
Open Research Online
The Open University’s repository of research publications
and other research outputs

ITSY: an automated programming adviser
Thesis
How to cite:

Domingue, John (1987). ITSY: an automated programming adviser. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1987 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

DXSOEI3
u n r e s t r ic t e d

u;;m

ITSY
AN AUTOMATED PROGRAMMING ADVISER

John Dom ingue

Thesis submitted in partial fulfillment of requirements for Ph.D in
Psychology, April 1987.

Human Cognition Research Laboratory

The Open University
Milton Keynes MK7 6AA

U.K.

t) a t e o f tSi/.bfw ssm '
of A m r(\

ProQ uest Number: 27775998

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27775998

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

ABSTRACT

This thesis presents an automated programming adviser. This system (called ITSY)
tutors students in Lisp. This is from the viewpoint of automated program debugging of
novice programs. Work within HCRL [Eisenstadt et al, Hasemer, Lewis] has shown
that novice programming students can benefit from relatively small changes to the
environment and from help via (intelligent) debugging tools. This thesis
investigates the use of these debugging techniques in tutoring. The debugging
techniques described here rely totally on detecting patterns in the student's code which
represent erroneous concepts the student may have.

The thesis is divided into three parts. Each part describes a separate area of
investigation.

The first part provides a detailed description of the types of errors that professional
programmers make when using a 'trad itional' (i.e. glass teletype) Lisp
environment.

In the second part the concept of a programming cliche has been inverted and used as a
basis for a system designed to help overcome the difficulties described in the first part
of the thesis. This approach can be used in the design of computing systems built to
help novices in certain domains. The constraint on the domain is tha t students'
answers are complex enough to contain patterns of errors (so one word answers would
not suffice). This would include domains where students are learning procedural
skills - such as arithmetic, algebra or mechanics.

The third part describes a study involving professional programmers using the
system.

CONTENTS

I BACKGROUND

1. In troduction ... 1

1.1 M o tiv a tio n .. 1

1.2 Influences ... 1

1.3 Approach.. 2

1.4 The System .. 2

1.5 Target U s e r s .. 3

1.6 Guide to the R ea d e r ... 4

2. O v erv iew .. 5

2.1 An E x a m p le .. 5

2.2 Spotting E r r o r s ... 11

2.2.1 Transforming the C o d e 12

2.2.2 The Matching P ro cess 13

2.3 Presenting the T u to r ia l .. 13

2.4 The Student M o d e l ... 14

2.5 The E n v iro n m e n t... 15

3. S c e n a r io 16

3.1 First Scenario .. 17

3.2 Second S cen ario ... 32

3.3 Third S c e n a r io ... 37

3.4 Fourth Scenario ... 45

3.5 Fifth Scenario .. ^

4. ITSY in the Context of Related W o r k 56

4.1 Empirical Studies of P ro g ra m m e rs 56

4.2 Intelligent Tutoring/Computer Aided Instruction . 61

4.2.1 Spotting E rro rs .. 61

4.2.2 Presentation M e t h o d 62

4.2.3 Student M o d e l...................................... 62

4.2.4 Path S e le c tio n 64

4.2.5 Environments as a W h o le 66

4.3 Intelligent Program Analysers and Debuggers . . 58

4.3.1 Analysing the C o d e 71

4.3.2 Finding the B u g s 76

4.3.3 Finding and Fixing the Errors 78

5. Categorising Errors in a Traditional Lisp Environment . 81

5.1 M o tiv a tio n .. 81

5.2 Methods ... 81

5.3 Method of Analysis ... 82

5.4 R e s u l t s .. 84

5.4.1 Problems Caused by the Environment . . 85

5.4.2 Algorithmic E r r o r s 87

5.4.3 Problems with the L a n g u a g e 90

5.5 Error M e ssa g e s 96

5.6 Conclusions from the Study 97

n ITSY IMPLEMENTATION DETAILS

6. The Environm ent.. 100

6.1 Overall Environment .. 100

6.2 Lisp E n v iro n m en t... 101

6.3 Editor E n v iro n m e n t... 103

6.4 The Status L i n e ... 108

6.5 Coaching.. 104

7. Transforming the Code into Plan Diagram Form 106

7.1 The End Product - Internal Representation of the Code 106

7.1.1 Advantages of Using Plan Diagram

R epresentation... 107

7.1.2 Representation of Lisp O bjects.................. 108

7.1.3 Data and Control Flow: Connectives . . 112

7.1.4 Non C onnectives.. 123

7.2 The Transformation P ro ce ss 124

7.2.1 Application of Non-Connective Common Lisp

F u n c tio n s .. 125

7.2.2 Application of User Defined Functions . 125

7.2.3 Function D e fin itio n s 126

7.2.4 F o r k s ... 127

7.2.5 L o o p s ... 134

7.3 An Example of Code Transform ation...................... 137

7.4 Current Limit of A n a ly s is .. 146

8. Matching Error Cliches Against the Transformed Code . . 148

8.1 Traversing the Transformed C ode........................... 149

8.1.1 Common Lisp F u n c tio n s 151

8.1.2 User Defined Function Application . . . 151

8.1.3 Function D e fin itio n s . 152

8.1.4 F o r k s ... 152

8.1.5 L o o p s ... 152

8.2 Returning Information About the E r r o r 153

8.3 Matching a Code Segment Against an Error Cliche 153

8.4 An Example of M a tc h in g .. 158

8.5 The Error C H c h e s ... 156

9. Presenting the T u t o r i a l ... 173

9.1 Highlighting the C ode... 173

9.2 Explanation of Errors and C o n c e p ts 174

9.2.1 The Explanation F ram es 175

9.2.2 The Message Controller 178

9.2.3 The Explanation T e x t 181

9.2.4 An Example of an Explanation Being

D isp layed .. 184

9.3 C o n c lu s io n s .. 189

10. The Student M o d e l... 191

10.1 In tro d u ctio n 191

10.2 R epresen tation ... 193

10.3 Updating the M o d e l 193

10.3.1 Student Model C l i c h e s 194

10.3.2 Action Taken on Different Values of the

Student M o d e l ... 196

m EVALUATION OF ITSY

11. Study II: A Preliminary Evaluation of IT S Y 197

11.1 O bjectives.. 197

11.2 M ethods.. 197

11.3 Method of A n a ly s is .. 197

11.4 Results . .. 198

11.4.1 Problems Caused By the Environment . 198

11.4.2 Algorithmic E r r o r s 198

11.4.3 Problems with the L an g u ag e 199

11.5 Conclusions .. 202

11.5.1 Comparison with Study I 202

11.5.2 Changes to IT SY .. 204

12. Study III: An Evaluation of I T S Y ... 211

12.1 O bjectives.. 211

12.2 M ethods.. 211

12.3 Method of A n a ly s is ... 211

12.4 R e s u l t s .. 212

12.4.1 E rro rs ... 212

12.4.2 M e s s a g e s ... 220

12.5 Extra E r r o r s .. 222

12.6 New Error C liches... 224

12.7 C onclusions.. 225

13. Conclusions and E x ten s io n s .. 228

REFERENCES

APPENDICES

A - Study I Instructions

B - Raw Data from Study I

C - Dribble Files from Study I

D - Instructions from Study I and III

E - Total Number Errors for Study II

F - Results for Study III

G - Individual Results Study III

H - Dribble Files for Study III

I - Frame Times for Study III

J - Lisp Subset

K - Student Model Cliches

PREFACE

This thesis is divided into three parts. Part I both introduces and provides a

background for the project. Part II describes the implementation of ITSY in detail.

Part III contains an evaluation of ITSY as well as concluding remarks.

ACKNOWLEDGEMENTS

I'd like to thank the following:

First and foremost Marc Eisenstadt. Few students can have a supervisor able to inspire

confidence and motivate as he can.

Tony Hasemer for his support and encouragement.

Rick Evertsz for interrupting his own PhD work to help port and maintain his object-

oriented package. This saved a significant amount of time in the construction of

the system.

My parents deserve thanks for providing the perfect environment while drafts of this

thesis were prepared.

My subjects for giving up a considerable amount of their spare time. Special thanks go to

Anne, Cathy, Claire, Louise, Steve and Simon. I'd like to thank Claire for

getting some subjects when I was in desperate need.

This research is supported by a Science and Engineering Research Council CASE award

in collaboration with International Computers Ltd and has been carried out in the

Discipline of Psychology.

1. INTRODUCTION

1.1 M otivation

Today a growing number of commercial companies are becoming interested in both the

development and use of Artificial Intelligence (AI) systems. In the Human Cognition

Research Laboratory there are collaborative projects with International Computers Ltd,

British Telecom, Expert Systems International, Sperry and British Petroleum. Because

of its built-in facilities for symbol-processing Lisp [McCarthy, Abrahams, Edwards,

Hart & Levin, 1962] is one of the most widely used languages of AI. An understanding of

Lisp is vital not only to build (and in some cases to use) AI software, but to understand a

substantial amount of the available literature. Because of this there are an increasing

number of conventional programmers who want to become competent Lisp

programmers. Unfortunately, because AI is still a young science, there are relatively

few expert Lisp programmers and therefore few Lisp tutors. This thesis describes a

system, called ITSY, to aid conventional computer programmers to learn Lisp. It is

hoped that ITSY will help fill the gap.

1.2 Influences

This thesis draws from work from two areas of Artificial Intelligence - Intelligent

Tutoring and Automated Program Understanding/Debugging. The overall structure of

the system and some of its components are based on existing Intelligent Tutoring

Systems. One of the components common to all Intelligent Tutoring systems is the

domain expert. In ITSY the domain expert is a Lisp debugger for novice Lisp

programmers.

The debugger is based on work carried out on the Programmer's Apprentice project at

MIT [Waters , 1982]. The aim of this project was to build a knowledge based editor. The

programmer would be able to converse with the editor in terms of programming concepts

instead of text strings. In order to do this the Programmer's Apprentice would have a

library of common programming cliches. A cliche is a standard form of code. These

cliches represented a common knowledge base amongst computer programmers. The

Chapter I Introduction 2

Programmer's Apprentice would be able to construct programs using these cliches and

analyse raw code into these cliches.

IB Approach

The first step in building ITSY was to study novice Lisp programmers. About 130 hours

of data were collected from professional programmers learning Lisp. During this pilot

study we noticed two things:

a) the errors made by the subjects fell into relatively few categories,

b) a substantial amount (12%) of the errors were caused by the environment.

We decided that the best way to cure b) was to improve the environment. The fact that the

errors fell into few categories led us to believe that novice lisp programmers share a

common knowledge base of misconceptions and these misconceptions manifest

themselves as 'similar' segments of code. We call these 'similar' segments of code

error cliches. As we said earlier a cliche is a standard form of code. By error cliche we

mean a standard form of code which is incorrect. We decided that ITSY should trap these

error cliches and explain the misunderstood concept to the student.

1.4 The System

ITSY has been designed to be used with a set text, "Lisp" [Winston & Horn, 1984]. Many

of the 'traditional' (unintelligent) CAI packages produced in the seventies were based on

the 'branching text' concept. That is pages of text with several branching points. It would

be a duplication of effort to produce long pieces of text and numerous exercises when there

are so many 'teach yourself Lisp' books available [Hasemer, 1984; Winston, 1984;

Touretszky, 1984; Wilensky, 1984].

ITSY provides help in two different ways:

1) Tutorial advice when a student makes an error.

Chapter I Introduction 3

2) A 'friendly environment - including coaching on available Lisp tools.

These different sources of help will be explained in chapter 2.

1.5 Target Users

ITSY is intended for use by professional programmers, that is programmers who are

currently employed to program in a 'conventional' language and have had at least two

years' experience doing so . This makes a difference to the questions we have to

address. Students who were computer naive would have a different set of problems - one

example is the problem of students imputing too much "intelligence" to the machine.

The fact that the students will be professional programmers may cause problems as the

students will carry over knowledge that is not applicable to a language such as Lisp.

Most conventional programming languages do not have an interpreter toplevel present

in most Lisp systems.

The fact that a debugger is used as the domain expert gives ITSY advantages over the

frame-based CAI systems. As Johnson says [Johnson, 1985 p 10]:

Frame-based CAI systems may work in some domains, but they are ill-suited for
teaching programming...

Incorrect answers from students provide an awkward problem for such systems - they

may have remedial frames but if the student continues to make the error they have no

further action that they can take. Mistakes are often made by novices learning to

program in a new language - in one of the studies conducted, 35% of the of the lines typed

in by subjects contained an error.

The main questions raised in this thesis are:

1. What misconceptions do professional programmers have when learning Lisp?

2. How can the misconceptions best be categorised into error cliches?

3. Will explaining these misconceptions when an error cliche is found help novice

programmers?

Chapter I Introduction 4

In describing the debugging system SNIFFER Daniel Shapiro comments [1981 p. 7]:

This approach defines an initial theory of bug recognition. It considers errors to be
positive entities around which knowledge can be organised, as opposed to representing
them as differences from an established norm.

As the approach used in SNIFFER defines a theory of bug recognition so error cliches are

a theory of the buggy knowledge that novice programmers are assumed to have.

The approach used here can be extended to other domains where students make the same

types of error. One such area is children learning about arithmetic. Burton and Brown

[1978] studied 1300 school children attempting basic mathematical problems. They found

that rather than not following the correct procedures perfectly, the children were

following incorrect procedures. Each of these different incorrect procedures meant that

the child had a particular misconception.

The basic method used, in this thesis, is to collect a library of error cliches from students

learning in the domain. Then to determine what misconception a student must have in

order to produce a particular error cliche. The next step is to build a system that is able to

match error cliches against student input and then explain the misconception that the

student must have.

1.6 Guide to the Reader

The next chapter gives an overview of ITSY. Chapter 3 contains a scenario using screen

snapshots from the running system. Chapter 4 describes ITSY in the context of related

work. The last chapter in this part describes a pilot study, which involved looking at

professional programmers learning Lisp.

2. OVERVIEW

An overview of the structure of ITSY is given in figure 2-1. The arrows leaving the main

box show how the student can interact with ITSY. When the student types input at the

enhanced lisp environment the code analyser transforms the student's code into an

internal form (a surface plan Waters [1978]). If the input does not cause an error the

student model is updated. The student model is represented as a set of nodes. Updating

the student model involves changing the state of some of the nodes. The student model is

used to determine whether a particular mistake, made be the student, is due to a

misconception that the student has or is trivial. If the input does cause an error the error

cliche finder tries to match one of the error cliches in the error cliche library against part

of the student's transformed code.

The remainder of figure 2.1 will be explained later in this chapter.

2.1 An Example

The following is a description of what happens 'behind the scenes' as a bug is detected

and a tutorial is presented. Suppose that the student has typed in the following function

definition, in an attempt to create a synonym for CAR:

(defun buggy-first (1)
(car (1)))

Once the student has loaded the function BUGGY-FIRST and typed in the form:

(buggy-first '(a b c))

Lisp gives an error (the reason for the error is that the L in (CAR (L)) should not be

surrounded by brackets). Instead of entering the debugger ITSY displays the Lisp error

message and tries to spot the error.

The first part of spotting the error is transforming the students' code into an internal

Chapter II Overview 6

form. The internal form used in ITSY is close to the surface plans used the

Programmer's Apprentice [Waters, 1985]. The toplevel form is translated into the

network shown in figure 2-2.

b a a

V tuo

(-1 k P-i Pn

3 0 W

M M M

Chapter II Overview 7

The following two figures show the internal representation used by ITSY. Each labelled

box represents a segment of code (usually a function). The arrows show dataflow.

Figure 2-2

Quote

Function Application

Figure 2-2 shows the internal representation of the form (BUGGY-FIRST '(A B C)). The

box labelled Function Application represents the application of the function BUGGY-

FIRST. The input to this function is the QUOTE function - represented by the box labelled

Quote. The input to QUOTE is the list (A B C).

As ITSY analyses the toplevel form it also analyses any functions, defined by the

student, that are called. The function buggy-first is analysed into the network:

Figure 2-3

CAR

Function
A pplication

User Defined Function

Chapter II Overview 8

The network shown in figure 2-3 represents the definition of the function BUGGY-

FIRST. The box labelled User Defined Function represents the function BUGGY-

FIRST. The input to the function is represented by the line labelled L. Notice this line

does not lead to any of the internal boxes as the parameter L is not used within the

function body. The function CAR is represented by the box labelled CAR. The input to

this function is the box labelled Function Application. The Function Application box

represents the function call L, in the student's code, which of course is undefined.

The error cliche matcher then tries to match one of the error cliches against this network

(comprising of figures 2-2 and 2-3), starting from the toplevel form and working in the

same way as the evaluator. As the error cliche matcher traverses the network each error

cliche actively tries to match itself against a section of the network. The surface plan

representation and the error cliches are implemented in an object oriented manner. The

nodes in the network are implemented as objects, the labels on the boxes refer to the type or

class of the object. The error cliches are implemented as messages.

The error cliche which is called brackets around a variable matches. This error cliche

has the form:

Error Cliche Name: Brackets Around a Variable

Surface Code Segment: Function Application

Criteria: Function is undefined

The 'name' of the function is the same as one of the

input ports of the function definition the segment

occurs in.

Other Checks: The 'name' of the function is not a function.

Each error cliche has four parts. The first is the name of the error cliche. The second is

the 'type' of object that the error cliche can match against. The third and fourth parts

contain tests that the object must satisfy in order to match against the error cliche. The

Criteria and Other Checks differ in that the former contain criteria that need to be

Chapter II Overview 9

satisfied in order for the error cliche to match and the latter contain tests that prevent

false alarms.

The error cliche shown above matches against the function application object in figure 2-

3. This error cliche matches against the function application object as follows:

a) The type of the object (function application) is the same as the Surface Code Segment,

b) the two Criteria are true,

c) the Other Checks are true.

As indicated earlier each surface code segment (shown as a labelled box in figures 2-2

and 2-3) is represented as an object. Each object has various slots which can be filled in.

The Criteria and Other Checks test the slots of the object. Three of the function

application object's slots are used. One of these slots contains the name of the function

being applied. The second slot contains the type of the function call, which can be one of

normal, recursive and undefined. The third slot that is used contains a pointer to the

surface plan representation of the function that the object appears in. The first Criteria

checks that the type of function call slot has the value 'undefined'.

The second criteria checks that the 'first atom' in the name of the function slot is the

same as one of the input ports of the function definition the function application appears

in. The input ports of a function definition represent the possible ways that data can flow

into a function. There are two possible ways this can happen, values can be passed via

variables in the parameter list or via global variables referenced within the body of the

function. The function definition shown in figure 2-3 has one input port L (represented

by the line labelled L). Because the student may put more than one set of brackets around

a variable the 'name' of a function may be a list. By 'first atom' we mean the first atom

in a list, if the list is traversed in a depth first manner. For example, if instead of

writing (CAR (L)) the student had written (CAR (((L)))) the name slot of the function in

the function application object would have contained ((L)). The 'first atom' in the name

slot would be L.

The Other Checks uses the name slot and checks that the 'first atom' is not the name of a

Chapter II Overview 10

function. The use of the Other Checks can best be described by an example. In function

definition below:

(defun buggy-fun (list)
((list list)))

The error cliche described above would match against the s-expression ((LIST LIST)) if

the Other Check did not exist. This error is caught by the extra bracket around a

function call error cliche.

Once the error has been found ITSY checks the student model. In this case the model

indicates that the student needs to be tutored (the second scenario (3.2) shows the action

ITSY takes when the student model indicates that the student does not need tutoring).

The student model consists of an unconnected graph. Each node in the graph can have

one of several states. Some of the nodes are shown below in figure 2-4.

Figure 2-4

Append

Brackets Around
a Variable

Wrong Number
of Arguments

Arguments in
the Wrong Form

The code highlighter receives information including the buggy piece of code and the

function the buggy piece of code occurs in. The code highlighter brings the function to the

top of the screen and highlights the buggy piece of code.

ITSY displays a set of message frames to explain the source of the error to the student.

There is a set of message frames for each error cliche. Information returned by the error

Chapter II Overview 11

cliche finder is used to fill in various slots in the messages. In the example the name of

the function that the error occurred in (BUGGY-FIRST) and the name of the variable

surrounded by brackets (L) are inserted into different slots in the messages.

The remaining sections of this chapter provide an overview of how ITSY works.

2^ Spottmg Errors

ITSY spots errors using a variant of the code analyser in the Programmer’s Apprentice

Waters [1978] (see section 4.2.1). A certain part of the analysis within the Programmer's

Apprentice involves replacing segments of code by a smaller number of segments, or by

a single segment. This involves matching segments of code against a pre-stored

cliche. In an analogous fashion ITSY attempts to match segments of code against a pre­

stored error cliche. This is carried out in two steps:

1. Transform the code into an internal form that abstracts out certain surface

features such as data and control flow. The internal form used in ITSY is

analogous to surface plans described in Waters [1978 p. 44] and consists of a

network of objects (see figures 2-2 and 2-3).

2. Try and match each part of the network against an error cliche.

Notice that the matching process can occur at either a low or high level of code

abstraction. In the Programmer's Apprentice code is transformed into surface

plans and then by matching these against cliches, plan diagrams are produced.

The plan diagrams can be matched against cliches to produce further (more

abstract) plan diagrams. This process can occur as many times as necessary,

each time a deeper understanding of the code is achieved. The same can occur

with error cliches. When matching occurs more than once each new round of

matching produces the source of deeper errors.

Error cliches are the central concept in ITSY. They represent typical student errors. A

pilot study of novice Lisp programmers was carried out at the start of this project (see

chapter 5). During this study we noticed that the errors made by novice Lisp

programmers fell into relatively few categories. From this we concluded that Lisp

Chapter II Overview 12

novices share a small set of misconceptions about the Lisp evaluator and that these

misconceptions lead novices to writing the same incorrect forms which we call error

cliches.

2.2.1 Transforming the Code

The code analyser (see figure 2-1) uses an object hierarchy. This contains the specific

knowledge about Lisp. The hierarchy is described in detail in Chapter 8. The analyser

uses the following algorithm:

Let O be the object to be analysed

If 0 is an atom then replace 0 with the surface plan representation of the value of the

atom.

If 0 is a list then it is of the form:

(f argl ... argn)

One of the following actions is carried out:

1. If the function f is a special form^ replace f with the surface plan representation of f

and use the special form's analyser to analyse the arguments. ITSY contains a separate

analyser for the special forms COND and DEFUN. This is needed because special forms

do not evaluate their arguments in the same way as normal Lisp functions.

2. If the function f is a Lisp function then replace f with the surface plan representation of

f and analyse f s arguments.

3. The function f is not a special form or a Lisp function, so it must be a user defined

function. Analyse the arguments. If the function f has been analysed before then

retrieve the surface plan representation. If the function has not been analysed then

analyse and store the function definition. Create a surface plan representation of the

A special form is a 'special' Lisp function, each special form h as its own idiosyncratic syntax

Chapter II Overview 13

function application.

2.2.2 The Matching Process

Once the relevant code has been converted into surface plan form the next step is to find

an error cliche. A set of candidate error cliches are chosen. Which error cliches are

included in the set depends on the type of error. ITSY then traverses the network of objects

created by the code analyser attempting to match each of the chosen error cliches.

2^ Presenting the Tutorial

A tutorial involves explaining a concept. The explanation involves four parts. Before the

explanation is presented ITSY first checks that it has correctly diagnosed the cause of the

bug. ITSY does this by asking a question. If the student does not understand the question

s/he can ask for a rewording. These five parts are presented as frames, the top half

containing a message, and the bottom a menu. The five parts are:

a) The question - used to check the diagnosis.

b) The reworded question - in case the student does not understand the question.

c) The main explanation - this is a expanded version of the error message using terms

that a novice can understand.

d) A deeper explanation - this is an explanation of the error in terms of the evaluator.

From the first study (chapter 5) it is clear that students do not understand how the Lisp

evaluator works.

e) Examples - this is a set of concrete examples illustrating the misunderstood concept.

Each message contains slots which are filled with specific information about the error

such as the function the error occurred in.

The student moves through the frames using a menu. Included as an extra item on this

Chapter II Overview 14

menu is an option to look up the definition of any technical term used in the

explanations.

2.4 The Student Model

The student model is used to determine whether or not a student requires a tutorial (this

can be seen in the second scenario (3.2)). Instead of launching into the tutorial

immediately ITSY just notifies the student that the tutorial is available on the Lisp menu.

The student model is closely linked to the error cliche library. The student model is

represented as a graph. There is a node in the graph for every error cliche in the library.

Each error cliche can be thought of as detecting a Lisp concept that a student may lack.

Each node indicates whether or not the particular student lacks that particular concept.

The student model is updated every time a student types in a toplevel form. Updating the

student model in ITSY is similar to finding an error cliche. The student model uses the

surface plan representation of the student code (see fig 2-1). If the student's input to Lisp

toplevel is correct ITSY traverses the surface plan representation of the code attempting to

match the student model cliches against segments of the student's code. The student

model cliches are derived from error cliches. A student model cliche will match against

a correct segment of code where the student could have made an error but didn't. For

example, the error cliche wrong type argument would match against the surface plan

representation of the code segment:

(car ’a)

The corresponding student model cliche would match against the surface plan

representation of the code segment:

(car ’(a))

Every time a student model cliche matches against a segment of the student's code the

corresponding node in the network is updated.

Chapter II Overview 15

2.5 The Environment

When building any environment in which users are expected to learn, certain aspects of

the whole environment need to be considered. The aim is to minimise the amount of

knowledge that the students will need in order to use the system. The tools available to

the students should be functionally, logically and syntactically simple (Du Boulay,

O'Shea and Monk [1981]). There are two main ways of providing the tools: via menus or

via user commands. Norman [1983] gives a table of trade-offs between these two systems.

Menu-based systems are easier for novices, but are not as fast for the expert user. In

ITSY, the tools are available on both pop-up menus and on single keys, the commands on

the single keys acting as short cuts.

ITSYs environment can be seen in the scenario. The basic configuration has three

panes. The top pane contains an editor, the middle a Lisp interpreter and the bottom

status information. The environment was designed to prevent some of the errors that

occurred in the pilot study (see Chapter 5). ITSY also provides limited coaching on the

tools.

3. SCENARIO

In this chapter we describe five different scenarios. Each shows a different aspect of

ITSY’s behaviour. The scenarios are screen snapshots from a running implementation

of ITSY. Each screen shown is divided into three main areas.

The top area consists of an editor window, this is used by students to write and edit Lisp

functions. The editor window is divided into three sub-areas. The top part of the editor

window contains the title. The middle part of the editor window contains the area where

students can type their code. The bottom part of the editor window is used both to display

information such as the file a buffer has been saved to, and for students to supply

information such as the name of a file the student wishes to load into the editor.

The middle area is a Lisp toplevel window. Lisp forms can be typed into this window.

The forms are evaluated and a result returned as soon as they are typed in. The bottom

area is a status window. This give students information about what ITSY is currently
doing.

Students can carry out various actions, such as saving and loading files, by using

menus. A menu is brought up whenever a mouse button is pressed. There are two menus.

Which menu is brought up depends on which window the mouse is in when a mouse

button is pressed. If the mouse is within the Lisp toplevel window the ITSY Lisp Menu is

brought up. This menu enable the student to carry out actions such as loading a file or

obtaining documentation on a function. If the mouse is within the editor the IT SY Editor

Menu is brought up. This menu enables the student to cariy out the same actions the

IT SY Lisp Menu as well as certain actions specific to the editor, such as saving a buffer.

When a student makes an error ITSY provides a tutorial via a set of frames. These

frames have a message in the top half and a menu in the bottom half. The menu is used to

either bring up more frames or leave the tutorial.

The scenario contains two extensions to the original design of ITSY which are not

described until chapter 13. The first extension consists of an extra frame, the fix frame.

The second extension is shown in the fifth scenario. This is the test a function tool.

Chapter III Scenario 17

These two extensions were added as a result of a pilot evaluation of ITSY. They are

described in chapter 13.

Each screen snapshot has been annotated using an extra window. This window appears

in the right hand side of the snapshot and has the title Scenario Annotation. This

window is no t part of ITSY.

3.1 F irst Scenario

The first scenario shows the student defining a (buggy) function and ITSYs actions

when the function is called.

Chapter III Scenario 18

II.
H r P |

II
£ 0)
A) C TJ

M l-
t 1 « L C (.

(9 a O tJ

33
) _0 _D w _Q _Q

Chapter III Scenario 19

I I ,
n *0 V

«'8'-

« o
w. V Ë.2

CD

- 5 | -

J!

Chapter III Scenario 20 |

ICO

I t *
I-

tn "e £ ? f

Chapter III Scenario 21

I I

f

IS

Chapter III Scenario 22

11
n'a. c 3 * n n o o
ü î c

!

I §
I s

Chapter III Scenario 23

k -5%
| 5 | ? "
B C 3 O t>

I®

i l s
§-Sl
C *) o

III

c
§88 III
III;

!53S

I I I

ill
iil
Ifî
- I l

Chapter III Scenario 24

r§
l l

Si

Iil
« I s.

ÎÎÎ
“ l l

I
£ |S

Chapter III Scenario 25

m

III
| i |
i l î
Ilf
I I I
£ 2 a

2 I

ill
^ I s
s - l■j w

E-r 3 -
o i

I s

Chapter III Scenario 26

Chapter III Scenario 27 j

*) O » ̂tl
iS "

cîc cx

5553

5 5 5

1 1 1

IIIII
“ l l

T iJ2 &
« HIt

i f

Chapter III Scenario 28

Chapter III Scenario 29

I I I

S X 3 "oL

BE

B

£1

i l

Chapter III Scenario 30

B L

n l

If!i
: f !

nill
4 i

I

I I

Chapter III Scenario 31

H c

2 O
2 ?

* 2

j •«
Ï 3

Chapter III Scenario 32

The error in the first scenario would have changed the Bracket Around a Variable node

in the student model. This node would have moved from the Concept has not yet been

Encountered state to the Concept has been seen but not Learnt state.

3^ Second Scenario

The second scenario shows Tony making the same error as in the previous scenario

some time later. The Bracket Around a Variable node in the student model is now in the

Concept has been fully Learnt state and ITSY changes its action according to this.

Chapter III Scenario 33

Chapter III Scenario 34

I I

III
** (. c w b
1 :1 :2

1 :;:
IT3 V •)
» 3 » D-D

ii
= a

kZ « c

m i .
I X W O 1-1 I

Chapter III Scenario 35

i
U K
J Ï Ï Î

5

Chapter III Scenario 36

I I I
ii!
* S S.s = #

£ ! s

3: ' l l
I s

Is
T i t
® § 3 JC

Chapter III Scenario 37

3^ Third Scenario

The third scenario shows the student making a different error.

Chapter III Scenario 38

ammœx

l l i ï l b
B £ o * S £ ci
* C L _X C. B O tl
>. c a-r

Chapter III Scenario 39

| % i
"c L ^

t J *— -D B (b.

O O O) U C

c o ë K B
^ o V o a«-
SibË-ï?
M Cb. » f - -D B

1 5
- ■« s
LN
2 J o

- l l llUÏ9 -2 « I l f :
>5:; I t
II i w"

1: K= Ï-as 1>»'» 2 o « § a} S
= [

I I

Chapter III Scenario 40

Chapter III Scenario 41

B ^
s o

B O

Ç H S -o

Chapter III Scenario 42

I?
E
ms ^ B

>
« X

o
o

• "O
^ 3 C B

B 3ms m
» a 8

4J a >
• B

B
r~ i t »-«X

B 4J
B

« 3 k B
B B •>» 3

w X a
M X

O f - 0
O " - 0 —

B. f k . * -
3

C C 3
3 B 3

k . k
B B

? ?

i l l "
? slii-iIHi

li
II

m

Chapter III Scenario 43

2 -5CQ U

S 3 E E Cg-e

ilS£fs2e;p. e « «

CQ tC

■Ç « -S,

c H £ -5

Chaptef III Scenario 44

I s

II

Chapter III Scenario 45

3.4 Fourth Scenario

The fourth scenario shows how students can call up documentation on Lisp functions.

Chapter III Scenario 46

T M î

B

Chapter III Scenario 47

11^IIII
s i c

S i

i l i l i l ^

Chapter III Scenario 48

_ g «
8

1

m i
! i f i i -

a l i i

** ® I c

|2

i l

« > ? E
X w

i l
§ i

i s

Chapter III Scenario 49

3.5 Fifth Scenario

The fifth scenario shows the student using ITSTs test facility. ITSY has a set of pre­

stored examples for each exercise. The function rotate-r (exercise 3-3 in "Lisp"

[Winston & Horn]) should rotate any list right but often student’s solutions only cope

with lists with three elements. This scenario also shows how students can quickly reload

their functions.

Chapter III Scenario 50

1̂
II

2 = 1 1
^ l i lto

, è i |
I

fil

8=
w m Ç J t i

o c 5
S 3 S S £• = -

Chapter III Scenario 51

Chapter III Scenario 52

z : °
111

T3 X •

&2o-
,31""o a 3

«I

w «

111 5S

Chapter III Scenario 53

; ^ 3 Î

> O 9 *D O t l^ 6 S § 3

ilJIII

i:ïii
iZ-'« B

i | l
' eft's

? ! ££
§3 §S 23

II

Chapter III Scenario 54

in «

I X w

s i s

g
ë o o £

Chapter III Scenario 55

w O) M t l «

C O C C

b ï 23

U z l

s i §s

4. ITSY IN THE CONTEXT OF RELATED WORK

This chapter presents a review of related work. This review is split into three basic parts

which correspond to the three broad fields that this work is founded on. The first part

describes work on empirical studies of novice programmers. The second part describes

work on Intelligent Tutoring Systems/Computer Aided Instruction. The third part

describes work in the area of Automatic Program Analysis/Debugging.

4.1 Empirical Studies of Novice Programmers

Numerous studies on both expert and novice programmers have been carried out. These

studies have varied on the type of data collected. Boies and Gould [1974] collect syntactic

errors, caught a t compile time, in FORTRAN, PL/1 and an Assembler Language. More

recent studies have concentrated on the deeper cause of the error, rather than the

symptom.

Various studies conducted a Yale university have used the idea of Programming Plans

[Spohrer & Soloway, 1986; Johnson, Draper & Soloway, 1982; 1983]. Programming Plans

are stereotypic sequences of code that accomplish some Programming Goal. A

Programming Goal states what must be accomplished in order to solve a particular

problem. A Programming Plan states how a particular goal can be achieved.

Generally, there will be more than one Plan for a particular Goal as there is often more

than one way of implementing a specification.

Spohrer and Solo way [1986] analysed students on a undergraduate PASCAL

programming course. 158 syntactically correct PASCAL programs generated by 61

students. The bugs were analysed using Programming Goals and Plans. The bugs

were identified as the difference between one of the correct Plans for achieving a Goal

and the observed Plans for achieving a Goal. The following table shows the results of the

analysis.

Chapter IV Related Work 57

Type of Statistic Problem 1 Problem 2 Problem 3

Number of Subject Analysed 55 46 57

Total Number of Bugs 85 46 57

Total Number Bug Types 28 46 27

Average Number of Bugs per 1.5

Syntactically Correct Version

3.0 1.0

Average Number of Lines

per Program

27.8 73.1 68.6

Assignment Number

in Sequence

Percentage of Errors

per Line

5.6 4.2 1.5

The assignment number indicates where the assignment occurred in the sequence of

course assignments.

The average percentage of errors per line, in the study described above, is 3.2. In the

studies outlined in chapters 5,11 and 12 the average percentage of errors per line varied

between 13 and 45. In these studies only the number of lines typed to the Lisp interpreter

were counted. The lines in the actual program were discarded. This means that one

line in these studies is equivalent to 'trying out a program'. If the number of errors in

the study conducted by Spohrer et. al is taken per try out of the program, the average

becomes 180. The increase from in the percentage between the studies outlined in this

thesis and those of Spohrer et al. could be due to the increase in complexity of the

assignments (the solutions to the exercises used in the studies carried out in this thesis

are less than 10 lines in length).

Chapter IV Related Work 58

Spohrer and Soloway concluded two things from this study:

a) misconceptions about language constructs do not seem to be as widespread or

troublesome as typically believed,

b) just a few bug types account for a large percentage of program bugs.

Spohrer and Solo way analysed the top 10% of bug types (which accounted for well over a

third of the bugs). Out of the 11 bug types only one was definitely caused by a

programming construct.

The spread of the bugs found can be seen in the following table

Percentage of bug types Percentage of bugs accounted for

Problem 1 Problem 2 Problem 3

10 44 46 32

20 55 64 46

25 62 69 56

50 80 84 77

As can be seen the top 10% of bug types account for over a third of the actual bugs. In the

study outlined in chapter 5 91% of the errors fell into 19 categories.

A comparison of errors made by novice SOLO and LOGO programmers is given in

[Eisenstadt & Lewis, 1985]. The SOLO studies were carried out by Eisenstadt and Lewis

[1985] and the LOGO studies by Du Boulay [1979]. Eisenstadt and Lewis re-computed Du

Boulay's collection of errors taking into account the differences between the two systems

used in the studies. One of the differences was that the SOLO environment contained a

spelling checker whereas the LOGO environment did not. The spelling errors caught by

the spelling checker in SOLO environment were counted as errors.

Chapter IV Related Work 59

The following table shows the four largest SOLO and LOGO errors side by side.

Symptom % of all errors

LOGO SOLO

1. Spelling/Typing/misquoting 28 34

2. Wrong Number of arguments passed 18 18

3. No line Number 12 9

4. Call to undefined procedure 12 9

As can be seen the top four culprits for both languages are the same and occur in the same

relative order.

Pre-programming knowledge is a major source of programming errors. Bonar &

Soloway [1985] developed a model to account for novices programming errors. They

propose 2 kinds plan knowledge that novices have:

a) Knowledge of Step-by-Step Natural Language procedures - this is called SSK (Step-by-

Step natural language Knowledge).

b) Novice knowledge of the programming language under study (PASCAL) - this is

called PK (Pascal programming Knowledge).

Examples of a) are looping (eg. adding lists of figures), making choices and specifying

sequences of actions.

Bonar and Soloway have characterised similarities exist between SSK and PK:

1. Functional similarities - both SSK and PK are concerned with repeated actions, choice

between conditions, counting, etc.

Chapter IV Related Work 60

2. Surface similarities - programming languages such as PASCAL share many words

with Natural Language.

Bonar and Soloway outline the following as what happens when a novice programmer

produces a bug:

1. While solving a programming problem novices will encounter some aspect of the

problem they don't understand - an impasse.

2. In order to move beyond the impasse, novices cast about for a way to resolve the aspect of

the problem they don't understand - a patch. Frequently that resolution involves an

appeal to their knowledge of Natural Language step-by-step procedures that would be

applicable in a similar situation.

3. In implementing the patch, a bug is introduced.

Kahney and Eisenstadt [1982] also showed that inappropriate pre-programming

knowledge is used when novices write programs, in this case SOLO programs.

Anderson, Pirolli and Farrell [1984] studied novice Lisp programmers writing recursive

programs. They gave the following reasons why recursive programming in Lisp is

difficult:

a) Very difficult if not impossible for humans to execute recursive mental procedures.

b) Recursion is unfamiliar.

c) Recursion is difficult because of imprecise instructions. Textbooks do not explain how

to write recursive functions. Writing recursive functions is not recursive. Text books

explain what recursion is, explain how recursion works, examples of recursive

functions, give traces of recursive functions but do not explain how recursion works.

d) Students try to solve recursion problems iteratively.

Chapter IV Related Work 61

e) Recursion is complex. There are different types of recursion for example, CDR

recursion and CAR-CDR recursion.

f) Other non-recursive aspects of Lisp complicate learning about recursion.

4.2 Intelligent Tutoring/Computer Aided Instruction

This section is divided into five sections corresponding to the five sections of ITSY.

4J2.1 Spotting Errors

Traditional CAI packages compare a student's answer with a correct version. Typically

the answers are simple yes/no type or multiple choice. The BIP system [Barr, Beard &

Atkinson, 1976] simply compared the output of student programs with a "correct" version.

A more interesting method was used in WEST [Burton & Brown, 1976]. WEST compared

the students' answers with those of an "expert", then assumed that the students lacked all

of the skills needed to produce the optimum answer, unless they had used that skill

recently. WEST would then tutor the student on one of these skills.

GREATERP [Anderson, 1985] uses production rules to implement both an expert and a

"buggy" novice LISP programmer. These rules are implemented in GRAPES (Goal

Restricted Production System). Every time a student types a LISP symbol GREATERP

decides what rule would have to fire in order to duplicate the input. If the "duplicating"

rule is in the "expert" set then GREATERP does nothing, but if the "duplicating " rule is

in the "buggy" set then GREATERP gives the student a short tutorial. As long as the

student writes "ideal" code GREATERP stays in background. There is a flaw in this

strategy however. If a student is writing a variation of the solution that GREATERP does

not know about then the student will get confusing advice.

The approach taken by GREATERP is different to that of ITSY. GREATERP inspects

each symbol as the student types it in and proceeds to tutor the student if the symbol is

incorrect. ITSY is less restrictive. The student is allowed to write the whole of his/her

program before ITSY examines it. GREATERP has the advantage that it is able to tutor

the student as soon as the error occurs. One of the disadvantages is that the student does

Chapter IV Related Work 62

not have a chance to right a whole program at once. Nor does the student practice

debugging programs.

Ideally the expert should be "glass box" or articulate [Goldstein & Papert, 1977]; non-

articulate or "black-box" experts only being used where no theory exists on how to build

one, or for reasons of efficiency.

As discussed in section 2.1 ITSY uses some of the techniques used by the Intelligent

Debuggers described in section 4.2, rather than those used in traditional CAI packages.

4J2J2 Presentation Method

There are two main methods that CAI packages use in order to communicate with the

student:

a) displaying stored chunks of text,

b) using natural language generators to create the text.

As Barr and Beard said [Barr & Beard, 1976 p 570, 571], storing chunks of text limits the

amount of branching possible and so makes the system inflexible whereas natural

language generators have a limited vocabulary and consequently their communications

with students tend to be dry and unmotivating.

ITSY uses a combination of stored chunks of text and annotated graphic examples,

because natural language generation is considered beyond the scope of this project.

4J2.3 Student Model

O'Shea and Self [O'Shea & Self, 1983 p. 143] describe a student model as follows:

... any information which a teaching program has which is specific to the particular
student being taught. The reason for maintaining such information is to help the
program to decide on appropriate teaching actions.

In ITSY a student model is needed to determine when a student has made an interesting

Chapter IV Related Work 63

error, as any error that occurs may be due to a fundamental misconception, or may just

be a trivial slip up. BIP [Barr & Beard, 1976] used a counter for each elementary skill in

BASIC programming as a student model. Each time a student successfully completed a

task the counters for all the skills needed in that task were incremented. If the student

failed to complete the task the corresponding counters were decremented. A problem that

Wescourt et al. [1977] found with this scheme was that the faster students sometimes

"leap-frogged" over the simpler tasks and then failed on a difficult task. Because they

missed out a lot of the simpler tasks, they may have met some of the simpler skills only

once. If such a skill was then needed in a difficult task, and they failed on this task, the

counter for this skill would be decremented to zero. The model then contained the

inaccuracy that the student did not have this skill. This student modelling problem was

overcome in BIP-2 [Wescourt et al, 1977]. Skills were represented by finite state

machines rather than counters. The finite state model used was hierarchical, each skill

being on a different level. The model had five possible states, the current state depending

on how well a particular skill had been learned.

Guidon [Clancey, 1979] modelled the student as a subset of the system's 'expert', this is

called an overlay model. The expert knowledge was represented as a set of rules

(actually the expert was Mycin [Shortliffe, 1976]). Guidon's student model has three

parts:

a) a record of the rules that the student knows,

b) a probability that a student will apply a particular rule in a specific case

c) a probability that a student would mention a rule if asked to support a partial solution.

In LMS (Leeds Modelling System) [Sleeman & Smith, 1981] have grouped problems into

levels. If a student is be able to complete problems at a level I and then fails at a problem

at level I + 1 LMS generates, from the existing student model, a set of new possible

student models. This set is narrowed down by presenting the student with more problems

from level I and deleting from the set those that did not predict the student's answer.

ITSY uses a non-hierarchical graph to represent the student's knowledge. Each node in

this graph relates to a particular Lisp concept. There are two reasons why the model is

Chapter IV Related Work 64

non-hierarchical. Firstly, students who use ITSY may have encountered some parts of

Lisp before, each students may have some knowledge about a different part of Lisp.

Secondly, students using ITSY are free to try the exercises in any order. This will mean

that they will encounter concepts in a different order (see section 6.3 for a detailed

description of the student model).

4J2.4 Path Selection

In traditional CAI packages the student is given a selection of tasks to complete. The

student can proceed along a number of fixed routes through the system.

In early CAI packages the students followed a rigid path through the system with

occasional branching. In both WEST [Burton & Brown, 1976] and BLOCKS [Brown &

Burton, 1977] the students totally controlled their path through the system. In BIP-1 [Barr

& Beard, 1976] the system chose the next problem for the student. The method by which to

choose a problem for a student raises questions such as:

a) How many new skills should be present in the next task? Should the system try to find

a task with the maximum number of new skills at a particular level or just one?

b) Should the number of new skills presented change as the student progresses, or depend

on the type of student? If so how?

Wescourt et al [1977] tried to answer these questions by using various types of simulation.

The method they used in BIP-2 changed the number of new skills presented according to

how well the student was doing.

TRILL [Cerri, Fabrizzi, & Marsili, 1984] uses a socratic search strategy to find the

erroneous concept that caused the student's error (TRILL asks the student). In order to

carry out this search TRILL uses a semantic network representing the syntactic

knowledge needed to correctly use Lisp concepts such as ATOM, LIST, CAR, CDR. This

network guides control in the search for the concepts that the student needs in order to

avoid making the mistake.

IMPART [Elsom-Cook, 1984] embodies a specific model of teaching interaction. Elsom-

Chapter IV Related Work 65

Cook states that the goal of any teacher is to provide the student with a model of the domain

which is a t least as powerful as that of the teacher. Since the student has the clearest

understanding of her state of knowledge and the teacher is the expert in the domain, in

IMPART teaching is carried out by a negotiation between the student and teacher.

IMPART contains a teaching program which monitors the interaction between the

student and the environment and attempts to contribute to the interaction. IMPART has

the goal of detecting the skills which the user is ready to learn and encouraging the

exploration of those skills either by manipulating the environment or by making direct

"teaching statements" to the student.

In order to accomplish this IMPART has three knowledge sources:

a) Knowledge about problem domain - in this case the problem domain is Lisp. The

semantics of Lisp are represented in declarative form. Lisp statements are

represented in terms of preconditions for the statements application plus a body of

commands to execute in order to achieve the statement’s effect.

b) Knowledge about the student - this includes:

- the apparent language: the student’s view of what statements in the language mean.

- how well students can react to error messages

c) Knowledge about interaction - IMPART participates in a structured interaction

with the student - this uses psycholinguistic models of conversation. This is

controlled by three subunits:

- general interaction skills - these maintain the consistency and smoothness of the

interaction.

- descriptors of the domain - each concept about which the system is able to talk has a

descriptor. Each descriptor contains outlines of various ways to present and discuss a

topic. Also each descriptor contains mechanisms to assess its own importance a t the

current point of interaction (this can be thought to include the tutorial goals of the

Chapter IV Related Work 66

teacher).

- teaching strategies - these represent different ways of tutoring such as Socratic

tutoring or giving examples.

The students will choose their own tasks when using ITSY. Because of this they will not

have to follow a fixed route through the system.

4.2.5 Environments As A Whole

The environment provided by ITSY will follow the principles outlined below.

Novices need a simple notional machine that corresponds to the language syntax and

semantics. The language should be simple. Du Boulay, O'Shea and Monk [1981]

describe two important characteristics that a programming language should have;

visibility and simplicity. Visibility is concerned with providing methods for novices to

observe certain parts of the notional machine working. Du Boulay, O'Shea and Monk

[1981] describe three types of simplicity that a language can have:

1. Functional Simplicity

2. Logical Simplicity

3. Syntactic Simplicity.

Functional simplicity means that each instruction, in the programming language, can

be broken down into a small number of basic instructions that are easy to understand.

Logical simplicity means that the basic instructions in the language are suited to the job,

so that problems of interest to the novice can be solved with relatively small programs.

Logical simplicity, in a programming language, enables students to tackle interesting

problems in their area, a t a relatively early stage without having to spend weeks

learning the language first. An example of a language that is logically simple is SOLO

[Eisenstadt, 1983]. Using SOLO, cognitive science students are able to tackle problems on

searching data bases and simple protocol simulations within a very short space of time.

Chapter IV Related Work 67

The third type, syntactic simplicity, implies that the rules for writing instructions are

uniform and have well chosen names.

The names of the basic instructions are important as novices tend to make inferences

about the notional machine from these names. Examples of this are the LOAD and

STORE instructions, used in assembler languages, that have real world connotations

[Du Boulay, O'Shea & Monk, 1981 p243.] [Kahney & Eisenstadt, 1982].

The use of surrogate models helps novices, but it is generally hard to find a model that is

simple and covers all of the system that it is modelling. LOGO specifically has a lot of

pseudo-English in its syntax to provide novices with a surrogate model. Boxer [di Sessa,

1982] uses a spatial metaphor to represent functions because it is easy for novices (and

experts) to relate to.

ITSY will provide a "pleasant" environment using these principles. This is discussed

further in section 6.1.

A problem with several of the CAI systems described above (eg. GREATER?) is the fact

that they are restrictive. In order to know exactly what the student is doing they constrain

the student to work in a top down fashion. For example, problem 4-3 on page 57 of "Lisp "

[Winston & Horn, 1981] is:

"Problem 4-3: Define SQUASH, a function that takes an s-expression as its argument

and returns a nonnested list of all atoms found in the s-expression. Here is an example

(SQUASH '(A (A (A (A B))) (((A B) B) B) B))

(AA AA B AB B B B) "

The ideal solution (given on page 323 of "Lisp") that a CAI system would have stored is:

(defun squash (s)
(cond ((null s) nil)

((atom s) (list s))
(t (append (squash (car s))

Chapter IV Related Work 68

(squash (cdr s))))))

Suppose the student were attempting to write the following (nearly ideal and working)

solution:

(defun squash (s)
(cond ((null s) nil)

((atom (car s)) (cons (car s) (squash (cdr s))))
(t (append (squash (car s))

(squash (cdr s))))))

A student may arrive at the above solution as follows:

1. The student codes the first clause and believes it to be the only terminating clause

necessary.

2. The student begins to code the last clause and believes it to be the only recursive case

necessary.

3. While coding the last clause the student realises that if the (car s) is an atom then an

error will occur.

4. The student stops coding the last clause and codes the second clause to deal with the

case above.

5. The student finishes coding the final clause.

If the CAI system did not have the student’s solution it would complain about a "missing

terminating case" as the student started to code the recursive case. If the student started

to code the second clause as step two, the system would complain that the test clause

"should test s and not (car s)". If the CAI system did have the second solution it would

require the student to code the recursive cases separately, whereas the student would not

realise that two recursive cases were required until s/he was actually coding the final

clause. The student would be unable to code the second clause until s/he had finished

coding the third. By allowing the student to finish coding a function before interrupting

Chapter IV Related Work 69

with advice ITSY avoids this problem.

4.3 Intelligent Program Analysers And Debuggers

When students make an error ITSY will have to classify the error, so that the right

tutorial package can be chosen. ITSY will use several of the techniques used in

intelligent automatic code debuggers and analysers to classify the bugs.

Automatic debuggers fall into three broad categories:

a) Debuggers that work in a limited context. Examples of this type are [Ruth, 1976], [Adam

& Laurent, 1980], [Eisenstadt & Laubsch, 1980], [Johnson & Soloway, 1985] and

[Hasemer, 1983].

b) Debuggers that work in a general context, but need a program specification as well,

examples of these are PUDSY [Lukey, 1980] and MYCROFT [Goldstein, 1975].

c) Debuggers that work in a general context without using a program specification, an

example of this being PHENARETE [Wertz, 1982].

Those debuggers that work in a limited context, have a high level description of the task

that the students are attempting stored internally. Adam and Laurent [1980 p. 78, 79] say

that there are two possible ways of describing the task. Either statically, using a set of

assertions, or dynamically having some general encoding of the algorithm. Ruth [1976]

uses a dynamic description called a program generating model, which is described

below. Adam and Laurent [1980] describe the program solution dynamically using

graphs; transformations of the graph are used to prove the equivalence of the student

program and the correct program. These transformations are similar to but more

powerful than those used by Ruth [1976]. Any irreducible mismatches between the high

level description and the student's code are taken to mean that there a bug in the code.

PROUST [Johnson, 1985] is an intention based PASCAL debugger. Johnson claims that

debugging requires knowledge of the intentions of the programmer. Currently ITSY

has no knowledge of the intentions of the programmer. This is because over 80% of the

Chapter IV Related Work 70

errors found in the pilot study (see chapter 5) required no knowledge of context in order to

be fixed. There are two reasons why such a large percentage of the errors required no

context information in order to be fixed. Firstly, a quarter of the errors were caused by the

environment. Secondly, the subjects used invalid Lisp forms such as:

((car ’(a b c)))

It is possible to give ITSY context knowledge however and this is discussed in chapter 13.

Programming knowledge in PROUST is frame based and is contained in problem

descriptions. Problem descriptions in PROUST consist of programming goals and sets

of data objects. Programming goals are the principal requirements that must be

satisfied and the sets of data objects are the data manipulated by the program. Data

objects can either be constant-valued or variable-valued. Uoal statements consist of a

name of a type of goal followed by arguments. The problem descriptions describe what the

programs must do but not how they are supposed to do it, these are described by plans.

PLANs [Waters, 1978] and the plans used in PROUST are similar but there is a subtle

difference. The plans used in PROUST are derived from a psychological theory of

programming plans being developed at Yale whereas PLANs are a program

representation optimised for its utility for automatic systems. The main goal of PLANs

is to represent a program completely, making as much information as possible explicit.

Plans are stereotypic methods for implementing goals. Plans are compared to the

students program to determine which fits best. Plans contain a template slot which

describe the form the PASCAL code should take. Plan templates consist of PASCAL

statements, subgoals and labels. This representation of is low-level and PASCAL

dependent. Johnson's reason for this is [Johnson, 1985 pp. 85]:

If concrete plan and program representations are used, then some high-level errors are
harder to identify, because the syntax gets in the way. If abstract representations are
used, some low-level errors are impossible to identify, because relevant evidence has
been abstracted away. Given the choice, a concrete representation must be used, since
PROUST must be able to identify as wide a range of bugs possible.

ITSY uses PLANs, these can be as concrete or as abstract as needed, so that both low and

high level errors can be spotted.

Chapter IV Related Work 71

PROUST parses a student's program into a tree. It then selects, from the problem

description, one goal at a time. The values of any data objects known at this point are

substituted into the goal description. PROUST then tries to match each of the goal's plans

in turn with the parse tree, using the plan's template slot. This is analysis by synthesis;

PROUST generates possible implementations and matches these against the student's.

If PROUST is unable to match a plan with the student's code then a bug is present.

PROUST tries to interpret these plan differences using bug rules. Each bug rule has a

test part which matches against the differences if the rule applies, and an action part

which explains the plan differences.

The debuggers which need a program specification use the specification as a static

description of the program, to try and spot any inconsistencies between this description

and programs written by students. The specification takes the form of assertions (given

by the student) in prepositional calculus. This, whilst bringing in additional

information, can lead to problems if the students give incorrect assertions, and also

requires that students learn an additional "language" (the program specification

language). MYCROFT [Goldstein, 1975] also uses the output of the program (i.e. the

pictures that the program drew), to gain extra information.

Debuggers like PHENARETE [Wertz, 1982] that do not work in a small domain or use

any sort of specification, look for a certain class of errors. These errors are typically

syntax errors, unreachable statements, endless recursion and non-terminating loops.

The errors that are spotted are not deep semantic or conceptual errors; finding such

errors requires knowledge about the actual task being attempted. Programs that will

run, but do not give the correct output fall into this latter category.

There are two distinct stages to debugging: analyzing the code and either fixing or

reporting the errors. These are discussed in turn below.

4.3.1 Analysing The Code

Most systems break up the analysis stage into several passes. The first pass involves

looking for syntactic and simple semantic errors (i.e. potential run-time errors

detectable syntactically such as 3 + 0, or calling an undefined function), Wertz [1982]

Chapter IV Related Work 72

calls these surface errors. Compilers for languages such as PASCAL, ALGOL, Lisp and

C are able to detect errors of this type.

A typical debugger takes one of three actions on spotting the error.

1. The system, like a compiler, just reports the error.

2. The system interacts with the user, suggesting a simple change in the code such as

substitution of a word, deletion of an argument or addition of brackets. The user usually

answers yes or no, depending on whether s/he agrees with the change.

3. The system makes simple changes to the code and then notifies the user eg.

PHENARETE [Wertz, 1982].

One problem with the PHENARETE philosophy is that it can give naive users the

impression that the system is more intelligent than it actually is.

The next stage in analysing involves producing a canonical form of the code. This can

then be compared with either a library of cliches [Brotsky, 1981; Hasemer, 1983] or a

library of plans [Rich, Shrobe, Waters, Sussman & Hewitt, 1978], or a general form of the

solution in the limited context debuggers. Another method of analysing the code

involves trying to generate the code from the high level description i.e. analysing by

synthesis [Johnson & Soloway, 1985].

Analysing the program into plans or cliches originated at the Massachusetts Institute of

Technology (M.I.T.). The canonical representation of code used was the language

independent 'plan diagram' representation of the code developed by [Rich, Shrobe,

Waters, Sussman & Hewitt, 1978]. This representation has been used and extended by

Eisenstadt & Laubsch [1980], Lutz [1984], Rich [1981], Shapiro [1981], Waters [1979,1982 &

1985] and Zelinka [1986].

The plan diagram represents code segments as boxes, each box giving a specification for

the code segment. Control flow and data flow are represented by hashed and solid lines

respectively. So for example, the LISP code:

Chapter IV Related Work 73

(cond ((< X y) x)
(t (+ X y))

would be represented as figure 4-1.

Figure 4-1 An Example of a P lan Diagram

X Y

JO IN

Chapter IV Related Work 74

The function + is shown as a box. The two arguments, x and y, are represented by the two

solid arcs connected to the top of this box. The output of the function is represented by the

solid arc coming out of the bottom of the box. The predicate < is represented by the box

containing the symbols <, T and F. The two possible paths for control flow, after the

predicate, are represented by the two hashed lines from the T and F sections of the box.

The lowest box represents a join. A join specification is a mirror image of a predicate

specification. Unlike the predicate specification, however, the join does not represent

any real computation. Joins are used to rejoin the two control-flow branches of a

predicate block.

Recursion is represented as a looping line to the outside of the box. Figure 4-2 represents

the (infinitely recursive) code:

(defun fib (n)
(* n (fib (- n 1))))

Chapter IV Related Work 75

Figure 4-2 Representation of Recursion in Plan Diagrams

N

Iterative loops are converted into their tail recursive counterparts, and temporal

decomposition [Waters, 1979] is then applied. Temporal decomposition is a technique for

abstracting iterative loops or tail recursive functions. Each operation in the loop becomes

a vector operation that acts on a vector of data objects. A vector of data objects is a vector

where each element contains the values of all the variables of the loop for a particular

iteration (Laubsch and Eisenstadt [1982] used temporal abstraction to analyse a subset of

recursive SOLO programs written by novices). The boxes in the plans can also be high

level plans. This allows plans to be as abstract as need be.

Chapter IV Related Work 76

The Recognizer [Zelinka, 1986] is a system that performs the program recognition by

parsing. Programs are converted into a PLAN like graph representation. The library of

structures to be recognised are translated into a graph grammar (currently performed by

hand) and the program is parsed using the grammar. The graph parser is an extension

of Brotsky's flow graph parser [Brotsky, 1984]. The extensions cope with some of the

features of PLANs. Other features of PLANs, which cannot be dealt with by these

extensions, have been transferred to attributes on the nodes and edges of the flow graph.

The first stage in translating programming code into plan diagram form is to translate

the code into a surface plan. A surface plan can be thought of as an abstraction of data

and control flow in a program, without abstracting data structures and operations. Once

the surface plan has been constructed programming cliches from the cliche library are

matched against chunks of the surface plan and more abstract plans are created. ITSY

translates student programs into surface plan form before finding any bugs.

Another method of analysing code is to transform the code into a graph and then

normalize the graph. Normalization transforms the graph into a standard form. An

example of a transformation used might be - if a variable is used for two different

purposes then a new variable is generated. This makes the matching process easier.

This technique is primarily used by debuggers that store a version of the answer to the

particular exercise attempted by the student eg. LAURA [Adam & Laurent, 1980].

Code may also be understood by means of meta or symbolic evaluation. PHENARETE

uses meta-evaluation to analyse the students' code. The main difference between

evaluation and meta-evaluation is that in meta-evaluation every possible branch of the

code is taken. PHENARETE meta-evaluates the code, until every branch has either

terminated, or has come to a repetition. This method is often combined with others, to

work on pieces of code that another method has failed to analyse.

4.3.2 Finding The Bugs

Once the code has been transformed into a suitable form, the next step is to find the bugs.

Bugs are found by looking for mismatches between a high level description of the student

code, and a high level description of the correct code.

Chapter IV Related Work 77

MYCROFT [Goldstein, 1975] and PUDSY [Lukey, 1980] used a specification as the high

level description of the correct code, and matched the output of the students' programs

against a specification. MYCROFT was able to find errors in LOGO programs which

drew shapes. The specification used in debugging described the relationships between

the components of the shapes drawn. The bug was then deemed to be in the section of code

that constructed the part of the drawing that conflicted with the specification. PUDSY also

used debugging clues such as re-assignments to variables before the old value was used.

Ruth [1976] used a program generating model to try and generate the student program.

The generator was a high level description of the correct program, and was only able to

generate the student's code if the code was correct. If it could not do so it then tried to

match on simple variations of the code. Variations might include code with the arms of

conditionals swapped, or the signs in algebraic expressions switched. Laurent's system

LAURA matched the normalized graph against the model answer. As in Ruth [1976] if it

was not possible to obtain a perfect match then the student graph was altered until either a

match was made or no more variations were left.

SNIFFER [Shapiro, 1981] uses a cliche finder, a time rover and sniffers to find bugs in

a program's execution history. Each sniffer contains information about a particular

type of bug. This information is represented by a set of rules. The program's execution

history is recorded by a time rover. This stores all the intermediate states of variables

and the effects of side effecting functions (enough information is stored so that the

program could be run backwards if required). The cliche finder identifies algorithms

by recognising patterns in a plan diagram representation of the code. The cliche finder

acts in the same way as the code analyser in the Programmers' Apprentice [Waters,

1985].

Each sniffer uses the cliche finder and the time rover. A sniffer will use the time rover

to obtain the value of a variable at different times during the evaluation. The recognition

of typical algorithms by the cliche finder gives the sniffers a context for identifying

errors, and raises the level at which SNIFFER can describe code.

ITSY will find bugs by trying to match sections of a plan-diagram-like description of the

code against error cliches.

Chapter IV Related Work 78

4.3.3 Finding and Fixing The Errors

One of the major problems when fixing a bug is that the edit may interfere with another

part of the program, so causing another bug. Goldstein [1975] specified a certain order in

which to fix bugs in programs that drew pictures so as to cause the least interference.

Some examples of the heuristic order rules are:

1) Fix the bugs in the properties of the picture parts before bugs in relation between the

picture parts,

2) Fix the bugs in the intrinsic properties of a picture part before the bugs in the extrinsic

properties,

3) Use the edit that has the maximally beneficial side effects. This is because several

errors can be caused by the same bug.

4) Use the edit that causes the minimum changes to the user’s code.

PUDSY [Lukey, 1980] tested each possible edit to make sure that the edit did not cause

another bug to appear in the program. This test consisted of comparing the amended

program with the program specification.

TALUS [Murray, 1986] is a lisp debugger able to detect and correct errors a t the

algorithmic, functional and implementation level. TALUS takes student program and

a reference program and tries to prove them equivalent using a theorem prover. TALUS

is a debugger that works in a limited context (see 4.2 a) and has eighteen task

descriptions stored in a task library. Each task description has the following

inform ation:

a) The task assignment - instructions to the student,

b) Algorithms - identifiers naming acceptable algorithms for the solution of the task,

c) Algorithm Representations - frame representations of the above algorithms.

Chapter IV Related Work 79

d) Reference Functions - functions that correctly implement the algorithm they are

associated with.

Debugging takes place in four stages: program simplification, algorithm recognition,

bug detection and bug correction.

Program Simplification

TALUS uses a theorem prover to prove various conjectures involving Lisp code. Because

the theorem prover can only deal with a subset of Lisp TALUS uses a sequence of program

simplification transforms to reduce students solutions. These transforms eliminate

CONDs, PROGs, LAMBDAS and mapping functions.

Algorithm Recognition

The simplified code is parsed into frames. These frames are matched against the frame

representations of the various algorithms stored in the task structure. A heuristic

evaluation function computes how closely the frame slots match up. The algorithm with

the highest score is chosen. This stage also pairs reference and student functions.

Bug Detection

The equivalence of the reference and student program forms a conjecture. If the

conjecture cannot be proved then the student's program is considered buggy.

Conjectures are first checked by a conjecture disprover. This contains a pre-stored set of

counter-examples. If a conjecture passes all the examples (which are in fact sets of

bindings of formal variables for each function in a stored task algorithm) then it is

matched against a reference function. Functions are represented as binaiy trees, the

nonterminal nodes representing conditional tests. The collection of terms that must be

true or false for a terminal node to be reached are the terms governing the node. Each set

of terms governing a terminal node is a case. Each case of the student and reference

code is compared by symbolic evaluation. A theorem prover is used to check the

equivalence of symbolic values. If the student and reference values cannot be proved

equivalent the student's program is considered buggy, the bug occuring in the case where

Chapter IV Related Work 80

the proof of equivalence breaks down. This means buggy implementations are always

detected but some false alarms are generated.

Bug Correction

Before comparing student and reference code, the reference code is normalised. This

means the variable and function names and the order of formal parameters are changed

to those used by the student. Once the bug has been detected TALUS inserts the minimum

amount of normalised reference code to restore the proof of equivalence.

L im its

Because TALUS uses a theorem prover which can only deal with a subset of Lisp, student

programs are first simplified. There are some constructs which TALUS cannot simplify

however:

- Free variables in function definitions

- Side effects in conditional tests

- Side effects in the actual arguments of lambda expressions.

- Destructive functions such as NCONC. TALUS replaces NCONC with APPEND when

the arguments are fresh list structures (that is lists that have been CONSed up within the

program). When the arguments are not fresh list structures TALUS has to rely on

heuristics.

In the debuggers there seems to be a trade-off between generality and complexity. In

order to find deep semantic and teleological errors context knowledge is needed. In

areas such as programming we cannot expect novices to provide this knowledge so it

must be built into the system. Builtin context knowledge limits the generality of a

debugger as it will only be able to debug those programs the builtin context knowledge

covers.

5. CATEGORISING ERRORS IN A TRADITIONAL LISP ENVIRONMENT

5.1 Motivation

Before undertaking the construction of an intelligent debugging environment for Lisp

novices, it is critical to find out exactly what kinds of errors they make. In particular, I

was interested in the errors made by professional programmers (i.e programmers who

are currently employed to program in a 'conventional' language and have had a t least

two years experience doing so). I wanted to try to categorise the errors they made when

using a fairly standard Lisp environment. The study described in this chapter therefore

had two main objectives:

1. To find out exactly what problems computer programmers have learning Lisp, and so

determine what hand-holding aids they need. This information helped determine the

overall shape of the environment that ITSY provides.

2. To build up a bug taxonomy to be used by ITSY in recognising students' bugs. This

taxonomy was built up by including any error cliches that could be found from the data

produced.

5.2 Methods

Nine COBOL programmers were used as subjects. They each sat at a terminal, for two

hours a week, over a ten week period, reading from Winston and Horn's book "Lisp"

(first edition) and attempting the exercises. The subjects were also able to take the book

home to study in private. While at the terminal the subjects were able to phone me for

help. I would immediately hang up the phone, and then advise the subject via a

"keyboard dialogue" conducted at the terminal. The subjects were placed, when possible,

in separate offices. I was always in a separate office. This prevented any

communication between myself and the subjects, other than via the terminal. These

conditions simulated, as closely as possible, the conditions in which the students would

be working, in an industrial environment using ITSY.

Chapter V First Experiment 82

The study was carried out on a DEC-20 using MACLISP. The subjects were given

information sheets, describing how to log on and how to use EMACS (see appendix A).

EMACS is a screen editor that "knows" about LISP, carrying out automatic bracket

balancing and automatic code indenting. The subjects were also given a short tutorial

about the editor. To simplify the learning of EMACS, subjects were given an

initiahsation file. This gave the subjects the basic cursor moving operations on single

keys; these were kept simple so as not to overload the subjects with too many new editor

commands. The basic operations given were: to move up and down a line; forward and

backward a character; and forward and backward a word. After a few weeks some of the

more advanced subjects were introduced to the "zap" key. This key loads a single LISP

function from the editor into the LISP environment. All of the subjects' interactions were

recorded using the LISP "dribble" system. This sends all of the input and output a t the

LISP top level to a specified file (see appendix C). A list of the number of attendances and

the number of lines typed at top level (a measure of the amount of work carried out), is

included in section 5.4.

5.3 Method Of Analysis

The errors were classified according to the cause of the error, rather than the error

message given when it arose (the symptom of the error). The error messages that

MACLISP gives are not a reliable indicator of the type of error made. Consider the

message ";UNDEFINED FUNCTION". There are several different causes for this

"symptom"

1. (CAR (A B O) instead of (CAR '(A B C)): missing out a quote mark.

2. (DEFUN FOG (X) (CAR (X)) instead of (DEFUN FOG (X) (CAR X)): not fully

understanding what brackets mean.

3. ((APPEND '(A B C) (D E F))) instead of (APPEND ' (AB C) '(D E F)). Not knowing

how to call a function.

4. (APEND '(A B C) (D E F)) this is a misspelling.

5. (CGND ((NULL X) NIL)) (T.... The subject does not understand the syntax of the cond

Chapter V First Experiment 83

form .

6. Forgetting to load a function.

7. Not realising that a function has not loaded from a file because the brackets do not

balance.

The dribble files were first analysed to obtain a comprehensive list of the causes of the

errors, from which categories were produced. The data was re-analysed using these

categories. Three policies were adhered to in counting the errors:

1. If a subject typed (LIST ABC) followed, after the corresponding error message, by

(LIST 'A 'B 'O as his/her second attempt, then this was counted as only one (quoting)

error, not three. However if a subject typed (LIST A B C), then (LIST 'A B C), then (LIST

'A 'B C) and then (LIST 'A B 'C), this was counted as three errors. The number of errors

attributed to any particular section of code depended on how the subject corrected the code.

2. Subjects sometimes corrected the wrong part of an incorrect function. They would then

re-load the function, leaving the faulty part of the function intact. Each re-load was

counted as a separate error.

3.Non-lists given as the second argument to either of the functions CONS and APPEND

were also counted as errors. This does not produce an error, but a dotted pair^. Dotted

pairs are not covered in Winston and Horn's book until chapter nine. The subjects

should only be giving list arguments to these functions. The definitions of CONS and

APPEND given by Winston and Horn are:

"CONS takes a list and inserts a new first element ...(CONS <new first element> <some

list>)" (pages 24 and 25)

"APPEND strings together the elements of all lists supplied as arguments " (page 24)

In LISP there are two w ays of printing lists (or con s cells). O ne w ay of representing lists is by using
dotted notation. In dotted notation the result of evaluating (CONS A (CONS B (CONS C NIL))) or (LIST A
B C) would be (A . (B. (C . NIL))). The LISP print functions usually represents lists without the dots, so
the above is written a s (A B C). However there are certain lists that cannot be written in the normal way;
an exam ple of this is (A . (B . C)). When this happens the dot is printed. For exam ple, (A . (B . C)) is
written a s (A B . C), A pair such a s (A . B) is called a dotted pair.

Chapter V First Experiment 84

5.4 Results

A great proportion of the errors that subjects made fell into a relatively small number of

groups. Ninety-one percent of the total number of errors fell into nineteen categories.

The following table gives the number of sessions attended, the number of lines input, the

total number of errors, and the percentage of errors compared to the number of input lines

for each subject.

Subject Number of Number of Number of Percentage of

Sessions Lines Input Errors Errors per line

Attended

K 249 31 12

10 1184 150 13

968 187 19

B 227 4L 18

D 443 56 13

E 284 36 13

J2 306 26

B2 11 761 73 10

410 45 11

Total 61 4832 645 13.3

Chapter V First Experiment 85

The number of sessions attended only gives a rough indication of the time a subject spent

in the study. This is due to two reasons. Firstly, some sessions were shorter than two

hours because the subjects had to wait to log onto the computer. Secondly subjects

sometimes spent longer than two hours at sessions.

The types of errors that the subjects made can be divided into three sections: the errors

that were caused by the environment; algorithmic errors; and the errors caused by the

language.

All of the categories containing more than 1.5% of all the errors are presented here.

Some of the notable sub-categories and examples have also been given. In some cases a

simple cure is proposed, in others the "cure" is to include a cliche, in the error cliche

library, to match against this type of error.

5.4.1 Problems Caused By The Environment

1. Problems Caused by Written Materials

(a) Writing / instead of //. In MACLISP the / character is special, and needs the escape

character (/) before it. On page 59 of "Lisp", Winston and Horn write: "Binary trees can

be used to represent arithmetic expressions, as for example:

(*(+AB)(-C(/DE)))

One can write a compiler, or program for translating such an arithmetic expression into

the machine language of some computer, using LISP ..."

The fact that the slash character is special is only mentioned in the appendix.

Ob) When the subjects finished a session, I wanted them to type (stop). This was a LISP

function which I had written, that closed the dribble file, then exited from LISP. I

explained this on the hand out sheet (see appendix A) with the sentence: "Once you have

finished type "(stop)" to leave the LISP top level." Some of the subjects typed "(stop)".

Chapter V First Experiment 86

(c) Winston and Horn give examples of functions defined at the LISP top level. For

example, page 34 of "Lisp" reads:

(DEFUN F-TO-C (TEMP)

(QUOTIENT (DIFFERENCE TEMP 32) 1.8))

F-TO-C

because the function definition is written in capitals, it is not immediately obvious that

"F-TO-C" was returned by LISP interpreter. Two subjects wrote the names of the

functions after each definition in the file.

Percentage of the total number of errors: 3

Number of subjects affected: 5

Cure:

Change the text. In case (a) the fact that the slash character is special should be

mentioned. In cases (b) and (c) different fonts could be used.

2. The Computing Environment

(a) Control-s freezes the vt-100 terminal. Control-q unfreezes the terminal. There is also

a "noscroll" button that toggles the freezing and unfreezing of the terminals. During the

course of the study this caused all of the subjects, at one time or another, to get stuck.

(b) In MACLISP there is an autoload feature, that allows a function not present in the

environment to be loaded in automatically from a file, the first time it is called. This

caused problems when the function that the subject was working on was not in the

environment, and the function name was the same as another in a different

(autoloadable) LISP file. This happened when either the subject had forgotten to load the

function, or the function contained unbalanced brackets and was not loaded. The

subjects did not realise that the function had been automatically loaded, and thought that

their (usually incorrect) attempts were correct.

Chapter V First Experiment 87

(c) Four of the subjects tried to use control-h and backspace as a rubout key. This is what

they use in their habitual working environment.

Percentage of the total number of errors: 9

Number of subjects affected: 9

Cure:

Provide a protective environment for the students, shielding them from the

"harmful" aspects of the LISP environment. The environment that ITSY

provides has no autoload feature. Keys that students do not need have been

disabled.

5.4.2 Algorithmic Errors

These errors are only detectable if the problem that the student is attempting is known. A

"cure" is only possible if a version of the solution is stored.

1. Using the wrong combination of CARs and CDRs to pick out an element of a list.

Percentage of the total number of errors: 6

Number of subjects affected: 7

2. Using the wrong function. About seventy percent of the errors in this category were

due to the subjects picking the wrong function out of CONS, LIST and APPEND.

Percentage of the total number of errors: 3

Number of subjects affected: 5

3. Errors in recursion. There were two main types of recursive errors found in the

study:

Chapter V First Experiment 88

(a) Not altering the "terminating argument" in the recursive call. By "terminating

argument", I mean the argument that is tested in the exit part of the recursive function.

For example, one of the subjects wrote the following function:

(defun s2 (1)
(cond ((null 1) nil)

((atom 1) 1)
(t (s2 (cons (car 1) (cdr 1))))))

the argument 1 (the "terminating argument") is passed unaltered in the recursive call.

(b) Missing out the recursive call. Two of the subjects wrote functions that missed out the

recursive call. One of the functions that a subject wrote was:

(defun uparam (i listl list2)
(cond ((equal i (length listl)) list2)

((not (member (car listl) list2))
(set 'list2 (cons (car listl) list2)))
(t (uparam (addl i) (rotate-1 listl) list2))))

The function should rotate the list listl, adding the head of the list to list2, if it is not

already a member. The second clause should be

((not (member (car listl) list2))
(uparam (addl i) (rotate-1 listl) (cons (car listl) list2)))

The subject asked for help and said that he could not understand why the function "stops

after inserting the first non-matching atom".

Percentage of the total number of errors: 3

Number of subjects affected: 4

4. Not realising that solution is incorrect. There are two main reasons for this.

Chapter V First Experiment 89

(a) The subjects did not always try their solutions on the right input. For example, one

subject wrote:

(defun mobile-p (m)
(cond ((atom m) m)

((not (equal (mobile (caddr m))
(mobile (cadr m)))) nil)

(t (plus (car m) (mobile (cadr m))
(mobile (caddr m))))))

as a solution to problem 4-10 in "Lisp". This function should return a value if the input

is a list of the right form, otherwise it should return NIL. The function worked with all of

the inputs that the subject tried. However if both (mobile (caddr m)) and (mobile (cadr

m)) are NIL, then the t clause is executed, and the function plus receives two non­

numeric arguments, giving an error.

(b) The subjects had missed the generalisation of an example. One subject defined the

following function to rotate a list right:

(defun rotate-r (exp-1)
(append (cdr (cdr (exp-1)) (list (car exp-1) (car (cdr exp-1)))))

this function only works on lists of three elements. The subject probably did this because

the two examples given for the previous exercise, rotate left, are:

(ROTATE-L ' (A B C))

(B C A)

(ROTATE-L (ROTATE-L ' (A B C)))

(C A B)

Percentage of the total number of errors: 3

Number of subjects affected: 2

Chapter V First Experiment 90

5. Other algorithmic errors. One of the simpler algorithmic errors found in the study

was:

(defun merge (x y)
(cond ((null x) y)

((lessp (car x) (car y)) (merge (cdr x) y))
(t (cons (car x) (merge (cdr x) y)))))

the function should merge two sorted lists of numbers into one ascending list. The code

has several algorithmic errors. One algorithmic error in code is there is no clause to

deal with the case when the heads of both lists are equal. A correct version of the code is:

(defun merge (x y)
(cond ((null x) y)

((lessp (car x) (car y))
(cons (car x) (merge (cdr x) y)))
((equal (car x) (car y))
(cons (car x) (merge (cdr x) (cdr y))))

(t (cons (car y) (merge (cdr y) x)))))

Percentage of the total number of errors: 4

Number of subjects affected: 4

5.4.3 Problems With The Language

1. Simple errors or slip ups. The three main sub-categories are:

(a) Spelling errors.

(b) Simple bracketing errors. Only the "obviously" simple bracketing errors were

counted as such. If there was any doubt then the mistake was taken to be conceptual. For

example, the following code, written by one of the subjects:

Chapter V First Experiment 91

(cond ((and (null Istl) (null lst2))
((and (null Istl) (not(null lst2)))
((and (not (null Istl) (null lst2)))

(There should be an extra closing bracket after the (null Istl) in the third clause.) counted

as a simple bracketing error.

(c) Forgetting to load a function from a file.

Percentage of the total number of errors: 12

Number of subjects affected: 9

Cure:

In order to cure (b) ITSY has an entry in the error cliche library. Cures to (a) and

(c) are currently not implemented, (a) could be cured with a spelling checker, (c)

could be cured by checking the last file edited for the missing function.

2. Incorrectly putting a pair of brackets around an atom. Sometimes it is correct to put

brackets around atom, as in (defun fbo (x) ... and in (cond (a) (t nil ...

Percentage of the total number of errors: 3

Number of subjects affected: 6

Cure:

There is an entry in the cliche library to match against this type of error.

3. Stuck at top-level because there are not enough closing brackets. MACLISP on the

DEC-20 responds once an s-expression followed by <RETURN> has been typed in. If the

user types <RETURN> before closing all the brackets, the interpreter assumes that the

rest of the expression is to continue on the next line. Eight of the subjects thought that they

Chapter V First Experiment 92

had typed enough closing brackets, and when they hit <RETURN> they thought that the

machine was stuck. Six of the subjects tried to re-enter the s-expression, on the next line,

and three of the subjects had to dial for help.

Percentage of the total number of errors: 2

Number of subjects affected: 8

Cure:

The top level of ITSY includes the following features:

(a) A bracket balancing feature.

(b) The evaluation of forms as soon as the last closing bracket is typed, instead of

waiting for the return key to be pressed.

(c) The use of a prompt

4. Incorrectly putting an extra set of brackets around a function call. This includes

attempts to "listify" objects, for example writing ((fbo x)) instead of (list (foo x)).

Sometimes it is correct to put two pairs of brackets around a function call, as in (cond

((null 1)) ...

Percentage of the total number of errors: 3

Number of subjects affected: 2

Cure:

Included in the cliche library

5. Not putting brackets around a function call.

Chapter V First Experiment 93

Percentage of the total number of errors: 5

Number of subjects affected: 6

Cure:

Included in the cliche library

Errors in category 4 and 5 do not include errors that occurred in a COND form, these have

been separated out and are given in category 9.

6. Wrong number of arguments given to a function. For example:

(addl 3 4)

Percentage of the total number of errors: 2

Number of subjects affected: 5

Cure:

Included in the cliche library

7. Wrong number of arguments given to a function, because the arguments are in the

wrong form. This category has been separated from the one above because in eighty

percent of cases, the arguments were present but in the wrong form. Typical examples of

this type of error are:

(f-to-c '(10)) needs one numeric argument

(roots '(2 4 8)) needs three numeric arguments

(CONS 'a 'b c d e) needs an element and a list.

Chapter V First Experiment 94

Percentage of the total number of errors: 6

Number of subjects affected: 6

Cure:

Included in the cliche library

8. Arguments of the wrong type given to a function. Non-list arguments given to CONS

and APPEND have been counted as this type of error, as dotted pairs are not introduced in

"Lisp" until chapter nine. Ninety-five percent of the errors in this category involved

non-list arguments given to one of CONS, APPEND, CAR and CDR.

Percentage of the total number of errors: 9

Number of subjects affected: 7

Cure:

Included in the cliche library

9. Errors in a COND form. All errors that occurred in a COND form have been separated

out. Ninety percent of these errors were due to:

(a) Not putting a pair of brackets around a function call,

(b) Putting an extra pair of brackets around a function call,

(c) Putting a pair of brackets around an atom.

Subjects made errors because of the different shapes that a COND form produces. For

example, if the first (test) clause in a COND form is a function then the clause list begins

with two left brackets. The subjects' experience of double brackets at this stage of their

study suggests that they cause errors, and they may therefore leave out one of them.

Chapter V First Experiment 95

Percentage of the total number of errors: 7

Number of subjects affected: 5

Cure:

Included in the cliche library

10. Quoting an object that shouldn't be quoted.

Percentage of the total number of errors: 2

Number of subjects affected: 3

Cure:

Included in the cliche library

11. Not quoting an object that should be quoted.

Percentage of the total number of errors: 7

Number of subjects affected: 9

Cure:

Included in the cliche library

12. Function not loaded because not enough closing brackets in the file.

Percentage of the total number of errors: 4

Number of subjects affected: 2

Chapter V First Experiment 96

Cure;

ITSY warns students if they try to save a file with unbalanced parentheses.

5.5 Error Messages

The error messages caused problems for the subjects. Whether or not the messages were

understood depended on the context of the error. Most of the subjects had no problem

understanding error messages concerned with top level errors, but could not understand

the same message when the error occurred inside a function. Error messages concerned

with the loading of files gave the most problems. The messages were so

incomprehensible that none of the subjects even realised that an error had occurred.

Below are some examples of error messages and typical subjects' reactions to them.

1. "function received 1 arg wanted 3" This message was by far the easiest to understand

causing few problems.

2. "a undefined function object" The subjects' abilities to understand this message

depended on how the "a" had been derived. If the subject had typed at top level (f i r s t (a

b c)), and received this message, then usually the subject would correct the error

immediately. If the bug was embedded in a function, such as this first attempt at the

function first:

(defun first (a)
(car (a)))

then there was less chance that the subject would understand the message. If the "a" was

the result of some evaluation as in:

(defun (listl)
 (cdr ((reverse listl)) (car ((...)))

(listl is bound to (c b a)) then there was little chance, that the subject would know what the

message meant.

Chapter V First Experiment 97

3. Some of the messages such as:

(read-eof #file-in I RS<R.Lispclass.2> I)

and

pdl overflow - red pdl space exceeded

were not understood at all, by any of the subjects. The first message means that the file

has not been loaded because there is a bracket missing (an 'end of file' character was

read in the middle of an s-expression). The second message means that the stack has

overflowed.

The first error message led to numerous problems. None of the subjects realised that an

error had occurred. All errors that were reported after this were attributed to the code that

had just been written rather than to the (still current) previous version.

The subjects were reluctant to use even the simplest environmental facilities available.

One of the subjects never ever used the editor when writing definitions. Only four

subjects used the facility which enables the user to examine function definitions in the

environment. None of the subjects used the editor's automatic indenter.

5.6 Conclusions From The Study

Some of the errors produced by the subjects were due to the book used. That does not mean

that there any great deficiencies in the book, just that some of the errors would not have

been made, if another book had been used. The best example of this was the

bewilderment of some the subjects when they encountered error messages about dotted

pairs. If another book had been used the subjects might have known about dotted pairs

before encountering the messages. In "Lisp: A Gentle Introduction to Symbolic

Computation" [Touretzky, 1984], the internal structure of lists and dotted pairs are

covered before any on-line exercises are given. To what extent the error taxonomy is

tied to the book used by the subjects can only be found out by repeating the study with

another book e.g. [Hasemer, 1984], [Touretzky, 1984].

Chapter V First Experiment 98

All of the subjects were "clobbered" by the computing environment, at one time or

another. This accounted for nearly one tenth of all the errors. Any system on which

users have to learn should always give the student a "way out". It should always be

obvious how to get back to the top level of the system. The student should always know

what state the system is in, for example if it is waiting for input, if the stepper is on, if it is

in a debugging mode etc. Students should be shielded from parts of the language and the

various tools available until they are ready for them. ITSY will have to protect students

from the environment if they are to use the system unaided.

Nearly one fifth of the errors were algorithmic in nature. To match against every

instance of this type of error, the exercise being attempted needs to be known. Currently

ITSY has no knowledge of the exercise being attempted. The addition of context

knowledge to ITSY is discussed in chapter 13.

For some of the error categories, the code producing the error follows a general "shape".

The error cliches are derived directly from these general "shapes". This is better shown

with a couple of examples:

1. One of the error cliches that has been derived from Lisp error 4; putting too many

brackets around a function call:

((<function> <any>))

This will match against any embedded list, where <function> is any defined function.

2. One of the error cliches that has been derived from Lisp error 7; wrong number of

arguments given to a function because the arguments are in the wrong form:

(<function> <argument list>)

<function> is any defined function and <argument list> is (incorrectly) a list where

each element is one of the arguments to <function>. This error cliche would match

against code such as:

Chapter V First Experiment 99

(+ ’ (1 2 3))

The results of this study were used in the design of ITSY. Implementation details are

given in the next part of the thesis and the results of an evaluation study are given in the

third part of the thesis.

This section describes, in detail, how ITSY has been implemented. Figure 2-1 from

chapter 2 is reproduced below. The arrows in figure 2-1 show dataflow.

The enhanced Lisp and Editor environments and the Coach are described in chapter 6.

The Code Analyser and the Lisp Object Hierarchy are described in chapter 7. The Error

Cliche Finder and the Error Cliches are described in chapter 8. The Code Highlighter

and the Tutorial Frames Presentation Package are described in chapter 9. The Student

Model is described in chapter 10.

li

I
til

i l l

I

I

l i i l

e l

|s ||
wI5;3

l i

g

III
WWW

llÜ o
o o

i t

- M
(U

V. F i
Q c

s
Æ A >^ .23
W W W

H W W Ph

6. THE ENVIRONMENT

In this chapter we discuss the implementation details of the overall environment.

ITSY's environment was designed using two basic guidelines:

a) To fulfil some of the principles outlined by O'Shea [Du Boulay, O'Shea & Monk, 1981].

That is to make the tools functionally, logically and syntactically simple.

b) To prevent the errors caused by the environment in the pilot study (chapter five).

6.1 Overall Environment

The overall environment has three different parts or panes. The three different panes

are:

a) The Editor pane. This contains a modified Emacs [Stallman, 1981] style editor.

b) The Lisp pane. This contains a modified Lisp toplevel window.

c) The status pane. This gives the student information about the current state of ITSY.

The number and size of the panes depends on which configuration the environment is

in. There are three different configurations.

a) starting configuration - in this configuration the environment has two panes. A Lisp

pane and a status pane.

b) large editor configuration - in this configuration the environment has three panes.

The editor pane occupies the top 75% of the screen, the status pane occupies the bottom line

and the lisp pane occupies the rest of the screen.

c) medium editor configuration - this configuration also has three panes. The editor pane

occupies 50% of the screen, the status pane occupies the bottom line, and the Lisp pane

Chapter VI The Environment 101

occupies the rest of the screen (see figure 6-1).

It is possible to move between the lisp and editor panes by clicking on them using the left

mouse button. Using the middle or right button brings up a menu. There are separate

menus for the editor and lisp toplevel.

The following operations have been installed on both the editor and lisp menus.

a) Loading files

b) Moving to the large editor configuration

c) Moving to medium editor configuration

The overall environment changes as the student progresses. This is controlled by the

coaching module (see 6.5).

6.2 Lisp Environment

The Lisp toplevel environment has been enhanced - this includes the addition of an

Emacs [Stallman, 1981] style bracket balancer.

The following operations have been installed on the Lisp menu only:

a) Selecting the Editor Pane - this provides an alternative method of selecting the editor

pane.

b) Adding Some Comments - sometimes the students require a short piece of advice, or I

want to note something that has happened. If this is selected everything that is typed is

recorded verbatim, until "end" is typed.

c) Function Documentation - the student can obtain documentation on Common Lisp

functions. The Symbolics has an on-line document examination facility. ITSY uses this

facility to present function documentation to the student. Currently not all Common Lisp

Chapter VI The Environment 102

Figure 6-1

I
V >

“I
I !I

I i

.1:

Chapter VI The Environment 103

functions are documented.

d) The Prompt - the prompt is provided "for free" by the symbolics environment.

6.3 Editor Environment

Two distinct changes have been made to the editor.

The majority of Emacs commands are carried out by using control and meta keys. This

led to subjects getting stuck when they accidentally hit one of these keys. Any keys that

the students do not need have been disabled. The return key has been set to indent the

next line as this emphasises the structure of lisp to the student.

The essential non-movement commands have been installed on the editor menu. These

are:

a) Selecting a buffer

b) Saving a buffer

c) Loading any changed functions from a buffer.

There is also a menu choice to select the lisp pane.

6.4 The Status lin e

The status line performs two distinct jobs. Firstly, it indicates which state ITSY is in.

Secondly, it gives the student information about functions applied at toplevel.

The different states that are indicated are:

a) Waiting for input.

b) Evaluating current s-expression.

Chapter VI The Environment 104

c) Currently inside the editor.

d) Loading a file into the lisp environment

e) Trying to find the source of an error

f) Found the source of an error

g) Trying to find the code in the buffer to highlight

h) Settingup the tutorial

Each time the student types the name of a function, the names of the parameters (given in

the parameter list) of the function are displayed in the status pane. This tells the student

two things. Firstly it says how many arguments the function takes. Secondly, it gives

the student an indication of how each argument will be used and what type it should be. If

no information appears the student knows that the function is undefined.

6.5 Coaching

ITSY has a coaching facility. This is used in a limited way at present. Coaching is

carried out using coaching events. A coaching event has four parts:

a) a name,

b) the name of a coaching trigger,

c) when the trigger is to lead to coaching,

d) the name of a function that will carry out the coaching.

At present a coaching trigger can be the name of either a plan diagram segment or an

error cliche. Whenever a coach trigger occurs a coach demon checks when this trigger

should lead to coaching. At present, coaching can take place either every time or the

Chapter VI The Environment 105

first time a trigger occurs.

Currently the only coaching event is the editor event. The trigger is the creation of a plan

diagram for a user defined function. This trigger leads to coaching the first time it

occurs. The coaching function first changes the environment from the starting

configuration to the large editor configuration, then presents a short tutorial on the

editor.

The first time a student defines a function the environment changes from having just the

Lisp toplevel and status line to incorporating an editor.

7. TRANSFORMING THE CODE INTO PLAN DIAGRAM FORM

In this chapter we discuss how ITSY transforms the student's code into ITSYs surface

plan form. At the instant when this transformation takes place, the student has written a

piece of code, usually intended to test a user-defined function, directly into Lisp toplevel.

Whilst evaluating this code the interpreter signals an error, and ITSY attempts to

discover the cause of this error. In order to do so, ITSY transforms the student's code into

surface plans (here implemented as objects) and compares the plans with its library of

error cliches.

7.1 The End Product - Internal Representation of the Code

In the Programmer's Apprentice [Waters, 1985] code is first translated into a surface

plan. A surface plan can be thought of as an abstraction of data and control flow in a

program, without abstracting data structures and operations. Once the surface plan has

been constructed programming cliches from the cliche library are matched against

chunks of the surface plan to form more abstract plans. ITSY translates student

programs into a surface plan form then tries to match Error Cliches from the Cliche

library against segments of the surface plan.

Rich [1981, p. 65] describes the translation process as follows:

In order to translate between a given programming language and surface plans, the
primitives of the programming language are divided into two categories: connectives
such as PROG, COND, SETQ, GO and RETURN in Lisp, which are concerned solely
with implementing data and control flow; and the objects, relations and actions of the
language, such as numbers, dotted pairs, arithmetic relations, CAR, CDR and CONS.

The differences between surface plan representation used in the Programmers'

Apprentice and the internal representation used in ITSY are quite minor. In surface

plan representation segments are represented in terms of lists. The control and data

flow links are represented explicitly stating which segments are in the connected. In

ITSYs internal representation segments are represented as objects. The control and

data flow links are represented implicitly by setting a control or dataflow slot of an object

to another object. In surface plan representation segments have a type. This type

determines how the segment interacts with control flow. Splits in the control flow are

Chapter VII Transforming the Code 107

achieved by setting the type of a segment to 'split'. In ITSYs internal representation

there is only one type of object that can split the data flow - the pred. Pred objects have a

test slot. The test slot holds the predicate that will split the control flow.

7.1.1 Advantages of Using Plan Diagram Representation

The main reason for using a plan diagram form as the internal representation is the

dataflow abstraction achieved. Abstracting the raw Lisp code simplifies the error cliche

matcher. One of the simplifications achieved is that the error cliche matcher does not

have to worry about scoping issues. In the following function:

(defun example ()
(let ((a 1) (b 2))
(let ((a '(1 2 3)) (b '(4 5 6)))

(append a b))
(append a b)))

The error cliche Wrong Type Argument Given to a Function Call should match against

the second (APPEND A B) form and not the first. If the error cliche matcher used raw

Lisp code then it would have to take the scope of LETs into account. Because the plan

diagram representation abstracts dataflow the error cliche matcher does not have to

worry about these type of scoping issues.

One of the problems when looking for bugs in novice Lisp programs is the level of

abstraction to use. If the level of abstraction is too high then low level errors will not be

caught because abstracting the code removes low level features. If the level of abstraction

is too low then the debugger will have problems if the students' solutions are too varied.

[Johnson, 1985] suggests the use of multiple systems as a cure for this. The power of

PLAN formalism is the fact that PLANs can be as abstract or as concrete as needed. For

example, consider the following code:

(prog ((x input-list) (count 0))
IP

(cond ((null x) (return count))
(t (setq X (cons (car x) (cdr x))) (go ’Ip))))

Chapter VII Transforming the Code 108

There are two errors in the above code, one low level the other high level. The low level

error is that LP the argument to GO should not be quoted. The high level error is that the

list X will never be NIL and the loop will not terminate. Once the code has been analysed

into surface plan form the relatively low level error is easily found. Temporal

abstraction [Waters, 1978] could then be applied. This abstracts out various parts of

looping constructs. Once temporal abstraction has been carried out the high level looping

error is easily detected. Note that once temporal abstraction has been carried out it would

not be possible to detect the quoting error.

7.12 Representation of Lisp Objects

Different types of Lisp objects are represented in ITSY by different classes. The classes

form a hierarchy: at the top of the tree there is the most general lisp object; at the bottom

there are objects such as individual functions and constants. Figure 7.1 shows part of the

complete tree of classes. The lightly filled in boxes show the parts where the analyser is

partially implemented. The heavily filled in boxes show the parts where only the class

exists ie. the analyser is not implemented.

Chapter VII Transforming the Code 109

!
3I
I
a

4>

Ho

Chapter VII Transforming the Code 110

I
i
I

\C /

Î
§•

Chapter VII Transforming the Code 111

1
8f
I
O

iH

N

I
rwi

Chapter VII Transforming the Code 112

Each object contains the following slots:

1. Name - holds the name of the object

2. Control-in - this is the controlflow input port.

3. Control-out - this is the controlflow output port.

4. Input - this is the dataflow input port.

5. Output - this is the dataflow input port.

6. Expectations - points to an entry in a hash table. This entry contains a prototypical

object. This holds information such as the expected number and type of arguments and

the type of output.

7. Code - this slot contains the code represented by the object. This is needed so that ITSY

can give the tutorial in terms of the student’s own code.

8. Code function name - the function, if any, the code occurs in. This is used by ITSYs

highlighting module.

Just below the top of the tree are symbols, numbers, functions, and bind local vars. The

first three denote the obvious types of objects. Bind local vars refers to objects that

represent any Lisp function able to locally bind variables, such as LET or DO. Below the

functions are the connectives (Conn in figure 7-la) and non-connectives (Non-Conn

in figure 7-1 a). The connectives of a language are the primitives that implement control

and dataflow (they are called connectives because they connect statements of the

language together). In Lisp functions such as SETQ, COND and DO are connectives.

7.1.3 Data and Control Flow: Connectives

There are no variables as such in plan diagrams. Variables are replaced by a pointer to

their value. SETQs change the position of the pointer. This removes variations due to

Chapter VII Transforming the Code 113

using variables to store temporary values. The two segments of code:

(defun one (x y z)
(append (list (+ x y)) z))

(defun two (x y z)
(setq X (list (+ x y)))
(setq z (append x z))
z)

would be represented as figure 7-2. Only the last s-expression in a function is represented

in the surface plan representation. The other s-expressions in a function exist only for

side effect purposes. The representation of function TWO is in fact the representation of

the variable Z. The two previous s-expressions in TWO are there to side effect the values

of the variables X and Z. Notice that the effect of SETQs (controlling dataflow) is

abstracted away.

Chapter VII Transforming the Code 114

Figure 7-2

List

List

Append

Append

One

Two

Chapter VII Transforming the Code 115

Below the connectives in figure 7-la are forks, function definitions, blocks and loops.

Forks

Forks include the constructs concerned with branching control flow, such as COND and

OR. These are changed into pred andjom objects. Pred objects have three parts: a test,

a true output port and a false output port. The test holds the predicate of the fork. Note that

the value of a test slot can be any object, even if it represents a non-predicate function. In

the representation of the following code:

(or (> X y) (print "X is greater") x)

two pred objects would be created. The first pred object's test slot would be connected to a >

object and the second pred object’s test slot would be connected to a PRINT object. The

true output port holds the control flow path followed if the test is true. Similarly, the

false output port holds the control flow path followed if the test is false. So, for example,

the following code:

(cond ((> X y) (+ x y))
((= X y) (+ X 1)))

would be represented as figure 7-3.

Notice there is no COND object in this diagram. Each test part of a clause has been

replaced by a pred object, the test part connected an object representing the test function.

The test for the first clause, (> X Y) is represented by the first pred object and the > object

connected to the pred's test slot. The result part of the first clause, the s-expression (+ X Y)

is represented by the + object. This is connected to the true output port of the pred object.

The test part of the second clause (= X Y) is represented by the second pred object and the =

object connected to the pred object's test slot. The result part of the second clause (+ X 1) is

represented by the + object with X and a 1 object connected to its input ports.

The top join object connects the two control flow paths of the lower pred object. The lower

Chapter VII Transforming the Code 116

join object connects the two control flow paths of the top pred object.

Figure 7-3

X Y

Pred Test

F T

Pred Test

F T

F T

Jo in

F T

Jo in

Chapter VII Transforming the Code 117

The following code:

(or (and (> x y) (+ x y))

(and (= X y) (+ X 1)))

would be represented as figure 7-4. Notice that there are no OR or AND objects in the

diagram. A pred object is created for every s-expression except the last in ORs and

ANDs. This is because the control flow can split in every s-expression except the last in

an OR or AND. The surface plan representation of each s-expression except the last is

connected to the test slot of a pred object. The last s-expression in an OR clause is

connected to the false output port of pred object representing the penultimate

s-expression. The last s-expression in an AND clause is connected to the true output port

of pred object representing the penultimate s-expression.

The top left pred object is created when the OR is analysed. The test slot of this pred object

is connected to the surface plan representation of the first s-expression in the OR,

(AND (< X Y) (+ X Y)). The false output port of this pred object is connected to the surface

plan representation of the last s-expression in the OR, (AND (= X Y) (+ X 1)).

The top right pred object is created when the first AND is analysed. The test slot of this

pred object is connected to the surface plan representation of the first s-expression in the

first AND, (> X Y). The true output port of this pred object is connected to the surface plan

representation of the last s-expression in the first AND, (+ X Y). The top join object

connects the two control flow paths of the top right pred object.

The lowest pred object is created when the second AND s-expression is analysed. The test

slot of this pred object is connected to the surface plan representation of the first s-

expression in the second AND, (= X Y). The true output port of this pred object is connected

to the surface plan representation of the last s-expression in the second AND, (+ X 1). The

second lowest join object connects the two control flow paths of the lowest pred object.

The lowest join object connects the two control flow paths of the top left pred object. Note

that if either a true output port or the false output port of a pred object is connected directly to

the corresponding join then the output of the join is the test of the pred object. In figure 7-4

Chapter VII Transforming the Code 118

the true output port of the top left pred object is connected directly to the true input port of the

lowest join object. The true output of this join is the test of the top left pred object, which is

the surface plan representation of (AND (< X Y) (+ X Y)).

Chapter VII Transforming the Code 119

Figure 7-4

X Y

Pred Test

T F

T F

Jo in

Pred Test

F T

F T

Jo in

Pred Test

F T

F T

Jo in

Chapter VII Transforming the Code 120

Notice that many of the differences in the code have been abstracted away. The reason

why not all the differences have been abstracted away is that the two pieces of code are not

really isomorphic. If the s-expression (+ X Y) returned NIL then the COND expression

would return NIL, and the second clause would not be tried. In the OR version the second

clause would be then tried, as the first returned NIL.

Pred objects have two extra slots, set-variables and inner-set-variables. These two

slots are used as temporary holders when forks are analysed. Set-variables holds the

names of any variables set within the current fork being analysed. Inner-set-variables

holds the names of any variables set within any fork inside the current fork being

analysed. The reason these two slots are needed is explained in section 7.2.4.

Function Definitions

Function definitions include functions defined by DEFUN and loop functions (see

figure 7-la). User defined functions are analysed and stored away in a hash table. A

user defined function is represented by an object with the following extra slots:

1. Function name.

2. Parameter list.

3. Global variable list.

4. Code and objects.

The function name (obviously) contains the name of the function. The important part of

function definitions are the parameter list and the global variable list (could be called

the port list or the io-port list). The parameter list contains the arguments (input ports) to

the function. The global variable list contains the global variables side effected in the

function (i.e. altered by SETQ). This is the only side effect a user defined function can

cause in the subset of Lisp that we are considering. The code and objects slot contains a

mapping between each object and the code it represents, this is used by the highlighting

module (see section 9.1).

Chapter VII Transforming the Code 121

Loop functions are used in the analysis of loops. These are similar to user defined

functions except that scoping within the function is dynamic and there are no local

variables. So, for example, the following code:

(prog (a)
(setq a 2)
IP
(setq a (+ a 2))
(go Ip))

would first be translated into the following:

(prog (a)
(setq a 2)
dp))

(loop-define Ip ()
(setq a (+ a 2))
(Ip))

The body of the loop (between the tag and the go tag) have been converted into a function.

LOOP-DEFINE creates this function. The code is then converted to:

Chapter VII Transforming the Code 122

Figure 7-5

LP

Loop function objects are used to represent the LOOP-DEFINE section of code - the second

segment containing the + is a loop function object. The fact that the two LP objects are

connected by a spring means that the inner LP object is a recursive call the the outer LP

object.

Chapter VII Transforming the Code 123

Lœp

Loop objects are Lisp constructs that allow looping. No objects of this type are actually

created. This is used to differentiate between the Lisp constructs that allow loops and

those that only allow linear control flow eg. PROG and LET. Currently PROG is the only

Lisp looping construct that ITSY can analyse.

Blocks

Blocks represent constructs that allow linear sequences of code without loops. As with

loop, objects of this type are not created. There are two such constructs that ITSY can

currently analyse, LET and LET*.

Bind Local Vars

Bind local vars represents constructs that allow local variables to be bound. Parallel

and serial represent the two different ways this can happen. If local variables are bound

in parallel all the values for the variables are evaluated before binding any of them to the

variables. If local variables are bound serially, the variables are bound as the values are

evaluated one after another.

7.1,4 Non Connectives

The non-connectives consist of two parts function applications and Common Lisp

functions. Function application represent the application of user defined functions to

their arguments. Loop apply is used in the analysis of loops - the first segment in

diagram 7-5 is a loop apply. Higher apply function represents the application of

functions using a higher order function, that is a function that takes a function as an

argument. Examples of higher order functions include MAPCAR and APPLY.

Function application objects contain a type slot. This is set to the type of the function call.

This slot can have one of three values; normal, recursive and undefined.

Common Lisp functions covers the non connective Common Lisp functions. One arg,

two args and any args are used to specify the number of arguments a function requires.

Chapter VII Transforming the Code 124

73, The Transformation Process

The actions of this module of ITSY are in some ways similar to the Lisp evaluator. The

transformation process begins with the form typed into ITSY's toplevel. At any time there

is exactly one active object. Initially a pointer object is created and made the active

object. The input to this object is the toplevel form. At this stage of the analysis the input

slot of the object is just the code itself rather than any representation.

If the toplevel form is an atom, the input to the pointer is replaced by an object

representing the value of the atom. When a variable is analysed the surface plan

representation of the variable's value is stored in a hash table under the variable's

name. This is manipulated when the Lisp environment changes, such as inside a

function or a LET.

If the toplevel form is a list, the first element of the list is considered to be a function and

the analyser creates an object that represents the function. The inputs to this new object

are the arguments to the function.

If the function is user-defined the analyser creates a Function Application object. The

analyser then checks if the function definition has been analysed. The analyser carries

out this check because the definition of user-defined functions are only analysed once.

As the function application appears in the toplevel form the function definition will not

have been analysed. The definition is analysed and stored in a hash table under the

function's name. If no definition exists for the function the type slot is set to 'undefined'.

The new object created then becomes the active object and the process starts again.

As the transformation process runs, the segments of raw code in the active object's input

slots are replaced by ITSY's internal representation. As a code segment is translated

into plan diagram form the code is stored, to be used by the tutorial frame presentation

package (see chapter 9). After analysing all of the code we end up with a network of

connecting objects.

As discussed in section 7.1.2 each object has an expectations slot. There is a hash table

Chapter VII Transforming the Code 125

containing prototype versions of each Lisp function. Whenever a Lisp construct is met

this slot is filled with the prototype versions stored in the hash table. The prototype

version is used carries information such as the number of arguments a function should

be given. This is used by the error cliche matcher.

The transformation process described above is carried out in two independent contexts.

The first context is the toplevel context. This is either toplevel or inside a function.

When code is analysed within a function definition the toplevel context is inside a

function, otherwise it is toplevel. The second context used is the embedded context. This

context is either normal or inside a fork. This is used in the analysis of forks.

7.2.1 Application o f Non-Connective Common Lisp Functions

This type of construct is the simplest to analyse. Whenever a non-connective common

Lisp function is met, an object of the appropriate type is constructed. The input slot is set to

the arguments of the fimction (the raw code) and the function object becomes the active

object.

7.2.2 Application o f User Defined Functions

A function application object is constructed to represent the function applied. The object

is given a type depending on the type of function that is being applied. The function

definition is analysed if necessary. Each of the arguments is then analysed in turn.

The next step depends on the fype the function application object was assigned. A

function application has one of three types; not defined, recursive and normal. If the

function type is not defined or recursive no further analysis takes place. If the function

is not defined then there is nothing to analyse, if the function type is recursive the

function is currently being analysed.

If the function type is normal the side effects of the function application, that is any

global variables assigned are updated. The side effects of the application of user defined

functions within the function body are also updated. This action, of course, would lead to

endless recursions in mutually recursive functions. At the moment this is prevented by

keeping track of the function definitions checked and restricting the number of times a

Chapter VII Transforming the Code 126

function can be checked in this way. Students rarely write mutually recursive functions

and there are no cases of a global variable being assigned a value that depended on a

recursive call such as in:

(defun strange-function (n)
(cond ((= n 0) 0)

(t (setq *var* (append (list n) *var*
(strange-function (1- n)))))))

the global variable *VAR* depends on a recursive call to STRANGE-FUNCTION.

Simple FUNCALLs and APPLYs are converted into normal function application, for

example:

(funcall * + 1 2 3)

or

(apply '+ '(1 2 3))

is converted to:

(+ 1 2 3)

7.2.3 Function Definitions

When a function is analysed the two most important rules used are:

a) the output of a function is the last form, all the other forms inside the function are only

used for storing temporary values or for side effects.

b) function definitions are only analysed once, even if there is more than one call to the

function in the student’s code. The necessary information needs to be stored for when the

function is applied. The main information is the side effects that occur within the

function.

Chapter VII Transforming the Code 127

The first thing that happens is that input ports are created for each of the function's

parameters. A new hash table is created to store variables. The body of the function is

then analysed with the toplevel context set to inside a function. This affects the way

dataflow analysis is carried out. Normally when a globally scoped variable is met it is

replaced by its value. Inside a function definition a global variable becomes an input

port. If the value of a global variable is changed normally a new value is inserted in the

hash table. If this happens inside a function this is kept in the side effect slot of the

function definition. This saves ITSY having to re-analyse the function whenever it is

applied.

Whenever a parameter of a user-defined function is used as an argument to a Common

Lisp function the expected type of argument to the Common Lisp function is added to the

list of expected types of the user-defined function. So in the following code:

(defun my-add (numl num2)
(+ numl num2))

the function MY-FIRST would have number added to its list of expected types because the

Common Lisp function + expects a number. This is used by the Wrong Type error cliche.

7.2.4 Forks

This is where most of the effort has been put during this research.

Conds

Each clause of a COND is analysed in turn. When analysing a clause first a pred is

created. The test slot of the pred is filled with the surface plan representation of the test

part of the clause. Each of the result subclauses from the COND are then analysed. The

true control output of the pred is filled with the first of the result subclauses. The false

control output of the pred is filled with the test of the pred corresponding to the next clause.

The last result subclause is connected to a. join. The false control output path meets up

with this join after passing through the preds and joins corresponding to the clauses that

follow the current clause.

Chapter VII Transforming the Code 128

And Or

Each element of the and/or is analysed in turn. When analysing an element a pred is

created. The test slot of the pred is filled with the element. If an OR is being analysed the

true control output port is connected to the join and the false control output port is

connected to the next element. If an AND is being analysed the true control output port is

connected to the next element and the false control output port is to the join.

Added to both of the above is a complication due to variables being set within various parts

of a fork. Consider the following code:

(cond ((> X y) (setq min y) (setq max x))
(t (setq min x) (setq max y))

(list max min)

How should we represent this? The representation used in ITSY is the join value. A join

value contains all the possible values for a variable. Each possible value is represented

in two parts; the test and the value. The expression (LIST MAX MIN) above would be

represented as figure 7-6. The two inputs to the LIST object correspond to the two inputs to

the function LIST, MAX and MIN.

The lowest join value object on the left has two inputs to its value slot. These two inputs

correspond to the two possible values that MAX can have X and Y. The first input is the

join value object with value X and preds the > object. This represents the fact that MAX

will have the value X if (> X Y) is true. The second input is the join value object with value

Y and preds the T object. This represents the fact that MAX will have the value Y if T is

true (ITSY does not know that T is always true).

The lowest join value object on the right has two inputs to its value slot. These two inputs

correspond to the two possible values that MIN can have X and Y. The first input is the

join value object with value Y and preds the > object. This represents the fact that MIN

will have the value Y if (> X Y) is true. The second input is the join value object with

value X and preds the T object. This represents the fact that MIN will have the value X if T

is true.

Chapter VII Transforming the Code 129

cn
P 0)
6

>
5o"3

.q
>

OiT3PA
i>
•g

u

>

CO'O
p 0)
& cd

>
Bo-3

1)
,q
>

X

toT3
PA acd

>
Bo"-3

,q
>

to"O
p 0>

g
>
Bo

o
pg
>

Chapter VII Transforming the Code 130

This example would be further complicated if the COND was embedded in another fork

such as:

(and (numberp x) (numberp y)
(cond ((> X y) (setq min y) (setq max x))

(t (setq min x) (setq max y)))
(list max min)

this would be represented as figure 7-7. This diagram is the same as figure 7-6 except that

two extra inputs have been added to the preds slots of the join value objects representing

the possible values of MAX and MIN. The two extra inputs correspond to the two new s-

expressions whose values will determine the values of MAX and MIN, (NUMBERP X)

and (NUMBERP Y). The two s-expressions (NUMBERP X) and (NUMBERP Y) both

have to be true for MAX and MIN to be assigned a value.

Chapter VII Transforming the Code 131

COT3
P D
6 g

>
BoD

Oj3
ig
>

CO
T 3
P V

CU 13
>

C
o

1)
3
13
>

CO
T3
P o

CL, 13
>

o"-3
V3
13
>

Chapter VII Transforming the Code 132

The expression below:

(or (numberp x) (numberp y)
(cond ((> X y) (setq min y) (setq max x))

(t (setq min x) (setq max y)))
(list max min)

would be represented as figure 7-8. This is the same as figure 7-7 except that the numberp

objects are now inputs into a not object. This represents the fact that the two s-

expressions (NUMBERP X) and (NUMBERP Y) must not be true for MAX and MIN to be

assigned values.

Chapter VII Transforming the Code 133

X

CO
'd

1
>
Bo

o
3

1 3>

COxi
1
>
5oD

o3
13>

CO'd
P o

CL, g>
ho•d

<L>3
13>

CO73
g 1>

Bod
a>3
>

CO73P OJCL, 13>
Ao-3

U3
13>

CO73P 0)CL, 13
>

od
<U3
13
>

Chapter VII Transforming the Code 134

These transformations use the set-variables and inner-set-variables mentioned in

section 7.1.3. In all three of the above examples the pred object representing the COND

uses the set-variables slot. This slot holds the two variables max and min. The analyser

creates join values for these two variables and adds the appropriate predicates. The pred

objects representing the AND and OR use the inner-set-variables slot. The analyser

adds the appropriate predicates to the existing join values - no new join values are

created. The values that a variable had before it was set inside a fork is stored a default

value slot of a join value. As none of the variables had such a value it has not been

shown, it is shown however in the example given at the end of this chapter.

7.2.5 Loops

DO's and DO*'s are converted to equivalent PROGs. So, for example, the following

code:

(defun fact (n)
(do ((il (+11))

(result 1))
((> i n) result)
(setq result (* result i))))

would be translated into the equivalent PROG:

(defun fact (n)
(prog ((i 1) (result 1))

loop
(cond ((> i n) (return result)))
(setq result (* result i))
(setq i (+11))
(go loop)))

and then to:

Chapter VII Transforming the Code 135

(defun fact (n)
(prog ((i 1) (result 1))

(loop)))

(loop-define loop ()
(cond ((> i n) result))

(t (setq result (* result i))
(setq i (+11))
(loop))))

which is then represented as:

Figure 7-9a

N

Loop

Fact

Chapter VII Transforming the Code 136

Figure 7-9b

N I Result

Join

Join

Chapter VII Transforming the Code 137

Inside a loop construct the analyser analyses each of the sub-s-expressions until a tag

(such as 'loop' in the above example) is found. When a tag is found a loop function is

created. The following s-expressions, until a (GO TAG), are analysed and inserted

into the loop function. The (GO TAG) is transformed into the recursive function call

{TAG).

7.3 An Example of Code Transformation

The following example shows some of the more complicated aspects of the transformation

process in more detail. I shall describe the transformation of the code shown below:

(defun example (x)
(let ((lisp-type 'atom) (object-type 'unknown) (length-x 0)

(result nil))
(and (listp x) (setq lisp-type 'list)

(cond ((and (equal (length x) 2) (numberp (car x))
(numberp (cadr x)))

(setq object-type 'complex-number)
(setq length-x 2)
(setq result (list (* (car x) 2) (* (cadr x) 2))))

(t (setq object-type 'list)
(setq result (palindrome x))
(setq length-x (length x)))))

(list result lisp-type object-type length-x)))

(defun palindrome (x)
(append x (reverse x)))

The above code can be thought of as part of a larger program that 'doubles' objects. The

type of doubling carried out depends on the type of object input - this is explained in the

next paragraph. The program returns four parts; the 'doubled' object, the Lisp

representation of the object, the type of the object and the length of the object. This part of

the code deals with complex numbers and ordinary lists. These two types of object are

Chapter VII Transforming the Code 138

both represented by Lisp lists.

If X is a list then the LISP-TYPE is set to LIST, otherwise LISP-TYPE is set to ATOM.

If X is a list then it is either an ordinary list or a complex number. A complex number

has two parts, each part being an integer. If X is a complex number then ’doubling’

involves multiplying both parts by 2. If X is a list then ’doubling’ involves making a

palindrome out of the list.

The analyser proceeds in a depth first manner that is similar to that of the evaluator.

When an s-expression is analysed the arguments are analysed first, the function is

then analysed and the resulting representation of the whole s-expression returned.

The analyser takes an object as input. The input slot of this object will not yet have

been analysed and will contain raw Lisp code. The analyser module contains several

general purpose submodules. These can take any type of object and perform

appropriate tasks. The important submodules are enumerated below:

1. Analyse object - this submodule analyses the one object given as input. This object's

input slot is initially raw Lisp code. The object is returned with the input slot set to the

surface plan representation of the Lisp code.

2. Toplevel input analyser - this submodule analyses a single input of an object

given. It assumes that the object does not occur within a function definition.

3. Function body input analyser - this submodule analyses a single input of the object

given. It assumes that the object occurs within a function definition.

The analyser can work in one of two modes normal and within a fork. This is used

when variables are encountered.

Objects are passed around between the submodules. When an object is passed to a

submodule it becomes the active object.

If a student typed in the form (EXAMPLE 30) the following steps would occur. Firstly,

a TOPLEVEL object would be created with input slot set to (EXAMPLE 30). This object

Chapter VII Transforming the Code 139

is passed to the analyser and then to the toplevel input analyser. The toplevel input

analyser uses the input slot of the active object, which is raw Lisp code, to create a new

object. The input analyser finds that the raw Lisp code is the user-defined function

call (EXAMPLE 30). A FUNCTION APPLICATION and a NUMBER object are

created. The definition of EXAMPLE is then analysed as follows.

A DEFUN object is created. The name slot is set to EXAMPLE. The parameter slot is

set to X. The input slot of the object is set to the body of the function. The DEFUN object

is sent to the function body input analyser. This submodule creates a LET object and

sets the input slot of the object to the code within the LET. This object is passed to the

analyse object submodule. This submodule creates temporary slots in a hash table

for the local variables LISP-TYPE, OBJECT-TYPE, LENGTH-X and RESULT.

These slots contain the variable name and the internal representation of the value of

the variable. LISP-TYPE and OBJECT-TYPE have QUOTE objects as their values.

LENGTH-X has a NUMBER object as its value and RESULT has the NIL object as its

value. The analyser module then passes, in turn, the last two s-expressions within the

LET to the function body input analyser in turn.

The first s-expression passed is (AND (LISTP X)... An AND object is created with the

input slot set to the rest of the AND expression. This object is passed to the analyse

object submodule. The analyser is set to work in within a fork mode, each of the

arguments to AND are passed, in turn, to this submodule.

The s-expression (LISTP X) is transformed into a LISTP object. The local variable X

is transformed into a LOCAL VARIABLE object. A PRED object (call this PREDA) is

created. The test slot of PREDA is set to the LISTP object.

The s-expression (SETQ LISP-TYPE LIST) is analysed in a special way because the

current mode is within a fork. If the analyser were working in normal mode a

SETQ would result in the representation of the old value of the variable being

overwritten with a representation 6f the new value (the representation of the values of

variables are stored in a hash table). Because the analyser is currently working in

within a fork mode a QUOTE object with input slot set to LIST is added to the slot for

LISP-TYPE in the hash table. The slot for LISP-TYPE now has the two QUOTE

objects, one with its input slot set to LIST the other with its input slot set to ATOM. A

Chapter VII Transforming the Code 140

PRED object (call this PREDB) is created. The test slot of PREDB is set to the QUOTE

object.

The third argument to AND is analysed next. The function body input analyser

creates a COND object and passes this to the analyse object submodule. This passes

each of the clauses of the COND in turn to the function body input analyser.

A PRED object (call this PREDl) is created. The test part of the first clause is analysed

first i.e (AND (EQUAL (LENGTH X) 2)... The function body input analyser creates

an AND object with the input slot set to the arguments to AND. This is passed to the

analyse object submodule. This passes the first argument (EQUAL (LENGTH X) 2)

to the function body input analyser. This s-expression is transformed into EQUAL,

LENGTH, LOCAL VARIABLE and NUMBER objects. A PRED object (call this

PRED2) is created and its test slot set to the network of objects that represent the s-

expression (EQUAL (LENGTH X) 2). In a similar fashion the next argument to AND,

(NUMBERP (CAR X)) is analysed and a PRED object (call this PRED3) is created

with its test slot set to the representation of this s-expression. The last argument to

AND, (NUMBERP (CADR X)) is analysed. No PRED object is created for the last

argument as the controlflow cannot split (i.e. is always the same) on the last

argument to an AND. The true output port of PRED2 is set to PRED3 and the true output

port of PRED3 is set to the NUMBERP object in the last argument to the AND. A JOIN

is created for PRED2 (call this J0IN2) and for PRED3 (call this J0IN3). The false

output port of PRED2 is set to the false input port of J0IN2 and the false output port of

PRED3 is set to the false input port of J0IN3. The output port of the representation of the

last argument to AND is set to true input port of J0IN3. The output port of J0IN3 is set to

the true input port of J0IN2. The AND object created is discarded and the PRED2 is

returned. Now the analyser ’pops up' to the first clause of the COND.

The result part of the first clause is analysed next. As mentioned earlier because the

analyser is working in within a fork mode SETQs are analysed in a special way. A

QUOTE object (call this QUOTE!) is pushed into the hash table slot of OBJECT-TYPE.

A NUMBER object is created and pushed into the hash table slot of the variable

LENGTH-X. A network of objects representing the s-expression (LIST (* (CAR X) 2)

(* (CADR X) 2))) is pushed into the hash table slot of RESULT. The test slot of PREDl

is set to PRED2. The true output port of PREDl is set to QUOTE!. The set-variables slot

Chapter VII Transforming the Code 141

of PREDl is set to (OBJECT-TYPE LENGTH-X RESULT).

The second clause of the COND is analysed next. A PRED object (call this PRED4) is

created with its test slot set to a T object. Representations for the three variable values

'LIST, (PALINDROME X) and (LENGTH X) are pushed into the appropriate hash

table slots. Before the s-expression (PALINDROME X) is analysed the definition of

the function PALINDROME is analysed and stored in a hash table. The set-variables

slot of PRED4 is set to (OBJECT-TYPE RESULT LENGTH-X). The analyser now

'pops up' to the analysis of the whole COND.

The false output port of PREDl is set to PRED4. JOIN-VALUE objects are created for

the variables in the set-variables slot of PREDl and PRED4, and pushed into the

appropriate slots in the hash table. Each JOIN-VALUE object contains the

representation of the variable and the test slots that needs to be true in order for the

variable to have the particular value. The default slot of each JOIN-VALUE is to the

surface plan representation of the value each variable had before the fork was entered.

In the JOIN-VALUE representing LISP-TYPE, the default value is set to the QUOTE

object with its input slot set to ATOM. Similarly, the JOIN-VALUEs representing

OBJECT-TYPE, LENGTH-X and RESULT have default values is set to the QUOTE

object with its input slot set to UNKNOWN, a NUMBER object and a NIL object

respectively. JOINs are then created for PREDl (call this JOINl) and for PRED4 (call

this J0IN4). The output port of the LIST object in the s-expression (LIST (* (CAR X ...

is set to the true input port of JOINl. The output port of the LENGTH object in the s-

expression (LENGTH X) is set to the true input port of J0IN4. The false output port of

PRED4 is set to the false input port of J0IN4. The output port of J0IN4 is set to the false

input port of JOINl. The COND object is now discarded and PREDl is returned. The

analyser now 'pops up' to the outer AND.

The true output port of PREDA is set to PREDB. The true output port of PREDB is set to

PREDl. Two JOIN objects are created (JOINA and JOINB). The false output port of

PREDA is set to the false input port of JOINA. The false output port of PREDB is set to

the false input port of JOINB. The output port of JOINl is set to the true input port of

JOINB. The output port of JOINB is set to the true input port of JOINA. The next step

involves the variables set within the COND (inner-set variables). A JOIN-VALUE

Chapter VII Transforming the Code 142

object is created for the variable LISP-TYPE. The LISTP object for the s-expression

(LISTP X) is inserted into the preds slot of the object. The test slots of PREDA and

PREDB are added to the JOIN-VALUE objects of the variables OBJECT-TYPE,

RESULT and LENGTH-X. The AND object is now discarded and PREDA is

returned. The analyser now 'pops up' to the analysis of the LET.

The analyser is now back in normal mode. The third argument to LET is now

analysed. A LIST object is created. The input slot of this object is set to the objects

stored in the hash table under the slots of RESULT, LISP-TYPE, OBJECT-TYPE and

LENGTH-X. The LET object is now discarded and PREDA and the LIST object are

returned. The analyser now 'pops up' to the analysis of the DEFUN.

The input slot of the DEFUN object is set to the LIST object. PREDA is stored in the

inside slot of the DEFUN object. The DEFUN object is stored in a hash table under

EXAMPLE.

Figure 7-10 shows the surface plan representationof the input slot of the DEFUN. This

is a representation of the last s-expression in the function EXAMPLE, (LIST RESULT

LISP-TYPE OBJECT-TYPE LENGTH-X).

Figure 7-1 Oa shows the first two arguments to LIST, RESULT and LISP-TYPE. The

three join values on the left of figure 7-1 Oa represent the value of RESULT. As

mentioned in 7.2.4 join values have a default slot. This slot is set if a variable is

assigned a value before being assigned a value inside a fork. The default slot is set to

a nil object as RESULT is assigned the value NIL in the initialisation part of the

LET. The top left join value represents RESULT having the value (LIST (* (CAR X) 2)

(* (CADR X) 2))). RESULT is assigned this value if the three inputs to the preds slot

are true. Pred2 (shown in figure 7-1 Oc) represents the test part of the first clause in the

COND, (AND (EQUAL (LENGTH X) 2) (NUMBERP (CAR X)) (NUMBERP (CADR

X))). The quote and list objects represent the second s-expression given to the first

AND, (SETQ LISP-TYPE 'LIST). The listp object represent the first s-expression

given to the first AND, (LISTP X). The rightmost join value object represents the

possible values that LISP-TYPE might be assigned.

Figure 7-1 Ob represents the possible values the second two arguments to LIST might

Chapter VII Transforming the Code 143

have. The three leftmost join value objects represent the possible values of OBJECT-

TYPE. The three rightmost join value objects represent the possible values of

LENGTH-X.

Chapter VII Transforming the Code 144

I

Ï
CO 3

TO

g
■ §
Q

, q
cO

>

g a

1
* 7

3 I
Di
-o
B
15PL,

COT3P 0)
O. 13

>

o*7
op
13
>

CO

3 I
I

Ô

(N
4 - J

CO73p 0)
PU

>
ao*7

1)P
13
>

g

1)

I

I
Q

I
I

to

Chapter VII Transforming the Code 145

I
CO

n o
(U u

PU
’3
>

a
o

" 3

<u

>

Î I
CO

0>

PU a

>

A
o

"-3

0)
3

3>

CO

T ri e g
0>

PU Q

' 0)
, q

>

3

1

-M
CO !

a

1 1
1

g

I I
i

CO
T 3
P VA

>

A
o

"-3

<U
3

>

I
CO 31Û

- a
>

31

Chapter VII Transforming the Code 146

Figure 7-lOc

X

Length

Pred2 Test

F T

F T

Jo in

Equal

Car

PredS Test

F T

Numberp

Numberp

F T

Jc)in

7.4 Current Limit of Analysis

As mentioned earlier the only loop construct that ITSY can currently deal with is the

PROG. Extra code to transform the other constructs into the equivalent PROGs is

needed. In most cases the addition of a new Common Lisp function would involve

Chapter VII Transforming the Code 147

adding a new type of object in ITSY's Lisp Object Hierarchy. Special forms would

also require the addition of code in order to be parsed. The functions that would create

the most difficulty would be the destructive functions. This is not too great a problem

as these functions are generally not used by novices, or are used when the novice has

had a fair amount of exposure to Lisp. A list of all the functions that ITSY can

currently analyse is given in appendix J.

8. MATCHING ERROR CLICHES AGAINST THE TRANSFORMED CODE

This chapter describes in detail how ITSY matches an error cliche against the

transformed code. Each error cliche has the following four parts:

a) Error Cliche Name - the name of the error cliche,

b) Surface Code Segment - the 'type' of object that the error cliche can match against,

c) Criteria - criteria that need to be satisfied in order for the error cliche to match,

d) Other Checks - tests that prevent false alarms.

The matching process is carried out by two distinct modules. The plan diagram

traversing module and the error cliche matching module. The plan diagram

traversing module traverses the network of objects created by the code transforming

module (described in chapter 7). The error cliche matching module is activated each

time the plan diagram traversing module comes to a new node. The error cliches are

'active' - that is they actively attempt to match themselves against a segment of the

network of objects. Error cliches are in fact implemented as messages, the Error Cliche

Name corresponds to the name of the message and the Surface Code Segment corresponds

to the class of objects the message can be sent to. The error cliche matching module

'fires' each error cliche in turn. The error cliche then actively tries to match itself

against the current node in the network. This process stops when either an error cliche

has matched itself against part of the network or all of the nodes have been examined.

In the Programmer's Apprentice project [Waters, 1985] raw code is first translated into

surface plans then segments of the surface plans are matched against cliches producing

plan diagrams. ITSY uses a variant of this. Student's code is first translated into

surface code as in the Programmer's Apprentice. Then, instead of tiying to turn the code

into a plan diagram via cliches, ITSY tries to match error cliches against the code. If

ITSY succeeds in doing this then a tutorial is given.

Chapter VIII Matching Error Cliches 149

8.1 Traversing the Transformed Code

The output of the code analyser is a network of plan diagram segments represented by

objects. This module walks through the network. I will show this process using an

example. Consider the following surface plan representation (this is taken from figure
7-2):

Figure 8-1

List

Append

One

The + is matched against the error cliches, then LIST is matched, then APPEND.

This method of matching means that ITSY will not always find the same error that the
evaluator would. In the following code:

(append (list (car 1)) 2 3)

ITSY would find the error '2 is the wrong type of argument for APPEND' whereas the

Lisp evaluator would report '1 was the wrong type of argument for CAR'. One might

think that a simple to cure for this would be to proceed in a depth first manner. However

if the traverser were altered to proceed in a depth first manner then ITSY would have

Chapter VIII Matching Error Cliches 150

problems with the following code:

(appen (car 1) 2 3)

ITSY would report T was the wrong type of argument for CAR' whereas the Lisp

evaluator would report 'APPEN is not a defined function'. The real cure for this is to

divide the error cliches into two halves. Each node in the network would be visited twice.

The traverser would visit a node, 'fire' half of the error cliches then visit the nodes

'below' the current node in a depth first manner. After visiting all of the nodes 'below'

the current node the traverser would then fire the other half of the error cliches. The first

half would contain error cliches that match against errors concerning the actual

function being called (such as the Bracket Around a Variable error cliche), the other half

would contain error cliches that match against the errors concerning the arguments to a

function (such as Argument of the Wrong Type error cliche). This would have to be

implemented in future versions of ITSY.

When possible ITSY gives a tutorial on a single error. There are two reasons for this.

Firstly, the student would be confused if s/he were to be tutored about several different

topics at once. Secondly, there is a chance that any errors yet to be discovered may have

been caused by the student having the same misconception. The student is given a

second chance to fix the other errors before receiving a tutorial about them.

The surface plan network is traversed until either an error cliche is found to match a

segment of code, or all the code has been traversed. Each different type of plan diagram

segment has its own built-in code traverser. As the network is traversed each plan

diagram segment's traverser becomes active, once all parts of the segment have been

inspected the traverser passes activity to another plan diagram segment's traverser.

The different type of plan diagram segment traversers are described in turn below.

Two steps have been taken to make ITSY's messages coincide with the Lisp error

messages if there is more than one error in the student's code. Firstly, the error cliches

have been ordered. This ordering is based on the order in which the Lisp evaluator

evaluates Lisp forms. The wrong number of arguments error cliche is before the wrong

type argument error cliche, so the in the following example:

Chapter VIII Matching Error Cliches 151

(car 1 2)

the wrong number o f arguments error cliche matches first. Some of the error cliches

have been artificially 'raised'. The error cliche bracket around a variable is one such

error cliche to have been raised. This error cliche matches one level above it normally

would. By level I mean what is commonly called 'list depth', so in the list:

((((a b) c) d) e f (((g))))

e and f are at level 1, d is at level 2, c is at level 3 and a, b and g are at level 4.

The following example will help explain, consider:

(+ (a) ’john)

(A is a variable). If the error cliche bracket around a variable were to match at the level

of the s-expression (A), the error cliche wrong type argument (which matches at the level

(+ (A) 'JOHN) would match first. This is because the + segment is checked before the

arguments. The error cliche bracket around a variable has been 'raised' so tha t it
matches a t the level of (+ (A) JOHN).

8.1,1. Common Lisp Functions

This type of plan diagram segment is traversed as follows. First the object itself is

matched against the current error cliches, then each of the arguments are traversed in

turn. The plan diagram segment linked to the control-out slot is then traversed.

8.1J2. User Defined Function Application

First, the object itself is matched against the current error cliches. Second, the arguments

are traversed in turn. The plan diagram representation of the function is retrieved from

the user definition hash table. The input ports of the definition are connected to the

appropriate ports inside the function application. The definition of the function is then

traversed. In order to prevent endless cycling function definitions are only allowed to be

analysed a certain number of times.

Chapter VIII Matching Error Cliches 152

8,1.3. Function Definitions

User defined functions are traversed in two different ways depending on the context in

which the definition was encountered.

Normally only the function name and the parameter list are matched as these are the

only two sources of Lisp error in a fimction definition. That is to say, there are only two

ways an error can occur whilst defining a function. There can be an error in the

function name (eg. non-symbolic) or there can be an error in the parameters (eg. they

contain T or NIL or the parameters are not a list). The body of the function cannot

generate an error during the definition of a function. One could argue that if the

function definition were not closed (ie. no right bracket to match against the first left

bracket), this would result in a read error, but then the function would not have a body.

The other way a function definition can be analysed is if an application of the function is

found. Once the input ports of the function have been connected to the ports of the

application, the body of the function definition is traversed.

8.1.4 Forks

First the test part of the fork is traversed. If an error is found then the process halts. The

true and false control outputs are then traversed concurrently until the pred’s

corresponding join is met. If an error is found in both the true and false paths then both

errors are returned. At present ITSY cannot tell which of the two paths generated the Lisp
error.

8.1.5 Loops

The code analyser transforms loops to an application of a loop function. The code

traverser treats loops in the same way as a normal function application. When an

application of a loop function is met, the body of the loop function is retrieved from the loop

function hash table. The loop function is traversed once only. The recursive call within
the loop is not re-analysed.

Chapter VIII Matching Error Cliches 153

8.2 Returning Information About the Error

Once an error cliche has been matched against a surface plan segment an object is

returned. The object contains 4 pieces of information about the error:

a) the error cliche that matched against the surface plan segment,

b) the surface plan segment that contains the erroneous piece of code,

c) The number of errors,

d) whether the error occurred inside code at toplevel, or in a file. The error may be

contained in the actual code typed to the Lisp toplevel, or in the body of a function (loaded
from a file) called from toplevel.

8.3 Matching a Code Segment Against an Error Cliche

As each part of the network is traversed an attempt is made to match each of the active

error cliches in turn. The members and order of the active set is determined by the type of

error signalled. Common Lisp errors as implemented on the 3600 Symbolics series have

a type. ITSY uses this type to select the active set. For example, an error of the type

'undefined function' excludes a 'wrong type' error cliche.

When ITSY is trying to find an error cliche to match against a segment two rules are
used:

a) Try to match the most complex error cliche first,

b) Try to match as high up as possible, that is at the highest level.

Matching has to proceed in a certain order as some error cliches subsume others. This

can best be explained using an example. There are error cliches Arguments in the

Wrong Form and Wrong Number o f Arguments Given to a Function. The first error

cliche matches against sections of code such as:

Chapter VIII Matching Error Cliches 154

(expt (2 3))

where the arguments to the function EXPT have been presented in the wrong form. The

Wrong Number of Arguments Given to a Functionerror cliche would match against this

section of code because the function EXPT has been given the wrong number of

arguments, hut Arguments in the Wrong Form is the error cliche tha t applies in this
case.

8.4 An Example of Matching

In order to make clear some of the concepts discussed earlier we shall describe in detail

a match with the error cliche Arguments in the Wrong Form. Consider the following
code:

{defun my-add (x y z)
{+ (x y z)))

When the student types the s-expression

(my-add 10 20 30)

a t toplevel, the following surface plan diagram is generated:

Chapter VIII Matching Error Cliches 155

Figure 8-2

Y Z X

20 30

Function Application

Function Application
My-add

My-add

The error cliche finder first looks a t the function application to make sure it is a defined

function then the arguments are traversed. None of the error cliches match up against

the arguments or the function application so the function definition is traversed. During

this process the function + is traversed. At this point the error cliche Arguments in

theWrong Form matches against the surface plan segment for +. The function +

satisfies the criteria for the error cliche Arguments in the Wrong Forml with the

surface code segment CL Function that is: the function + has only been given one

argument in the definition of MY-ADD and the function does not only take one

Chapter VIII Matching Error Cliches 156

argument. The argument to the function + satisfies the subcliche Arguments in the

Wrong Form Subcliche that is: the function TO' is not defined and the other checks are
satisfied.

8Æ The Error Cliches

Each error cliche is represented as a collection of rules. For each type of surface plan

segment there is a rule that determines whether or not that particular segment could

match the error cliche. A rule has four parts:

a) Error Cliche Name - the name of the error cliche,

b) Surface Code Segment - the type of surface plan segment that the error cliche can match

against. Note that the error cliche can also match against all children of the type of

surface plan segment. For example an error cliche with Surface Code Segment

Function Definition could also match against surface plan segments of type Defun and
Loop Defun.

c) Criteria - a set of criteria that need to be satisfied,

d) Other Checks - a set of checks to make sure that this is not a false alarm. This is

needed because sometimes the student can make several errors a t once. For example,

one of the manifestations of the Arguments in the Wrong Form error cliche traps errors

where the student gives a list argument as separate quoted atoms:

(cons 'a ’ (b c d))

is written as:

(cons 'a 'b ’c *d)

but the student could have meant

(cons 'a (list b e d))

Chapter VIII Matching Error Cliches 157

if B, C, and D are variables. This manifestation of the error cliche checks quoted atoms

to make sure that none are bound variables so as to distinguish between these two cases.

Some error cliches use sub-cliches. These have the same format as error cliches but are

not error cliches in their own right. These are used when an error cliche extends over

several surface plan segments. Sub-cliches can refer to the error cliche (or any part of

the error cliche) that uses them by using the term super cliche.

The error cliches are enumerated below. Each error cliche has been numbered, some of

the error cliches cover more than one Surface Code Segment (ie. an error cliche covers

all the items with the same Error Cliche Name).

1. Error Cliche Name: Bracket Around a Variable

Surface Code Segment: Function Application

Criteria: Function is undefined.

The 'name' of the function contains a bound symbol

('name' is explained below).

Other Checks: The name of the function is not itself a function.

An example of this error cliche is:

(defun my-first (x)
(car (x)))

It may not be clear why we need the extra check to verify that the name of the function is

not a function. This is because by 'name' we mean the first atom in the actual name of
the function. For example if we had

(car (((x))))

Chapter VIII Matching Error Cliches 158

the name of the apparent function (because of the bracketing error) would be X. This

extra check prevents this error cliche matching against sections of code as:

(defun construct (element list)
((list element list)))

Where the wrongly bracketed item LIST is actually a function (this will match against

the Extra Bracket Around a Function error cliche).

2. Error Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Symbols

Criteria: The symbol is unbound.

The symbol is the name of a function.

Other Checks: None.

This error cliche matches against sections of code where the student has not placed a
bracket before a function call as in:

(defun my-first (x)
car x)

3. Error Cliche Name:

Surface Code Segment:

Criteria:

Extra Bracket Around a Function Call

Function Application

The function is undefined.

The 'name' of the function is a list.

The first atom in the 'name' of the function is the

name of a defined function.

Chapter VIII Matching Error Cliches 159

Other Checks: None.

The following two error cliches (arguments in the wrong forml and arguments in the

wrong form2) correspond to a student not knowing how to give a function multiple

arguments. Each error cliche has two different forms. An example of each of the four
forms is given below:

(+ (12 3))

(+ ' (1 2 3))

(cons 'a ’b *c 'd)

(cons a b e d)

Two error cliches are needed below because function application is divided into two in the

hierarchy of Lisp objects (see diagram 8.1).

4. Error Cliche Name: Arguments in the Wrong Forml

Surface Code Segment: CL Function

Criteria: The function has been given one argument which

satisfies the subcliche Arguments in the Wrong

Form Subcliche.

The function does not take just one argument.

Other Checks: None.

An example of the above is:

(* ' (1 2 3))

Error Cliche Name:

Chapter VIII Matching Error Cliches 160

Arguments in the Wrong Forml

Surface Code Segment: Function Application

Criteria: The function is of type defined or recursive.

The function has been given one argument which

satisfies the subcliche Arguments in the Wrong

Form Subcliche.

The function does not take just one argument.

Other Checks: None.

An example of the above would be:

(roots (3 4 5))

where ROOTS is defined as:

(defun roots (x y z)
(/ (- y (sqrt (- (expt y 2) (* 4 x z)))) (* x 2)))

Sub Cliche Name: Arguments in the Wrong Form Subcliche

Surface Code Segment: Function Application

Criteria: The function is not defined.

Other Checks: None of the arguments to the function are functions.

The type of the function name and the function’s

arguments satisfy the type constraints of the super

cliche's function.

The number of arguments to the function is one less

than the number of arguments the super cliche's

function requires.

Chapter VIII Matching Error Cliches 161

An example of where this would be used is:

(let ((X 1) (y 2) (z 3))
(+ (x y z)))

Sub Cliche Name: Arguments in the Wrong Form Suhcliche

Surface Code Segment: Quote

Criteria: The quoted object is a list.

The length of the list is the same as the number of

arguments the function takes.

Other Checks: The elements of the list are the right type for the
function.

The list does not contain the names of any functions.

An example of where this would be used is:

(roots ’(1 2 3))

5. Error Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: User Function Application

Criteria: The function is defined.

The function has been given too many arguments.

Each argument is either a quoted or an unbound

atom.

The function can take arguments either of type list or
of any type.

Other Checks: None of the arguments are functions.

Chapter VIII Matching Error Cliches 162

None of the quoted atoms are variables.

An example of where this would be used is:

(pal 'a 'b 'c 'd)

Where the function pal is defined as:

(defun pal (1)
(append 1 (reverse 1)))

Error Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: CL Function

Criteria: The function has been given too many arguments.

Each argument is either a quoted or unbound atom.

The function can take arguments either of type list or
of any type.

Other Checks: None of the arguments are functions.

None of the quoted atoms are variables.

This error cliche would match against:

(cons 'x 'y 'z '1 *2 *3)

6. Error Cliche Name: Not Quoting a List

Surface Code Segment: Lisp Object

Criteria: The object expects either inputs of type list or inputs of
any type.

Chapter VIII Matching Error Cliches 163

One of the inputs satisfies the sub-cliche Not Quoting

a List Subcliche.

Other Checks: None.

An example of the where the above would match is:

(list (a b c))

The following error cliches have been defined on the surface code segment one arg, two

arg etc. rather than on CL Function to make the criteria and other checks easier.

Error Cliche Name: Not Quoting a List

Surface Code Segment: One Arg

Criteria: The first input satisfies the sub-cliche Not Quoting a

List Subcliche.

Other Checks: The first input satisfies the type constraints of the
function.

An example of the above is:

(car (x y z))

Error Cliche Name: Not Quoting a List

Surface Code Segment: Two Args

Criteria: The first or second input satisfies the subcliche Not

Quoting a List Subcliche.

Other Checks: The same input satisfies the type constraints of the

function.

Chapter VIII Matching Error Cliches 164

An example of the above would be :

(cons 'a (bed))

Error Cliche Name: Not Quoting a List

Surface Code Segment: Three Args

Criteria: Either the first, second or third input satisfies the

sub-cliche Not Quoting a List Subcliche.

Other Checks: The same input satisfies the type constraints of the

function.

An example of the above would be:

(subst ’a 'b (a b c))

Sub Cliche Name: Not Quoting a List Subcliche

Surface Code Segment: User Function Application

Criteria: The function is undefined.

Other Checks: None of the inputs to the function are variables or

functions.

7. Error Cliche Name: Not Quoting an Atom

Surface Code Segment: Lisp Object

Criteria: One of the inputs satisfies the subcliche Not Quoting

an Atom Subcliche.

Chapter VIII Matching Error Cliches 165

The object expects input of atom type or input of any

type.

Other Checks: None.

This would match against code such as:

(list a)

where the variable A is unbound.

Error Cliche Name: Not Quoting an Atom

Surface Code Segment: One Arg

Criteria: One of the inputs satisfies the subcliche Not Quoting

an Atom Subcliche.

The object expects input of atom type or input of any

type.

Other Checks: None.

An example of this would be:

(atom a)

where the variable A is unbound.

Error Cliche Name: Not Quoting an Atom

Surface Code Segment: Two Args

Criteria: One of the inputs satisfies the subcliche Not Quoting

Chapter VIII Matching Error Cliches 166

an Atom Subcliche.

The object expects input of atom type or input of any

type.

Other Checks: None.

An example of this would be:

(cons a ’(bo))

where the variable A is unbound.

Error Cliche Name: Not Quoting an Atom

Surface Code Segment: Three Args

Criteria: One of the inputs satisfies the subcliche Not Quoting

an Atom Subcliche.

The object expects input of atom type or input of any

type.

Other Checks: None.

An example of this would be

(subst a b ’ (a b c))

the variables A and B are unbound.

Sub Cliche Name: Not Quoting an Atom Subcliche

Surface Code Segment: Symbols

Criteria:

Chapter VIII Matching Error Cliches 167

The symbol is unbound.

Other Checks: None.

8. Error Cliche Name: Quoting a Variable

Surface Code Segment: Quote

Criteria: The input to quote is an bound atom.

The input is not T or NIL.

Other Checks: The value of the atom is of the right type for the

calling function.

An example of the code the above cliche would match against is:

(let ((a ’ (x y z))
(car 'a))

9. Error Cliche Name: Quoting a Function Call

Surface Code Segment: Quote

Criteria: The input to quote is a list in which the first atom is

the name of a defined function.

Other Checks: None.

By first atom we mean the atom we would reach first if we were to move depth first

through the list. This means that this cliche will match against Lisp code such as:

(car ’ (((cons a (bed)))))

10. Error Cliche Name:

Chapter VIII Matching Error Cliches 168

Wrong Number of Arguments to a Function Call

Surface Code Segment: CL Function

Criteria: The wrong number of arguments have been given to

the function.

Other Checks: None.

An example of where the above would match is:

(expt 2 3 4)

Error Cliche Name: Wrong Number of Arguments to a Function Call

Surface Code Segment: Function Application

Criteria: The wrong number of arguments have been given to

the function.

Other Checks: The function is defined.

An example of where the above would match is:

(my-add 1 3 2 4 5)

where MY-ADD is defined as:

(defun my-add (x y)
(+ X y))

11. Error Cliche Name: Wrong Type of Argument Given to a Function Call

Chapter VIII Matching Error Cliches 169

Surface Code Segment: Any-arg

Criteria: One of the arguments satisfies the subcliche Wrong

Type Argument Subcliche.

Other Checks: None.

An example is:

(append 1 2)

Error Cliche Name: Wrong Type of Argument Given to a Function Call

Surface Code Segment: One-arg

Criteria: The first argument satisfies the subcliche Wrong

Type Argument Subcliche.

Other Checks: None.

An example is:

(car 4)

Error Cliche Name: Wrong Type of Argument Given to a Function Call

Surface Code Segment: Two-args

Criteria: Either the first or the second argument satisfies the

subcliche Wrong Type Argument Subcliche.

Other Checks: None.

Chapter VIII Matching Error Cliches 170

An example is:

(expt ' (a b c) ' (d e f))

Error Cliche Name: Wrong Type of Argument Given to a Function Call

Surface Code Segment: Three-args

Criteria: Either the first, second or third argument satisfies

the subcliche Wrong Type Argument Subcliche.

Other Checks: None.

An example is:

(subst 1 2 3)

Sub Cliche Name: Wrong Type Argument Subcliche

Surface Code Segment: Lisp Object

Criteria: The type of the expected output of the object does not

match the input expected by the super cliches object.

Other Checks: None.

Sub Cliche Name: Wrong Type Argument Subcliche

Surface Code Segment: Car

Criteria: The type of the CAR of the object's input does not

Chapter VIII Matching Error Cliches 171

match the input expected by the super cliches object.

Other Checks: None.

The sub cliche above extends the Wrong Type Argument error cliche to trap errors where

the CAR of a flat list (that is a list of depth 1 eg. (a b c d)) is given to a function that expects
a list, as in:

(defun my-fun (x y)
(append (car x) y))

(my-fun '(3 4 5) '(456))

the above was seen frequently in the experiment (see part III). This error cliche could be

extended further by including a flat list function. By flat list function we mean any

function that does not increase the depth of the list given. APPEND, REVERSE and CDR

are examples of flat list functions. The error cliche would then match against errors

where a flat list is manipulated by flat list functions before being passed to the CAR

function then to a function that expects a list. So for example if MY-FUN were:

(defun my-fun (x y)
(append (car (reverse (cdr x)) y))

would match against the error cliche but:

(defun my-fun (x y)
(append (car (list (cdr x)) y))

would not.

12. Error Cliche Name: Wrong Scope

Surface Code Segment: Symbol

Criteria:

Chapter VIII Matching Error Cliches 172

The symbol is unbound.

The name of the symbol is the same as one of the

parameters of the function that called this function.

Other Checks: The name of the symbol is not the same as any of the

parameters of the function the unbound symbol

appears in.

An example of where the above error cliche would match is:

(defun wrong-scopel (a b)
(append (wrong-scope2) (wrong-scope2))

(defun wrong-scope2 ()
(list a b))

9. PRESENTING THE TUTORIAL

This module of ITSY has two sub-modules: one to highlight the relevant section of code

and the other to create the frames that explain both the source of and the concept behind the
error.

9.1 Highlighting the Code

This sub-module is given the matching surface plan segment. The segment contains

several pieces of information which are used in highlighting the code, in particular:

a) the Lisp code that the segment represents,

b) the function (if any) that the code is part of.

The highlighting process takes 6 steps.

1. The function object containing the segment is retrieved from the table. Each function

object contains a list of all the sub-objects and the segments of code they represent. This
is used in the next step.

2. The number of preceding surface plan diagram segments that represent identical

sections of code is noted. This is needed because the student’s code in the editor buffer is

stored as a string. ITSY will search for a particular substring and the code may contain
several identical substrings.

3. The file that contains the function is loaded into the editor. If the file is already loaded

then the file’s buffer is made the current buffer (that is, displayed in the editor window).

4. The function is then moved to the top of the editor window.

5. The third step is to find the position of the student’s code inside the editor buffer. ITSY

uses a builtin editor tool which will search for a given string. This step is complicated by

Chapter IX Presenting the Tutorial 174

the fact that inside the editor the student's code is represented by a string, while ITSY

analyses the internal representation of the code which is a list. This means that ITSYs

version of the student s code will not have the white space characters. So, for example,
ITSY would have the string

"((cons (car x) (cddr x)))"

but the student may have

"((cons

(car X)

(cddr X)))"

inside the editor buffer. The highlighting module overcomes this difficulty by breaking

up the string into smaller units and searching for these ignoring the whitespace

inbetween. The units consist of the elements of the string that cannot be broken up, for

example, variable and function names.

6. Once the position of the student's code is found existing editor functions are used to
highlight the code.

error occurs at Lisp toplevel the code is not highlighted though of course it remains

visible on the screen. It was decided that it was not necessary to do this because code typed
a t toplevel is usually only one line long.

9.2 Explanation of Errors and Concepts

This submodule receives the following information:

a) the name of the matching error cliche,

b) the object representing the matching surface plan segment,

c) some information specific to the error cliche, such as some extra code.

Chapter IX Presenting the Tutorial 175

d) whether the matching code was inside a COND or not,

e) whether the matching code occurred a t toplevel or not.

If the matching code appears a t toplevel it is usually not highlighted. The exception to this

is if the matching code appears within the body of a function defined a t toplevel. The

function may have been defined some time ago and may not be visible on the screen. In

order for the student to see exactly what segment of code the messages are referring to,

ITSY prints the function definition into an editor buffer and then highlights the
matching code.

9.2,1 The Explanation Frames

Once the code has been highlighted ITSY confirms the diagnosis of the error and

explains the error/concept using an explanation. An explanation consists of a set of

five explanation frames. Each one of the five frames has two parts: a message and a

menu. The menus enable movement around the composite structure. Each message

contains slots for context specific details like function and variable names and
segments of buggy code.

Chapter IX Presenting the Tutorial 176

0)

I
&

&

These five frames are:

1. A question to confirm ITSY's diagnosis.

Chapter IX Presenting the Tutorial 177

2. A rewording of the question. It is not possible to guarantee that a student will

understand the question in its initial form. It is vitally important tha t students

understand the question, because if students answer the question incorrectly, then either

they will receive a tutorial on a different error to the one that just occurred, or they will

receive no tutorial when they need one. Great care has to be taken with any explanation -

subjects were misled by the Lisp interpreter's error messages during the pilot study (see
chapter 5).

3. This is the first explanation that the students see. From here they can move to 4, 5 and 6

(in any order). This frame is an explanation of the error in terms that a Lisp novice can

understand. In the pilot study (Chapter 5) subjects did not understand error messages

such as "pdl - overflow". This frame can be viewed as giving an 'English' version of the
error message.

4. This is an explanation of the error in terms of the evaluator. There is evidence (from

the pilot study (see chapter 5)) that novices do not understand the evaluator. It is hoped

that this explanation will help explain how the evaluator works.

5. A set of labelled concrete examples illustrating the correct way to apply the concept.

Kahney and Eisenstadt [1982] have shown that analogical mapping between examples

and new problems is not easy. In this frame, the mappings are explicitly shown.

The explanation frames were designed using the following principles:

a) Each explanation part has the same structure - this reduces the amount that the student
has to learn and limits confusion.

b) The student is able to choose exactly how much of the tutorial s/he wants to see.

c) The frame must obscure the student's code as little as possible.

Chapter IX Presenting the Tutorial 178

9.2.2 The Message Controller

%

"H

•M

Chapter IX Presenting the Tutorial 179

II
Iz
I

I
I
PI

w

f

I
I
I

Chapter IX Presenting the Tutorial 180

The overall structure of the frames and messages can be seen in diagrams 9-1 and 9-3.

As described earlier an explanation is made of five parts (diagram 9-1). Each part is

made up of two subparts, a message window and a menu (diagram 9-1). The actual

messages are stored in message objects, these have a similar overall structure to the

frames and are described in more detail in section 9.2.3.

The overall control structure of this module can be seen in diagram 9-2. The message

controller is responsible for the overall control of this module. The message filler fills

in the slots in each of the messages and then recomputes the size and position of each of

the five frames, so they are large enough to display the message string, then prints the

five messages in each of the five message windows. The frame controllers are

responsible for recomputing the items in a frame's menu and then displaying the frame.

The message controller first passes control to the message filler, this is described further

in section 9.2.3. Once the message filler has filled and positioned the five frames,

control passes back to the message controller. The message controller then interacts

with each of the frame controllers. The message controller will instruct one of the frame

controllers to display itself. The message controller passes a list of the frames already

displayed on the screen. The frame controller uses this to alter the items in the menu.

When an item is selected from a frame's menu the frame controller passes back the

name of the item selected. The message controller uses this to determine which frames to
activate and which to remove.

Each menu has an item that always appears. This is the explain a term item. This

option gives the student an explanation of any term used in the explanation of an error.

Choosing this item brings up a menu of all the terms used in tutorials. Each of the term

explanations are stored in a hash table, under the name of the term. When a term is

chosen the explanation is retrieved from the table and displayed in a window. The

window is removed when any key is pressed.

Each menu except for the two question menus have a cancel item. Choosing this ends the

tutorial returning the student to the Lisp toplevel, and all the frames currently displayed

are removed. This ensures that the student cannot get stuck.

The other items in the menu are determined by the frame's controller. The frame

Chapter IX Presenting the Tutorial 181

controllers for the question, question explanation and main explanation place the frame

on the screen and position the mouse within the menu. The frame controllers for the

deeper explanation and example frames, in addition to placing the frames on the screen,

also add to the menu any of the two frames that are not yet displayed. To enable the frame

controller to do this the message controller passes a list of all the frames currently

displayed on the screen. The frame controller passes back to the messages controller the

item chosen from the frame's menu.

9.2.3 The Explanation Text

This module is responsible for printing the messages in the message windows of the five

frames. The message slots are stored in a hierarchy of objects, these objects are shown in

figure 9-3. Each message object contains five sets of strings. Each string contains holes

tha t are filled in with information specific to the error. Each error cliche has a t least one

message object. The hierarchy exists for two reasons. Firstly, some of the error cliches

need the same messages in some of their frames. Secondly, the same error cliche needs

slightly different messages in certain conditions.

The first reason can best be explained using an example. Some errors are treated

differently if they occur inside a COND. There are two error cliches corresponding to the

error of not placing a bracket around a function call. The first, called no bracket

function call, matches against sections of code where a function call does not occur

within a set of brackets, and where this happens outside a COND. The second, called no

bracket function call in COND, matches against the same sections of code when they

occur inside a COND. The Question, Question Explanation and Main Explanation

frames of these two error cliches are the same but the Deeper Explanation and Examples

frames are different. The reason for this is that the Question and the Question

Explanation are used to confirm ITSY s diagnosis^ this is the same for both error

cliches. Similarly the Main Explanation, which gives a version of the error message

that students can understand, is the same. The Examples frame for the error cliche no

bracket function call contains examples showing the application of a function outside a

COND. The Examples frame for no bracket function call in COND shows the

application of functions within the test and the action part of a COND clause.

The second reason for having a hierarchy is that in different circumstances the same

Chapter IX Presenting the Tutorial 182

error cliche will lead to slightly different messages. These differences are mainly

cosmetic in nature enabling the messages to read better. Each error cliche has a t least

two Question and Question Explanation frames. This is because these two frames refer

to the highlighted line in the editor screen whenever the error occurs in code that is within

a file, the line of text that refers to the highlighted line is left out if the error occurs a t
toplevel.

The hierarchy for the two error cliches no bracket function call and no bracket function

call COND is shown in figure 9-4. The thicker lines show the inheritance structure and

the thinner lines show the text for the message frames linked to the tutorial object.

Chapter IX Presenting the Tutorial 183

Figure 9-4

Çno Bracket Function Call^

(no Bracket Function Call Toplevel ^

(No Bracket Function Call COND ^

(No Bracket Function Call Toplevel COND ^

Question

Question

Question

Examples

Examples

Main Explanation

Deeper Explanation

Deeper Explanation

Question Explanation

Question Explanation

Question Explanation

There is a message filler for each different type of message object. A message object is

first processed by its own message filler then passed up to each of its ancestors’ message

fillers in turn. This means that the holes in each of the five message strings are filled ii

'bottom up'. So the message object for No Bracket Function Call COND a t toplevel would

Chapter IX Presenting the Tutorial 184

first have the Question and Question Explanation message holes filled in then the

Examples and Deeper Explanation message holes would be filled. A hole is only filled

once, so that if it is already filled the message filler ignores the hole. After the holes of a

message have been filled the size of the corresponding explanation frame is changed and

the message is printed in the frame’s window. Once all five messages have been filled

in and printed onto the five frames’ message windows, the five frames are positioned so

as not to overlap and the Question frame is displayed.

9.2.4 An Example of an Explanation Being Displayed

The example below shows how the messages for the explanation of the error cliche No

Bracket Around a Function Call in a COND. The Question, Question Explanation and

Main Explanation messages are taken from the explanation of the error cliche No

Bracket Around a Function Call. The Deeper Explanation and Examples frames are

filled in from the explanation of the error cliche No Bracket Around a Function Call in
a COND.

The holes are represented by a tilde followed by the character ’a’. This is similar to the

control strings used by the Common Lisp FORMAT function. Other special characters

(such as newline characters and characters for highlighting segments of text) have been
left out for readability.

Messages Taken From No Bracket Function Call

Question

In your function ~a does ~a in

the highlighted line refer to the

function ~a rather than the variable ~a?"

Question Explanation

Did you want to call the function - a in the

highlighted line rather than get the value

of the variable -a?”

Chapter IX Presenting the Tutorial 185

Main Explanation

The interpreter thinks that you want the

value of the variable ~a rather than call

the function ~a."

Messages Taken From No Bracket Function Call in COND

Deeper Explanation

The syntax in COND is slightly different. There is usually

a double opening bracket after the word COND itself because

what follows in that position should be a list containing

both a test and an action. The test may consist of a function

call (usually a predicate such as ATOM or NULL), and it is

this function call which causes the extra opening bracket:

(COND ((NULL L) <action>)

or the test may simply use the value of a variable, as in

(COND (VAR <action>)

...)

where VAR has either a NIL vale or a non-NIL value and there

is only one bracket after the word COND.

Naturally, it is possible to make a similar mistake by

putting too many brackets around the <action>."

Examples

"(COND ((NULL L) NIL)

first clause

((ATOMDL)

second clause

(T(CDRL)))

third clause

Chapter IX Presenting the Tutorial 186

(COND ((NULLL) NIL))

test action

((ATOML) D)

test action

Cr (CDRL)))

test action"

This message object is passed the name of the function the error occurred in and the

name of the function which ITSY suspects the student meant to call. If the error occurred

inside a function named EXAMPLE-FUNCTION and the student should have called the

function LIST then the two Confirmation frames would appear as in figure 9-5 and the

three other frames would appear as figure 9-6.

Chapter IX Presenting the Tutorial 187

Figure 9-5

u

ill
III
IÎI

1
~ #

II X

II
1! -I
| l 1a:
lie 1 !

-5 “

ÎÎ 1

Is
I!

Chapter IX Presenting the Tutorial 188

Figure 9-6

c

ii
;

ill
II

I
£ 5 ^
H I

gHi

s i
i£l

I
l i i

s

fii
Î1I
111

«O’ .2

p i

III. 1 =

►

!s
!l
z
« s

l l

il
S a

I I .
a i l« p

p.-5

P» « J S "= Z 8

ÎL
§1
S |

Chapter IX Presenting the Tutorial 189

9^ Conclusions

The explanation philosophy used in the design of this module was developed from the

pilot study. Subjects in this study had great difficulty in understanding any of the

messages that the Lisp system displayed. This is one of the reasons for the existence of

the reworded question frame. One of the problems when asking students questions about

their code when it contains a bug is that this is when they will have most difficulty in

understanding the question. If students were easily able understand the questions, they

would not produce buggy code. It is important that students understand the questions

posed by ITSY, otherwise they may miss a tutorial that they need. Subjects

misunderstanding messages caused errors in the pilot study. For example, when the

error message for a file not loading because it did not contain enough closing brackets

appeared the subjects did not even know an error had occurred and that the new versions

of their functions had not been loaded. The subjects then attributed any errors caused by

the existing functions to the new versions of the functions. This error message is:

(read-eof #file-in I RS<R.> I)

The rest of the frames are designed to explain, a t different levels, the reason why a

section of code caused an error. The main explanation frame is really what the Lisp

error message should be. The Lisp error message is given is usually a t a lower level

than the message given by ITSY. This is best illustrated by the following buggy sections

of code. Below each section is the Lisp error message given followed by the main

explanation message.

(append (a be) (d e f))

Lisp Message: A undefined function

ITSY Message: The interpreter thinks that you want to call the
function A instead of giving the list (A B C) as an
argument

Chapter IX Presenting the Tutorial 190

(let ((a ' (X y 2)) (b ' (1 2 3))
(append (a) (b)))

Lisp Message: A undefined function

ITSY Message: The interpreter thinks that this A is a function

There is evidence from the pilot study that the subjects did not understand how the Lisp

evaluator worked. One of the pieces of evidence was that the subjects have no rule to

determine whether an s-expression should be quoted or not. They would often add and

subtract quotes on a random basis. The deep explanation frame was designed to try and

give students an understanding of the evaluator by explaining, in terms of the evaluator,
why the error occurred.

The examples frame was designed to give the students a concrete example of 'how to

apply the concept correctly'. This balances the deep explanation frame which describes
the reason behind the error in abstract terms.

10. THE STUDENT MODEL

10.1 Introduction

Student models are used to determine how student input should be interpreted. In ITSY

the task of the student model is to determine whether the student should receive a tutorial

once the cause of an error has been found. Because of this the student model is closely tied

to the error cliches.

The student model consists of a graph. Each node in the graph represents a LISP concept

associated with each of the error cliches in the library, that is to say there is a node in the

graph for each error cliche. An error cliche matches against a segment of code that

contains an error. Behind this error is a Lisp concept that the student did not understand,

otherwise the student would not have made the error. There is a node in the student model

that represents how well the student understands this concept. For instance, a type of

error that students make is to try and use a lambda variable declared in the argument

list of a function. A student could type the following:

(defun foo (a b c)

(se tq a 1)

(se tq b 2)

(se tq c 3))

(defun b a r ()

(p lus b c a)) ; a, b, and c are NOT bound

; here

Associated with this type of error is the error cliche Wrong Scope. The student model

will have a node to associated with this error cliche.

Each node has four states:

1. Concept has not yet been encountered.

Chapter X Student Model 192

2. Concept has been seen but not leamt.

3. Concept has been partially learnt.

4. Concept has been fully learnt.

All of the nodes are initially in state one. When a student sees a concept for the first time,

the corresponding node changes state. If the student successfully applies the concept, the

node moves to state 3, otherwise the node moves to state 2. For example, if the first s-

expression a student typed in was:

(car 1)

The node for the error cliche Argument of the Wrong Type would move from state 1 to

state 2, but if a student had typed in:

(car '(a b c))

The node would have moved from state 1 to state 3. The transition paths are described in

figure 10-1 below.

Chapter X Student Model 193

Figure 10-1

Sees a concept for
the first time and
applies the
concept
successfully

Successfully applies
a concept several times

Successfully
applies the
concept

Sees a concept for the first time
bu t does not apply successfully

10^ Representation

The nodes are represented by objects. Each object holds the current state of the node. The

objects are stored in a hash table under the name of the error cliche. Each node has its

own upgrade and downgrade handlers which alter the state of the node. The node's new

state depends on the original state and what just happened.

10.3 Updating the Model

Updating the model is carried out in a similar way to matching an error cliche against a

student's code. The transformed code, that is the student's code in surface plan form,

(see Chapter 7) is traversed in a similar way to the code traverser used by the error cliche

finder. There are two main differences. Firstly, student model cliches instead of error

cliches are matched against the transformed code. Secondly, the whole graph of objects is

traversed rather than stopping when a student model cliche matches.

The four states (see 10.1) are represented by the integers 1-4 . The link between states 3

and 4 is achieved by adding an increment (less than one) to the current value. The

current state is then the current value rounded down. The smaller the increment the

Chapter X Student Model 194

more times a student has to successfully apply the concept. Currently the value is 0.1 i.e.

it takes 10 goes to advance from 3 to 4.

10.3.1 Student Model Cliches

Student model cliches are derived from error cliches. An error cliche matches a

segment of code that contains a certain type of error. The type of error corresponds to a

Lisp concept that the student does not understand. It is this concept that links a student

model cliche to an error cliche. A student model cliche matches against any segments of

code that show that the student understands this concept. Consider the error cliche No

Bracket Function Call:

Error Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Symbols

Criteria: The symbol is unbound.

The symbol is the name of a function.

Other Checks: None.

the associated student model cliche is:

Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: CL Function

Criteria: None.

Other Checks: None.

You might think that the student model cliches could be just 'correct code' cliches (as they

are used in the Programmer's Apprentice [Waters, 1985]), but they are not because they

are the correct code of which the error cliche is an erroneous form. In other words they

apply to places where the student could have made an error, but did not.

Chapter X Student Model 195

Below is a description of a Null Student Model Cliche. These student model cliches are

an artifact of the hierarchy of Lisp Objects described in 7.1.2. Each student model cliche

can not only match against objects the same type as specified in the Surface Code

Segment but all the children of this type. Null Student Model Cliches are used to prevent a

child of a type of object inheriting the student model cliche.

A Null Student Model Cliche does not have criteria or other checks slots. This describes

exceptions to student model cliche rules. This means that the surface code segment

which is called quote cannot match against student model cliche No Brackets Around a

Function Call. Unless specified it can be assumed that every Lisp object has a Null

Student Model Cliche. The equivalent of these (Null Error Cliches) also exist, but they

were not shown in Chapter 8 in order to make the error cliches readable.

Null Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Quote

Objects of type Quote inherit from the type CL Function. If it were not for this Null

Student Model Cliche every time a student quoted an a Lisp s-expression the node

corresponding to the error cliche No Brackets Around a Function Call would change

state. This node should only change state when a student correctly applies a function.

Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Function Application

Criteria: The type of function application is normal or

recursive

Other Checks: None

The complete set of student model cliches are in appendix K.

Chapter X Student Model 196

10.3.2 Action Taken on Different Values of the Student Model

Whenever ITSY traps a student error the student model node associated with the error

cliche is checked. The value of the node determines ITSY’s next action. It was decided

that the student should always have access to a tutorial, in case the model was inaccurate.

The action carried out under each value is described below.

1. Concept has not yet been encountered.

The tutorial is given.

2. Concept has been seen but not leamt.

Extra help is given. This is not actually implemented yet. The extra help would be

provided in the form of extra frames.

3. Concept has been partially learnt.

The student is asked if s/he wants a tutorial or not.

4. Concept has been fully learnt.

No tutorial is given, but a present tutorial option is added to the Lisp menu and the

student notified how to obtain a tutorial. The present tutorial option would remain until

the next student input to the Lisp toplevel window.

This section describes two studies. These studies were carried out for two reasons.

Firstly, it was decided that novices did not generate really interesting errors in their

first 20 hours of Lisp. Secondly, it would provide a way of evaluating ITSY and point to

areas of weakness or for future research.

Six subjects were used in the studies. Each subject completed approximately 30 hours

learning Lisp^. As in the first study the subjects sat at a terminal reading and

completing exercises from Winston and Horn's "Lisp" [Winston & Horn, 1984].

Two subjects were used in the first study. They were used to "iron out the bugs" in the

implementation. Because ITSY was buggy at this stage only the subject's errors are

presented. The first two subjects had relatively little experience of computer
programming.

The remaining four subjects had more programming experience. Three of the subjects

had a t least two years' experience in assembler programming. The fourth was an

adviser for an academic computing service. The subjects' errors and a summary of

ITSY's responses are presented.

O ne subject only com pleted 23 hours

11. STUDY n: A PRELIMINARY EVALUATION OF ITSY

11.1 Objectives

As discussed above the objective of this preliminary study was to "iron out the bugs"

in ITSY and check that there was nothing fatally wrong with either the design of the

study or the implementation of ITSY. In fact several changes were made to ITSY

after this preliminary evaluation.

11.2 Methods

Both the subjects used were non-programmers. As in the first study the subjects sat at

a terminal reading from Winston and Horn's book "Lisp" (second edition) and

attempting the exercises. If they had any problems I would help them using the

keyboard. This ensured that all the interactions were recorded.

As in the first study, when the subjects arrived they were given a short tutorial. This

tutorial covered the editor, the Lisp toplevel and the message frames. This tutorial

involved going through the handouts shown in appendix D. The handouts give a

summary of the operations available in the editor and at Lisp toplevel, and an

overview of the type of explanation each message frame gives.

The interactions were recorded using a modified dribble function. In addition to

recording input and output in the Lisp window extra information such as selections

from menus and the amount of time spent looking at each message frame was also
recorded.

11.3 Method Of Analysis

As in the first study errors have been classified according to the cause of the error.

Each time a bug caused an error it was counted, so if the student typed in the same

erroneous form over and over each evaluation was counted as a separate error.

Chapter XI Study IIA Preliminary Evaluation of ITSY 198

Every application of an algorithmically incorrect function has been counted as an

incorrect algorithm error, regardless of whether the actual result was correct or not. So,
for example

(defun my-max (x y)
(cond ((> X y) x)

((< X y) y)))

would be counted as an error every time it was applied because the function does not cater
for the case when X and Y are equal.

11.4 Results

As in the first study all of the categories containing more than 1.5% of the errors are

presented here (the individual totals are contained in appendices E and F).

11.4.1 Problems Caused By The Environment

No environmental errors due to the computing environment were recorded. The only

times subjects became stuck were when ITSY crashed and had to be restarted.

Subjects were conservative in the use of the available tools such as the movement and

editing keys in the editor and the Lisp toplevel. More details were recorded in the next
study.

11.4.2 Algorithmic Errors

1. Incorrect algorithm. As ITSY currently does not trap this class of errors they have
been lumped together.

Percentage of the total number of errors: 30

Chapter XI Study IIA Preliminary Evaluation of ITSY 199

11.4.3 Problems With The Language

1. Wrong number of arguments given to a function, because the arguments are in the
wrong form. An example of this is:

(expt (3 4))

Percentage of the total number of errors: 2

2. Incorrectly putting a pair of brackets around an atom.

Percentage of the total number of errors: 4

3. Calling an undefined function.

Percentage of the total number of errors: 3

4. Incorrectly putting an extra set of brackets around a function call.

Percentage of the total number of errors: 4

5. Not putting brackets around a function call.

Percentage of the total number of errors: 5

As in the first study categories 4 and 5 does not include errors that occurred in a

COND form, these have been separated out and are given below.

6. Extra set of brackets around a function call inside a COND

Chapter XI Study IIA Preliminary Evaluation of ITSY 200

Percentage of the total number of errors: 5

7. Not putting brackets around a function call inside a COND.

Percentage of the total number of errors: 4

8. Not closing the test part of a clause. An example of this is:

(defun check-temperature (temp)
(cond ((> temp 100.00 'ridiculously-hot)

(< temp 0.00 'ridiculously-cold)
(< 0.00 temp 100.00 'ok))))

Percentage of the total number of errors: 3

9. Not quoting an object that should be quoted.

Percentage of the total number of errors: 8

10. Spurious character in a file. This meant that the student had, either by

accidentally typing or by not completely deleting some text, included a spurious

character in their file. This leads to an error when the file is loaded.

Percentage of the total number of errors: 2

11. Text spelling error.

Percentage of the total number of errors: 4

Chapter XI Study IIA Preliminary Evaluation of ITSY 201

12. Trying to give a value to a parameter globally. When subjects found that a

parameter to a function was giving an error, for any reason, they sometimes thought

this was due to the parameter not having a value. The subjects tried to pass a value to

the parameter by SETQing the parameter globally.

Percentage of the total number of errors: 2

13. Unbound variable because of the variable was not declared in the parameter list.

Subjects would sometimes not declare a variable in a parameter list. This could have

been because they did not understand the scoping rules of Common Lisp [Steele, 1984].

Subjects would sometimes write code that would only work in a dynamically scoped

Lisp such as MacLisp [Pitman, 1983], for example:

(defun 8-fun (x y)
(+ y (double)))

(defun double ()
(setq X (* X 2)))

X is unbound in the function double - this would not be the case in MacLisp. It should
have been declared in the parameter l is t , as in:

(defun 8-fun (x y)
(+ y (double x)))

(defun double (x)
(setq X (* X 2)))

Percentage of the total number of errors: 2

14. Wrong number of arguments given to a function

Chapter XI Study IIA Preliminary Evaluation of ITSY 202

Percentage of the total number of errors: 6

15. Wrong type argument of argument given to a function

Percentage of the total number of errors: 3

The above does not include non-list arguments given to CONS, CAR, CDR and

APPEND these are given below.

16. Non-lists to one of CONS, CAR, CDR and APPEND

Percentage of the total number of errors: 3

11.5 Conclusions

89% of the errors fell into sixteen categories above.

11.5.1 Comparisons with Study I

The following graph shows a comparison of nine of the different categories.

Chapter XI Study IIA Preliminary Evaluation of ITSY 203

Figure 11-1 Comparison Graph Between Study I and Study II

0

1

Categories

Expt I
Expt n

LU

The greatest difference between the two studies occurs in the Algorithmic Error

category. The percentage of algorithmic errors has grown from 19 to 30. This is for

three reasons. Firstly, the subjects were not experienced programmers. Secondly, the

subjects spent more time learning Lisp and were writing more complex programs.

This gives greater scope for making algorithmic errors. Thirdly, even though ITSY

was buggy at this point, it was able to help the subjects with some of their problems with
the language.

Chapter XI Study IIA Preliminary Evaluation of ITSY 204

Subject Total Number Percentage of Errors

Lines Input of Errors / Line Input

C 526 297 56

A3 193 75 39

Total 719 327 45

Above is a table showing the percentage of errors per line of input (these are given for

Study I in section 5.4). The average percentage of errors per line of input has

increased from 13 to 45. This could be due to one of two reasons:

a) the subjects in the Study I were experienced COBOL programmers whereas the

subjects in Study II had practically no programming experience,

b) the increase in length of the study, which meant that the subjects were tackling

harder exercises. The harder exercises (especially those covering recursion) meant

that the subjects attempts were more likely to contain bugs.

11.5J2 Changes to ITSY

Apart from fixing many small bugs the following changes were made to ITSY as a
result of this study.

Adding an extra explanation frame. During this study it became clear that subjects

did not always understand the message frames enough to correct the error. This

following sequence is taken from the dribble files of subject C.

The subject is attempting Problem 3-1 [Winston & Horn, 1984 p. 43]:

Some people are annoyed by the names of the critical primitives CAR, CDR, and
CONS. Define new procedures CUR-FIRST, OUR-REST, and CONSTRUCT that do
the same things....

and had defined the function OUR-FIRST as follows:

Chapter XI Study IIA Preliminary Evaluation of ITSY 205

(defun our-first (items) (car (items)))

the subject typed in the s-expression

*- (our-first ’(one two three))
(Error (OUR-FIRST (QUOTE (ONE TWO THREE))) zetalisp-
system:undefined-function #<undefined-function-trap 12273564>) The
function ITEM is undefined.

The question frame was exposed with the message:

In your function OUR-FIRST does ITEM in the highlighted
line refer to the variable ITEM in the parameter list?

The subject selected yes from the menu and the main explanation frame was exposed
with the message:

The interpreter thinks that this ITEM is a function

The subject selected examples from the menu and the example frame was exposed
with the message:

(D SB)

function arguments

function arguments

The subject selected ’deeper explanation' from the menu and the deeper explanation
frame was exposed with the message:

The first object after an opening bracket is usually a

Chapter XI Study IIA Preliminary Evaluation of ITSY 206

function, the remaining objects are the arguments to the
function. The interpreter is following this rule.

The subject then typed:

*- (items one two three)

It is clear from the above that the subject does not understand the message frames. An

extra frame was added to the explanation messages - a Fix frame. This shows the

student, in general terms, how to fix the error. The Fix message for the above error is:

For ITEM to be regarded, as a variable you need to remove
the pair of brackets which immediately surround it. Thus
if you wanted the function FOO to have the argument
ITEM, it would be wrong to have (FOO (ITEM)) but correct
to have (FOO ITEM).

To show how the Fix frame fits in with the other five the messages. The five messages

presented in section 9.2.4 are given below with the Fix message included.

Question

In your function -a does ~a in

the highlighted line refer to the

function ~a rather than the variable ~a?"

Question Explanation

Did you want to call the function ~a in the

highlighted line rather than get the value

of the variable ~a?"

Main Explanation

" The interpreter thinks that you want the

Chapter XI Study IIA Preliminary Evaluation of ITSY 207

value of the variable ~a rather than call

the function ~a."

Deeper Explanation

The syntax in COND is slightly different. There is usually

a double opening bracket after the word COND itself because

what follows in that position should be a list containing

both a test and an action. The test may consist of a function

call (usually a predicate such as ATOM or NULL), and it is

this function call which causes the extra opening bracket:

(COND ((NULL L) <action>)

or the test may simply use the value of a variable, as in

(COND (VAR <action>)

...)

where VAR has either a NIL vale or a non-NIL value and there

is only one bracket after the word COND.

Naturally, it is possible to make a similar mistake by

putting too many brackets around the <action>."

Examples

"(COND ((NULL L) NIL)

first clause

((ATOMDL)

second clause

(T(CDRL)))

third clause

(COND ((NULL L) NIL))

test action

((ATOML) D)

test action

CT (CDRL)))

test action"

Chapter XI Study IIA Preliminary Evaluation of ITSY 208

Fix

In order to call a function FOO with arguments X Y

in the test part of a COND (COND (FOO X Y ..

would be wrong but (COND ((FOO X Y)... would

be correct. In order to call a function FOO with

arguments X Y in the action part of a COND

[with test (NULL L)]

(COND ((NULL L) FOO X Y) and

(COND ((NULL L)) (FOO X Y).. would be wrong

but (COND ((NULL 1) (FOO X Y)).. would be

right."

It was found that the subjects often left exercises when their solutions still contained

algorithmic errors. This was because they believed them to be correct. In order to

prevent this a new tool was added to ITSY - test a function. Test a function enables a

student to try out one of their solutions on a set of prestored examples. ITSY tells the

student whether the solution is correct, incorrect or leads to an error. The

implementation of this tool is described below.

Stored in a hash table is an entry for each function that the students have to define. Each

entry contains a number of test input!output pairs and a test function. The student’s

function is applied to a test input. One of three things happens when the student’s
function is applied:

a) The function application gives an error - in this case ITSY tells the student that the
function causes an error,

b) The function does not give an error but the output does not match the stored test output

(when compared using the test function) - in this case ITSY tells the student that the
function is not correct.

Chapter XI Study IIA Preliminary Evaluation of ITSY 209

c) The function does not give an error and the output matches the stored test output - in

this case ITSY tells the student that the function is probably correct,

The test function is necessary because some of the examples do not specify the output

exactly. For example, some of the exercises involve the manipulation of sets. In these

cases the student’s output has to be a certain set (ie. a list where the order of the elements

is not important). As an example, here are the test input/output pairs and the test function

exercise 4-13 [Winston & Horn, 1984 p 73]

Define OUR-UNION. The union of two sets is a set containing all the elements that
are in either of the two sets....

Input: (a b c) (a x y z c)

Output: (a b c X y z)

Input: (be) (a x y z c)

Output: (a b c X y z)

Input: (a b c) (d e f a)

Output: (a b c d e f)

Input: (a b c) (b x y z c)

Output: (a b c X y z)

Test Function: same-setp

where same-setp is defined as:

Chapter XI Study IIA Preliminary Evaluation of ITSY 210

(defun same-setp (setl set2)
(and (subsetp setl set2) (subsetp set2 setl)))

The test a function tool can be seen in section 3.5.

The biggest change to ITSY as a result of this study was the decision to turn the student

model off. This decision was taken for two related reasons. Firstly, the model

needed "tuning" because the nodes were being bumped up too early, often students

would be in the concept fully learnt state too early. Secondly, the students were less

likely to look a t a tutorial if the initial Question frame did not appear, that is if the

tutorial were merely an option on the Lisp menu. A possible solution to this problem is
described in chapter 13.

This did not affect the subjects as displaying the question takes a relatively small

amount of time compared to finding the error and subjects can reply no to a Question

Frame so cancelling a tutorial.

Extra commands to change the shape of the frames (to have a medium or large editor

pane) were added because of comments made by these two subjects. These are described,
in detail, in Chapter 7.

12. STUDY ni: AN EVALUATION OF ITSY

12.1 Objectives

The objective of this study was to both evaluate ITSY and collect more complicated error

cliches.

12.2 Methods

Four subjects were used. Three of the subjects had a t least two years’ assembler

programming experience. The other is a member of an academic computing advisory

service and has had over two years experience programming in FORTRAN. The

methods used for this study were the same as the second study.

12.3 Method Of Analysis

As in the first study errors have been classified according to the cause of the error. Each

error has been classified in one of nine ways, each corresponding to one of nine ways

errors were treated by ITSY and the subjects. If ITSY trapped the error the subjects either

examined or ignored the tutorial frames. The subjects then either fixed the error, failed

to fix the error or left the error tackling a new problem. The nine categories are:

1. The student used ITSY and fixed the error.

2. The student used ITSY and tried but failed to fix the error.

3. The student used ITSY and left the error without trying to fix it.

4. The student did not use ITSY and fixed the error.

5. The student did not use ITSY and failed to fix the error.

6. The student did not use ITSY and left the error.

Chapter XII Study III An Evaluation of ITSY 212

7. ITSY did not find the cause of the error and the student fixed the error.

8. ITSY did not find the cause of the the error and the student failed to fix the error.

9. ITSY did not find the cause of the error and the student left the error.

12.4 Results

12.4.1 Errors

The results are presented in two graphs. The two graphs are summaries of the table in

Appendix F, this table gives the total results for the four subjects. The subjects'

individual results are given in Appendix G. The two graphs show all the error categories

except the category incorrect algorithm which is a singularity. 147 algorithmic errors

were made. None of these were caught, 16 were fixed by the subjects, 130 were not fixed
and 1 was left.

The first bar graph shows the results for each category. The total length of a bar gives the

total number of errors in the categoiy. The nine different shadings used in the bars

correspond to the nine different categories. The second bar graph (spread over 4 pages)

gives the same information but the nine categories have been split up rather than placed
on top of one another.

From the first graph it can be seen that the commonest errors fell into the text spelling,

not quoting, non-lists given one of CONS CAR and CDR, no brackets around a function

call, brackets around a variable, slip ups and giving a function arguments in the

wrong form error categories.

From the second graph it can be seen that when an error was trapped by ITSY the

commonest sequence of events was for students to use ITSY and then fix the error. There

are two exceptions to this arguments in the wrong form and no brackets around a

function call. For these two categories the commonest occurrence was for the student to
not use ITSY and fix the error.

Chapter XII Study III An Evaluation of ITSY 213

Wrong Type Arg

Wrong Number of Args

Unbnd Van Deletion of Param

Unbnd Van Param eter not Declared
Text Spelling

Infinite Recursion
Quote + Brackets Var

Quoting a Var

Load Changed Defs Error
Not Trying Fun on Right Input

Not Setqing a Var Before Using
Not Quoting a Var

Non-list given to Car
No Gaps Between Atoms

No Brckts Fun Call in a COND

No Brckts Fun Call
Misreading Question

Forgetting to Load Function
Fun not Loaded: Error in File

Endless Looping

Extra Brckt Fun Call in COND
Extra Brckt Fun Call

Error Due to Experimenter

Caused By Winston & Horn
Calling an Undefined Fun

Brackets Around a Var
Brckts Around Unbnd Atom

Brckts Around a Quoted List
Brckts Around a Number

Brckt Error in a COND

A Slip Up
Arguments in the Wrong Form

Applying CXRs in the Wrong Order

Categoiy °

Bar Graph 1

Graph of Error Categories For All Subjects

WTTm

■ Used & Fixed
B Used & -Fixed
M Used & Left
^ -Used & Fixed
n -Used & -Fixe
Ü -Used & Left
§ Missed & Fixed
H Missed &-Fixed
0 Missed & Left

— I------------- 1---------------- 1---------------1-------------- 1---------------T “

30 40 50
Number of Occurences

— I

60

Chapter XII Study III An Evaluation of ITSY 214

Bar Graph 2a

Graph of Error Categories For All Subjects

Brackts Around a Var

Brckts Around Unbnd Atom

Brckts Around a Quoted List

Brckts Around a Number

Brckt error in a CQND

A Slip Up

Arguments in the Wrong Form

Applying CXRs in the Wrong Qrder

■ Used & Fixedm Used & Fixed

a M Used & Left
m -Used & Fixed
□ -Used & -Fixem -Used & Left0 Missed & Fixed
11 Missed &-Fixed
□ Missed & Left

a ẐZZZZZZZZZZZZZk

1 0
—r-
20

I

3 0

Category Number of Occurrences

Chapter XII Study III An Evaluation of ITSY 215

Bar Graph 2b

Graph of Error Categories For All Subjects

Forgetting to Load Function

Fun not Loaded: Error in File

Endless Looping

Extra Brckt Fun Call in COND

Extra Brckt Fun Call

Error Due to Experimenter

Caused By Winston & Horn

Cailing an Undefined Fun

m

7 7 7 / / / r m

ZA

■ Used & Fixed
M Used & Fixed
Wi Used & Left
0 -Used & Fixed
O -Used & -Fixe
0 -Used & Left
§ Missed & Fixed
Hi Missed &-Fixed
0 Missed & Left

I
1 0

—r-
20

—I
30

Category Number of Occurrences

Chapter XII Study III An Evaluation of ITSY 216

Bar Graph 2c

Graph of Error Categories For All Subjects

Quoting a Var

Load Changed Defs E rror.

Not Trying Fun on Right Input

Not Setqing a Var Before Using

Non-list Given To Car

ŷSZZZZZZZZZZZX

No Gaps Between Atoms

No Brckts Fun Call in a COND

No Brckts Fun Call

■ Used & Fixed
B Used & Fixed
0 Used & Left
0 -Used & Fixed
n -Used & -Fixe
Wi -Used & Left
^ Missed & Fixed
H Missed &-Fixed
E3 Missed & Left

Misreading Question

I
1 0 20

I

30

Category Number of Occurrences

Chapter XII Study III An Evaluation of ITSY 217

Bar Graph 2d

Graph of Error Categories For AU Subjects

Wrong Type Arg

Wrong Number of Args

Unbnd Var: Deletion of Param

Unbnd Var: Param eter not Declared

Z Z L

Text Spelling

Infinite Recursion

Quote + Brackets Var

Quoting a Var

Category

Z1

i=' 1 Used & Fixed
^ Used & Fixed
0 Used & Left
0 -Used & Fixed
n -Used & -Fixe
0 -Used & Left
^ Missed & Fixed
11 Missed &-Fixed
0 Missed & Left

I
1 0

—T-
20

Number of Occurrences

—I
30

Chapter XII Study III An Evaluation of ITSY 218

ITSY trapped 30% of all the errors. Of the errors ITSY had been 'designed' to trap ITSY

managed to trap 48%. Of the errors not trapped 42% were in the not quoting category and

34% were in the non-lists given to one of CAR CDR and CONS and APPEND and 13%

were in the quoting a variable. Not quoting errors were missed because ITSY only

counts a non-quoting errors if there is a function taking the non-quoted object as an

argument and if the object is of the right type for the function. Because of this, unquoted

lists or atoms typed by themselves at the Lisp Toplevel were not trapped. The non-list

errors were missed because of the simplicity of the error cliche - errors where a non-list

argument to a function was computed rather than just given were not trapped. Quoting a

variable errors were missed because the variables were misspelt.

Bar Graph 3

Totals Only

Missed & Left

Missed &~Fixed

Missed & Fixed

-U sed & Left

-U sed & -Fixe

-U sed & Fixed

Used & Left

Used & -Fixed

Used & Fixed

Category

mam

— T-------------1-------------1-------------1------------ 1—

20 30 40
Percentage

—I
50

The third graph shows the total percentages for each of the nine different types of actions

Chapter XII Study III An Evaluation of ITSY 219

that can occur.

Below is a table showing the total number of errors and the percentage of errors per line of

input.

Name Total

Number of

Lines Input

Number

of Errors

Percentage of Errors

/ Line Input

231 39

G2 331 105 32

252 85 34

82 191 58 30

Total 1362 479 35

The average percentage of errors per line of input has increased from 13% in study I to

35% in this study, although this is less than the 45% for study II. The decrease from 45 in

study II to 35 in this study could due to the fact that the subjects in this study were

experienced programmers. Because relatively few subjects were used it is not possible to

tell how much ITSY helped the students. The reasons for the increase in studies II and III

when compared to study I were stated in 11.5.1.

Chapter XII Study III An Evaluation of ITSY 220

12.4.2 Messages

Bar Graph 4

Total For Subjects When They Used ITSY

Used & Left

Used & -Fixed

Used & Fixed

Categoiy

Percentage |

Chapter XII Study III An Evaluation of ITSY 221

Bar Graph 5

Total For Subjects When Didn’t Use ITSY

-U sed & Left

“Used & -Fixe

-U sed & Fixed

Categoiy
Percentage

The success of the messages can be seen from the fourth and fifth graphs. The two graphs

show the percentage of errors fixed when trapped by ITSY. The fourth graph shows the

percentage when the students used ITSY and the fifth when they chose not to. The errors

fixed when not trapped by ITSY have not been included as these may be harder than those

trapped. There is a 9% difference between the percentage of errors fixed when the students
used ITSY and when they did not.

Below is a table containing the percentage of time that was spent looking at each part of

the tutorial frames (more detailed information is given in appendix J).

Fram e

Chapter XII Study III An Evaluation of ITSY 222

Percentage of Total Time

Question

Question Explanation

Main Explanation

38

25

Fix 20

Examples

Deeper Explanation

The question explanation frame was only used 2% of the time. This shows that the

subjects understood the question. The main explanation and the fix frames were far

more popular than the examples or deeper explanation frames. The reason for the

unpopularity of the deeper explanation frame could be that subjects were reluctant to read

more than a short paragraph of text. The deeper explanation frames contained the

longest messages. A possible reason for the unpopularity of the example frame could be

that the subjects had trouble mapping from the examples given to their code.

12.5 Extra Erroi^

Some of the errors have been separated out for two reasons. The computer environment

errors have been separated out because dribble files do not provide a reliable way to collect

these in the complex environment found on the Symbolics 3600 family. Some of these

errors will be missed because they will not be recorded. The number of computer

environment errors are considerably lower than they were in study I. Four of these

errors were found in the dribble files. One was due to a subject choosing the Add

Comments item from the Lisp menu and without realising it. The other three were due to

subjects trying to bring up a menu using the mouse. At certain times (such as when

Chapter XII Study III An Evaluation of ITSY 223

incremental garbage collection was taking place) ITSY's response time grew. In three

cases when a menu did not appear instantaneously the subject kept pressing the mouse

repeatedly. This caused a number of menus to appear which confused the subject.

Another set of errors have been separated out because they appeared when a subject was

using the Test a Function tool (see section 11.5.2). This tool was originally designed for

subjects to test a particular function if they thought it was correct. Two of the subjects

decided that it was quicker to try out their functions using Test a Function first and then

only to resort to using the Lisp toplevel if they could not fix the error after some time.

These subjects were using this as a way of switching ITSY off. This increased the

response time if their function contained an error because no analysis would take place.

This happened towards the end of the study.

Both set of errors are presented below:

Category Number of

Occurrences

A Slip Up

Brackets Around a Quoted Variable

Brackets Around a Variable

Brackets Around a Variable in a COND

Calling a Function that Doesn't Exist

Error due to Experimenter

Extra Set of Brackets Around a Function Call

Extra Set of Brackets Around a Function Call in COND

Function Not Loaded Because of Another Error

Chapter XII Study III An Evaluation of ITSY 224

Incorrect Algorithm 79

Misreading the Question 6

No Brackets Around a Function Call 3

No Brackets Around a Function Call in a COND 1

No Gaps Between Atoms 1

Non-lists Given to One of CONS, CAR, CDR and APPEND 20

Quoting a Function 1

Quoting a Variable 9

Stack Overflow Due to Infinite Recursion 2

Text Spelling Error H

Wrong Number of Arguments Given to a Function 12

12.5 New E rror Cliches

Two new error cliches were found in this study - they are described in Chapter 8. They

are the Wrong Scope error cliche and the sub cliche Wrong Type Argument Subcliche.

The Wrong Scope error cliche matches against segments of code such as:

(defun wrong-scopel (a b)
(append (wrong-scope2) (wrong-scope2))

(defun wrong-scope2 ()
(list a b))

Chapter XII Study III An Evaluation of ITSY 225

The student believes that the variables a and b are bound.

The Wrong Type Argument Subcliche on the surface code segment Car extends the

Wrong Type Argument error cliche. One of the commonest cases of this error cliche

found in this study was:

(append (car x)

where X was a flat list (eg. '(a b c)). This subcliche checks to see if the CAR of the input

matches the expected type of the super cliche's object in this case APPEND.

12.7 Conclusions

The evaluation methodology presented is general and can be applied to any system which

claims to help its users in some way. One of the evaluation methods normally used is to

take have two sets of subjects. One set uses the system, the other uses the 'bare machine'.

The two sets are compared on pre and post test scores. The problem with this is that a

relatively large number of subjects are needed (in order to gain statistical significance)

and half are 'wasted' in that they do use the system and cannot contribute (directly) to the

data concerning the system. This problem is especially great for systems such as ITSY

which aim to help novice programmers - each subject needs to use the system for thirty
hours.

If the methodology described in this chapter is used fewer subjects are needed and all the
subjects contribute to the system.

Below is a copy of the first bar graph presented with fewer (more gross) error categories.

Each of the new categories was formed from several of the categories shown in the first

bar graph. The method of grossing for each category was as follows:

1. Other Errors - all the errors that did not fit into one of the other categories.

2. Endless Loops/Recursion - all the errors that either caused endless looping or infinite
recursion.

Chapter XII Study III An Evaluation of ITSY 226

3. Spelling & Slips - all the errors caused by spelling mistakes or by simple slip ups.

4. Var Brcktg Errors - all the errors caused by placing brackets around variables.

5. Fun Brcktg Errors - all the errors caused by placing the incorrect number of brackets

around the application of functions.

6. Errors Involving Atoms - all the errors involving atoms such as not quoting.

7. Errors in Giving Funs Args - all the errors caused by giving arguments to functions

incorrectly.

Other Errors

Endless Loops/Recursion

Spelling & Slips

Var Brcktg Errors | ^

Fun Brcktg Errors

Errors involving Atoms

Errors in Giving Funs Args

Category

Bar Graph 6
Gross Totals For All Subjects

■ U sed & Fixed
B U sed & Fixed
M U sed & Left
0 -U sed & Fixed
n -U sed & -Fixe
^ -U sed & Left
^ M issed & Fixed
IÜ M issed & -Fixed
0 M issed & Left

100

Number of Occurrences

Chapter XII Study III An Evaluation of ITSY 227

The results of the study outlined in this chapter could be used to improve ITSY. The study

could then be repeated and ITSY improved further still. As this iteration continued two

things would happen. Firstly, the bars would get shorter. Secondly, the solid black

sections of the bar graph shown above would cover a greater and greater proportion of

each bar. This would be because ITSY would be providing more help.

13. CONCLUSIONS AND FUTURE DIRECTIONS

This thesis covers two main areas of investigation. These areas correspond to the first

two parts of this document.

Firstly, the first part provides a detailed description of the types of errors that professional

programmers make when learning Lisp using a 'traditional' (i.e. glass teletype) Lisp

environment. One quarter of the errors found were caused by the environment. The

Lisp environment used in this study was designed for expert Lisp programmers.

Unfortunately, some of the tools designed to improve programmer productivity hampered

the subjects. As the subjects were very reluctant to use any of the tools provided by the

environment, the subjects would have made fewer mistakes and progressed further if

tools had been 'turned off.

Nearly half the errors found in the study were context independent Lisp errors. These

were errors were caused by the subjects using incorrect Lisp forms. Incorrect Lisp forms

are segments of Lisp code that do not follow the discourse rules of Lisp. An example of an

incorrect Lisp form would be (CAR 1). It is these incorrect Lisp forms that the error

cliches were designed to match against. The main reason for subjects making these

errors was the fact that they did not understand the Lisp evaluator. Often subjects would

add and subtract quotes in a seemingly random fashion until their function worked.

From these results, there is a case for teaching novices about the evaluator first.

Secondly, the concept of a programming cliche has been inverted and used as a basis for

a system designed to help overcome the difficulties described in the first part of the thesis.

The help given to students is based on the bugs they make. This is different from

systems that view the student as a subset of an expert eg. WEST [Burton & Brown, 1976].

In systems such as WEST the student is measured in terms of an expert. When a student

makes a mistake the student is assumed to have an 'expert concept' missing. The

evidence from the first study points to the fact that students share common incorrect

concepts. When these concepts are applied the same incorrect Lisp forms are produced.

The third study showed that it is possible to trap these incorrect Lisp forms and explain to

students the concepts that they have misunderstood.

Chapter XIII Conclusions 229

One of the aims of ITSY is to give students enough help so that they can use bare system

unaided. This is why the error messages generated by the Lisp system have been left in

and why ITSY coaches students on tools. ITSY sits in the background until a student has

written a program, only giving help when the student tries the program out. The reason

for this is get the student used to the normal cycle of developing Lisp software. One of the

problems with this however is that ITSY cannot offer any help if the student is completely

stuck, for example, if the student has trouble developing an algorithm or specification.

This approach can be used in the design of computing systems built to help novices in

certain domains. The constraint on the domain is that students' answers are complex

enough to contain patterns of errors (so one word answers would not suffice). This would

include domains where students are learning procedural skills - such as arithmetic,

algebra or mechanics.

At present ITSY uses the relatively low-level surface plan representation of code. The

reason for this is that novice Lisp programmers make syntax errors. PROUST also uses

a low-level representation for PASCAL code in order to catch low-level errors, as

Johnson says [Johnson, 1985 p 248]:

This low-level representation means that an abundance of transformation rules are
required in order to understand code written by more advanced students, who rearrange
their code at will.

Johnson suggests a remedy for this:

One could then construct two PROUSTs: a PROUST 1 which specializes in low-level
bugs, but is confined to fairly small programs, and a PR0UST2 which specializes in
high-level bugs, and which works on larger programs.

If the code is abstracted too far the low level errors will be lost.

ITSY has no such problem. The power of PLAN representation is that they allow higher

level PLANs to be built up from low level PLANs. Figure 13-1 shows how ITSY could use

the full power of PLAN representation to detect bugs from both complete Lisp novices and

more advanced students.

Chapter XIII Conclusions 230

Figure 13-1

Code PLANSSurface
Plans

Higher
Level
PLANS

Semantic
Error Cliches

Syntactic
Low-Semantic
Error Cliches

Algorithm ic
Teleological
Error Cliches

Figure 13-1 shows how ITSY could detect the algorithmic errors. In study III (Chapter 3)

32% ̂of the errors were algorithmic, by far the largest category. In order to trap these

errors ITSY would need knowledge of the exercise that the student was attempting. This

extra knowledge would be represented in two ways:

1. Context sensitive error cliches.

2. The solution to the exercise in PLAN form. This solution would represented as

abstractly as possible, so it would be able to match against all the possible different

implementations of the solution.

If the input typed by the student does not produce a Lisp error these two extra chunks of

knowledge would be used to find errors in the student’s program.

Context sensitive error cliches are error cliches specific to a particular exercise; they are

similar to the buggy algorithms in TALUS [Murray, 1986]. The use of context sensitive

error cliches can best be explained by the use of an example. Consider exercises 3-2 and

3-3 in Winston and Horn:

"3-2:Define ROTATE-L, a function that takes a list as its first argument and returns a

new list in which the former first element becomes the last. The following illustrates:

(ROTATE-L ’(A B C))

(EGA)

This Includes the 'misreading the question' category

Chapter XIII Conclusions 231

(ROTATE-L (ROTATE-L ’(A B C))

(C A B)

3-3:Define ROTATE-R. It is like ROTATE-L except that it is to rotate in the other

direction."

One of the subjects second attempt was:

(defun rotate-r (exp-1)
(append (rest (rest exp-1))

(list (first exp-1) (first (rest exp-1)))))

The above code is valid but, the subject thought that the function ROTATE-R would have to

deal exclusively with lists containing only three elements. It is only possible to trap

these type of errors with knowledge about the actual exercise being attempted. In this

exercise, ITSY would have a cliche that matched against code to make a list of three

elements.

Whereas the context sensitive error cliches would be used to detect major differences

between the student’s attempt and the correct solution the PLAN form of the solution

would be used to detect smaller variations, for example swapping APPEND for LIST.

The only coaching currently provided by ITSY is on the editor. Other possibilities for

coaching in a future implementation of ITSY would be:

a) Coaching on the Lisp stepper. This could occur one of the more complex error cliches

(as yet not implemented) were found to match the student’s input.

b) Coaching on the Lisp tracer. This would also occur when a more complex error cliche

matched the student’s code.

c) Coaching on the Inspector. The inspector is a graphical tool for examining Lisp objects

Chapter XIII Conclusions 232

such as DEFSTRUCTS or HASHTABLES. This would occur the first time a student

created a complicated data structure such as a DEFSTRUCT.

At present the nodes in the student model are 'bumped up' too quickly. The reason for this

is that the transition function between the nodes were determined arbitrarily. By

transition function we mean the function that determines when a node changes state. In

the case of ITSYs student model the transition function simply counts the number of

times an event (such as the student applying a function correctly) occurs. We suspect that

determining the transition function is not a trivial problem for two reasons. Firstly,

each different concept will need a different set of transition functions, as concept are not

equally easy to learn. Secondly, each student will need a different set of transition

functions and this will change as the student progresses.

The first step in determining the transition functions would be to re-analyse the raw data

collected in the studies. This re-analysis would include counting the number of times a

student used a particular concept correctly before the student seemed to fully understand

the concept.

Another possible extension to ITSY would be the addition of a student history. This

would provide ITSY with focus. The need for a history can be seen from the following

example taken form Study II (Chapter 11). The student has defined the function my-

first:

(defun our-first (items)
(car (items)))

the following interaction then took place a t Lisp toplevel

*- (our-first (one two three))
; ; The function ONE is undefined

*- (our-first ' (one two three))
; ; The function ITEMS is undefined

*- (items one two three)

Chapter XIII Conclusions 233

; ; The function ITEMS is undefined

*- (items '(one two three))
; ; The function ITEMS is undefined

*- (items 'one 'two 'three)
; ; The function ITEMS is undefined

*- (items '(one two three))
; ; The function ITEMS is undefined

*- (items 'one 'two 'three)
; ; The function ITEMS is undefined

*- (items '(one) '(two) '(three))
; ; The function ITEMS is undefined

*- (subst '(one two three) 'items (our-first))
; ; The function our-first was given too few arguments

*- (subst '(one two three) 'items '(our-first))
(OUR-FIRST)

*- (subst '(one two three) 'items 'our-first)
OUR-FIRST

The subject then left this exercise.

This would use a push down stack of previous events. An event would be the analysis of

the student's input (including the analysis of any functions referred to) and any error

cliches that matched against the input. The stack would be weighted so that the more

distant in time an event occurred the less influence it would have on the current input.

ITSY would then use the stack to focus its search for an error. The stack would be used

when ITSY was unable to match an error cliche against the student's input. In the above

example ITSY would be unable to match an error cliche against the input:

Chapter XIII Conclusions 234

(items '(one two three))

But on the stack would be information on the line

(our-first '(one two three))

This would contain the following;

a) The error cliche Brackets Around a Variable matched against this input,

b) The name of the variable surrounded by brackets was ITEM.

Using this information ITSY would determine that the student was trying to give a value

to the variable ITEM.

ITSY s approach could be extended to experts in the form of an advanced Program

Debugging system. Since PLANs are language independent the debugger could cope with

any programming language that had an analyser (analysers exist for Lisp, Fortran and

PLl [Waters, 1985]). Because we cannot restrict expert programmers to work in a

restricted context or burden the programmer with the need to supply specification, the

system would only be able to detect a certain class of errors. This class would include

errors such as: unreachable statements, endless recursion and non-terminating loops. It

would not be possible to detect deep semantic or conceptual errors. Such errors require

knowledge about the actual task being attempted.

In order to increase efficiency not all the error cliches would be active for any error. The

set of error cliches activated would depend on the type of error signalled this would tie the

debugger closely to the normal program debugger. For example, the error stack

overflow would trigger the endless recursion error cliche, but not the incorrect loop

initialisation error cliche.

Expert error cliches for Lisp could include:

Chapter XIII Conclusions 235

a) placing mixing to Flavors [Weinreb & Moon, 1982] in the wrong order,

b) surgically changing a list (using one of RPLACA, RPLACD, NCONC etc.) that will be

used later,

c) using a THROW when not inside a CATCH.

Expert error cliches could also include 'bad style cliches' such as using inefficient code.

ŝ mpEcM!piCES

REFERENCES

Adam, A. & Laurent, J. P. Automatic Diagnostics of Semantic Errors. Proceedings of
the AISB-80 Conference on Artificial Intelligence, July 1980.

Anderson, J. R. & Reiser, J. B. The LISP Tutor. BYTE: The Small Systems Journal.
Vol. 10. No. 4. pp 159-175. April 1985.

Anderson, J. R., Pirolli, P. & Farrell, R. Learning to Program Recursive Functions.
To Appear in The Nature of Expertise. Chi, M., Glaser, R. & Farr, M. (eds). Hillsdale
New Jersey: Erlbaum, 1984.

Barr, A., Beard, M., & Atkinson, R. C. The Computer as a Tutorial Laboratory: The
Stanford BIP Project. International Journal of Man-Machine Studies, Vol. 8, pp 567-596,
1976.

Boies, S. J. & Grould, J. D. Syntactic Errors in Computer Programming. Human Factors
Vol. 16, 253-257,1974.

Bonar, J. & Soloway, E. Pre-Programming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction, Fall 1985.

Brotsky, D. Program Understanding through Cliche Recognition. MIT Artificial
Intelligence Laboratory. Working Paper 224 December 1981.

Brown, J. S. & Burton, R. R. A Paradigmatic Example of an Artificially Intelligent
Instructional System. Proceedings of the First International Conference on Applied
General Systems Research: Recent Developments and Trends, Binghampton, New
York, August 1977.

Burton, R. R. & Brown, J. S. An Investigation of Computer Coaching for Informal
Learning Activities. In Intelligent Tutoring Systems (eds) Sleeman, D. & Brown, J. S.
August 1978.

Cerri, S. A., Fabbrizzi, M. & Marsili, G. The Rather Intelligent Little Lisper. AISBQ
Vol 50, pp 21-24 Spring/Summer 1984.

Clancey, W. J. Tutoring rules for guiding a case method dialogue. International
Journal of Man-Machine Studies. Vol. 11, pp 25-49,1979.

di Sessa, A. A. A Principled Design for an Integrated Computational Environment.
MIT Laboratory of Computer Science. July 1982

du Boulay, J. B. H. LOGO learning by School Teachers. Edinburgh: Doctoral
dissertation. Department of Artificial Inteligence, University of Edinburgh, 1979.

du Boulay, B., O'Shea, T. & Monk, J. The Black Box Inside the Glass Box: Presenting
Computing Concepts to Novices. International Journal of Man-Machine Studies Vol.l4,
pp. 237-249,1981.

Eisenstadt, M. A User-Friendly Software Environment for the Novice Programmer.
Communications of the ACM Vol. 26 No. 12, pp 1058-1064, December, 1983.

Eisenstadt, M. & Laubsch, J. Towards an Automated Debugging Assistant for Novice
Programmers. Proceedings of the AISB-80 Conference on Artificial Intelligence, July,
1980.

References 2

Eisenstadt, M., Laubsch, J. H. & Kahney J. H. Creating Pleasant Programming
Environments for Cognitive Science Students. Proceedings of the Third Annual
Conference of the Cognitive Science Society. August, 1981.

Eisenstadt, M. & Lewis, M. Errors in an Interactive Programming Environment:
Causes and Cures. Human Cognition Research Laboratory. Milton Keynes, MK7 6AA
England Tech. Rep. 4 (2nd Ed.) September, 1985.

Elsom-Cook, M. T. Design Considerations of an Intelligent Tutoring System for
Programming Languages. Warwick: Doctoral dissertation. Department of Psychology,
University of Warwick. October 1984.

Goldstein I. P. Summary of MYCROFT: A System for Understanding Simple Picture
Programs. Artificial Intelligence. Vol. 6 pp. 249-288,1975.

Goldstein, I. P. & Papert, S. Artificial Intelligence, Language, and the Study of
Knowledge. Cognitive Science, Volume 1, Number 1,1977.

Hasemer, T. A Very Friendly Software Environment for SOLO in New Horizons in
Educational Computing, (ed) Yazdani M.Ellis Horwood, London, pp 84-100 1983.

Hasemer, T. An Empirically-Based Debugging System for Novice Programmers.
Human Cognition Research Laboratory. The Open University, Milton Keynes,
England. Technical Report. No. 6, November 1983.

Hasemer, T. A Beginner's Guide to Lisp. Addison-Wesley 1984.

Johnson, W. L, Draper & S. Soloway, E.Classifying Bugs is a Tricky Business.
Proceedings of the Seventh Annual NASA/Godard Workshop on Software Engineering,
Baltimore, 1982.

Johnson, W. L., Draper, S. & Solo way, E. An Effective Bug Classification Scheme Must
Take the Programmer into Account. Proceedings of The Workshop on High-Level
Debugging, Palo Alto, 1983.

Johnson, L. W. & Soloway, E. PROUST: An Automatic Debugger for Pascal
Programs. BYTE The Small Systems Journal. Vol.lO. No. 4. pp 179-190 April 1985

Kahney, H. & Eisenstadt, M. Programmers' Mental Models of their Programming
Tasks: The Interaction of Real World Knowledge and Programming Knowledge.
Proceedings of the Fourth Annual Conference of the Cognitive Science Society. Ann
Arbor, Michigan, 1982.

Laubsch, J. & Eisenstadt, M. Domain Specific Debugging Aids for Novice
Programmers. Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, B.C. Canada, August 1981.

Laubsch, J. & Eisenstadt, M. Using Temporal Abstraction to Understand Recursive
Programs Involving Side Effects. Proceedings of the National Conference on Artificial
Intelligence August 1982.

Lewis, M. Improving Solo's User Interface: An Empirical Study of User Behaviour and
Proposals for Cost-Effective Enhancements to Solo. Computer Assisted Learning
Research Group The Open University, Milton Keynes, England. Technical Report No 7.
April 1980.

References 3

Lieberman, H. Steps Toward Better Debugging Tools for Lisp. Proceedings ACM
Symposium on Functional Programming, 1984.

Lukey, F. J. Understanding and Debugging Programs. International Journal of Man-
Machine Studies Vol. 12, pp. 189-202,1980.

Lutz, R. Towards an Intelligent Debugging System for Pascal Programs. Human
Cognition Research Laboratory, The Open University, Milton Keynes, England.
Technical Report No. 8, April 1984.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. & Levin, M. I. LISP 1.5
Programmer’s Manual, The MIT Press, Cambridge, Massachusetts 1962.

Murray, W. R. Automatic Program Debugging for Intelligent Tutoring Systems.
Texas: Doctoral dissertation. Artificial Intelligence Laboratory, The University of
Texas a t Austin. June 1986.

Norman, D. A., Design Principles for Human-Computer Interfaces. Proceedings of the
CHI 1983 Conference on Human Factors in Computer Systems. Boston, December 1983.

O'Shea, T. & Self, J. Learning and Teaching with Computers. Harvester Press. 1983.

Pitman, K. M. The Revised MacLISP Manual. MIT Laboratory for Computer Science
Cambridge, Massachussets (MIT/LCR/TR 295), May 1983.

Raj an, T. M., APT: The Design of Animated Tracing Tools for Novice Programmers.
Human Cognition Research Laboratory, The Open University, Milton Keynes, England,
Technical Report No. 15. March 1985.

Rich, C., Shrobe, H. E., Waters, R. C., Sussman, G. J. & Hewitt, C. E. Programming
Viewed as an Engineering Activity. MIT Artificial Intelligence Laboratory, A. I. Memo
459, January 1978.

Rich, C. Inspection Methods in Programming. MIT Artificial Intelligence Laboratory,
Report No. AI-TR-604. June 1981.

Ruth, G. R. Intelligent Program Analysis. Artificial Intelligence, Vol. 7, pp. 65-851976.

Shapiro, D. G. Sniffer: A System that Understands Bugs. MIT Artificial Intelligence
Laboratory. A.I. Memo No. 638 June, 1981.

Shortliffe, E. H. Computer Based Medical Consultations: MYCIN. New Yok: American
Elsevier, 1976.

Shrobe, H. E., Waters, R. C. and Sussman G. J. A Hypothetical Monologue Illustrating
the Knowledge Underlying Program Analysis. MIT Artificial Intelligence Laboratory,
A.I. Memo 507, January 1979.

Sleeman, D. H. & Smith, M. J. Modelling Student's Problem Solving. Artificial
IntelHgence Vol. pp 16 171-188,1981.

Spohrer, J. G. & Solo way, E. Analysing the High Frequency Bugs in Novice Programs.
Empirical Studies of Programmers, Soloway, E. & Iyengar, S. (eds). Ablex Publishing
Corporation Norwood, New Jersy. pp 230-251.1986

References 4

Stallman, R. Emacs the Extensible, Customisable, Self-Documenting Display Editor.
Proceedings of ACM SIGPLAN-SIGOA Symposium. Text Manipulation. ACM
SIGPLAN Notices vol. 16, no. 6, June 1981.

Steele, G. L. Common Lisp: The Language. Digital Press, 1984.

Touretzky, D. S. A Grentle Introduction to Symbolic Computation. Harper and Row, 1984.

Waters, R. C. Automatic Analysis of the Logical Structure of Programs. Technical
Report No. TR-492, December 1978.

Waters, R. C. A Method for Analysing Loop Programs. IEEE Transactions on Software
Engineering, Vol. SE-5 No. 3 pp 237-247, May 1979.

Waters, R. C. The Programmer's Apprentice: Knowledge Based Program Editing.
IEEE Transactions on Software Engineering, Vol SL-8 No.l, January 1982.

Waters, R. C. KBEmacs: A Step Toward the Programmer's Apprentice. MIT Artificial
Intelligence Laboratory, Technical Report 753, May 1985.

Weinreb, D. & Moon, D. Lisp Machine Manual, 1981.

Wertz, H. Stereotyped Program Debugging: an aid for novice programmers.
International Journal of Man-Machine Studies. Vol. 16, pp. 379-392,1982.

Wescourt, K. T., Beard, M., Gk)uld, L. & Barr, A. Knowledge Based CAI: CINS for
Individualised Curriculum Sequencing. Stanford University, Stanford California,
Technical Report No. 290 Inst, for Mathematical Studies in the Social Sciences, 1977.

Wilensky, R. Lispcraft. W. W. Norton and Co. London, 1984.

Winston, P. H. & Horn, B. K. P. Lisp. Addison-Wesley 1981.

Winston, P. H. & Horn, B. K P. Lisp, 2nd Edition. Addison-Wesley 1984

Zelinka, L. M. Automated Program Recognition MsC Thesis MIT Electrical
Engineering and Computer Science, June 1986.

APPENDIXA

INSTRUCTIONS FOR STUDY I

This appendix contains the two sheets that I handed out to the subjects, at the
start of the experiment. The first sheet gives a brief introduction, telling the subjects
how to log on and how to attempt the exercises. The second sheet gives a summary of
the editor and LISP top-level commands.

LISP SESSION

1. Press return until you are prompted by

ENTER CLASS

then type 5 return. You will be prompted by

Enter Command or Course Code:

type in LOG R.LISPCLASS.N where n is your number (0..8). Then press the ESC
button, you will then be prompted by (PASSWORD) the password is your number i.e. n.

2. When you log in you will automatically be put into the LISP toplevel. After a few
minutes the word NIL will appear on the screen.

3. Start on chapter 2 in Winston & Horn. The exercises in chapter 2 can be typed into
the LISP top level. First write the answer on the sheet provided, then type in your
answer.
If your first attempt is wrong try typing in another, feel free to write any comments
you feel relevant on the top level as well, you can write comments by typing a semi­
colon at the start of the line. If you make an error in the LISP top level LISP will type
something like

ERROR
Debug option (type ? for help):

if you get this type (control g).

4. When you reach chapter 3 then you will need to write your function definitions into
a file and then load them. Enter emacs by typing ^e. Once you have entered emacs
you need to create a file. Type '^x ' f̂, the editor will the prompt you with Find File
(Default RS:<R.LISPCLASS>GAZONKDEL.O): then type in the name of the file you
want to create. The file name should end with .Isp (eg lispfile.lsp). If the file already
exists you will enter this file and the contents will appear on the screen. You can now
type in the definitions.

5. Once you have typed in all the definitions you can save the file contents by typing ^x
^s. Quit emacs by typing ^c. You will now be back in the LISP top level. Load your file
by typing ^1 then the file name inside two vertical bars (eg. I lispfile.lsp I)

6. When you enter emacs for the second time you will be taken back to the last file that
you were editing, you can then type in the extra definitions then re-load the file.

7. Whenever you are stuck ring me on 3701 and I will then advise you via your
term inal.

8. Once you have finished type "(stop)" to leave the LISP top level.

Summary of Commands

Enter Emacs

Quit Emacs

Appendix A 2

Emacs Commands

T

Keypad 4

Keypad 6

A x A f

A v Ac

Up one line

Down one line

Left one character

Right one character

Left one word

Right one word

Find a file (must finish with .Isp)

X "s Write a file

Linefeed or Return then Tab automatically indents the text,

enter Load just one function.

Lisp Top Level Commands

^1

^ f

(step t)

(step nil)

Stop a program running

Load a file (I I)

Look at a function

Turn tracer on Space Bar Return to step through

Turn tracer off

Anything typed after a semi-colon is ignored by
the interpreter.

If you get a error in the LISP top level LISP will type something like

ERROR
Debug option (type ? for help):

if you get this type a control g (G).

APPENDIXB

Raw Data

This appendix contains the raw data collected from the study. Each column
represents a particular subject. For example, in the 2 lines

"The textual environment

6 4 1 3 3 0 0 0 0"

should be read as follows:

The first subject made 6 errors involving the textual environment. The second
subject made 4 such errors, the third subject made 1 such error, and so on.

Subject

K J A B D E J 2 B 2 P

Problems Caused by the Environment

1. The textual environment.

6 4 1 3 3 0 0 0 0

2. The computing environment

1 9 7 4 10 1 2 18 4

Algorithmic Errors

1. Not realising that a solution is incorrect.

0 10 0 0 0 0 0 8 0

2. Using the wrong function, which is not one of APPEND, CONS and LIST.

0 1 1 3 0 0 2 0 0

3. Using the wrong function out of APPEND, CONS and LIST.

0 4 7 0 0 0 0 4 0

4. Using the wrong combination of CAR's and CDR’s.

5 5 4 10 5 7 1 0 0

5. Errors with recursion.

0 11 3 0 0 0 0 2 2

6. Other Algorithmic errors.

0 18 9 0 0 0 0 5 3

Appendix B 2

K B

Subject

D E

Errors in Lisp

J2 B2

1. Simple Errors.

8 25 7 2

2. Forgetting to load a function.

0 1 3 1

3. Unbound atoms.

0 1 3 0

4. Putting brackets around an atom

2 3 15 0

11

0

5. Stuck a t top-level, because there are not enough closing brackets

2 0 1 1 2 6 1 1 1

6. Putting an extra set of brackets around a function call.

0 0 14 0 0 0 3 0 0

7. Not putting brackets around a function call.

2 0 14 6 5 0 0 1 1

8. Wrong number of arguments given to a function.

0 0 4 2 2 0 0 1 1

9. Wrong number of arguments given to a function, because the arguments are in the
wrong form.

0 5 1 4 6 0 0 4 4

10. Arguments given are of the wrong type.

1 15 16 0 12 0 4 7 1

11. Errors concerning the special form DEFUN.

3 2 0 0 0 0 2 0 0

12. Errors in the test part of a clause in a COND special form.

0 0 4 0 0 0 1 3 0

Appendix B 3

Subject

K J A B D E J2 B2

13. Errors in the result part of a clause in a COND special form.

0 16 2 0 0 0 0 0 0

14. Quoting an object that should not be.

0 7 0 0 0 0 0 1

15. Not quoting an object that should be.

1 4 16 5 6 1 1 3

16. A file not loading, because there are not enough closing brackets.

0 0 2 0 0 0 0 0 0

17. Other Errors.

0 9 3 0 1 20 0 1

The large variations between the number of errors made by the subjects is due to two
reasons. Firstly, some subjects made fewer errors per line of input than others.
Secondly, some of the subjects attended more sessions than others.

APPENDIX c

Dribble Files

This contains two of the dribble files from the study. My comments are preceded by
two semi-colons, the subjects' by one. Extra comments added "after the event" are in
this font.

I Dribbling.|
(defun stop ()

(undribble)
(quit))

STOP
(setq W nil)
NIL

The function COMPLEX? is exercise 3-10 on page 42 of "Lisp" [Winston & Horn,
1981]. The problem statement is:

"Problem 3-10: Define COMPLEX?, a predicate that takes three arguments. A, B,
and C, and returns T if b squared - 4ac is less than zero."

[LEDIT Created.]
[Reading from LEDIT...]
(defun complexp (a b c) The function is

(lessp (difference (expt b 2) "zapped" from
(times 4 a c)) 0)) the file

COMPLEXP
[LEDIT Completed.] [LEDIT Continued.]
[Reading from LEDIT...]
(defun complexp (a b c)

(lessp (difference (expt b 2) (times 4 a c))))
COMPLEXP
The subject is going to load his file brin.lsp

[LEDIT Completed.]file : |brin.Isp|
(defun first (exp-1) (car exp-1))
(defun rest (exp-1) (cdr exp-1))
(defun insert (new exp-1) (cons new exp-1))
(defun rotate-1 (exp-1) (append (rest exp-1) (cons (first exp-1)
nil)))
(defun rotate-r (exp-1) (append (cons (first (reverse exp-1)) nil)

(reverse (rest (reverse exp-1)))))
(defun palindromize (exp-1) (append exp-1 (reverse exp-1)))
(defun f-to-c (f) (difference (quotient (plus f 40) 1.8) 40))
(defun c-to-f (c) (difference (times (plus c 40) 1.8) 40))
(defun roots (a b c) (list (quotient (plus (minus b) (sqrt
(difference (expt b 2) (times 4 a c)))) (times 2 a)) (quotient
(difference (minus b) (sqrt (difference (expt b 2) (times 4 a c))))
(times 2 a))))
(defun evenp (num) (zerop (remainder num 2)))
(defun palindromep (listl) (equal listl (reverse listl)))
(defun rightp (elta eltb eltc)

(equal (expt elta 2) (plus (expt eltb 2) (expt eltc 2))))
(defun complexp (a b c) (lessp (difference (expt b 2) (times 4 a
c)) 0))

Appendix C 2

[LLOAD Of file RS:<R.LISPCLASS.7>BRIN.LSP.25 completed.]
QUIT*
The subject uses a top level tool to look at the definition of a loaded function,

function: complexp
(DEFUN COMPLEXP (A B C) (LESSP (DIFFERENCE (EXPT B 2) (TIMES 4 A
C)) 0))
QUIT*
The function NILCAR is exercise 3-11 on page 45 of "Lisp". The problem statement
is:

"Problem 3-11: In some LISP's, trying to take the CAR or CDR of NIL causes an
error. Define NILCAR and NILCDR in terms of CAR and CDR such that they work
like CAR and CDR, but return NIL if given NIL as their argument no matter what
CAR and CDR do."

[LEDIT Continued.]
[Reading from LEDIT...]
(defun nilcar (exp-1)

(cond ((null exp-1) nil)
(nil (first exp-1))))

NILCAR
[LEDIT Completed.]function : nilcar
(DEFUN NILCAR (EXP-1) (COND ((NULL EXP-1) NIL) (NIL (FIRST EXP-
1))))

QUIT*
; i dont really understand how cond works, but here goes.
(setq lista ' (a b o d e f))(A B C D E F)
(nilcar lista)NIL
(nilcar nil)NIL
[LEDIT Continued.]
[Reading from LEDIT...]
(defun nilcar (exp-1)

(cond ((null exp-1) nil)
(t (first exp-1))))

NILCAR
[LEDIT Completed.]function: nilcar
(DEFUN NILCAR (EXP-1) (COND ((NULL EXP-1) NIL) (T (FIRST EXP-1))))
QUIT*
; ok lets try it this way
(nilcar lista)A
(nilcar ())NIL
(nilcar nil)NIL
(nilcar '(1234 asdf 5678))1234

Appendix C 3

; i think i u
; sorry.... i think i'm beginning to understand
[LEDIT Continued.]
[Reading from LEDIT...](defun nilcdr (exp-1)

(cond ((null exp-1) nil)
(t (rest exp-1))))

NILCDR
[LEDIT Completed.]function : nilcdr
(DEFUN NILCDR (EXP-1) (COND ((NULL EXP-1) NIL) (T (REST EXP-1))))
QUIT*
(cdr nil)NIL
(nilcdr nil)NIL
(nilcdr lista)(B C D E F)
(nilcdr '(1234 asdf 5678))(ASDF 5678)
function: nilcdr
(DEFUN NILCDR (EXP-1) (COND ((NULL EXP-1) NIL) (T (REST EXP-1))))
QUIT*
The function CHECK-TEMPERATURE is exercise 3-12 on page 45 of "Lisp". The
problem statement is:

"Problem 3-12: Some people prefer the Fahrenheit scale to the Celsius scale, because
they find it aesthetically pleasing that 0 degrees and 100 degrees are pinned to
temperatures that bracket the temperature spectrum of temperate climates, 0 degrees
being ridiculously cold and 100 degrees being ridiculously hot. Define CHECK-
TEMPERATURE, a function that is to take one argument, such that it returns
RIDICULOUSLY-HOT if the argument is greater than 100, RIDICULOUSLY-COLD
if the argument is less than 0, and OK otherwise."

[LEDIT Continued.]
[Reading from LEDIT...]
(defun check-temperature (temp)

(cond ((greaterp temp 100) '(ridiculously-hot))
((lessp temp 0) '(ridiculously-cold))
(t '(ok))))

CHECK-TEMPERATURE
[LEDIT Completed.]
; problem 3.12
function : check-temperature

(DEFUN CHECK-TEMPERATURE (TEMP)
(COND ((GREATERP TEMP 100) '(RIDICULOUSLY-HOT))

((LESSP TEMP 0) '(RIDICULOUSLY-COLD))
(T ' (OK))))

QUIT*
(check-temperature 102)(RIDICULOUSLY-HOT)

Appendix C 4

(check-temperature 25)(OK)
(check-temperature -32)(RIDICULOUSLY-COLD)
(check-temperature 0)(OK)
; it would be better i s’pose if the returns were'nt lists ?
[LEDIT Continued.]
[Reading from LEDIT...]
(defun check-temperature (temp)

(cond ((greaterp temp 100) (car '(ridiculously-hot)))
((lessp temp 0) (car '(ridiculously-cold)))
(t (car '(ok)))))

CHECK-TEMPERATURE
[LEDIT Completed.]function : check-temperature

(DEFUN CHECK-TEMPERATURE (TEMP)
(COND ((GREATERP TEMP 100) (CAR '(RIDICULOUSLY-HOT)))

((LESSP TEMP 0) (CAR '(RIDICULOUSLY-COLD)))
(T (CAR '(O K)))))

QUIT*
(check-temperature 89)OK
(check-temperature 190)RIDICULOUSLY-HOT
(check-temperature -1500000000)RIDICULOUSLY-COLD

The function CIRCLE is exercise 3-13 on page 47 of "Lisp". The problem statement
is:

Problem 3-13: Define CIRCLE such that it returns a list of the circumference and
area of a circle whose radius is given. Assume PI is to be a free variable with the
appropriate value."

; problem 3.13
[LEDIT Continued.]
[Reading from LEDIT...]
(defun circle (radius-1)

(list (times 2 pi radius-1)
(times pi radius-1 radius-1)))

CIRCLE
[LEDIT Completed.]function: circle
(DEFUN CIRCLE (RADIUS-1)

(LIST (TIMES 2 PI RADIUS-1) (TIMES PI RADIUS-1 RADIUS-1)))
QUIT*
(setq pi 3.142)3.142
(circle 1) (6.284 3.142)
(circle 5)(31.4199998 78.549999)
(circle pi) (19.7443278 31.018339)

' its just occured to me that i went around the houses a bit in 3.12
[LEDIT Continued.]

Appendix C 5

[Reading from LEDIT...]
(defun check-temperature (temp)

(cond ((greaterp temp 100) 'ridiculously-hot)
((lessp temp 0) 'ridiculously-cold)
(t 'ok)))

CHECK-TEMPERATURE
[LEDIT Completed.]function : check-temperature
(DEFUN CHECK-TEMPERATURE (TEMP)

(COND ((GREATERP TEMP 100) 'RIDICULOUSLY-HOT)
((LESSP TEMP 0) 'RIDICULOUSLY-COLD)
(T 'OK)))

QUIT*
(check-temperature 13)OK
(check-temperature 104)RIDICULOUSLY-HOT
; thats better
function: member
MEMBER compiled.
QUIT*
(stop)

Appendix C 6

The next dribble file shows how on-line advice can help a student.

IDribbling.j
(defun stop ()

(undribble)
(quit))

STOP
(setq W nil)
NIL
(

(atom (cadr '((be) (de))))
)
;NIL UNDEFINED FUNCTION OBJECT
QUIT*
(atom (cadr '((b c) (d e))))NIL
(atom d)
;D UNBOUND VARIABLE
QUIT*
(cadr ((b c) (d e)))
;B UNDEFINED FUNCTION OBJECT
QUIT*
(cadr '((be) (de)))(D E)

(cdr '((be) (d e)))((D E))
(cons 'a 0) (A)

The functions MYSTERY, STRANGE and SQUASH are exercises 4-1, 4-2 and 4-3 on
page 57 of "Lisp". The problem statements are:

Problem 4-1: Describe the evident purpose of the following function:

(DEFUN MYSTERY (S)
(COND ((NULL S) 1)

((ATOM S)0)
(T (MAX (ADDl (MYSTERY (CAR S)))

(MYSTERY (CDR S))))))

Problem 4-2: Describe the evident purpose of the following function:

(DEFUN STRANGE (L)
(COND ((NULL L) NIL)

((ATOML)L)
(T (CONS (STRANGE (CAR L))

(STRANGE (CDR L))))))

Problem 4-3: Define SQUASH, a function that takes an s-expression as its argument
and returns a nonnested list of all atoms found in the s-expression. Here is an
example:

(SQUASH '(A (A (A (A B))) (((A B) B) B) B))
(AAAABABBBB)

Appendix C 7

[LEDIT Created.]
[Reading from LEDIT...](defun squash (lista)

(cond ((null lista) nil)
((atom lista) lista))
(t (cons (squash (car lista))

())))
SQUASH
[LEDIT Completed.]
(setq 1 ' (a (b c) (d e))) (A (B C) (D E)))
(squash 1)
;T UNDEFINED FUNCTION OBJECT
Ibrin.IspI (defun first (exp-1) (car exp-1))
(defun rest (exp-1) (cdr exp-1))
(defun insert (new exp-1) (cons new exp-1))
(defun rotate-1 (exp-1) (append (rest exp-1) (cons (first exp-1)
nil)))
(defun rotate-r (exp-1) (append (cons (first (reverse exp-1)) nil)
(reverse (rest (reverse exp-1)))))
(defun palindromize (exp-1) (append exp-1 (reverse exp-1)))
(defun f-to-c (f) (difference (quotient (plus f 40) 1.8) 40))
(defun c-to-f (c) (difference (times (plus c 40) 1.8) 40))
(defun roots (a b c) (list (quotient (plus (minus b) (sqrt
(difference (expt b 2) (times 4 a c)))) (times 2 a)) (quotient
(difference (minus b) (sqrt (difference (expt b 2) (times 4 a
c))))(times 2 a))))
(defun evenp (num) (zerop (remainder num 2)))
(defun palindromep (listl) (equal listl (reverse listl)))
(defun rightp (elta eltb eltc)

(equal (expt elta 2) (plus (expt eltb 2) (expt eltc 2))))
(defun complexp (a b c)

(lessp (difference (expt b 2) (times 4 a c)) 0))
(defun nilcar (exp-1)

(cond ((null exp-1) nil)
(t (first exp-1))))

(defun nilcdr (exp-1)
(cond ((null exp-1) nil)

(t (rest exp-1))))
(defun check-temperature (temp)

(cond ((greaterp temp 100) 'ridiculously-hot)
((lessp temp 0) 'ridiculously-cold)
(t 'ok)))

(defun circle (radius-1)
(list (times 2 pi radius-1)
(times pi radius-1 radius-1)))

(defun mystery (s)
(cond ((null s) 1)

((atom s) 0)
(t (max (addl (mystery (car s)))

(mystery (cdr s))))))
(defun strange (1)

(cond ((null 1) nil)
((atom 1) 1)
(t (cons (strange (car 1))

(strange (cdr 1))))))
(defun squash (lista)

(cond ((null lista) nil)
((atom lista) lista))
(t (cons (squash (car lista))

())))

Appendix C 8

QUIT*
(strange 1) (A (B C) (D E))
1
(A (B C) (D E))
(atom 1)NIL
(atom (car 1))T
(atom (cdr 1))NIL
(atom (cadr 1))NIL
(atom (caadr 1))T
(caadr 1)B
(setq 1 (cdr 1))((B C) (DE))
1
((B C) (D E))
(setq 1 (cdr 1))((D E))
(setq 1 (cdr 1))NIL
(setq 1 '((d e)))((D E))
(car 1) (D E)
(caar 1)D
(cdr 1)NIL
[LEDIT Centinued.]
[LEDIT Completed.]; ;hello brian is the problem to do with squash?
; most definitely
; ;what exactly?
; i think the solution should be the same as starnge in 4-2, but
; it obviously isnt. i just cant see a way of doing it
function; squash
(DEFUN SQUASH (LISTA)

(COND ((NULL LISTA) NIL) ((ATOM LISTA) LISTA))
(T (CONS (SQUASH (CAR LISTA)) NIL)))

QUIT*
; my edit file contains an old attempt
; ; what you need is a way of stripping brackets from a list, the
; ; way to do this is use append eg. append (1 2 3) (4 5 6)
; ; gives (1 2 3 4 5 6)
;;does that help at all?
; possibly, i tried using append in an earlier attempt b
ut
;UT UNBOUND VARIABLE
*

; ut i got an error, so i guess i was'nt using it properly.
; i ’ll give it another try.

Appendix C 9

; ;the most likely reason for your error is that both arguments to
append
;;must be lists, append can’t strip a bracket off of an atom, so
you’11
;;need to cope with that if lista is an atom. I’ll leave you to
think
; ; about that but ring again in another ten minutes if your still
stuck
; ok thanx
(setq a ’z) Z
(list a) (Z)
(list ’a)(A)
[LEDIT Continued.]
[Reading from LEDIT...](defun squash (lista)

(cond ((null lista) nil)
((atom lista) (list lista))
(t (append (squash (car lista))

(squash (cdr lista))))))
SQUASH
[LEDIT Completed.]function : squash

(DEFUN SQUASH (LISTA)
(COND ((NULL L IS T A) N IL)

((ATOM L IS T A) (L I S T L I S T A))
(T (APPEND (SQUASH (CAR L I S T A)) (SQUASH (CDR L I S T A))))))

QU IT*

1
((D E))

; S UNBOUND VARIABLE
*

(setq 1 ’ (a (b c) (d e))) (A (B C) (D E))
(squash 1)(A B C D E)
; whhooopppeeee. to think i was so close about 5 hours ago ! !
(squash ’ (a (a (a (a b))) (((a b) b) b))) (A A A A B A B B B)
(stop)

APPENDIX D

INSTRUCTIONS FOR STUDY H

rrsY
When you make an error, the first thing that will happen is that the

'real' error message (the error message tht would have appeared if you were
not using ITS Y) will appear, the second is that ITSY will provide a short
tutorial using six frames. Each frame contains a message and a menu. The six
frames are as follows:

1. The 'Question Frame'. The aim of this frame is to check that ITSY
has the right diagnosis fo the error and you want a tutorial. The menus
consists of the following choisces:

Yes: Click on this if you want the tutorial
No: This will take you back to Lisp
Explain Question: This will provide an explanation of the question

2. The 'Explain Question Frame'. This will provide an explanation of
the question if have trouble understanding it. The menu consists of the
following choices:

OK: Click on this to go back to the question.

3. The 'Main Explanation Frame'. This shoul dgive a short
explanation of the error. The menu consists of the following choices:

Examples: Click on this to go to the example menu
Deeper Explanation:

Click on this to go to the deeper explanation menu
Cancel: Click on this to go back to Lisp.

4. The 'Deeper Explanation Frame'. This will give a longer
explanation of th error. The menu consists of the following choices:

Examples: Click on this to go to the example menu
Cancel: Click on this to go back to Lisp.

5. The 'Examples Frame'. This will give some examples. The menu
consists of the following choices:

Cancel: Click on this to go back to Lisp.

6. The 'Fix Frame'. This will give a possible 'fix' for the error.

If you are not sure what the first 'question frame' means, then click on
'yes'. If you click on 'no' you will not get the tutorial. As you progress
ITSY will ask you if you want a tutorial before presenting it, and later still
ITSY will put a 'Present Tutorial' option on the ITSY Lisp menu which you
can select if you want the tutorial.

Once you start defining your own comments, you can select the 'Add
Comments' option on the ITSY Lisp menu. Once you'v selected this you can

Appendix D 2

type your comments into the Lisp Window. To end the comments type end at
the beginning of a line.

You can describe any Common Lisp function by selecting 'Describe
Function' on the ITSY Lisp menu. ITSY will then print a description of the
function.

Appendix D 3

ITSY Lisp Top Level

When you first use ITSY the screen will have two parts, the lisp top
level and a status line. The status line is at the very bottom of the screen. The
status line will give information such as whether ITSY is waiting for input or
evaluating an s-expression or trying to find an error. If you click on the
middle or right mouse button a menu will appear. If you click on 'describe a
function' the type the name of a Common Lisp function a description of the
function will appear.

Later the shape of the screen will change. An editor window wiU
appear on top of the Lisp window. You can select either the editor window or
the Lisp window by moving the mouse to the desired window and clicking on
it with the Left mouse button.

In both the Lisp window and the editor window various actions can be
carried out by usng control keys and the mouse; a summary of the editor
commands is contained on another sheet

The following is a summary of the key commoands available in the
Lisp window.

control-f means hold the control key down while pressing the f key.

meta-f means hold the meta key down while pressing the f key

control-meta-f means hold both the control and meta key down while
pressing the f key.

Key Command Action

control-f Move forward a character

control-b Move backward a character

meta-f Move forward a word

meta-b Move backward a word

control-k Kill the current line from the cursor position

control-c Yank the previous input

meta-c (use only after a control-c). Yank the input
before die previous input.

control-a Move to the beginning of the line

control-e Move to the end of the line

control-d Delete the next character

rubout Delete the previous character

meta-d Delete the next word

Appendix D 4

The Editor

The following is the correct sequence to use in order to write a function
and load it into Lisp.

1. Select the editor window by moving the mouse over the window
and clicking the left mouse button, or by selecting the editor option on the
menu, (see menu)

2. Find a file. You will be prompted for a name. Type the name of
your file (You could use your name as the filename) (see menu)

3. Type in the definition of your function.

4. Save the buffer - (see menu).

5. Load the file into Lisp (see menu).

If you make changes to the buffer once you have loaded the file, you
can load the changed functions by selecting 'Load changed Functions' on the
menu.

Editor Commands

The following is a summary of the key commands available in the
Editor window.

control-f means hold the control key down while pressing the f key.

meta-f means hold the meta key down while pressing the f key.

control-meta-f means hold both the control and meta key down while
pressing the f key.

Key Command Action

control-f Move forward a character

control-b Move backward a character

meta-f Move forward a word

meta-b Move backward a word

control-meta-f Move forward an s-expression

control-meta-b Move backward an s-expression

control-n Move down one line

control-p Move up one line

control-k Kill the current lien from the cursor

control-a

control-e

control-d

rubout

meta-d

meta-rubout

control-meta-d

control-meta-rubout

control-v

meta-v

Mouse Left

Appendix D 5

Move to the beginning of the line

Move to the end of the line

Delete the next character

Delete the previous character

Delete the next word

Delete the previous word

Delete the next s-expression

Delete the previous s-expression

Move down a screen

Move up a screen

Select the window under the mouse.

It is possible to move the character cursor
around once inside the editor using the
mouse. Move the mouse to the desired

position and then press the left button.

Mouse Middle Mouse Right
Bring up a menu

Menu Choices are

Lisp:

Find a file:

Load a file:

Save this Buffer:

List all the Buffers:

Go to the Lisp window

Create or find a file

Load an existing file into Lisp
A menu will appear containing all of the
files you have saved. Selecting one of
these will load the file into the Lisp
environment.

Save the current Buffer

List the current buffers. A list of buffers
will appear at the top of the window. You
can select one of these by clicking on it
with the mouse

Load Changed Functions: Load the Changed functions into Lisp,

meta-rubout Delete the previous word

APPENDIX E

Total Number Errors for Study II

The first number given is the number of errors made in the particular category. The
second number given is the percentage of the total number of errors made in this
category.

Error

Apply CARs and CDRs in the wrong order

4 1.1

Arguments in the wrong form

9 2.4

A Slip Up

3 0.8

Bracket Error Outside a Clause

3 0.8

Bracket around a quoted hst

1 0.3

Brackets around a number

1 0.3

Brackets around a variable

14 3.8

Brackets around a variable in COND

2 0.5

Brackets around an unbound atom

5 1.3

Calling a Function that doesn't exist

10 2.7

Caused by Winston and Horn

2 0.5

Appendix E 2

Error due experimenter

0

Extra Set of Brackets around a function call

15 4.0

Extra set of brackets around a function call inside a COND

18 4.8

Function not loaded because of another error

1 0.3

Forgetting to load a function

0

Incorrect algorithm

111 29.8

Misreading the question

0

Missing a Function Call

2 0.5

No brackets around a function call

19 5.1

No brackets around a function call in a COND

7 1.9

No brackets around a test function

8 2.2

No gaps between atoms

3 0.3

Non-lists to Cons car cdr append

12 3.2

Not Closing the Test part of a Clause

11 3.0

Appendix E 3

Not Quoting

31 8.3

Not Setting a Variable before using it

3 0.3

Not Trying a function on the right input

0

Problem with load changed functions

0

Quoting a Function

1 0.3

quoting a variable

4 1.1

Quoting and putting brackets around a variable

0

Shp with a Bracket

1 0.3

Spurious Character in File

8 Z 2

Stack overflow due to infinite recursion

1 0.3

Text spelling error

13 3.5

Trying to give a value to a parameter globally

6 1.6

Unbound variable because of lexical Scoping

8 Z2

Unbound variable due to the deletion of a parameter

0

Appendix E 4

Unknown

4 1.1

Wrong Combination of Cars and Cdrs

0

Wrong number of arguments

21 5.6

Wrong type argument

10 2.7

Total number of errors 372

Number of times Advice given 10

APPENDIX F

RESULTS FOR STUDY m

Appendix F 2

I
1

llîl§ o o
O

o o o

âltlll en o o o o o
o

Il III (0 in (N o o o

o
o o O

o o o

o o O o o

sIIiIê o
o

O o o

iiiil o o o o o
o o

liiâl o M o
o o o o

ly i o CO
o o o o

1
g

1
llll w

< i l

111
m lljl

Appendix F 3

I
1

kh% o 0 0 o o o o o

lilill « O o o o o

liîil « o o «

o o o o o o

IiIiIeI
o « o o o

CO o o

iiiill o o « o o

lliil o o o o o o o o

« o o o o o o o

llili N o o o w « o o

1
w r t 4 ,

111

C T3« a g
fil i l l

4
II
II i l l l i i i i i iWPQ < ÊÜ rt

CO W)
if i l l i

Appendix F 4

I1

o
o o

iitiii <N § (0 o o

liîil eo 00

o
o

o o o

IiIiIeI
o o

o

o

o (0

o
o o 2 o o in

llll o o
o o o o """

IIiIeI o o o o o
C4

llll o
o o

-
C4 o 0)

u1 p ! ll IIil l i
ag a

Hill III§ , m <

sag giliil

Appendix F 5

I

n o o o o Ci

llllll 10 o « o o N eo

lloll
CO o CO w 8

iiiiii
o o o o o o o

iilild o o o o o o o

iilill (0 o o o o o o

Hill o o o o o o o

l i id o o o o o o o

Hill
o o o o Ci o o

u

1 I1
g
s iiiif% rt mp

cs ti
lll.

eS’S

i lilll il ijll
CO o Q 03

ill

Appendix F 6

IIÎ11
0 0 0 CO

0 ci 0 0

iilil 0 0 §

IlilSl 0
0

0
0 Tfl

IiIiIeI 0 0 ci 0 00

Hill 0 0
0

Hill 0 0 0 CO

Hikl 0
0

0
10

Hill 0 0 M CO s

1 Jill! l i !
= 1

ïll
"c

la c 's 1

I M 3

I
I

APPENDIX G

INDIVIDUAL RESULTS FOR STUDYDI

Appendix G 2

lllll Ci

liîiil CO

iilil CO

1lilll

IiIiIeI

iliill
Ci

l l l l

lilill

l l l l
u1 filllfl

S't
<

0>
w o

! | i l i i i l i J i

I

Appendix G 3

lllll Ci

llllll Ci

llîll Ci

Hill

iiiiid Ci

ilill

llll

I iIeI

ll l l

1
m (d gj

III
S ’S g

ill |H II
It lljji

M o < C U
iljfii
w tn < £ Ü rt if llll

£ z m w

Appendix G 4

I
5

llll!
lïtiil i n

lïtil
llllll
IiIiseI <N

llllll CO
C i

llül
llls l̂ eo

lllll C i

1 fifë,sS, i îs<
II
§ 5

a o

111
S 8
l i i i

lag glli i

Appendix G 5

Ii

llll! Ci

llllll Ci

lllll CO
CO

ilü l
iliid
lllll
ll!l
I iIeI
llll
1 I1

S’
pli
% (d m P

cd 0

H h 11™ w cd 4,

mn i iCO O Q K ïîi

Appendix G 6

I
S

lïîis 00

lïliil 't

liîil

o

^ tH C o
Q D fc cd Û fc a

h.

îHlII Ci

lilll o

ÜiIeI
T3 k •rt >H 0) O 2

tH1 lîlll 3 > QQ «

o |

fil
fl

loo's 1

III 3
H

Appendix G 7

lllll 10

iitiil 10

lllll Ci

llllll

iiliid

llllll

lllll

llllll

lllll Ci

«11 i i 1
llll

5
aCO
< 1P3 a cdliiHillJl

Appendix G 8

Ills!
Ci

llllll

lllsl

i lü l

iiliisl

alllll

lü l

ll&l

ll l l Ci Ci

i
w rt (U

III
(d g G

il! l i
â |

II i i i i i i
il
11îïii

Appendix G 9

I

l l l l l

l l l l l l
M Ci

l l l l l

l l l l l
M

l l ! l

j-" Jh
l l l i s l

CO

l l l l l
(0 CO

Ih
1 111 ll II

l l

a 5 Î 3

Illi III i l l

Appendix G 10

llJl!
Ci

lllll Ci Ci
0)

Hül

H iIeI
llll l

ll!l
t ! klllâl

lllll
U

g
a

I
1

Il .

Î H ï% c d m p

(d C
tüO°t | l . i i

1̂ m o

Ülll
ilî

llll rfl

î
2

Appendix G 11

I
3

Ills! G)

llllll

lllll

'Mni
O

I I iIeI O

Hill CO

l ü l

Hi&l

lllll

1 illllml' s a

|1Ic S 8III 3

H

Appendix G 12

yi

lui!

llllll

luii 10

iilüî

iiIiIeI

lllll

lü l

llÉl

lll l Ci

u

1 is Iflf Pt
<

u

m w ri fil111 ilJi

Appendix G 13

I
a

s

l U I !

Ci

l l l l l l

l l l l l

Ci

i l ü l

H i I e I
CO

I l l l l

l l ü l

l i i â l

H i l l

1

W ri 4J

i l l

ri T3

f f l
| l l

a |

H
g g .

i 4 J 4 . l l l l i l l i J ! f i l l

Appendix G 14

Ills!

luill 8

2

llîll
CO CO

ilü l

iililU
in

illll CO
CO

lü l

I iIeI
llll
u1 Pj li 11ll

a 3HI
% 1 iS I I I Hio V a < liii

I
&

Appendix G 15

(0

llll!

llllll Ci N
Ci

lull (0 Ci
h.

i l ü l

llilâl

Hill
Ci

liül

liiiU

lllll

1 I
1

g l «

î !»

ri C3

11=
l ê l t i l

1 i2 üIlllî il llll fû

Appendix G 16

l l t l l

§

l l î l l

l i i i i i

i i i i i d
0)

l l l l l
«

I i i e I

l i l l
« a

u

1 Jllll •s|

lil c
g

d 4) 2 3
H

I
g

Appendix G 17

l l l l l
n

l l t l l l

l l t l l
CO

i i l ü l

I i I i I e I

l i i i l l I—1

l i i § l

I I i I e I <->

l l i l l

u

1 i l IH i S

i
<

u

fiiŒ W cd ill a «3

111ilJi

I

Appendix G 18

l l t l §

«

i i l i l

i s l i s l

M i M

M U I

111!

l l i l l

l i l l

u1
M 4, C 'Ü

ill
s |

S i

II Hi l l j i i lM Q < k Ù d
m tuo8511 f i l lmw

Is

Appendix G 19

lull

llîlll

lltll in

ïilül

ililid

iilill
in

lliil

IIiIeI

liill
k,

1 w it
5 ê
IIII 1il III i l l

I

Appendix G 20

lllll

litiil

lilil M

M

i i i l

liÎEi

liili

g
w

11 Siî
rt C
tüO ®

lit,Isit III
III

1
III1Î ÎI

ii|
Î1I1 ill

Appendix G 21

l l l l l

l l t l l l
a -

l l l l l
«

i i l i l l
O

I i I i I e I « «

i i i i l l
o

l i l i l
o

I I i I e I
CO

l i i l l

Ih

1 II1Î t»> Q Q ci

■ S |
m | IJit

c

I l f
3
H

APPENDIX H

DRIBBLE FELE FOR STUDY BE

After the event comments are in this font.

"Dribble for LOUISE at It is Friday the nineteenth of September
1986; and the ti
me is: 15 16 41

" (QUOTE (((((NIL))))))
(((((NIL)))))

"(QUOTE (DDD))
(DDD)

"(CAR (CDR (CDR (CDR (QUOTE (((A) (O) (P) (G))))))))
NIL

"(CAR (CDR (CDR (CDR (QUOTE (((A) (0) (P) (G))))))))
NIL

"(CAR (CDR (CDR (CAR (QUOTE (((A) (O) (P) (G))))))))
(P)

"(CAR (CDR (CAR (CDR (CDR (QUOTE (A (0) ((P)) (((G))))))))))
NIL

"(CAR (CAR (CDR (CDR (QUOTE (A (O) ((P)) (((G)))))))))
(P)

"(CDR (CAR (QUOTE ((((A) O) P) G))))
(P)

"(APPEND (QUOTE (ABC)) (QUOTE NIL))
(ABC)

"(LIST (QUOTE (A B C)) (QUOTE NIL))
((ABC) NIL)

"(CONS (QUOTE (ABC)) (QUOTE NIL))
((A B C))

"(SETQ TOOLS (LIST (QUOTE HAMMER) (QUOTE SCREWDRIVER)))
(HAMMER SCREWDRIVER)

"(CONS (QUOTE PLIERS) TOOLS)
(PLIERS HAMMER SCREWDRIVER)

"TOOLS
(HAMMER SCREWDRIVER)

"(SETQ TOOLS (CONS (QUOTE PLIERS) TOOLS))
(PLIERS HAMMER SCREWDRIVER)

"TOOLS

Appendix H 2

(PLIERS HAMMER SCREWDRIVER)
" (APPEND (QUOTE (SAW WRENCH)) TOOLS)

(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
"TOOLS

(PLIERS HAMMER SCREWDRIVER)
"(SETQ TOOLS (APPEND (QUOTE (SAW WRENCH)) TOOLS))

(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
"TOOLS

(SAW WRENCH PLIERS HAMMER SCREWDRIVER)
"(LENGTH (QUOTE (PLATO SOCRATES ARISTOTLE)))

3
"(LENGTH (QUOTE ((PLATO) (SOCRATES) (ARISTOTLE))))

3
"(REVERSE (QUOTE (PLATO SOCRATES ARISTOTLE)))

(ARISTOTLE SOCRATES PLATO)
"(REVERSE (QUOTE ((PLATO) (SOCRATES) (ARISTOTLE))))

((ARISTOTLE) (SOCRATES) (PLATO))
"(REVERSE (QUOTE ((PLATO SOCRATES ARISTOTLE))))

((PLATO SOCRATES ARISTOTLE))
"(LENGTH (QUOTE ((CAR CHEVROLET) (DRINK COKE) (CEREAL

WHEATIES))))
3

"(REVERSE (QUOTE ((CAR CHEVROLET) (DRINK COKE) (CERAL
WHEATIES))))
((CERAL WHEATIES) (DRINK COKE) (CAR CHEVROLET))

"(APPEND (QUOTE ((CAR CHEVROLET) (DRINK COKE))))
((CAR CHEVROLET) (DRINK COKE))

"(SUBST (QUOTE OUT) (QUOTE IN) (SHORT SKIRTS ARE IN))
The subject has made her first error. The following three lines are internal Lisp
error handling stuff.
(ERROR (SUBST (QUOTE OUT) (QUOTE IN) (SHORT SKIRTS ARE IN))
ZETALISP-SYSTEMrUNDE

FINED-FUNCTION #<UNDEFINED-FUNCTION-TRAP 16643677>)
This is the Lisp error message
The function SHORT is undefined.
This is internal stuff from ITSY.
"message: #<N-Q-LIST-EXP 24534630> type: N-Q-LIST orig-type: NIL
:extra-info NIL
:fn-name (TOP-LEVEL SHORT SKIRTS ARE IN) code: NIL"

"message: #<N-Q-LIST-EXP 24534630> type: N-Q-LIST orig-type: NIL
: extra-info NIL
:fn-name (SHORT SKIRTS ARE IN) code: NIL"

"Student know N-Q-LIST 2"
"message: #<N-Q-LIST-TOP-LEVEL-EXP 24535230> type: N-Q-LIST-TOP-

Appendix H 3

LEVEL orig-type:
N-Q-LIST : extra-info NIL :fn-name NIL code: (SHORT SKIRTS ARE
IN) "

These are the error messages that could be displayed. The order is Question,
Question Explanation, Main Explanation, Deeper Explanation, Examples and
Fix.

" Did you intend to do one of the following:
~%1. use the list (SHORT SKIRTS ARE IN) as an argument

rather than
~%call the function SHORT.
~%2. call the function SHORT"

" Did you want to
~%1. give the literal value of the list (SHORT SKIRTS ARE

IN)
~%rather than have (SHORT SKIRTS ARE IN) evaluated or
~%2. call the function SHORT."

" You wanted to
~%1. give the literal value of the list (SHORT SKIRTS ARE

IN)
~%rather than have (SHORT SKIRTS ARE IN) evaluated or
~%2. call the function SHORT.~%
~%If you wanted to carry out 1
~%the interpreter thinks that you want the
~%call the function SHORT with the arguments SKIRTS ARE IN
~%instead of giving the list (SHORT SKIRTS ARE IN) as an

argument.~%
~%If you wanted to carry out 2
~%the interpreter cannot call the function
~%SHORT because it is not defined. Maybe you
~%have misspelt the function name, or you
~%have forgotten to load the file containing
~%the function definition."

" The correct way to give the literal value of list
~%as the argument to a function is to quote it.
~%The correct way to define a function is to use
~%defun see pages 39-43 of Winston and Horn."

"~%(append ~$'(cons ’a ’(b c))~& ~$'(1 2 3 4)~&)~%~%
two literal lists as arguments to append
~%~%~$'(a literal list)~&~%~%

a literal list
~%~%~%If we want to call a function ~$foo~&

Appendix H 4

~%to add two numbers then we can define foo by
~%~%(defun foo (x y) (+ x y))"

" If you want to give the lists (X Y Z) and (12 3)
~%as arguments to APPEND, then
~%(APPEND (X Y Z) (1 2 3)) would be wrong, but
~%(APPEND '(X Y Z) '(123)) would be right."

The subject has decided to look at the Question Frame
"Expose Question 1 It is Friday the nineteenth of September 1986;
and the time i
s; 15 31 56"
"I'm Exp Menu 1 Choose YES at It is Friday the nineteenth of
September 1986; and
the time is: 15 32 6"

The subject has selected the item Yes on the Question menu, and the Main
Explanation frame is exposed.

"Expose Main Explanation 1 It is Friday the nineteenth of
September 1986; and th
e time is: 15 32 15"

The subject has decided to cancel the rest of the tutorial.

"I'm Exp Menu 3 Choose CANCEL at It is Friday the nineteenth of
September 1986;
and the time is: 15 33 29"
"Explanation Over It is Friday the nineteenth of September 1986;
and the time is
: 15 33 52"
NIL

"(SUBST (QUOTE OUT) (QUOTE IN) (QUOTE (SHORT SKIRTS ARE IN)))
(SHORT SKIRTS ARE OUT)

"(SUBST (QUOTE IN) (QUOTE OUT) (QUOTE (SHORT SKIRTS ARE IN)))
(SHORT SKIRTS ARE IN)

"(LAST (QUOTE (SHORT SKIRTS ARE IN)))
(IN)

"(SETQ METHOD1 (QUOTE +))
+

"(SETQ METH0D2 (QUOTE -))

"(SETQ METHOD METHODl)
+

Appendix H 5

"METHOD
+

" (EVEL METHOD)
(ERROR (EVEL METHOD) ZETALISP-SYSTEM:UNDEFINED-FUNCTION
#<UNDEFINED-FUNCTlON-TRA
P 16722125>) The function EVEL is undefined.

ITSY was unable to find this error.
"Unable to find any errors"
"looking at warn about possible cause It is Friday the nineteenth
of September 1
986; and the time is: 15 37 4"
"finished looking at about possible cause It is Friday the
nineteenth of Septemb
er 1986; and the time is: 15 38 0"
NIL

" (EVAL METHOD)
(ERROR (EVAL METHOD) ZETALISP-SYSTEM:UNBOUND-VARIABLE #<UNBOUND-
SYMBOL-TRAP 1673
5233>) The variable + is unbound.

ITSY was unable to find this error.
"Unable to find any errors"
"looking at warn about possible cause It is Friday the nineteenth
of September 1
986; and the time is: 15 40 10"
"finished looking at about possible cause It is Friday the
nineteenth of Septemb
er 1986; and the time is: 15 40 16"
NIL

The subject has brought up the Editor Menu and selected the Go to Lisp item.
#"I'm Menu Ptype 1 Choose GO-TO-LISP at It is Friday the
nineteenth of September
1986; and the time is: 15 41 41"

"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
: 15 41 52"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 41 58"

"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
: 15 41 59"

Appendix H 6

The subject has brought up a menu and not selected any item (the subject
accomplished this by moving the mouse away from the menu).
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 42 1"

"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
: 15 42 1"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 198 6; and the time is: 15 42 10"
"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
: 15 42 10"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 42 17"

"(EVAL (EVAL (QUOTE (QUOTE METHOD))))
+

"lisp mouse click It is Friday the nineteenth of September 1986;
and the time is
: 15 45 1"
"I'm Ptype Dynamic Momentary Menu 1 Choose NIL at It is Friday
the nineteenth of
September 1986; and the time is: 15 45 31"

" (DEFUN OUR-FIRST (OURLIST) (CAR (QUOTE (OURLIST))))
OUR-FIRST

"TOOLS
(SAW WRENCH PLIERS HAMMER SCREWDRIVER)

"(OUR-FIRST TOOLS)
OURLIST
"*- "CAR
(ERROR CAR ZETALISP-SYSTEM:UNBOUND-VARIABLE #<UNBOUND-SYMBOL-TRAP
20600620>) The
variable CAR is unbound.

ITSY has correctly trapped this error.
"message: #<NO-BKT-FN-EXP 24534570> type: NO-BKT-FN orig-type:
NIL :extra-info N
IL :fn-name (TOP-LEVEL . CAR) code: NIL"
"message: #<NO-BKT-FN-EXP 24534570> type: NO-BKT-FN orig-type:
NIL :extra-info N
IL :fn-name CAR code : NIL"

Appendix H 7

"Student know NO-BKT-FN 2"
"message: #<N O -B K T -FN -TO P -L E V E L-E X P 24535270> type: N O -B K T -FN -

TOP-LEVEL orig-typ
e : N O -B K T-FN :extra-info N IL :fn-name N IL code: CAR"
" Does CAR refer to the function CAR rather

~%than the variable CAR?"
" Did you want to call the function CAR

~%rather than get the value of the variable CAR?"
" The interpreter thinks that you want the

~%value of the variable CAR rather than call
~%the function CAR."

" The correct way to call a function is to
~%write a single opening bracket followed
~%first by the name of the function, then
~%its arguments and finally a closing
~%bracket. If you leave out the opening
~%and closing brackets the interpreter will
~%think that the function name is intended
~%as a variable name, and will try to
~%evaluate it."

"~% (~$*~& ~$6"& ~$9~&)
~% function arguments
~%~% (~$length~& ~$’(a b c)~&)
~% function argument
"%"% (~$subst~& ~$cats~& ~$dogs~& ~$'(dogs drink

milk)
~% function arguments"

" For CAR to be regarded as a function
~%you need to add the pair of brackets
~%to surround the function and the
~%arguments. If I wanted to call the
~%function FOO with arguments 1 and 2
"%F00 1 2 would be wrong but (FOO 1 2)
~%would be right."

"Expose Question 1 It is Friday the nineteenth of September 1986;
and the time i
s: 16 2 10"
"I'm Exp Menu 1 Choose NO at It is Friday the nineteenth of
September 1986; and
the time is: 16 2 50"
"Explanation Over It is Friday the nineteenth of September 1986;
and the time is
: 16 2 58"

APPENDIX I

FRAME TIMES FOR STUDY m

S Message Times

Message Tim e Percentage of total time
m in sec

Question 12 15 26

Explain Question 1 03 2

Main Explanation 9 33 20

Deeper Explanation 6 12 13

Fix 13 14 28

Example 5 39 12

Total 47 56

C2 Message Times

Message Tim e Pei
m in sec

Question 15 52 47

Explain Question 0 23 1

Main Explanation 13 04 39

Deeper Explanation 0 17 1

Fix 02 32 8

Example 1 25 4

Total 33 33

Appendix 12

L Message Times

Message Tim e Percentage of total time
m in sec

Question 12 45 4L

Explain Question 0 35 2

Main Explanation 5 52 19

Deeper Explanation 0 47 3

Fix 6 32 21

Example 4 18 14

Total 30 49

S2 Total Message Time

Message Tim e
m in sec

Pe

Question 5 52 50

Explain Question 0 0 0

Main Explanation 2 42 23

Deeper Explanation 0 55 8

Fix 2 09 18

Example 0 10 1

Total 11 48

Raw Times

Appendix I 3

Tim es Q EQ M F Eg De

C2 952 23 784 152 85 17

S 735 63 573 794 339 372

L 765 35 352 392 258 47

S2 352 0 162 129 10 55

TOTAL 2804 121 1871 1467 692 491

Total % 38 2 25 20 9 7

APPENDIX J

A List of all the Functions ITSY can Currently Analyse

ITSY can currently analyse the following 86 Common Lisp Functions:

+ * / max min expt
sqrt - float tmncate rem round
car cdr quote caar cadr cdar
cddr caaar caadr cadar caddr cdaar
cdadr cddar cdddr caaaar caaadr caadar
caaddr cadaar cadadr caddar cadddr cdaaar
cdaadr cdadar cdaddr cddaar cddadr cdddar
cddddr append list cons length reverse
subst remove last eval defun atom
listp equal = null member numberp
< > zerop minusp evenp not
and or cond abs funcaU let
let* setq psetq mapcar oddp apply
mapcan do return do* go prog
progl progn

APPENDIX K

THE STUDENT MODEL CLICHES

Although the student model cliches No Brackets Around a Function Call (Student

Model Cliche 1) anâExtra Brackets Around a Function Call (Student Model Cliche 3)

have been enumerated separately, they have actually been merged in ITSY for

efficiency reasons.

1. Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: CL Function

Criteria: None

Other Checks: None

Null Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Quote

Student Model Cliche Name: No Brackets Around a Function Call

Surface Code Segment: Function Application

Criteria: The type of function application is normal

or recursive

Other Checks: None

Appendix K 2

2. Student Model Cliche Name: Bracket Around a Variable

Surface Code Segment: Symbol

Criteria: The symbol is bound and not the name of a

function

Other Checks: None

3. Student Model Cliche Name: Extra Brackets Around a Function Call

Surface Code Segment: CL Function

Criteria: None

Other Checks: None

Null Student Model Cliche Name: Extra Brackets Around a Function Call

Surface Code Segment: Quote

Student Model Cliche Name: Extra Brackets Around a Function Call

Surface Code Segment: Function Application

Criteria: The type of function application is normal

or recursive

Other Checks: None

4. Student Model Cliche Name: Arguments in the Wrong Forml

Surface Code Segment:

Appendix K 3

Non Connective

Criteria: The function takes a set number of

arguments

The function has been given the right

number of arguments

Other Checks: None

Null Student Model Cliche Name: Arguments in the Wrong Forml

Surface Code Segment: Quote

5. Student Model Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: Non Connective

Criteria: The function takes a set number of

arguments

The function has been given the right

number of arguments

Other Checks: None

Null Student Model Cliche Name: Arguments in the Wrong Form2

Surface Code Segment: Quote

6. Student Model Cliche Name: Not Quoting a List

Surface Code Segment: Quote

Appendix K 4

Criteria: The input to the segment is a list

None of the elements of the list are

functions

Other Checks: None

7. Student Model Cliche Name: Not Quoting an Atom

Surface Code Segment: Quote

Criteria: The input to the segment is an atom

The atom is not a variable

Other Checks: None

8. Student Model Cliche Name: Quoting a Variable

Surface Code Segment: Symbol

Criteria: The symbol is bound

Other Checks: None

9. Student Model Cliche Name: Quoting a Function Call

Surface Code Segment: Function Application

Criteria: The function is of type normal or recursive

Other Checks: None

Appendix K 5

10. Student Model Cliche Name: Quoting a Function Call

Surface Code Segment: CL Function

Criteria: None

Other Checks: None

The student model cliche Wrong Number of Arguments to a Function Call on the

surface code segment Non Connective relies on the fact that non-function non­

connectives do not have a set number of arguments. This should really have been

defined on the surface code segments Function Application and CL Function

11. Student Model Cliche Name: Wrong Number of Arguments to a

Function Call

Surface Code Segment: Non Connective

Criteria: The function takes a set number of

arguments

The function has been given the right

number of arguments

Other Checks: None

Null Student Model Cliche Name: Wrong Number of Arguments to a

Function Call

Surface Code Segment: Quote

12. Student Model Cliche Name: Wrong Type o f Argument Given to a

Appendix K 6

Function Call

Surface Code Segment: Any-arg

Criteria: All of the arguments are of the right type

Other Checks: None

Student Model Cliche Name: Wrong Type o f Argument Given to a

Function Call

Surface Code Segment: One-arg

Criteria: The first argument is of the right type

Other Checks: None

Student Model Cliche Name: Wrong Type o f Argument Given to a

Function Call

Surface Code Segment: Two-args

Criteria: Both the first and the second argument are

of the right type

Other Checks: None

Student Model Cliche Name;

Appendix K 7

Wrong Type o f Argument Given to a

Function Call

Surface Code Segment; Three-args

Criteria: The first, second and third argument are of

the right type

Other Checks: None

Null Student Model Cliche Name: Wrong Type o f Argument Given to a

Function Call

Surface Code Segment: Quote

13. Student Model Cliche Name: Wrong Scope

Surface Code Segment: Local Var

Criteria: None

Other Checks: None

