1031pT ASLI _

Chapter HI Scenario 47

mopuip dsy ASLI

1IN
‘punoqun 8} g a|qejuen wy)
(b € 18u0Jn) -x

paysnd jujod|
% _(8) 'ONINNL ANOLC3U9PNIBCUYOL¢ ds|| 'O} JRUIIB (dSI1) 93HuZ

((2 9 3)
() 2Buoun unjap)

UGI3ouUNg @ Uje(dx3 AS1T

W' 1NN uop3dung ey3 uo!
uojjejzuaundop s3sanbad Auoj !
“nopuin @ dn s6ujdq ASIT!

[Inu uopouny ay3 Jo eureu oy ad4y

Qb g SanBg ¢ ~g- 3UIPNIG 96 ! =
WTINTE MOPUTM J01IPT XSLI

Chapter lll Scenario 48

mopuipy dsy7 ASLI

*lana| dojy @ dpeadly
3_(8) IONTNNL ANDLCIUIPNIBCUYOl¢ OB} | *O}Jauads Ema.:E

—————

PAOWRY O, UoNNY PsnOp Auy sseig

*8UOJ}ONAIBU| BWES
ouy 4)308x0 0u| ©)jdwod 888 BOUIS 'AJUB|D|}48. JO §8O| OU 8§} B0y

()
(**° 38|) puod)
usy) Joyyed
(000)
(°°* ((38L LLnu) 30u)) pu0d)
189)|JM UBYJO QuO 'ejdwexe Jo4
*81Y} uo puedep weiboud Jnok jo Bujpueisiepun exew jou pinoys noA
‘sseues|e; jueseldes 03 ||u joqwAs ey} sesn ds|q ybnoy; usAg ‘enjea

18160| © 4O 98UBS BY) 1UBAU] O} 30U 08N {||U 5] BU|YIGWOS JoLIBYM iy

00y0 O} |Inu @sn *A1|4RlD JO @ EE Y} JO) PEPN|OU| BJE SUCJIOUN) 43P)
4i0q 130U SB BLIBS BU} 8] |INU °|jU B8O ‘||U 5| X j| 3 BUIMPJ JOU b)

; uoj33uny xynu [P)
-.JJ_JZ uojjouny ays uo! Lﬂuv

UO}3I@USUND0P SAR|dSIP ASIT¢

HNJap)
I[N Uopaund ayi jo uopeueidx3 xS1l
-3~ JUIPNIS :309@HORd (0S| |-UOUWO] :K@IUAS :@T :95eQ 1JSIT:9POY =—x- {1
MOPUIM 103IPT ASLI

op'g 2Jn6L4 § &

Chapter Ill Scenario 49

3.5 Fifth Scenario

The fifth scenario shows the student using ITSY's test facility. ITSY has a set of pre-
stored examples for each exercise. The function rotate-r (exercise 3-3 in "Lisp"
[Winston & Horn]) should rotate any list right but often student's solutions only cope

with lists with three elements. This scenario also shows how students can quickly reload

their functions.

Chapter lll Scenaric 50

N nuauw dspq ay3!
U} ,uopqoung @ 3sa, ¢
8309198 I "3} 3= !
03 Sjuen pue 3834400 ¢
$} 4-938304 uoj3ouNny
ShY 3IRY3 SHUIY]y Auo) !

SIUIWIO0T) JWOS PPy
uoldung e 2qu49s9g
X porouny e 35a]
J031p7 [1ews
4031p3 big
a1 peol

LOQ_WM

3 _(8) I9NI¥NL 4uU03¢3uapniscuyol¢ ds||*0}Jeuads (d4s17) SUHZ]

pPaysnd jujog

—%- JUIPNIG (36eNORd {ds||-UOUUO) iXRIUAG BT :aseg {JSIi9pPOY -3- (4f

: []|
(((L 482) (L Jpped) (L 4ped) 38}L)
(1) 4=-338304 unjap)

((2 9 3)
() 26uoun unyap)

(((2Buoun) @)
(q @) ﬁmmoL: unygsp)

(((L) vad)
(1) 384}34-466nq unyap)

0

eG*'E IJNBL4 !
WINTE

Mopuiy 1031pg ASLI

Chapter lll Scenario 51

N asea!

03 S3uen Iy uop3duny’
Y3 Jo FWeU Y3 u} sadAz ¢
: Auo) pue mopupn’
@ dn s6ujuq ASLT!

mopupp dsyT ASLI)

!
) w
-3
2 _(8) PONINNL ANOLI<IUIPNIBCUYOLC OB} | *0}JRuaD8 (dS17) 894Kz |
(C{L “@2) (L pp¥a) (L <peo) 3B4l)
(1) 9-93@304 unyap)
((2 9 3)
() 26uoun unjap)
uoj3dung ® 3831 ASII)
. *
~ pngap)
N:-91n01 :wopouny eyy jo swwu ey3 ed4y 0)
@
ngap)
—%- 3JUIPN3G 96 : ~3- 1!

q5°g 3JnBLy ! &
o 0 2 d

MOPUTM 1031pF ASLI

Chapter Ill Scenario 52

_______403}1p3 343 apisul

mopuip dsy ASLI

|

(b €2 T 6) 36 pLnoys 3} uayn

(S # €2 1) 3UIUNBUS Y3 Y3jn (T € 2) saniB 3}
Buoun aq 03 SUIRS Y-3LYI0Y UO}3IDUNY JNoy

-3

*uojpqaung !

S}y S34p9 Auo) se!

S1QE8En Utewad | [|n 34!
QY3 08 nopuin ds}T) ay3 !
03U} pajuidd 8} S|yl ‘Jdjed!
andanosandu} 3994409 ¢

@ Auojl snoys pue!

‘6uoun 8| uoL3ouUNy Iy !
q°Y3 Auo) 83}4}p30uU AGLTY!

2 (9) tonpung ANOJ<3URpNIscuyofi¢ ds}| 0} Jeusds (JST1) SIUWZ

)]|
C(((L ¥@3) (L Jpped) (L 4pEd) 38}|)
(L) 4-93@304 unjap)

((Z2 9 %)
() 26uoun unjap)

AamwaCOL:v " e)
(9 ®) 16uodun unjap)

(((L) wea)
(L) 38J} 4-A66nq unjap)

-3~ 3UIPNIG te6@xoryd fds||-UOWUWO] IXRUAS {pT :aseg fd317:9p0N -3 ff

2G*'E 94nBL4 ¢ ™

MOPUIM 303IRT ASLI

Chapter lll Scenario 53

W°P331p3 Uaaq aney Jey3 !
4344nq 343 up ‘suojlduny !
343 Aluo speo| sjyy!

* (8U0}30ung patBueyy pwoq, ¢
8303|398 pue!

uop3duUNg 81y 834Pa Auoyf
PG e B4 ¢ &

mopujp dsp1 ASLI

(b €2 TS) 906 pLnoys 3} uayn
(S ¥ €2 T) uUaunBue 343 Yapn (1 € 2) 89n}6 3}
Buoun 3q 03 SuIIS Y¥-3LBI0Y UOIDUNY unoy

-%

2 (6) IONT¥NL ANOLCIU3PNIBCUYOf¢ doy|®0}JRU308 (dST1) 9oUWZ

4031p3 ||BWg
4034p3 619

J2)3ng siy| aneg
a|t4 peo]
3|14 B pul4

Qm__

-3~ 3UapN3g 1a6eqIRd Ids}|-UouUWO] IXRJUAG AT iaseg {JSYYIAPOY g~ f0f

(L) “4-a30304

((2
() zBuoun

(((28uoun)
(q @) t6uoun

(((1)
(L) 384}4-4B6nq

IPa) 88J4aNaJ) (| 3Ise|) puadde)

unjap)

9 %)
unjap)
e o)
unyap)
ued)
ungap)

MOpuipm 1031pF ASLI

jo 54

pter Hll Scenar

a

3
[l
]

Ch

mopuip dsjT ASLI

(b €2 T G) 308 pLnoys 3} uayn

(S ¥ €2 1) 3usunBue ay3 Yain (T € 2) 83n}6 3}
Guoun 3q 03 suIS Y-3LU10Y UO}IDUNG JNO,

-3

¥-31610d
2ONOAN,

TINOAM
(6) PONINNL ANDLCIUSPNISCUYOF¢ OB} | *0}JIRUSIS (4SIT) SIHWZ

uoE3oUNy SLY S3WIF AuUOL ¢

-x- JUIPNIG :36 '

(((((L 3suanad) upo) asuanaJ) (| 38@|) puadde)
(L) »-939304 unjap)

((2 9 3)
() 28ucun unjap)

UC}3oun] @ 3691 ASLT

Ji-9wr01 wopoung ey jo ewvu ayy ed4y

Mopuim 1031pg ASLI

_40341P3 ay3 apisur.

mopuip dspT ASLI

Chapter [l Scenario 55

3934J00 SWSIS ¥-JIUI0Y WOPIDUNG unoy

(¥ E 2 T S) 06 pLnoys 3} uayn

(S ¥ €2 T) 3JuaunBue ay3 y3n (T € 2) 8ani6 3}
Buoun aq 03 SWIIS Y-JIHI0Y UO}IOUNY JNOY

-3

4-31810Y

ZON0AN

TONOAN

(6) TONTNNL ANO1<IUSPNIS(UYOf¢ dS}|*0}JRua0S (dSI1) 8Juuz

C o e - B R

B(((((L asJanaa) upa) BsJanad) (| 3se|) puadde)
(L) v-38304 unyap)

((2 q x)
() 26uodun unysp)

(((2Buodn) @ +)
3934400 (qQ ®) ﬁmrogz ungap)

sueadde uojjouny Iy ! (((L) “=a)
3843 Auo) 8| (93 ASII! . (L) 3sJ}34-4B6nq unjap)
Js'e wg:mvm i) . -3~ 3UapN3g :3Be3oRd {dS)|-UOWWO] IXRIUAS ‘AT :eseg {JSTYiPPON -3 f§f

0}1v30 MOpUim 1031pF ASLI

4. ITSY IN THE CONTEXT OF RELATED WORK

This chapter presents a review of related work. This review is split into three basic parts
which correspond to the three broad fields that this work is founded on. The first part
describes work on empirical studies of novice programmers. The second part describes
work on Intelligent Tutoring Systems/Computer Aided Instruction. The third part
describes work in the area of Automatic Program Analysis/Debugging.

4.1 Empirical Studies of Novice Programmers

Numerous studies on both expert and novice programmers have been carried out. These
studies have varied on the type of data collected. Boies and Gould [1974] collect syntactic
errors, caught at compile time, in FORTRAN, PL/1 and an Assembler Language. More

recent studies have concentrated on the deeper cause of the error, rather than the

symptom.

Various studies conducted a Yale university have used the idea of Programming Plans
[Spohrer & Soloway, 1986; Johnson, Draper & Soloway, 1982; 1983]. Programming Plans
are stereotypic sequences of code that accomplish some Programming Goal. A
Programming Goal states what must be accomplished in order to solve a particular
problem. A Programming Plan states how a particular goal can be achieved.

Generally, there will be more than one Plan for a particular Goal as there is often more

than one way of implementing a specification.

Spohrer and Soloway [1986] analysed students on a undergraduate PASCAL
programming course. 158 syntactically correct PASCAL programs generated by 61
students. The bugs were analysed using Programming Goals and Plans. The bugs
were identified as the difference between one of the correct Plans for achieving a Goal
and the observed Plans for achieving a Goal. The following table shows the results of the

analysis.

Chapter IV Related Work 57

Type of Statistic Problem 1 Problem 2 Problem 3
Number of Subject Analysed 55 46 57

Total Numbe1; of Bugs 85 46 57

Total Number Bug Types 28 46 27
Average Number of Bugs per 1.5 3.0 1.0

Syntactically Correct Version

Average Number of Lines 27.8 73.1 68.6

per Program

Assignment Number 2 3 8

in Sequence

Percentage of Errors 5.6 4.2 1.5

per Line

The assignment number indicates where the assignment occurred in the sequence of

course assignments.

The average percentage of errors per line, in the study described above, is 3.2. In the
studies outlined in chapters 5, 11 and 12 the average percentage of errors per line varied
between 13 and 45. In these studies only the number of lines typed to the Lisp interpreter
were counted. The lines in the actual program were discarded. This means that one
line in these studies is equivalent to 'trying out a program’. If the number of errors in
the study conducted by Spohrer et. al is taken per try out of the program, the average
becomes 180. The increase from in the percentage between the studies outlined in this
thesis and those of Spohrer et al. could be due to the increase in complexity of the
assignments (the solutions to the exercises used in the studies carried out in this thesis

are less than 10 lines in length).

Chapter IV Related Work 58

Spohrer and Soloway concluded two things from this study:

a) misconceptions about language constructs do not seem to be as widespread or

troublesome as typically believed,
b) just a few bug types account for a large percentage of program bugs.

Spohrer and Soloway analysed the top 10% of bug types (which accounted for well over a
third of the bugs). Out of the 11 bug types only one was definitely caused by a

programming construct.
The spread of the bugs found can be seen in the following table
Percentage of bug types Percentage of bugs accounted for

Problem 1 Problem 2 Problem 3

10 4 46 32
20 55 64 46
25 62 69 56
50 80 84 i

As can be seen the top 10% of bug types account for over a third of the actual bugs. In the
study outlined in chapter 5 91% of the errors fell into 19 categories.

A comparison of errors made by novice SOLO and LOGO programmers is given in
[Eisenstadt & Lewis, 1985] . The SOLO studies were carried out by Eisenstadt and Lewis
[1985] and the LOGO studies by Du Boulay [1979]. Eisenstadt and Lewis re-computed Du
Boulay's collection of errors taking into account the differences between the two systems
used in the studies. One of the differences was that the SOLO environment contained a
spelling checker whereas the LOGO environment did not. The spelling errors caught by

the spelling checker in SOLO environment were counted as errors.

Chapter IV Related Work 59

The following table shows the four largest SOLO and LOGO errors side by side.

Symptom 9% of all errors
LOGO SOLO

1. Spelling/Typing/misquoting 28 A

2. Wrong Number of arguments passed 18 18

3. No line Number 12 9

4. Call to undefined procedure 12 9

As can be seen the top four culprits for both languages are the same and occur in the same

relative order.

Pre-programming knowledge is a major source of programming errors. Bonar &
Soloway [1985] developed a model to account for novices programming errors. They

propose 2 kinds plan knowledge that novices have:

a) Knowledge of Step-by-Step Natural Language procedures - this is called SSK (Step-by-
Step natural language Knowledge).

b) Novice knowledge of the programming language under study (PASCAL) - this is
called PK (Pascal programming Knowledge).

Examples of a) are looping (eg. adding lists of figures), making choices and specifying

sequences of actions.

Bonar and Soloway have characterised similarities exist between SSK and PK:

1. Functional similarities - both SSK and PK are concerned with repeated actions, choice

between conditions, counting, etc.

Chapter IV Related Work 60

2. Surface similarities - programming languages such as PASCAL share many words

with Natural Language.

Bonar and Soloway outline the following as what happens when a novice programmer

produces a bug:

1. While solving a programming problem novices will encounter some aspect of the

problem they don't understand - an impasse.

2. In order to move beyond the impasse, novices cast about for a way to resolve the aspect of
the problem they don't understand - a patch. Frequently that resolution involves an
appeal to their knowledge of Natural Language step-by-step procedures that would be

applicable in a similar situation.
3. In implementing the patch, a bug is introduced.

Kahney and Eisenstadt [1982] also showed that inappropriate pre-programming

knowledge is used when novices write programs, in this case SOLO programs.

Anderson, Pirolli and Farrell [1984] studied novice Lisp programmers writing recursive
programs. They gave the following reasons why recursive programming in Lisp is

difficult:

a) Very difficult if not impossible for humans to execute recursive mental procedures.

b) Recursion is unfamiliar.

¢) Recursion is difficult because of imprecise instructions. Textbooks do not explain how
to write recursive functions. Writing recursive functions is not recursive. Text books
explain what recursion is, explain how recursion works, examples of recursive

functions, give traces of recursive functions but do not explain how recursion works.

d) Students try to solve recursion problems iteratively.

Chapter IV Related Work 61

e) Recursion is complex. There are different types of recursion for example, CDR

recursion and CAR;CDR recursion.

f) Other non-recursive aspects of Lisp complicate learning about recursion.

4.2 Intelligent Tutoring/Computer Aided Instruction

This section is divided into five sections corresponding to the five sections of ITSY.
4.2.1 Spotting Errors

Traditional CAI packages compare a student's answer with a correct version. Typically
the answers are simple yes/no type or multiple choice. The BIP system [Barr, Beard &
Atkinson, 1976] simply compared the output of student programs with a "correct” version.
A more interesting method was used in WEST [Burton & Brown, 1976]. WEST compared
the students' answers with those of an "expert"”, then assumed that the students lacked all
of the skills needed to produce the optimum answer, unless they had used that skill
recently. WEST would then tutor the student on one of these skills.

GREATERP [Anderson, 1985] uses production rules to implement both an expert and a
"buggy” novice LISP programmer. These rules are implemented in GRAPES (Goal
Restricted Production System). Every time a student types a LISP symbol GREATERP
decides what rule would have to fire in order to duplicate the input. If the "duplicating”
rule is in the "expert" set then GREATERP does nothing, but if the "duplicating” rule is
in the "buggy" set then GREATERP gives the student a short tutorial. As long as the
student writes "ideal" code GREATERP stays in background. There is a flaw in this
strategy however. If a student is writing a variation of the solution that GREATERP does

not know about then the student will get confusing advice.

The approach taken by GREATERP is different to that of ITSY. GREATERP inspects
each symbol as the student types it in and proceeds to tutor the student if the symbol is
incorrect. ITSY is less restrictive. The student is allowed to write the whole of his/her
program before ITSY examines it. GREATERP has the advantage that it is able to tutor

the student as soon as the error occurs. One of the disadvantages is that the student does

Chapter IV Related Work 62

not have a chance to right a whole program at once. Nor does the student practice

debugging programs.

Ideally the expert should be "glass box" or articulate [Goldstein & Papert, 1977]; non-
articulate or "black-box" experts only being used where no theory exists on how to build

one, or for reasons of efficiency.

As discussed in section 2.1 ITSY uses some of the techniques used by the Intelligent

Debuggers described in section 4.2, rather than those used in traditional CAI packages.
4.2.2 Presentation Method

There are two main methods that CAI packages use in order to communicate with the

student:
a) displaying stored chunks of text,
b) using natural language generators to create the text.

As Barr and Beard said [Barr & Beard, 1976 p 570, 571], storing chunks of text limits the
amount of branching possible and so makes the system inflexible whereas natural
language generators have a limited vocabulary and consequently their communications

with students tend to be dry and unmotivating.

ITSY uses a combination of stored chunks of text and annotated graphic examples,

because natural language generation is considered beyond the scope of this project.
4.2,3 Student Model

O'Shea and Self [O'Shea & Self, 1983 p. 143] describe a student model as follows:

... any information which a teaching program has which is specific to the particular
student being taught. The reason for maintaining such information is to help the
program to decide on appropriate teaching actions.

In ITSY a student model is needed to determine when a student has made an interesting

Chapter IV Related Work 63

error, as any error that occurs may be due to a fundamental misconception, or may just
be a trivial slip up. BIP [Barr & Beard, 1976] used a counter for each elementary skill in
BASIC programming as a student model. Each time a student successfully completed a
task the counters for all the skills needed in that task were incremented. If the student
failed to complete the task the corresponding counters were decremented. A problem that
Wescourt et al. [1977] found with this scheme was that the faster students sometimes
"leap-frogged" over the simpler tasks and then failed on a difficult task. Because they
missed out a lot of the simpler tasks, they may have met some of the simpler skills only
once. If such a skill was then needed in a difficult task, and they failed on this task, the
counter for this skill would be decremented to zero. The model then contained the
inaccuracy that the student did not have this skill. This student modelling problem was
overcome in BIP-2 [Wescourt et al, 1977]. Skills were represented by finite state
machines rather than counters. The finite state model used was hierarchical, each skill
being on a different level. The model had five possible states, the current state depending

on how well a particular skill had been learned.

Guidon [Clancey, 1979] modelled the student as a subset of the system's 'expert’, this is
called an overlay model. The expert knowledge was represented as a set of rules
(actually the expert was Mycin [Shortliffe, 1976]). Guidon's student model has three

i)arts:

a) a record of the rules that the student knows,

b) a probability that a student will apply a particular rule in a specific case

¢) a probability that a student would mention a rule if asked to support a partial solution.

In LMS (Leeds Modelling System) [Sleeman & Smith, 1981] have grouped problems into 7
levels. If a student is be able to complete problems at a level I and then fails at a problem
at level I + 1 LMS generates, from the existing student model, a set of new possible

student models. This set is narrowed down by presenting the student with more problems

from level I and deleting from the set those that did not predict the student's answer.

ITSY uses a non-hierarchical graph to represent the student's knowledge. Each node in

this graph relates to a particular Lisp concept. There are two reasons why the model is

Chapter IV Related Work 64

non-hierarchical. Firstly, students who use ITSY may have encountered some parts of
Lisp before, each students may have some knowledge about a different part of Lisp.
Secondly, students using ITSY are free to try the exercises in any order. This will mean
that they will encounter concepts in a different order (see section 6.3 for a detailed

description of the student model).

4.2.4 Path Selection

In traditional CAI packages the student is given a selection of tasks to complete. The

student can proceed along a number of fixed routes through the system.

In early CAI packages the students followed a rigid path through the system with
occasional branching. In both WEST [Burton & Brown, 1976] and BLOCKS [Brown &
Burton, 1977] the students totally controlled their path through the system. In BIP-1 [Barr
& Beard, 1976] the system chose the next problem for the student. The method by which to

choose a problem for a student raises questions such as:

a) How many new skills should be present in the next task? Should the system try to find

a task with the maximum number of new skills at a particular level or just one?

b) Should the number of new skills presented change as the student progresses, or depend
on the type of student? If so how?

Wescourt et al [1977] tried to answer these questions by using various types of simulation.
The method they used in BIP-2 changed the number of new skills presented according to

how well the student was doing.

TRILL [Cerri, Fabrizzi, & Marsili, 1984] uses a socratic search strategy to find the
erroneous concept that caused the student's error (TRILL asks the student). In order to
carry out this search TRILL uses a semantic network representing the syntactic
knowledge needed to correctly use Lisp concepts such as ATOM, LIST, CAR, CDR. This
network guides control in the search for the concepts that the student needs in order to

avoid making the mistake.

IMPART [Elsom-Cook, 1984] embodies a specific model of teaching interaction. Elsom-

Chapter IV Related Work 65

Cook states that the goal of any teacher is to provide the student with a model of the domain
which is at least as powerful as that of the teacher. Since the student has the clearest
understanding of her state of knowledge and the teacher is the expert in the domain, in

IMPART teaching is carried out by a negotiation between the student and teacher.

IMPART contains a teaching program which monitors the interaction between the
student and the environment and attempts to contribute to the interaction. IMPART has
the goal of detecting the skills which the user is ready to learn and encouraging the
exploration of those skills either by manipulating the environment or by making direct

"teaching statements" to the student.
In order to accomplish this IMPART has three knowledge sources:

a) Knowledge about problem domain - in this case the problem domain is Lisp. The
semantics of Lisp are represented in declarative form. Lisp statements are
represented in terms of preconditions for the statements application plus a body of

commands to execute in order to achieve the statement's effect.

b) Knowledge about the student - this includes:

- the apparent language: the student's view of what statements in the language mean.
- how well students can react to error messages

¢) Knowledge about interaction - IMPART participates in a structured interaction

with the student - this uses psycholinguistic models of conversation. This is

controlled by three subunits:

- general interaction skills - these maintain the consistency and smoothness of the

interaction.

- descriptors of the domain - each concept about which the system is able to talk has a
descriptor. Each descriptor contains outlines of various ways to present and discuss a
topic. Also each descriptor contains mechanisms to assess its own importance at the

current point of interaction (this can be thought to include the tutorial goals of the

Chapter IV Related Work 66

teacher).

- teaching strategies - these represent different ways of tutoring such as Socratic

tutoring or giving examples.

The students will choose their own tasks when using ITSY. Because of this they will not

have to follow a fixed route through the system.

4.2.5 Environments As A Whole

The environment provided by ITSY will follow the principles outlined below.

Novices need a simple notional machine that corresponds to the language syntax and
semantics. The language should be simple. Du Boulay, O'Shea and Monk [1981]
describe two important characteristics that a programming language should have;
visibility and simplicity. Visibility is concerned with providing methods for novices to
observe certain parts of the notional machine working. Du Boulay, O'Shea and Monk

[1981] describe three types of simplicity that a language can have:

1. Functional Simplicity

2. Logical Simplicity

3. Syntactic Simplicity.

Functional simplicity means that each instruction, in the programming language, can
be broken down into a small number of basic instructions that are easy to understand.
Logical simplicity means that the basic instructions in the language are suited to the job,
so that problems of interest to the novice can be solved with relatively small programs.
Logical simplicity, in a programming language, enables students to tackle interesting
problems in their area, at a relatively early stage without having to spend weeks

learning the language first. An example of a language that is logically simple is SOLO
[Eisenstadt, 1983]. Using SOLO, cognitive science students are able to tackle problems on

searching data bases and simple protocol simulations within a very short space of time.

Chapter IV Related Work 67

The third type, syntactic simplicity, implies that the rules for writing instructions are

uniform and have well chosen names.

The names of the basic instructions are important as novices tend to make inferences
about the notional machine from these names. Examples of this are the LOAD and
STORE instructions, used in assembler languages, that have real world connotations

[Du Boulay, O'Shea & Monk, 1981 p243.] [Kahney & Eisenstadt, 1982].

The use of surrogate models helps novices, but it is generally hard to find a model that is
simple and covers all of the system that it is modelling. LOGO specifically has a lot of
pseudo-English in its syntax to provide novices with a surrogate model. Boxer [di Sessa,
1982] uses a spatial metaphor to represent functions because it is easy for novices (and

experts) to relate to.

ITSY will provide a "pleasant” environment using these principles. This is discussed

further in section 6.1.

A problem with several of the CAI systems described above (eg. GREATERP) is the fact
that they are restrictive. In order to know exactly what the student is doing they constrain
the student to work in a top down fashion. For example, problem 4-3 on page 57 of "Lisp"

[Winston & Horn, 1981] is:

"Problem 4-3: Define SQUASH, a function that takes an s-expression as its argument

and returns a nonnested list of all atoms found in the s-expression. Here is an example

(SQUASH '(A (A (A (A B))) (((A B) B) B) B))
(AAAABABBBB)'

The ideal solution (given on page 323 of "Lisp") that a CAI system would have stored is:

(defun squash (s)
(cond ((null s) nil)
((atom s) (list s))

(t (append (squash (car s))

Chapter IV Related Work 68

(squash (cdr s))))))

Suppose the student were attempting to write the following (nearly ideal and working)

solution:

(defun squash (s)
(cond ((null s) nil)
((atom (car s)) (cons (car s) (squash (cdr s))))
(t (append (squash (car s))

(squash (cdr s))))))

A student may arrive at the above solution as follows:

1. The student codes the first clause and believes it to be the only terminating clause

necessary.

2. The student begins to code the last clause and believes it to be the only recursive case

necessary.

3. While coding the last clause the student realises that if the (car s) is an atom then an

error will occur.

4. The student stops coding the last clause and codes the second clause to deal with the

case above.

5. The student finishes coding the final clause.

If the CAI system did not have the student's solution it would complain about a "missing
terminating case" as the student started to code the recursive case. If the student started
to code the second clause as step two, the system would complain that the test clause
"should test s and not (car s)". If the CAI system did have the second solution it would
require the student to code the recursive cases separately, whereas the student would not
realise that two recursive cases were required until s/he was actually coding the final
clause. The student would be unable to code the second clause until s/he had finished

coding the third. By allowing the student to finish coding a function before interrupting

Chapter IV Related Work 69
with advice ITSY avoids this problem.
4.3 Intelligent Program Analysers And Debuggers

When students make an error ITSY will have to classify the error, so that the right
tutorial package can be chosen. ITSY will use several of the techniques used in

intelligent automatic code debuggers and analysers to classify the bugs.
Automatic debuggers fall into three broad categories:

a) Debuggers that work in a limited context. Examples of this type are [Ruth, 1976], [Adam
& Laurent, 1980], [Eisenstadt & Laubsch, 1980], [Johnson & Soloway, 1985] and
[Hasemer, 1983].

b) Debuggers that work in a general context, but need a program specification as well,

examples of these are PUDSY [Lukey, 1980] and MYCROFT [Goldstein, 1975].

c) Debuggers that work in a general context without using a program specification, an

example of this being PHENARETE [Wertz, 1982].

Those debuggers that work in a limited context, have a high level description of the task
that the students are attempting stored internally. Adam and Laurent [1980 p. 78, 791 say
that there are two possible ways of describing the task. Either statically, using a set of
assertions, or dynamically having some general encoding of the algorithm. Ruth [1976]
uses a dynamic description called a program generating model, which is described
below. Adam and Laurent [1980] describe the program solution dynamically using
graphs; transformations of the graph are used to prove the equivalence of the student
program and the correct program. These transformations are similar to but more
powerful than those used by Ruth [1976]. Any irreducible mismatches between the high

level description and the student's code are taken to mean that there a bug in the code.

PROUST [Johnson, 1985] is an intention based PASCAL debugger. Johnson claims that
debugging requires knowledge of the intentions of the programmer. Currently ITSY

has no knowledge of the intentions of the programmer. This is because over 80% of the

Chapter IV Related Work 70

errors found in the pilot study (see chapter 5) required no knowledge of context in order to
be fixed. There are two reasons why such a large percentage of the errors required no
context information in order to be fixed. Firstly, a quarter of the errors were caused by the

environment. Secondly, the subjects used invalid Lisp forms such as:
((car "(a b c)))
It is possible to give ITSY context knowledge however and this is discussed in chapter 13.

Programming knowledge in PROUST is frame based and is contained in problem
descriptions. Problem descriptions in PROUST consist of programming goals and sets
of data objects. Programming goals are the principal requirements that must be
satisfied and the sets of data objects are the data manipulated by the program. Data
objects can either be constant-valued or variable-valued. Goal statements consist of a
name of a type of goal followed by arguments. The problem descriptions describe what the
programs must do but not how they are supposed to do it, these are described by plans.

PLANSs [Waters, 1978] and the plans used in PROUST are similar but there is a subtle
difference. The plans used in PROUST are derived from a psychological theory of
programming plans being developed at Yale whereas PLANs are a program
representation optimised for its utility for automatic systems. The main goal of PLANs

is to represent a program completely, making as much information as possible explicit.

Plans are stereotypic methods for implementing goals. Plans are compared to the
students program to determine which fits best. Plans contain a template slot which
describe the form the PASCAL code should take. Plan templates consist of PASCAL
statements, subgoals and labels. This representation of is low-level and PASCAL

dependent. Johnson's reason for this is [Johnson, 1985 pp. 85]:

If concrete plan and program representations are used, then some high-level errors are
harder to identify, because the syntax gets in the way. If abstract representations are
used, some low-level errors are impossible to identify, because relevant evidence has
been abstracted away. Given the choice, a concrete representation must be used, since
PROUST must be able to identify as wide a range of bugs possible.

ITSY uses PLANS, these can be as concrete or as abstract as needed, so that both low and

high level errors can be spotted.

Chapter IV Related Work 71

PROUST parses a student's program into a tree. It then selects, from the problem
description, one goal at a time. The values of any data objects known at this point are
substituted into the goal description. PROUST then tries to match each of the goal's plans
in turn with the parse tree, using the plan's template slot. This is analysis by synthesis;
PROUST generates possible implementations and matches these against the student's.
If PROUST is unable to match a plan with the student's code then a bug is present.
PROUST tries to interpret these plan differences using bug rules. Each bug rule has a
test part which matches against the differences if the rule applies, and an action part

which explains the plan differences.

The debuggers which need a program specification use the specification as a static
description of the program, to try and spot any inconsistencies between this description
and programs written by students. The specification takes the form of assertions (given
by the student) in propositional calculus. This, whilst bringing in additional
information, can lead to problems if the students give incorrect assertions, and also
requires that students learn an additional "language" (the program specification
language). MYCROFT [Goldstein, 1975] also uses the output of the program (i.e. the

pictures that the program drew), to gain extra information.

Debuggers like PHENARETE [Wertz, 1982] that do not work in a small domain or use
any sort of specification, look for a certain class of errors. These errors are typically
syntax errors, unreachable statements, endless recursion and non-terminating loops.
The errors that are spotted are not deep semantic or conceptual errors; | finding such
errors requires knowledge about the actual task being attempted. Programs that will

run, but do not give the correct output fall into this latter category.

There are two distinct stages to debugging: analyzing the code and either fixing or

reporting the errors. These are discussed in turn below.
4.3.1 Analysing The Code
Most systems break up the analysis stage into several passes. The first pass involves

looking for syntactic and simple semantic errors (i.e. potential run-time errors

detectable syntactically such as 3 + 0, or calling an undefined function), Wertz [1982]

Chapter IV Related Work 72

calls these surface errors. Compilers for languages such as PASCAL, ALGOL, Lisp and
C are able to detect errors of this type.

A typical debugger takes one of three actions on spotting the error.
1. The system, like a compiler, just reports the error.

2. The system interacts with the user, suggesting a simple change in the code such as
substitution of a word, deletion of an argument or addition of brackets. The user usually

answers yes or no, depending on whether s/he agrees with the change.

3. The system makes simple changes to the code and then notifies the user eg.
PHENARETE [Wertz, 1982].

One problem with the PHENARETE philosophy is that it can give naive users the

impression that the system is more intelligent than it actually is.

The next stage in analysing involves producing a canonical form of the code. This can
then be compared with either a library of cliches [Brotsky, 1981; Hasemer, 1983] or a
library of plans [Rich, Shrobe, Waters, Sussman & Hewitt, 1978], or a general form of the
solution in the limited context debuggers. Another method of analysing the code

involves trying to generate the code from the high level description i.e. analysing by

synthesis [Johnson & Soloway, 1985].

Analysing the program into plans or cliches originated at the Massachusetts Institute of
Technology (M.I.T.). The canonical representation of code used was the language
independent ‘plan diagram' representation of the code developed by [Rich, Shrobe,
Waters, Sussman & Hewitt, 1978]. This representation has been used and extended by
Eisenstadt & Laubsch [1980], Lutz [1984], Rich [1981], Shapiro [1981], Waters [1979, 1982 &
1985] and Zelinka [1986].

The plan diagram represents code segments as boxes, each box giving a specification for
the code segment. Control flow and data flow are represented by hashed and solid lines

respectively. So for example, the LISP code:

Chapter IV Related Work 73

(cond ((< x y) x)

(t (+ xy))

would be represented as figure 4-1.

Figure 4-1 An Example of a Plan Diagram

X Y

JOIN

Chapter IV Related Work 74

The function + is shown as a box. The two arguments, x and y, are represented by the two
solid arcs connected to the top of this box. The output of the function is represented by the
solid arc coming out of the bottom of the box. The predicate < is represented by the box
containing the symbols <, T and F. The two possible paths for control flow, after the
predicate, are represented by the two hashed lines from the T and F sections of the box.
The lowest box represents a join. A join specification is a mirror image of a predicate
specification. Unlike the predicate specification, however, the join does not repi'esent
any real computation. Joins are used to rejoin the two control-flow branches of a

predicate block.

Recursion is represented as a looping line to the outside of the box. Figure 4-2 represents

the (infinitely recursive) code:

(defun fib (n)
(* n (fib (- n 1))))

Chapter IV Related Work 75

Figure 4-2 Representation of Recursion in Plan Diagrams

N 1

-

Iterative loops are converted into their tail recursive counterparts, and temporal
decomposition [Waters, 1979] is then applied. Temporal decomposition is a technique for
abstracting iterative loops or tail recursive functions. Each operation in the loop becomes
a vector operation that acts on a vector of data objects. A vector of data objects is a vector
where each element contains the values of all the variables of the loop for a particular
iteration (Laubsch and Eisenstadt [1982] used temporal abstraction to analyse a subset of
recursive SOLO programs written by novices). The boxes in the plans can also be high

level plans. This allows plans to be as abstract as need be.

Chapter IV Related Work 76

The Recognizer [Zelinka, 1986] is a system that performs the program recognition by
parsing. Programs are converted into a PLAN like graph repreéentation. The library of
structures to be recognised are translated into a graph grammar (currently performed by
hand) and the program is parsed using the grammar. The graph parser is an extension
of Brotsky's flow graph parser [Brotsky, 1984]. The extensions cope with some of the
features of PLANs. Other features of PLANSs, which cannot be dealt with by these

extensions, have been transferred to attributes on the nodes and edges of the flow graph.

The first stage in translating programming code into plan diagram form is to translate
the code into a surface plan. A surface plan can be thought of as an abstraction of data
and control flow in a program, without abstracting data structures and operations. Once
the surface plan has been constructed programming cliches from the cliche library are
matched against chunks of the surface plan and more abstract plans are created. ITSY

translates student programs into surface plan form before finding any bugs.

Another method of analysing code is to transform the code into a graph and then
normalize the graph. Normalization transforms the graph into a standard form. An
example of a transformation used might be - if a variable is used for two different
purposes then a new variable is generated. This makes the matching process easier.
This technique is primarily used by debuggers that store a version of the answer to the

particular exercise attempted by the student eg. LAURA [Adam & Laurent, 1980].

Code may also be understood by means of meta or symbolic evaluation. PHENARETE
uses meta-evaluation to analyse the students' code. The main difference between
evaluation and meta-evaluation is that in meta-evaluation every possible branéh of the
code is taken. PHENARETE meta-evaluates the code, until every branch has either
terminated, or has come to a repetition. This method is often combined with others, to

work on pieces of code that another method has failed to analyse.
4.3.2 Finding The Bugs
Once the code has been transformed into a suitable form, the next step is to find the bugs.

Bugs are found by looking for mismatches between a high level description of the student

code, and a high level description of the correct code.

Chapter IV Related Work 77

MYCROFT [Goldstein, 1975] and PUDSY [Lukey, 1980] used a specification as the high
level description of the correct code, and matched the output of the students’ programs

- against a specification. MYCROFT was able to find errors in LOGO programs which
drew shapes. The specification used in debugging described the relationships between
the components of the shapes drawn. The bug was then deemed to be in the section of code
that constructed the part of the drawing that conflicted with the specification. PUDSY also
used debugging clues such as re-assignments to variables before the old value was used.
Ruth [1976] used a program generating model to try and generate the student program.
The generator was a high level description of the correct program, and was only able to
generate the student's code if the code was correct. If it could not do so it then tried to
match on simple variations of the code. Variations might include code with the arms of
conditionals swapped, or the signs in algebraic expressions switéhed. Laurent's system
LAURA matched the normalized graph against the model answer. As in Ruth [1976] if it
was not possible to obtain a perfect match then the student graph was altered until either a

match was made or no more variations were left.

SNIFFER [Shapiro, 1981] uses a cliche finder, a time rover and sniffers to find bugs in
a program's execution history. Each sniffer contains information about a particular
type of bug. This information is represented by a set of rules. The program's execution
history is recorded by a time rover. This stores all the intermediate states of variables
and the effects of side effecting functions (enough information is stored so that the
program could be run backwards if required). The cliche finder identifies algorithms
by recognising patterns in a plan diagram representation of the code. The cliche finder
acts in the same way as the code analyser in the Programmers' Apprentice [Waters,

1985].

Each sniffer uses the cliche finder and the time rover. A sniffer will use the time rover
to obtain the value of a variable at different times during the evaluation. The recognition
of typical algorithms by the cliche finder gives the sniffers a context for identifying

errors, and raises the level at which SNIFFER can describe code.

ITSY will find bugs by trying to match sections of a plan-diagram-like description of the

code against error cliches.

Chapter IV Related Work 78

4.3.3 Finding and Fixing The Errors

One of the major problems when fixing a bug is that the edit may interfere with another
part of the program, so causing another bug. Goldstein [1975] specified a certain order in
which to fix bugs in programs that drew pictures so as to cause the least interference.

Some examples of the heuristic order rules are:

1) Fix the bugs in the properties of the picture parts before bugs in relation between the

picture parts,

2) Fix the bugs in the intrinsic properties of a picture part before the bugs in the extrinsic

properties,

3) Use the edit that has the maximally beneficial side effects. This is because several

errors can be caused by the same bug.
4) Use the edit that causes the minimum changes to the user's code.

PUDSY [Lukey, 1980] tested each possible edit to make sure that the edit did not cause
another bug to appear in the program. This test consisted of comparing the amended

program with the program specification.

TALUS [Murray, 1986] is a Lisp debugger able to detect and correct errors at the
algorithmic, functional and implementation level. TALUS takes student program and
a reference program and tries to prove them equivalent using a theorem prover. TALUS
is a debugger that works in a limited context (see 4.2 a) and has eighteen task
descriptions stored in a task library. Each task description has the following

information:
a) The task assignment - instructions to the student,
b) Algorithms - identifiers naming acceptable algorithms for the solution of the task,

c) Algorithm Representations - frame representations of the above algorithms,

Chapter IV Related Work 79

d) Reference Functions - functions that correctly implement the algorithm they are

associated with.

Debugging takes place in four stages: program simplification, algorithm recognition,

bug detection and bug correction.

Program Simplification

TALUS uses a theorem prover to prove various conjectures involving Lisp code. Because
the theorem prover can only deal with a subset of Lisp TALUS uses a sequence of program
simplification transforms to reduce students solutions. These transforms eliminate

CONDs, PROGs, LAMBDASs and mapping functions.

Algorithm Recognition

The simplified code is parsed into frames. These frames are matched against the frame
representations of the various algorithms stored in the task structure. A heuristic
evaluation function computes how closely the frame slots match up. The algorithm with

the highest score is chosen. This stage also pairs reference and student functions.

Bug Detection

The equivalence of the reference and student program forms a conjecture. If the
conjecture cannot be proved then the student's program is considered buggy.
Conjectures are first checked by a conjecture disprover. This contains a pre-stored set of
counter-examples. If a conjecture passes all the examples (which are in fact sets of
bindings of formal variables for each function in a stored task algorithm) then it is
matched against a reference function. Functions are represented as binary trees, the
nonterminal nodes representing conditional tests. The collection of terms that must be
true or false for a terminal node to be reached are the terms governing the node. Each set
of terms governing a terminal node is a case. Each case of the student and reference
code is compared by symbolic evaluation. A theorem prover is used to check the
equivalence of symbolic values. If the student and reference values cannot be proved

equivalent the student's program is considered buggy, the bug occuring in the case where

Chapter IV Related Work 80

the proof of equivalence breaks down. This means buggy implementations are always

detected but some false alarms are generated.
Bug Correction

Before comparing student and reference code, the reference code is normalised. This
means the variable and function names and the order of formal parameters are changed
to those used by the student. Once the bug has been detected TALUS inserts the minimum

amount of normalised reference code to restore the proof of equivalence.
Limits

Because TALUS uses a theorem prover which can only deal with a subset of Lisp, student
programs are first simplified. There are some constructs which TALUS cannot simplify

however:

- Free variables in function definitions

- Side effects in conditional tests

- Side effects in the actual arguments of lambda expressions.

- Destructive functions such as NCONC. TALUS replaces NCONC with APPEND when
the arguments are fresh list structures (that is lists that have been CONSed up within the
program). When the arguments are not fresh list structures TALUS has to rely on

heuristics.

In the debuggers there seems to be a trade-off between generality and complexity. In
order to find deep semantic and teleological errors context knowledge is needed. In
areas such as programming we cannot expect novices to provide this knowledge so it
must be built into the system. Builtin context knowledge limits the generality of a
debugger as it will only be able to debug those programs the builtin context knowledge

covers.

5. CATEGORISING ERRORS IN A TRADITIONAL LISP ENVIRONMENT

5.1 Motivation

Before undertaking the construction of an intelligent debugging environment for Lisp
novices, it is critical to find out exactly what kinds of errors they make. In particular, I
was interested in the errors made by professional programmers (i.e programmers who
are currently employed to program in a 'conventional' language and have had at least
two years experience doing s0). I wanted to try to categorise the errors they made when
using a fairly standard Lisp environment. The study described in this chapter therefore

had two main objectives:

1. To find out exactly what problems computer programmers have learning Lisp, and so
determine what hand-holding aids they need. This information helped determine the

overall shape of the environment that ITSY provides.

2. To build up a bug taxonomy to be used by ITSY in recognising students' bugs. This

taxonomy was built up by including any error cliches that could be found from the data

produced.

52 Methods

Nine COBOL programmers were used as subjects. They each sat at a terminal, for two
hours a week, over a ten week period, reading from Winston and Horn's book "Lisp"
(first edition) and attempting the exercises. The subjects were also able to take the book
home to study in private. While at the terminal the subjects were able to phone me for
help. I would immediately hang up the phone, and then advise the subject via a

"keyboard dialogue" conducted at the terminal. The subjects were placed, when possible,
in separate offices. I was always in a separate office. This prevented any
communication between myself and the subjects, other than via the terminal. These
conditions simulated, as closely as possible, the conditions in which the students would

be working, in an industrial environment using ITSY.

Chapter V First Experiment 82

The study was carried out on a DEC-20 using MACLISP. The subjects were given
information sheets, describing how to log on and how to use EMACS (see appendix A).
EMACS is a screen editor that "knows" about LISP, carrying out automatic bracket
balancing and automatic code indenting. The subjects were also given a short tutorial
about the editor. To simplify the learning of EMACS, subjects were given an
initialisation file. This gave the subjects the basic cursor moving operations on single
keys; these were kept simple so as not to overload the subjects with too many new editor
commands. The basic operations given were: to move up and down a line; forward and
backward a character; and forward and backward a word. After a few weeks some of the
more advanced subjects were introduced to the "zap" key. This key loads a single LISP
function from the editor into the LISP environment. All of the subjects' interactions were
recorded using the LISP "dribble" system. This sends all of the input and output at the
LISP top level to a specified file (see appendix C). A list of the number of attendances and
the number of lines typed at top level (a measure of the amount of work carried out), is

included in section 5.4.
5.3 Method Of Analysis

The errors were classified according to the cause of the error, rather than the error
message given when it arose (the symptom of the error). The error messages that
MACLISP gives are not a reliable indicator of the type of error made. Consider the
message ";UNDEFINED FUNCTION". There are several different causes for this

"symptom"
1. (CAR (A B Q)) instead of (CAR '(A B C)): missing out a quote mark.

2. (DEFUN FOO (X) (CAR (X)) instead of (DEFUN FOO (X) (CAR X)): not fully

understanding what brackets mean.

3. ((APPEND (A B C) '(D E F))) instead of (APPEND A B C) 'D E F)). Not knowing

how to call a function.
4. (APEND '(A B C) '(D E F)) this is a misspelling.

5. (COND ((NULL X) NIL)) (T.... The subject does not understand the syntax of the cond

Chapter V First Experiment 83

form.

6. Forgetting to load a function.

7. Not realising that a function has not loaded from a file because the brackets do not

balance.

The dribble files were first analysed to obtain a comprehensive list of the causes of the
errors, from which categories were produced. The data was re-analysed using these

categories. Three policies were adhered to in counting the errors:

1. If a subject typed (LIST A B C) followed, after the corresponding error message, by
(LIST 'A 'B 'C) as his/her second attempt, then this was counted as only one (quoting)
error, not three. However if a subject typed (LIST A B C), then (LIST 'A B C), then (LIST
'A'B C) and then (LIST 'A 'B 'C), this was counted as three errors. The number of errors

attributed to any particular section of code depended on how the subject corrected the code.

2. Subjects sometimes corrected the wrong part of an incorrect function. They would then
re-load the function, leaving the faulty part of the function intact. Each re-load was

counted as a separate error.

3.Non-lists given as the second argument to either of the functions CONS and APPEND
were also counted as errors. This does not produce an error, but a dotted pairl. Dotted
pairs are not covered in Winston and Horn's book until chapter nine. The subjects
should only be giving list arguments to these functions. The definitions of CONS and
APPEND given by Winston and Horn are:

"CONS takes a list and inserts a new first element ...(CONS <new first element> <some

list>)" (pages 24 and 25)

"APPEND strings together the elements of all lists supplied as arguments" (page 24)

Lin LISP there are two ways of printing lists (or cons cells). One way of representing lists is by using
dotted notation. In dotted notation the result of evaluating (CONS A (CONS B (CONS C NIL))) or (LIST A
B C) would be (A . (B. (C. NIL))). The LISP print functions usually represents lists without the dots, so
the above is written as (A B C). However there are certain lists that cannot be written in the normal way;
an example of this is (A . (B . C)). When this happens the dot is printed. For example, (A. (B . C)) is
written as (A B . C). A pair such as (A . B) is called a dotted pair.

Chapter V First Experiment 84

54 Results

A great proportion of the errors that subjects made fell into a relatively small number of

groups. Ninety-one percent of the total number of errors fell into nineteen categories.

The following table gives the number of sessions attended, the number of lines input, the
total number of errors, and the percentage of errors compared to the number of input lines

for each subject.

Subject = Number of Number of Number of Percentage of
Sessions Lines Input Errors Errors per line
Attended

K 4 249 31 12

J 10 1184 150 13

A 7 968 187 19

B 3 227 4 18

D 9 443 56 13

E 5 284 36 13

J2 5 306 26 8

B2 1 761 73 10

P 7 410 45 1

Total 61 4832 645 13.3

Chapter V First Experiment 85

The number of sessions attended only gives a rough indication of the time a subject spent
in the study. This is due to two reasons. Firstly, some sessions were shorter than two
hours because the subjects had to wait to log onto the computer. Secondly subjects

sometimes spent longer than two hours at sessions.

The types of errors that the subjects made can be divided into three sections: the errors
that were caused by the environment; algorithmic errors; and the errors caused by the

language.

All of the categories containing more than 1.5% of all the errors are presented here.
Some of the notable sub-categories and examples have also been given. In some cases a
simple cure is proposed, in others the "cure" is to include a cliche, in the error cliche

library, to match against this type of error.
5.4.1 Problems Caused By The Environment
1. Problems Caused by Written Materials

(a) Writing / instead of /. In MACLISP the / character is special, and needs the escape
character (/) before it. On page 59 of "Lisp", Winston and Horn write: "Binary trees can

be used to represent arithmetic expressions, as for example:
*+AB)(-C(¢/DE))

One can write a compiler, or program for translating such an arithmetic expression into

the machine language of some computer, using LISP ..."
The fact that the slash character is special is only mentioned in the appendix.

(b) When the subjects finished a session, I wanted them to type (stop). This was a LISP
function which I had written, that closed the dribble file, then exited from LISP. I
explained this on the hand out sheet (see appendix A) with the sentence: "Once you have

finished type "(stop)” to leave the LISP top level." Some of the subjects typed "'(stop)".

Chapter V First Experiment 86

(¢) Winston and Horn give examples of functions defined at the LISP top level. For
example, page 34 of "Lisp" reads:

(DEFUN F-TO-C (TEMP)
(QUOTIENT (DIFFERENCE TEMP 32) 1.8))
F-TO-C

because the function definition is written in capitals, it is not immediately obvious that
"F-TO-C" was returned by LISP interpreter. Two subjects wrote the names of the

functions after each definition in the file.

Percentage of the total number of errors: 3

Number of subjects affected: 5

Cure:

Change the text. In case (a) the fact that the slash character is special should be

mentioned. In cases (b) and (¢) different fonts could be used.

2. The Computing Environment

(a) Control-s freezes the vt-100 terminal. Control-q unfreezes the terminal. There is also
a "noscroll” button that toggles the freezing and unfreezing of the terminals. During the

course of the study this caused all of the subjects, at one time or another, to get stuck.

(b) In MACLISP there is an autoload feature, that allows a function not present in the
environment to be loaded in automatically from a file, the first time it is called. This
caused problems when the function that the subject was working on was not in the
environment, and the function name was the same as another in a different
(autoloadable) LISP file. This happened when either the subject had forgotten to load the
function, or the function contained unbalanced brackets and was not loaded. The
subjects did not realise that the function had been automatically loaded, and thought that

their (usually incorrect) attempts were correct.

Chapter V First Experiment 87

(c) Four of the subjects tried to use control-h and backspace as a rubout key. This is what

they use in their habitual working environment.

Percentage of the total number of errors: 9

Number of subjects affected: 9

Cure:
Provide a protective environment for the students, shielding them from the
"harmful” aspects of the LISP environment. The environment that ITSY
provides has no autoload feature. Keys that students do not need have been
disabled.

5.4.2 Algorithmic Errors

These errors are only detectable if the problem that the student is attempting is known. A

"cure" is only possible if a version of the solution is stored.

1. Using the wrong combination of CARs and CDRs to pick out an element of a list.

Percentage of the total number of errors: 6

Number of subjects affected: 7

2. Using the wrong function. About seventy percent of the errors in this category were

due to the subjects picking the wrong function out of CONS, LIST and APPEND.

Percentage of the total number of errors: 3

Number of subjects affected: 5

3. Errors in recursion. There were two main types of recursive errors found in the

study:

Chapter V First Experiment 88

(a) Not altering the "terminating argument” in the recursive call. By "terminating
argument”, I mean the argument that is tested in the exit part of the recursive function.

For example, one of the subj»ects wrote the following function:

(defun s2 (1)
(cond ({(null 1) nil)
((atom 1) 1)

(t (s2 (cons {(car 1) (cdr 1))))))
the argument 1 (the "terminating argument”) is passed unaltered in the recursive call.

(b) Missing out the recursive call. Two of the subjects wrote functions that missed out the

recursive call. One of the functions that a subject wrote was:

(defun uparam (i listl 1list2)
(cond ((equal i (length listl)) list2)
((not (member (car listl) list2))
(set 'list2 (cons (car listl) list2)))

(t (uparam (addl i) (rotate-1 listl) 1list2))))

The function should rotate the list list1, adding the head of the list to list2, if it is not

already a member. The second clause should be

((not (member (car listl) list2))

(uparam (addl i) (rotate-l1l listl) (cons (car listl) list2)))

The subject asked for help and said that he could not understand why the function "stops

after inserting the first non-matching atom".
Percentage of the total number of errors: 3
Number of subjects affected: 4

4. Not realising that solution is incorrect. There are two main reasons for this.

Chapter V First Experiment 89 '

(a) The subjects did not always try their solutions on the right input; For example, one

subject wrote:

(defun mobile-p (m)
(cond ((atom m) m)
((not (equal (mobile (c¢addr m))
(mobile (cadr m)))) nil)
(t (plus (car m) (mobile (cadr m))

(mobile (caddr m))))))

as a solution to problem 4-10 in "Lisp"”. This function should return a value if the input
is a list of the right form, otherwise it should return NIL. The function worked with all of
the inputs that the subject tried. However if both (mobile (caddr m)) and (mobile (cadr
m)) are NIL, then the t clause is executed, and the function plus receives two non-

numeric arguments, giving an error.

(b) The subjects had missed the generalisation of an example. One subject defined the

following function to rotate a list right:

(defun rotate-r (exp-1)

(append (cdr (cdr (exp-1)) (list (car exp-1l) (car (cdr exp-1)))))

this function only works on lists of three elements. The subject probably did this because

the two examples given for the previous exercise, rotate left, are:

(ROTATE-L '(A B C))

(B C Aa)

(ROTATE-L (ROTATE-L '(A B C)))

(C A B)
Percentage of the total number of errors: 3

Number of subjects affected: 2

Chapter V First Experiment 90

5. Other algorithmic errors. One of the simpler algorithmic errors found in the study

was:

(defun merge (x y)
(cond ((null x) y)
((lessp (car x) (car y)) (merge (cdr x) y))

(t (cons (car x) (merge (cdr x) y)))))

the function should merge two sorted lists of numbers into one ascending list. The code
has several algorithmic errors. One algorithmic error in code is there is no clause to

deal with the case when the heads of both lists are equal. A correct version of the code is:

(defun merge (x y)
(cond ((null x) y)
((lessp (car x) (car y))
(cons (car x) (merge (cdr x) v)))
((equal (car x) (car y))
(cons (car x) (merge (cdr x) (cdr y))))

(t (cons (car y) (merge (cdr y) x)))))
Percentage of the total number of errors: 4
Number of subjects affected: 4
5.4.3 Problems With The Language
1. Simple errors or slip ups. The three main sub-categories are:
(a) Spelling errors.
(b) Simple bracketing errors. Only the "obviously" simple braéketing errors were

counted as such. If there was any doubt then the mistake was taken to be conceptual. For

example, the following code, written by one of the subjects:

Chapter V First Experiment 91

(cond ((and (null 1lstl) (null 1lst2))
((and (null lstl) (not(null 1lst2)))

((and (not (null 1lstl) (null 1st2)))

(There should be an extra closing bracket after the (null I1st1) in the third clause.) counted

as a simple bracketing error.

(c) Forgetting to load a function from a file.

Percentage of the total number of errors: 12

Number of subjects affected: 9

Cure:
In order to cure (b) ITSY has an entry in the error cliche library. Cures to (a) and
(¢) are currently not implemented. (a) could be cured with a spelling checker. (c)

could be cured by checking the last file edited for the missing function.

2. Incorrectly putting a pair of brackets around an atom. Sometimes it is correct to put

brackets around atom, as in (defun foo (%) ... and in (cond (a) (t nil ...
Percentage of the total number of errors: 3
Number of subjects affected: 6
Cure:
There is an entry in the cliche library to match against this type of error.
3. Stuck at top-level because there are not enough closing bréckets. MACLISP on the
DEC-20 responds once an s-expression followed by <RETURN> has been typed in. If the

user types <RETURN> before closing all the brackets, the interpreter assumes that the
rest of the expression is to continue on the next line. Eight of the subjects thought that they

Chapter V First Experiment 92

had typed enough closing brackets, and when they hit <RETURN> they thought that the
machine was stuck. Six of the subjects tried to re-enter the s-expression, on the next line,
and three of the subjects had to dial for help.
Percentage of the total number of errors: 2
Number of subjects affected: 8
Cure:

The top level of ITSY includes the following features:

(a) A bracket balancing feature.

(b) The evaluation of forms as soon as the last closing bracket is typed, instead of

waiting for the return key to be pressed.

(c) The use of a prompt
"4, Incorrectly putting an extra set of brackets around a function call. This includes
attempts to "listify” objects, for example writing ((foo x)) instead of (list (foo x)).
Sometimes it is correct to put two pairs of brackets around a function call, as in (cond
((null D) ...
Percentage of the total number of errors: 3
Number of subjects affected: 2
Cure:

Included in the cliche library

5. Not putting brackets around a function call.

Chapter V First Experiment 93

Percentage of the total number of errors: 5
Number of subjects affected: 6
Cure:

Included in the cliche library

Errors in category 4 and 5 do not include errors that occurred in a COND form, these have

been separated out and are given in category 9.
6. Wrong number of arguments given to a function. For example:
(addl 3 4)

Percentage of the total number of errors: 2
Number of subjects affected: 5
Cure:

Included in the cliche library
7. Wrong number of arguments given to a function, because the arguments are in the
wrong form. This category has been separated from the one above because in eighty
percent of cases, the arguments were present but in the wrong form. Typical examples of
this type of error are:
(f-to-c '(10)) needs one numeric argument

(roots '(2 4 8)) needs three numeric arguments

(CONS 'a b ¢ d e) needs an element and a list.

Chapter V First Experiment 94

Percentage of the total number of errors: 6
Number of subjects affected: 6
Cure:
Included in the cliche library
8. Arguments of the wrong type given to a function. Non-list arguments given to CONS
and APPEND have been counted as this type of error, as dotted pairs are not introduced in
"Lisp” until chapter nine. Ninety-five percent of the errors in this category involved
non-list arguments given to one of CONS, APPEND, CAR and CDR.
Percentage of the total number of errors: 9
Number of subjects affected: 7
Cure:

Included in the cliche library

9. Errors in a COND form. All errors that occurred in a COND form have been separated

out. Ninety percent of these errors were due to:

(a) Not putting a pair of brackets around a function call,

(b) Putting an extra pair of brackets around a function call,

(c) Putting a pair of brackets around an atom.

Subjects made errors because of the different shapes that a COND form produces. For
example, if the first (test) clause in a COND form is a function then the clause list begins

with two left brackets. The subjects' experience of double brackets at this stage of their

study suggests that they cause errors, and they may therefore leave out one of them.

Chapter V First Experiment 95

Percentage of the total number of errors: 7
Number of subjects affected: 5
Cure:

Included in the cliche library
10. Quoting an object that shouldn't be quoted.
Percentage of the total number of errors: 2
Number of subjects affected: 3
Cure:

Included in the cliche library
11. Not quoting an object that should be quoted.
Percentage of the total number of errors: 7
Number of subjects affected: 9
Cure:

Included in the cliche library
12. Function not loaded because not enough closing brackets in the file.
Percentage of the total number of errors: 4

Number of subjects affected: 2

Chapter V First Experiment 96
Cure:

ITSY warns students if they try to save a file with unbalanced parentheses.

5.5 Error Messages

The error messages caused problems for the subjects. Whether or not the messages were
understood depended on the context of the error. Most of the subjects had no problem
understanding error messages concerned with top level errors, but could not understand
the same message when the error occurred inside a function. Error messages concerned
with the loading of files gave the most problems. The messages were so

incomprehensible that none of the subjects even realised that an error had occurred.

Below are some examples of error messages and typical subjects’ reactions to them.

1. "function received 1 arg wanted 3" This message was by far the easiest to understand

causing few problems.

2. "a undefined function object” The subjects' abilities to understand this message
depended on how the "a" had been derived. If the subject had typed at top level (first (a
b c)), and received this message, then usually the subject would correct the error
immediately. If the bug was embedded in a function, such as this first attempt at the

function first:

(defun first (a)

(car (a)))

n_n

then there was less chance that the subject would understand the message. If the "a" was

the result of some evaluation as in:

(defun (listl)

..... (cdr ((reverse listl)) (car ((...)))

(listl is bound to (¢ b a)) then there was little chance, that the subject would know what the

message meant.

Chapter V First Experiment 97

3. Some of the messages such as:
(rvead-eof #file-in | RS<R.Lispclass.2>1)
and
pdl overflow - red pdl space exceeded

were not understood at all, by any of the subjects. The first message means that the file
has not been loaded because there is a bracket missing (an 'end of file' character was
read in the middle of an s-expression). The second message means that the stack has

overflowed.

The first error message led to numerous problems. None of the subjects realised that an
error had occurred. All errors that were reported after this were attributed to the code that

had just been written rather than to the (still current) previous version.

The subjects were reluctant to use even the simplest environmental facilities available.
One of the subjects never ever used the editor when writing definitions. Only four
subjects used the facility which enables the user to examine function definitions in the

environment. None of the subjects used the editor's automatic indenter.
5.6 Conclusions From The Study

Some of the errors produced by the subjects were due to the book used. That does not mean
that there any great deficiencies in the book, just that some of the errors would not have
been made, if another book had been used. The best example of this was the
bewilderment of some the subjects when they encountered error messages about dotted
pairs. If another book had been used the subjects might have known about dotted pairs
before encountering the messages. In "Lisp: A Gentle Introduction to Symbolic
Computation” [Touretzky, 1984], the internal structure of lists and dotted pairs are
covered before any on-line exercises are given. To what extent the error taxonomy is
tied to the book used by the subjects can only be found out by repeating the study with
another book e.g. [Hasemer, 1984], [Touretzky, 1984].

Chapter V First Experiment 98

All of the subjects were "clobbered” by the computing environment, at one time or
another. This accounted for nearly one tenth of all the errors. Any system on which
users have to learn should always give the student a "way out". It should always be
obvious how to get back to the top level of the system. The student should always know
what state the system is in, for example if it is waiting for input, if the stepper is on, if it is
in a debugging mode etc. Students should be shielded from parts of the language and the
various tools available until they are ready for them. ITSY will have to protect students

from the environment if they are to use the system unaided.

Nearly one fifth of the errors were algorithmic in nature. To match against every
instance of this type of error, the exercise being attempted needs to be known. Currently
ITSY has no knowledge of the exercise being attempted. The addition of context
knowledge to ITSY is discussed in chapter 13.

For some of the error categories, the code producing the error follows a general "shape".
The error cliches are derived directly from these general "shapes". This is better shown

with a couple of examples:

1. One of the error cliches that has been derived from Lisp error 4; putting too many

brackets around a function call:
((«function> <any>))
This will match against any embedded list, where <function> is any defined function.

2. One of the error cliches that has been derived from Lisp error 7; wrong number of

arguments given to a function because the arguments are in the wrong form:
(<function> <argument list>)
<function> is any defined function and <argument list> is (incorrectly) a list where

each element is one of the arguments to <function>. This error cliche would match

against code such as:

Chapter V First Experiment 99
(+ (1 2 3))
The results of this study were used in the design of ITSY. Implementation details are

given in the next part of the thesis and the results of an evaluation study are given in the

third part of the thesis.

PART IT

This section describes, in detail, how ITSY has been implemented. Figure 2-1 from

chapter 2 is reproduced below. The arrows in figure 2-1 show dataflow.

The enhanced Lisp and Editor environments and the Coach are described in chapter 6.
The Code Analyser and the Lisp Object Hierarchy are described in chapter 7. The Error
Cliche Finder and the Error Cliches are described in chapter 8. The Code Highlighter
and the Tutorial Frames Presentation Package are described in chapter 9. The Student

Model is described in chapter 10.

agesoed

101p3| o >

INYByUsr uorejuasaig
@M.wmm 4 Hmvow souwre1g
[9POIN . [euony,
JuRpMS ﬁ
Topulg »| sormn
ayoIND
PO 10JBUIpPI0-07) A
[°POIA
JuspnIg —¥{ Juopnis [¢——> [e1jusd
f 1
JUSTIUOIIAUY
10114 dsr |
Areiqry peoueyuy
[Yomd Jopuryg
zorryy [P oyony zouy
1 JUSWUOIIAUT
yoro) IoshTeuy apoy [posuetg
qoeo) oJ, AUOIRIOTH]
sordoy 13([q0
dsr1

AMMIOINNYIIV S, XSLI JO MIAIIAQ T-Z 9MSLT

6. THE ENVIRONMENT

In this chapter we discuss the implementation details of the overall environment.

ITSY's environment was designed using two basic guidelines:

a) To fulfil some of the principles outlined by O'Shea [Du Boulay, O'Shea & Monk, 1981].
That is to make the tools functionally, logically and syntactically simple.

b) To prevent the errors caused by the environment in the pilot study (chapter five).
6.1 Overall Environment

The overall environment has three different parts or panes. The three different panes

are:
a) The Editor pane. This contains a modified Emacs [Stallman, 1981] style editor.

b) The Lisp pane. This contains a modified Lisp toplevel window.

¢) The status pane. This gives the student information about the current state of ITSY.

The number and size of the panes depends on which configuration the environment is

in. There are three different configurations.

a) starting configuration - in this configuration the environment has two panes. A Lisp

pane and a status pane.

b) large editor configuration - in this configuration the environment has three panes.
The editor pane occupies the top 75% of the screen, the status pane occupies the bottom line

and the lisp pane occupies the rest of the screen.

¢) medium editor configuration - this configuration also has three panes. The editor pane

occupies 50% of the screen, the status pane occupies the bottom line, and the Lisp pane

_ Chapter VI The Environment 101

occupies the rest of the screen (see figure 6-1).

It is possible to move between the lisp and editor panes by clicking on them using the left
mouse button. Using the middle or right button brings up a menu. There are separate
menus for the editor and lisp toplevel.

The following operations have been installed on both the editor and lisp menus.

a) Loading files

b) Moving to the large editor configuration

¢) Moving to medium editor configuration

The overall environment changes as the student progresses. This is controlled by the

coaching module (see 6.5).
6.2 Lisp Environment

The Lisp toplevel environment has been enhanced - this includes the addition of an

Emacs [Stallman, 1981] style bracket balancer.
The following operations have been installed on the Lisp menu only:

a) Selecting the Editor Pane - this provides an alternative method of selecting the editor

pane.

b) Adding Some Comments - sometimes the students require a short piece of advice, or I
want to note something that has happened. If this is selected everything that is typed is

recorded verbatim, until "end"” is typed.

¢) Function Documentation - the student can obtain documentation on Common Lisp
functions. The Symbolics has an on-line document examination facility. ITSY uses this

facility to present function documentation to the student. Currently not all Common Lisp

Chapter VI The Environment 102

Figure 6-1

~_3anduy Joy Buy3ien 1dsiq

mopuipy dsy] ASLI

 andul 4oy Bupajen :dsiq

mopuim dsyT ASLI

sp-J4344n8x (4SI7) SIBUZ

36-4344n8s (dSI7) SIUNZ

MOpUIM 101pF ASLI

MOPUIM 1031pT ASLI

andul_40j Bujaien :d

mopuipm dsy7 ASLl

Chapter VI The Environment 103
functions are documented.
d) The Prompt - the prompt is provided "for free" by the symbolics environment.
6.3 Editor Environment
Two distinct changes have been made to the editor.
The majority of Emacs commands are carried out by using control and meta keys. This
led to subjects getting stuck when they accidentally hit one of these keys. Any keys that
the students do not need have been disabled. The return key has been set to indent the

next line as this emphasises the structure of lisp to the student.

The essential non-movement commands have been installed on the editor menu. These

are:

a) Selecting a buffer

b) Saving a buffer

c) Loading any changed functions from a buffer.

There is also a menu choice to select the lisp pane.

6.4 The Status Line

The status line performs two distinct jobs. Firstly, it indicates which state ITSY is in.

Secondly, it gives the student information about functions applied at toplevel.

The different states that are indicated are:

a) Waiting for input.

b) Evaluating current s-expression.

Chapter Vi The Environment 104

¢) Currently inside the editor.

d) Loading a file into the lisp environment

e) Trying to find the source of an error

f) Found the source of an error

g) Trying to find the code in the buffer to highlight

h) Setting up the tutorial

Each time the student types the name of a function, the names of the parameters (given in
the parameter list) of the function are displayed in the status pane. This tells the student
two things. Firstly it says how many arguments the function takes. Secondly, it gives
the student an indication of how each argument will be used and what type it should be. If
no information appears the student knows that the function is undefined.

6.5 Coaching

ITSY has a coaching facility. This is used in a limited way at present. Coaching is

carried out using coaching events. A coaching event has four parts:

a) a name,

b) the name of a coaching trigger,

c) when the trigger is to lead to coaching,

d) the name of a function that will carry out the coaching.

At present a coaching trigger can be the name of either a plan diagram segment or an

error cliche. Whenever a coach trigger occurs a coach demon checks when this trigger

should lead to coaching. At present, coaching can take place either every time or the

Chapter VI The Environment 105

first time a trigger occurs.

Currently the only coaching event is the editor event. The trigger is the creation of a plan
diagram for a user defined function. This trigger leads to coaching the first time it.
occurs. The coaching function first changes the environment from the starting
configuration to the large editor configuration, then presents a short tutorial on the

editor.

The first time a student defines a function the environment changes from having just the

Lisp toplevel and status line to incorporating an editor.

7. TRANSFORMING THE CODE INTO PLAN DIAGRAM FORM

In this chapter we discuss how ITSY transforms the student's code into ITSY's surface
plan form. At the instant when this transformation takes place, the student has written a
piece of code, usually intended to test a user-defined function, directly into Lisp toplevel.
Whilst evaluating this code the interpreter signals an error, and ITSY attempts to
discover the cause of this error. In order to do so, ITSY transforms the student's code into
surface plans (here implemented as objects) and compares the plans with its library of

error cliches.

7.1 The End Product - Internal Representation of the Code

In the Programmer's Apprentice [Waters, 1985] code is first translated into a surface
plan. A surface plan can be thought of as an abstraction of data and control flow in a
program, without abstracting data structures and operations. Once the surface plan has
been constructed programming cliches from the cliche library are matched against
chunks of the surface plan to form more abstract plans. ITSY translates student
programs into a surface plan form then tries to match Error Cliches from the Cliche

library against segments of the surface plan.

Rich [1981, p. 65] describes the translation process as follows:

In order to translate between a given programming language and surface plans, the

primitives of the programming language are divided into two categories: connectives

such as PROG, COND, SETQ, GO and RETURN in Lisp, which are concerned solely

with implementing data and control flow; and the objects, relations and actions of the

language, such as numbers, dotted pairs, arithmetic relations, CAR, CDR and CONS.
The differences between surface plan representation used in the Programmers'
Apprentice and the internal representation used in ITSY are quite minor. In surface
plan representation segments are represented in terms of lists. The control and data
flow links are represented explicitly stating which segments are in the connected. In
ITSY's internal representation segments are represented as objects. The control and
data flow links are represented implicitly by setting a control or dataflow slot of an object
to another object. In surface plan representation segments have a type. This type

determines how the segment interacts with control flow. Splits in the control flow are

Chapter VIl Transforming the Code 107

achieved by setting the type of a segment to 'split’. In ITSY's internal representation
there is only one type of object that can split the data flow - the pred. Pred objects have a
test slot. The test slot holds the predicate that will split the control flow.

7.1.1 Advantages of Using Plan Diagram Representation

The main reason for using a plan diagram form as the internal representation is the
dataflow abstraction achieved. Abstracting the raw Lisp code simplifies the error cliche
matcher. One of the simplifications achieved is that the error cliche matcher does not

have to worry about scoping issues. In the following function:

(defun example ()
(let ((a 1) (b 2))
(let ((a '(1 2 3)) (b '(4 5 6)))
(append a b))

(append a b)))

The error cliche Wrong Type Argument Given to a Function Call should match against
the second (APPEND A B) form and not the first. If the error cliche matcher used raw
Lisp code then it would have to take the scope of LETs into account. Because the plan
diagram representation abstracts dataflow the error cliche matcher does not have to

worry about these type of scoping issues.

One of the problems when looking for bugs in novice Lisp programs is the level of
abstraction to use. If the level of abstraction is too high then low level errors will not be
caught because abstracting the code removes low level features. If the level of abstraction
is too low then the debugger will have problems if the students' solutions are too varied.
[Johnson, 1985] suggests the use of multiple systems as a cure for this. The power of
PLAN formalism is the fact that PLANSs can be as abstract or as concrete as needed. For

example, consider the following code:

(prog ((x input-list) (count 0))
lp
(cond ((null x) (return count))

(t (setg x (cons (car x) (cdr x))) (go 'lp))))

Chapter VIl Transforming the Code 108

There are two errors in the above code, one low level the other high level. The low level
error is that LP the argument to GO should not be quoted. The high level error is that the
list X will never be NIL and the loop will not terminate. Once the code has been analysed
into surface plan form the relatively low level error is easily found. Temporal
abstraction [Waters, 1978] could then be applied. This abstracts out various parts of
looping constructs. Once temporal abstraction has been carried out the high level looping
error is easily detected. Note that once temporal abstraction has been carried out it would

not be possible to detect the quoting error.
7.1.2 Representation of Lisp Objects

Different types of Lisp objects are represented in ITSY by different classes. The classes
form a hierarchy: at the top of the tree there is the most general lisp object; at the bottom
there are objects such as individual functions and constants. Figure 7.1 shows part of the
complete tree of classes. The lightly filled in boxes show the parts where the analyser is
partially implemented. Thé heavily filled in boxes show the parts where only the class

exists ie. the analyser is not implemented.

Chapter ViI Transforming the Code 109

&

@)
SYI0]
Iered
G =
(ngop do)) @
4 ~3 doa @. (w01
(woprgeq wopouny)
L) ((Tmop)
(wopeogddy wopouny) _
GorwD @
(punoqun) | (Treqoro) %
H A
(sreA reooT puig) sfoquik |

g

msgéw (g
{ 309[qO dsyT1)

AqoresdtH 392(q0 dsrT e1-2 amsg

Chapter VIl Transforming the Code 110

i % % T

(uonoung Addy 1oySTH) (wopouny Ajddy)

t

+

(wopeonddy uopoun,y)

H

AqyoxerdrH 392[qO dsy1 qI-2 2181y

Chapter VI Transforming the Code 111

@ P

3dxo (punoxr) (3abs) €D
A f

(' wopouny ourownu Fre om])

-

A
((wopoumy opxommu Fre Luy) (‘wopouny sproumu Sre oug)
A sSry omy, A A
Ty ﬁﬂoﬁoﬁ-h oﬁoﬁ:l@ (3 9u0)
wonouny 10

Agorerdry 303fqo dsr1 91-2 amSiy

Chapter VIl Transforming the Code 112

Each object contains the following slots:

1. Name - holds the name of the object

2. Control-in - this is the controlflow input port.

3. Control-out - this is the controlflow output port.

4. Input - this is the dataflow input port.

5. Output - this is the dataflow input port.

6. Expectations - points to an entry in a hash table. This entry contains a prototypical
object. This holds information such as the expected number and type of arguments and

the type of output.

7. Code - this slot contains the code represented by the object. This is needed so that ITSY

can give the tutorial in terms of the student's own code.

8. Code function name - the function, if any, the code occurs in. This is used by ITSY's

highlighting module.

Just below the top of the tree are symbols, numbers, functions, and bind local vars. The
first three denote the obvious types of objects. Bind local vars refers to objects that
represent any Lisp function able to locally bind variables, such as LET or DO. Below the
functions are the connectives (Conn in figure 7-1a) and non-connectives (Non-Conn

in figure 7-1a). The connectives of a language are the primitives that implement control
and dataflow (they are called connectives because they connect statements of the

language together). In Lisp functions such as SETQ, COND and DO are connectives.

7.1.3 Data and Control Flow: Connectives

There are no variables as such in plan diagrams. Variables are replaced by a pointer to

their value. SETQs change the position of the pointer. This removes variations due to

Chapter VIl Transforming the Code 113

using variables to store temporary values. The two segments of code:

(defun one (x y z)

(append (list (+ x y)) 2z))

(defun two (x y z)
(setg x (list (+ x y)))
(setg z (append x z))

z)

would be represented as figure 7-2. Only the last s-expression in a function is represented
in the surface plan representation. The other s-expressions in a function exist only for
side effect purposes. The representation of function TWO is in fact the representation of
the variable Z. The two previous s-expressions in TWO are there to side effect the values
of the variables X and Z. Notice that the effect of SETQs (controlling dataflow) is

abstracted away.

Chapter VII Transforming the Code 114

Figure 7-2

One

List

Append

Two

List

Append

Chapter VIl Transforming the Code 115

Below the connectives in figure 7-1a are forks, function definitions, blocks and loops.

Forks

Forks include the constructs concerned with branching control flow, such as COND and
OR. These are changed into pred and join objects. Pred objects have three parts: a test,

a true output port and a false output port. The test holds the predicate of the fork. Note that
the value of a test slot can be any object, even if it represents a non-predicate function. In

the representation of the following code:
(or (> x y) (print "X is greater") x)

two pred objects would be created. The first pred object's test slot would be connected to a >
object and the second pred object's test slot would be connected to a PRINT object. The
true output port holds the controi flow path followed if the test is true. Similarly, the

false output port holds the control flow path followed if the Zest is false. So, for example,

the following code:

(cond ((> x y) (+ xy))

((=xy) (+x1)))
would be represented as figure 7-3.

Notice there is no COND object in this diagram. Each test part of a clause has been
replaced by a pred object, the test part connected an object representing the test function.
The test for the first clause, (> X Y) is represented by the first pred object and the > object
connected to the pred's test slot. The result part of the first clause, the s-expression (+ X Y)
is represented by the + object. This is connected to the true output port of the pred object.

The test part of the second clause (= X Y) is represented by the second pred object and the =
object connected to the pred object's test slot. The result part of the second clause (+ X 1) is

represented by the + object with X and a 1 object connected to its input ports.

The top join object connects the two control flow paths of the lower pred object. The lower

Chapter VIl Transforming the Code 116

join object connects the two control flow paths of the top pred object.

Figure 7-3

Pred Test
F T
Pred Test
F T

F T

Join

FIT

Join

Chapter VIl Transforming the Code 117
The following code:

(or (and (> x y) (+ x y))
(and (= x y) (+ x 1)))

would be represented as figure 7-4. Notice that there are no OR or AND objects in the .
diagram. A pred object is created for every s-expression except the last in ORs and
ANDs. This is because the control flow can split in every s-expression except the last in
an OR or AND. The surface plan representation of each s-expression except the last is
connected to the test slot of a pred object. The last s-expression in an OR clause is
connected to the false output port of pred object representing the penultimate

s-expression. The last s-expression in an AND clause is connected to the true output port

of pred object representing the penultimate s-expression.

The top left pred object is created when the OR is analysed. The test slot of this pred object
is connected to the surface plan representation of the first s-expression in the OR,

(AND (< XY) (+ XY)). The false output port of this pred object is connected to the surface
plan representation of the last s-expression in the OR, (AND (= X Y) (+ X 1)).

The top right pred object is created when the first AND is analysed. The test slot of this
pred object is connected to the surface plan representation of the first s-expression in the
first AND, (> XY). The true output port of this pred object is connected to the surface plan
representation of the last s-expression in the first AND, (+ X Y). The top join object
connects the two control flow paths of the top right pred object.

The lowest pred object is created when the second AND s-expression is analysed. The test
. slot of this pred object is connected to the surface plan representation of the first s-

expression in the second AND, (= X Y). The true output port of this pred object is connected
to the surface plan representation of the last s-expression in the second AND, (+ X 1). The

second lowest join object connects the two control flow paths of the lowest pred object.

The lowest join object connects the two control flow paths of the top left pred object. Note
that if either a true output port or the false output port of a pred object is connected directly to
the corresponding join then the output of the join is the test of the pred object. In figure 7-4

Chapter VIl Transforming the Code 118

the true output port of the top left pred object is connected directly to the true input port of the
lowest join object. The true output of this join is the test of the top left pred object, which is
the surface plan representation of (AND (<X Y) (+ X Y)).

Chapter VIl Transforming the Code 119

Figure 74
XY
Pred Test Pred Test >
T F F T
\ [
+
|
|
FI|T
Join
Pred Test =
F T
1
+
|
F|T
Join

Join

Chapter VIl Transforming the Code 120

Notice that many of the differences in the code have been abstracted away. The reason
why not all the differences have been abstracted away is that the two pieces of code are not
really isomorphic. If the s-expression (+ X Y) returned NIL then the COND expression
would return NIL, and the second clause would not be tried. In the OR version the second

clause would be then tried, as the first returned NIL.

Pred objects have two extra slots, set-variables and inner-set-variables. These two

slots are used as temporary holders when forks are analysed. Set-variables holds the
names of any variables set within the current fork being analysed. Inner-set-variables
holds the names of any variables set within any fork inside the current fork being

analysed. The reason these two slots are needed is explained in section 7.2.4.
Function Definitions

Function definitions include functions defined by DEFUN and loop functions (see
figure 7-1a). User defined functions are analysed and stored away in a hash table. A

user defined function is represented by an object with the following extra slots:
1. Function name.

2. Parameter list.

3. Global variable list.

4. Code and objects.

The function name (obviously) contains the name of the function. The important part of
function definitions are the parameter list and the global variable list (could be called
the port list or the io-port list). The parameter list contains the arguments (input ports) to
the function. The global variable list contains the global variables side effected in the
function (i.e. altered by SETQ). This is the only side effect a user defined function can
cause in the subset of Lisp that we are considering. The code and objects slot contains a
mapping between each object and the code it represents, this is used by the highlighting

module (see section 9.1).

Chapter VIl Transforming the Code 121

Loop functions are used in the analysis of loops. These are similar to user defined
functions except that scoping within the function is dynamic and there are no local

variables. So, for example, the following code:

(prog (a)
(setg a 2)
1p
(setqg a (+ a 2))

(go 1p))

would first be translated into the following:

(prog (a)
(setg a 2)
(1p))

(loop-define 1lp ()
(setg a (+ a 2))

(1p))

The body of the loop (between the tag and the go tag) have been converted into a function.
LOOP-DEFINE creates this function. The code is then converted to:

Chapter VII Transforming the Code 122

Figure 7-5

LP

LP

mel

Loop function objects are used to represent the LOOP-DEFINE section of code - the second
segment containing the + is a loop function object. The fact that the two LP objects are

connected by a spring means that the inner LP object is a recursive call the the outer LP

object.

Chapter VIl Transforming the Code 123

Loop

Loop objects are Lisp constructs that allow looping. No objects of this type are actually
created. This is used to differentiate between the Lisp constructs that allow loops and
those that only allow linear control flow eg. PROG and LET. Currently PROG is the only
Lisp looping construct that ITSY can analyse.

Blocks

Blocks represent constructs that allow linear sequences of code without loops. As with
loop, objects of this type are not created. There are two such constructs that ITSY can

currently analyse, LET and LET*.
Bind Local Vars

Bind local vars represents constructs that allow local variables to be bound. Parallel

and serial represent the two different ways this can happen. If local variables are bound
in parallel all the values for the variables are evaluated before binding any of them to the
variables. If local variables are bound serially, the variables are bound as the values are

evaluated one after another.
7.1.4 Non Connectives

The non-connectives consist of two parts function applications and Common Lisp
functions. Function application represent the application of user defined functions to
their arguments. Loop apply is used in the analysis of loops - the first segment in
diagram 7-5 is a loop apply. Higher apply function represents the application of
functions using a higher order function, that is a function that takes a function as an
argument. Examples of higher order functions include MAPCAR and APPLY.
Function application objects contain a type slot. This is set to the type of the function call.

This slot can have one of three values; normal, recursive and undefined.

Common Lisp functions covers the non connective Common Lisp functions. One arg,

two args and any args are used to specify the number of arguments a function requires.

Chapter VI Transforming the Code 124

7.2 The Transformation Process

The actions of this module of ITSY are in some ways similar to the Lisp evaluator. The
transformation process begins with the form typed into ITSY's toplevel. At any time there
is exactly one active object. Initially a pointer object is created and made the active
object. The input to this object is the toplevel form. At this stage of the analysis the input

slot of the object is just the code itself rather than any representation.

If the toplevel form is an atom, the input to the pointer is replaced by an object
representing the value of the atom. When a variable is analysed the surface plan
representation of the variable's value is stored in a hash table under the variable's
name. This is manipulated when the Lisp environment changes, such as inside a

function or a LET.

If the toplevel form is a list, the first element of the list is considered to be a function and
the analyser creates an object that represents the function. The inputs to this new object

are the arguments to the function.

If the function is user-defined the analyser creates a Function Application object. The
analyser then checks if the function definition has been analysed. The analyser carries
out this check because the definition of user-defined functions are only analysed once.
As the function application appears in the toplevel form the function definition will not
have been analysed. The definition is analysed and stored in a hash table under the

function's name. If no definition exists for the function the type slot is set to 'undefined'.

The new object created then becomes the active object and the process starts again.

As the transformation process runs, the segments of raw code in the active object's input
slots are replaced by ITSY's internal representation. As a code segment is translated
into plan diagram form the code is stored, to be used by the tutorial frame presentation
package (see chapter 9). After analysing all of the code we end up with a network of

connecting objects.

As discussed in section 7.1.2 each object has an expectations slot. There is a hash table

Chapter VIl Transforming the Code 125

containing prototype versions of each Lisp function. Whenever a Lisp construct is met
this slot is filled with the prototype versions stored in the hash table. The prototype
version is used carries information such as the number of arguments a function should

be given. This is used by the error cliche matcher.

The transformation process described above is carried out in two independent contexts.
The first context is the foplevel context. This is either toplevel or inside a function.
When code is analysed within a function definition the toplevel context is inside a
function, otherwise it is toplevel. The second context used is the embedded context. This

context is either normal or inside a fork. This is used in the analysis of forks.

7.2.1 Application of Non-Connective Common Lisp Functions

This type of construct is the simplest to analyse. Whenever a non-connective common
Lisp function is met, an object of the appropriate type is constructed. The input slot is set to
the arguments of the function (the raw code) and the function object becomes the active

object.

7.2.2 Application of User Defined Functions

A function application object is constructed to represent the function applied. The object
is given a type depending on the type of function that is being applied. The function
definition is analysed if necessary. Each of the arguments is then analysed in turn.
The next step depends on the type the function application object was assigned. A
function application has one of three types; not defined, recursive and normal. If the
function type is not defined or recursive no further analysis takes place. If the function
is not defined then there is nothing to analyse, if the function type is recursive the

function is currently being analysed.

If the function type is normal the side effects of the function application, that is any

global variables assigned are updated. The side effects of the application of user defined
functions within the function body are also updated. This action, of course, would lead to
endless recursions in mutually recursive functions. At the moment this is prevented by

keeping track of the function definitions checked and restricting the number of times a

Chapter VIl Transforming the Code 126

function can be checked in this way. Students rarely write mutually recursive functions
and there are no cases of a global variable being assigned a value that depended on a

recursive call such as in:

(defun strange-function (n)
(cond ((=n 0) 0)
(t (setq *var* (append (list n) *var*

(strange-function (1- n)))))))

" the global variable *VAR* depends on a recursive call to STRANGE-FUNCTION.
Simple FUNCALLs and APPLYs are converted into normal function application, for

example:

(funcall '+ 1 2 3)
or

(apply '+ '(1 2 3))
is converted to:

(+ 12 3)

.7.2.3 Function Definitions
When a function is analysed the two most important rules used are:

a) the output of a function is the last form, all the other forms inside the function are only

used for storing temporary values or for side effects.

b) function definitions are only analysed once, even if there is more than one call to the
function in the student's code. The necessary information needs to be stored for when the
function is applied. The main information is the side effects that occur within the

function.

Chapter VIl Transforming the Code 127

The first thing that happens is that input ports are created for each of the function's
parameters. A new hash table is created to store variables. The body of the function is
then analysed with the toplevel context set to inside a function. This affects the way
dataflow analysis is carried out. Normally when a globally scoped variable is met it is
replaced by its value. Inside a function definition a global variable becomes an input
port. If the value of a global variable is changed normally a new value is inserted in the
hash table. If this happens inside a function this is kept in the side effect slot of the
function definition. This saves ITSY having to re-analyse the function whenever it is

applied.

Whenever a parameter of a user-defined function is used as an argument to a Common
Lisp function the expected type of argument to the Common Lisp function is added to the
list of expected types of the user-defined function. So in the following code:

(defun my-add (numl num?2)

(+ numl num2))

the function MY-FIRST would have nuniber added to its list of expected types because the

Common Lisp function + expects a number. This is used by the Wrong Type error cliche.
724 Forks

This is where most of the effort has been put during this research.

Conds

Each clause of a COND is analysed in turn. When analysing a clause first a pred is
created. The test slot of the pred is filled with the surface plan representation of the test
part of the clause. Each of the result subclauses from the COND are then analysed. The
true control output of the pred is filled with the first of the result subclauses. The false
control output of the pred is filled with the test of the pred corresponding to the next clause.
The last result subclause is connected to a join. The false control output path meets up
with this join after passing through the preds and joins corresponding to the clauses that

follow the current clause.

Chapter VIi Transforming the Code 128

And Or

Each element of the and/or is analysed in turn. When analysing an element a pred is
created. The test slot of the pred is filled with the element. If an OR is being analysed the
true control output port is connected to the join and the false control output port is
connected to the next element. If an AND is being analysed the true control output port is

connected to the next element and the false control output port is to the join.

Added to both of the above is a complication due to variables being set within various parts

of a fork. Consider the following code:

(cond ((> x y) (setq min y) (setq max x))
(t (setqg min x) (setqg max y))

(list max min)

How should we represent this? The representation used in ITSY is the join value. A join
value contains all the possible values for a variable. Each possible value is represented
in two parts; the test and the value. The expression (LIST MAX MIN) above would be
represented as figure 7-6. The two inputs to the LIST object correspond to the two inputs to
the function LIST, MAX and MIN.

The lowest join value object on the left has two inputs to its value slot. These two inputs
correspond to the two possible values that MAX can have X and Y. The first input is the
join value object with value X and preds the > object. This represents the fact that MAX
will have the value X if (> X Y) is true. The second input is the join value object with value
Y and preds the T object. This represents the fact that MAX will have the value Y if T is
true (ITSY does not know that T is always true).

The lowest join value object on the right has two inputs to its value slot. These two inputs
correspond to the two possible values that MIN can have X and Y. The first input is the
join value object with value Y and preds the > object. This represents the fact that MIN
will have the value Y if (> X Y) is true. The second input is the join value object with
value X and preds the T object. This represents the fact that MIN will have the value X if T

is true.

Chapter VIl Transforming the Code 129

s
anrep uiop oren e
— p— spaig on[eA
an 0
[eA urop anfep uop anjeA ujop anjep utop
SDPI anjeA
paid 1 spaxd anfep spaid onreA spaid anfep
<
L L <
X gromfg X

Chapter VIl Transforming the Code 130

This example would be further complicated if the COND was embedded in another fork

such as:

(and (numberp x) (numberp y)
(cond ((> x y) (setqg min y) (setq max x))
(t (setqg min x) (setqg max y)))

(list max min)

this would be represented as figure 7-7. This diagram is the same as figure 7-6 except that
two extra inputs have been added to the preds slots of the join value objects representing
the possible values of MAX and MIN. The two extra inputs correspond to the two new s-
expressions whose values will determine the values of MAX and MIN, (NUMBERP X)
and (NUMBERP Y). The two s-expressions NUMBERP X) and (NUMBERP Y) both
have to be true for MAX and MIN to be assigned a value.

Chapter VIl Transforming the Code 131

IsT1
anfeA ugop e
— — spaig IanfeA
anep ujo
[eA urop anfej ujop an[eA uiop aneA ujop
spaid SNEA
spa. SN[EA
paid e spa1d onfeA spaid anreA
|
[|
diaqump L _
L
draqunN draqumy dRquny
dioquny <
dxa
po— p— quiny
-2 dmBLg X X

Chapter Vil Transforming the Code 132

The expression below:

(or (numberp x) (numberp y)
(cond ((> x y) (setqg min y) (setqg max x))
(t (setqg min x) (setq max y)))

(list max min)

would be represented as figure 7-8. This is the same as figure 7-7 except that the numberp
objects are now inputs into a not object. This represents the fact that the two s-

expressions (NUMBERP X) and (NUMBERP Y) must not be true for MAX and MIN to be

assigned values.

Chapter VIl Transforming the Code 133

IST1
——— anfep urop
— — spaad anfeA
anreA ujo
[eA urop anrep ujop anfe;A urop anea uop
Spa. an
paid eA spaig anpeA spaid onreA spaid anfeA
] _ _._J ——
L
10N L < 1N =
_ JON I .
<
_ | |
diequmy| | disquny
droquiny dioquiny dioquiny | | droqumy drsqumy drsquny
8-2 omS1d X X

Chapter VIl Transforming the Code 134

These transformations use the set-variables and inner-set-variables mentioned in
section 7.1.3. In all three of the above examples the pred object representing the COND
uses the set-variables slot. This slot holds the two variables max and min. The analyser
creates join values for these two variables and adds the appropriate predicates. The pred
objects representing the AND and OR use the inner-set-variables slot. The analyser
adds the appropriate predicates to the existing join values - no new join values are
created. The values that a variable had before it was set inside a fork is stored a default
value slot of a join value. As none of the variables had such a value it has not been

shown, it is shown however in the example given at the end of this chapter.
7.2.5 Loops

DO's and DO¥*'s are converted to equivalent PROGs. So, for example, the following

code:

(defun fact (n)
(do ((1 1 (+1i 1))
(result 1))
((> 1 n) result)

(setqg result (* result 1i))))
would be translated into the equivalent PROG:

(defun fact (n)
(prog ((i 1) (result 1))
loop
(cond ((> i n) (return result)))
(setq result (* result i))
(setg i (+ 1 1))

(go loop)))

and then to:

Chapter VII Transforming the Code 135

(defun fact (n)
(prog ((i 1) (result 1))

(loop)))

(loop-define loop ()
(cond ((> i n) result))
(t (setq result (* result i))
(setg i (+ i 1))

(loop))))

which is then represented as:

Figure 7-9a

Fact 1

Loop

Chapter VII Transforming the Code 136

Figure 7-9b
N I Result
>
Pred Test
T F
Pred Test T
F T
\\ *
\ 1
+
|

Loojg mn f
_0p ‘p‘u ‘)(M ;U:';" W |

Join

Join

Chapter VIl Transforming the Code 137

Inside a loop construct the analyser analyses each of the sub-s-expressions until a tag
(such as 'loop' in the above example) is found. When a tag is found a loop function is
created. The following s-expressions, until a (GO TAG), are analysed and inserted
into the loop function. The (GO TAG) is transformed into the recursive function call

(TAG).
7.3 An Example of Code Transformation

The following example shows some of the more complicated aspects of the transformation

process in more detail. I shall describe the transformation of the code shown below:

(defun example (x)
(let ((lisp-type ‘'atom) (object-type ‘unknown) (length-x 0)
(result nil))
(and (listp x) (setq lisp-type 'list)
(cond ((and (equal (length x) 2) (numberp (car x))
(numberp (cadr x)))

(setqg object-type 'complex-number)

(setg length-x 2)

(setg result (list (* (car x) 2) (* (cadr x) 2))))

(t (setqg object-type 'list)
(setq result (palindrome x))
(setqg length—x.(length x)))))

(list result lisp-type object-type length-x)))

(defun palindrome (x)

(append x (reverse x)))

The above code can be thought of as part of a larger program that 'doubles' objects. The
type of doubling carried out depends on the type of object input - this is explained in the
next paragraph. The program returns four parts; the 'doubled' object, the Lisp
representation of the object, the type of the object and the length of the object. This part of

the code deals with complex numbers and ordinary lists. These two types of object are

Chapter VIl Transforming the Code 138

both represented by Lisp lists.

If X is a list then the LISP-TYPE is set to LIST, otherwise LISP-TYPE is set to ATOM.
If X is a list then it is either an ordinary list or a complex number. A complex number
has two parts, each part being an integer. If X is a complex number then 'doubling’
involves multiplying both parts by 2. If X is a list then 'doubling’ involves making a

palindrome out of the list.

The analyser proceeds in a depth first manner that is similar to that of the evaluator.
When an s-expression is analysed the arguments are analysed first, the function is
then analysed and the resulting representation of the whole s-expression returned.
The analyser takes an object as input. The input slot of this object will not yet have
been analysed and will contain raw Lisp code. The analyser module contains several
general purpose submodules. These can take any type of object and perform

appropriate tasks. The important submodules are enumerated below:

1. Analyse object - this submodule analyses the one object given as input. This object's
input slot is initially raw Lisp code. The object is returned with the input slot set to the

surface plan representation of the Lisp code.

2. Toplevel input analyser - this submodule analyses a single input of an object

given. It assumes that the object does not occur within a function definition.

3. Function body input analyser - this submodule analyses a single input of the object

given. It assumes that the object occurs within a function definition.

The analyser can work in one of two modes normal and within a fork. This is used

when variables are encountered.

Objects are passed around between the submodules. When an object is passed to a

submodule it becomes the active object.

If a student typed in the form (EXAMPLE 30) the following steps would occur. Firstly,
a TOPLEVEL object would be created with input slot set to (EXAMPLE 30). This object

Chapter VII Transforming the Code 139

is passed to the analyser and then to the toplevel input analyser. The toplevel input
analyser uses the input slot of the active object, which is raw Lisp code, to create a new
object. The input analyser finds that the raw Lisp code is the user-defined function
call (EXAMPLE 30). A FUNCTION APPLICATION and a NUMBER object are
created. The definition of EXAMPLE is then analysed as follows.

A DEFUN object is created. The name slot is set to EXAMPLE. The parameter slot is
set to X. The input slot of the object is set to the body of the function. The DEFUN object
is sent to the function body input analyser. This submodule creates a LET object and
sets the input slot of the object to the code within the LET. This object is passed to the
analyse object submodule. This submodule creates temporary slots in a hash table
for the local variables LISP-TYPE, OBJECT-TYPE, LENGTH-X and RESULT.
These slots contain the variable name and the internal representation of the value of
the variable. LISP-TYPE and OBJECT-TYPE have QUOTE objects as their values.
LENGTH-X has a NUMBER object as its value and RESULT has the NIL object as its
value. The analyser module then passes, in turn, the last two s-expressions within the

LET to the function body input analyser in turn.

The first s-expression passed is (AND (LISTP X) ... An AND object is created with the
input slot set to the rest of the AND expression. This object is passed to the analyse
object submodule. The analyser is set to work in within a fork mode, each of the

arguments to AND are passed, in turn, to this submodule.

The s-expression (LISTP X) is transformed into a LISTP object. The local variable X
is transformed into a LOCAL VARIABLE object. A PRED object (call this PREDA) is
created. The test slot of PREDA is set to the LISTP object.

The s-expression (SETQ LISP-TYPE 'LIST) is analysed in a special way because the
current mode is within a fork. If the analyser were working in normal mode a
SETQ would result in the representation of the old value of the variable being
overwritten with a representation of the new value (the representation of the values of
variables are stored in a hash table). Because the analyser is currently working in
within a fork mode a QUOTE object with input slot set to LIST is added to the slot for
LISP-TYPE in the hash table. The slot for LISP-TYPE now has the two QUOTE
objects, one with its input slot set to LIST the other with its input slot set to ATOM. A

Chapter VIl Transforming the Code 140

PRED object (call this PREDB) is created. The test slot of PREDB is set to the QUOTE
object.

The third argument to AND is analysed next. The function body input analyser
creates a COND object and passes this to the analyse object submodule. This passes
each of the clauses of the COND in turn to the function body input analyser.

A PRED object (call this PRED1) is créated. The test part of the first clause is analysed
first i.e (AND (EQUAL (LENGTH X) 2) ... The function body input analyser creates
an AND object with the input slot set to the arguments to AND. This is passed to the
analyse object submodule. This passes the first argument (EQUAL (LENGTH X) 2)

to the function body ihput analyser. This s-expression is transformed into EQUAL,
LENGTH, LOCAL VARIABLE and NUMBER objects. A PRED object (call this
PRED?2) is created and its test slot set to the network of objects that represent the s-
expression (EQUAL (LENGTH X) 2). In a similar fashion the next argument to AND,
(NUMBERP (CAR X)) is analysed and a PRED object (call this PRED3) is created
with its test slot set to the representation of this s-expression. The last argument to
AND, (NUMBERP (CADR X)) is analysed. No PRED object is created for the last
argument as the controlflow cannot split (i.e. is always the same) on the last

argument to an AND. The true output port of PRED2 is set to PRED3 and the true output
port of PREDS3 is set to the NUMBERP object in the last argument to the AND. A JOIN
is created for PRED2 (call this JOIN2) and for PRED3 (call this JOIN3). The false
output port of PRED2 is set to the false input port of JOIN2 and the false output port of
PREDS is set to the false input port of JOIN3. The output port of the representation of the
last argument to AND is set to true input port of JOIN3. The output port of JOINS is set to
the true input port of JOIN2. The AND object created is discarded and the PRED2 is
returned. Now the analyser 'pops up' to the first clause of the COND.

The result part of the first clause is analysed next. As mentioned earlier because the
analyser is working in within a fork mode SETQs are analysed in a special way. A
QUOTE object (call this QUOTE1) is pushed into the hash table slot of OBJECT-TYPE.
A NUMBER object is created and pushed into the hash table slot of the variable
LENGTH-X. A network of objects representing the s-expression (LIST (* (CAR X) 2)
(* (CADRX) 2))) is pushed into the hash table slot of RESULT. The test slot of PRED1
is set to PRED2. The true output port of PRED1 is set to QUOTEL. The set-variables slot

Chapter VII Transforming the Code 141
of PREDL1 is set to (OBJECT-TYPE LENGTH-X RESULT).

The second clause of the COND is analysed next. A PRED object (call this PRED4) is
created with its test slot set to a T object. Representations for the three variable values
'LIST, (PALINDROME X) and (LENGTH X) are pushed into the appropriate hash
table slots. Before the s-expression (PALINDROME X) is analysed the definition of
the function PALINDROME is analysed and stored in a hash table. The set-variables
slot of PRED4 is set to (OBJECT-TYPE RESULT LENGTH-X). The analyser now
‘pops up' to the analysis of the whole COND.

The false output port of PREDL1 is set to PRED4. JOIN-VALUE objects are created for
the variables in the set-variables slot of PRED1 and PRED4, and pushed into the
appropriate slots in the hash table. Each JOIN-VALUE object contains the
representation of the variable and the test slots that needs to be true in order for the
variable to have the particular value. The default slot of each JOIN-VALUE is to the
surface plan representation of the value each variable had before the fork was entered.
In the JOIN-VALUE representing LISP-TYPE, the default value is set to the QUOTE
object with its input slot set to ATOM. Similarly, the JOIN-VALUES representing
OBJECT-TYPE, LENGTH-X and RESULT have default values is set to the QUOTE
object with its input slot set to UNKNOWN, a NUMBER object and a NIL object
respectively. JOINs are then created for PRED1 (call this JOIN1) and for PRED4 (call
this JOIN4). The output port of the LIST object in the s-expression (LIST (* (CARX ...
is set to the true input port of JOIN1. The output port of the LENGTH object in the s-
expression (LENGTH X) is set to the true input port of JOIN4. The false output port of
PRED(is set to the false input port of JOIN4. The output port of JOIN4 is set to the false
input port of JOIN1. The COND object is now discarded and PRED1 is returned. The

analyser now 'pops up' to the outer AND.

The true output port of PREDA is set to PREDB. The true output port of PREDB is set to
PRED1. Two JOIN objects are created (JOINA and JOINB). The false output port of
PREDA is set to the false input port of JOINA. The false output port of PREDB is set to
the false input port of JOINB. The output port of JOIN1 is set to the true input port of
JOINB. The output port of JOINB is set to the true input port of JOINA. The next step
involves the variables set within the COND (inner-set variables). A JOIN-VALUE

Chapter VIl Transforming the Code 142

object is created for the variable LISP-TYPE. The LISTP object for the s-expression
(LISTP X) is inserted into the preds slot of the object. The test slots of PREDA and
PREDB are added to the JOIN-VALUE objects of the variables OBJECT-TYPE,
RESULT and LENGTH-X. The AND object is now discarded and PREDA is
returned. The analyser now ‘pops up' to the analysis of the LET.

The analyser is now back in normal mode. The third argument to LET is now
analysed. A LIST object is created. The input slot of this object is set to the objects
stored in the hash table under the slots of RESULT, LISP-TYPE, OBJECT-TYPE and
LENGTH-X. The LET object is now discarded and PREDA and the LIST 6bject are
returned. The analyser now 'pops up' to the analysis of the DEFUN.

The input slot of the DEFUN object is set to the LIST object. PREDA is stored in the
inside slot of the DEFUN object. The DEFUN object is stored in a hash table under
EXAMPLE.

Figure 7-10 shows the surface plan representationof the input slot of the DEFUN. This
is a representation of the last s-expression in the function EXAMPLE, (LIST RESULT
LISP-TYPE OBJECT-TYPE LENGTH-X).

Figure 7-10a shows the first two arguments to LIST, RESULT and LISP-TYPE. The
three join values on the left of figure 7-10a represent the value of RESULT. As
mentioned in 7.2.4 join values have a default slot. This slot is set if a variable is
assigned a value before being assigned a value inside a fork. The default slot is set to
a nil object as RESULT is assigned the value NIL in the initialisation part of the
LET. The top left join value represents RESULT having the value (LIST (* (CAR X) 2)
(* (CADR X) 2))). RESULT is assigned this value if the three inputs to the preds slot
are true. Pred2 (shown in figure 7-10c) represents the test part of the first clause in the
COND, (AND (EQUAL (LENGTH X) 2) (NUMBERP (CAR X)) NUMBERP (CADR
X))). The quote and list objects represent the second s-expression given to the first
AND, (SETQ LISP-TYPE 'LIST). The listp object represent the first s-expression
given to the first AND, (LISTP X). The rightmost join value object represents the
possible values that LISP-TYPE might be assigned.

Figure 7-10b represents the possible values the second two arguments to LIST might

Chapter VIl Transforming the Code 143

have. The three leftmost join value objects represent the possible values of OBJECT-
TYPE. The three rightmost join value objects represent the possible values of
LENGTH-X.

Chapter VIl Transforming the Code 144

ST

aon

wolv

1IN }nejpq | neA wop
spaid anrep
jynepq | 9nfea upop
spaid anfeA
onfep urop S —
spaid anrep P ey
aond
disr1 N @S
¢pald ISI]
S
ISt ojon®| | swoipurreq om0 *1L:
(4
IPED
S
L Isr Iep
BOT-L 9mMFy

Chapter VIl Transforming the Code 145

ISK1
_M jnejaqg | onpea ujop 91006 nejq | onrea uop
Spa1d nreA spaig anfep
umouyun
anrep ujop
anfeA ujop P p—
anfeA ujop
spaid anfep anfeA ujop
E spaid anpep p—— p——
disr1| || zpaxa
djsr1 L
dis
1ST] 1 disr1| || gpaxg
ond
a10ndH qigu]
aond ajond 006 -
1811
ISV
[asr1]| | 3s11] [Ger1] [Fawnuse@uos]

qoT-2 amSty

Chapter VIl Transforming the Code 146

Figure 7-10c
X
|
Length
Pred2 |[Test Equal
F T
Car
Pred3 |Test Numberp
F T
Cadr
]
|
Numberp
F |T
Join
| |
F |T
Join
74 Current Limit of Analysis

As mentioned earlier the only loop construct that ITSY can currently deal with is the
PROG. Extra code to transform the other constructs into the equivalent PROGs is

needed. In most cases the addition of a new Common Lisp function would involve

Chapter VIl Transforming the Code 147

adding a new type of object in ITSY's Lisp Object Hierarchy. Special forms would
also require the addition of code in order to be parsed. The functions that would create
the most difficulty would be the destructive functions. This is not too great a problem
as these functions are generally not used by novices, or are used when the novice has
had a fair amount of exposure to Lisp. A list of all the functions that ITSY can

currently analyse is given in appendix J.

8. MATCHING ERROR CLICHES AGAINST THE TRANSFORMED CODE

This chapter describes in detail how ITSY matches an error cliche against the

transformed code. Each error cliche has the following four parts:
a) Error Cliche Name - the name of the error cliche,

b) Surface Code Segment - the 'type' of object that the error cliche can match against,

I

c) Criteria - criteria that need to be satisfied in order for the error cliche to match,
d) Other Checks - tests that prevent false alarms.

The matching process is carried out by two distinct modules. The plan diagram
traversing module and the error cliche matching module. The plan diagram
traversing module traverses the network of objects created by the code transforming
module (described in chapter 7). The error cliche matching module is activated each
time the plan diagram traversing module comes to a new node. The error cliches are
‘active’ - that is they actively attempt to match themselves against a segment of the
network of objects. Error cliches are in fact implemented as messages, the Error Cliche
Name corresponds to the name of the message and the Surface Code Segment corresponds
to the class of objects the message can be sent to. The error cliche matching module
'fires' each error cliche in turn. The error cliche then actively tries to match itself
against the current node in the network. This process stops when either an error cliche

has matched itself against part of the network or all of the nodes have been examined.

In the Programmer's Apprentice project [Waters, 1985] raw code is first translated into
surface plans then segments of the surface plans are matched against cliches producing
plan diagrams. ITSY uses a variant of this. Student's code is first translated into
surface code as in the Programmer's Apprentice. Then, instead of trying to turn the code
into a plan diagram via cliches, ITSY tries to match error cliches against the code. If

ITSY succeeds in doing this then a tutorial is given.

Chapter VIl Matching Error Cliches 149

8.1 Traversing the Transformed Code

The output of the code analyser is a network of plan diagram segments represented by
objects. This module "walks" through the network. I will show this process using an
example. Consider the following surface plan representation (this is taken from figure

7-2):

Figure 8-1
One
+
List
Append

The + is matched against the error cliches, then LIST is matched, then APPEND.

This method of matching means that ITSY will not always find the same error that the

evaluator would. In the following code:
(append (list (car 1)) 2 3)

ITSY would find the error '2 is the wrong type of argument for APPEND' whereas the
Lisp evaluator would report '1 was the wrong type of argument for CAR'. One might
think that a simple to cure for this would be to proceed in a depth first manner. However

if the traverser were altered to proceed in a depth first manner then ITSY would have

Chapter VIII Matching Error Cliches 150

problems with the following code:

(appen (car 1) 2 3)

ITSY would report '1 was the wrong type of argument for CAR' whereas the Lisp
evaluator would report 'APPEN is not a defined function'. The real cure for this is to
divide the error cliches into two halves. Each node in the network would be visited twice.
The traverser would visit a node, 'fire' half of the error cliches then visit the nodes
'below’ the current node in a depth first manner. After visiting all of the nodes below’
the current node the traverser would then fire the other half of the error cliches. The first
half would contain error cliches that match against errors concerning the actual
function being called (such as the Bracket Around a Variable error cliche), the other half
would contain error cliches that match against the errors concerning the arguments to a
function (such as Argument of the Wrong Type error cliche). This would have to be

implemented in future versions of ITSY.

When possible ITSY gives a tutorial on a single error. There are two reasons for this.
Firstly, the student would be confused if s/he were to be tutored about several different
topics at once. Secondly, there is a chance that any errors yet to be discovered may have
been caused by the student having the same misconception. The student is given a

second chance to fix the other errors before receiving a tutorial about them.

The surface plan network is traversed until either an error cliche is found to match a
segment of code, or all the code has been traversed. Each different type of plan diagram
segment has its own built-in code traverser. As the network is traversed each plan
diagram segment's traverser becomes active, once all parts of the segment have been
inspected the traverser passes activity to another plan diagram segment's traverser.

The different type of plan diagram segment traversers are described in turn below.

Two steps have been taken to make ITSY's messages coincide with the Lisp error
messages if there is more than one error in the student’s code. Firstly, the error cliches
have been ordered. This ordering is based on the order in which the Lisp evaluator
evaluates Lisp forms. The wrong number of arguments error cliche is before the wrong

type argument error cliche, so the in the following example:

Chapter VIl Matching Error Cliches 151

(car 1 2)

the wrong number of arguments error cliche matches first. Some of the error cliches
have been artificially ‘raised. The error cliche bracket around a variable is one such
error cliche to have been raised. This error cliche matches one level above it normally

would. By level I mean what is commonly called 'list depth’, so in the list:

((((ab) c) d) e £ (((g))))

e and f are at level 1, d is at level 2, ¢ is at level 3 and a, b and g are at level 4.

The following example will help explain, consider:

(+ (a) 'john)

(A is a variable). If the error cliche bracket around a variable were to match at the level
of the s-expression (A), the error cliche wrong type argument (which matches at the level
(+ (A) 'JOHN) would match first. This is because the + segment is checked before the
arguments. The error cliche bracket around a variable has been 'raised' so that it

matches at the level of (+ (A) 'JOHN).

8.1.1. Common Lisp Functions

This type of plan diagram segment is traversed as follows. First the object itself is
matched against the current error cliches, then each of the arguments are traversed in

turn. The plan diagram segment linked to the control-out slot is then traversed.

8.1.2. User Defined Function Application

First, the object itself is matched against the current error cliches. Second, the arguments
are traversed in turn. The plan diagram representation of the function is retrieved from
the user definition hash table. The input ports of the definition are connected to the
appropriate ports inside the function application. The definition of the function is then
traversed. In order to prevent endless cycling function definitions are only allowed to be

analysed a certain number of times.

Chapter VIIl Matching Error Cliches 152

8.1.3. Function Definitions

User defined functions are traversed in two different ways depending on the context in

which the definition was encountered.

Normally only the function name and the parameter list are matched as these are the
only two sources of Lisp error in a function definition. That is to say, there are only two
ways an error can occur whilst defining a function. There can be an error in the
function name (eg. non-symbolic) or there can be an error in the parameters (eg. they
contain T or NIL or the parameters are not a list). The body of fhe function cannot
generate an error during the definition of a function. One could argue that if the
function definition were not closed (ie. no right bracket to match against the first left

bracket), this would result in a read error, but then the function would not have a body.

The other way a function definition can be analysed is if an application of the function is
found. Once the input ports of the function have been connected to the ports of the

application, the body of the function definition is traversed.
8.1.4 Forks

First the test part of the fork is traversed. If an error is found then the process halts. The
true and false control outputs are then traversed concurrently until the pred's
corresponding join is met. If an error is found in both the true and false paths then both
errors are returned. At present ITSY cannot tell which of the two paths generated the Lisp

error.
8.1.5 Loops

The code analyser transforms loops to an application of a loop function. The code
traverser treats loops in the same way as a normal function application. When an
application of a loop function is met, the body of the loop function is retrieved from the loop
function hash table. The loop function is traversed once only. The recursive call within

the loop is not re-analysed.

Chapter VIl Matching Error Cliches 153

8.2 Returning Information About the Error

Once an error cliche has been matched against a surface plan segment an object is

returned. The object contains 4 pieces of information about the error:
a) the error cliche that matched against the surface plan segment,

b) the surface plan segment that contains the erroneous piece of code,
c¢) The number of errors,

d) whether the error occurred inside code at toplevel, or in a file. The error may be
contained in the actual code typed to the Lisp toplevel, or in the body of a function (loaded

~ from a file) called from toplevel.
8.3 Matching a Code Segment Against an Error Cliche

As each part of the network is traversed an attempt is made to match each of the active
error cliches in turn. The members and order of the active set is determined by the type of
error signalled. Common Lisp errors as implemented on the 3600 Symbolics series have
a type. ITSY uses this type to select the active set. For example, an error of the type

‘undefined function' excludes a 'wrong type' error cliche.

When ITSY is trying to find an error cliche to match against a segment two rules are

used:

a) Try to match the most complex error cliche first,

b) Try to match as high up as possible, that is at the highest level.

Matching has to proceed in a certain order as some error cliches subsume others, This
can best be explained using an example. There are error cliches Arguments in the

Wrong Form and Wrong Number of Arguments Given to a Function. The first error

cliche matches against sections of code such as:

Chapter VIl Matching Error Cliches 154

(expt (2 3))

where the arguments to the function EXPT have been presented in the wrong form. The
Wrong Number of Arguments Given to a Functionerror cliche would match against this
section of code because the function EXPT has been given the wrong number of
arguments, but Arguments in the Wrong Form is the error cliche that applies in this

case.

8.4 An Example of Matching

In order to make clear some of the concepts discussed earlier we shall describe in detail
a match with the error cliche Arguments in the Wrong Form. Consider the following

code:

(defun my-add (x y z)

(+ (x vy 2)))

When the student types the s-expression

(my-add 10 20 30)

at toplevel, the following surface plan diagram is generated:

Chapter VIl Matching Error Cliches 155

Figure 8-2

My-add

Function Application
X

0 20 30

Function Application
My-add

The error cliche finder first looks at the function application to make sure it is a defined
function then the arguments are traversed. None of the error cliches match up against
the arguments or the function application so the function definition is traversed. During
this process the function + is traversed. At this point the error cliche Arguments in
theWrong Form matches against the surface plan segment for +. The function +
satisfies the criteria for the error cliche Arguments in the Wrong Form1 with the

surface code segment CL Function that is: the function + has only been given one

argument in the definition of MY-ADD and the function does not only take one

Chapter VIl Matching Error Cliches 156

argument. The argument to the function + satisfies the subcliche Arguments in the
Wrong Form Subcliche that is: the function '10' is not defined and the other checks are

satisfied.
8.5 The Error Cliches
Each error cliche is represented as a collection of rules. For each type of surface plan
segment there is a rule that determines whether or not that particular segment could
match the error cliche. A rule has four parts:
a) Error Cliche Name - the name of the error cliche,
b) Surface Code Segment - the type of surface plan segment that the error cliche can match
against. Note that the error cliche can also match against all children of the type of
surface plan segment. For example an error cliche with Surface Code Segment
Function Definition could also match against surface plan segments of type Defun and
Loop Defun.
¢) Criteria - a set of criteria that need to be satisfied,
d) Other Checks - a set of checks to make sure that this is not a false alarm. This is
needed because sometimes the student can make several errors at once. For example,
one of the manifestations of the Arguments in the Wrong Form error cliche traps errors
where the student gives a list argument as separate quoted atoms:

(cons 'a "(b ¢ d))
is written as:

(cons 'a 'b 'c '4d)

but the student could have meant

(cons 'a (list b c d))

Chapter Vill Matching Error Cliches 157

if B, C, and D are variables. This manifestation of the error cliche checks quoted atoms

to make sure that none are bound variables so as to distinguish between these two cases.
Some error cliches use sub-cliches. These have the same format as error cliches but are
not error cliches in their own right. These are used when an error cliche extends over

several surface plan segments. Sub-cliches can refer to the error cliche (or any part of

the error cliche) that uses them by using the term super cliche.

The error cliches are enumerated below. Each error cliche has been numbered, some of
the error cliches cover more than one Surface Code Segment (ie. an error cliche covers
all the items with the same Error Cliche Name).
1. Error Cliche Name: Bracket Around a Variable
Surface Code Segment: Function Application
Criteria: Function is undefined.
The 'name’ of the function contains a bound symbol

(‘name' is explained below).

Other Checks: The 'name’ of the function is not itself a function.

An example of this error cliche is:

(defun my-first (x)

(car (x)))

It may not be clear why we need the extra check to verify that the name of the function is

not a function. This is because by 'name’ we mean the first atom in the actual name of

the function. For example if we had

(car (((x))))

Chapter VIl Matching Error Cliches 158

the name of the apparent function (because of the bracketing error) would be X. This

extra check prevents this error cliche matching against sections of code as:

{(defun construct (element list)

((list element list)))

Where the wrongly bracketed item LIST is actually a function (this will match against

the Extra Bracket Around a Function error cliche).
2. Error Cliche Name: No Brackets Around a Function Call
Surface Code Segment: Symbols

Criteria: The symbol is unbound.

The symbol is the name of a function.
Cther Checks: None.

This error cliche matches against sections of code where the student has not placed a

bracket before a function call as in:
(defun my-first (x)
car x)
3. Error Cliche Name: Extra Bracket Around a Function Call
Surface Code Segment: Function Application
Criteria: The function is undefined.
The ‘name’ of the function is a list.

The first atom in the name' of the function is the

name of a defined function.

Chapter VIl Matching Error Cliches 159
Other Checks: None.

The following two error cliches (arguments in the wrong forml and arguments in the
wrong form2) correspond to a student not knowing how to give a function multiple
arguments. Each error cliche has two different forms. An example of each of the four
forms is given below:

+ (1 2 3))

(+ "(1 2 3))

(cons 'a 'b 'c 'd)

(cons a b ¢ d)

Two error cliches are needed below because function application is divided into two in the

hierarchy of Lisp objects (see diagram 8.1).
4. Error Cliche Name: Arguments in the Wrong Form1

Surface Code Segment: CL Function

Criteria: The function has been given one argument which
satisfies the subcliche Arguments in the Wrong
Form Subcliche.

The function does not take just one argument.
Other Checks: None.

An example of the above is:

(* "(1 2 3))

Chapter VIl Matching Error Cliches 160

Error Cliche Name: Arguments in the Wrong Form1
Surface Code Segment: Function Application

Criteria: The function is of type defined or recursive.
The function has been given one argument which
satisfies the subcliche Arguments in the Wrong

Form Subcliche.

The function does not take just one argument.
Other Checks: None.
An example of the above would be:
{(roots (3 4 5))

where ROOTS is defined as:

(defun roots (x y z)

(/ (= y (sqrt (- (expt y 2) (* 4 x 2)))) (* x 2)))
Sub Cliche Name: Arguments in the Wrong Form Subcliche
Surface Code Segment: Function Application
Criteria: The function is not defined.

Other Checks: None of the arguments to the function are functions.
The type of the function name and the function's
arguments satisfy the type constraints of the super
cliche's function.

The number of arguments to the function is one less
than the number of arguments the super cliche's

function requires.

Chapter VIl Matching Error Cliches 161

An example of where this would be used is:

(let ((x 1) (v 2) (z 3))

Sub Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

(+ (xy 2)))

Arguments in the Wrong Form Subcliche

Quote

The quoted object is a list.
The length of the list is the same as the number of

arguments the function takes.

The elements of the list are the right type for the
function.

The list does not contain the names of any functions.

An example of where this would be used is:

5. Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

(roots '(1 2 3))

Arguments in the Wrong Form2

User Function Application

The function is defined.
The function has been given too many arguments.
Each argument is either a quoted or an unbound

atom.
The function can take arguments either of type list or

of any type.

None of the arguments are functions.

Chapter VIl Matching Error Cliches 162

None of the quoted atoms are variables.

An example of where this would be used is:

(pal ‘a 'b 'c 'd)

Where the function pal is defined as:

(defun pal (1)

(append 1 (reverse 1)))

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Arguments in the Wrong Form2

CL Function

The function has been given too many arguments.
Each argument is either a quoted or unbound atom.
The function can take arguments either of type list or

of any type.

None of the arguments are functions.

None of the quoted atoms are variables.

This error cliche would match against:

(cons 'x 'y 'z '1 '2 13)

6. Error Cliche Name:

Surface Code Segment:

Criteria:

Not Quoting a List

Lisp Object

The object expects either inputs of type list or inputs of
any type.

Other Checks:

Chapter VIII Matching Error Cliches 163

One of the inputs satisfies the sub-cliche Not Quoting
a List Subcliche.

None.

An example of the where the above would match is:

(list (a b c))

The following error cliches have been defined on the surface code segment one arg, two

arg etc. rather than on CL Function to make the criteria and other checks easier.

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

An example of the above is:

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Not Quoting a List
One Arg

The first input satisfies the sub-cliche Not¢ Quoting a
List Subcliche.

The first input satisfies the type constraints of the

function.

(car (x y z))
Not Quoting a List
Two Args

The first or second input satisfies the subcliche Not

Quoting a List Subcliche.

The same input satisfies the type constraints of the

function.

An example of the above would be :

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

An example of the above would be:

Chapter VIll Matching Error Cliches 164

(cons 'a (b ¢ d))

Not Quoting a List
Three Args

Either the first, second or third input satisfies the
sub-cliche Not Quoting a List Subcliche.

The same input satisfies the type constraints of the

function.

(subst 'a 'b (a b ¢))

Sub Cliche Name:
Surface Code Segment:
Criteria:

Other Checks:

7. Error Cliche Name:
Surface Code Segment:

Criteria:

Not Quoting a List Subcliche

User Function Application

The function is undefined.

None of the inputs to the function are variables or

functions.

Not Quoting an Atom

Lisp Object

One of the inputs satisfies the subcliche Not Quoting

an Atom Subcliche.

Chapter VIl Matching Error Cliches 165

The object expects input of atom type or input of any

type.

Other Checks: None.
This would match against code such as:

(list a)

where the variable A is unbound.

Error Cliche Name: Not Quoting an Atom

Surface Code Segment: One Arg

Criteria: One of the inputs satisfies the subcliche Not Quoting
an Atom Subcliche.

The object expects input of atom type or input of any

type.
Other Checks: None.
An example of this would be:
(atom a)
where the variable A is unbound.
Error Cliche Name: Notv Quoting an Atom

Surface Code Segment: Two Args

Criteria: One of the inputs satisfies the subcliche Not Quoting

Chapter VIIl Matching Error Cliches 166

an Atom Subcliche.
The object expects input of atom type or input of any
type.

Other Checks: None.

An example of this would be:

(cons a '"(b ¢))

where the variable A is unbound.

Error Cliche Name: Not Quoting an Atom

Surface Code Segment: Three Args

Criteria: One of the inputs satisfies the subcliche Not Quoting
an Atom Subcliche.
The object expects input of atom type or input of any
type.

Other Checks: None.

An example of this would be

(subst a b "(a b c))

the variables A and B are unbound.

Sub Cliche Name: Not Quoting an Atom Subcliche

Surface Code Segment: Symbols

Chapter VIl Matching Error Cliches 167

Criteria: The symbol is unbound.
Other Checks: None.
8. Error Cliche Name: Quoting a Variable

Surface Code Segment: Quote

Criteria: The input to quote is an bound atom.
The input is not T or NIL.
Other Checks: The value of the atom is of the right type for the

calling function.

An example of the code the above cliche would match against is:
(let ((a "(x y z))

(car 'a))

9. Error Cliche Name: Quoting a Function Call

Surface Code Segment: Quote

Criteria: The input to quote is a list in which the first atom is

the name of a defined function.

Other Checks: None.

By first atom we mean the atom we would reach first if we were to move depth first

through the list. This means that this cliche will match against Lisp code such as:

{(car '"(((cons a (b c d)))))

Chapter VIIl Matching Error Cliches 168

10. Error Cliche Name: Wrong Number of Arguments to a Function Call
Surface Code Segment: CL Function

Criteria: The wrong number of arguments have been given to

the function.
Other Checks: None.
An example of where the above would match is:

(expt 2 3 4)

Error Cliche Name: Wrong Number of Arguments to a Function Call
Surface Code Segment: Function Application

Criteria: The wrong number of arguments have been given to

the function.
Other Checks: The function is defined.
An example of where the above would match is:
(my-add 1 3 2 4 5)

where MY-ADD is defined as:

(defun my-add (x y)

(+ x y))

11. Error Cliche Name: Wrong Type of Argument Given to a Function Call

Surface Code Segment:

Criteria;

Other Checks:

An example is:

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

An example is;

Error Cliche Name:

Surface Code Segment:

Criteria;

Other Checks:

Chapter VIl Matching Error Cliches 169

Any-arg

One of the arguments satisfies the subcliche Wrong

Type Argument Subcliche.

None.

(append 1 2)

Wrong Type of Argument Given to a Function Call

One-arg

The first argument satisfies the subcliche Wrong
Type Argument Subcliche.

None.

(car 4)

Wrong Type of Argument Given to a Function Call

Two-args

Either the first or the second argument satisfies the
subcliche Wrong Type Argument Subcliche.

None.

An example is:

Chapter VIII Matching Error Cliches 170

(expt '(a bc) '(de £f))

Error Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

An example is:

Sub Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Sub Cliche Name:

Surface Code Segment:

Criteria:

Wrong Type of Argument Given to a Function Call

Three-args

Either the first, second or third argument satisfies
the subcliche Wrong Type Argument Subcliche.

None.

(subst 1 2 3)

Wrong Type Argument Subcliche

Lisp Object

The type of the expected output of the object does not
match the input expected by the super cliches object.

None.

Wrong Type Argument Subcliche

Car

The type of the CAR of the object's input does not

Chapter VIl Matching Error Cliches 171
match the input expected by the super cliches object.
Other Checks: None.
The sub cliche above extends the Wrong Type Argument error cliche to trap errors where
the CAR of a flat list (that is a list of depth 1 eg. (ab c d)) is given to a function that expects

a list, as in:

(defun my-fun (x y)

(append (car x) y))
(my-fun '(3 4 5) *(4 5 6))
the above was seen frequently in the experiment (see part III). This error cliche could be
extended further by including a flat list function. By flat list function we mean any
function that does not increase the depth of the list given. APPEND, REVERSE and CDR
are examples of flat list functions. The error cliche would then match against errors
where a flat list is manipulated by flat list functions before being passed to the CAR

function then to a function that expects a list. So for example if MY-FUN were:

(defun my-fun (x y)

(append (car (reverse (cdr x)) y))

would match against the error cliche but:

(defun my—fun (x y)

(append (car (list (cdr x)) y))

would not.

12. Error Cliche Name: Wrong Scope

Surface Code Segment: Symbol

Chapter VIl Matching Error Cliches 172
Criteria: The symbol is unbound.
The name of the symbol is the same as one of the

parameters of the function that called this function.

Other Checks: The name of the symbol is not the same as any of the
parameters of the function the unbound symbol
appears in.

An example of where the above error cliche would match is:

(defun wrong-scopel (a b)

(append (wrong-scope2) (wrong-scope?2))

(defun wrong-scope2 ()

(list a b))

9. PRESENTING THE TUTORIAL

This module of ITSY has two sub-modules: one to highlight the relevant section of code
and the other to create the frames that explain both the source of and the concept behind the

error.
9.1 Highlighting the Code

This sub-module is given the matching surface plan segment. The segment contains

several pieces of information which are used in highlighting the code, in particular:

a) the Lisp code that the segment represents,

b) the function (if any) that the code is part of.

The highlighting process takes 6 steps.

1. The function object containing the segment is retrieved from the table. Each function

object contains a list of all the sub-objects and the segments of code they represent. This

is used in the next step.

2. The number of preceding surface plan diagram segments that represent identical
sections of code is noted. This is needed because the student's code in the editor buffer is
stored as a string. ITSY will search for a particular substring and the code may contain

several identical substrings.

3. The file that contains the function is loaded into the editor. If the file is already loaded
then the file's buffer is made the current buffer (that is, displayed in the editor window).

4. The function is then moved to the top of the editor window.

5. The third step is to find the position of the student's code inside the editor buffer. ITSY

uses a builtin editor tool which will search for a given string. This step is complicated by

Chapter IX Presenting the Tutorial 174

the fact that inside the editor the student's code is represented by a string, while ITSY
analyses the internal representation of the code which is a list. This means that ITSY's
version of the student's code will not have the white space characters. So, for example,

ITSY would have the string
"((cons (car x) (cddr x)))"

but the student may have

"((cons

(car x)

(cddr x)))"

inside the editor buffer. The highlighting module overcomes this difficulty by breaking
up the string into smaller units and searching for these ignoring the whitespace
inbetween. The units consist of the elements of the string that cannot be broken up, for

example, variable and function names.

6. Once the position of the student's code is found existing editor functions are used to

highlight the code.

If an error occurs at Lisp toplevel the code is not highlighted though of course it remains
visible on the screen. It was decided that it was not necessary to do this because code typed
at toplevel is usually only one line long.

9.2 Explanation of Errors and Concepts

This submodule receives the following information:

a) the name of the matching error cliche,

b) the object representing the matching surface plan segment,

¢) some information specific to the error cliche, such as some extra code,

Chapter IX Presenting the Tutorial 175

d) whether the matching code was inside a COND or not,

e) whether the matching code occurred at toplevel or not.

If the matching code appears at toplevel it is usually not highlighted. The exception to this
is if the matching code appears within the body of a function defined at toplevel. The
function may have been defined some time ago and may not be visible on the screen. In
order for the student to see exactly what segment of code the messages are referring to,
ITSY prints the function definition into an editor buffer and then highlights the

matching code.

9.2.1 The Explanation Frames

Once the code has been highlighted ITSY confirms the diagnosis of the error and
explains the error/concept using an explanation. An explanation consists of a set of
five explanation frames. Each one of the five frames has two parts: a message and a
menu. The menus enable movement around the composite structure. Each message
contains slots for context specific details like function and variable names and

segments of buggy code.

Chapter IX Presenting the Tutorial 176

(woneueydxg sodoaq)

(uoneueidzg uop3song)

= (eonmumdag wrew)

(_ redqng uoneuedxq)

|

(nuomw uorjeuerdxy) (C afessol wopjeuerdxy)

1-6 9mgLg

These five frames are:

1. A question to confirm ITSY's diagnosis.

Chapter IX Presenting the Tutorial 177

2. A rewording of the question. It is not possible to guarantee that a student will
understand the question in its initial form. It is vitally important that students
understand the question, because if students answer the question incorrectly, then either
they will receive a tutorial on a different error to the one that just occurred, or they will
receive no tutorial when they need one. Great care has to be taken with any explanation -
subjects were misled by the Lisp interpreter's error messages during the pilot study (see

chapter 5).

3. This is the first explanation that the students see. From here they can move to 4, 5 and 6
(in any order). This frame is an explanation of the error in terms that a Lisp novice can
understand. In the pilot study (Chapter 5) subjects did not understand error messages
such as "pdl - overflow". This frame can be viewed as giving an ‘English’ version of the

error message.

4. This is an explanation of the error in terms of the evaluator. There is evidence (from
the pilot study (see chapter 5)) that novices do not understand the evaluator. It is hoped
that this explanation will help explain how the evaluator works.

5. A set of labelled concrete examples illustrating the correct way to apply the concept.
Kahney and Eisenstadt [1982] have shown that analogical mapping between examples
and new problems is not easy. In this frame, the mappings are explicitly shown.

The explanation frames were designed using the following principles:

a) Each explanation part has the same structure - this reduces the amount that the student

has to learn and limits confusion.
b) The student is able to choose exactly how much of the tutorial s’he wants to see.

¢) The frame must obscure the student's code as little as possible.

Chapter IX Presenting the Tutorial 178

9.2.2 The Message Controller

(__*emox3uo) uoneueidzg ure)

»

(somoxjuop woneueidzy uoysond) (sogoxyuoy uoypsong)

L 1]

ﬁ I3[[0I3U0) omMmmvEI IO owmmmou@

<-6 omgig

Chapter IX Presenting the Tutorial 179

ﬁ ogessoly uonyeuerdxsy nvnovnv

ﬁ agessoA uonyeuedxy ﬁoﬂwoﬁmv

ﬁ ogesso moﬂnﬁmwmu

i

A

(" 9Sessoy uoneuEdza urEl)

A

ﬁ ogessom ﬁoﬁmcamu

]

agessol

—

AYoxe1dry 9Fessol g-6 omSiyg

Chapter IX Presenting the Tutorial 180

The overall structure of the frames and messages can be seen in diagrams 9-1 and 9-3.
As described earlier an explanation is made of five parts (diagram 9-1). Each part is
made up of two subparts, a message window and a menu (diagram 9-1). The actual
messages are stored in message objects, these have a similar overall structure to the

frames and are described in more detail in section 9.2.3.

The overall control structure of this module can be seen in diagram 9-2. The message
controller is responsible for the overall control of this module. The message filler fills
in the slots in each of the messages and then recomputes the size and position of each of
the five frames, so they are large enough to display the message string, then prints the
five messages in each of the five message windows. The frame controllers are

responsible for recomputing the items in a frame's menu and then displaying the frame.

The message controller first passes control to the message filler, this is described further
in section 9.2.3. Once the message filler has filled and positioned the five frames,
control passes back to the message controller. The message controller then interacts
with each of the frame controllers. The message controller will instruct one of the frame
controllers to display itself. The message controller passes a list of the frames already
displayed on the screen. The frame controller uses this to alter the items in the menu.
When an item is selected from a frame's menu the frame controller passes back the
name of the item selected. The message controller uses this to determine which frames to

activate and which to remove.

Each menu has an item that always appears. This is the explain a term item. This
option gives the student an explanation of any term used in the explanation of an error.
Choosing this item brings up a menu of all the terms used in tutorials. Each of the term
explanations are stored in a hash table, under the name of the term. When a term is
chosen the explanation is retrieved from the table and displayed in a window. The

window is removed when any key is pressed.
Each menu except for the two question menus have a cancel item. Choosing this ends the
tutorial returning the student to the Lisp toplevel, and all the frames currently displayed

are removed. This ensures that the student cannot get stuck.

The other items in the menu are determined by the frame's controller. The frame

Chapter IX Presenting the Tutorial 181

controllers for the question, question explanation and main explanation place the frame
on the screen and position the mouse within the menu. The frame controllers for the
deeper explanation and example frames, in addition to placing the frames on the screen,
also add to the menu any of the two frames that are not yet displayed. To enable the frame
controller to do this the message controller passes a list of all the frames currently
displayed on the screen. The frame controller passes back to the messages controller the

item chosen from the frame's menu.
9.2.3 The Explanation Text

This module is responsible for printing the messages in the message windows of the five
frames. The message slots are stored in a hierarchy of objects, these objects are shown in
figure 9-3. Each message object contains five sets of strings. Each string contains holes
that are filled in with information specific to the error. Each error cliche has at least one
message object. The hierarchy exists for two reasons. Firstly, some of the error cliches
need the same messages in some of their frames. Secondly, the same error cliche needs

slightly different messages in certain conditions.

The first reason can best be explained using an example. Some errors are treated
differently if they occur inside a COND. There are two error cliches corresponding to the
error of not placing a bracket around a function call. The first, called no bracket
function call, matches against sections of code where a function call does not occur
within a set of brackets, and where this happens outside a COND. The second, called no
bracket function call in COND, matches against the same sections of code when they
occur inside a COND. The Question, Question Explanation and Main Explanation
frames of these two error cliches are the same but the Deeper Explanation and Examples
frames are different. The reason for this is that the Question and the Question
Explanation are used to confirm ITSY's diagnosis; this is the same for both error
cliches. Similarly the Main Explanation, which gives a version of the error message
that students can understand, is the same. The Examples frame for the error cliche no
bracket function call contains examples showing the application of a function outside a
COND. The Examples frame for no bracket function call in COND shows the
application of functions within the test and the action part of a COND clause.

The second reason for having a hierarchy is that in different circumstances the same

Chapter IX Presenting the Tutorial 182

error cliche will lead to slightly different messages. These differences are mainly
cosmetic in nature enabling the messages to read better. Each error cliche has at least
two Question and Question Explanation frames. This is because these two frames refer
to the highlighted line in the editor screen whenever the error occurs in code that is within
a file, the line of text that refers to the highlighted line is left out if the error occurs at
toplevel.

The hierarchy for the two error cliches no bracket function call and no bracket function
call COND is shown in figure 9-4. The thicker lines show the inheritance structure and

the thinner lines show the text for the message frames linked to the tutorial object.

Chapter IX Presenting the Tutorial 183

Figure 94

——> Question Explanation |
@o Bracket Function Calﬂ .IMain Explanation |

L—p| Deeper Explanation |

A 4

(No Bracket Function Call Toplevel)

| Question] | Question Explanation |

(No Bracket Function Call COND)

Deeper Explanation |

\ 4

(No Bracket Function Call Toplevel COND)

v

Question | Question Explanation |

There is a message filler for each different type of message object. A message object is
first processed by its own message filler then passed up to each of its ancestors' message
fillers in turn. This means that the holes in each of the five message strings are filled in

'bottom up’. So the message object for No Bracket Function Call COND at toplevel would

Chapter IX Presenting the Tutorial 184

first have the Question and Question Explanation message holes filled in then the
Examples and Deeper Explanation message holes would be filled. A hole is only filled
once, so that if it is already filled the message filler ignores the hole. After the holes of a
message have been filled the size of the corresponding explanation frame is changed and
the message is printed in the frame's window. Once all five messages have been filled
in and printed onto the five frames' message windows, the five frames are positioned so

as not to overlap and the Question frame is displayed.
9.2.4 An Example of an Explanation Being Displayed

The example below shows how the messages for the explanation of the error cliche No
Bracket Around a Function Call in @ COND. The Question, Question Explanation and
Main Explanation messages are taken from the explanation of the error cliche No
Bracket Around a Function Call. The Deeper Explanation and Examples frames are
filled in from the explanation of the error cliche No Bracket Around a Function Call in
a COND.

The holes are represented by a tilde followed by the character 'a'. This is similar to the
control strings used by the Common Lisp FORMAT function. Other special characters
(such as newline characters and characters for highlighting segments of text) have been

left out for readability.

Messages Taken From No Bracket Function Call
Question
" In your function ~a does ~a in
the highlighted line refer to the
function ~a rather than the variable ~a?"
Question Explanation
" Did you want to call the function ~a in the

highlighted line rather than get the value

of the variable ~a?"

Chapter IX Presenting the Tutorial 185

Main Explanation

" The interpreter thinks that you want the
value of the variable ~a rather than call

the function ~a."
Messages Taken From No Bracket Function Call in COND
Deeper Explanation

" The syntax in COND is slightly different. There is usually
a double opening bracket after the word COND itself because
what follows in that position should be a list containing
both a test and an action. The test may consist of a function
call (usually a predicate such as ATOM or NULL), and it is
this function call which causes the extra opening bracket:

(COND ((NULL L) <action>)

)

or the test may simply use the value of a variable, as in

(COND (VAR <action>)

)

where VAR has either a NIL vale or a non-NIL value and there
is only one bracket after the word COND.
Naturally, it js possible to make a similar mistake by

putting too many brackets around the <action>."
Examples

“(COND ((NULL L) NiIL)
first clause
((ATOM L) L)
second clause
(T (CDR L))
third clause

Chapter IX Presenting the Tutorial 186

(COND ((NULLL) NIL)

test action
((ATOML) L)
test action

T (CDRL))
test action”

This message object is passed the name of the function the error occurred in and the
name of the function which ITSY suspects the student meant to call. If the error occurred
inside a function named EXAMPLE-FUNCTION and the student should have called the
function LIST then the two Confirmation frames would appear as in figure 9-5 and the

three other frames would appear as figure 9-6.

Chapter IX Presenting the Tutorial 187

Figure 9-5

mopuipm dsyT ASLI

*punoqun 8} [SI7 BLGeIUen By}
(T 2 uoj3ouny-

o(duexa) -3

[3n0qe- 3.0,

wiey v .:c,—mxu

UO}3uuUR |GX3 UO}38aND ASLI

41SI'T OIqviIva oy Jo
onfea oy 108 uvyy 19yywI Suf pYSHYSIY
oY) uj LSIT UOIOUR] 8Y3 [{¥ 03 JuvM no4 PIQ

UGH3wenD ASLI

LLSI'T 9lqujIva 9y uvy) I8yjed LS[T uojiauny
: ay3 03 Jejex ouj| pRIYSIIYSY ey
uy LSI'T $90p NOILONNJ-ATdWVXE uopouny ok uf

MOpUTR 1d

)
<)) puod)
laxa unjap)

Chapter IX Presenting the Tutorial 188

Figure 9-6

uojjoe
(L 2P2)]
uojjow
g

uo39e

it

sajduex3y ASlI
A8
m
A8a3
LOMGLKE))
3803

() puco)

CTLUTE N FIUL
[(((L 4P3) 1]

@snu |0 puoaes

QENQ|D KA} 4
U

CMOMEGEDY Pueo)

N

[eaue)
wiia] v upeidxy

|

UC|3uuUR | Ox] Jedaa(ASLI

Cuoioe) oY} punore sjayaviq Auvwt 0oy Sujpnnd
4q exuspw v[jwys v oxvw o) a(qissod sy 3} ‘A[[vinieN

‘ANOD PIOM 0y} I93¥ 1@Iviq SUO A[UO sj

Lqejven 3y}
I 0WEKI) -3

919y} puv on[va TIN-UOK ¥ 10 GN[VA TIN ¥ I1Y)|9 SOy YVA @Iaym

A.- .
(¢uopiaw) Jea) puocd)

uj $% ‘9[qU[ivA ¥ jo en[va oy} esn Ajdujs dvw 1591 oYy 10

A'-
(cuopaw) (I [mu)) puod)

aexyoviq Sujuado wIIXe @Y} $ISNVI YIYM [V UopIounj) S|y

s} ©1f pue ‘['T'INN 30 WOLV s¢ yons :mwoipard v Ajfensn) [[vd

UOJIOUNn} ¥ JO 3SSU0D Avur 3533 8], UOJIOP UP PuUV 3533 ¥ Yj0q

Sujupwiuod)sj1 v oq pinoys uopysod ey | smoO[[0) IeYMm

esnvaaq. J1asi] ANCD PIom ayy ieyv 19xdviq Sujuado afgnop v
Aqrensn sy ezey], usiajJIp ADYBis s| ANOD WJ X0Iuss 9y,

eysnd 3ujodf

dSI7) SJYWZ

uojaeur | dxl ASLI

*LSI'T uopaunj ayy
1190 uvy) 19y)el LSI7T O[qPIvA 9y} JO enjvA

3)
<)) puoo)

oY) yuem nodk ey supyy 1ejeidieyuy oyl

MOpUiM 101ipT ASLI

liexa unjyap)

Chapter IX Presenting the Tutorial 189
9.3 Conclusions

The explanation philosophy used in the design of this module was developed from the
pilot study. Subjects in this study had great difficulty in understanding any of the
messages that the Lisp system displayed. This is one of the reasons for the existence of
the reworded question frame. One of the problems when asking students questions about
their code when it contains a bug is that this is when they will have most difficulty in
understanding the question. If students were easily able understand the questions, they
would not produce buggy code. It is important that students understand the questions
posed by ITSY, otherwise they may miss a tutorial that they need. Subjects
misunderstanding messages caused errors in the pilot study. For example, when the
error message for a file not loading because it did not contain enough closing brackets
appeared the subjects did not even know an error had occurred and that the new versions
of their functions had not been loaded. The subjects then attributed any errors caused by

the existing functions to the new versions of the functions. This error message is:
(read-eof #file-in IRS<R.>1)

The rest of the frames are designed to explain, at different levels, the reason why a
section of code caused an error. The main explanation frame is really what the Lisp
error message should be. The Lisp error message is given is usually at a lower level
than the message given by ITSY. This is best illustrated by the following buggy sections
of code. Below each section is the Lisp error message given followed by the main

explanation message.

(append (a b c) (d e £f))

Lisp Message: A undefined function

ITSY Message: The interpreter thinks tha’t you want to call the

function A instead of giving the list (A B C) as an

argument

Chapter IX Presenting the Tutorial 190

(let ((a "(x y z)) (b '(1 2 3))

(append (a) (b)))

Lisp Message: A undefined function

ITSY Message: The interpreter thinks that this A is a function

There is evidence from the pilot study that the subjects did not understand how the Lisp
evaluator worked. One of the pieces of evidence was that the subjects have no rule to
determine whether an s-expression should be quoted or not. They would often add and
subtract quotes on a random basis. The deep explanation frame was designed to try and
give students an understanding of the evaluator by explaining, in terms of the evaluator,

why the error occurred.

The examples frame was designed to give the students a concrete example of 'how to
apply the concept correctly’. This balances the deep explanation frame which describes

the reason behind the error in abstract terms.

10. THE STUDENT MODEL

10.1 Introduction

Student models are used to determine how student input should be interpreted. In ITSY
the task of the student model is to determine whether the student should receive a tutorial
once the cause of an error has been found. Because of this the student model is closely tied

to the error cliches.

The student model consists of a graph. Each node in the graph represents a LISP concept
associated with each of the error cliches in the library, that is to say there is a node in the
graph for each error cliche. An error cliche matches against a segment of code that
contains an error. Behind this error is a Lisp concept that the student did not understand,
otherwise the student would not have made the error. There is a node in the student model
that represents how well the student understands this concept. For instance, a type of
error that students make is to try and use a lambda variable declared in the argument

list of a function. A student could type the following:

(defun foo (a b c)
(setg a 1)
(setg b 2)

(setg c 3))
(defun bar ()
(plus b ¢ a)) ;a,b,and c are NOT bound

; here

Associated with this type of error is the error cliche Wrong Scope. The student model

will have a node to associated with this error cliche.

Each node has four states:

1. Concept has not yet been encountered.

Chapter X Student Model 192

2. Concept has been seen but not learnt.

3. Concept has been partially learnt.

4. Concept has been fully learnt.

All of the nodes are initially in state one. When a student sees a concept for the first time,
the corresponding node changes state. If the student successfully applies the concept, the
node moves to state 3, otherwise the node moves to state 2. For example, if the first s-
expression a student typed in was:

(car 1)

The node for the error cliche Argument of the Wrong Type would move from state 1 to
state 2, but if a student had typed in: ’

(car '(a b ¢))

The node would have moved from state 1 to state 3. The transition paths are described in

figure 10-1 below.

Chapter X Student Model 193

Figure 10-1

Sees a concept for
the first time and

applies the Sees a concept for the first time
concept but does not apply successfully
successfully

Successfully

applies the

‘concept

Successfully applies
a concept several times

10.2 Representation

The nodes are represented by objects. Each object holds the current state of the node. The
objects are stored in a hash table under the name of the error cliche. Each node has its
own upgrade and downgrade handlers which alter the state of the node. The node's new

state depends on the original state and what just happened.
10.3 Updating the Model

Updating the model is carried out in a similar way to matching an error cliche against a
student's code. The transformed code, that is the student's code in surface plan form,
(see Chapter 7) is traversed in a similar way to the code traverser used by the error cliche
finder. There are two main differences. Firstly, student model cliches instead of error
cliches are matched against the transformed code. Secondly, the whole graph of objects is

traversed rather than stopping when a student model cliche matches.

The four states (see 10.1) are represented by the integers 1 - 4. The link between states 3
and 4 is achieved by adding an increment (less than one) to the current value. The

current state is then the current value rounded down. The smaller the increment the

Chapter X Student Model 194

more times a student has to successfully apply the concept. Currently the value is 0.1 i.e.

it takes 10 goes to advance from 3 to 4.

10.3.1 Student Model Cliches

Student model cliches are derived from error cliches. An error cliche matches a
segment of code that contains a certain type of error. The type of error corresponds to a
Lisp concept that the student does not understand. It is this concept that links a student
model cliche to an error cliche. A student model cliche matches against any segments of
code that show that the student understands this concept. Consider the error cliche No
Bracket Function Call:

Error Cliche Name: No Brackets Around a Function Call
Surface Code Segment: Symbols
Criteria: The symbol is unbound.

The symbol is the name of a function.

Other Checks: None.

the associated student model cliche is:

Student Model Cliche Name: No Brackets Around a Function Call
Surface Code Segment: CL Function

Criteria: None.

Other Checks: None.

You might think that the student model cliches could be just 'correct code’ cliches (as they
are used in the Programmer's Apprentice [Waters, 1985]), but they are not because they
are the correct code of which the error cliche is an erroneous form. In other words they

apply to places where the student could have made an error, but did not.

Chapter X Student Model 195

Below is a description of a Null Student Model Cliche. These student model cliches are
an artifact of the hierarchy of Lisp Objects described in 7.1.2. Each student model cliche
can not only match against objects the same type as specified in the Surface Code
Segment but all the children of this type. Null Student Model Cliches are used to prevent a
child of a type of object inheriting the student model cliche.

A Null Student Model Cliche does not have criteria or other checks slots. This describes
exceptions to student model cliche rules. This means that the surface code segment
which is called quote cannot match against student model cliche No Brackets Around a
Function Call. Unless specified it can be assumed that every Lisp object has a Null
Student Model Cliche. The equivalent of these (Null Error Cliches) also exist, but they

were not shown in Chapter 8 in order to make the error cliches readable.
Null Student Model Cliche Name: No Brackets Around a Function Call
Surface Code Segment: Quote
Objects of type Quote inherit from the type CL Function. If it were not for this Null
Student Model Cliche every time a student quoted an a Lisp s-expression the node

~ corresponding to the error cliche No Brackets Around a Function Call would change

state. This node should only change state when a student correctly applies a function.

Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Function Application

Criteria: The type of function application is normal or
recursive

Other Checks: None

The complete set of student model cliches are in appendix K.

Chapter X Student Model 196

10.3.2 Action Taken on Different Values of the Student Model

Whenever ITSY traps a student error the student model node associated with the error
cliche is checked. The value of the node determines ITSY's next action. It was decided
that the student should always have access to a tutorial, in case the model was inaccurate.
The action carried out under each value is described below.

1. Concept has not yet been encountered.

The tutorial is given.

2. Concept has been seen but not learnt.

Extra help is given. This is not actually implemented yet. The extra help would be

provided in the form of extra frames.

3. Concept has been partially learnt.

The student is asked if s’he wants a tutorial or not.

4. Concept has been fully learnt.

No tutorial is given, but a present tutorial option is added to the Lisp menu and the

student notified how to obtain a tutorial. The present tutorial option would remain until

the next student input to the Lisp toplevel window.

PART ITT

This section describes two studies. These studies were carried out for two reasons.
Firstly, it was decided that novices did not generate really interesting errors in their
first 20 hours of Lisp. Secondly, it would provide a way of evaluating ITSY and point to

areas of weakness or for future research.

Six subjects were used in the studies. Each subject completed approximately 30 hours
learning Lispl. As in the first study the subjects sat at a terminal reading and

completing exercises from Winston and Horn's "Lisp" [Winston & Horn, 19841].

Two subjects were used in the first study. They were used to "iron out the bugs" in the
implementation. Because ITSY was buggy at this stage only the subject's errors are
presented. The first two subjects had relatively little experience of computer

programming.

The remaining four subjects had more programming experience. Three of the subjects
had at least two years' experience in assembler programming. The fourth was an
adviser for an academic computing service. The subjects’ errors and a summary of

ITSY's responses are presented.

lone subject only completed 23 hours

11. STUDY II: A PRELIMINARY EVALUATION OF ITSY

11.1 Objectives

As discussed above the objective of this preliminary study was to "iron out the bugs"
in ITSY and check that there was nothing fatally wrong with either the design of the
study or the implementation of ITSY. In fact several changes were made to ITSY

after this preliminary evaluation.
11.2 Methods

Both the subjects used were non-programmers. As in the first study the subjects sat at
a terminal reading from Winston and Horn's book "Lisp" (second edition) and
attempting the exercises. If they had any problems I would help them using the

keyboard. This ensured that all the interactions were recorded.

As in the first study, when the subjects arrived they were given a short tutorial. This
tutorial covered the editor, the Lisp toplevel and the message frames. This tutorial
involved going through the handouts shown in appendix D. The handouts give a
summary of the operations available in the editor and at Lisp toplevel, and an

overview of the type of explanation each message frame gives.

The interactions were recorded using a modified dribble function. In addition to
recording input and output in the Lisp window extra information such as selections
from menus and the amount of time spent looking at each message frame was also

recorded.
11.3 Method Of Analysis

As in the first study errors have been classified according to the cause of the error.
Each time a bug caused an error it was counted, so if the student typed in the same

erroneous form over and over each evaluation was counted as a separate error.

Chapter XI Study Il A Preliminary Evaluation of ITSY 198

Every application of an algorithmically incorrect function has been counted as an
incorrect algorithm error, regardless of whether the actual result was correct or not. So,

for example

(defun my-max (x y)
(cond ((> x y) x)

(<Kxy))
would be counted as an error every time it was applied because the function does not cater

for the case when X and Y are equal.

11.4 Results

As in the first study all of the categories containing more than 1.5% of the errors are

presented here (the individual totals are contained in appendices E and F).

11.4.1 Problems Caused By The Environment

No environmental errors due to the computing environment were recorded. The only
times subjects became stuck were when ITSY crashed and had to be restarted.
Subjects were conservative in the use of the available tools such as the movement and
editing keys in the editor and the Lisp toplevel. More details were recorded in the next

study.
11.4.2 Algorithmic Errors

1. Incorrect algorithm. As ITSY currently does not trap this class of errors they have

been lumped together.

Percentage of the total number of errors: 30

Chapter Xl Study Il A Preliminary Evaluation of ITSY 199

11.4.3 Problems With The Language

1. Wrong number of arguments given to a function, because the arguments are in the

wrong form. An example of this is:
(expt (3 4))

Percentage of the total number of errors: 2

2. Incorrectly putting a pair of brackets around an atom.

Percentage of the total number of errors: 4

3. Calling an undefined function.

Percentage of the total number of errors: 3

4. Incorrectly putting an extra set of brackets around a function call.

Percentage of the total number of errors: 4

5. Not putting brackets around a function call.

Percentage of the total number of errors: 5

As in the first study categories 4 and 5 does not include errors that occurred in a
COND form, these have been separated out and are given below.

6. Extra set of brackets around a function call inside a COND

Chapter XI Study Il A Preliminary Evaluation of [TSY 200

Percentage of the total number of errors: 5

7. Not putting brackets around a function call inside a COND.

Percentage of the total number of errors: 4

8. Not closing the test part of a clause. An example of this is:
(defun check-temperature (temp)
(cond ((> temp 100.00 'ridiculously-hot)
(< temp 0.00 'ridiculously-cold)

(< 0.00 temp 100.00 ‘ok))))

Percentage of the total number of errors: 3

9. Not quoting an object that should be quoted.

Percentage of the total number of errors: 8

10. Spurious character in a file. This meant that the student had, either by

accidentally typing or by not completely deleting some text, included a spurious

character in their file. This leads to an error when the file is loaded.

Percentage of the total number of errors: 2

11. Text spelling error.

Percentage of the total number of errors: 4

Chapter XI Study Il A Preliminary Evaluation of ITSY 201

12. Trying to give a value to a parameter globally. When subjects found that a
parameter to a function was giving an error, for any reason, they sometimes thought
this was due to the parameter not having a value. The subjects tried to pass a value to

the parameter by SETQing the parameter globally.

Percentage of the total number of errors: 2

13. Unbound variable because of the variable was not declared in the parameter list.
Subjects would sometimes not declare a variable in a parameter list. This could have
been because they did not understand the scoping rules of Common Lisp [Steele, 1984].
Subjects would sometimes write code that would only work in a dynamically scoped

Lisp such as MacLisp [Pitman, 1983], for example:

(defun s-fun (x y)
(+ v (double)))

(defun double ()

(setg x (* x 2)))

x is unbound in the function double - this would not be the case in MacLisp. It should

have been declared in the parameter list , as in:

(defun s-fun (x y)

(+ v (double x)))

(defun double (x)

(setg x (* x 2)))

Percentage of the total number of errors: 2

14. Wrong number of arguments given to a function

Chapter XI Study Il A Preliminary Evaluation of ITSY 202
Percentage of the total number of errors: 6
15. Wrong type argument of argument given to a function
Percentage of the total number of errors: 3

The above does not include non-list arguments given to CONS, CAR, CDR and
APPEND these are given below.

16. Non-lists to one of CONS, CAR, CDR and APPEND

Percentage of the total number of errors: 3

11.5 Conclusions
89% of the errors fell into sixteen categories above.
11.5.1 Comparisons with Study I

The following graph shows a comparison of nine of the different categories.

Chapter XI Study 11 A Preliminary Evaluation of ITSY 203

Figure 11-1 Comparison Graph Between Study I and Study II

40
14
g 30
St
°
(3]
g
g
5
(A 10
0 :
o
=
8
Categories pid
®
e
v

Algorithmic Errors -
Arguments in Wrong Form
Brackets around an atom »
Extra Brackets in a Function Call %
No Brackets in a Function Call
Not Quoting an Atom or List , i
Wrong Number of Arguments
Wrong Type of Argument |

The greatest difference between the two studies occurs in the Algorithmic Error
category. The percentage of algorithmic errors has grown from 19 to 30. This is for
three reasons. Firstly, the subjects were not experienced programmers. Secondly, the
subjects spent more time learning Lisp and were writing more complex programs.
This gives greater scope for making algorithmic errors. _Thirdly, even though ITSY

was buggy at this point, it was able to help the subjects with some of their problems with
the language.

Chapter XI Study Il A Preliminary Evaluation of ITSY 204

Subject Total Number Percentage of Errors
Lines Input of Errors / Line Input

C 526 297 56

A3 193 | 75 39

Total 719 327 | 45

Above is a table showing the percentage of errors per line of input (these are given for
Study I in section 5.4). The average percentage of errors per line of input has

increased from 13 to 45. This could be due to one of two reasons:

a) the subjects in the Study I were experienced COBOL programmers whereas the

subjects in Study II had practically no programming experience,

b) the increase in length of the study, which meant that the subjects were tackling
harder exercises. The harder exercises (especially those covering recursion) meant

that the subjects attempts were more likely to contain bugs.
11.5.2 Changes to ITSY

Apart from fixing many small bugs the following changes were made to ITSY as a
result of this study.

Adding an extra explanation frame. During this study it became clear that subjects
did not always understand the message frames enough to correct the error. This

following sequence is taken from the dribble files of subject C.

The subject is attempting Problem 3-1 [Winston & Horn, 1984 p. 43]:

Some people are annoyed by the names of the critical primitives CAR, CDR, and
CONS. Define new procedures OUR-FIRST, OUR-REST, and CONSTRUCT that do
the same things. ...

and had defined the function OUR-FIRST as follows:

Chapter XI Study 1l A Preliminary Evaluation of ITSY 205

(defun our-first (items) (car (items)))
the subject typed in the s-expression
*~ (our-first ' (one two three))
(Error (OUR-FIRST (QUOTE (ONE TWO THREE))) =zetalisp-
system:undefined-function #<undefined-function-trap 12273564>) The
function ITEM is undefined.

The question frame was exposed with the message:

In your function OUR-FIRST does ITEM in the highlighted

line refer to the variable ITEM in the parameter list?

The subject selected 'yes' from the menu and the main explanation frame was exposed

with the message:

The interpreter thinks that this ITEM is a function

The subject selected 'examples’ from the menu and the example frame was exposed

with the message:

(K 4}

function arguments

< ppend] NCES)
function arguments

The subject selected 'deeper explanation' from the menu and the deeper explanation

frame was exposed with the message:

The first object after an opening bracket is usually a

Chapter Xl Study Il A Preliminary Evaluation of ITSY 206

function, the remaining objects are the arguments to the

function. The interpreter is following this rule.
The subject then typed:
*— (items one two three)

It is clear from the above that the subject does not understand the message frames. An
extra frame was added to the explanation messages - a Fix frame. This shows the

student, in general terms, how to fix the error. The Fix message for the above error is:

For ITEM to be regarded as a variable you need to remove
the pair of brackets which immediately surround it. Thus
if you wanted the function FOO to have the argument

ITEM, it would be wrong to have (FOO (ITEM)) but correct

to have (FOO ITEM).

To show how the Fix frame fits in with the other five the messages. The five messages

presented in section 9.2.4 are given below with the Fix message included.

Question

" In your function ~a does ~a in

the highlighted line refer to the

function ~a rather than the variable ~a?"
Question Explanation

" Did you want to call the function ~a in the
highlighted line rather than get the value
of the variable ~a?"

Main Explanation

" The interpreter thinks that you want the

Chapter X1 Study Il A Preliminary Evaluation of ITSY 207

value of the variable ~a rather than call

the function ~a."
Deeper Explanation

" The syntax in COND is slightly different. There is usually
a double opening bracket after the word .COND itself because
what follows in that position should be a list containing
both a test and an action. The test may consist of a function
call (usually a predicate such as ATOM or NU LL), and it is
this function call which causes the extra opening bracket:

(COND ((NULL L) <action>)

)

or the test may simply use the value of a variable, as in

(COND (VAR <action>)

)

where VAR has either a NIL vale or a non-NIL value and there
is only one bracket after the word COND.
Naturally, it is possible to make a similar mistake by

putting too many brackets around the <action>."
Examples

"(COND ((NULL L) NIL)
first clause
((ATOM L) L)
second clause
(T(CDR L))
third clause
(COND (NULLL) NIL))
test action
((ATOML) L)
test action
T (CDRL))

test action"

Chapter Xl Study Il A Preliminary Evaluation of ITSY 208

Fix

" In order to call a function FOO with arguments X Y
in the test part of a COND (COND (FOO XY ..

‘would be wrong but (COND (FOO X Y) ... would

be correct. In order to call a function FOO with
arguments X Y in the action part of a COND

[with test NULL L)]

(COND ((NULL L) FOO X Y) and

(COND ((NULL L)) (FOO X Y) .. would be wrong
but (COND ((NULL 1) (FOO X Y)) .. would be

right."

It was found that the subjects often left exercises when their solutions still contained
algorithmic errors. This was because they believed them to be correct. In order to
prevent this a new tool was added to ITSY - test a function. Test a function enables a
student to try out one of their solutions on a set of prestored examples. ITSY tells the
student whether the solution is correct, incorrect or leads to an error. The

implementation of this tool is described below.

Stored in a hash table is an entry for each function that the students have to define. Each
entry contains a number of fest input/output pairs and a test function. The student's
function is applied to a test input. One of three things happens when the student's

function is applied:

a) The function application gives an error - in this case ITSY tells the student that the

function causes an error,

b) The function does not give an error but the output does not match the stored test output
(when compared using the test function) - in this case ITSY tells the student that the

function is not correct,

Chapter XI Study Il A Preliminary Evaluation of ITSY 209

¢) The function does not give an error and the output matches the stored test output - in

this case ITSY tells the student that the function is probably correct,

The test function is necessary because some of the examples do not specify the output
exactly. For example, some of the exercises involve the manipulation of sets. In these
cases the student's output has tobe a certaini set (ie. a list where the order of the elements
is not important). As an example, here are the test input/output pairs and the test function

exercise 4-13 [Winston & Horn, 1984 p 73]

Define OUR-UNION. The union of two sets is a set containing all the elements that
are in either of the two sets. ...

Input: (abc) (axyzc)
Output: (a bcxy z)
Input: (bc) (axyzc)
Output: (a bcxyz)
Input: (a bc) (de £ a)
Output: (a bcde £f)
Input: (fabc) (bxyzc)
Output: (a bcxy z)

Test Function: same-setp

where same-setp is defined as:

Chapter XI Study Il A Preliminary Evaluation of ITSY 210

(defun same-setp (setl set2)

(and (subsetp setl set2) (subsetp set2 setl)))

The test a function tool can be seen in section 3.5.

The biggest change to ITSY as a result of this study was the decision to turn the student
model off. This decision was taken for two related reasons. Firstly, the model
needed "tuning" because the nodes were being bumped up too early, often students
would be in the concept fully learnt state too early. Secondly, the students were less
likely to look at a tutorial if the initial Question frame did not appear, that is if the
tutorial were merely an option on the Lisp menu. A possible solution to this problem is

described in chapter 13.

This did not affect the subjects as displaying the question takes a relatively small
amount of time compared to finding the error and subjects can reply no to a Question

Frame so cancelling a tutorial.

Extra commands to change the shape of the frames (to have a medium or large editor

pane) were added because of comments made by these two subjects. These are described,

in detail, in Chapter 7.

12. STUDY III: AN EVALUATION OF ITSY

12.1 Objectives

The objective of this study was to both evaluate ITSY and collect more complicated error

cliches.

12.2 Methods

Four subjects were used. Three of the subjects had at least two years' assembler
programming experience. The other is a member of an academic computing advisory
service and has had over two years experience programming in FORTRAN. The
methods used for this study were the same as the second study.

12.3 Method Of Analysis

As in the first study errors have been classified according to the cause of the error. Each
error has been classified in one of nine wkays, each corresponding to one of nine ways
errors were treated by ITSY and the subjects. If ITSY trapped the error the subjects either
examined or ignored the tutorial frames. The subjects then either fixed the error, failed
to fix the error or left the error tackling a new problem. The nine categories are:

1. The student used ITSY and fixed the error.

2. The student used ITSY and tried but failed to fix the error.,

3. The student used ITSY and left the error without trying to fix it.

4. The student did not use ITSY and fixed the error.

5. The student did not use ITSY and failed to fix the error.

6. The student did not use ITSY and left the error.

Chapter XII Study lll An Evaluation of ITSY 212

7. ITSY did not find the cause of the error and the student fixed the error.

8. ITSY did not find the cause of the the error and the student failed to fix the error. v
9. ITSY did not find the cause of the error and the student left the error.

12.4 Results

12.4.1 Errors

The results are presented in two graphs. The two graphs are summaries of the table in
Appendix F, this table gives the total results for the four subjects. The subjects' 7
individual results are given in Appendix G. The two graphs show all the error cétegories
except the category incorrect algorithm which is a singularity. 147 algorithmic errors
were made. None of these were caught, 16 were fixed by the subjects, 130 were not fixed

and 1 was left.

The first bar graph shows the results for each category. The total length of a bar gives the
total number of errors in the category. The nine different shadings used in the bars
correspond to the nine different categories. The second bar graph (spread over 4 pages)
gives the same information but the nine categories have been split up rather than placed

on top of one another.

From the first graph it can be seen that the commonest errors fell into the fext spelling,
not quoting, non-lists given one of CONS CAR and CDR, no brackets around a function
call, brackets around a variable, slip ups and giving a function arguments in the

wrong form error categories.

From the second graph it can be seen that when an error was trapped by ITSY the
commonest sequence of events was for students to use ITSY and then fix the error. There
are two exceptions to this arguments in the wrong form and no brackets around a
function call. For these two categories the commonest occurrence was for the student to

not use ITSY and fix the error.

Chapter Xl Study Il An Evaluation of ITSY 213

Bar Graph 1

Wrong Type Arg

Wrong Number of Args Graph of Error Categorles For All Subjects

Unbnd Var: Deletion of Param

UL DA

Unbnd Var: Parameter not Declared
Text Spelling
Infinite Recursion
Quote + Brackets Var
Quoting a Var
Load Changed Defs Error
Not Trying Fun on Right Input
Not Setqing a Var Before Using

Not Quoting a Var W
Non-list given to Car %-

No Gaps Between Atoms
No Brckts Fun Call ina COND

No Brckts Fun Call
Misreading Question

N

Forgetting to Load Function

Fun not Loaded: Error in File B Used & Fixed
Endless Looping Used & ~Fixed
Used & Left
Extra Brekt Fun Call in COND El ~Used & Fixed
Extra Brckt Fun Call g ~Used & ~Fixe
. ~Used & Left
Error Due to Experimenter
per B Missed & Fixed
Caused By Winston & Horn Missed &~Fixed
Calling an Undefined Fun Missed & Left
Brackets Around a Var
Brckts Around Unbnd Atom
Brekts Around a Quoted List
Brekts Around a Number
Brekt Error ina COND
ASipUp 5000
Arguments in the Wrong Form A=
Applying CXRs in the Wrong Order ;
T T T T T v T T 1
Category © 10 20 30 40 50 60

Number of Occurences

Chapter XlI Study Il An Evaluation of ITSY 214

Bar Graph 2a

Graph of Error Categories For All Subjects

Brackts Around a Var
i Ce—
=1
Brekts Around Unbnd Atom
Brekts Around a Quoted List
-
. B Used & Fixed
Used & Fixed
b
Brekts Around a Number |1 U[SIZ‘:;‘;?}XG q
0 -~Used & ~Fixe
Bl ~Used &Left
= B Missed & Fixed
Brckt error ina COND] Missed &~Fixed
Fl Missed & Left
VA A A A A A |
|
ASlipUp
e
Arguments in the Wrong Form -
Applying CXRs in the Wrong Order
]] 1
0 10 20 30

Category Number of Occurrences

Chapter XI1 Study Ill An Evaluation of ITSY 215

Bar Graph 2b

Graph of Error Categories For All Subjects

Forgetting to Load Function
=
Fun not Loaded: Error in File
Endless Looping
B Used & Fixed
Used & Fixed
= Used & Left
Extra Brckt Fun Call in COND 1 ~Used & Fixed
[0 -~Used & ~Fixe
| Bl ~Used &Left
B Missed & Fixed
Missed &~Fixed
Extra Brekt Fun Call _— Missed & Left
I
Error Due to Experimenter
AW NEEEN
Caused By Winston & Horn &
A
|———|
Calling an Undefined Fun [——1
T T T T 1
0 10 20 30

Category Number of Occurrences

Chapter XII Study Ill An Evaluation of ITSY 216

Bar Graph 2¢

Graph of Error Categories For All Subjects

Quoting a Var

Load Changed Defs Error .

Used & Fixed
Used & Fixed
Used & Left
~Used & Fixed
~Used & ~Fixe
~Used & Left
Missed & Fixed
Missed &~Fixed
Missed & Left

Not Trying Fun on Right Input

Not Setqing a Var Before Using

Non-list Given To Car

No Gaps Between Atoms

No Brckts Fun Call ina COND

No Brekts Fun Call E=

I
LTS LT LSS THL LS LTSS TS LT LTS TTTITTETL LTSS E
P TTLLIIIIIII AL,

Misreading Question

Category Number of Occurrences

Chapter X1l Study Il An Evaluation of ITSY 217

Bar Graph 2d

Graph of Error Categories For All Subjects

Wrong Type Arg

Wrong Number of Args

Unbnd Var: Deletion of Param

Unbnd Var: Parameter not Declared

Text Spelling

Infinite Recursion

Quote + Brackets Var

Quoting a Var |

Category

vl

B

=

NI

NEMNEOSNEBENNE

Used & Fixed
Used & Fixed
Used & Left
~Used & Fixed
~Used & ~Fixe
~Used & Left
Missed & Fixed
Missed &~Fixed
Missed & Left

20

Number of Occwrrences

30

Chapter XII Study Il An Evaluation of ITSY 218

ITSY trapped 30% of all the errors. Of the errors ITSY had been 'designed’ to trap ITSY
managed to trap 48%. Of the errors not trapped 42% were in the not quoting category and
34% were in the non-lists given to one of CAR CDR and CONS and APPEND and 13%
were in the quoting a variable. Not quoting errors were missed because ITSY only
counts a non-quoting errors if there is a function taking the non-quoted object as an
argument and if the object is of the right type for the function. Because of this, unquoted
lists or atoms typed by themselves at the Lisp Toplevel were not trapped. The non-list
errors were missed because of the simplicity of the error cliche - errors where a non-list
argument to a function was computed rather than just given were not trapped. Quoting a

variable errors were missed because the variables were misspelt.

Bar Graph 3

Totals Only

Missed & Left

Missed &~Fixed

Missed & Fixed

~Used & Left

~Used & ~Fixe

| B Percentage I

~Used & Fixed

Used & Left

Used & ~Fixed

Used & Fixed

T T T T T T T 1
0 10 20 30 40 50
Category Percentage

The third graph shows the total percentages for each of the nine different types of actions

Chapter XIlI Study 11l An Evaluation of ITSY 219

that can occur.

Below is a table showing the total number of errors and the percentage of errors per line of

input.

Name Total Number Percentage of Errors
Number of of Errors / Line Input
Lines Input

S 588 231 39

c2 331 105 32

L 252 85 4

S2 191 58 30

Total 1362 479 35

The average percentage of errors per line of input has increased from 13% in study I to
35% in this study, although this is less than the 45% for study II. The decrease from 45 in
study II to 35 in this study could due to the fact that the subjects in this study were
experienced programmers. Because relatively few subjects were used it is not possible to
tell how much ITSY helped the students. The reasons for the increase in studies II and III

when compared to study I were stated in 11.5.1.

Chapter XIl Study Il An Evaluation of ITSY 220

12.4.2 Messages
Bar Graph 4
Total For Subjects When They Used ITSY
Used & Left
B Percentage I
Used & ~Fixed
Used & Fixed
1 d I 1 T 1 ¥ 1
0 20 40 60 80
Category

Percentage

Chapter XII Study 11l An Evaluation of ITSY 221

Bar Graph 5

Total For Subjects When Didn't Use ITSY

~Used & Left

B Percentage I

~Used & ~Fixe
~Used & Fixed
I 1 i] ' 1 v 1
0 20 40 60 80
Category
Percentage

The success of the messages can be seen from the fourth and fifth graphs. The two graphs
show the percentage of errors fixed when trapped by ITSY. The fourth graph shows the
percentage when the students used ITSY and the fifth when they chose not to. The errors
fixed when not trapped by ITSY have not been included as these may be harder than those
trapped. There is a 9% difference between the percentage of errors fixed when the students

used ITSY and when they did not.

Below is a table containing the percentage of time that was spent looking at each part of

the tutorial frames (more detailed information is given in appendix J).

Chapter XII Study Il An Evaluation of ITSY 222

Frame Percentage of Total Time
Question 38

Question Explanation 2

Main Explanation 25

Fix 20

Examples _ 9

Deeper Explanation 7

The question explanation frame was only used 2% of the time. This shows that the
subjects understood the question. The main explanation and the fix frames were far
more popular than the examples or deeper explanation frames. The reason for the
unpopularity of the deeper explanation frame could be that subjects were reluctant to read
more than a short paragraph of text. The deeper explanation frames contained the
longest messages. A possible reason for the unpopularity of the example frame could be

that the subjects had trouble mapping from the examples given to their code.
12.5 Extra Errors

Some of the errors have been separated out for two reasons. The computer environment
errors have been separated out because dribble files do not provide a reliable way to collect
these in the complex environment found on the Symbolics 3600 family. Some of these
errors will be missed because they will not be recorded. The number of computer
environment errors are considerably lower than they were in study I. Four of these
errors were found in the dribble files. One was due to a subject choosing the Add
Comments item from the Lisp menu and without realising it. The other three were due to

subjects trying to bring up a menu using the mouse. At certain times (such as when

Chapter Xl Study Ill An Evaluation of ITSY 223

incremental garbage collection was taking place) ITSY's response time grew. In three

cases when a menu did not appear instantaneously the subject kept pressing the mouse

repeatedly. This caused a number of menus to appear which confused the subject.

Another set of errors have been separated out because they appeared when a subject was

using the Test a Function tool (see section 11.5.2). This tool was originally designed for

subjects to test a particular function if they thought it was correct. Two of the subjects

decided that it was quicker to try out their functions using Test a Function first and then

only to resort to using the Lisp toplevel if they could not fix the error after some time.

These subjects were using this as a way of switching ITSY off. This increased the

response time if their function contained an error because no analysis would take place.

This happened towards the end of the study.

Both set of errors are presented below:

Category

A Slip Up

Brackets Around a Quoted Variable

Brackets Around a Variable

Brackets Around a Variable in a COND

Calling a Function that Doesn't Exist

Error due to Experimenter

Extra Set of Brackets Around a Function Call

Extra Set of Brackets Around a Function Call in COND

Function Not Loaded Because of Another Error -

Number of

Occurrences

Chapter Xl Study Il An Evaluation of ITSY 224

Incorrect Algorithm

Misreading the Question

No Brackets Around a Function Call

No Brackets Around a Function Call in a COND

No Gaps Between Atoms

Non-lists Given to One of CONS, CAR, CDR and APPEND

Quoting a Function

Quoting a Variable

Stack Overflow Due to Infinite Recursion

Text Spelling Error

Wrong Number of Arguments Given to a Function

12.5 New Error Cliches

79

20

11

12

Two new error cliches were found in this study - they are described in Chapter 8. They

are the Wrong Scope error cliche and the sub cliche Wrong Type Argument Subcliche.

The Wrong Scope error cliche matches against segments of code such as:

(defun wrong-scopel (a b)

(append (wrong-scope?2) (wrong-scope2))-

(defun wrong-scope2 ()

(list a b))

Chapter XII Study Il An Evaluation of ITSY 225

The student believes that the variables a and b are bound.

The Wrong Type Argument Subcliche on the surface code segment Car extends the
Wrong Type Argument error cliche. One of the commonest cases of this error cliche

found in this study was:
(append (car x)

where X was a flat list (eg. '(a b ¢)). This subcliche checks to see if the CAR of the input
matches the expected type of the super cliche's object in this case APPEND.

12.7 Conclusions

The evaluation methodology presented is general and can be applied to any system which-
claims to help its users in some way. One of the evaluation methods normally used is to
take have two sets of subjects. One set uses the system, the other uses the 'bare machine'.
The two sets are compared on pre and post test scores. The problem with this is that a
relatively large number of subjects are needed (in order to gain statistical significance)
and half are 'wasted' in that they do use the system and cannot contribute (directly) to the
data concerning the system. This problem is especially great for systems such as ITSY
which aim to help novice programmers - each subject needs to use the system for thirty

hours.

If the methodology described in this chapter is used fewer subjects are needed and all the

subjects contribute to the system.

Below is a copy of the first bar graph presented with fewer (more gross) error categories.
Each of the new categories was formed from several of the categories shown in the first
bar graph. The method of grossing for each category was as follows:

1. Other Errors - all the errors that did not fit into one of the other categories.

2. Endless Loops/Recursion - all the errors that either caused endless looping or infinite

recursion.

Chapter XII Study Il An Evaluation of ITSY 226

3. Spelling & Slips - all the errors caused by spelling mistakes or by simple slip ups.

4. Var Brcktg Errors - all the errors caused by placing brackets around variables.

5. Fun Brcktg Errors - all the errors caused by placing the incorrect number of brackets

around the application of functions.

6. Errors Involving Atoms - all

the errors involving atoms such as not quoting.

7. Errors in Giving Funs Args - all the errors caused by giving arguments to functions

incorrectly.

Other Errors

Endless Loops/Recursion

Spelling & Slips

Var Brektg Errors

Fun Brektg Errors

Errors Involving Atoms

Errors in Giving Funs Args

Category

Bar Graph 6
Gross Totals For All Subjects

7

i

Used & Fixed
Used & Fixed
Used & Left
~Used & Fixed
~Used & ~Fixe
~Used & Left
Missed & Fixed
Missed &~Fixed
Missed & Left

NEMEONENE

I T T T T

40 60 80

Number of Occurrences

1
100

Chapter XIl Study 1l An Evaluation of ITSY 227

The results of the study outlined in this chapter could be used to improve ITSY. The study
could then be repeated and ITSY improved further still. As this iteration continued two
things would happen. Firstly, the bars would get shorter. Secondly, the solid black
sections of the bar graph shown above would cover a greater and greater proportion of

each bar. This would be because ITSY would be providing more help.

13. CONCLUSIONS AND FUTURE DIRECTIONS

This thesis covers two main areas of investigation. These areas correspond to the first

two parts of this document.

Firstly, the first part provides a detailed description of the types of errors that professional
programmers make when learning Lisp using a 'traditional' (i.e. glass teletype) Lisp
environment. One quarter of the errors found were caused by the environment. The
Lisp environment used in this study was designed for expert Lisp programmers.
Unfortunately, some of the tools designed to improve programmer productivity hampered
the subjects. As the subjects were very reluctant to use any of the tools provided by the
environment, the subjects would have made fewer mistakes and progressed further if

tools had been 'turned off.

Nearly half the errors found in the study were context independent Lisp errors. These
were errors were caused by the subjects using incorrect Lisp forms. Incorrect Lisp forms
are segments of Lisp code that do not follow the discourse rules of Lisp. An example of an
incorrect Lisp form would be (CAR 1). It is these incorrect Lisp forms that the error
cliches were designed to match against. The main reason for subjects making these
errors was the fact that they did not understand the Lisp evaluator. Often subjects would
add and subtract quotes in a seemingly random fashion until their function worked.

From these results, there is a case for teaching novices about the evaluator first.

Secondly, the concept of a programming cliche has been inverted and used as a basis for
a system designed to help overcome the difficulties described in the first part of the thesis.
The help given to students is based on the bugs they make. This is different from
systems that view the student as a subset of an expert eg. WEST [Burton & Brown, 1976].
In systems such as WEST the student is measured in terms of an expert. When a student
makes a mistake the student is assumed to have an 'expert concept' missing. The
evidence from the first study points to the fact that students share common incorrect
concepts. When these concepts are applied the same incorrect Lisp forms are produced.
The third study showed that it is possible to trap these incorrect Lisp forms and explain to

students the concepts that they have misunderstood.

Chapter Xill Conclusions 229

One of the aims of ITSY is to give students enough help so that they can use bare system
unaided. This is why the error messages generated by the Lisp system have been left in ‘
and why ITSY coaches students on tools. ITSY sits in the background until a student has
written a program, only giving help when the student tries the program out. The reason
for this is get the student used to the normal cycle of developing Lisp software. One of the
problems with this however is that ITSY cannot offer any help if the student is completely

stuck, for example, if the student has trouble developing an algorithm or specification.

This approach can be used in the design of computing systems built to help novices in
certain domains. The constraint on the domain is that students' answers are complex
enough to contain patterns of errors (so one word answers would not suffice). This would
include domains where students are learning procedural skills - such as arithmetic,

algebra or mechanics.

At present ITSY uses the relatively low-level surface plan representation of code. The
reason for this is that novice Lisp programmers make syntax errors. PROUST also uses
a low-level representation for PASCAL code in order to catch low-level errors, as

Johnson says [Johnson, 1985 p 248]:

This low-level representation means that an abundance of transformation rules are
required in order to understand code written by more advanced students, who rearrange
their code at will.

Johnson suggests a remedy for this:

One could then construct two PROUSTSs: a PROUST1 which specializes in low-level
bugs, but is confined to fairly small programs, and a PROUST2 which specializes in
high-level bugs, and which works on larger programs.

If the code is abstracted too far the low level errors will be lost.

ITSY has no such problem. The power of PLAN representation is that they allow higher
level PLANS to be built up from low level PLANs. Figure 13-1 shows how ITSY could use
the full power of PLAN representation to detect bugs from both complete Lisp novices and

more advanced students.

Chapter Xl Conclusions 230

Figure 13-1
Higher
Code ptSurface # PLANS P Level
Plans PLANS
Syntactic Algorithmic
Low-Semantic]%%?n(t:ﬁch es Teleological
Error Cliches Error Cliches

Figure 13-1 shows how ITSY could detect the algorithmic errors. In study III (Chapter 3)
32%! of the errors were algorithmic, by far the largest category. In order to trap these
errors ITSY would need knowledge of the exercise that the student was attempting. This

extra knowledge would be represented in two ways:
1. Context sensitive error cliches.

2. The solution to the exercise in PLAN form. This solution would represented as
abstractly as possible, so it would be able to match against all the possible different

implementations of the solution.

If the input typed by the student does not produce a Lisp error these two extra chunks of

knowledge would be used to find errors in the student's program.

Context sensitive error cliches are error cliches specific to a particular exercise; they are
similar to the buggy algorithms in TALUS [Murray, 1986]. The use of context sensitive
error cliches can best be explained by the use of an example. Consider exercises 3-2 and

3-3 in Winston and Horn:

"3-2:Define ROTATE-L, a function that takes a list as its first argument and returns a

new list in which the former first element becomes the last. The following illustrates:

(ROTATE-L '(A B 0))
(BCA)

This includes the 'misreading the question' category

Chapter Xl Conclusions 231

(ROTATE-L (ROTATE-L '(A B C))
(CAB)

3-3:Define ROTATE-R. It is like ROTATE-L except that it is to rotate in the other

direction."”
One of the subjects second attempt was:

(defun rotate-r (exp-1)
(append (rest (rest exp-1))

(list (first exp-1l) (first (rest exp-1)))))

The above code is valid but, the subject thought that the function ROTATE-R would have to
deal exclusively with lists containing only three elements. It is only possible to trap
these type of errors with knowledge about the actual exercise being attempted. In this
exercise, ITSY would have a cliche that matched against code to make a list of three

elements.
Whereas the context sensitive error cliches would be used to detect major differences
between the student's attempt and the correct solution the PLAN form of the solution

would be used to detect smaller variations, for example swapping APPEND for LIST.

The only coaching currently provided by ITSY is on the editor. Other possibilities for

coaching in a future implementation of ITSY would be:

a) Coaching on the Lisp stepper. This could occur one of the more complex error cliches

(as yet not implemented) were found to match the student's input.

b) Coaching on the Lisp tracer. This would also occur when a more complex error cliche

matched the student's code.

¢) Coaching on the Inspector. The inspector is a graphical tool for examining Lisp objects

Chapter Xl Conclusions 232

such as DEFSTRUCTS or HASHTABLES. This would occur the first time a student
created a complicated data structure such as a DEFSTRUCT.

At present the nodes in the student model are 'bumped up' too quickly. The reason for this
is that the transition function between the nodes were determined arbitrarily. By
transition function we mean the function that determines when a node changes state. In
the case of ITSY's student model the transition function simply counts the number of
times an event (such as the student applying a function correctly) occurs. We suspect that
determining the transition function is not a trivial problem for two reasons. Firstly,
each different concept will need a different set of transition functions, as concept are not
equally easy to learn. Secondly, each student will need a different set of transition

functions and this will change as the student progresses.

The first step in determining the transition functions would be to re-analyse the raw data
collected in the studies. This re-analysis would include counting the number of times a
student used a particular concept correctly before the student seemed to fully understand

the concept.
Another possible extension to ITSY would be the addition of a student history. This
would provide ITSY with focus. The need for a history can be seen from the following

example taken form Study II (Chapter 11). The student has defined the function my-

first:

(defun our-first (items)

(car (items)))
the following interaction then took place at Lisp toplevel

*— (our~first (one two three))

;7 The function ONE is undefined

*- (our-first ' (one two three))

;; The function ITEMS is undefined

*- (items one two three)

Chapter Xl Conclusions 233

;; The function ITEMS is undefined

*~ (items ' (one two three))

;; The function ITEMS is undefined

*— (items 'one 'two 'three)

;; The function ITEMS is undefined

*- (items ' (one two three))

;; The function ITEMS is undefined

*— (items 'one 'two 'three)

;; The function ITEMS is undefined

*-~ (items ' (one) '(two) '(three))

;; The function ITEMS is undefined

*- (subst '(one two three) 'items (our-first))

;7 The function our-first was given too few arguments

*— (subst '(one two three) 'items ' (our-first))

(OUR~-FIRST)

*—- (subst '(one two three) 'items 'our-first)

OUR-FIRST
The subject then left this exercise.

This would use a push down stack of previous events. An event would be the analysis of
the student's input (including the analysis of any functions referred to) and any error
cliches that matched against the input. The stack would be weighted so that the more
distant in time an event occurred the less influence it would have on the current input.
ITSY would then use the stack to focus its search for an error. The stack would be used
when ITSY was unable to match an error cliche against the student's input. In the above

example ITSY would be unable to match an error cliche against the input:

Chapter XllIl Conclusions 234

(items ‘' (one two three))

But on the stack would be information on the line

(our-first '(one two three))

This would contain the following:

a) The error cliche Brackets Around a Variable matched against this input,
b) The name of the variable surrounded by brackets was ITEM.

Using this information ITSY would determine that the student was trying to give a value

to the variable ITEM.

ITSY's approach could be extended to experts in the form of an advanced Program
Debugging system. Since PLANSs are language independent the debugger could cope with
any programming language that had an analyser (analysers exist for Lisp, Fortran and
PL1 [Waters, 1985]). Because we cannot restrict expert programmers to work in a
restricted context or burden the programmer with the need to supply specification, the
system would only be able to detect a certain class of errors. This class would include
errors such as: unreachable statements, endless recursion and non-terminating loops. It
would not be possible to detect deep semantic or conceptual errors. Such errors require

knowledge about the actual task being attempted.

In order to increase efficiency not all the error cliches would be active for any error. The
set of error cliches activated would depend on the type of error signalled this would tie the
debugger closely to the normal program debugger. For example, the error stack

overflow would trigger the endless recursion error cliche, but not the incorrect loop

initialisation error cliche.

Expert error cliches for Lisp could include:

Chapter Xlll Conclusions 235

a) placing mixins to Flavors [Weinreb & Moon, 1982] in the wrong order,

b) surgically changing a list (using one of RPLACA, RPLACD, NCONC etc.) that will be

used later,

¢) using a THROW when not inside a CATCH.

Expert error cliches could also include 'bad style cliches' such as using inefficient code.

APPENDICES

REFERENCES

Adam, A. & Laurent, J. P. Automatic Diagnostics of Semantic Errors. Proceedings of
the AISB-80 Conference on Artificial Intelligence, July 1980.

Anderson, J. R. & Reiser,J. B. The LISP Tutor. BYTE: The Small Systems Journal.
Vol. 10. No. 4. pp 159-175. April 1985.

Anderson, J. R., Pirolli, P. & Farrell, R. Learning to Program Recursive Functions.
To Appear in The Nature of Expertise. Chi, M., Glaser, R. & Farr, M. (eds). Hillsdale
New Jersey: Erlbaum, 1984.

Barr, A, Beard, M., & Atkinson, R. C. The Computer as a Tutorial Laboratory: The
Stanford BIP Project. International Journal of Man-Machine Studies, Vol. 8, pp 567-596,

1976.

Boies, S. J. & Gould, J. D. Syntactic Errors in Computer Programming. Human Factors
Vol. 16, 253-257,1974.

Bonar, J. & Soloway, E. Pre-Programming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction, Fall 1985.

Brotsky, D. Program Understanding through Cliche Recognition. MIT Artificial
Intelligence Laboratory. Working Paper 224 December 1981.

Brown, J. S. & Burton, R. R. A Paradigmatic Example of an Artificially Intelligent
Instructional System. Proceedings of the First International Conference on Applied
General Systems Research: Recent Developments and Trends, Binghampton, New
York, August 1977.

Burton, R. R. & Brown, J. S. An Investigation of Computer Coaching for Informal
Learning Activities. In Intelligent Tutoring Systems (eds) Sleeman, D. & Brown, J. S.
August 1978.

Cerri, S. A., Fabbrizzi, M. & Marsili, G. The Rather Intelligent Little Lisper. AISBQ
Vol 50, pp 21-24 Spring/Summer 1984,

Clancey, W. J. Tutoring rules for guiding a case method dialogue. International
Journal of Man-Machine Studies. Vol. 11, pp 25-49, 1979.

di Sessa, A. A. A Principled Design for an Integrated Computational Environment.
MIT Laboratory of Computer Science. July 1982

du Boulay, J. B. H. LOGO learning by School Teachers. Edinburgh: Doctoral
dissertation, Department of Artificial Inteligence, University of Edinburgh, 1979.

du Boulay, B., O'Shea, T. & Monk, J. The Black Box Inside the Glass Box: Presenting
Computing Concepts to Novices. International Journal of Man-Machine Studies Vol.14,
pp. 237-249, 1981.

Eisenstadt, M. A User-Friendly Software Environment for the Novice Programmer.
Communications of the ACM Vol. 26 No. 12, pp 1058-1064, December, 1983.

Eisenstadt, M. & Laubsch, J. Towards an Automated Debugging Assistant for Novice
Programmers. Proceedings of the AISB-80 Conference on Artificial Intelligence, July,
1980.

References 2

Eisenstadt, M., Laubsch, J. H. & Kahney J. H. Creating Pleasant Programming
Environments for Cognitive Science Students. Proceedings of the Third Annual
Conference of the Cognitive Science Society. August, 1981.

Eisenstadt, M. & Lewis, M. Errors in an Interactive Programming Environment:
Causes and Cures. Human Cognition Research Laboratory. Milton Keynes, MK7 6AA
England Tech. Rep. 4 2nd Ed.) September, 1985.

Elsom-Cook, M. T. Design Considerations of an Intelligent Tutoring System for
Programming Languages. Warwick: Doctoral dissertation, Department of Psychology,
University of Warwick. October 1984.

Goldstein I. P. Summary of MYCROFT: A System for Understanding Simple Picture
Programs. Artificial Intelligence. Vol. 6 pp. 249-288, 1975.

Goldstein, I. P. & Papert, S. Artificial Intelligence, Language, and the Study of
Knowledge. Cognitive Science, Volume 1, Number 1, 1977.

Hasemer, T. A Very Friendly Software Environment for SOLO in New Horizons in
Educational Computing, (ed) Yazdani M.Ellis Horwood, London. pp 84-100 1983.

Hasemer, T. An Empirically-Based Debugging System for Novice Programmers.
Human Cognition Research Laboratory. The Open University, Milton Keynes,
England. Technical Report. No. 6, November 1983.

Hasemér, T. A Beginner's Guide to Lisp. Addison-Wesley 1984.

Johnson, W. L, Draper & S. Soloway, E.Classifying Bugs is a Tricky Business.
Proceedings of the Seventh Annual NASA/Godard Workshop on Software Engineering,
Baltimore, 1982.

Johnson, W. L., Draper, S. & Soloway, E. An Effective Bug Classification Scheme Must
Take the Programmer into Account. Proceedings of The Workshop on High-Level
Debugging, Palo Alto, 1983.

Johnson, L. W. & Soloway, E. PROUST: An Automatic Debugger for Pascal
Programs. BYTE The Small Systems Journal. Vol.10. No. 4. pp 179-190 April 1985

Kahney, H. & Eisenstadt, M. Programmers' Mental Models of their Programming
Tasks: The Interaction of Real World Knowledge and Programming Knowledge.
Proceedings of the Fourth Annual Conference of the Cognitive Science Society. Ann
Arbor, Michigan, 1982.

Laubsch, J. & Eisenstadt, M. Domain Specific Debugging Aids for Novice
Programmers. Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, B.C. Canada, August 1981.

Laubsch, J. & Eisenstadt, M. Using Temporal Abstraction to Understand Recursive
Programs Involving Side Effects. Proceedings of the National Conference on Artificial
Intelligence August 1982.

Lewis, M. Improving Solo's User Interface: An Empirical Study of User Behaviour and
Proposals for Cost-Effective Enhancements to Solo. Computer Assisted Learning
Research Group The Open University, Milton Keynes, England. Technical Report No 7.
April 1980.

References 3

Lieberman, H, Steps Toward Better Debugging Tools for Lisp. Proceedings ACM
Symposium on Functional Programming, 1984.

Lukey, F. J. Understanding and Debugging Programs. International Journal of Man-
Machine Studies Vol. 12, pp. 189-202, 1980,

Lutz, R. Towards an Intelligent Debugging System for Pascal Programs. Human
Cognition Research Laboratory, The Open University, Milton Keynes, England.
Technical Report No. 8, April 1984,

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. & Levin, M. I. LISP 1.5
Programmer's Manual, The MIT Press, Cambridge, Massachusetts 1962.

Murray, W. R. Automatic Program Debugging for Intelligent Tutoring Systems.
Texas: Doctoral dissertation, Artificial Intelligence Laboratory, The University of
Texas at Austin. June 1986.

Norman, D. A., Design Principles for Human-Computer Interfaces. Proceedings of the
CHI 1983 Conference on Human Factors in Computer Systems. Boston, December 1983.

O'Shea, T. & Self, J. Learning and Teaching with Computers. Harvester Press. 1983.

Pitman, K. M. The Revised MacLISP Manual. MIT Laboratory for Computer Science
Cambridge, Massachussets (MIT/LCR/TR 295), May 1983.

Rajan, T. M., APT: The Design of Animated Tracing Tools for Novice Programmers.
Human Cognition Research Laboratory, The Open University, Milton Keynes, England,
Technical Report No. 15. March 1985.

Rich, C., Shrobe, H. E., Waters, R. C., Sussman, G. J. & Hewitt, C. E. Programming
Viewed as an Engineering Activity. MIT Artificial Intelligence Laboratory, A.I. Memo
459, January 1978.

Rich, C. Inspection Methods in Programming. MIT Artificial Intelligence Laboratory,
Report No. AI-TR-604. June 1981.

Ruth, G. R. Intelligent Program Analysis. Artificial Intelligence, Vol. 7, pp. 65-851976.

Shapiro, D. G. Sniffer: A System that Understands Bugs. MIT Artificial Intelligence
Laboratory. A.I. Memo No. 638 June, 1981.

Shortliffe, E. H. Computer Based Medical Consultations: MYCIN. New Yok: American
Elsevier, 1976.

Shrobe, H. E., Waters, R. C. and Sussman G. J. A Hypothetical Monologue Illustrating
the Knowledge Underlying Program Analysis. MIT Artificial Intelligence Laboratory,
A1 Memo 507, January 1979.

Sleeman, D. H. & Smith, M. J. Modelling Student's Problem Solving. Artificial
Intelligence Vol. pp 16 171-188, 1981.

Spohrer, J. G. & Soloway, E. Analysing the High Frequency Bugs in Novice Programs.
Empirical Studies of Programmers, Soloway, E. & Iyengar, S. (eds). Ablex Publishing
Corporation Norwood, New Jersy. pp 230-251. 1986

References 4

Stallman, R. Emacs the Extensible, Customisable, Self-Documenting Display Editor.
Proceedings of ACM SIGPLAN-SIGOA Symposium. Text Manipulation. ACM
SIGPLAN Notices vol. 16, no. 6, June 1981,

Steele, G. L. Common Lisp: The Language. Digital Press, 1984.

Touretzky, D. S. A Gentle Introduction to Symbolic Computation. Harper and Row, 1984.

Waters, R. C. Automatic Analysis of the Logical Structure of Programs. Technical
Report No. TR-492, December 1978.

Waters, R. C. A Method for Analysing Loop Programs. IEEE Transactions on Software
Engineering, Vol. SE-5 No. 3 pp 237-247, May 1979.

Waters, R. C. The Programmer's Apprentice: Knowledge Based Program Editing.
IEEE Transactions on Software Engineering, Vol SL-8 No.1, January 1982.

Waters, R. C. KBEmacs: A Step Toward the Programmer's Apprentice. MIT Artificial
Intelligence Laboratory, Technical Report 753, May 1985.

Weinreb, D. & Moon, D. Lisp Machine Manual, 1981.

Wertz, H. Stereotyped Program Debugging: an aid for novice programmers.
International Journal of Man-Machine Studies. Vol. 16, pp. 379-392, 1982.

Wescourt, K. T., Beard, M., Gould, L & Barr, A. Knowledge Based CAI: CINS for
Individualised Curriculum Sequencing. Stanford University, Stanford California,
Technical Report No. 290 Inst. for Mathematical Studies in the Social Sciences, 1977.
Wilensky, R. Lispcraft. W. W. Norton and Co. London, 1984.

Winston, P. H. & Horn, B. K. P. Lisp. Addison-Wesley 1981.

Winston, P. H. & Horn, B. K. P. Lisp, 2nd Edition. Addison-Wesley 1984

Zelinka, L. M. Automated Program Recognition MsC Thesis MIT Electrical
Engineering and Computer Science, June 1986.

APPENDIX A
INSTRUCTIONS FOR STUDY I

This appendix contains the two sheets that I handed out to the subjects, at the
start of the experiment. The first sheet gives a brief introduction, telling the subjects
how to log on and how to attempt the exercises. The second sheet gives a summary of
the editor and LISP top-level commands.

LISP SESSION
1. Press return until you are prompted by
ENTER CLASS
then type 5 return. You will be prompted by
Enter Command or Course Code:

type in LOG R.LISPCLASS.N where n is your number (0..8). Then press the ESC
button, you will then be prompted by (PASSWORD) the password is your number i.e. n.

2. When you log in you will automatically be put into the LISP toplevel. After a few
minutes the word NIL will appear on the screen.

3. Start on chapter 2 in Winston & Horn. The exercises in chapter 2 can be typed into
the LISP top level. First write the answer on the sheet provided, then type in your
answer.

If your first attempt is wrong try typing in another, feel free to write any comments
you feel relevant on the top level as well, you can write comments by typing a semi-
colon at the start of the line. If you make an error in the LISP top level LISP will type
something like

ERROR
Debug option (type ? for help):

if you get this type ~g (control g).

4. When you reach chapter 3 then you will need to write your function definitions into
a file and then load them. Enter emacs by typing Ae. Once you have entered emacs
you need to create a file. Type ~x /f, the editor will the prompt you with Find File
(Default RS:<R.LISPCLASS>GAZONK.DEL.0): then type in the name of the file you
want to create. The file name should end with .Isp (eg lispfile.lsp). If the file already
exists you will enter this file and the contents will appear on the screen. You can now
type in the definitions. '

5. Once you have typed in all the definitions you can save the file contents by typing *x
As. Quit emacs by typing Ac. You will now be back in the LISP top level. Load your file
by typing A1 then the file name inside two vertical bars (eg. |lispfile.lsp|)

6. When you enter emacs for the second time you will be taken back to the last file that
you were editing, you can then type in the extra definitions then re-load the file.

7. Whenever you are stuck ring me on 3701 and I will then advise you via your
terminal.

8. Once you have finished type "(stop)" to leave the LISP top level.

Appendix A 2

Summary of Commands
Ne Enter Emacs

Ac Quit Emacs

Emacs Commands

T Up one line

l Down one line

« Left one character

- Right one character

Keypad 4 Left one word

Keypad 6 Right one word

Ax Af Find a file (must finish with .Isp)
Ax Mg Write a file

Linefeed or Return then Tab automatically indents the text.

enter Load just one function.

Lisp Top Level Commands

rg Stop a program running

A Load a file (1__I)

Arf Look at a function

(stept) Turn tracer on Space Bar Return to step through
(step nil) Turn tracer off

; Anything typed after a semi-colon is ignored by
the interpreter.

If you get a error in the LISP top level LISP will type something like

ERROR
Debug option (type ? for help):

if you get this type a control g (G).

APPENDIX B
Raw Data

This appendix contains the raw data collected from the study. Each column
represents a particular subject. For example, in the 2 lines

"The textual environment
6 4 1 3 3 0 0 0 o"
should be read as follows:

The first subject made 6 errors involving the textual environment. The second
subject made 4 such errors, the third subject made 1 such error, and so on.

Subject
K J A B D E J2 B2 P
Problems Caused by the Environment

1. The textual environment.

6 4 1 3 3 0 0 0 0
2. The computing environment

1 9 7 4 10 1 2 18 4

Algorithmic Errors

1. Not realising that a solution is incorrect.

0 10 0 0 0 0 0 8 0
2. Using the wrong function, which is not one of APPEND, CONS and LIST.
0 1 1 3 0 0 2 0 0
3. Using the wrong function out of APPEND, CONS and LIST.

0 4 7 0 0 0 0 4 0
4. Using the wrong combination of CAR's and CDR's.

5 5 4 10 5 7 1 0 0
5. Errors with recursion.

0 1 3 0 0 0 0 2 2

(<2}

. Other Algorithmic errors.

0 18 9 0 0 0 0 5 3

Subject
K d A B D E

Errors in Lisp

1. Simple Errors.
8 25 7 2 2 1
2. Forgetting to load a function.

0 1 3 1 0 0
3. Unbound atoms.

0 1 3 0 1 0
4. Putting brackets around an atom

2 3 15 0 1 0

5. Stuck at top-level, because there are not enough closing brackets

2 0 1 1 2 6

=2}

0 0 14 0 0 0

-3

. Not putting brackets around a function call.

2 0 14 6 5 0

8. Wrong number of arguments given to a function.

0 0 4 2 2 0

J2

0

1

. Putting an extra set of brackets around a function call.

3

0

B2

1

2

1

1

Appendix B 2

1

9. Wrong number of arguments given to a function, because the arguments are in the

wrong form.

0 5 1 4 6 0
10. Arguments given are of the wrong type.

1 15 16 0 12 0
11. Errors concerning the special form DEFUN.

3 2 0 0 0 0

12. Errors in the test part of a clause in a COND special form.

0 0 4 0 0 0

2

1

Appendix B 3

Subject
K J A B D E J2 B2 P
13. Errors in the result part of a clause in a COND special form.
0 16 20 0 0 0 0 0 0
14. Quoting an object that should not be.
0 7 0 0 0 0 0 1 2
15. Not quoting an object that should be.
1 4 16 5 6 1 1 3 9
16. A file not loading, because there are not enough closing brackets.
0 0 20 0 0 0 0 0 7
17. Other Errors.

0 9 3 0 1 20 0 1 4

The large variations between the number of errors made by the subjects is due to two
reasons. Firstly, some subjects made fewer errors per line of input than others.
Secondly, some of the subjects attended more sessions than others.

APPENDIX C
Dribble Files

This contains two of the dribble files from the study. My comments are preceded by
two semi-colons, the subjects’ by one. Extra comments added "after the event" are in
this font.

|[IDribbling. |

(defun stop ()
{(undribble)
(quit))

STOP

(setg W nil)

NIL

The function COMPLEXP is exercise 3-10 on page 42 of "Lisp" [Winston & Horn,
1981]. The problem statement is:

"Problem 3-10: Define COMPLEXP, a predicate that takes three arguments, A, B,
and C, and returns T if b squared - 4ac is less than zero."

[LEDIT Created.]
[Reading from LEDIT...]

(defun complexp (a b c) The function is
(lessp (difference (expt b 2) "zapped" from
(times 4 a c)) 0)) the file
COMPLEXP

[LEDIT Completed.] [LEDIT Continued.]
[Reading from LEDIT...]
(defun complexp (a b c)
(lessp (difference (expt b 2) (times 4 a c))))
COMPLEXP

The subject is going to load his file brin.lsp

[LEDIT Completed.]file: |brin.lsp|
(defun first (exp-1) (car exp-1))
(defun rest (exp-1) (cdr exp-1))
(defun insert (new exp-1) (cons new exp-1))
(defun rotate-1 (exp-1l) (append (rest exp-1) (cons (first exp-1)
nil)))
(defun rotate-r (exp-1) (append (cons (first (reverse exp-1)) nil)

(reverse (rest (reverse exp-1)))))
(defun palindromize (exp-1l) (append exp-1 (reverse exp-1)))
(defun f-to-c (f) (difference (quotient (plus f 40) 1.8) 40))
(defun c-to-f (c) (difference (times (plus c 40) 1.8) 40))
(defun roots (a b c¢) (list (quotient (plus (minus b) (sqrt
(difference (expt b 2) (times 4 a c)))) (times 2 a)) (quotient
(difference (minus b) (sqrt (difference (expt b 2) (times 4 a c))))
(times 2 a))))
(defun evenp (num) (zerop (remainder num 2)))
(defun palindromep (listl) (equal listl (reverse listl)))
(defun rightp (elta eltb eltc)

(equal (expt elta 2) (plus (expt eltb 2) (expt eltc 2))))
(defun complexp (a b c) (lessp (difference (expt b 2) (times 4 a
c)) 0))

Appendix C 2

[LLOAD of file RS:<R.LISPCLASS.7>BRIN.LSP.25 completed.]
QUIT*

The subject uses a top level tool to look at the definition of a loaded function.
function: complexp

(DEFUN COMPLEXP (A B C) (LESSP (DIFFERENCE (EXPT B 2) (TIMES 4 A
c)) 0))

QUIT*

The function NILCAR is exercise 3-11 on page 45 of "Lisp". The problem statement
is:

"Problem 3-11: In some LISP's, trying to take the CAR or CDR of NIL causes an
error. Define NILCAR and NILCDR in terms of CAR and CDR such that they work
like CAR and CDR, but return NIL if given NIL as their argument no matter what
CAR and CDR do."

[LEDIT Continued.]
[Reading from LEDIT...]
(defun nilcar (exp-1)
(cond ((null exp-1) nil)
(nil (first exp-1))))
NILCAR
[LEDIT Completed.]function: nilcar

(DEFUN NILCAR (EXP-1) (COND ((NULL EXP-1) NIL) (NIL (FIRST EXP-
1))

QUIT*

; 1 dont really understand how cond works, but here goes.
(setqg lista '(abcde f))(ABCDEF)

(nilcar lista)NIL
(nilcar nil)NIL
[LEDIT Continued.]
[Reading from LEDIT...]
(defun nilcar (exp-1)

(cond ((null exp-1) nil)

(t (first exp-1))))

NILCAR
[LEDIT Completed.]function: nilcar
(DEFUN NILCAR (EXP-1) (COND ((NULL EXP-1) NIL) (T (FIRST EXP-1))))
QUIT*

; ok lets try it this way
(nilcar lista)A

(nilcar ())NIL
(nilcar nil)NIL

(nilcar '(1234 asdf 5678))1234

Appendix C 3

; 1 think i u
; sorry.... i think i'm beginning to understand
[LEDIT Continued.]
[Reading from LEDIT...] (defun nilcdr (exp-1)
(cond ((null exp-1l) nil)
(t (rest exp-1))))
NILCDR
[LEDIT Completed.]function: nilcdr

(DEFUN NILCDR (EXP-1) (COND ((NULL EXP-1) NIL) (T (REST EXP-1))))
QUIT*

(cdr nil)NIL

(nilcdr nil)NIL

(nilcdr lista) (B C D E F)

(nilcdr '(1234 asdf 5678)) (ASDF 5678)

function: nilcdr

(DEFUN NILCDR (EXP-1) (COND ((NULL EXP-1) NIL) (T (REST EXP-1))))
QUIT*

The function CHECK-TEMPERATURE is exercise 3-12 on page 45 of "Lisp". The
problem statement is:

"Problem 3-12: Some people prefer the Fahrenheit scale to the Celsius scale, because
they find it aesthetically pleasing that 0 degrees and 100 degrees are pinned to
temperatures that bracket the temperature spectrum of temperate climates, 0 degrees
being ridiculously cold and 100 degrees being ridiculously hot. Define CHECK-
TEMPERATURE, a function that is to take one argument, such that it returns
RIDICULOUSLY-HOT if the argument is greater than 100, RIDICULOUSLY-COLD
if the argument is less than 0, and OK otherwise.”

[LEDIT Continued.]
[Reading from LEDIT...]
(defun check-temperature (temp)
(cond ((greaterp temp 100) '(ridiculously-hot))
((lessp temp 0) '({ridiculously-cold))
(t '(ok))))
CHECK-TEMPERATURE

[LEDIT Completed.]
; problem 3.12

function: check-temperature
(DEFUN CHECK-TEMPERATURE (TEMP)
(COND ((GREATERP TEMP 100) ' (RIDICULOUSLY-HOT))
((LESSP TEMP 0) ' (RIDICULOUSLY-COLD))
(T "(0K))))
QUIT*

(check-temperature 102) (RIDICULOUSLY-HOT)

Appendix C 4

(check-temperature 25) (OK)

(check-temperature -32) (RIDICULOUSLY-COLD)
(check-temperature 0) (OK)

; it would be better i s'pose if the returns were'nt lists ?

[LEDIT Continued.]

[Reading from LEDIT...]

(defun check-temperature (temp)

(cond ((greaterp temp 100) (car '(ridiculously-hot)))

((lessp temp 0) (car '(ridiculously-cold)))
(t (car *(ok)))))

CHECK-TEMPERATURE

[LEDIT Completed.]function: check-temperature

(DEFUN CHECK-TEMPERATURE (TEMP)
(COND ((GREATERP TEMP 100) (CAR '(RIDICULOUSLY-HOT)))
((LESSP TEMP 0) (CAR ' (RIDICULOUSLY-COLD)))
(T (CAR '(OK)))))

QUIT*

(check-temperature 89)0OK

(check-temperature 190) RIDICULOUSLY-HOT
(check-temperature -1500000000) RIDICULOUSLY-COLD

The function CIRCLE is exercise 3-13 on page 47 of "Lisp". The problem statement
is:

"Problem 3-13: Define CIRCLE such that it returns a list of the circumference and
area of a circle whose radius is given. Assume PI is to be a free variable with the
appropriate value."

; problem 3.13
[LEDIT Continued.]
[Reading from LEDIT...]
(defun circle (radius-1)

(list (times 2 pi radius-1)

(times pi radius-1 radius-1)))

CIRCLE
[LEDIT Completed.]function: circle

(DEFUN CIRCLE (RADIUS-1)
(LIST (TIMES 2 PI RADIUS-1) (TIMES PI RADIUS-1 RADIUS-1)))

QUIT*

(setq pi 3.142)3.142

(circle 1) (6.284 3.142)

(circle 5)(31.4199998 78.549999)

(circle pi) (19.7443278 31.018339)

; its just occured to me that i went around the houses a bit in

3.12
[LEDIT Continued.]

Appendix C 5

[Reading from LEDIT...]
(defun check-temperature (temp)
(cond ((greaterp temp 100) 'ridiculously-hot)
((lessp temp 0) ‘ridiculously-cold)
(t 'ok)))
CHECK-TEMPERATURE

[LEDIT Completed.]function: check-temperature
(DEFUN CHECK-TEMPERATURE (TEMP)
(COND ((GREATERP TEMP 100) ‘RIDICULOUSLY-HOT)

((LESSP TEMP 0) 'RIDICULOUSLY-COLD)
(T 'OK)))

QUIT*

(check-temperature 13)0K

(check-temperature 104) RIDICULOUSLY-HOT

; thats better

function: member
MEMBER compiled.

QUIT*

(stop)

Appendix C 6

The next dribble file shows how on-line advice can help a student.
|Dribbling. |

(defun stop ()
(undribble)
(quit))

STOP

(setg W nil)
NIL

(

(atom (cadr '((b c) (d e))))

)
;NIL UNDEFINED FUNCTION OBJECT

QUIT™*
(atom (cadr '((b c) (d e))))NIL

(atom d)

;D UNBOUND VARIABLE

QUIT*

(cadr ((b c) (d e)))

;B UNDEFINED FUNCTION OBJECT

QUIT*
(cadr '((b c) (d e))) (D E)

(cdr '((b c) (d e))) ((D E))

(cons ‘a ()) (A)

The functions MYSTERY, STRANGE and SQUASH are exercises 4-1, 4-2 and 4-3 on
page 57 of "Lisp". The problem statements are:

"Problem 4-1: Describe the evident purpose of the following function:

(DEFUN MYSTERY (S)
(COND (NULL 8) 1)
((ATOM S) 0)
(T (MAX (ADD1 (MYSTERY (CAR S)))
(MYSTERY (CDR S))))))

Problem 4-2: Describe the evident purpose of the following function:

(DEFUN STRANGE (L)
(COND ((NULL L) NIL)
((ATOM L)L)
(T (CONS (STRANGE (CAR L))
(STRANGE (CDR L)))))

Problem 4-3: Define SQUASH, a function that takes an s-expression as its argument
and returns a nonnested list of all atoms found in the s-expression. Here is an

example:

(SQUASH '(A (A (A (A B))) ((A B) B) B) B))
(AAAABABBBB)

Appendix G 7

[LEDIT Created.]
[Reading from LEDIT...] (defun squash (lista)
(cond ((null lista) nil)
((atom lista) lista))
(t (cons (squash (car lista))
0O»)
SQUASH

[LEDIT Completed.]
(setg 1 '(a (bc) (de)))(nr (BC) (D E)))

(squash 1)
;T UNDEFINED FUNCTION OBJECT

|brin.lsp| (defun first (exp-1l) (car exp-1))
(defun rest (exp-1l) (cdr exp-1))
(defun insert (new exp-1) (cons new exp-1))
(defun rotate-1 (exp-1) (append (rest exp-1l) (cons (first exp-1)
nil)))
(defun rotate-r (exp-1) (append (cons (first (reverse exp-1)) nil)
(reverse (rest (reverse exp-1)))))
(defun palindromize (exp-1) (append exp-1 (reverse exp-1)))
(defun f-to-c (f) (difference (quotient (plus £ 40) 1.8) 40))
{(defun c-to-f (c) (difference (times (plus c 40) 1.8) 40))
(defun roots (a b ¢) (list (quotient (plus (minus b) (sgrt -
(difference (expt b 2) (times 4 a c)))) (times 2 a)) (quotient
(difference (minus b) (sgrt (difference (expt b 2) (times 4 a
c)))) (times 2 a))))
(defun evenp (num) (zerop (remainder num 2)))
(defun palindromep (listl) (equal listl (reverse listl)))
(defun rightp (elta eltb eltc)
(equal (expt elta 2) (plus (expt eltb 2) (expt eltc 2))))
(defun complexp (a b c)
(lessp (difference (expt b 2) (times 4 a c)) 0))
(defun nilcar (exp-1)
(cond ((null exp-1) nil)
(t (first exp-1))))
{defun nilcdr (exp-1)
(cond ((null exp-1) nil)
(t (rest exp-1))))
(defun check-temperature (temp)
(cond ((greaterp temp 100) ‘'ridiculously-hot)
((lessp temp 0) ‘ridiculously-cold)
(t 'ok)))
(defun circle (radius-1)
(list (times 2 pi radius-1)
(times pi radius-1 radius-1)))
(defun mystery (s)
(cond ((null s) 1)
((atom s) 0)
(t (max (addl (mystery (car s)))
(mystery (cdr s))))))
(defun strange (1)
(cond ((null 1) nil)
((atom 1) 1)
(t (cons (strange (car 1))
(strange (cdr 1))))))
(defun squash (lista)
(cond ((null lista) nil)
((atom lista) lista))
(t (cons (squash (car lista))
0

Appendix C 8

QUIT*
(strange 1) (A (B C) (D E))

1
(A (B C) (D E))

(atom 1)NIL

(atom (car 1))T

(atom (cdr 1))NIL

(atom (cadr 1))NIL

(atom (caadr 1))T

(caadr 1)B

(setg 1 (cdr 1)) ((B C) (D E))

1
((B C) (D E))

(setg 1 (cdr 1)) ((D E))
(setqg 1 (cdr 1))NIL
(setg 1 '((d e))) ((D E))
(car 1) (D E)

(caar 1)D

(cdr 1)NIL

[LEDIT Continued.]

[LEDIT Completed.];;hello brian is the problem to do with squash?
; most definitely

; ;what exactly?

; 1 think the solution should be the same as starnge in 4-2, but
; it obviously isnt. i just cant see a way of doing it

function: squash

(DEFUN SQUASH (LISTA)
(COND ((NULL LISTA) NIL) ((ATOM LISTA) LISTA))
(T (CONS (SQUASH (CAR LISTA)) NIL)))

QUIT*

; my edit file contains an old attempt

; ;what you need is a way of stripping brackets from a list, the
;:way to do this is use append eg. append (1 2 3) (4 5 6)
;;gives (1 2 3 4 5 6)

; ;does that help at all?

; possibly. i tried using append in an earlier attempt b

ut

;UT UNBOUND VARIABLE
*

; ut i got an error, so i guess i was'nt using it properly.
i'11l give it another try.

Appendix C 9

; ;the most likely reason for your error is that both arguments to
append

;;must be lists, append can't strip a bracket off of an atom, so
you'll

;ineed to cope with that if lista is an atom, I'll leave you to
think

; ;about that but ring again in another ten minutes if your still
stuck

; ok thanx
(setq a 'z)2

(list a) (2)
(list 'a)(A).

[LEDIT Continued.]
[Reading from LEDIT...] (defun squash (lista)
(cond ((null lista) nil)
((atom lista) (list lista))
(t (append (squash (car lista))

(squash (cdr lista))))))
SQUASH

[LEDIT Completed.]function: squash

(DEFUN SQUASH (LISTA)
(COND ((NULL LISTA) NIL)
((ATOM LISTA) (LIST LISTA))
(T (APPEND (SQUASH (CAR LISTA)) (SQUASH (CDR LISTA))))))

QUIT*

1
((D E))

S

;S UNBOUND VARIABLE
*

(setg 1 *(a (b c) (de)))(r (BC) (D E))

(squash 1) (A B C D E)

; whhooopppeeee. to think i was so close about 5 hours ago !!
(squash '"(a (a (a (a b))) (((ab) b) b)))(AAAABABB B)

(stop)

APPENDIXD
INSTRUCTIONS FOR STUDY I
ITSY

When you make an error, the first thing that will happen is that the
‘real’ error message (the error message tht would have appeared if you were
not using ITSY) will appear, the second is that ITSY will provide a short
tutorial using six frames. Each frame contains a message and a menu. The six
frames are as follows:

1. The 'Question Frame'. The aim of this frame is to check that ITSY
has the right diagnosis fo the error and you want a tutorial. The menus
consists of the following choisces:

Yes: Click on this if you want the tutorial
No: This will take you back to Lisp
Explain Question: This will provide an explanation of the question

2. The 'Explain Question Frame'. This will provide an explanation of
the question if have trouble understanding it. The menu consists of the
following choices:

OK: Click on this to go back to the question.

3. The 'Main Explanation Frame'. This shoul dgive a short
explanation of the error. The menu consists of the following choices:

Examples: Click on this to go to the example menu
Deeper Explanation:

Click on this to go to the deeper explanation menu
Cancel: Click on this to go back to Lisp.

4. The Deeper Explanation Frame'. This will give a longer
explanation of th error. The menu consists of the following choices:

Examples: Click on this to go to the example menu
Cancel: Click on this to go back to Lisp.

5. The 'Examples Frame'. This will glve some examples. The menu
consists of the following choices:

Cancel: Click on this to go back to Lisp.
6. The 'Fix Frame'. This will give a possible 'fix' for the error.

If you are not sure what the first 'question frame' means, then click on
'yes'. If you click on 'no' you will not get the tutorial. As you progress
ITSY will ask you if you want a tutorial before presenting it, and later still
ITSY will put a 'Present Tutorial' option on the ITSY Lisp menu which you
can select if you want the tutorial.

Once you start defining your own comments, you can select the 'Add
Comments' option on the ITSY Lisp menu. Once you'v selected this you can

Appendix D 2

type your comments into the Lisp Window. To end the comments type end at
the beginning of a line.

You can describe any Common Lisp function by selecting 'Describe
Function' on the ITSY Lisp menu. ITSY will then print a description of the
function.

Appendix D 3

ITSY Lisp Top Level

When you first use ITSY the screen will have two parts, the lisp top
level and a status line. The status line is at the very bottom of the screen. The
status line will give information such as whether ITSY is waiting for input or
evaluating an s-expression or trying to find an error. If you click on the
middle or right mouse button a menu will appear. If you click on 'describe a
function' the type the name of a Common Lisp function a description of the
function will appear.

Later the shape of the screen will change. An editor window will
appear on top of the Lisp window. You can select either the editor window or
the Lisp window by moving the mouse to the desired window and clicking on
it with the Left mouse button.

In both the Lisp window and the editor window various actions can be
carried out by usng control keys and the mouse; a summary of the editor
commands is contained on another sheet.

The following is a summary of the key commoands available in the
Lisp window. ‘

control-f means hold the control key down while pressing the f key.
meta-f means hold the meta key down while pressing the f key

control-meta-f means hold both the control and meta key down while
pressing the f key.

Key Command Action

control-f Move forward a character

control-b Move backward a character

meta-f Move forward a word

meta-b Move backward a word

control-k Kill the current line from the cursor position

control-c Yank the previous input

meta-c (use only after a control-c). Yank the input
before the previous input.

control-a Move to the beginning of the line

control-e Move to the end of the liné

control-d Delete the next character

rubout Delete the previous character

meta-d Delete the next word

Appendix D 4

The Editor

The following is the correct sequence to use in order to write a function
and load it into Lisp.

1. Select the editor window by moving the mouse over the window
and clicking the left mouse button, or by selecting the editor option on the
menu. (see menu) _

2. Find afile. You will be prompted for a name. Type the name of
your file (You could use your name as the filename) (see menu)

3. Type in the definition of your function.

4. Save the buffer - (see menu).

5. Load the file into Lisp (see menu).

If you make changes to the buffer once you have loaded the file, you

can load the changed functions by selecting Load changed Functions' on the
menu.

Editor Commands

The following is a summary of the key commands available in the
Editor window.

control-f means hold the control key down while pressing the f key.
meta-f means hold the meta key down while pressing the f key.

control-meta-f means hold both the control and meta key down while
pressing the f key.

Key Command Action

control-f Move forward a character
control-b Move backward a character
meta-f Move forward a word

meta-b Move backward a word
control-meta-f Move forward an s-expression
control-meta-b Move backward an s-expression
control-n Move down one line

control-p Move up one line

control-k Kill the current lien from the cursor

control-a
control-e
control-d
rubout

meta-d
meta-rubout
Control—meta—d

control-meta-rubout

Appendix D 5
Move to the beginning of the line
Move to the end of the line
Delete the next character
Delete the previous character
Delete the next word
Delete the previous word
Delete the next s-expression

Delete the previous s-expression

control-v Move down a screen
meta-v Move up a screen
Mouse Left Select the window under the mouse.

It is possible to move the character cursor
around once inside the editor using the
mouse. Move the mouse to the desired

position and then press the left button.

Mouse Middle Mouse Right

Menu Choices are
Lisp:

Find a file:

Load a file:

Save this Buffer:;
List all the Buffers:

Load Changed Functions:

meta-rubout

Bring up a menu

Go to the Lisp window
Create or find a file

Load an existing file into Lisp

A menu will appear containing all of the
files you have saved. Selecting one of
these will load the file into the Lisp
environment.

Save the current Buffer

List the current buffers. A list of buffers
will appear at the top of the window. You
can select one of these by clicking on it
with the mouse

Load the Changed functions into Lisp.

Delete the previous word

APPENDIX E
Total Number Errors for Study II
The first number given is the number of errors made in the particular category. The
second number given is the percentage of the total number of errors made in this
category.

Error

Apply CARs and CDRs in the wrong order
4 1.1

Arguments in the wrong form

9 2.4
A Slip Up
3 0.8

Bracket Error Outside a Clause

3 0.8
Bracket around a quoted list
1 0.3

Brackets around a number

1 0.3
Brackets around a variable
14 3.8

Brackets around a variable in COND
2 0.5

Brackets around an unbound atom

5 1.3 (

Calling a Function that doesn't exist
10 2.7

Caused by Winston and Horn

2 0.5

Error due experimenter

0

Extra Set of Brackets around a function call

15 4.0

Extra set of brackets around a function call inside a COND
18 4.8

Function not loaded because of another error

1 0.3

Forgetting to load a function
0

Incorrect algorithm

111 29.8
Misreading the question

0

Missing a Function Call

2 0.5

Né brackets around a function call
19 5.1

No brackets around a function call in a COND
7 1.9

No brackets around a test function

8 C 2.2

No gaps between atoms

3 0.3

Non-lists to Cons car cdr append

12 3.2

Not Closing the Test part of a Clause
11 3.0

Appendix E 2

Not Quoting

31 8.3

Not Setting a Variable before using it

3 0.3

Not Trying a function on the right input

0

Problem with load changed functions

0

Quoting a Function

1 0.3

quoting a variable

4 1.1

Quoting and putting brackets around a variable
0

Slip with a Bracket

1 0.3

Spurious Character in File

8 2.2

Stack overflow due to infinite recursion

1 0.3

Text spelling error

13 3.5

Trying to give a value to a parameter globally
6 1.6

Unbound variable because of lexical Scoping
8 2.2

Unbound variable due to the deletion of a parameter

0

Appendix E 3

Unknown

4 1.1

Wrong Combination of Cars and Cdrs
0

Wrong number of arguments

21 5.6

Wrong type argument

10 2.7

Total number of errors 372

Number of times Advice given 10

Appendix E 4

APPENDIXF

RESULTS FOR STUDY III

Appendix F 2

woyy
punoqup
ue

punoiy
syoxoeIg

1ST1 pa1on&
® punory
sjosjoeIg

Jaqump
® punoxy
spyoRIg

aNOD e
opIsu] oLy
unayoeIg

01

dndnsv

urIo g
Suoim

oy up

syus MBIy

I3pI0 Buoim
3y} Uy SYAD
pue svO
guifddy

RiCgt

Jysned
10N
Joxxy

pax1g
ION
pue
ysned
J0N
J0119

PIxX1d

Wgned
JON
Joxry

Jo11q

¥
pue

8N
1UpIq

o1y
X1
1upid
pue
ASL
8N
upla

o1
pax1y
pue
ASLI
98]
Jupid

Jo11y
¥l
pue

ASLI
pesnl

Jorry

X1q
wupia

ASl
pesn

Jo1xy

sisi[euy [ejoL

Appendix F 3

o011y
Jo asnedsg
PapeoT JON

uofuny

Furdooy
ssajpug

aNOD ®
apIsy] 1D
uopounyg

' punary|
s1ayoRIg

JO 19s BIxy

11ed
uopPunyg

e punaiy
sjayoeIg JO
198 BNy

Isjuswpradxy
0} an(J Jo.u7

WIOH pue
uojsuip Aq
pasneD

uopouUNy
paugspun
ue guired

J[qerrep
® punory
sjoyoRIg

Y1
pue
Wydney
0N
Bleliic

Pax1d
ION
pue
Wydneo
1N
Joaryg

poxid
pue
Jysnep
10N
Joxxyg

0115
¥o1
pue

asn
wupia

J0119
X1d
1upla
pue
ASLI
asn
1upia

Joiryg
Pax1g
pue
ASLI
38
1upia

011y
U1
pue
ASlI
pasn

J0119
X1d
LUpIa
pue
ASlI
pesn

Jox1yg
Pax1d

ASlI
pssn

o1y

sIsA[euy [ejo)

Appendix F 4

L1

dNdddVv
SNOO
JADAVO
0} USAID
SIST[-UON

swoly

usamiag
sdeg oy

aNOD
® apisuj
ey uonoun,j
® punory
sjoyoRIg ON

11

meD uopouny
® punoiy
sjayorIg ON]

uopsang ayy
Furpeaisiiy

0gl

91

wyIofy
1031100U]

uopouny
® peo] 0}
gumyedioy

Bl
pue
wgned
10N
loxxyg

pax1g
ION

yined
JON
J0I15]

paxIg
.pue
Jusnep
JoN
Jox1y

o1y
U1
pue
ASILI
asn
3P

Jony
Pax1yg
Lupld e
ASII

ASLI
asn =N
1upld

Jox1g
piig!
pue

ASII
pesq]

JoxI1y
X14
1Luplq
pue
ASLI
pasny

Jouryg
paxy
pue
ASLI
pasn

oy

sisfjeuy Jejo],

Appendix F 5

10112
Suyreds
XL

UOISINIY
pjrugu] 0} ang
BO—.«HPQO

PR

S|qeep
e gupond

J|qeries
® punory
sjoxorIg

gumng
pue Sugond

suopoun g
pasuey) peo]
M wajqoid

mdug
Y9Ry ayy
uo uopouny

e Suf1], JoN

31 Sursn
a10Jog
d[qereA) ©
FuBidas 10N

€1

[0)4

Sunon® joN

1

dnep
JoN
J011y

PaX1d
LON
pue
Wfnes
JoN
o117y

PIXTd

ysnen
10N
Jox1q

Jo11y

W7
pue

asn
upia

Io1iyg
X1d
LupIla
pue
ASLI
asn
upId

Ioa1y
PaX1g
pue
ASLI
asM)
nupiq

Ionyg
U1

ASILI
pPesnl

JoLxyg
X1
1Lupia

AS1I
Pesn

Jo1xg
pax1y

ASLI
pasnl

Jox1yg

sisf[euy 303,

Appendix F 6

1€

261

201

81

174

al

65

ejoL

juowngre
Jo odfy,
Suoim

syuswungay
Jo Jequuny
Suorpm

Iajourered e
Jo uonapeg
a0} sng
s|qerre)
punoqup)

Surdoog
Teomo]

Jo ssneseg
a[qeLrep
punoqup

Y1
pue
ysnen
10N
Joxiyg

paxig
ION
ﬁﬁ&
ysned
10N
Joxxyg

paxig

ysned
0N
Joaxg]

J0XI5]
piLg!
pue

ASlI
asn
wupla

Jo1xy
X1d
3UpIq

ASlI
asn)
upla

Joiiyg
paxid
pue
ASLI
I8N
wupia

o1y
Yo
pue
ASlI
pesnl

Jonxyg
X4
LUpId
pue
ASlI
Pesn

J011%g
pax1yg

ASll
Pas]

Jorxyg

s[sA[euy [ejoL

APPENDIX G

INDIVIDUAL RESULTS FOR STUDY III

Appendix G 2

wo3ly
punoqun
ue
punoxy
syoNoRIg

1 pond
® punory
s)ayorIg

JaqunN
© punoxy
sjax0eIg

aNOD ®
apIsuj JoLry
Supoyoeig

dndisv

urIo]
Suoim

oYy ug
syuadwIngay

J9pI0 Sucip
A} Ul SYAD
PUe VD
Surf[ddy

¥l
pue
Wsned
10N
Joxxy

pox1y
ION
pue
ysnen
10N
Joaxyg

paxig
pue
ysned
JoN
Joaayg

Joxxg
g
pue

ASlI
asn
lupia

Jourg
X1q
Lupld

ASll
as)
Lupla

o115
Pax1g
pue
XSl
M)
Lupld

JOXIg
piCe
pue

ASlI
pesn

Joxxq
pax1q

ASLI
pasn

Joxxg

sIsdreuy 5,30

Appendix G 3

o115y
Jo asnedag
PpapeoT] 10N

uopouny

gurdoor
ssa[pug

aNOO®
apIsul ed
uopouny

® punoly
syaxoRIg

JO 189S BOxy

ned
uopounyg
® punory
syayorIg JO
19s BOXY

Io1uswIodx]
0} anQ Jouy

wIoH pue
uojsuim Aq
pesned

uorjouny
pauyapun
ue gupred

S[qerIeA
® punoxy
syoydRIg

P
pue
ysned
JON
Jolyg

paxIg
ION
pue
ydned
JoN
J011q

pax1g

ygnen
10N
Jo0119

J01x%
8155
pue

ASLI

Jupla

0119 soxrg
X paxId
Lupid e

pue ASLI
ASLI 0
asn

1upia yuplg

011
¥yl

ASII
posn

Jlonyg
PaxTd
pue
ASlLI
pasn

Jo11yg

sisd[euy s,20

Appendix G 4

ANIddV
SNOD
_AD YVO
0} USAID)
S)S[[-UON

sSwoly
usamiag
sdeg oN

aNOJ
® opjsu)
[[eD uopouny
® punory
syoyoRIg ON

[feO uopouny
® puno.
S)o30RIg ON

uopsang a1}
Surpeaisiiy

1c

wyosy
102.1100U]

uopouny

® peo o)
Sunyafioyg

BT

ysned
J0N
J011yg

paxig
ION

m.vﬁm
ysned

10N

Jo11q

poxig

ysned
10N
Joxxg

Jo1xqg
1391

ASII
asq)
wupla

1011y
X1
3upla

XSl
asn
3upla

J011qg
paxid
pue
ASll
25N
3upid

011
31

ASII
Posn

011y
X144
upla

AslI
pesfl

Joxag
paxy

ASLI
posn

Joxag

sis[euy §,20

Appendix G 5

JI0LID
guyprads
2L

UOISITOoY
bjIuyu 03 ang
MOJJIA0

oels

dlqerrep
e gupond

a[qerrep
® punoxy
sjayorIg
gumng

pue gunond

suopuny
paduey) peo]
MM Walqoid

nduj

IR 2y
uo uopouny
e Sulh1], JoN

11 suisn
Eo.wom
Jqelrep B
Suib1LaS 10N

gupond joN

¥l

ysne)
JON
Joxxy

pax1d
JON
Uﬁ.&
Jysnen
JON
Ioxxyg

poxtd
pue
Wysned
10N
Joaxyg

J0115
155
pue

ASLI
asn
1upla

Joxxyg
X4
Lupla
pue
ASII
o8
wupIa

Joaxy
Paxtg
pue
ASLI
s
1upla

Joaxg
BEg!
pue

ASLI
pasn)

Jox1yg
X1
wupia
pue
AS1I
pas()

Joxayg
Paxtd

ASLI
pesl

Joxayg

sisfpeuy 5,20

Appendix G 6

184

[44

o1

TejoL

Juswngre
Jo adAyL
Suoim

syuowngry
Jo Jaquny
Suoim

Jajoureied e
Jo .:Oﬁmuﬂvﬁ—
ay) 0y ang
slqerte)
punoqup

Surdoog
[eoRXa]

JO asnesag
a|qenes
punoqun

iy |
pue
wsned
0N
J011yg

poxtg
LON

ysned
10N
Joxxyg

Paxtd
pue
nsnen
JON
01179

0119

Lisg!
pue
ASIlI

upla

Jo1xyg
X1d JOXIg

1.UpId paxtd

ASII ASLI
asn s}
upia Lupla

I011g
R |
Aupld
pue
ASlI
Pas(l

Jo1xg
Pax1g

ASlI
pasf}

10114

sysA[euy s,20

Appendix G7

woyy
punoqupn
ue

punory
syeyorIg

Is¥1 pajond
e punoxy
sjoyoRIg

JIoqunpy
® punoiy
syeyoRIg

dNOO ®
apysuf JoLy
Supnoyoeig

dndisv

WLIo
Suoxm

a ug
syuowngry

Jap1Q Suoim
) Ul sYJo
pUE SAVD
Surfiddy

¥1
pue
Wsned
J0N
Joaag

Pax1d
JON

ysned
JON
Joaxyg

paxIg
pue
ysnen
10N
Ioxayg

0115
U1
pue

ASII
asn
uupIa

Joxayg
X1 Joxig
paxid
3.upl

e pue
ASLI wo.ww::

asn
upIa RA e

Jo1xyg
¥l

ASII
pesfi

Joxxyg
Xtd
upla
pue
AS1I
pasn

J011yg

sisfjeuy s,

Appendix G 8

Jo11g
Jo asnesag
papeo] 10N
uopoun g

gurdoory
ssa[pug

aNOO ®
apIsu] [[ed
uopouny

® punoxy
sjoyoRIg

J0 195 enxy

1ed0
uopouny

® punory
sjoyoRIg JO
19s BOXY

ldjuowpradxy
0} ang JoLry

wIol pue
uojsuipy £q
pasned

uonouny
paugapun
ue Juired

Jqerres
® punory
spayoRIg

¥o1

pue
ysney
10N
JOIXIH

PaxXIg
ION
pue
Wsned
10N
Joxxy

Pax1g

Wsnen
JON
JI0XIH

JI0IXH
31

ASLI
s
1upId

oy Ioxxyg
X1d
1upid PaX1d

AS1I »w%
asn)
1UpIa wupid

Jolxy
iy

AS1I
pesn

011y
X1q
upta

ASLI
pesny

Jo11yg
PaxIg

ASII
Pasn)

Jo1xq

sisd[euy s1

Appendix G 9

aNdddv
SNOO
dad avo
0} UdAID
SIS][-UON

swoyy
usamjag
sdegd oN

adNOD
e apjsu]
[[ed uopouny
B punouy,
sjaxorIg ON

[[eD uofoun,y
® punory
sjox{orIg ON]

uopsang a3
Suipeaisiy

€l

wylIog[y
393.1100U]

uopounyg
e peo] 0}
Funjofio

FiCY |
ﬁﬁ.&
ygned
10N
Joxasy

paxId
ION
pue
ysned
10N
Joxxyg

paxIg
pue
ysned
10N
JoXayg

Jox1y
X1q
Lupla

ASII
asn
Lupla

Joxxg
Paxtd
pue
ASILI
980
wupla

Joxxy
¥l
pue

ASLI
Pasnl

Jorxg
X1d
upIQ
pue
ASlI
pasn

Joxay
paxy

ASII
pesn)

Joxxg

sisf[euy s.1

Appendix G 10

I0o1I5
Fuyprads
IX_L

UOJSINOY
prugul 03 ang
MO[JIA0

Jorlg

dlqerrep
e gugond

dqerres
e punoiy
sjoxoeIg
suping

pue Supond

suopoun,
pasueyp peo)
M woaqod

nduj

YSRI 2y
uo uopouny
' Juld1], JoN

I Suisn
axoyeg
S[qeLIeA B
SuB14s 10N

gupond joN

Pl
pue
ydneo
10N
Joxxy

paxid
ION
pue
ydnen
10N
Joxxy

poxig
pue
Wydned
J0N
Ioxryg

oy
WY1
pue
ASLI
asn
1Upla

hcwnn.ww J0X1Y
»Ww »w.m
1upid 1upIa

Joxxyg
U1
pue

ASLI
pesn

Joa1y
X1d
LupIa

ASLI
pssQl

Joxxyg
Paxtg

ASlI
pasn

oy

sisA[euy s,

Appendix G 11

4404

0g

154

[e10L

juswngie

Jo adfg,
Suoam

syuswngry
Jo JoqunN
Buoxm

Igjowered e
Jo uopsPpa
oy} 0y ang
a|qerre)
punoqup)

Surdoog
[eoRXo]

JO asnedag
alqerten
punoqun

Y1
ﬂﬁﬁ
ysnep
10N
10119

paxtd
ION
pue
ysned
ION
Joxxyg

paxig
pue
Ysned
J0N
Joxxyg

Joxiyg
X1q
1upla

ASLI
9s(]
1UpIq

Jo11y
PaxXtd
pue
AS1I
s
1upla

Jo1xyg
iCy
pue

ASlI
pesn

J011yg
Xid
1upla

AsSlI
pesn

o011y
poxid

ASII
pas(]

0113

sispeuy s,1

Appendix G 12

woly
punoqun
ue

punoxy
sjoyorIg

1sT1 pajonH
® punory
s}aNorIg

Jaquimp
® punory
sjoxoeIg

dNOO®
apisu] JoLly
Sunoeyorag

dndisv

ULI0y]
Suorp

243 ur
sjuawngry

Iopuao Fuoim
A3} U sYao
PUe SYVO
Suifiddy

yo1
pue
ey
JoN
Io11yg

3228 €
JION
pue
WFneo
J0N
0119

PaX1g

Wsned
10N
Joxxyg

Joxxyg

piLg!
pue

asf)
1upia

Jo11q
X1d
wupa

ASlI
asn
upia

Joxxg
PaX1d
pue
AslI
s
1upla

o011y
piCg

AS1I
pesn)

o011y

X1q
wupla

ASLI
pesn

I011yg
Pax1d

ASLI
pPesn

Joxrqg

sis[euy s,g

Appendix G 13

0115
Jo asnedag]
PapeoT JoN

uopjouny

furdoo
ssa[pug

ONOO ®
apIsu] [1ed
uopouny

e punoiy
sjooeIg

Jo 39S vOXH

11ed
uopouny
€ punory
sjaxoeIq JOo
198 eIxy

Jajusurrodxy]
0} an(J JoLIg]

uIoy pue
uojsup, 4q
pasne)

uopoun,|
paugepur)
ue gupred

dqere)
© punory
sjoyoeIg

W1
pue
Jydnen
10N
Jonyg

paxid
ION
pue
Wsned
10N
Joxxyg

PaxXTd
pue
Jydnen
10N
Jo11y

J0115
¥

ASlU
asn
1upra

Jo11y
X1
wupra
pue
ASlI
asn
1upia

J011%y
paxid
pue
ASlI
s
1upiq

Jo11y
BT
pue

ASlI
pasn]

Jo11y
X1q
wupla

ASILI
Psn

Jo1xy
Paxtg

ASII
Posn

0115

sisA[euy s,§

Appendix G 14

St

aNdddv
SNOD
A UVO
0} U2A1D
S)S[[-UON

swoyy

usamyag
sdef oN

aNoOD,
B 9pIsu]
[[e0 uopouny
® punouiy|
syos[orIg ON

jrred uopoung
® punoiy|
s)oxoRIg ON

uopsang ayy
Surpeassyy

6

wyyrod[y
Joa1xodujy

uopouny
® peo] o}
Sumnyafioy

pigl

ydne)
10N
Jo11y

PoXId
LON

ysnen
JON
Jo11g

Pax1g

ysnep
JON
J011y

o117y
W1

ASlI
asn
upid

0119
X1d
wupld
pue
ASlI
asn
wupia

10115
PaxIgd

ASLI
as()
1upla

Jo1rg
¥l

ASLI
pesn

J011q
X1q
3upld
pue
ASLI
pesn

Jorxyg
paxy

ASLI
pesny

Jo119

sisdeuy s,8

Appendix G 15

JI0IID
durqads
XL

UOISINOR]
HuG] 03 ang
MO[JIAQ

W0l

J[qeleA
e supond

a[qerep

® punoiy
syaxoRIg
guping

pue Supond

suonouny
pasuey) peo]
M WOl

mdug
43R o
uo uorjouny

e Suif1] JoN

3 Suisn
Duo.wvm
v~£¢ﬁ«> e
SwBLIS 10N

Supong joN

T
pue
wfneo
JON
Joxxy

Ppaxtg
JION
pue
ysnen
JoN
Ioxiqg

Poxtyg
pue
gdnep
JON
JI0X1g

Jouy
¥

ASIlI
8N
lupla

Jorxyg
X14
Lupia

Jo11q
paxig
pue P
asu SI
+upm LUpIa

Joxry
U1
pue
ASlI
pssn

Jonry
X1d
1upia

ASII
pPssfl

0117y
paxid

ASLI
pasn

JoL1yg

sisreuy s,s

Appendix G 16

021

02

(44

reiol

jusumsgre
Jo adAy,
guoim

sjuawm gy
Jo J_qunN
Suoxm

Iojpowered B
Jo uoneRa
auy o3 anQg
s[qeltep
punoqup)

Furdoog
[edrxo]

Jo asnesag
a[qerIE
punoqup

P
pue
Wydney
JON
Joxayg

paxtd
JLON
pue
ysnep
1oN
0114

paxig

ysned
10N
J011

Joxxy
¥1
pue

XSl
a8
3UpIa

Ioxayg
X14
1upla
pue
AS1I
s
LupI

Joxxg
PaxIg

AS1I
=N
upla

Jo11%y
¥l

ASLI
pesn

Joxxg
X1q
1upia

ASLI
pesn)

JToxxy
Paxtd
pue
ASlI
pesny

Joxxyg

sisA[euy s,

Appendix G 17

woly
punoqup
ue
punoxy
sjoyorIg

3811 pajons
® punory
sjoyoRIg

JoqunN
e punory
s)oxoRIg

aNOO®
apisu] J0L15
Fupoyorlg

dndusv

w10
Fuoxm

Y] ug
sjusuIngry

Jopi0 Suoxm
Y} U SYAO
pue syvo
Surdiddy

Bl

Wygnep
J0N
Jox1yg

pax1d
ION
pue
ydned
1N
Io11yg

poxig
pue
ysneo
10N
Io1ayg

o1y
g
pue
ASLI
asn
upiq

Ioxxyg
X144 101Xy
1upia PaXLd
pue pue
ASILI ASLI
asn s
1upIa 1upld

Jo11q
P
pue
ASLI

_pesn

Jonxg
XTd
upla
pue
ASlLI
pasn

Jo11y
PaXx1g
pue
ASLI
pesnl

Joay

sisfjeuy s,2s

Appendix G 18

Joxxg
Jo asneodag
PapeoT JON

uopouny

Furdoory
ssa[puyg

dNOO ®
IpIsUl 11D
uopouny

e punoxy
s1exoRIg

30 198 exnxy

1red
uopouny

B punoxy
sjaxorIg JO
398 enXg

Iojuswfradxy
0} an(g JoL1g|

wIoH pue
uojsuim Aq
posned

uopouNnyg
pauyspup)
ue guped

Jlqerren
® punoxy
sjoyoRIg

31
pue
ysned
10N
Joxxyg

PaxIg
LON
pue
ysned
10N
J0X13

paxig
pue
ysnen
10N
Joxxgy

Jox1y
¥l
pue

ASLI
asn
1UpPIa

Jox15 to11g
X14
1.Upld PoxId
pue pue
ASII wmm,w
asn
1upia 1upd

Joxxyg
¥
pue

ASLI
posfl

J011g
X1d
Lupld

AS1I
pasn

Joxxy
PaX1d

AS1LI
pasn

Joxag

sisfreuy s,2s

Appendix G 19

aANdddVv
SNOO
AAOYVO
0} U2AID
S)S[[-UON

Swoyy

uaomlag
sde oN

aNOD
e apisu]
MeD uopoun,y
® punoiy]|
s)ayoeIg ON

[red uopouny
® punory
sjo¥oRIg ON

uopsan ayy
Suypeaasyy

wy3jrIosy
3091100U]

uopouny
® peo 0}
Supya8ioy

B

ysnen
1oN
J011%

Pax1d
ue

P
Wysney
0N
Joxxy

10119

W1
pue

SN
lupia

Jouqg
X1
upia
pue
AS1I
asn
upia

Iloxxyg
P3X1d
pue
ASLI
ssn
1upla

0117
51
pue

AS1I
pssnl

J011y
X1
1upId
pue
AsuU
pPesn]

Joxryg
paxy
pue
ASlI
pesn

Io011yg

sisffeuy sgs

Appendix G 20

J0115
Supeds
1%3],

uo[sInday
prugug 03 ang
MOJI2A0

yoelg

JqelIeA
e dupond

J[qerrep

® punory
sjayoeIg
guping

pue Supon

suopfjouny
pasuey) peo}
IIM walqoI

mdug

BRI a1
uo uopouny
e guidiy, joN

11 Buisn
axojog
dIqerrep B
FuIBLAS 10N

supond joN

piCg!

yaned
10N
Joxxy

paxid
ION
pue
ysned
10N
J013%5]

paxig
pue
Wysney
JON
Joxxy

Jox1yg
¥o1

ASLI
sl
Lupia

JI0XIF
X1d J01Xq
1upId paxig
P Asu
SII
»%D s
1UpIa 1UpPa

Jo11g
31

ASILI
Pasf]

JI0X19
X1
1upIq
pue
AS1I
pas)

Joxxy
Pax1g
pue
ASLI
pesnl

o1y

sis[euy 5,28

Appendix G 21

11

12

o1

rejoL

juswngre
Jo adAL
Fuorm

sjuswng Iy
Jo Joqumnp
Suom

Iajouwiered e
Jo uonapeg
ayy o) ang
s[qeleA
punoqun

furdoog
Teorxa1

Jo asneoog
S[qeLIeA
punoqupn

B Cg!

ysned
10N
J0114

paxid
ION
pue
ysnen
10N
Jo11yg

paxIg
pue
ydnep

0N -

1011y

011y
o1

ASLI
asn
1upia

JO1Ig
X1d
1upla
pue
ASILI
asn
wupia

J011y
PaxIg
pue
ASLI
asn
Jupra

10119
W1
pue

ASLI
pasn

J0114
X1d
1upla

ASILI

posq -

Joxxyg
PaxIg

ASLI
posn

01Xy

sisfjeuy 8,28

APPENDIX H

DRIBBLE FILE FOR STUDY II1

After the event comments are in this font.

"Dribble for LOUISE at It is Friday the nineteenth of September
1986; and the ti
me is: 15 16 41

"w

"x— " (QUOTE (((((NIL))))))

(((((NIL)))))

"Xx- " (QUOTE (DDD))

(DDD)

"*~ " (CAR (CDR (CDR (CDR (QUOTE (((A) (O) (P) (G))))N))
NIL

"X~ "(CAR (CDR (CDR (CDR (QUOTE (((Z&) (O) (P) (G))))))))
NIL

"k~ " (CAR (CDR (CDR (CAR (QUOTE (((A) (O) (P} (&))))))))
(P) '

"%- W (CAR (CDR (CAR (CDR (CDR (QUOTE (A (0) ((P)) (((G))))))))))
NIL

"k~ "(CAR (CAR (CDR (CDR (QUOTE (A (O) ((P)) (((G)))))))))
(P)

"*x— "(CDR (CAR (QUOTE ((((A) O) P) G))))

(P)

"*— " (APPEND (QUOTE (A B C)) (QUOTE NIL))

(A B C)

"k "(LIST (QUOTE (A B C)) (QUOTE NIL))

((A B C) NIL)

"x— " (CONS (QUOTE (A B C)) (QUOTE NIL))

((a B C))

"x— "(SETQ TOOLS (LIST (QUOTE HAMMER) (QUOTE SCREWDRIVER)))
(HAMMER SCREWDRIVER)

"x— " (CONS (QUOTE PLIERS) TOOLS)

(PLIERS HAMMER SCREWDRIVER)

"x— "TOOLS

(HAMMER SCREWDRIVER)

"k W (SETQ TOOLS (CONS (QUOTE PLIERS) TOOLS))

(PLIERS HAMMER SCREWDRIVER)

"k~ "TOOLS

Appendix H 2

(PLIERS HAMMER SCREWDRIVER)
"*— " (APPEND (QUOTE (SAW WRENCH)) TOOLS)
(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
"x— "TOOLS
(PLIERS HAMMER SCREWDRIVER)
"k— W (SETQ TOOLS (APPEND (QUOTE (SAW WRENCH)) TOOLS))
(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
k- WTOOLS
(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
k- W(LENGTH (QUOTE (PLATO SOCRATES ARISTOTLE)))
3
Wx— W(LENGTH (QUOTE ((PLATO) (SOCRATES) (ARISTOTLE))))
3
"*— W(REVERSE (QUOTE (PLATO SOCRATES ARISTOTLE)))
(ARISTOTLE SOCRATES PLATO)
"*— "W (REVERSE (QUOTE ((PLATO) (SOCRATES) (ARISTOTLE))))
((ARISTOTLE) (SOCRATES) (PLATO))
"k%— W(REVERSE (QUOTE ((PLATO SOCRATES ARISTOTLE))))
((PLATO SOCRATES ARISTOTLE))
"*- "(LENGTH (QUOTE ((CAR CHEVROLET) (DRINK COKE) (CEREAL
WHEATIES))))
3
Wk—- W(REVERSE (QUOTE ((CAR CHEVROLET) (DRINK COKE) (CERAL
WHEATIES)))) ‘
((CERAL WHEATIES) (DRINK COKE) (CAR CHEVROLET))
"*— " (APPEND (QUOTE ((CAR CHEVROLET) (DRINK COKE))))
((CAR CHEVROLET) (DRINK COKE))
Wkx— " (SUBST (QUOTE OUT) (QUOTE IN) (SHORT SKIRTS ARE IN))
The subject has made her first error. The following three lines are internal Lisp
error handling stuff.
(ERROR (SUBST (QUOTE OUT) (QUOTE IN) (SHORT SKIRTS ARE IN))
ZETALISP-SYSTEM:UNDE
FINED-FUNCTION #<UNDEFINED-FUNCTION-TRAP 16643677>)
This is the Lisp error message
The function SHORT is undefined.
This is internal stuff from ITSY.
"message: #<N-Q-LIST-EXP 24534630> type: N-Q-LIST orig-type: NIL
:extra-info NIL
:fn-name (TOP-LEVEL SHORT SKIRTS ARE IN) code: NIL"
"message: #<N-Q-LIST-EXP 24534630> type: N-Q-LIST orig-type: NIL
:extra-info NIL
:fn-name (SHORT SKIRTS ARE IN) code: NIL"
"Student know N-Q-LIST 2"
"message: #<N-Q-LIST-TOP-LEVEL-EXP 24535230> type: N-Q-LIST-TOP-

Appendix H 3

LEVEL orig-type:
N-Q-LIST :extra-info NIL :fn-name NIL code: (SHORT SKIRTS ARE

IN) ™

These are the error messages that could be displayed. The order is Question,
Question Explanation, Main Explanation, Deeper Explanation, Examples and
Fix.

" Did you intend to do one of the following:

~%1. use the list (SHORT SKIRTS ARE IN) as an argument
rather than

~%call the function SHORT.

~%2. call the function SHORT"
" Did you want to

~%1. give the literal value of the list (SHORT SKIRTS ARE

IN)
~%rather than have (SHORT SKIRTS ARE IN) evaluated or
~%2. call the function SHORT."

" You wanted to
~%1. give the literal value of the list (SHORT SKIRTS ARE

IN)
' ~%rather than have (SHORT SKIRTS ARE IN) evaluated or
~%2. call the function SHORT.~%
~%If you wanted to carry out 1
~%the interpreter thinks that you want the
~%call the function SHORT with the arguments SKIRTS ARE IN
~%instead of giving the list (SHORT SKIRTS ARE IN) as an
argument .~%
~%If you wanted to carry out 2
~%the interpreter cannot call the function
~%SHORT because it is not defined. Maybe you
~%have misspelt the function name, or you
~%have forgotten to load the file containing
~%the function definition.”
" The correct way to give the literal value of list
~%as the argument to a function is to quote it.
~%The correct way to define a function is to use
~%defun see pages 39-43 of Winston and Horn."
"~% (append ~$'(cons 'a "(bc))~& ~S$'(1 2 3 4)~&)~%~%
two literal lists as arguments to append
~%~%~8'(a literal list)~&~%~%
a literal list

~%~%~%$If we want to call a function ~$foo~&

Appendix H 4

~%to add two numbers then we can define foo by
~%~%(defun foo (xy) (+ xy))"

" If you want to give the lists (X Y Z) and (1 2 3)
~%as arguments to APPEND, then
~%(APPEND (X Y Z). (1 2 3)) would be wrong, but
~%(APPEND '(X Y 2) "(1 2 3)) would be right."

The subject has decided to look at the Question Frame

"Expose Question 1 It is Friday the nineteenth of September 1986;
and the time i

s: 15 31 56"

"I'm Exp Menu 1 Choose YES at It is Friday the nineteenth of
September 1986; and

the time is: 15 32 6"

The subject has selected the item Yes on the Question menu, and the Main
Explanation frame is exposed.

"Expose Main Explanation 1 It is Friday the nineteenth of
September 1986; and th
e time is: 15 32 15"

The subject has decided to cancel the rest of the tutorial.

"I'm Exp Menu 3 Choose CANCEL at It is Friday the nineteenth of
September 1986;

and the time is: 15 33 29"

"Explanation Over It is Friday the nineteenth of September 1986;
and the time is

: 15 33 52»

NIL

"%x- " (SUBST (QUOTE OUT) (QUOTE IN) (QUOTE (SHORT SKIRTS ARE IN)))
(SHORT SKIRTS ARE OUT)

“k— ¥ (SUBST (QUOTE IN) (QUOTE OUT) (QUOTE (SHORT SKIRTS ARE IN)))
(SHORT SKIRTS ARE IN)

"*— "(LAST (QUOTE (SHORT SKIRTS ARE IN)))
(IN)
"k— " (SETQ METHOD1 (QUOTE +))

+

"*- " (SETQ METHOD2 (QUOTE -))
"*x- " (SETQ METHOD METHOD1)

+

Appendix H 5

"%- “METHOD

+

"*— " (EVEL METHOD)

(ERROR (EVEL METHOD) ZETALISP-SYSTEM:UNDEFINED-FUNCTION
#<UNDEF INED-FUNCTION~-TRA

P 16722125>) The function EVEL is undefined.

ITSY was unable to find this error.

"Unable to find any errors"

"looking at warn about possible cause It is Friday the nineteenth
of September 1

986; and the time is: 15 37 4"

"finished looking at about possible cause It is Friday the
nineteenth of Septemb

er 1986; and the time is: 15 38 0"

NIL

"x— " (EVAL METHOD)

(ERROR (EVAL METHOD) ZETALISP-SYSTEM:UNBOUND-VARIABLE #<UNBOUND-
SYMBOL-TRAP 1673

5233>) The variable + is unbound.

ITSY was unable to find this error.

"Unable to find any errors™

"looking at warn about possible cause It is Friday the nineteenth
of September 1

986; and the time is: 15 40 10"

"finished looking at about possible cause It is Friday the
nineteenth of Septemb

er 1986; and the time is: 15 40 16"

NIL

The subject has brought up the Editor Menu and selected the Go to Lisp item.
#"I'm Menu Ptype 1 Choose GO-TO-LISP at It is Friday the
nineteenth of September
1986; and the time is: 15 41 41"
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
15 41 52¢
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 41 58"
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
15 41 59~

Appendix H 6

The subject has brought up a menu and not selected any item (the subject
accomplished this by moving the mouse away from the menu).
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 42 1v
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
15 42 1v
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 42 10"
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
15 42 10"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 42 17"
"X~ w(EVAL (EVAL (QUOTE (QUOTE METHOD))))
+
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
15 45 1"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 45 31v
"*— "(DEFUN OUR-FIRST (OURLIST) (CAR (QUOTE (OURLIST))))
OUR-FIRST
Wk— "TOOLS
(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
"k— " (OUR-FIRST TOOLS)
OURLIST
k- "CAR
(ERROR CAR ZETALISP-SYSTEM:UNBOUND-VARIABLE #<UNBOUND-SYMBOL-TRAP
20600620>) The

variable CAR is unbound.

ITSY has correctly trapped this error.

"message: #<NO-BKT-FN-EXP 24534570> type: NO-BKT-FN orig-type:
NIL :extra-info N

IL :fn-name (TOP-LEVEL . CAR) code: NIL"

"message: #<NO-BKT-FN-EXP 24534570> type: NO-BKT-FN orig-type:
NIL :extra-info N

IL :fn-name CAR code: NIL"

Appendix H 7

"Student know NO-BKT-FN 2"
"message: #<NO-BKT-FN-TOP-LEVEL-EXP 24535270> type: NO-BKT-FN-
TOP-LEVEL orig-typ
e: NO-BKT-FN :extra-info NIL :fn-name NIL code: CAR"
" Does CAR refer to the function CAR rather
~%than the variable CAR?"
" Did you want to call the function CAR
~%rather than get the value of the variable CAR?"
" The interpreter thinks that you want the
~%value of the variable CAR rather than call
~%the function CAR."
" The correct way to call a function is to
~%write a single opening bracket followed
~%first by the name of the function, then
~%its arguments and finally a closing
~%bracket. If you leave out the opening
~%and closing brackets the interpreter will
~%think that the function name is intended
~%as a variable name, and will try to

~%evaluate it."

"~% (~5*~& ~$6~& ~59~&)

~% function arguments

~%~% (~S$length~& ~$'(a b c)~&)

~% function argument

~%~% (~$subst~& ~$cats~& ~$dogs~& ~$'(dogs drink
milk)~&

~% function arguments"

" For CAR to be regarded as a function
~%you need to add the pair of brackets
~%to surround the function and the
~%arguments. If I wanted to call the
~%function FOO with arguments 1 and 2
~%F0O0 1 2 would be wrong but (FOO 1 2)
~%would be right."
"Expose Question 1 It is Friday the nineteenth of September 1986;
and the time i
s: 16 2 10"
"I'm Exp Menu 1 Choose NO at It is Friday the nineteenth of
September 1986; and
the time is: 16 2 50"
"Explanation Over It is Friday the nineteenth of September 1986;
and the time is
: 16 2 58"

Message

Question

Explain Question
Main Explanation
Deeper Explanation
Fix

Example

Total

Message

. Question
Explain Question
Main Explanation
Deeper Explanation
Fix
Example

Total

APPENDIX I

FRAME TIMES FOR STUDY III
S Message Times
Ti me Percentage of total time
min sec
12 15 26
1 3 2
9 3 20
6 12 13
13 14 28
5 39 12
47 5
C2 Message Times
Ti.me Percentage of total time
min sec
15 5 47
0 23 1
13 o 39
0 17 1
® 32 8
1 5 4
3 3B

Message

Question

Explain Question
Main Explanation
Deeper Explanation
Fix

Example

Total

Message

Question

Explain Question
Main Explanation
Deeper Explanation
Fix

Example

Total

Appendix | 2

L Message Times

Ti.me Percentage of total time
min sec
2 46 41
0 35 2
5 52 19
0 47 3
6 32 2
4 18 14
30 49

S2 Total Message Times
Ti.me Percentage of total time
min sec
5 52 50
0 0 0
2 42 23
0 5% 8
2 09 18
0 10 1
n 48

Times

Cc2

S2
TOTAL

Total %

952

735

765

2804

& 8 8

o

Raw Times

784

573

352

162

1871

152

794

392

129

1467

Appendix | 3

g &

&

692

17

372

47

491

APPENDIX J
A List of all the Functions ITSY can Currently Analyse

ITSY can currently analyse the following 86 Common Lisp Functions:

+ * / max min expt
sqrt - float truncate rem round
car cdr quote caar cadr cdar
cddr caaar caadr cadar caddr cdaar
cdadr cddar cdddr caaaar caaadr caadar
caaddr cadaar cadadr caddar cadddr cdaaar
cdaadr cdadar cdaddr cddaar cddadr cdddar
cddddr append list cons length reverse
subst remove last eval defun atom
listp equal = null member numberp
< > Zerop minusp evenp not
and or cond abs funcall let

let* setq psetq mapcar oddp apply
mapcan do return do* g0 prog

progl progn

APPENDIXK

THE STUDENT MODEL CLICHES

Although the student model cliches No Brackets Around a Function Call (Student
Model Cliche 1) andExtra Brackets Around a Function Call (Student Model Cliche 3)

have been enumerated separately, they have actually been merged in ITSY for

efficiency reasons.

1.

Student Model Cliche Name: No Brackets Around a Function Call
Surface Code Segment: CL Function

Criteria: None

Other Checks: None

Null Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Quote

Student Model Cliche Name: No Brackets Around a Function Call
Surface Code Segment: Function Application

Criteria: The type of function application is normal

or recursive

Other Checks: None

Appendix K 2

Student Model Cliche Name: Bracket Around a Variable

Surface Code Segment: Symbol

Criteria: The symbol is bound and not the name of a
function

Other Checks: None

Student Model Cliche Name: Extra Brackets Around a Function Call

Surface Code Segment: CL Function

Criteria: None

Other Checks: None

Null Studént Model Cliche Name: Extra Brackets Around a Function Call

Surface Code Segment: Quote

Student Model Cliche Name: Extra Brackets Around a Function Call
Surface Code Segment: Function Application

Criteria: The type of function application is normal

or recursive

Other Checks: None

Student Model Cliche Name: Arguments in the Wrong Forml

Appendix K 3

Surface Code Segment: Non Connective
Criteria: The function takes a set number of
arguments

The function has been given the right

number of arguments

Other Checks: None

Null Student Model Cliche Name: Arguments in the Wrong Forml

Surface Code Segment: Quote

Student Model Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: Non Connective

Criteria: The function takes a set number of
arguments

The function has been given the right

number of arguments

Other Checks: None

Null Student Model Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: Quote

Student Model Cliche Name: Not Quoting a List

Surface Code Segment: Quote

Criteria:

Other Checks:

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Appendix K 4

The input to the segment is a list
None of the elements of the list are

functions

None

Not Quoting an Atom
Quote

The input to the segment is an atom

The atom is not a variable

None

Quoting a Variable
Symbol
The symbol is bound

None

Quoting a Function Call

Function Application

The function is of type normal or recursive

None

10.

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Appendix K5

Quoting a Function Call

CL Function

None

None

The student model cliche Wrong Number of Arguments to a Function Call on the

surface code segment Non Connective relies on the fact that non-function non-

connectives do not have a set number of arguments. This should really have been

defined on the surface code segments Function Application and CL Function

11.

12.

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Null Student Model Cliche Name:

Surface Code Segment:

Student Model Cliche Name:

Wrong Number of Arguments to a

Function Call

Non Connective

The function takes a set number of
arguments

The function has been given the right
number of arguments

None

Wrong Number of Arguments to a

Function Call

Quote

Wrong Type of Argument Given to a

Surface Code Segment:

Criteria:

Other Checks:

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Appendix K6

Function Call

Any-arg

All of the arguments are of the right type

None

Wrong Type of Argument Given to a

Function Call

One-arg

The first argument is of the right type

None

Wrong Type of Argument Given to a

Function Call

Two-args

Both the first and the second argument are
of the right type

None

13.

Student Model Cliche Name:

Surface Code Segment:

Criteria:

Other Checks:

Null Student Model Cliche Name:

Surface Code Segment:

Student Model Cliche Name:

Surface Code Segment:

Criteria;

Other Checks:

Appendix K7

Wrong Type of Argument Given to a

Function Call
Three-args

The first, second and third argument are of

the right type

None

Wrong Type of Argument Given to a
Function Call

Quote

Wrong Scope
Local Var
None

None

