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ABSTRACT

Chapter 1 briefly introduces the concept of cognitive emulation, 

and outlines its current status. Chapter 2 reviews psychological 

research on human expert thinking. First, the study of expert thinking 

is placed in the context of modern cognitive psychology. Next, the 

principal methods and techniques employed by psychologists examining 

expert cognition are examined. The remainder of the chapter is given 

over to a review of the published literature on the nature and 

development of human expertise. Chapter 3 reviews the main arguments 

for and against cognitive emulation in expert system design. The 

tentative conclusion reached is that a significant degree of emulation 

is inevitable, but that a pure, unselective strategy of emulation is 

neither realistic nor desirable. Chapter 4 examines the prospects for 

cognitive emulation from a more pragmatic angle. Several factors are 

identified that represent constraints on the usefulness of a cognitive 

approach. However, a second set of factors is identified which should 

facilitate an emulation strategy - especially in the longer term. Some 

guidance is given on when to seriously consider adopting an emulation 

strategy. Chapter 5 presents a critical survey of expert system 

research that has already addressed the emulation issue. Six basic 

approaches to cognitive emulation are distinguished and evaluated.

This helps draw out in more detail the implications of an emulation 

strategy for knowledge acquisition, knowledge representation and system 

architecture. The chapter concludes by discussing the issues that arise 

when different approaches to emulation are combined. Some guidance is 

offered on how this might be achieved. Chapter 6 summarizes the main 

themes and issues to have emerged, the design advice contained in the 

thesis, and the original contributions made by the thesis.
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PREFACE

This thesis is about the emulation of human thinking in knowledge-based 

expert systems. It is thus an exploration of the interface between 

cognitive psychology and knowledge engineering. While the differences 

between psychological modelling and expert system design have 

occasionally been discussed, a detailed assessment of the viability 

and implications of a cognitive approach to knowledge engineering has 

yet to be carried out. The present thesis addresses this issue. It is

also intended as an introduction to the subject.

The bulk of this thesis has already appeared as a book, namely :

"Building Expert Systems : Cognitive Emulation" by Philip E. Slatter, 
Chichester ; Ellis Horwood (1987).

Earlier versions of of Chapters 2 and 3 of this thesis also appeared in 

the article :

"Cognitive Emulation in Expert System Design" by Philip E. Slatter, 
Knowledge Engineering Review, 1985, 1(2), 28-40.

Various individuals made valuable comments on these earlier efforts, 

and I would like to take this opportunity to collectively thank them. 

Some remarks by Ben du Boulay early on proved especially helpful.

Thanks must also go to my supervisor at the Open University, Tim O'Shea. 

I am particularly indebted to John Fox, of the Imperial Cancer Research 

Fund, who acted as external supervisor in this research project.

However, neither he, nor anyone else referred to, is responsible for the 

thesis’s shortcomings - these are entirely attributable to the author. 

Finally, I would like to thank the chairman of Telecomputing pic,

Bernard Panton, for making available the company’s resources in 

producing this manuscript.



Through prior permission, the thesis differs from the book in only 

limited respects : the addition of an Abstract and a Section 6.3 - 

which summarizes the original content of the manuscript; and the removal 

of the Author Index and Subject Index. There are no other significant 

changes to the manuscript. Consequently, the term "book" appears in the 

manuscript where "thesis" or "manuscript" would normally be used.



1 INTRODUCTION

1.1 WHAT IS COGNITIVE EMULATION?

Expert systems use artificial intelligence (AI) techniques to solve 

problems ordinarily requiring human expertise. Cognitive emulation 

refers to a strategy in expert system design which seeks to emulate 

human thinking. A cognitive approach to knowledge engineering has 

several distinctive features :

(1) It attempts to embody in an expert system not just the human 

knowledge of a domain expert, but also the way an expert 

represents, utilizes and acquires that knowledge.

(2) The principle of cognitive emulation is usually defined to 

include the cognitive processes of system users, in addition to 

those of domain experts.

(3) It is explicit. It enables the issues of expert and user 

emulation that may arise during an expert system development to 

be tackled in an explicit and principled fashion.

(4) It attempts to emulate, using AI techniques, any aspect of human 

thinking that could assist in the construction of an expert 

system. This might include details of human memory organization, 

information processing limitations, problem solving and reasoning 

strategies, etc. It may also include emulation of the overall 

organization, or "architecture", of human cognition.

(5) It draws inspiration from empirical and theoretical 

investigations of human thinking - in particular, from research 

in Cognitive Psychology. The theories, hypotheses, computational 

models, methods and techniques of this branch of psychological



science are adapted for knowledge engineering purposes.

(6 ) It is a concern with the practicalities of knowledge engineering 

(e.g. computational efficiency, modifiability, usability), 

which prinicpally distinguish cognitive emulation from the 

cognitive modelling of psychologists,

(7) At present, the influence of cognitive psychology on the expert 

systems field is essentially as depicted in Fig. l.l; with the 

influence filtered through AI research. [AI scientists have 

capitalized on productive ideas derived from the study of human 

intelligence and developed them into a technology for creating 

artificial intelligence. Expert system designers employ this 

technology.] Adopting a cognitive approach implies supplementing 

this existing link with a more direct one, as shown in Fig 1.2.

(8 ) Finally, 'cognitive emulation' is both a descriptive concept and a 

presciptive principle. As a descriptive concept, it can be argued 

that most expert systems incorporate - albiet unintentionally _ 

many features characteristic of human knowledge processing (see 

section 3.1.1). As a prescriptive principle, 'cognitive emulation' 

refers to expert system work in which an explicit strategy of 

emulating human cognitive processes is followed. Furthermore, the 

attempt should be based on some testable method, technique or 

model - that is, not solely on the casual observations or intuitions 

of the designer. It is with this latter, prescriptive definition 

of 'cognitve emulation' that this book is primarily concerned.

1.2 CURRENT STATUS OF THE EMULATION APPROACH

Throughout their brief history expert systems have been loosely
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expert systems field.

models N. • 
methods n  
hypotheses 
techniques

Cognitive
Psychology

Expert
Systems

Artificial
Intelligence

Fig. 1.2 - Additional direct link between cognitive psychology and the 
expert systems field implied by the cognitive emulation 
principle.
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modelled on the behaviour of human experts. However, systematic 

attempts at simulating experts’ decision processes have only rarely 

been reported. Two early exceptions are : INTERNIST (Pople,

1982),which modelled the clinical reasoning of a diagnostician in 

internal medicine, and PSYCO (Fox, Barber and Bardhan, 1980), a system 

for diagnosing dyspepsia that incorporated various known principles of 

human information processing. The number of research projects 

involving a significant element of cognitive emulation has tended to 

increase in recent years (see, for example, papers in the volume 

edited by Coombs (1984) and Chapter 5 of this book). Similarly, the 

last few years has seen a growing awareness of the potential benefits 

of modelling human cognition more closely in expert systems, among 

leading researchers (e.g. Clancey, 1984; Gaschnig et a l .. 1983; Fox, 

1982; Kuipers and Kassirer, 1984). Research is also underway to see 

how techniques developed in cognitive psychology can be used to 

facilitate knowledge acquisition from experts (e.g. Boose, 1984;

Breuker and Wielinga, 1984; Gammack and Young, 1984).

However, despite this upsurge of interest, applications of the 

emulation principle in knowledge engineering are still the exception 

rather than the rule. Most of the best known systems - including 

MYCIN (Shortliffe, 1976), PROSPECTOR (Duda, Gaschnig and Hart, 1979), 

DENDRAL (Buchanan and Feigenbaum, 1978) and Rl/XCON (McDermott, 1982)

- were constructed with little or no explicit aim of modelling expert 

thinking. Outside of research-oriented establishments there is, if 

anything, even less explicit concern with cognitive emulation. In 

commercial applications of today’s expert systems technology the 

emphasis is firmly on achieving expert-level performance using formal

11



problem solving methods. This viewpoint is expressed in the 

technology-based definition of expert sytems offered by Johnson (1984, 

p.15) : "a set of computer programs wich emulate human expertise by 

applying the techniques of logical inference to a knowledge base" (my 

italics).

One reason for the current status of the emulation strategy 

appears to be a general lack of appreciation among practioners of the 

possibilities and issues associated with the emulation approach. But 

it could be argued that such an appreciation is not necessary. After 

all, if an explicit strategy of emulation is not a precondition of a 

successful expert system development - as systems such as DENDRAL and 

XCON appear to demonstrate - what justification can there be for 

adopting a cognitive approach? The pros and cons of emulation are 

dealt with in Chapter 3 and 4. For now, it is sufficient to point out 

that the objective of a well-articulated theory of knowledge 

engineering will only be achieved once all the relevant aspects of the 

subject - including cognitive emulation - have been properly 

evaluated. This book is intended as a contribution to this process of 

evaluation.

1.3 OBJECTIVES

This book is designed to perform a number of complementary roles:

(1 ) Introductory text It is intended to introduce the subject of 

cognitive emulation in a way that is accessible to the wider 

knowledge engineering community - not just to research workers 

familiar with this field.

12



Decision support By making explicit the possibilities that exist 

for cognitive emulation, to help knowledge engineers make more 

informed decisions about adopting an explicit strategy of 

emulation in their own work. At the very least it should provide 

an informed basis for the handling of the emulation issues that 

can arise during an expert system development.

(3) Feasibility study To investigate the viability of a strategy of 

cognitive emulation by exploring in detail the issues that arise 

when a cognitive approach to expert system design is attempted. 

This requires consideration of such questions as:

how do human experts actually solve problems? 

is cognitive emulation a theoretical possibility? 

what factors are likely to facilitate and constrain a 

cognitive approach?

how to decide when an emulation approach is worth adopting? 

what are the different approaches to emulation that have 

been tried?

) Information source By supplying detailed references and an 

extensive bibliography of some 2 0 0  items, to provide the reader 

with the means to pursue particular lines of interest.

1.4 SCOPE

The scope of this book reflects these objectives :

First of all, the question of cognitive, emulation is examined 

primarily from an (knowledge) 'engineering' perspective. So, although

13



the long-standing, and essentially philosophical, debate about the 

possibility of emulating human thinking in artificial systems is 

briefly referred to, this book is not directed to a further 

consideration of such meta-issues. Clearly, though, a book about 

cognitive emulation in expert systems is making a key assumption : 

namely, that in principle at least, computational models of human 

thinking are possible. Fortunately, this is an assumption shared by 

most workers in AI and cognitive science.

Second, this book is selective in which aspects of human cognition 

it deals with. Discussion focuses on cognitive processes relating to 

the 'core' expert system topics of knowledge representation, knowledge 

acquisition, inferencing methods and system architecture. In the 

future, the human-like capabilities of expert systems are likely to be 

significantly enhanced by developments in such AI fields as natural 

language processing, vision and robotics. But these areas are not 

among the central concerns of knowledge engineers at present, and so 

are outside of the scope of this book.

The emulation principle is concerned with modelling human thinking 

in general, and the cognitive processes of selected categories of 

people in particular. Clearly, for the designers of computer systems 

intended to simulate expert-level performance, human experts are of 

primary interest. A whole chapter of this book is thus devoted to 

reviewing our present understanding of human expert thinking - as 

revealed by research in cognitive psychology. The other group to be 

singled out consists of the users of expert systems. It is now widely 

acknowledged that the acceptance of an expert system can critically

14



depend on the system being designed in accordance with the 

expectations, knowledge and preferences of its intended users.

However, questions of user emulation can arise with most kinds of 

interactive computer system - not just expert systems. So it is not 

surprising that the subject of user cognition and its emulation have 

long been of interest to researchers in human-computer interaction 

(see, for example, Hammond and Barnard, 1985). The discussion here is 

restricted to user emulation as it relates to expert system design.

In general, the subject of cognitive emulation in this book is 

dealt with at a conceptual rather than a detailed implementational 

level. So, in discussing applications of the emulation principle, 

attention is centred on the ideas and concepts involved, the success 

or otherwise of the project, and any general problems encountered in 

implementing cognitive constructs. For details such as the 

programming techniques employed, the reader should consult the 

supplied references. Similarly, the results of research in cognitive 

psychology are presented in a condensed format. Such a presentation 

is necessary here - but at the risk of masking the true complexity of 

the psychological issues involved. Again, the interested reader 

should consult the supplied references to obtain a fuller analysis.

1.5 PREVIEW

The remainder of this book is organized as follows :

Chapter 2 reviews psychological research on human expert thinking. 

This provides a baseline for comparisons with machine expertise in 

subsequent chapters. To provide some background for those new to this

15



area, the study of expert thinking is placed in the context of modern 

cognitive psychology. Next, the principal methods and techniques 

employed by psychologists examining expert cognition are examined.

The remainder of the chapter is given over to a review of the 

published literature on the nature and development of human expertise.

Chapter 3 reviews the main arguments for and against cognitive 

emulation in expert system design. The tentative conclusion reached 

is that a significant degree of emulation is inevitable, but that a 

pure, unselective strategy of emulation is neither realistic nor 

desirable.

Chapter 4 examines the prospects for cognitive emulation from a 

more pragmatic angle. Several factors are identified that represent 

constraints on the usefulness of a cognitive approach. Special 

emphasis is given to detailing areas of conflict with other knowledge 

engineering objectives. However, a second set of factors is 

identified which should facilitate an emulation strategy - especially 

in the longer term. Some guidance is given on when to seriously 

consider adopting an emulation strategy.

Chapter 5 is the longest chapter. It presents a critical survey 

of expert system research that has already addressed the emulation 

issue. Six basic approaches to cognitive emulation are distinguished 

and evaluated. This helps draw out in more detail the implications of 

an emulation strategy for knowledge acquisition, knowledge 

representation and system architecture. The chapter concludes by 

discussing the issues that arise when different approaches to 

emulation are combined. Some guidance is offered on how this might be

16



achieved.

Chapter 6 , the last chapter, summarizes the main themes and issues 

to have emerged. This is followed by a summary of the design advice 

contained in the book, and a summary of the original contributions of 

the thesis.
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2 HUMAN EXPERT THINKING

2.1 INTRODUCTION

This chapter presents an overview of research on expert thinking and 

how it develops. The principal source is research in cognitive 

psychology. The chapter has three main objectives;

(1 ) Appreciation It will indicate what a full commitment to a 

strategy of cognitive emulation in expert systems development 

could entail. This should provide an informed basis for the 

discussion of the emulation strategy in later chapters.

(2) Heuristic It attempts to fulfil a heuristic role - showing

how cognitive psychology can function as a useful source of ideas 

in expert system design.

(3) Corrective It will aim to correct certain common misconceptions 

about the nature of expert thinking and what distinguishes it 

from novice thinking.

The following statements reflect some widely-held beliefs about 

human expertise:

Human expertise is acquired through experience.

Human expertise is something mysterious and inexplicable.

The superior performance of experts is based on 

superior intellectual ability.

Experts reach conclusions by making a series of logical 

deductions based on the available evidence (Sherlock 

Holmes is a classic example from popular fiction of this

18



view of the expert).

The problem solving skill of physicists and engineers 

is attributable to "physical intuition".

A rather more subtle set of beliefs about human expertise - based 

largely on casual observation, introspection, and the knowledge-based 

conception of human intelligence stemming from AI - is apparent in the 

expert systems field. [The role of expert systems development work as 

a stimulus to expertise research over the last decade needs to be 

acknowledged. The knowledge engineering enterprise has supplied 

cognitive psychology with new models of expert thinking - not to 

mention a rationale for research funding.] The collection below are 

all taken from the knowledge engineering literature (e.g. Buchanan, 

1982; Davis, 1982; Hayes-Roth, Waterman and Lenat, 1983):

Expert performance depends on large amounts of domain 

knowledge.

Experts know when a problem is outside their area of 

competence, or when to break general rules in order to 

handle exceptions.

Experts can reorganize their knowledge into more 

appropriate forms.

Experts are capable of reflecting on their own cognitive 

processes (meta-cognition), and know about their own state 

of domain knowledge (meta-knowledge).

Experts’ reasoning and knowledge is frequently 

inaccessible.

Expert cognition lacks both computational and

19



representational power.

As should become clear, most of these statements are broadly 

consistent with cognitive research - after due elaboration and 

refinement. [The main restriction in evaluating such assertions has 

been the lack of coverage of certain topics in the psychological 

literature. Given the differing concerns of knowledge engineers and 

cognitive psychologists, however, such a mismatch is not altogether 

surprising.)

The remainder of this chapter is organized as follows. Section 2.2 

aims to place the study of human expertise in the context of modern 

cognitive psychology. Section 2.3 comments on the principal methods 

and techniques adopted by psychologists interested in expert thinking. 

Section 2.4 is the longest section: a review of cognitive research on 

the many aspects of human expertise and its development. Section 2.5 

summarizes the picture of expert cognition to emerge from the 

preceding review. Finally, Section 2.6 provides some pointers to 

further reading.

2.2 COGNITIVE PSYCHOLOGY AND THE STUDY OF EXPERTISE

Cognitive psychology is currently the dominant approach within 

mainstream psychology. However it is still a young field, achieving a 

coherent identity only in the I960’s. Prior to this. Behaviourism - 

with its emphasis on observable behaviour and animal learning - 

significantly retarded research on human thinking over several 

decades: the notion of ’mind’ was anathema to Behaviourists.

Cognitive psychology supplanted Behaviourism as the difficulties of

20



explaining human behaviour without resort to such concepts as 

’memory’, ’imagery’, ’reasoning’, ’intelligence’ and ’knowledge’ 

became increasingly apparent.

Cognitive psychology is today a vigorously pursued subject 

employing scientific methods (see Section 2.3), but not yet with a 

coherent body of accepted theory. Many different theories, models and 

hypotheses are currently being explored, and some of the general 

principles underlying human thinking and performance are becoming 

clearer.

While there is not yet a coherent body of accepted theory, most 

cognitive psychologists adopt a common approach based on an 

information processing view of human cognition. An information 

processing system consists of a set of memories, receptors and 

affectors, and processes for acting on them (Simon, 1979). According 

to this approach, cognitive processes can be analyzed into sequences 

of ordered stages. This entails identifying the sequence of mental 

operations through which information flows (and is transformed) in the 

performance of a particular cognitive task. Figure 2.1 illustrates an 

information processing analysis of the stages involved in pattern 

recognition (it should not be taken too seriously).

Expert thinking is studied within this framework. The study of 

expertise has emerged as an identifiable area of psychological 

investigation only in the 1970’s. Studies of changes in cognition 

from domain novice to domain expert - sometimes referred to as the 

"novice-expert shift" - now comprises a well-defined field within 

cognitive research. Indeed, one textbook on cognitive psychology

21
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(Anderson, 1985) devotes a separate chapter to the subject.

While expertise research represents an identifiable subfield, it 

is also heavily dependent on developments in other areas of cognitive 

psychology: i.e. research on memory, reasoning, problem solving, 

learning, etc.. This is because novice-expert differences are 

apparent in virtually all aspects of cognitive processing.

Furthermore, it is becoming increasingly clear that the development 

of, on the one hand, specialist expertise, and, on the other, rather 

more mundane cognitive skills such as school arithmetic or driving a 

car, have many cognitive features in common (Anderson, 1985).

The close integration of expertise research with the rest of 

cognitive psychology implies that a satisfactory account of expert 

thinking will not be achieved independently of a general theory of 

human cognition. No attempt is made in this review to disguise the 

absence of a unifying theory, or indeed to develop one. As a 

consequence, conflicting explanations of key findings are sometimes 

presented. What we do attempt, however, is to identify the key 

elements of human expertise, and arrive at a coherent picture of how 

experts think.

2.3 METHODS AND TECHNIQUES

While this review is not primarily concerned with technical and 

methodological issues, an appreciation of the ways psychologists study 

expert cognition will nevertheless prove helpful. First, it will 

facilitate a proper assessment of the cognitive research reviewed 

below. Second, it may help make the technical literature a little

23



more accessible.

Two main approaches to the study of novice-expert differences in 

cognition can be distinguished: the traditional psychological 

experiment, and a more recent ’Cognitive Science’ approach relying 

more on protocol analysis and computer simulation.

The main ingredients of the traditional psychological experiment are:

Formulate a hypothesis (possibly an attempt to falsify some 

existing theory or to establish a new one).

Deduce testable propositions from the theory - the 

Experimental Hypothesis.

Assign subjects to Control and Experimental groups in an 

unbiased (e.g. random) fashion.

Minimize the effects of all extraneous sources of variation 

and confounding variables.

Systematically manipulate one or more Independent Variables 

and observe the effects on some measure of behaviour (called 

the Dependent Variable).

Apply tests of statistical significance to results to see if 

they are properly attributable to the effects of "chance", 

or to the manipulation of the Independent Variable.

Make an inference from the experimental findings to accept 

or reject the experimental hypothesis and the tested theory.

Doubts have been expressed about the appropriateness of a rigorous 

experimental approach to the study of human problem solving (e.g.

Card, Moran and Newell, 1983; Newell and Simon, 1972), and expert
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problem solving in particular (e.g. Larkin, McDermott, Simon and 

Simon, 1980). Criticisms include:

(1) Lack of ecological validity. The controlled/contrived 

situation of the typical psychological experiment can lead 

to a gross distortion of normal problem solving behaviour.

(2) An overemphasis on hypothesis-testing at the expense of 

quantitative measurements of cognitive processes.

(3) Standard experimental metrics such as reaction time 

are incommensurate with either the speed or 

richness of the cognitive processes underlying problem 

solving. For example, 15 minutes or more may elapse between 

the presentation of a problem statement to a laboratory 

subject and a solution being offered.

The limitations of a purely experimental approach are one reason for 

the emergence of an alternative approach in which protocol analysis 

and computer simulations of mental processes are the prime techniques. 

(This kind of research is sometimes called Cognitive Science.)

In expertise studies, protocol analysis involves making a verbatim 

recording of experts and novices as they "think aloud" during a 

problem solving exercise, and analysing the transcripts for 

similarities and differences. Verbal data obtained in this way 

provide a rich source of information about human thinking. The main 

limitations of this technique are:

(1) Verbal protocols, because they have to be interpreted, are
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not well suited to the objective quantitative comparisons 

required in formal hypothesis testing.

(2) Verbal protocols are often incomplete and inaccurate because 

of: the inaccessibility of ’automated’ knowledge (see 

Section 2.4.2(3)), interpreting rather than reporting by the 

subject, cognitive overload induced by the task, etc.. 

Problems with verbal data are dealt with in more detail in 

Section 5.2.

(3) Ambiguity. The results of a protocol analysis may be 

consistent with several distinct process models (Patel and 

Groen, 1986).

Protocol analysis is often used to provide the raw data for a 

computer simulation of cognitive processes under investigation. For 

example, a verbal protocol of a problem solving effort can be used to 

infer a set of production rules which, implemented as a production 

system, simulates the behaviour recorded in the protocol. Among the 

benefits claimed for cognitive modelling are:

(1) Modelling a psychological theory in a computer program 

introduces a requirement for explicitness and clarity into 

theory building that was not there before (Johnson-Laird and 

Wason, 1977).

(2) It enables dynamic interactions between elements of a model 

to be studied and better understood by researchers (Slack, 

1984).

(3) The need for explicitness and unexpected behaviour produced
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by the system can help generate new hypotheses (Slack, 1984)

(4) It gives credibility to a psychological explanation by 

showing that it is not dependent on vague mentalistic 

concepts, but instead can be operationalized in a working 

system (Larkin et a l .. 1980).

Difficulties with computer simulations include:

(1) A lack of consensus in cognitive science as to the proper 

relationship between a program and the theory it seeks to 

embody (Slack, 1984). (An extreme position associated with 

Newell and Simon, is to identify the program as the theory.)

(2) Ad hoc assumptions inserted into a program to ensure that it 

works can be hard to distinguish from the central 

theoretical ideas (Johnson-Laird and Wason, 1977).

(3) Published accounts of research do not necessarily correspond 

to any single working program (c.f. Cendrowska and Bramer, 

1984).

Virtually all the studies of expert thinking reviewed in this 

chapter conform to either the traditional experimental approach (e.g. 

Adelson, 1984; Murphy and Wright, 1984), or the protocol/simulation 

approach (e.g. Anderson, 1983b; Larkin et a l .. 1980) or some 

combination of the two (e.g. Chi, Feltovich and Glaser, 1981). The 

two approaches are complementary rather than conflicting. For 

example, experimental studies are well-suited to testing hypotheses 

about particular expert-novice differences, whereas computer 

simulation can be used to model the development from novice to expert.
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Note that the methods and techniques just outlined have an obvious 

bearing on the main theme of this book: Namely, the possibility of 

cognitive emulation in expert system design. The methodological 

issues surrounding the emulation strategy are dealt with more directly 

in Chapter 5.

There is insufficient space in a review of this sort to give 

technical details of all the studies cited. It is possible, however, 

to give some indication of the range and variability of psychological 

research on expertise.

Subjects

In a typical experiment on expert cognition the main variable of 

interest is the level of expertise of the experimental subjects. The 

performance of groups of novices and experts on a cognitive task is 

compared. Occasionally subjects of intermediate expertise - 

'journeymen' - comprise a further experimental group (e.g. Murphy and 

Wright, 1984). Subjects are normally real specialists in some domain, 

but expertise is sometimes defined operationally; for example, in 

terms of how "knowledgeable" a subject is about a topic (c.f. Arkes 

and Freedman, 1984). The number of subjects involved can vary from one 

or two individuals studied intensively (Chase and Ericsson, 1982) to 

larger groups of around 50 (Adelson, 1984, Experiment 2), or even 100 

or more (Tversky and Kahneman, 1983). Generally, studies in which 

protocol analysis and simulation are the central techniques rely on 

far fewer subjects than purely experimental studies (e.g. Anderson, 

1983b).
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Domains

An impressive range of specialist skills have been studied:

Chess (e.g. Chase and Simon, 1973; de Groot, 1965).

Other boardgames such as Go and Gomoku (e.g. Eisenstadt and 

Kareev, 1975; Rayner, 1958).

Mental calculation experts (Hunter, 1975).

Medicine (e.g. Johnson et a l .. 1981; Kassirer and 

Gorry, 1978).

Physics (e.g. Chi et a l .. 1981; Larkin, 1981).

Algebra (Lewis, 1981) and geometry (Anderson, 1983b).

. Computer programming (e.g. Anderson, Pareil and Sauers,

1984; Jeffries, Turner, Poison and Atwood, 1981). 

etc.

Tasks

In studies employing protocol analysis (e.g. Larkin et a l .. 1980), the 

primary task performed by novices and experts is usually an 

appropriate problem solving exercise; for example, simulated clinical 

diagnosis by medical practitioners. The secondary task is 

simultaneously giving the verbal protocol. In contrast, it is in the 

nature of experimental studies to focus on a single aspect of 

specialist expertise such as fact retrieval (e.g. Arkes and Freedman, 

1984; Chase and Ericsson, 1982), devising a suitable experimental task 

for the purpose. Conceptual sorting, attribute listing, sentence 

recognition, and reconstructing a chess position after a brief 

exposure to it, are representative of the cognitive tasks employed.

The measures of performance selected depend on the particular
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task. They include; error rates, comprehension time, number/size of 

sorted categories, eye movements, number of correctly repositioned 

chess pieces.

Treatment of results

Experimental data of the sort just discussed are quantifiable, and 

hence amenable to tests of statistical significance. Analyzed 

protocols yield more qualitative data, a popular use of which is in 

the building and testing of computer models of the development of 

expert cognition (e.g. Johnson et a l .. 1981; Larkin et a l ., 1980). 

Production systems have proved an especially popular formalism for 

implementing ideas about human expertise (e.g. Anderson, 1983b; Fox, 

Barber and Bardhan, 1980; Larkin, 1981) - although this may not imply 

a committment to production systems at the theoretical level (Young,

1979). Models of clinical expertise have made greater use of frame 

networks as a formalism (e.g. Pauker, Gorry, Kassirer and Schwartz, 

1976; Pople, 1982).

2.4 RESEARCH FINDINGS

Psychological research on expertise is reviewed here under the 

headings of Long-Term Memory, Mental Operations and Working Memory. 

These headings correspond to the three basic architectural elements in 

both contemporary models of human information processing and expert 

systems (e.g. Card et a l .. 1983; Hayes-Roth and Waterman, 1978): viz.
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COGNITIVE ARCHITECTURE EXPERT SYSTEM ARCHITECTURE

Working-Term Mermory Current Status Database

(or Short-Term Memory) (or Dynamic Database)

Long-Term Memory Knowledge Base

(or Permanent Memory) (or Static Database)

Mental Operations Inference Engine

(or Cognitive Processor) (or Interpreter)

The material is organized in this way to emphasize the relevance of 

cognitive research on human expertise to knowledge engineering. For a 

detailed assessment of this model of the human cognitive architecture, 

and its relation to expert system architecture, see Section 5.6.2.

2.4.1 Long-term memory

An expert’s store of permanent knowledge changes in various ways as 

he or she learns about a domain. Rumelhart and Norman (1978) distinguish 

three modes of change :

. Accretion. The accumulation of new knowledge within the 

framework set by existing memory structures.

Tuning. Slight adaptations in existing memory structures to the 

naturally occuring variability of events in some domain.

• Restructuring. A major reorganization of memory structures 

prompted by inefficiency and over-complexity in the existing 

organization.

Accretion is a purely quantitative change, whereas tuning and 

restructuring are qualitative changes. Sections (1) and (2) below are
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included to illustrate the massive accretion of domain knowledge 

associated with becoming expert. In reality, though, the three types of 

learning tend to overlap - as sections (3) to (6) should make clear.

(1) Facts

Through attending lectures and seminars, reading textbooks and other 

formal channels, experts have accumulated a massive store of factual 

information that can be used in problem solving. The amounts involved 

are difficult to quantify, but appear huge. Consider for example the 

case of medical students, who may spend years studying and acquiring 

textbook knowledge about human physiology and diseases. Pauker et a l . 

(1976) give a figure of between 1/2 and 1 million as the number of 

core facts in general internal medicine alone - although there is no 

suggestion that the average intern will have acquired all this 

information! Similarly, Larkin et a l . (1980) estimate that a single 

one-year course in American high school physics requires a student 

learning about 300 "things" - physics concepts and laws - from 

standard textbooks. Multiplied over several parallel courses and many 

years it is clear that prodigious quantities of factual knowledge must 

be acquired by many specialists.

(2) Rules

Quantitative estimates of expert knowledge are more often given in 

terms of the number of 'rules' acquired than by the number of facts.

Thus Simon and Gilmartin (1973) estimate that chess masters have 

learned in the order of 50 000 different chess patterns, i.e. 

recurring arrangements of pieces on the chess board. The recognition
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of such a pattern on the board is said to invoke stored knowledge 

about appropriate lines of action in that position. Production rules 

have frequently been used to model the development of expert skill as 

the acquisition of this kind of "pattern-action schemata" (Larkin et 

a l .. 1980). Hence the rule measure of expertise.

(3) Object categories

Real-world objects can be perceived at several levels of abstraction; 

for example, the same item can be seen as a "piece of furniture", a 

"chair", a "kitchen chair", etc.. Human memory for object concepts 

appears to be organized in this kind of hierarchical fashion (Rosch, 

Mervis, Gray, Johnson and Boyes-Braem, 1976). Rosch et a l . suggest 

that experts are capable of making finer categorical distinctions than 

novices, and thus have more lower-level categories. Some research by 

Allan Whitfield and myself (Whitfield and Blatter, 1978, 1979) 

supports this suggestion. We found that whereas interior design 

experts identified Art Nouveau and Georgian as distinct furnishing 

styles, nonexpert subjects did not. Rather, the nonexperts judged 

exemplars of these two styles as belonging to a single - "Traditional" 

- style category.

Together with this ability to make finer categorical 

discriminations, the expert is sensitive to more attributes of domain 

concepts (Murphy and Wright, 1984). This sensitivity can blur concept 

boundaries, however, as attributes previously associated with only one 

particular concept are recognised in exemplars of another concept, and 

vice-versa. Usually when people learn a new concept they focus on the
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distinguishing features first. Thus, for example, training in medical 

diagnosis tends to start with classic textbook cases, before a more 

representative selection of case histories are encountered. As a 

consequence, experienced diagnosticians have concepts that are 

relatively fuzzy, in contrast to the more crisp concepts of the 

novice (Murphy and Wright, 1984). As single attributes become less 

predictive of category membership, experts may place geater emphasis 

on the predictive value of familiar configurations of attributes (see 

Section 2.4.1(5)).

Changes in conceptual organization are also likely as expertise 

develops (Murphy and Medin, 1985). New and more accurate 

interconnections between domain concepts are formed (e.g. Feltovich e^ 

a l .. 1984). Moreover, even the correct concepts of novices may be • 

organized differently. In one study (McKeithen et a l .. 1981) novice 

programmers, when given the choice, chose to organize ALGOL reserved 

words alphabetically, whilst the experts favoured a semantic method 

of organization - grouping BEGIN with END, and so on.

(4) Mental models

In performing a complex task such as predicting the dynamic behaviour 

of a liquid, or using an interactive computer device, people access 

some kind of mental model (see, for example, the papers in Gentner and 

Stevens, 1983). Mental models help guide understanding and actions in 

dealing with artificial or natural systems. There is a lack of 

agreement at present among researchers as to the exact nature of 

mental models. A consensus position might be that mental models are 

more or less definite representations embodying structural and/or
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functional properties of the entity modelled.

Mental models appear to play an important role in expert problem 

solving. A study by Larkin (1983) compared how physics novices and experts 

modelled problems. Her findings suggest that novices only have access 

to a 'naive' problem representation composed of objects that 

exist in the real world (e.g. pulleys, blocks). By contrast, the 

experts had access to an additional, 'physical' representation 

containing imaginary entities such as momenta and forces. Thus the 

experts had developed a powerful second model which they could call 

upon. Other research has investigated expert circuit analysts' mental 

models of electronic circuits (de Kleer and Brown, 1983), the causal 

models of mechanisms of the human body employed by experienced 

physicians (Kuipers and Kassirer, 1984), and so on.

In summarizing this literature Forbus and Gentner (1986) make the 

following observations :

In physical domains experts often acquire quantitative 

representations, e.g. mathematical models.

Experts who have access to quantitative representations 

continue to update and use knowledge acquired at earlier stages 

of expertise acquisition, i.e. perceptual schemata, heuristic 

rules and qualitative models.

Some domains, such as child-rearing, have no definitive models - 

forcing the expert to rely heavily on heuristic knowledge.

Another interesting point to emerge is that, unlike the elegant models 

found in textbooks, peoples’ mental models tend to be deficient in
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various respects. That is, they are often messy, incomplete, and may 

include contradictory and erroneous concepts (Norman, 1983). However, 

through comparison with experiential knowledge gained on a relevant 

task, some debugging may take place (Williams, Hollan and Stevens,

1983).

To recapitulate: both novices and experts access mental models of 

entities in their subject domain. Experts' mental models are more 

accurate and domain-adapted, and they may have a larger range of 

models to choose from.

(5) Indexing of knowledge

Another cognitive correlate of the development of expertise is the 

ability to access knowledge rapidly as it becomes relevant to the 

present state of a problem solution. It can reach the point where 

access is almost instantaneous, and achieved with little or no 

conscious awareness (Larkin et a l .. 1980).

This ability depends on the acquisition of a large number of 

perceptual patterns, or chunks (Miller, 1956), that directly index 

part of the expert's knowledge store. A chunk is a familiar 

configuration of elements that through repeated exposure comes to be 

recognized as a single unit. Chess research provides a good example: 

chess masters’ ability to perceive a group of related chess peices on 

a board is well documented (e.g. Chase and Simon, 1973). Similar 

chunking effects have been reported over an impressive range of expert 

domains (see Chase and Ericsson, 1982, for references).

With experience, experts learn to associate task-relevant
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knowledge with each pattern. Depending on the expert domain, the 

stored knowledge indexed can take a variety of forms; for example, 

appropriate lines of chess development (Chase and Simon, 1973, de 

Groot, 1965), physics principles (Larkin, 1981), facts relevant to 

programming design (Jeffries et a l .. 1981), medical diagnostic 

categories (e.g. Szolovits and Pauker, 1978; Johnson et a l .. 1981).

Cognitive scientists have modelled the development of indexing as the 

acquisition of production rules (e.g. Anderson, 1983b; Larkin, 1981).

The condition part of the rule represents the indexing pattern which 

when "matched" evokes the attached action (knowledge). For instance, 

according to Larkin (1981), physics problem solvers gradually learn 

the conditions under which a particular principle is successfully 

applied, such that the appropriate principle is triggered 

automatically when the same conditions are detected again on a later 

occasion.

In conclusion: indexing reduces the need for an expert to solve a 

problem by exploring a large search space of possibilities. Rather, 

useful knowledge is retrieved from long-term memory at the time it is 

required.

( 6) Proceduralization of knowledge

Declarative and procedural representations of knowledge can be 

distinguished (Winograd, 1975).

As expertise develops, there is a shift towards procedural forms 

of knowledge representation. For example, some evidence suggests that
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the arithmetic skills of school teachers are stored in memory as 

unanalyzed procedures or "macros" (Brown and Burton, 1978). That is, 

while teachers are expert in performing arithmetic operations, they 

cannot readily verbalize what the operations are. Other research 

indicates that the declarative knowledge of problem solvers in physics 

(Chi et a l .. 1981; Larkin et a l .. 1980) and geometry (Anderson, 1983b) 

becomes increasingly proceduralized as expertise is acquired.

Anderson (1983a) presents a three stage theory of skill 

acquisition which aims to account for these changes. Briefly the 

stages are:

(a) DECLARATIVE STAGE Initially all new information is acquired 

in a declarative form; for example, facts from a textbook 

(modelled as the growing of semantic network structure). 

Declarative knowledge is interpreted by domain-independent 

problem solving procedures such as means-ends analysis.

(b) KNOWLEDGE COMPILATION STAGE In this stage the declarative 

knowledge is transformed into a procedural form (although 

the declarative representation may also be retained). The 

process is seen as analogous to the compiling of a computer 

program. Domain-specific procedures are acquired by 

recording the conditions under which a piece of declarative 

knowledge proves useful (modelled using production rules). 

Individual productions combine to form composite 

productions.

(c) PROCEDURAL STAGE In this stage procedures become more 

automated (see Section 2.4.2(2)) and faster. The ability to
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verbalize knowledge is lost. Procedures continue to be 

refined, or tuned. For example, a strengthening process 

increases the probability of successful productions being 

invoked on a later occasion. Unsuccessful productions 

gradually fade in strength, but are never lost entirely.

In summary; the development of expertise involves the 

proceduralization of domain knowledge initially encoded in a 

declarative form. Through repeated use, these procedures are 

gradually refined and combined into large units.

2.4.2 Mental operations

(1) Fact retrieval

Experts are far better than novices at recalling facts about a 

domain (Arkes and Freedman, 1984). This robust finding presents a 

challenge to theories of memory that predict interference between 

facts during retrieval. That is, since experts know a massive number 

of facts about a domain, they ought to exhibit poorer memory than 

novices. The contrary is true however : experts generally retrieve 

domain knowledge with far greater speed and accuracy (e.g. Reder and 

Ross, 1983). This is the so-called ’paradox of interference’ (Smith, 

Adams and Schorr, 1978).

This phenomenon is open to a number of, not necessarily mutually 

exclusive, explanations:

(a) INDEXING Perceptual patterns in the current state of the
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problem solution automatically trigger the activation of 

relevant bits of knowledge. Indexing has already been 

discussed in Section 2.4.1(5).

(b) INTEGRATION With growing expertise associated facts become 

integrated into large knowledge units such as scripts (Smith 

et al.. 1978). (A script is a frame-like structure 

describing an appropriate sequence of events in a particular 

context). Smith et al. suggest that script facts are accessed 

as a unit, which would reduce the scope for interference 

dramatically. There is also plenty of evidence that in some 

domains (e.g. electronic circuitry, architecture) experts 

develop hierarchical structures for organizing their knowledge 

and are able to use these structures to facilitate recall (see 

Chase and Ericsson, 1982).

(c) EFFECTIVE ENCODING Skilled individuals may have learned to 

encode information such that when it is required in some 

context, the retrieval cues are sufficient to achieve recall 

(Chase and Ericsson, 1982; Jeffries et al.. 1981). Novices, 

on the other hand, often fail to retrieve knowledge in 

long-term memory that is relevant to the solution of some 

problem.

(d) PLAUSIBLE INFERENCE What experts may be doing in memory 

experiments is not so much recalling facts as inferring them. 

That is, experts seem able to make use of their extensive 

domain knowledge to infer what a correct or plausible response 

should be (Arkes and Freedman, 1984). Thus a chess master can 

make use of his knowledge of familiar positions to 

"reconstruct" the board after seeing it very briefly (Chase
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and Simon, 1973). More generally, people sometimes "recall" 

facts they have not encountered, but which are thematically 

related to facts they have encountered (Reder and Anderson,

1980).

To summarize; experts retrieve domain facts more quickly and 

accurately than novices. Several cognitive mechanisms may contribute 

to this superiority.

(2) Automated and controlled cognitive processes

The chess master's ability to play lightning chess against several 

opponents simultaneously illustrates an important component of cognitive 

skill - the automatization of cognitive processes with practice.

The distinction between controlled and automated mental processes 

(e.g. Shiffrin and Schneider, 1977) is now widely accepted within 

cognitive psychology. In sharp contrast with controlled processes 

(which are best exemplified by higher-level decisions and strategies), 

automated processes;

are often parallel and independent in nature

are unconstrained by working memory limitations

run to completion automatically once initiated

require considerable practice to develop, but are difficult

to modify once learned

are unavailable to introspection

speed up gradually as the automated sequence is learned

41



The last point is worth elaborating on, since it constitutes a 

very robust phenomenon. In fact the time needed to perform a 

cognitive task is consistently found to decrease as a log power 

function of practice on the task. This implies that performance will 

continue to benefit from practice, but by ever diminishing amounts 

(see e.g. Card et a l .. 1983). The benefits of speed up with practice 

are well illustrated in physics problem solving, where expert 

performance has been reported as four times faster than novice 

performance (Larkin et a l .. 1980).

Newell and Rosenbloom (1981) propose a "chunking model" (see 

section 2.4.1(5)) to explain speed up with practice. Assuming the 

time needed to perform a task depends on the number of knowledge 

chunks accessed, then skilled individuals - who have encoded their 

task knowledge in fewer, larger chunks - will perform the task faster.

The above research indicates that some control processes are subject 

to automatization with practice. At the same time, experts appear to 

develop a flexible control over their reasoning processes at a high 

strategic level. For example ;

experts are often able to give a clear indication of how the 

main task is decomposed into sub-tasks, and of the temporal 

relationships between these sub-tasks (McDermott, 1982). 

like novices, experts can see when a particular strategy is 

failing, and 'repair' or switch strategy accordingly in order to 

overcome the impasse (Jansweiger et al.. 1986). 

experts are not necessarily restricted to a single, fixed 

strategy for performing a task. Rather, they seem able to
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adapt the way they decompose the task into sub-tasks, depending 

on the problem at hand (Wielinga and Breuker, 1986).

The distinction between the automatization of cognitive skills and 

the proceduralization of knowledge (see Section 2.4.1 (6)) is probably 

more one of emphasis than of substance (Anderson, 1983a; Lesgold,

1984). Lesgold (1984) goes on to suggest that because of cognitive 

processing limits, complex skilled performance requires the prior 

proceduralization of component skills. Sternberg (1984) makes a 

similar point;

...complex verbal, mathematical, and other difficult tasks 

can feasibly be executed only because many of the operations 

involved in their performance have been automatized. Failure to 

automatize such operations, either fully or in part, results in a 

breakdown of information processing and hence less intelligent 

task performance, (p. 153)

To summarize; the cognitive skills of an expert become 

increasingly automatized with practice. Automatization can account 

for the greater speed and complexity of expert performance, but also 

for the inaccessibility of expert reasoning and task knowledge. (See 

next section.) While some processes become automated, experts are able 

to achieve flexible control over high-level strategic processes.

(3) Accessibility of cognitive processes

The cognitive changes reviewed so far have been essentially 

beneficial in their effects on expert performance. However, the well-
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documented inability of experts to verbalize about their cognitive 

processes (e.g. Welbank, 1983) is harder to view as a benefit - 

especially from the standpoint of the knowledge engineer.

Experts are not unique in having difficulty reporting on their own 

thinking, however. A review by Nisbett and Wilson (1977) concluded 

that people generally have little or no introspective access to higher 

order cognitive processes. Rather, Nisbett and Wilson argue that 

introspective reports are based on a priori, causal theories which 

plausibly explain how a particular stimulus leads to a particular 

response.

These conclusions have been qualified somewhat by later research. 

In particular, Ericsson and Simon (1980) reported findings indicating 

that a problem solver does have privileged access to what is at the 

focus of his or her attention at any moment; but is no better able to 

explain shifts of attention than an external observer. Furthermore, 

people are rarely able, when asked later, to give accurate reports 

on what they were thinking about during a problem solving exercise.

If, as it appears, people in general have only limited conscious 

access to their cognitive processes, the position of experts in this 

regard is more serious still. The main reason is the automatization 

of cognitive skills with practice (described in Section 2.4.2(2)), and 

the accompanying proceduralization of domain knowledge (Section 

2.4.1(6)). The knowledge acquisition literature (e.g. Weibank, 1983) 

testifies to the difficulty experts have in articulating their domain 

knowledge and reasoning strategies.
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Experimental research on this topic is scarce, although a study by 

Berry and Broadbent (1984) has considered the effects of several 

variables, including practice, on the ability of subjects to verbalize 

about their performance on a cognitive task. No increase in ability 

to verbalize about task knowledge with practice was found - indeed, 

there were some indications of a decrease in this ability.

In the absence of direct introspective access, experts may rely on 

a priori models of their own thinking of the kind suggested by Nisbett 

and Wilson (1977), and discussed above. Investigations of diagnostic 

reasoning by Kassirer and Gorry (1978), and others, supports this view. 

Clinicians often report that they use what amounts to a forward- 

chaining strategy, keeping many different hypotheses in mind (as 

prescribed in medical textbooks). In contrast, their observed 

behaviour suggests that they infact employ a strategy more 

accurately described as 'hypothesize-and-test’; i.e. they appeared to 

"guess" a particular hypothesis quickly, and then reason backwards to 

try to prove it.

In summary; people’s awareness of their own mental processes is 

rather limited. The proceduralization of knowledge and automatization 

of cognitive skills that accompany the development of expertise, serve 

to make expert thinking even less accessible to introspection.

(4) Mode of reasoning

Characteristic differences exist in the reasoning styles of 

experts and novices in such domains as physics (Larkin, 1981; Larkin 

et a l .. 1980) and geometry (Anderson, 1983b). The novices tend to
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reason backwards, whereas the experts tend to reason forwards.

The backward chaining approach of the novice appears to reflect 

their reliance on "weak" domain independent methods such as means-ends 

analysis (Larkin, 1981). To illustrate (from Larkin et a l .. 1980, 

p.1338); when confronted with the problem of determining the velocity, 

V, of an object, the physics novice starts with this unknown.

However, to determine v the acceleration, must first be determined. 

If a is also uninstantiated then an equation is found with as the 

resultant; and so on, backward chaining until a set of equations is 

found from which a solution can be derived.

The cognitive load imposed by backward reasoning is heavy; 

managing goals and subgoals, storing and retrieving partially solved 

equations. Thus one advantage of the shift towards reasoning forward 

is that it greatly reduces this cognitive load in problem solving. The 

transition from backward to forward reasoning is gradual, and may 

depend on the indexing of knowledge described in Section 2.4.1(5). To 

reiterate briefly; when the novice is solving a problem in backward 

mode, and a bit of knowledge is found useful, the conditions under 

which it proved useful are stored; so that when on a later occasion 

similar conditions recur, the same bit of knowledge is automatically 

triggered. Forward chaining is effective only because the expert has 

learnt through experience which of the many alternative forward 

inferences are required for the final solution (Anderson, 1985).

Some other findings relevant to the relation of forward and 

backward reasoning include;

(a) Intermediate experts may start off using forward
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inferences, but complete a problem using backward chaining.

(b) Particularly awkward problems, or problems on the boundaries 

of the expert’s domain, may require the expert to revert to 

a general problem solving strategy in order to solve them 

(Larkin et a l .. 1980; Szolovits and Pauker, 1978).

(c) It is widely accepted in cognitive psychology that for any 

but the most rudimentary tasks, skilled human performance 

depends on a flexible intermixing of forward and backward 

reasoning (c.f. automated and controlled processes).

It is important to realise that forward reasoning will only develop in 

domains where this is the most effective strategy. Physics and 

geometry are such domains - in each there is a rich set of "givens" 

which are more predictive of a solution than the goal statement is 

(Anderson, 1985).

This is not true of, say, computer programming, where the problem 

statement is richly predictive, whereas the "givens" of a particular 

programming language are not. Empirical studies of program design 

(Anderson, Pareil and Sauers, 1984; Jeffries et a l .. 1981) have found 

instead that both experts and novices adopt what amounts to a backward 

chaining stategy: i.e. top-down program design. The interesting 

contrast noted in this domain is between the depth-first approach 

favoured by novices, compared to the breadth-first development 

strategy employed by the expert programmers. A breadth-first approach 

is advantageous because it enables the dependencies (and conflicts) 

among sub-goals to be detected at each design level before preceding 

to the next.
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Clinical diagnostic medicine is another domain with distinctive 

features and a characteristic reasoning style to match (e.g.

Pauker et a l .. 1976; Kassirer and Gorry, 1978). Among 

these features is the fact that a diagnosis can sometimes be confirmed 

or rejected only by performing particular clinical tests. Moreover, 

each test is relatively costly - in terms of money, time and risk to 

the patient. These tests must be weighed against each other to 

determine which tests, if any, to administer. It is also known that 

certain patterns of symptoms are imperfectly associated with certain 

diagnostic categories, and that experienced diagnosticians make use of 

these.

Such domain characteristics suggest the need for a strategy 

incorporating elements of backward chaining (test confirmation), 

uncertainty handling (test administering decisions, empirical 

disease-symptom links), and forward inference (diagnostic hypotheses 

evoked by patterns of clinical data). The results of this domain 

analysis are consistent with the hypothesize-and-test strategy 

observed amongst clinical diagnosticians (Elstein, Shulman and 

Sprafka, 1978; Kassirer and Gorry, 1978). Typically, a pattern of 

clinical data might prompt a diagnostician to "guess" initially one or 

more hypotheses. These are then tested using backward chaining and 

taking into account the uncertainties involved. Clinicians employ 

various strategies to eliminate invalid hypotheses, and discriminate 

among others.

To summarize: Experts adopt reasoning strategies appropriate to 

the problem domain. They come to rely less on deductive reasoning and
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more on pattern recognition-based approaches.

(5) Handling uncertainty

In many expert domains decision making is characterized by an 

unavoidable element of uncertainty. Judgements are made about the 

likelihood of such uncertain events as the outcome of a medical test 

(see above) or the movement of share prices on the Stock Exchange. A 

line of research initiated by Kahneman and Tversky (see the collection 

of papers by Kahneman, Slovic and Tversky, 1982) has focused on 

comparing the uncertainty judgements of human subjects with outcomes 

based on statistical theory and the laws of probability. This 

research reveals that people are frequently insensitive to statistical 

variables such as sample size, correlation and base rate 

probabilities. Nor do people tend to analyze daily events into 

exhaustive lists of elementary possibilities (from which compound 

probabilities can be aggregated). Thus Bayes' Rule, and other well- 

established statistical techniques, have been effectively refuted as 

psychological hypotheses about everyday decision making.

Rather than grapple with the computational complexities demanded 

by formal methods, people appear to rely on a small set of heuristics 

- of which representativeness and availability are the best understood 

(Kahneman et a l .. 1982).

Availability refers to the tendency of judging the likelihood of 

an event by how readily related information in memory can be 

retrieved. This can distort probability estimation as when someone 

overestimates the likelihood of being struck by lightning after
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reading a particularly vivid newspaper report on the subject.

Representativeness describes a human strategy for judgement under 

uncertainty where the likelihood of an item belonging to a particular 

class is based on how representative or typical an example of the 

class the item is. So, for example, a shy young woman might be judged 

more likely to be a librarian than a shop assistant, despite the fact 

that there are far more shop assistants than librarians in the 

population at large.

A training in statistics may insulate a person from making naive 

statistical errors such as the Gambler's Fallacy - the erroneous 

belief that, for example, the next in a series of coin tosses is more 

likely to be heads because the preceding few were all tails. However, 

experts are liable to the same biases in probabilistic judgement as 

laymen - especially in more subtle and complex cases (Kahneman et a l ., 

1982; Tversky and Kahneman, 1983). This is not to deny that a 

statistical training can increase the likelihood of someone adopting a 

statistical approach, and producing a better solution as a result; but 

even where this is the case, it may have more to do with adherence to 

subcultural norms within a professional group, than to a greater 

appreciation of variability and uncertainty within a domain (Nisbett, 

Krantz, Jepson and Kunda, 1983).

The confidence an expert expresses in his or her own beliefs 

appears to depend on more than just representativeness and 

availability:

(a) Redundancy of knowledge The greater the redundancy of

stored information about an event the greater the certainty
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in judgements relating to that event (Chase and Ericsson, 

1982).

(b) Lack-of-knowledge inference This is a meta-inference based 

on knowledge about ones own knowledge, in which the absence 

of knowledge relating to an hypothesis is taken as evidence 

that an assertion is false. There is evidence that experts 

may place greater reliance than novices on this meta

inference (Centner and Collins, 1981).

(c) Self-generated stimuli Experts, but not novices, are capable 

of inferring the presence of non-existent stimuli (see Arkes 

and Freedman, 1984). It was noted in Section 2.4.1(5) that 

the development of expertise is often accompanied by an 

integration of isolated facts into schemata. Schematic 

knowledge undergoes dynamic changes and distortions in 

memory (e.g\ Bartlett 1932; Schank, 1982) - changes that 

tend to exaggerate distinctive features and "smooth out" 

unremarkable features in line with stored prototypes.

This account goes some way to explaining why, for example, a 

clinician might "remember" that a patient was suffering from 

non-existent symptoms, should those symptoms confirm an 

earlier diagnosis; and "the rampant overconfidence of 

experts in many real-world judgement tasks" (Arkes and 

Freedman, 1984, p.439).

The research reviewed so far suggests that human (expert) 

judgement of uncertain events invariably compares unfavourably with 

formal statistical approaches. This impression needs to be qualified 

somewhat. While it is true that human experts are generally rather
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poor at making quantitative judgements, they appear far more 

successful when it comes to the qualitative handling of uncertainty. 

The following examples are from Zimmer (1984): livestock judges are 

able to handle up to ten variables simultaneously; it has been found 

that where data is highly configurai, subjective judgement can be 

better than statistical prediction; exchange rate prediction by German 

bank clerks was more accurate where forecasts were made verbally 

rather than numerically. Further, a computer simulation of clinical 

reasoning by Fox et a l . (1980) found that a nonprobabilistic approach 

involving pattern-matching on configurations of medical symptoms, 

produced diagnostic results comparable with results derived from a 

Bayesian statistical model.

To summarize: In making quantitative estimates about uncertain

events, experts and laymen tend to rely on heuristic strategies such 

as Availability rather than computationally-demanding statistical 

rules. Within a domain, experts appear better at making qualitative 

assessments, since these appear to rely heavily on learned 

configurations and pattern recognition.

2.4.3 Working memory

(1) Working memory capacity

Experts have larger working memories for domain knowledge than novices.

Cognitive psychologists have long considered the capacity of 

working memory as a major bottleneck in human thinking. Its 

restricted capacity imposes a fundamental limitation on people’s 

ability to think, reason and process information generally (e.g.
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Johnson-Laird, 1982; Miller, 1956; Newell and Simon, 1972). While a 

consensus as to the precise nature of working memory has yet to emerge 

(Chase and Ericsson, 1982), there is general agreement that its 

capacity is no more than about seven unrelated symbols.

However, as Miller (1956) pointed out, each symbol comprises a 

meaningful chunk (see Section 2.4.1(5)). This allows for considerable 

variation in the amount of actual information held in working memory, 

depending on chunk size. In particular, experts' chunks tend to be 

larger than novices. The classic demonstration of this comes from 

chess research (Chase and Simon, 1973; de Groot, 1965). In these 

experiments the task was to reconstruct a chess middle game position 

of some 25 pieces after viewing it for a few seconds. Chess masters 

were able to reconstruct the board position with about 90 percent 

accuracy. Novice players, on the other hand, struggled to replace 

more than 5 or 6 pieces correctly. The chess master’s superior 

performance is based on an ability to process familiar configurations 

of pieces as single chunks; for the weak player each separate piece is 

a chunk. Thus when the task is repeated with a completely scrambled 

board postion - containing no meaningful configurations - experts 

perform no better than novices. Analogs of this experiment in many 

other domains have produced comparable results (see Chase and 

Ericsson, 1982, for references).

Chunking is not the only mechanism accounting for the larger 

working memory of the expert. As cognitive processes become 

automatized (see Section 2.4.2(2)) they make less demands on working 

memory capacity, which in turn leaves more space available for
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information storage. This can explain why skilled readers have 

expanded working memories for what they read, but not for information 

in general (Daneman and Carpenter, 1980).

Chase and Ericsson (1982) found a dramatic speed up in encoding 

and retrieval operations for information in long-term memory with high 

levels of practice (hundreds of hours). At these levels of skill, 

retrieval times from long-term memory come to approach those from 

working memory. The result is that the effective size of working 

memory can exceed normal capacity many times over. Chase and Ericsson 

(1982) claim this extra workspace as one reason why expert performance 

is superior to that of novices in so many domains.

In summary: the expanded working memory of experts is domain- 

specific. It is attributable to factors associated with practice - 

chunking, automatization and directly retrievable long-term 

information.

(2) Problem formulation

How a problem initially gets represented is crucial in determining 

how, and even if, it eventually gets solved (a point that emerges 

clearly from the AI literature). It is therefore worth considering 

the different ways experts and novices formulate problems.

One difference is in the time spent in arriving at a working 

representation of the problem. There is evidence that experts in such 

domains as physics (e.g. Larkin et a l .. 1980), political science (see 

Lesgold, 1984, p.35) and computer programming (e.g. Jeffries et a l ..

1981) take longer than novices in formulating a problem. This
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investment in attempting to understand the problem fully before 

proceeding is rewarded by a faster solution time overall, and an 

increased likelihood of achieving a correct solution. [The longer 

length of time experts take in problem formulation is the main 

exception to the earlier claim that expert processing is faster than 

novices (Section 2.4.2(2)). Experts nevertheless obtain their 

solutions more quickly overall.]

A second important difference concerns the relative abstractness 

of the problem representations. Research on the novice-expert shift 

in algebra (Lewis, 1981), chess (e.g. Chase and Simon, 1973), computer 

program design (Adelson, 1984) and physics (Chi et a l .. 1981) 

indicates that the working representations used by experts are in 

general more abstract than those employed by novices. This expresses 

itself in different ways in different domains. For example, Chi ejL 

a l . (1981) found that physics novices represented problems in terms of 

features contained explicitly in the problem statement (e.g. falling 

bodies); whereas the experts categorized problems by the major physics 

principle used in the solution (e.g. the conservation of energy). In 

the domain of computer programming, the distinction is between 

representations reflecting what a program does (experts), as against 

how a program functions (novices) (Adelson, 1984).

The shift from concrete to abstract ways of representing problems 

depends on acquiring a new set of concepts for the purpose. With 

regard to programming, this means new concepts to support language- 

independent representations of problems (Anderson, 1985).

One advantage of abstract representations is that they hide
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detail, and thus allow more complex problems to be accomodated within 

the limited capacity of working memory. In the case of algebra, for 

example, a complex mathematical expression may be replaced by a single 

variable (Lewis, 1981).

A further advantage is that experts should be better able to reason 

by analogy - since abstract coding facilitates the analogical transfer 

of knowledge from one domain to another (Gick and Holyoak, 1983). 

Moreover, as experience in a domain increases, the basis of similarity 

matches shifts from massive feature overlap and surface-oriented 

matches, to matches based on fewer, but more abstract features (Forbus 

and Gentner, 1986).

What are the stages involved in formulating working 

representations of problems? Chi et a l . (1981) present an account 

that stresses the role of problem categorization in the formulation 

process of physics experts:

extract surface features directly from statement of 

problem

derive abstract features from surface features using domain 

knowledge *

categorize problem according to solution principle involved, 

using derived features

verify categorization using tests specified by the category 

("schema")

use knowledge in schema to complete formulation of problem

(At least step 2 is not applicable to novices.) The completed 

representation supports a forward reasoning solution method (Chi e^
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a l .. 1981). Larkin’s (1983) account is similar. Physics experts 

select from memory a general schema embodying a relevant physics 

principle (e.g. a forces schema). A working representation is then 

constructed by instantiating the schema slots. Bhaskar and Simon 

(1977) also adduced evidence for the role of stored problem templates in 

expert problem formulation.

To recapitulate: experts take longer than novices to achieve an

initial representation for a problem. Experts’ working 

representations are more abstract and solution-oriented, and may 

depend on access to indexed problem schemata.

2.5 SUMMARY AND CONCLUSIONS

This chapter has reviewed psychological research on the development of

expert thinking. Many facets of cognition change as expertise is 

acquired. Table 2.1 summarizes the principal changes covered in this 

review, classifying them as either ’benefits’ or ’costs’ depending on 

their impact on expert performance. From the table it is clear that 

the changes are predominantly beneficial.

One important point to emerge is that the cognitive correlates of 

expertise, whether beneficial or otherwise, are essentially domain- 

specific in effect. Thus outside his or her specialist area any 

cognitive advantage the expert may have enjoyed inside the domain 

quickly disappears.

It is also possible to say that an expert’s thinking becomes 

increasingly domain-adapted. That is, many aspects of expert thinking

get progressively more tailored to the unique characteristics of a
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particular domain. We examined the tendency to domain-adaptivity with 

regard to changes in reasoning style (2.4.2(4)) in particular. But it 

applies equally to, say, the development of appropriate mental models 

(2.4.1(4)) and working representations of problems (2.4.3(2)).

Another underlying theme in the development of expertise is a 

greater reliance on pattern recognition and memory (stored knowledge) 

at the expense of deductive reasoning. Indeed, at one level acquiring 

expertise can be seen as an adapting to the "natural" processing mode 

of the human brain - which has often been characterized as a highly 

parallel, pattern-oriented system (e.g. Anderson, 1983a). At another 

level, though, experts often show an impressive ability to reflect on, 

and flexibly control, their high-level task strategies. But precisely 

how automated skills and control strategies combine in expert problem 

solving remains poorly understood.

A review of this sort can only hint at the subtlety and complexity 

of human cognition in general, and expert cognition in particular.

For example, little has been said about individual variation in how experts 

think. This is mainly because in psychological studies of expertise 

the principal comparison of interest is between various groups of 

subjects: usually experts and novices. Expert differences have 

received more attention in the knowledge engineering field, as we 

shall see later. The present chapter has focused instead on what is 

distinctive in expert thinking. As the theme of cognitive emulation 

in expert system design is elaborated on in subsequent chapters, there 

will be cause to examine aspects of human cognition not yet 

considered.
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Table 2.1

Cognitive changes with expertise classified as benefits and costs

Change Section

BENEFITS

Increase in quantity of domain knowledge: facts 2 .4.1(1)
rules 2 .4.1(2)
concepts 2.4.1(3)

Refinement of domain knowledge: fuzzier categories 2.4.1(3)
debugged mental models 2.4.1(4)

Development of specialised representations: mental models 2.4.1(4)
Integration of domain knowledge : chunking 2.4.1(5)

schemata 2 .4.2(1)
hierarchies 2 .4.2(1)
cross-referencing 2.4.1(3)
composite procedures 2 .4.1(6)

More efficient fact retrieval 2 .4.2(1)
More flexible control over task strategies 2 .4.2(2)
Speed up and tuning of cognitive skills 2 .4.2(2)
Development of domain-specific reasoning strategies 2.4.2(4)
Improved qualitative handling of uncertainty 2.4.2(5)
Enhanced working memory capacity 2.4.3(1)
More solution-oriented problem representation 2 .4.3(2)
More abstract coding of knowledge 2 .4.3(2)

COSTS

Reduced ability to report on cognitive processes 
Inaccessability of proceduralized task knowledge 
Overconfidence in quantitative judgement

2.4.2(3)
2.4.2(3) 
2.4.2(5)
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2.6 SUGGESTED READING

Lesgold (1984) and Anderson (1985, Chapter 9) both review the 

literature on expert thinking. They should be consulted for an 

alternative perspective. Anderson (1985) is also a readable and up- 

to-date textbook on cognitive psychology in general. The book by Card 

et a l . (1983) provides a good introduction to applied cognitive 

psychology for those familiar with interactive computing. These 

authors present a simplified model of human information processing for 

the purposes of designing effective human-computer interfaces.

Breuker and Wielinga (1983a) and Welbank (1983) discuss psychological 

research as it relates to knowledge acquisition from human experts.

For an integrated theoretical account of the development of expertise 

see Kol^dner (1984).

Papers on expert cognition are carried by a large variety of 

technical journals (see references to this chapter), including 

Cognitive Science. Cognitive Psychology and The International Journal 

of Man-Machine Studies. Much of the literature on clinical expertise 

is to be found in medical journals. A  good collection of papers to 

start on are those by Chase and Simon (1973), Chi et a l . (1981),

Larkin et a l . (1980) and Chase and Ericsson (1982). Finally, the 

references to this chapter should be consulted for further information 

on specific topics of interest to the reader.
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3 ARGUMENTS FOR AND AGAINST EMULATION

This chapter reviews the main arguments for and against the principle 

of cognitive emulation. Consideration of other, more pragmatic issues 

is reserved until the next chapter.

3.1 ARGUMENTS FOR COGNITIVE EMULATION

3.1.1 Cognitive emulation is inherent in knowledge engineering

As presently conceived expert systems almost inevitably approximate 

human expert thinking to a significant degree. This is because expert 

systems make use of domain knowledge ordinarily elicited from a human 

expert for solving problems. Indeed, knowledge-based techniques are a 

defining characteristic of the current generation of expert systems. 

Cognitive research clearly shows how dependent human expert 

performance is on the use of large quantities of specialist knowledge 

acquired over many years (see Chapter 2).

Knowledge-based approaches have evolved for sound pragmatic 

reasons and should thus endure. Initially, Al researchers sought to 

solve problems normally requiring human expertise using formal, 

domain-independent methods. It was the ineffectiveness of such 

methods, coupled with the subsequent success of experimental systems 

employing domain knowledge, that has led to the present emphasis on 

knowledge-based techniques. The history of the DENDRAL project 

(Buchanan and Feigenbaum, 1978), clearly illustrates this change.

Many expert system builders would go further and argue that it is 

necessary to capture something of how the expert represents his or her
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knowledge, and the reasoning strategies employed, in order to 

construct an effective system (Welbank, 1983).

Rule-based approaches, and in particular production systems, can 

be seen in this light. Rule-based formalisms are currently the most 

popular approach to knowledge representation, and the term 'expert 

system’ is sometimes formally defined as using rule-based techniques 

(Simons, 1983, p.115). Psychological validity has been claimed for 

this formalism by expert system researchers (e.g. Leith, 1983), 

reference usually being made to Newell and Simon’s (1972) pioneering 

use of production systems for simulating human problem solving. 

Subsequently, production systems have been employed in modelling a 

variety of cognitive processes (Young, 1979). Anderson’s (1976, 1983a) 

ACT* represents an ambitious attempt to model human cognition using an 

architecture based on production systems. Regarding ’rules’ 

generally, there is a large volume of psychological research 

indicating that certain types of expert knowledge may be mentally 

represented in a rule-like form, i.e. empirical associations, pattern- 

indexed schemata, procedural knowledge, etc. (see Chapter 2). Despite 

these clear claims to psychological plausibility it is clear that 

rule-based formalisms have evolved as a major technique principally 

because of their knowledge engineering virtues (e.g. modularity) (Barr 

and Feigenbaum, 1981; Davis and King, 1977).

Other knowledge representation formalisms are supported by 

commercially available expert system packages (Hayes-Roth, Waterman 

and Lenat, 1983), for example, frames and semantic networks. As with 

production systems, these formalisms are taken very seriously as 

psychological models (e.g. Anderson, 1976; Anderson and Bower, 1973;
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Minsky, 1975).

An equivalent point can be made about inferencing methods. A deep 

analysis of expert systems indicates that they typically solve problems 

by the method of ’heuristic classification’ (Clancey, 1985). [Briefly, 

this method relates a specific problem to a specific solution in three 

steps, by ; (1) abstaction from case-specific data to a general 

problem class ; (2) an heuristic match, based on experience, from the 

problem class to a solution class; and (3) refinement of the solution 

class to yield a case-specific solution.] This inference structure is 

found to correspond closely to psychological models of expert problem 

solving (see Clancey, 1985).

The use of machine induction techniques to produce a knowledge 

base does not represent an exception to the inevitability of cognitive 

emulation in knowledge engineering. This is because a domain 

specialist’s knowledge is usually employed in the initial selection of 

concepts, attributes and exemplars. So, consequently, these 

selections will reflect the experts’ underlying conceptualisation of 

the domain. Moreover, at least one well-known machine induction 

product - Donald Michie’s Expert Ease - is derived from an algorithm 

originating in psychological research : Hunt’s Concept Learning System 

(Hunt, Marin and Stone, 1966).

Breuker and Wielinga (1983a) effectively encapsulate the present 

argument when they observe:

In general there is a large overlap between knowledge-based 

systems and psychological models of the same task for the simple
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reason that up to now it is hard to conceive of more general, 

intelligent methods than those used by human(expert)s . (p24)

3.1.2 Cognitive emulation offers a principled approach to design

Probability theory, predicate logic and other formal methods are 

problem solving techniques founded on established mathematical and 

logical principles. This helps explain the attractiveness of such 

techniques to many expert system practitioners. Research is also 

underway (e.g. Fox, 1984a, 1984b) towards formulating a knowledge- 

based theory of decision-making comparable in rigour to statistical 

decision theory, but relying more on qualitative rather than 

quanitative techniques. While this work is informed by a concern for 

human intelligibility and fidelity to human modes of reasoning, it 

also aims at integrating knowledge-based and formal methods where this 

seems appropriate.

However, even without the buttressing of formal methods, cognitive 

emulation can offer a principled approach to knowledge engineering.

In cognitive modelling exercises (see e.g. Hayes-Roth, Waterman and 

Lenat, 1978; Young, 1979) the known or presumed characteristics of 

human information processing are translated into a set of simplicity 

and purity constraints on program design. In production systems used 

as simulation programs this can take the form of self-imposed 

limitations on rule size and complexity, condition-driven control, 

uniformity in the rule base, etc. The main problem that with such a 

purist approach is the loss of computational power that often results. 

While this may even be an advantage in cognitive modelling (Young, 

1979), in applied expert systems it is usually unacceptable.
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To avoid such conflicts, the emulation principle may be invoked 

more selectively (Fox, 1982). This results in a correspondingly 

less principled approach to design, but one which remains informed by 

a unifying conception - human cognition.

3.1.3 Performance

Expert systems seek to achieve expert-level performance. Often 

the only available criterion for assessing the effectiveness of a 

built system is to compare its behaviour with that of one or more 

human experts - the so-called 'gold standard* (Hayes-Roth et a l ., 

1983). In the absence of more objective criteria, a plausible 

strategy for achieving expert-level performance is thus to model the 

underlying (cognitive) processes. The view of Gaschnig et al. (1983, 

p.255) is relevant here:

There is increasing realisation that expert-level performance may 

require heightened attention to the mechanisms by which domain 

experts actually solve the problems for which the expert systems 

are typically built. It is with regard to this issue that the 

interface between knowledge engineering and cognitive psychology is 

the greatest.

3.1.4 User acceptance

Gaining acceptance for a built system is now a major consideration in 

expert system design (Duda and Shortliffe, 1983; Hayes-Roth et a l ., 

1983). This stems from the failure of such famous expert systems as
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MYCIN to be accepted in daily use by the intended users, leading to 

the realisation that the achievement of expert-level performance per 

se is insufficient to guarantee user acceptance. In so far as it 

leads to greater intelligibility in the system's knowledge and the 

processes using it, and to a greater tolerance of intervention by the 

user, cognitive emulation can be expected to promote user acceptance 

(Aikins, 1983, p.199; Fox, 1982).

In addition, the 'cognitive coupling* (Woods, 1986) between user 

and system also has implications for user acceptance. Earlier expert 

systems were often technology-driven problem-solvers, with the user s 

role merely that of data gathering and filtering out poor system 

solutions. Users have tended to reject such a passive role (Coombs 

and Alty, 1984). Recent research is directed to supporting a far 

wider range of cognitive functions (see Section 5.4), with 

acceptability a major criterion.

A related argument is that cognitive emulation is morally or 

socially desirable: it could help humanise what might otherwise become 

an alien, machine-oriented technology (e.g. Fox, 1983; Michie, 1980).

3.1.5 More effective knowledge acquisition and representation

Building any non-trivial expert system is a difficult and time- 

consuming process. It has recently been argued that a major 

contributory factor is the inappropriateness of techniques currently 

used by system builders to both elicit and represent experts’ 

knowledge (Gammack and Young, 1984; Young, 1985). Even within a 

narrow domain an expert's knowledge can be of many different types;
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much of it difficult to capture and express as empirical rules. It is 

thus possible to argue for the use of a variety of psychologically- 

orientated techniques in both knowledge elicitation and knowledge 

representation. For example, Wilkins, Buchanan and Clancey (1984) 

have advocated modelling the expert's knowledge acquisition and 

knowledge organization methods in order to facilitate system 

development. (See Chapter 5.)

3.2 ARGUMENTS AGAINST COGNITIVE EMULATION

3.2.1 Human cognitive weakness

Human cognition compares unfavourably with computer systems in a 

number of respects;

Human memory is prone to forgetting and distortion of stored 

information (Baddeley, 1976; Bartlett, 1932).

The rationality of human thinking (in the formal logical sense) 

can be questioned. Certainly, aspects of deductive reasoning 

such as negation prove highly problematical for human subjects 

(Johnson-Laird, 1982; Johnson-Laird and Wason, 1977).

People experience difficulties with probabilities, especially in 

handling combinations of uncertain evidence (Kahneman et a l ., 

1982).

Human information processing capacity is severely limited 

(Miller, 1956).

Put another way, computer systems already outstrip human capabilities 

in tasks such as arithmetic, rote memory and the application of
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standard problem-solving procedures; and they now perform comparably 

well in such areas as chess and text recognition (Sowa,1984),

While it is valid to make these observations about the comparative 

weaknesses of human thinking, any conclusion regarding the superiority 

of formal computer systems needs strong qualification. First, people 

are able to employ a wide variety of ’heuristics’ and other knowledge- 

based capabilities, which may effectively compensate for a lack of 

computational power (Anderson, 1983a; Kahneman et a l .. 1982).

Moreover, for many interesting problems in Al all the known algorithms 

take an exponential amount of time ; whereas practical heuristics 

derived from observing human performance can produce adequate 

solutions in reasonable amounts of time (Sowa, 1984). Second, the 

difficulties people experience with memory retrieval does not imply 

that computer-based storage systems are superior. That is to say, 

human memory - despite problems of forgetting, distortion, etc. - 

appears better adapted than existing computer systems to maintaining a 

huge database of millions of facts, whilst enabling rapid access to 

all its knowledge (Anderson, 1984).

To conclude: The greater power and accuracy of formal computer

systems argues against an unselective strategy of cognitive emulation. 

However, it does not provide a conclusive argument against a more 

selective strategy, because human cognition has compensatory 

strengths.

3.2.2 Inefficient and suboptimal representations

It can be argued that people make suboptimal decisions because their
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are incapable of using certain types of (optimal) representations of 

problems. This assertion has yet to be demonstrated however (Fox,

1982). Neither has it been shown that computer programs can 

invariably support more satisfactory problem representations.

A related, and more plausible argument is that computer programs 

can represent an expert’s knowledge in a highly compact form; 

certainly more efficiently than a human expert is capable. A familiar 

knowledge engineering practice is to elicit knowledge from an expert 

in modular chunks (facts, rules, etc.), and at a later stage compile 

these into a more efficient representation such as a decision tree or 

network. This has lead some researchers to opt for efficiency rather 

than fidelity to an expert’s representation in expert systems design 

(Welbank, 1983). They recommend translation to and from a more 

natural representation purely for the user’s benefit.

3.2.3 Improving on expert performance

Human experts are known to be inconsistent, unreliable and to disagree 

with their colleagues on important matters (Gaschnig et a l ., 1983; 

Welbank, 1983). Such observations suggest that a reasonable goal for 

expert system design is not merely the achievement of expert level 

performance but, ultimately, an improvement on human expertise.

Results presented by Michalski and Chilausky (1980), where machine- 

induced rules proved better at diagnosing soybean diseases than rules 

derived from an expert, indicate that this is already the case for 

some simple types of task. And logically, it is difficult to see how 

the objective of improving on human performance could be achieved in 

an expert system modelled purely on an expert’s thinking, weaknesses
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as well as strengths.

3.2.4 Multiple expert systems

In knowledge engineering there is often a requirement to embody the 

expertise of specialists from different areas within a single expert 

program. This requirement is reflected in the commercially available 

’blackboard’ architecture for expert systems. [Problem-solving in a 

blackboard system involves a set of independent ’specialists’ or 

knowledge sources co-operating in developing and testing possible 

solutions. Communication is via a shared working memory : the 

blackboard.] Even in the more general case - where only the expertise 

of one particular type of domain specialist is at issue - it is 

considered that to be useful an expert system should be capable of 

embodying the expert skill of several individuals (Welbank, 1983).

This ’multiple expert’ feature constitutes an argument against 

cognitive emulation in its strongest form. That is to say, whilst 

general principles underlying human thinking are discernable, the 

cognitive processes of different individuals cannot be combined or 

averaged very meaningfully. Not least this is because individual 

variation is such a salient characteristic of human cognition (see 

e.g. Newell and Simon, 1972). Even within a particular specialty 

different experts can be expected to employ idiosyncratic reasoning 

strategies and knowledge representations (Kuipers and Kassirer, 1984).

3.3 CONCLUSIONS

This chapter has presented the major arguments for and against
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cognitive emulation as an expert system design strategy. Taken 

together the force of these arguments is that neither extreme attitude 

to cognitive emulation is tenable.

Thus, on the one hand, a pure, unselective application of the 

strategy is untenable because:

it would entail a commitment to emulating human cognitive 

weakness (3.2.1)

experts' representations of problems may be sub-optimal or 

inefficient (3.2.2)

it implies that expert systems cannot aim to improve on human 

expert performance (3.2.3)

some expert systems require the expertise of several domain 

specialists (3.2.4)

Equally, the opposite view that cognitive emulation should be avoided 

or ignored as a design strategy can also be discounted since:

cognitive emulation seems inherent in knowledge engineering 

(3.1.1)

cognitive emulation offers a principled approach to expert system 

design (3.1.2)

a plausible strategy for achieving expert-level performance is to 

emulate the underlying cognitive processes (3.1.3) 

cognitive emulation can promote user acceptance (3.1.4) 

effective knowledge elicitation often requires psychologically - 

orientated techniques (3.1.5)
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A more pragmatic attitude is called for: one that acknowledges 

both the potential usefulness and the limitations of cognitive 

emulation for knowledge engineering purposes. The next chapter 

considers factors likely to further constrain and facilitate a 

cognitive approach.
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4 FACTORS FACILITATING AND CONSTRAINING COGNITIVE EMULATION

The arguments reviewed in the previous chapter suggest that a 

significant degree of cognitive emulation is inherent in expert system 

design, but that a pure unselective strategy of emulation is both 

unrealistic and undesirable. In this chapter we discuss several 

rather more pragmatic considerations: some constraining, others 

facilitating, the viability of an emulation approach.

4.1 CONSTRAINTS ON COGNITIVE EMULATION

4.1.1 The emulability of human expertise in artificial systems

It is not yet clear what limits (if any) there are on modelling the 

cognitive processes underlying expert behaviour in an artificial 

system. This issue is essentially a specific instance of the wider 

debate about the comparative nature of artificial and human 

intelligence (e.g. Boden, 1977).

An influential development in this debate has been the notion of a 

’Physical Symbol System* proposed by Newell and Simon (1976). This 

notion defines a broad class of system capable of having and 

manipulating symbols, or more generally, symbolic structures, yet that 

are realisable as physical entities. Newell and Simon’s central 

hypothesis is that Physical Symbol Systems have all the necessary and 

sufficient means for intelligent action. In their view, human beings 

and computers are prime instances of such systems. If this meta

theory is correct then in principle there should be no limitation on 

cognitive emulation in expert systems.
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On the other hand, it may be as some critics of Al contend, that 

in essential respects human cognitive processes cannot be adequately 

captured in computer programs (Searle, 1984; Weizenbaum, 1976). 

Clearly, if these critics prove right then the prospects for a 

modelling approach are poor.

It seems doubtful whether this fundamental issue can be resolved 

to universal satisfaction solely by resort to a priori arguments. Any 

'conclusive' argument is liable to be overthrown by empirical 

developments in cognitive psychology or the expert system field. An 

alternative view, intermediate between the two above, is that 

different aspects of human cognition vary in their emulability in 

computer systems. For example, cognitive scientists have found it 

relatively straight forward to simulate the acquisition of arithmetic 

skills using rule-based techniques (e.g. Young and O'Shea, 1981).

By contrast, reasoning by analogy and the representation of 

spatial concepts have proved difficult to model computationally 

(Hayes-Roth, 1984; Pinker, 1984). One underlying factor is the 

fundamental difficulty of simulating continuous mental processes by 

digital means, i.e. on digital computers (Sowa, 1984). Again, though, 

it is to early to tell whether aspects of expert thinking currently 

unamenable to emulation will remain so in the future. [This book 

adopts the working hypothesis that, in at least some significant 

respects, human cognition can be emulated on digital computers.]

4.1.2 The state of cognitive psychology

Another potential source of difficulty for system builders adopting a
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strategy of emulation stems from the current state of development of 

cognitive psychology. The difficulties for a modelling approach 

include:

1. Ignorance

Despite a certain amount of progress, it is apparent that many key 

questions about human cognition have yet to be tackled, let alone 

answered, to general satisfaction. Norman (1981) maps out many of 

these gaps in our present knowledge of the human mind. Problem: One 

cannot emulate what is not known.

2. Diversity, of approaches

In Kuhnian terms psychology is an immature science, in a 'pre- 

paradigmatic’ stage of development (Boden, 1977). This is reflected 

in the confusingly varied range of theories, models, knowledge 

representation formalisms, etc. presented in the cognitive literature 

- often as explanations of the same phenomenon. Problem: Which 

theory/model/formalism does one choose to emulate?

3. Scientific Status

As a science the theories and hypotheses of cognitive psychology are 

constantly subject to revision, obsolescence and falsification by 

empirical research findings (Popper, 1963). That is, our knowledge of 

human cognition is provisional in nature. Problem: The cognitive

model emulated today may be refuted by later research.

4. Implementabilitv

The main criterion of an explanation’s acceptability in cognitive 

psychology is experimental corroboration: in AI it is implementability 

(Hayes, 1984). As a consequence AI researchers have often found
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psychological models not sufficiently robust or predictive to implement 

as working programs. This problem has constrained expert systems 

research (Coombs and Alty, 1984; Hasling et a l .. 1984).

4.1.3 Expert systems technology

The existing technology for building expert systems - both hardware 

(e.g. Von Neumann architectures) and software (languages, shells and 

other system building tools) - is unequal to the task of modelling 

some influential and potentially useful ideas in cognitive psychology. 

[The tutorial article by Hayes-Roth (1984) provides a clear summary of 

the state of the art in knowledge engineering, and what notions it can 

handle].

To take one example: 'spreading activation’ (e.g. Anderson, 1983a; 

Collins and Loftus, 1975). In this theory, memory is represented as a 

network of nodes. When one or more nodes become active (perhaps due 

to a sensory input or memory probe) activation spreads out in parallel 

to the nearest nodes, forming an expanding sphere of activation around 

the original node(s). Roughly speaking, activation decreases the 

further one gets from the initial source(s) of activation. Anderson 

(1983a) argues that activation can function as a ’relevancy 

heuristic’, on the reasonable assumption that knowledge associated with 

what is being processed is likely to be relevant to that processing. 

However, spreading activation is essentially a parallel mechanism 

requiring parallel machinery for its efficient implementation. And 

"until such machinery becomes available, this potentially good idea 

will not see extensive use in pure artificial intelligence
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applications (applied knowledge engineering)" (Anderson, 1983a, p.88). 

This restriction applies equally to other cognitive mechanisms that 

are believed to be parallel processes (see Table 4.2).

On the software side, Hayes-Roth (1984) mentions analogues, meta

knowledge, naive physics and first principles as types of human 

knowledge not yet available in state-of-the-art expert systems. Table

4.2 provides other examples.

4.1.4 Individual variation in expert thinking

Cognitive psychologists seek to identify general principles of human 

thinking. Individual variation in cognitive performance is accounted 

for with reference to these principles. Whilst a strategy of 

cognitive emulation based purely on general principles of human 

(expert) cognition might be possible, any such approach has its 

limitations.

The cognitive research giving rise to generalisations about the 

human mind (and even the decision processes of a particular group of 

domain specialists), is usually based on experimental results gathered 

from many subjects and analyzed using standard statistical techniques. 

In cognitive simulation psychologists may thus model a 'prototypical' 

or representative subject (Simon, 1979). From the point of view of 

cognitive emulation, the danger is that this kind of application of 

general principles will fail to do proper justice to the known 

richness and variety of reasoning strategies, knowledge 

representations, etc. of individual experts (Kuipers and Kassirer,

1984; Newell and Simon, 1972). The problem-solving capability of an
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expert program might suffer accordingly.

An alternative methodology for cognitive emulation is to model a 

system on the thinking of particular expert(s) using detailed 

techniques (e.g. protocol analysis). However, this is essentally what 

many knowledge engineers would claim to be doing already.

Perhaps the answer lies in combining these polar approaches. That 

is to say, eliciting knowledge from individual experts using standard 

knowledge acquisition techniques like interviewing and protocol 

analysis, followed by the tailoring of knowledge formalisms and 

inferencing methods (selected from a 'toolkit' of psychologically 

plausible alternatives) to reflect the distinctive cognitive processes

of individual experts. Unfortunately, the current state of expert

systems technology (see Section 4.1.3) would not support such an

application of the emulation principle at present.

4.1.5 Knowledge engineering objectives

The final constraining influence considered is that posed by the 

apparent conflict between a strategy of cognitive emulation and other 

knowledge engineering criteria. Textbooks (Barr and and Feigenbaum, 

1981, 1982; Hayes-Roth _et a l .. 1983) and review articles (e.g.

Buchanan, 1982; Davis, 1982; Duda and Shortliffe, 1983) discuss 

various system design criteria. For present purposes only five are 

distinguished;

a. Efficiency

To minimise costs and response times, knowledge engineers aim to build 

computer systems that are maximally efficient in their use of
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computational resources, i.e. memory, time.

b. Modifiability

It is considered highly desirable that the knowledge embodied in an 

expert system be easy to add, delete and amend. This reflects the 

slow, iterative nature of the knowledge acquisition process; which 

typically requires numerous alterations and extensions to the 

knowledge stored in the system.

c . Simplicity

Simplicity of design has several advantages. By keeping the knowledge 

representation, inferencing techniques, etc. as simple as possible, it 

is hoped that the resulting system will be easier to develop and 

maintain, cost less and be more intelligible.

d. Understandability

Understandability is sought because it facilitates all stages of 

expert system construction, and, by making the basis of the system's 

behaviour more intelligible, helps promote user acceptance.

e . Correctness

In order to achieve expert-level performance techniques yielding 

provably correct conclusions are favoured. Consistency and 

completeness in the knowledge base is also sought. Moreover, users 

may express more confidence in the decisions of a system whose 

judgments are perceived as rationally derived.

Table 4.1 attempts to show how these five design criteria, together 

with the constraints on emulation discussed earlier, favour a variety 

of design features commonly found in expert systems. In Table 4.2 the
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Table 4.1
Knowledge engineering factors favouring typical expert system features

EXPERT SYSTEM 
FEATURE

KNOWLEDGE
ENGINEERING
FACTORS(S) COMMENT

1. Uniform Simplicity Each formalism requires its own
Representation inferencing mechanism
of Knowledge Efficiency Computational resources needed to

store and communicate between many 
formalisms

Technology Availability of uniform
implementation languages e.g.

2. Modular Modifiability Enables knowledge to be added,
Representation deleted and amended with minimal
of Knowledge effects on remainder of knowledge in

system

3. Natural 
Representation 
of Knowledge

Understandability A declarative formalism such as rules 
can make the individual items of 
knowledge easier to understand

4. Unrestricted 
Working Memory 
Capacity

Correctness

Understandability

Potentially valuable facts, etc. 
could be lost maintaining limit on 
store size
Imposing a WM restriction might 
appear perverse or irrational to 
users

5. Boolean Simplicity Imposes constrained format '
Representation Efficiency Boolean algebra very efficiently
of Patterns processed by digital computers

Correctness Guaranteed 'correct' reasoning using
Boolean algebra 

Technology Psychological nature of pattern
representation poorly understood

6. Complete Simplicity A more complex interpreter required
Pattern to handle partial matching
Matching Correctness Full matching requirement facilitates

accuracy
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7. Probabilistic Correctness Probabilistic methods offer the
Handling of promise of accuracy (but see e.g.
Uncertainty White, 1984)Technology A range of established formal methods

are available (e.g. Bayes Thereom, 
fuzzy set theory)

8. Undirectional Simplicity
Control
Structure Technology

e.g. backward-chaining nature of 
Prolog
The flexible intermixture of forward 
and backward reasoning characteristic 
of human thinking difficult to 
emulate

9. Serial 
Processing

Technology Parallel architectures still at the 
prototype stage

10. Direct . Modifiability Ability to directly add, delete and 
Manipulation of alter units of knowledge required for
Knowledge ease of system development and

maintenance

11. Static Technology Absence of techniques for dynamic
Knowledge Base changes to knowledge base whilst in

use

12. Reasoning- Correctness Accurate picture of how conclusions
Based were reached
Explanation Technology Easy to implement e.g. rule-tracing
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Table 4.2
Typical expert system features and cognitive research findings

EXPERT SYSTEMFEATURE COGNITIVE RESEARCH FINDINGS
SELECTED
REFERENCES

1. Uniform Expert knowledge of many distinct
Representation types - indicating multiple
of Knowledge representations. Basic distinctionbetween declarative and procedural 

representation often made. Evidence 
for specialised representations of 
visual and spatial knowledge.

2. Modular Expertise in a domain characterised by
Representation integration of knowledge into larger
of Knowledge units, be they chunks, scripts,themes [1], rules, etc. and by high 

interconnectivity between facts.

[Anderson (1983a), 
Gammack and Young 
(1984),
Pinker (1984), 
Rumelhart and 
Norman (1983)]

[Anderson (1983b), 
Chase and Simon 
(1973), Reder and 
Anderson (1980), 
Smith at. al. (1978)1

3. Natural Human expertise seems to rely heavilyRepresentation of procedurally-embedded or compiled
of Knowledge knowledge. Knowledge underlyingcognitive performance (including 

experts') often not verbalisable.
4. Unrestricted Experts have larger NMs for domain
Working Memory knowledge than novices. Nevertheless,
Capacity experts' WMs still severely limited in

number and complexity of items that 
can be held - imposing constraints on 
human information processing capacity.

5. Boolean Generally, patterns and concepts do
Representation not appear to be represented in
of Patterns cognition as simple predicates linked

in arbitary arrangements by the 
Boolean operators 'or', 'and' and 
'not' e.g. negation rarely used, 
'integral' [2] and structural patterns 
difficult to represent.

6. Complete Humans adept at coping with missing or
Pattern incorrect information in pattern
Matching matching e.g. classifying novel

instances on the basis of their 
similarity to other category instances 
or category prototype [3].

[Anderson (1983b), 
Berry and Broadbent 
(1984), Rumelhart 
and Norman (1981)]

[Chase and Ericsson 
(1982), Miller 
(1956), Newell and 
Simon (1972)]

[Barsalou and Bower 
(1984),Garner(1976), 
Hayes-Roth (1978), 
Johnson-Laird and 
Wason (1977)1

[Barsalou and Bower 
(1984), Elio and 
Anderson (1981), 
Posner and Keele 
(1970)1
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7. Probabilistic 
Handling of 
Uncertainty

8. Undirectional
Control
Structure

9. Serial 
Processing

10. Direct 
Manipulation 
of Knowledge

11. Static 
Knowledge Base

12. Reasoning- 
Based
Explanation

People, including experts, appear to 
rely heavily on nonstatistical 
heuristics e.g. availability and 
representativeness in making 
judgments under uncertainty. Human 
experts influenced by more qualitative
(e.g. configurational) aspects of data. (1984)]

[Fox (1980), Fox 
et a L  (1980), 
Kahneman et aL.
(1982), Zimmer

Compared with novices, the performance 
of human experts is often more 
dependent on data-driven processes 
e.g. pattern recognition. But 
generally expert thinking seems 
characterised by a flexible 
intermixture of forward and backward 
reasoning.
Automated cognitive processes such 
as pattern recognition, memory 
retrieval and other more specialised 
skills, e.g. reading appear 
essentially parallel in nature.

[Anderson (1983a), 
Chi Êt al. (1981) 
Larkin at al. (1980), Shiffrin 
and Schneider 
(1977)1

[McClelland and 
Rumelhart (1981), 
Heisser (1976), 
Shiffrin and 
Schneider (1977)]

Research suggests procedural knowledge first represented declaratively as [Anderson (1983a,b), 
facts, and only becomes proceduralized Larkin (1981)] 
through repeated use or practice.
Once 'compiled", knowledge not 
readily deleted or modified.
Human knowledge is dynamic in that it 
has the ability to recode, restructure 
and generally modify itself in 'real
time'.
Cognitive processes underlying expert 
performance often difficult to 
explain. Instead, experts may base 
their explanations on causal reasoning 
using domain models and principles, or 
even post-hoc rationalisations.

[Bartlett (1932), 
Chi et y.. (1981), 
Rumelhart and 
Herman (1978)]

[Berry and Broadbent 
(1984), Nisbett and 
Wilson (1977), Wason 
and Evans (1975)]

Terms;
[1] Themes A term used to denote a thematically-integrated set of facts in declarative memory (Anderson, 1983a; Reder and Anderson,

1980). ,  ̂ .[2] Integral pattern A class of stimuli that are not analysed into 
independent attributes (e.g. colour, size) in cognition, but are 
processed in a wholistic manner (Garner, 1976).

[3] Category prototvne The best or clearest example of a category. 
For example, a robin probably conforms to most people's idea of a 
typical 'bird', whereas a vulture does not (Posner and Keele, 
1970; Bosch, 1977).Other terms are explained elsewhere in this book (see index).
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same design features are related to psychological research on 

corresponding aspects of human (expert) cognition. From inspection of 

Table 4.2 it is apparent that many typical expert system features are 

highly implausible as models of how human experts think.

4.2 FACTORS FACILITATING COGNITIVE EMULATION

4.2.1 Developments in expert system technology

In an earlier section (4.3.3) the current state of expert system 

technology was identified as an important constraint on cognitive 

emulation. However, the technology is still in an early phase of 

development (Bramer, 1984). Over the next decade or two, the massive 

world-wide investment in fifth-generation research projects should 

remove at least some of the technological constraints on modelling 

human cognition. The development of parallel architectures is an 

obvious example on the hardware side (Bishop, 1986). Regarding 

software, research and development objectives include multi

representation systems, model-based reasoning, meta-knowledge systems 

and learning by example (Hayes-Roth, 1984).

4.2.2 Cognitive research

In addition to providing constraints on a strategy of cognitive 

emulation (see Section 4.3.2), cognitive psychology can facilitate the 

strategy in several ways;

. Cognitive psychology has, 'heuristic value*. That is, the

psychological literature on human thinking can serve as a useful
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source of ideas for expert system builders. So, for example, 

there is a degree of consensus amongst cognitive psychologists 

regarding certain broad principles of human information 

processing (some of these are referred to in Table 2). With 

respect to the cognitive processes subsuming human expertise, a 

growing body of research findings are available (see Chapter 2).

The advent of. cognitive science. Some researchers in cognitive 

psychology and related disciplines (Al, philosophy, linguistics, 

etc.) now identify themselves as Cognitive Scientists. Amongst 

other things, this label denotes a commitment to implementing and 

testing cognitive ideas as computational models (Slack, 1984).

This requirement ought to make the task of cognitive emulation in 

expert programs that much easier.

Developments in the subject. The ongoing research effort by 

cognitive psychologists should significantly advance our 

understanding of the human mind in general, and expert cognition 

in particular. And such advances, if computationally expressed, 

would provide a more assured basis for adopting the cognitive 

emulation principle.

4.2.3 Cognitive emulation can coincide with other knowledge 

engineering objectives

In Tables 4.1 and 4.2 the emphasis is on areas of conflict. Nevertheless, 

it is apparent that cognitive emulation will sometimes coincide rather 

than conflict with other systems design criteria:

Knowledge-based and rule-based techniques. These were discussed
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earlier (Section 3.1.1).

Cognitive emulation would overlap with other criteria (e.g. 

development cost and effort) if it helped overcome the bottleneck 

in knowledge acquisition (see Section 3.1.5).

Cognitive emulation can coincide with computational efficiency.

In one reported study of machine induction, a hierarchially 

structured set of rules (so structured for greater 

understandability) were induced more efficiently than a single 

very large decision rule based on the original ID3 algorithm (see 

Michie, 1982). Moreover, encoding expert knowledge naturally as 

pattern-based rules can help control the explosion of 

combinatorial complexity that more formal approaches might 

entail (Michie, 1980).

Knowing the appropriate rule size for human reasoning can also 

help in knowledge elicitation from the expert (Welbank, 1983).

To provide an expert system with a sophisticated natural language 

interface may require the interface having access to the expert 

system’s knowledge and operations, implying that these must be 

represented in an appropriate (humanlike?) form (Sparck Jones,

1984).

Well-known cognitive principles are already being applied to 

’humanising’ the man-machine interface of expert systems (see 

Welbank, 1983). An awareness of the limitations on people’s 

capacity to process information underlies Donald Michie’s 

(Michie, 1980) recommendation that expert systems be designed to
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include a ’human window’, i.e. employ a conceptualisation of 

knowledge and inferencing techniques that can be both understood 

and executed by a human user. Such a facility is considered 

vital for systems employed in high-risk application areas like 

nuclear plant management.

4.2.4 Problems unamenable to formal methods

The intractible nature of a problem using formal (ie. non-cognitive) 

techniques, could facilitate more psychologically-oriented 

approaches - even though this might clash with other design criteria. 

To date, the relatively limited range, complexity and size of tasks 

tackled by expert systems has usually enabled expert-level performance 

to be achieved without significantly compromising system design 

criteria such as correctness, efficiency, etc. So, for example, the 

existing technology has proved sufficient for handling such ’analytic’ 

tasks as medical diagnosis and geological classification (especially 

in small, well-defined domains). rstefik et a l . (1982) have suggested 

a set of architectural prescriptions for building expert systems of 

this type, which makes use of current techniques.]

However, many leading practitioners in the expert system field 

(e.g. Davis, 1982; Duda and Shortliffe, 1983; Hayes-Roth, 1984), 

suggest that current techniques may prove inadequate for handling the 

much larger knowledge bases (containing several million facts), more 

varied tasks (e.g. ’synthetic’ tasks like design) and more complex 

capabilities (e.g. learning from experience) predicted for future 

applications. Since the human mind has proved equal to coping with
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such tasks, whereas formal Al techniques have not as yet, an 

opportunity for a cognitive approach exists here.

Broadly speaking, the utility of the cognitive emulation principle 

might be expected to increase as the tasks tackled by expert system 

builders become more difficult.

4.3 SUMMARY AND CONCLUSIONS

Several constraints on cognitive emulation were identified: Some 

cognitive processes may not be amenable to emulation in principle. 

Others may be emulable in principle, but not with the available 

technology. Our current understanding of human cognition is 

incomplete, with many competing explanations and the prospect of 

established notions being falsified. The individual variation in 

expert cognition may not map comfortably onto general principles 

derived from cognitive research. Special attention was given the way 

in which cognitive emulation could conflict with established knowledge 

engineering objectives such as efficiency and modifiability.

Factors considered likely to facilitate a cognitive approach 

include: future developments in expert systems technology and the 

cognitive sciences, situations where cognitive emulation coincides 

with other design criteria, and the need to tackle problems which are 

intractable using formal methods.

Whether it is feasible to adopt explicitly a strategy of cognitive 

emulation will depend on the particular balance of facilitating and 

constraining factors operating in any given instance. Figure 4.1 

provides a rough-and-ready decision rule based on the points raised in
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this chapter*. Applying this rule, the state of the ’enabling’ 

technologies and disciplines would seem to weigh against all but a 

highly selective pursuit of cognitive emulation for commercial 

applications at the present time. In the longer term, however the 

decision rule implies that a combination of developments in expert systems 

technology and cognitive science, the need to tackle larger and more 

difficult problems, the desire to further humanise the user interface, 

etc. will make adopting a strategy of cognitive emulation increasingly 

attractive - if not essential.

* Note: to be of practical use, the criteria embodied in the decision 

rule would need to be stated much more explicitly.
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If

and

and

and

and

and

or

and

and

or

and

then

1 . Existing (formal) techniques cannot meet all major
knowledge engineering requirements for an application 
satisfactorily

2 . Cognitive process(es) can be identified that appear
relevant to meeting the application requirements

3 . Cognitive process(es) involved considered emulable in
principle

4 . Cognitive process(es) involved psychologically
understood

5 . Cognitive process(es) involved available as a
computational model

6.1 Knowledge engineering tools embodying cognitive
process(es) commercially available

6.2 Resources available to develop knowledge engineering
tools embodying cognitive process(es)

7 . Knowledge engineering tools embodying (generalised)
cognitive process(es) can be tailored to expresively 
accomodate knowledge, etc. elicited from individual 
domain experts

8.1 Emulating cognitive process(es) does not significantly
compromise other knowledge engineering objectives (e.g. 
efficiency)

8.2.1 Emulating cognitive process(es) does significantly 
compromise other knowledge engineering objectives (e.g. 
efficiency)

8.2.2 Problem unsolvable using alternative techniques

Cognitive process(es) involved should be emulated in an 
expert system.

Fig. 4.1 - A decision rule for adopting a strategy of cognitive 
emulation in expert system design.
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5 APPLICATIONS OF THE EMULATION PRINICIPLE ; A SURVEY OF APPROACHES

5.1 GENERAL INTRODUCTION

The two previous chapters have considered the formal arguments for and 

against cognitive emulation, and some of the practical issues 

involved. We reached the interim conclusion that cognitive emulation 

is an inherent feature of design, but that an unselective strategy of 

emulation is both unrealistic and undesirable. Some of the 

circumstances in which a strategy of emulation might be useful were 

also noted. In this chapter we aim to draw out in more detail the 

implications of the strategy for such issues as knowledge acquisition, 

knowledge representation and system architecture. And through an 

examination of different applications of the emulation principle, it 

will hopefully become clearer that a workable and coherent approach to 

expert system design is being discussed.

These aims are achieved through a survey of work in experts 

systems, and closely related fields, which have addressed the 

emulation issue. What such a survey reveals is that cognitive 

emulation is far from constituting a unitary design strategy. On the 

contrary, as instanced by the published literature it is more aptly 

viewed as a loosely bundled set of approaches that share a (variable) 

committment to emulating human cognition. This point can be 

illustrated by a series of quotes from the knowledge engineering 

literature. The following statements form an approximate continuum - 

the first quotes express no concern for cognitive emulation; those 

towards the end advocate a strong version of the strategy:

[1] ...expert system: a computer program which uses artificial
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intelligence (AI) techniques to do the same task as a human 

expert does. (Welbank, 1983, p.l)

[2] ...an expert system is a set of computer programs which emulates 

human expertise by applying techniques of logical inference to a 

knowledge base. (Johnson, 1984, p.15)

[3] It is essential to model the expert's inference structure ... but 

not as important to model the search process he uses. (Clancey, 

1984, p.13)

[4] The knowledge representation and control strategy selected should 

accurately reflect what the human expert knows and how he uses that 

knowledge to solve a problem. This does not mean that the system 

has to be a psychological model ... but it does mean that the 

representation chosen must be able to capture the fullest range 

and power of the human expert’s knowledge in that particular 

domain. (Kidd, 1985a, p. 243)

[5] Cognitive emulation is an expert system design strategy that 

attempts to model system performance on human (expert) thinking. 

(Slatter, 1985, p.28)

[6] Cognitive emulation means building systems in such as way that 

they process information in ways that resemble how users process 

information. (Fox, 1983, p.8)

[7] Unless there is a clear reason not to an expert system should be 

designed to process information in ways that approximate human 

information processing as closely as possible. (Fox, 1982, p.4)
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[1] and [2] are standard technical definitions. They imply only 

that human expert performance should be emulated - and then by using 

formal Al techniques. [3] and [4] manifest an intermediate 

commitment: [3] is selective in which aspect of human cognition it 

considers it is necessary to emulate; whereas [4] suggests that it is 

sufficient to capture the functionality of expert cognition. [5], [6] 

and [7] offer the strongest endorsements of the cognitive emulation 

principle.

The above quotes serve to illustrate another dimension along which 

approaches to emulation may be tentatively categorized, i.e. the level 

of generality at which the emulation issue is addressed. So, for 

example, some approaches emphasize the emulation of individual experts

[3]. Others are more concerned with emulating the cognitive processes 

representative of larger aggregates of people - experts in a 

particular domain [4], 'experts' [5], 'users' [6], or human cognition 

in general [7]. The survey in this chapter is organized around this 

framework, which is illustrated in Figure 5.1. The number in brackets 

next to each approach refers to the section in which that approach is 

discussed.

Some preliminary remarks about this scheme are in order. First of 

all, it is not intended to be exhaustive. In particular, such 

important topics as vision and natural language understanding, for 

which human cognition provides one obvious model, and which may figure 

prominently in the expert systems of the future, are outside the scope 

of the present survey. Our coverage is limited to the core expert 

system topics of reasoning and control strategies, knowledge

93



Level Broad Approach to Cognitive Emulation

Human Emulating 'human Emulating 'neural'
Population information processing (5.7)
Level processing' (5.6)

Large Emulating 'user' Emulating 'expert'
Group cognition (5.5) cognition (5.4)
Level

Small Emulating expertise
Group of experts in a
Level particular domain (5.3)

Single Emulating the
Person individual expert
Level (5.2)

Fig. 5.1 - Approaches to cognitive emulation at different levels 
of generality
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representation, knowledge acquisition and system architecture.

Second, the six approaches cited in Figure 5.1 are clearly not 

mutually exclusive. Thus, for example, it is quite reasonable to 

attempt to emulate both user and expert cognition within a single 

system. Or again, an approach to cognitive emulation inspired by a 

cognitive model of how human expertise develops may still need 

instantiating with respect to a particular domain, and individual 

experts within that domain (c.f. Kolodner, 1984). It is usually 

possible, however, to identify the approach(es) which provides the 

main rationale for any given attempt at emulation.

Each of the six approaches is outlined and evaluated in turn. In 

most cases, each broad approach comprises several distinctive research 

and development efforts, which are described separately. As indicated 

in Figure 5.1 we start by considering the least general approaches.

This is because these connect most readily with the everyday concerns 

of knowledge engineers - how to capture, represent and use the 

knowledge of individual experts, or formalize the expertise within a 

particular domain.

A major concern of the chapter is to make explicit the contrasting 

implications for expert systems design of these different approaches to 

emulation. This is a vital issue since the satisfaction of different 

knowledge engineering objectives (efficiency, modifiability, 

intelligibility) may well require that two or more approaches to 

emulation are combined within a single system. Some of the conflicts 

that can arise are explored in the discussion section (5.8). We also 

sketch some tentative solutions.
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5.2 EMULATING INDIVIDUAL EXPERTS

5.2.1 Introduction

Emulating human cognition at the level of an individual expert 

clearly has implications for the way knowledge is represented and 

deployed in an expert system, and for the overall architecture of 

the system. But questions about knowledge representation, 

knowledge utilisation and architecture arise naturally at other levels 

of emulation also; so discussion of these issues will be deferred until 

later. Instead, we focus here on that aspect of cognitive emulation 

which can only be addressed at the level of individual experts - 

knowledge elicitation. [By knowledge elicitation is meant knowledge 

acquisition activities where the source of information is a human 

expert.] The section is organised around a discussion of what makes 

knowledge elicitation difficult. This is a key issue, since effective 

emulation is critically dependent on the quantity and quality of 

elicited knowledge. We start by outlining some of the practical 

difficulties that knowledge engineers can face. Verbal data collected 

in one way or another is an essential part of knowledge elicitation: 

the limitations of this source of data are outlined. Inaccessibility 

of certain types of knowledge is one potential limitation. We 

consider whether there are kinds of human knowledge that are 

unelicitable in principle. Whether there are or not, the problem is 

compounded by the use of techniques unsuited to eliciting particular 

types of expert knowledge. The final constraint on effective 

cognitive emulation during knowledge elicitation to be considered is 

that imposed by the use of inappropriate representational and
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inferencing tools.

5.2.2 Practical difficulties in knowledge elicitation

These are dealt with at length elsewhere (e.g. Welbank, 1983), and 

include:

Knowledge elicitation techniques are poorly understood. 

Compared with the topic of knowledge representation, the 

discussion of knowledge acquisition in the expert systems 

literature has, at least until the last year or two, been 

rather sparse.

Lack of relevant training and experience amongst 

knowledge engineers in the available knowledge elicitation 

techniques.

The inaccessibility of the expert. They are usually very 

busy people, in high demand within an organization.

Experts may be unenthusiastic. For example, they may feel 

threatened by the purpose of the project, or take exception 

to the attitude of the knowledge engineer. This puts a 

premium on interpersonal skills, in order to motivate the 

expert and retain goodwill and co-operation.

Practical problems such as these can seriously distort attempts at 

emulation. Further research into knowledge elicitation and improved 

training of knowledge engineers would help enormously.
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5.2.3 Limitations of verbal data

It is a misconception to suppose that knowledge can be directly 

captured (or "mined") from a domain expert. All that knowledge 

elicitation techniques such as interviews and protocols can capture is 

a series of verbal utterances. It is the knowledge engineer who, 

through the interpretive processes of sifting, selection, re

representation, etc., converts this verbal data into the modules of 

knowledge that most expert systems require. Breuker and Wielinga 

(1983a) have described several of the sources of invalidity in verbal 

data which are worth restating here:

the expert's inexperience in self-report techniques

reconstruction/theorising rather than accurate reporting 

("gap-filling")

inaccessibility of procedural knowledge

the ineffability of certain events or internal 

representations

lack of ecological validity in the eliciting context (e.g. 

giving a verbal protocol on an unrepresentative task)

the taken-for-grantedness of highly familiar knowledge

straightforward forgetting of relevant information

ambiguities in verbalizations

secrecy and deliberate under-reporting
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A partial solution to the invalidity of verbal data is to be found 

in the iterative, feedback-driven nature of expert system 

construction, which facilitates the detection and correction of 

shortcomings in the system's knowledge base. We shall be 

considering other remedial measures in the next three sections. 

However, it is hard to conceive of an approach to the elicitation and 

interpretation of verbal data that would guarantee the completeness 

and accuracy of the resulting knowledge base. To this extent a 

fundamental limitation on emulation of individual experts must be 

accepted.

5.2.4 Unelicitable knowledge?

In the previous section the inaccessibility of certain types of human 

knowledge was cited as one source of invalidity in verbal data. And 

earlier, in Chapter 2, we noted that human expert knowledge tends to 

be even less accessible, due to the proceduralisation of task-related 

knowledge that takes place as expertise develops. This raises the 

question of whether there may exist types of human knowledge that are 

unelicitable in principle.

The notion of tacit knowledge has figured prominently in 

discussions of this subject. One such claim has recently been made by 

Collins, Green and Draper (1985):

The mistake is to think that if knowledge elicitation tools and 

techniques are sufficiently refined, and if enough time and 

diligence are dedicated to the task, the whole of an expert’s 

knowledge can be elicited. This is untrue; one cannot elicit that
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which no-one knows that they know - that which they cannot 

articulate, (p.328)

The notion of tacit knowledge was first developed in philosophy by 

Polyani (see Boden, 1977, for a summary). It refers to the tacit 

inferences and global knowledge that provide a nonarticulatable 

framework for human reasoning, including expert reasoning. Collins e_t 

a l . (1985) make the worthwhile point that a skilled user might be able 

to compensate for the absence of tacit knowledge in a knowledge base 

by supplying his own when interpreting an expert system’s behaviour. 

Regarding the wider issue of whether tacit knowledge is elicitable in 

principle, Polyani himself suggested that it was in fact formalizable 

(Boden, 1977, p.435).

Further clarification can be achieved by distinguishing between, 

on the one hand, nonarticulatable (or nonverbalizable) knowledge and, 

on the other, unelicitable knowledge. That is, it may be possible to 

elicit (or infer) knowledge that an expert cannot give direct verbal 

expression to by using, say, techniques derived from cognitive 

psychology. Machine induction of decision rules from examples 

supplied and classified by the expert can play a similar role.

In conclusion, the contention that some aspects of human knowledge 

are not elicitable in principle has yet to be demonstrated. But even 

if all human knowledge were elicitable in principle, the severe 

practical problems of eliciting inaccessible knowledge would remain.

5.2.5 The use of inappropriate elicitation techniques 

Another diagnosis of why knowledge acquisition represents a major
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bottleneck in expert system development stresses the use of 

inappropriate elicitation techniques. For example, informal 

interviews may be the only technique employed, despite their 

unsuitability for eliciting certain types of knowledge (Gammack and 

Young, 1984). Table 5.1 summarizes six major knowledge acquisition 

techniques that are currently available.

Once it is accepted that even within a single specialist domain 

expertise can comprise several distinctive types of knowledge, the 

need for a variety of elicitation techniques becomes evident (Gammack 

and Young, 1984; Kidd, 1985b). The problem is then one of how best to 

match techniques to knowledge types.

In summary, for eliciting the deeper, more "psychological" types 

of knowledge upon which effective cognitive emulation depends, a range 

of techniques need to be deployed. No one technique is sufficient for 

all purposes.

5.2.6 The use of inappropriate expert system development tools

Knowledge engineers have to work with the expert system development 

tools at their disposal. However, the limitations of existing software 

can seriously distort the knowledge elicitation process. For example, 

the use of, say, an EMYCIN-type shell presents the knowledge engineer 

with a predetermined format into which elicited data must be made to 

fit. Because a variant on the rule formalism is the only knowledge
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Table 5.1

Overview of six knowledge elicitation techniques

1. INTERVIEWS

advantages

disadvantages

2. VERBAL 
PROTOCOLS

The most familiar method. Widely used because it 
is relaxed and acceptable. Can take many forms; 
e.g. asking expert to give introductory lecture or 
tutorial about the task domain, or the interview 
can incorporate techniques used in cognitive 
psychology for probing memory such as 'critical 
incident reports'. The interview may follow a 
fixed plan of questioning predetermined by the 
knowledge engineer, or be unstructured, with the 
expert allowed to ramble.
Reckoned to be useful early on for eliciting the 
basic structure of a domain.
A lot of knowledge which is explicit to the expert 
can be elicited quickly.
Relatively easy.
Unsuited for eliciting detailed or 
inaccessible domain knowledge.
Time consuming: e.g. preparing interview plan, 
transcribing recordings of interview.
Relies heavily on uncued recall which is poor.

The expert is required to give a verbal commentary 
on what he or she is thinking about whilst working 
through a problem. A  recording is made of this 
'verbal protocol' which is transcribed and 
analysed. In the classic psychological method at 
least, this can result in a set of production 
rules which, when executed, simulate the person's 
problem solving strategy. A less time-consuming 
variant on the classical method employed by Myers, 
Fox, Pegram and Greaves (1983) involved 
highlighting the substantive knowledge in the 
transcript using a text editor, and coding it 
directly into rules to form a prototype expert 
system.
More natural task situation.
Permits inference of knowledge the expert cannot 
directly verbalise, especially the expert's 
procedures.
Useful where preselected examples exist.
Giving protocol can interfere with task 
performance.
Protocol analysis a skilled and difficult task; 
laborious.
Transcript can be highly ambiguous, requiring much 
'interpretation' when analyzed.

3. MACHINE Machine induced rules often have little resemblance
INDUCTION to those elicited from human experts using other

advantages

disadvantages
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advantages

disadvantages

4. OBSERV
ATIONAL
STUDIES

advantages

disadvantages

techniques. However, it is appropriate to 
consider machine induction as a technique for 
facilitating cognitive emulation for two reasons. 
First, the large example sets fed in as raw data 
are selected and preclassified by human experts, 
reflecting their conceptualisation of a domain. 
Second, there is some evidence (e.g. Bratko et a l .,
1985) that induced rules can approximate human rules 
under favourable conditions such as having a 
complete or highly representative set of 
examples.
Only needs preclassified examples.
Can cut out the need for a knowledge engineer.
Will account for all examples.
Require a database of documented cases, structured 
around human knowledge.
Instability - a single example can radically 
change an induced rule.
Induced rules are often large and complex, leading 
to intelligibility problems.

Similar to verbal protocols, except that there is 
no interference to the expert’s normal task 
performance from a secondary activity (giving a 
verbal report). It can take such forms as 
videoing, the recording of phone conversations 
between engineers and remote users, or recordings 
of radio ’help’ programmes (e.g. Kidd, 1985c). 
Whatever the medium, the transcripts require 
detailed analysis for useful knowledge to be 
extracted.
Helps overcome preconceived ideas.
Can find out what the expert’s role is and what the 
expert actually does.
If a user involved, draws attention to their 
contribution (often overlooked).
Makes heavy demand on knowledge engineer’s time 
and resources.
Can be a highly sensitive activity, making co
operation harder to get.
Need to have a clear idea in advance of what to do 
with transcripts.

5. CONCEPTUAL 
SORTING

advantages

A technique employed in cognitive psychology. At 
its simplest the task can involve; (a) obtaining a 
set of concepts that roughly covers a domain (from, 
say, a textbook or glossary); (b) transferring 
each concept to a card; (c) asking expert to 
sort cards into several groups, identifying what 
each group has in common ; and (d) iteratively 
combining these groups to form a hierarchy.
Useful where there is a lot of information to be 
organized.
Considered suitable for establishing global 
structure of domain knowledge.
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disadvantages

Statistical procedures such as cluster analysis 
may be applicable.
Requires some specialist skill to administer. 
Risk of producing artificially hierarchical 
structure of domain concepts.

6 . MULTI- In psychology, MDS techniques are used to identify
DIMENSIONAL perceived similarities and differences in a set
SCALING
(MDS)

advantages

disadvantages

of concepts. The Repertory Grid Technique (RGT) 
is one such technique that has transferred 
successfully to knowledge engineering (e.g. Shaw and 
Gaines, 1983; Boose, 1984). In contrast to conceptual 
sorting, which helps identify the broad conceptual 
structure, MDS techniques can uncover those fine 
discriminations between closely related concepts 
that experts make and which novices find hard to 
differentiate.
Good for eliciting subtle (nonverbal) distinctions 
between concepts.
RGT of proven value as a knowledge elicitation 
technique.
Demanding on the expert if the number of inter
concept comparisons gets large.
Statistical expertise required to understand and 
employ MDS techniques correctly.

Main Sources: Gammack and Young (1984), Kidd (1985b), Welbank
(1983).
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representation supported in some commercial expert system software, 

there is a real danger that types of knowledge not conveniently 

expressable in the available formalism will have to be either 

represented in an unnatural way or discarded altogether (c.f. Gammack 

and Young, 1984). Knowledge engineers may also be encouraged in the 

misconception that only rules and facts are important in expert system 

building, and that other types of knowledge can safely be ignored 

(Kidd, 1985b).

The requirements of the inference engine can exert their own 

influence on knowledge elicitation. Thus the use of a backward 

chaining shell may encourage the knowledge engineer to ask "where are the 

goals?"

How can the distorting effect of available software be countered? 

Clearly, in the long term expert system software which can naturally 

accommodate the full range of human knowledge types and inferencing 

strategies must be the objective. As a practical short-term measure, 

the coding of knowledge into an intermediate representation 

independent of any implementation appears useful. The detailed 

analysis of elicited knowledge at various levels of abstraction is 

another relevant technique, which is discussed in more detail in 

Section 5.3.

5.2.7 Concluding remarks

To emulate the thinking of a human expert, his or her expertise must 

first be captured. We have reviewed several problems in knowledge 

elicitation that make effective emulation difficult. These ranged
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from the more tractable problems associated with lack of training 

amongst knowledge engineers and the use of unsuitable elicitation 

techniques and software tools, to the fundamental constraints imposed by 

the inherent limitations of verbal data and the inaccessible nature of 

certain types of human knowledge. Our purpose has been to suggest that 

through the use of appropriate remedial measures it is possible to 

capture much of the detail of expert thinking.

5.3 EMULATING DOMAIN EXPERTISE

5.3.1 Introduction

The organising principle of this chapter is the emulation of human 

cognition at different levels of generality. In the previous section 

we considered emulation at the level of the individual domain

specialist (focusing on the question of how effectively on expert's

knowledge can be elicited). This section moves up a level of generality 

(see Figure 5.1) to review approaches concerned with emulating domain 

expertise; i.e. approaches that seek to capture what is typical about the 

organization of knowledge and problem solving within a particular 

specialist area. The psychological validity of such endeavours derives 

from the domain-specific nature of expert cognition, which was 

discussed in Chapter 2.

Medical expertise in general, and clinical diagnostic skill in

particular, has received the most attention in the published

literature. Researchers have sought to embody clinical expertise in

computer systems for two main reasons. First, to gain a better

understanding of clinical cognition, with the aim of improving it.
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Second, to develop practical decision support tools for everyday 

medical use. The application of Al techniques in medicine has yielded 

a number of experimental programs that seriously attempt to emulate 

aspects of clinical cognition: INTERNIST (Pople 1982), NEOMYCIN 

(Clancey and Letsinger, 1981), PIP (Pauker et a l .. 1976) and PSYCO 

(Fox et a l .. 1980) are four prominent examples.

Three distinctive approaches to the simulation of (clinical) 

domain expertise are considered in this section:

1. Simulation programs that mimic the behaviour of human 

clinicians.

2. An alternative approach based on inferring an expert’s 

reasoning by watching.

3. Knowledge-oriented approaches, concerned with analyzing the 

typical organization of knowledge within a domain.

5.3.2 Behavioural mimicry

Two major programs that fall under this category are INTERNIST and 

PIP. INTERNIST (Pople, 1982) is a large advisory program capable of 

making diagnoses in most areas of general internal medicine. It was 

modelled on one particular clinical expert (Myers). PIP, or Present 

Illness Program (Pauker et a l .. 1976), models the way a human 

clinician takes down the Present Illness of a patient with edema - a 

procedure that includes diagnosis.

Insights derived from introspection and the observation of 

experienced clinicians provide the initial basis for such programs. 

Discrepancies between the behaviour of the system and the performance
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of the expert prompts an iterative cycle of testing and revising of 

the program. The cycle terminates when the behaviour of the program 

closely mimics that of a human expert over a range of test cases.

In short, such programs employ Al techniques of knowledge 

representation, inferencing, etc. to simulate clinical cognition 

through behavioural mimicry. These programs do not explicitly attempt 

to implement models of expert thinking taken from the cognitive 

literature. Nevertheless, the approach can result in programs that 

incorporate many psychologically plausible features. This is true of 

PIP (Pauker et a l .. 1979) for example, whose features include;

A system architecture comprising a short-term memory (STM), 

long-term memory (LTM) and control program (see Section 5.6 

below).

LTM organised as an associative network and packaged into 

frames.

Hypothesize-and-test diagnostic strategy (see Chapter 2).

Testing hypotheses by their ’degree of fit’ (e.g. 

partial matching) to disease prototypes (see Table 4.2).

Advoidance of backtracking. The high interconnectedness of 

entities in LTM supports a lateral switching between 

hypotheses.

Frames in LTM are either dormant, semi-activated or fully- 

activated. Activation is triggered by data in STM. This 

can be seen as a crude analog to the psychological theory of
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’spreading activation’ (See Section 4.1.3).

Against these plausible features, PIP also contains instances of 

many of the psychologically implausible features of expert systems 

cited in Table 4.2, including;

A complex scoring system for computing numerical likelihoods 

used in hypothesis testing.

Unnatural shifts in "attention" during information 

acquisition from the user (due to the peculiarities of the 

focusing scoring mechanism).

No theoretical limit on STM storage capacity.

Serial processing only.

Stepping back from the evaluation of one particular program, 

several difficulties with the behavioural mimicry approach in general 

are apparent. First, accurate mimicry of expert behaviour provides no 

guarantee that the system is reasoning in the same way as the human 

expert (Wilkins, Buchanan and Clancey, 1984). Second, the published 

accounts of these systems often show a lack of awareness of the 

psychological literature on human decision making, with the step from 

observation of behaviour to design decisions poorly documented.

Before leaving the topic of behavioural mimicry, a variant on the 

approach ought to be noted. This can be illustrated by a medical 

diagnostic system reported by Reggia, Nau and Wang (1984). The 

performance of the program appears to correspond quite well with 

descriptions of clinical behaviour in the empirical literature. In
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the present context, the important point about this program is that it 

has a firm mathematical basis, being based on work in set theory. 

Reggia et a l .'s program demonstrates that mathematical models can be 

successfully applied to explaining expert performance in a particular 

domain. There must, however, be a question mark over the 

psychological validity of mathematically-inspired approaches, since 

they are essentially at odds with the types of explanation of expert 

cognition currently favoured by cognitive psychologists (see Chapter 

2).

5.3.3 Inferring an expert’s reasoning by watching

Wilkins et a l . (1984) have proposed an alternative approach to 

emulating clinical expertise that addresses some of the weaknesses of 

behavioural mimicry. Wilkins et a l . introduce a system designed 

to infer automatically the mental model of an expert medical 

diagnostician by watching how the expert diagnoses a patient. This 

work is primarily an attempt to solve the knowledge acquisition 

bottleneck by modelling the knowledge organization and acquisition 

methods of a program on human expertise. Medicine is a suitable 

domain for such an experiment because of the large research 

literature on clinical expertise.

Wilkins et a l . point out that experts in many domains share an 

ability to infer the reasons for a colleague’s decisions by watching 

their task performance. In particular, the ability to learn by 

watching appears important to the acquisition of medical expertise.

In the early phases of medical training, the student studies and

110



acquires textbook knowledge about human physiology and diseases. But 

at this stage real diagnostic competence has yet to be attained.

There follows a period of apprenticeship during which the student 

observes experienced clinicians handling real diagnostic cases, and 

tries to duplicate this diagnostic skill when dealing with cases on their 

own. According to Wilkins et a l . the ability to infer reasoning 

by watching is as basic a dimension of human expert skill as problem 

solving, explanations of expertise, or teaching of expertise.

The presented system is designed to acquire new domain knowledge 

in the following way:

(1) The system is supplied with a model of clinical reasoning 

(to provide the constraints necessary to infer the expert's 

model).

(2) The system watches a physician-patient consultation and 

attempts to infer the expert's reason for asking a question 

at each point during the session.

(3) Whenever it cannot do so, the system concludes that the 

expert possesses some knowledge that it does not, and sets 

about trying to acquire the knowledge.

(4) Where the program fails to correctly infer the expert's 

model, protocol analysis is used to identify where the 

program is deficient.

(5) Changes are made to the program’s domain-independent 

strategic knowledge (held separately from the domain 

knowledge).
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others are experimenting with this approach. For example, Boyle 

(1985) presents a modification of Wilkins et a l .'s system to acquire 

both control and domain knowledge in a blackboard environment.

Assessment of the learning by watching approach is hampered 

because of the early stage of research efforts. But, in general, it 

compares favourably with behavioural mimicry. At least in the case of 

Wilkins et a l .'s system, an attempt is made to base the system’s 

knowledge organisation and inferencing method on a model of clinical 

reasoning. And changes in the program are made in a more principled 

fashion. Wilkins et a l . point out some of the weaknesses of the 

watching approach themselves: Individual differences between the 

reasoning styles of physicians can cause problems. Program failures 

may sometimes occur that are beyond the current state of cognitive 

psychology and expert systems technology to resolve; for example, 

situations involving complex temporal reasoning. A criticism about 

how these programs acquire knowledge is also in order, since their 

reliance on a single human-like strategy - inferring by watching - 

ignores the other means by which human expertise is acquired (see 

Chapter 2).

5.3.4 Knowledge-oriented approaches

We now turn to a third approach to emulating domain expertise, which 

focuses on achieving high-level representations of expert knowledge 

within a particular domain. In constructing expert systems it is 

useful to examine the knowledge to be embodied in the system at 

several levels. One notable classification (see Wielinga and Breuker,
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1984, pp. 10-11) suggests knowledge can be analyzed on at least five 

levels ;

Linguistic - the level at which the expert reports

on his or her knowledge.

Conceptual - the formalisation of domain knowledge

that unifies the knowledge of several 

experts, and perhaps several sub- 

domains, within a single conceptual 

framework.

Epistemological - this level of analysis is designed to

uncover the underlying structural 

properties of domain knowledge. It is 

expressed in epistemological primitives 

representing the basic elements, 

relations, strategies, etc.

Logical - refers to the formalism(s) in which the

knowledge is presented and upon which 

inferencing procedures operate.

Implementational - an analysis in terms of the

implementation language to be adopted.

Wielinga and Breuker (1984) point out that much research in expert 

systems has been concerned with mapping knowledge at the first 

(linguistic) level directly into an implementation language. The 

failure to analyze knowledge at any of the intervening levels - in
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particular, the epistemological level - may be at the root of several 

knowledge engineering problems:

(1) Knowledge acquisition. From linguistic data to 

implementation language is too large a gap to have to bridge 

in a single step; and valuable additional knowledge may be 

lost by not analyzing at intermediate levels (Wielinga and 

Breuker, 1984).

(2) Expert system design and modification. The mixture of terms 

that is generally used to describe expert systems can 

confuse implementation language with knowledge structure and 

the search process. Clancey (1984) argues that this 

confusion makes it difficult to analyze new problems or 

derive a set of knowledge engineering principles.

Furthermore, knowledge which has not been analyzed at an 

epistemological level can prove difficult to modify by other 

than the original authors - a point brought out by Clancey

(1983) in his examination of MYCIN’s rule base.

(3) Teaching and explanation. Clancey (1983) also showed that 

his initial difficulties in adapting the MYCIN rule base 

to support a teaching and explanatory role were due to the 

proceduralized form of MYCIN rules. Clancey found that by 

uncovering the strategies, supporting concepts and 

structural relationships implicit in MYCIN’s empirical rules 

(i.e. hypothesis - data links), it becomes easier to support 

such roles.

Knowledge analysis has been applied in two main ways: to the
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analysis of expert systems of a particular type, and as a tool in 

knowledge acquisition.

Analysis of expert systems On the basis of detailed analyses, both 

Bennett (1985) and Clancey (1984) concluded that most existing 

diagnostic systems employ essentially the same small set of basic 

elements and relations. In other words, while reasoning and search 

strategies were found to vary considerably between systems, the basic 

knowledge elements and inference structure were not. Bennett (1985) 

exploited this commonality in the development of ROGET, an automated 

knowledge acquisition tool. This system helps elicit from a domain 

expert the 'conceptual structure’ for a diagnostic system in a new 

sub-domain. ROGET is equipped with the general structure and knowledge 

elements that make up a typical MYCIN-like diagnostic system. The 

domain expert is able to tailor this structure in accordance with the 

unique features of a particular domain. Basic elements in the 

diagnostic domain include ’findings’, ’symptoms’ and ’hypotheses’, 

arranged in the same kind of inference structure across sub-domains. 

Other expert domains would appear amenable to a similar treatment 

(Wielinga and Breuker, 1984). Clancey’s (1984, 1985) influential 

analysis of expert systems has already been referred to (see section 

3.1.1).

Knowledge acquisition tool Some of the ideas already discussed are 

incorporated in a framework for knowledge acquisition proposed by 

Wielinga and Breuker (1984). Their approach centres on the use of 

interpretation models. An interpretation model consists of a 

classification of canonical elements, structuring relations, strategies
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and a representation of the inference structure for a class of domains 

An analysis of the task the expert has to perform can form the initial 

basis of a model. Once formulated, it provides a set of abstract 

categories and expectancies which help direct the gathering of data 

(from textbooks, interviews, verbal protocols, etc.) and its 

subsequent interpretation. Because an interpretation model is 

formalised at an epistemological level, the knowledge engineer is 

forced to analyze the data at this level in order to test and refine 

the model. Some early results using this approach in a variety of 

domains appear quite promising (e.g. HaKong and Hickman, 1985;

Wielinga and Breuker, 1984). However, Breuker and Wielinga (1984) 

point out that not all constructable interpretation models are 

implementable using existing Al techniques.

Considered as a strategy for emulating expert cognition in a given 

domain, the knowledge analysis approach has a number of limitations;

Fidelity to domain-specific features of processing (as 

opposed to knowledge organization) tends to be regarded as a 

secondary issue.

Epistemological analysis is concerned with making explicit 

the types of knowledge that may exist in a particular domain 

- not with faithfully representing what individual experts 

actually know.

Epistemological analysis can make explicit types of 

knowledge that are represented in expert cognition only in a 

highly proceduralized, highly inaccessible form. That is, 

for the expert such explicated knowledge may not in fact
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exist

In summary, knowledge analysis is a useful technique in its own 

right. As an approach to emulating domain expertise it offers a 

valuable perspective, but not a complete solution.

5.4 EMULATING EXPERT COGNITION

5.4.1 Introduction

In the two previous sections we have considered approaches to 

cognitive emulation centred on the individual expert and domain 

expertise respectively. Individual differences in expert thinking 

provide the psychological justification for the first approach; the 

domain-adapted nature of human expertise the justification for the 

second. However, a psychological rationale can also be found for an 

approach to expert system design centered on general considerations of 

expert cognitive functioning. Put another way, across many specialist 

domains the cognitive changes that accompany the development of 

expertise are broadly similar (see Chapter 2, especially Table 2.1.). 

None of the research reviewed below attempts to embody all - or even a 

majority - of the cognitive features listed in Table 2.1. Instead, 

these studies concentrate on modelling selective aspects of expert 

reasoning and knowledge organization, in accordance with the knowledge 

engineering objectives of the researchers involved. [It is important 

to bear in mind that any implementation at this level also requires 

instantiating with regard to a particular domain - and possibly at the 

individual expert level also.]
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Two broad perspectives on emulating general expert cognition can 

be distinguished. The first is concerned with modelling dynamic 

aspects of expert thinking: i.e. how knowledge structures and 

reasoning strategies change as experience is acquired and the dynamic 

aspects of expert problem solving. The second category of research is 

directed towards emulating particular cognitive functions; for 

example, tuition, critiquing or guidance. As we shall see, both areas 

are now being actively investigated.

5.4.2 Emulating the dynamics of expert cognition

Recent cognitive research (e.g. Johnson et a l .. 1981; Feltovich et 

al.. 1984; see also Chapter 2) has drawn attention to the role of 

experience in the development of human expertise. However, the 

dynamic changes in expert reasoning and knowledge organization that 

result from experience is not reflected in the current generation of 

expert systems. Here we shall review attempts to supply expert 

systems with such dynamic capabilities.

One line of approach (e.g. Kolodner, 1984; Riesbeck, 1984; Schank 

and Slade, 1984) builds on Al research into episodic memory and 

natural language processing initiated by Schank (e.g. Schank, 1982). 

Central to this research - and the expert system applications - are 

the concepts of 'semantic memory', 'episodic memory', 'memory 

organization packages (MOPs)’, 'similarity-based generalization* and 

'failure-driven learning*. Because these concepts may be unfamiliar, 

they are introduced below, before an examination of their (proposed) 

application in knowledge engineering.
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To begin with then, a distinction has been made between semantic 

memory and episodic memory (one incidently, that was first made in 

cognitive psychology):

Semantic Memory Human semantic memory is the memory for facts we 

know, arranged in some kind of hierarchical network (Kolodner, 1984). 

For example, in a semantic memory "stool" may be defined as a type of 

"chair", in turn defined as an instance of "furniture". Properties 

and relations are handled within the overall hierarchical framework.

In terms of human expertise, semantic memory represents the store of 

factual knowledge that a novice acquires. But experience is required 

to convert facts into usable expert knowledge (Kolodner, 1984).

Episodic Memory If semantic memory encodes facts, then episodic 

memory encodes experience. An episode is a record of an experienced 

event like visiting a restaurant or a diagnostic consultation. 

Generalised episodes are also created, representing typical events. 

Information in episodic memory is defined and organized in accordance 

with its intended uses in different situations or operations. On this 

view it is the development of extensive and highly tuned episodic 

memory that above all else distinguishes the domain expert from the 

novice (e.g. Kolodner, 1984). That is, even assuming that factual 

knowledge (semantic memory) remains constant as expertise develops, 

the expert possesses better episodic definitions for using it.

Episodes are implemented as MOPs:

Memory Organisation Packets (MOPs) MOPs are a knowledge 

representation formalism developed by Schank (e.g. 1982) for 

implementing episodes. They are modular frame-like structures that
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serve to organize, index and cross-reference an episodic memory of 

events. MOPs are organized in a generalization hierarchy; each MOP 

can have several other MOPs as sub-parts, and each sub-part can 

participate in several higher-level MOPs. [The MOP formalism evolved 

from Schank’s (Schank and Abelson, 1977) earlier notion of a script 

- a formalism in which each event is represented in a single large 

frame-like unit. This reformulation was prompted partly by empirical 

tests of the script concept in psychology, and partly for efficiency 

reasons.]

Two forms of experience-based learning are identified in the 

development of episodic memory - similarity-based generalization and 

failure-driven learning;

Similarity-based Generalization When similarities are detected 

between already-established concepts in episodic memory - what Schank 

(1982) calls "reminding" - these similarities are extracted to form a 

generalized episode. Thus two or three diagnostic consultations with 

patients may be sufficient for a clinician to encode a generalized 

episode about typical features of this situation. Thereafter, 

individual episodes need only record their distinguishing features: 

again, this results in economical storage. Generalized MOPs are also 

useful in interpreting and reasoning about newly encountered events, 

which are understood as instances of existing generalized episodes.

Failure-driven learning In performing cognitive tasks, people are 

often aware of strategy failures, exceptional events, etc. According 

to Schank (1982) and others, this awareness triggers failure-driven 

learning; a process which involves:
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detecting the failure

attempting to allocate blame ("explain") the failure - 

the explanation serves as an index to the failed episode

when a similar situation is encountered later it is refered 

to the failed episode via this index

if a solution was found to the initial failure, the same 

solution can be applied to the second situation; otherwise, 

the two episodes can be compared to determine the cause of 

their joint failure, and the process of indexing and referai 

repeated

Kolodner (e.g. 1984) in particular, has shown how these concepts 

can be applied to understanding the development of human expertise in 

a single domain (psychiatry). Her work is based on the verbal 

protocols of doctors making psychiatric diagnoses and recommending 

treatment. An elaboration of the MOP idea is used to represent the 

doctors' experiences: Process MOPs are an explicit representation of 

the reasoning strategies of the diagnostician; while Diagnostic MOPs 

represent domain-specific diagnostic knowledge. Developments of the 

two types of MOP are highly co-ordinated. The theory is partially 

implemented in a computer program called SHRINK. Riesbeck (1984) 

employs the same basic concepts of failure-driven learning and MOPs to 

model the development of expertise in economic reasoning - again with 

a partial computer implementation.

On this view of human expertise, today's expert systems suffer
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from two main deficiencies:

(1) Unlike human experts, most expert systems were never novices 

- starting out with one type of knowledge base and ending up 

with another (Riesbeck, 1984).

(2) Current expert systems do not have a memory - the same case 

will be treated in the same way, however often it is 

encountered (Schank, 1982). The human ability to use and 

learn from experience is missing.

Kolodner (1984), Riesbeck (1984) and others (e.g. Schanck and

Slade, 1984) take a similar view on what this characterization of

human expertise implies for expert system design. First of all, the 

program should be supplied with the kind of factual knowledge that a

domain novice can acquire from textbooks and other public sources. In

addition, the initial program will require rules for reorganizing its 

knowledge base and reasoning strategies as new experiences are 

encountered. Then the program can be given a set of experiences (e.g. 

cases to diagnose), plus feedback on its performance. Modelling how 

experience changes the way an expert reasons like this is seen as the 

most effective method for equipping an expert system with the 

capabilities of human experts.

Kolodner (1984) herself points out the main problems with this approach

it is highly complex (c.f. rule-based systems) and 

consequently difficult to implement

verifying that expert reasoning and knowledge organization 

change as predicted by the model is a nontrivial task
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explanation of the system’s reasoning presents a major 

challange

A further difficulty relates to the psychological validity of the 

underlying model of human expertise and how it develops. In 

particular, although concepts such as semantic memory, episodic 

memory, etc. are familiar ones in cognitive psychology, it has not 

yet been shown how the model can account for the empirical literature 

on expert-novice differences (see Chapter 2).

The 'competent expert systems' methodology (Keravnou and Johnson, 

1986) is also concerned with dynamic aspects of expert thinking. Here, 

however, interest is in how dynamic aspects of expert strategy execution 

can be modelled in an explicit and principled way. A  'competent' expert 

system is one that represents explicitly the reasoning strategies and 

domain knowledge structures adopted by experts in a particular domain - 

i.e. the 'model of competence' of the domain . The methodology specifies 

tools for eliciting models of competence, and mapping them into 

knowledge representation schemes. During knowledge acquisition the 

dynamics of how strategic knowledge is used are analyzed : i.e. how it 

is decomposed and integrated, how strategies are selected in context, 

etc.

Keravnou and Johnson (1986) make strong claims for this 

methodology, including enhanced system-user dialogues and explanations, 

improved knowledge acquisition, and greater power and flexibility in 

problem solving. From the standpoint of cognitive emulation, the main 

criticism is that 'competent' expert systems are likely to lack
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plausibility as psychological models. That is, the emphasis on explicit 

representation, and on a clear separation of strategic and domain 

knowledge, is at odds with the highly compiled nature of human expertise 

(see Chapter 2).

5.4.3 Emulating the cognitive functions experts perform

The approaches to cognitive emulation reviewed in the previous section 

were selective in their emphasis on the dynamic aspects of expert 

cognition. Here we concentrate on recent attempts to emulate another 

aspect of human expertise - the ability of experts to perform a 

variety of cognitive functions. Early research efforts focused on 

developing expert systems to perform the role of problem solvers.

That is to say, programs like DENDRAL, MYCIN and XCON were all 

principally designed to produce technically correct solutions to well- 

defined problems. And most of the research on cognitive emulation 

reviewed so far in this book has been directed at modelling the 

problem-solving skills of human experts. Clinical diagnostic skills 

are the most frequently cited example.

A combination of factors has prompted the recent shift in research 

interest to include other cognitive functions. Important among these 

are :

(1) User dissatisfaction with the problem-solving paradigm.

In this paradigm the user acts as a data source, supplying 

information to the program through a system-controlled 

dialogue. This sequence ends with the system supplying a 

completed solution which the user may either accept or
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reject. The problem-solving paradigm arises from a 

technology-driven approach to expert system design in which 

the user has little scope for exercising personal control 

or responsibility (Woods, 1986). As such, the often 

reported problem of ’user acceptance’ in knowledge 

engineering, may result primarily from expert systems 

performing inappropriate and unacceptable cognitive roles 

(e.g. Coombs and Alty, 1984; Woods, 1986).

(2) Detailed observational studies of what experts really do 

(e.g. Coombs and Alty, 1984; Kidd, 1985c) are beginning to 

reveal the wide range of cognitive functions experts 

actually perform. A basic finding is that users normally 

play a more active role when consulting an expert than 

present expert systems allow. For example, users may help 

define the problem to be solved, supply a set of constraints 

that any solution must satisfy, or formulate their own plan 

for the expert to critique. Expert systems designed to 

support such co-operative problem solving activity appear 

far more acceptable to users (Coombs and Alty, 1984; Kidd, 

1985c; Langlotz and Shortliffe, 1984).

The particular cognitive functions to be considered here are 

critiquing, guidance, remedy negotiation and tuition :

CRITIQUING

A critique is an explanation of important differences between a user’s 

proposed solution (or plan, etc.) and the solution the expert would 

have proposed. Initially, the critiquing function was thought to
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occur principally where the user is either a domain expert (e.g. 

Langlotz and Shortliffe, 1984) or a full or partial expert in an 

overlapping domain of expertise (Coombs and Alty, 1984). But analyses 

of naturally occurring dialogues between experts and novice users 

(Kidd, 1985c) make it clear the critiquing of user proposals takes 

place across a wide spectrum of user skill.

Among expert systems that embody a critiquing function are :

ATTENDING a program for critiquing anesthetic management 

(Miller, 1984)

ONCOCIN critiques the therapy plans of physicians for 

treating cancer patients (Langlotz and Shortliffe, 1984)

Critiquing can take a variety of forms : e.g. warning of 

prerequisite violations, reports on possible consequences and side 

effects, reminders of potentially relevant information. Thus expert 

systems designed to perform a critiquing function are able to adopt a 

less intrusive, "silent partner" role. In the case of ONCOCIN, for 

example, the system analyses the problem and develops a therapy plan 

for itself, but only makes this known if the plan entered by the 

physician differs in significant respects. As a consequence, the user 

is not interrupted in a majority of cases. Langlotz and Shortliffe 

(1984) adapted ONCOCIN to perform a critiquing role in response to 

user dissatisfaction with its original problem solving orientation.

No apparent attempt was made to emulate expert cognition in the 

implementation of ONCOCIN, which relies on sophisticated AI techniques.

GUIDANCE
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In an advanced technological society expertise becomes fragmented and 

highly specialized. As a consequence the solution to many technical 

problems can require the co-ordinated efforts of several specialists. 

Experts in one domain are often called upon to help experts in 

overlapping fields to extend and refine their understanding at the 

interface of their two domains of knowledge (Coombs and Alty, 1984). 

This guidance function relies more on educational than problem solving 

skills.

In order to implement a prototype guidance system, Coombs and Alty

(1984) concluded that :

it is necessary to isolate the fundamental cognitive procedure 

underlying interactions. To do this systematically requires 

some theory of the role of conceptualization and understanding in 

problem solving (p. 139)

The authors considered cognitive theories from psychology and A I , but 

found them insufficiently developed for application purposes.

Instead, Coombs and Alty based their program on a general theory of 

cognition developed in cybernetics by Pask (e.g. Pask, 1975). Pask's 

Conversation Theory is too complex to elaborate here, but it basically 

attempts to establish the minimum theoretical structures needed to 

support different cognitive processes. Coombs and Alty found it a 

useful framework within which to model the guidance function. The 

implemented system, MINDPAD, helps users in the task of debugging 

simple PROLOG programs. It supports the user’s problem solving 

efforts through making available resources, suggesting tasks, and 

critiquing user explanations.
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REMEDY NEGOTIATION

Diagnostic expert systems provide answers to two main questions : (a) 

what is at fault? and (b) what is the appropriate remedy? However, 

these do not appear representative of the questions users actually put 

to experts. A study of naturally-occurring consultations in several 

diagnostic domains by Kidd (1985c) reveals a rather different picture. 

In contrast to current expert systems (that output a take-it-or- 

leave-it solution at the end of a consultation), a complex process of 

remedy negotation between expert and user was observed. This can 

involve ;

the expert proposing a tentative remedy early in the 

dialogue

the user volunteering constraints (e.g. "it must be fast") 

on potential remedies

the user rejecting a remedy because it has already been 

tried and failed, or does not meet user-imposed 

constraints.

the expert critiquing remedies proposed by the user

the expert explaining why a remedy worked, or trying to 

convince a user to adopt a particular remedy

Kidd(1985c) considers the implications of these findings for the 

design of diagnostic advice systems. She rightly points out that 

present AI technology cannot support the sophisticated mixed- 

initiative dialogues, etc. needed to emulate properly the expert’s
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role in this context. Instead, Kidd considers how AI work on the 

representation of, and reasoning about, deeper level structural and 

functional knowledge (e.g. Davis, 1984) can be adapted to support a 

remedy negotiation role. This AI work overlaps with 

cognitive research into the mental models of human experts (see 

Chapter 2).

TUTORING

Like guidance, tutoring is a cognitive function which requires 

educational skills (as much as problem solving ability) from an 

expert. One major expert system to support a tutoring role is 

NEOMYCIN (Clancey and Letsinger, 1981; Hasling, Clancey and Rennels, 

1984). More specifically, NEOMYCIN is a consultation program with a 

knowledge base configured so as to promote understanding about the 

diagnostic strategies employed in a particular medical domain. The 

basic assumption is that for an "understander" to be able to solve 

domain problems for themself, they need - in addition to domain 

knowledge - some idea of the problem-solving process. To this end, 

the approach adopted in NEOMYCIN is to model human reasoning, with 

diagnostic procedures represented explicitly. [The model includes a 

working memory of activated hypotheses, forward-chaining in response 

to clinical data, and hypotheses triggered by association. Some 

empirical support for such a model of clinical cognition is provided 

in a study by Patel and Groen (1986).] So, rather than having expert 

diagnostic knowledge implicitly embedded in the control program’s code 

(c.f. MYCIN), it is expressed explicitly in the knowledge base as meta

rules.

In short, NEOMYCIN supports a tutoring function using an explicit
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model of diagnostic reasoning. However, while this may be an 

effective approach to teaching expertise, it probably does not emulate 

the cognitive mechanisms involved in human expert tuition. For, as 

was noted in Chapter 2, experts are often completely unaware of their 

own problem solving processes.

In this section we have looked at programs designed to support 

cognitive functions beyond the simple problem solving of most earlier 

systems. The researchers involved differ greatly in their attempts 

to emulate the cognitive processes underlying the performance of a 

particular role. Thus, at one extreme, Langlotz and Shortliffe (1984) 

were able to develop a critiquing system using standard AI techniques. 

While at the other, Coombs and Alty (1984) employed a well-articulated 

theory of cognition to implement a prototype guidance system. The 

decision to adopt an emulation strategy in such cases appears to 

reflect two principal considerations :

(1) When it is possible to build a program to perform an expert

function using formal AI methods there is little point in

experimenting with cognitive models.

(2) The available cognitive models must be sufficiently robust

and powerful to support an implemented program.
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5.5 EMULATING USER COGNITION

5.5.1 Introduction

The previous three sections of this chapter have considered 

approaches to the emulation of expert cognition. But for many 

researchers (e.g. Breuker and Wielinga, 1983b; Fox, 1983; Kidd, 1985a; 

Sleeman, 1984) it has seemed at least as important to achieve 

compatibility at the cognitive level between an expert system and the 

user. A  good match between system and user is seen as vital for 

several reasons ;

without this cognitive compatability the system’s behaviour 

can appear surprising and unnatural to the user

to counter the potential dehumanising influence of expert 

systems technology (through ensuring the knowledge and 

reasoning of the system are understandable to the user, 

user-controlled dialogues, etc.)

to ensure the system will be accepted within its intended 

social and organizational context of use

User interface design is acknowledged as an important issue in 

present generation systems. However, while a substantial amount of 

development effort and application code often goes into constructing 

’user friendly’ interfaces; work on tailoring expert systems to match 

user cognition at a deeper level is still largely at the research 

stage. Some of this research is seeking to make expert systems more 

usable by designing them so that they process information in the way 

users process information (Fox, 1983). The emulation of ’human
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information processing' is the subject of the next section (5.6).

Here we focus on how expert systems can be adapted to model the 

requirements of particular users, or types of user.

Two common uses of the term 'user model’ in the expert system 

literature need to be distinguished at the outset. First, it can 

refer to the representation an expert system may have of the system’s 

intended end user. Second, there is the human user’s conceptual model 

- or, as seems more likely, plurality of models (e.g. Hammond and 

Barnard, 1985, Young, 1981) of the specialist domain, the task to be 

performed, and the computer system itself. We are mainly concerned 

with the first sense of the term here.

5.5.2 The benefits of user models

Sparck Jones (1985) identifies three main benefits that the possession 

of user models can confer on expert systems :

(1) Acceptability. To be acceptable the form in which 

information is elicited and explanations given need to be 

tailored to the intended user - be they novice or super-expert

(2) Efficiency of system operations. For example, the most 

efficient mode of system-user interaction will usually vary 

according to the user’s level of skill.

(3) Effectiveness. User models can facilitate more effective 

task performance through more accurate interpretation of 

user behaviour, and by making the system’s requirements 

more comprehensible to a particular user.
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5.5.3 User characteristics in user models

Many types of expert system are possible. For some of these a 

representation of the user would serve little useful purpose - for 

example, autonomous problem solving systems where there is minimal user 

involvement. More often, though, expert systems act as some kind of 

'knowledgeable assistant* (Kidd, 1985a) to the user. Where this is 

the case, an expert system might benefit from the inclusion of several 

types of knowledge about the user. Specifically, about the user’s :

conceptualization of the task domain 

way of formulating problems 

goals, needs, assumptions, expectations 

model of how the system works 

typical errors and misconceptions 

level of competence

preferred method of interacting with the system 

acceptance criteria 

the user’s role

5.5.4 User modelling techniques

Breuker and Wielinga (1983b) include a stage of 'User Analysis’ as 

part of their knowledge engineering methodology. They argue for the 

use of several methods - interviews, experiments, simulation, 

protocols of real-life interactions, etc. - in order to elicit the 

kinds of user information listed above.

Many of the current AI techniques for representing user attributes

133



were developed by researchers working on intelligent tutoring systems 

(see e.g. Sleeman and Brown, 1982). One classification of user models 

(e.g. Sleeman, 1984) distinguishes ;

(1) Scalar models The level of expertise of the user is 

expressed as a single number. For example, in the 

KEYSTROKE model of Card et a l . (1983), the number of key

strokes is used as a measure of text-editing skill.

(2) Ad hoc modelling systems These exploit the specific

features of the underlying system, such as how the 

inference engine works.

(3) Profile models The user is represented by a set of

weighted attributes (e.g. "romantic"), which enables the

system to match the user to, say, a suitable book or film.

(4) Overlay models The competence of the user-novice is

represented as a subset of the expert's. So, for example, if 

the expert’s knowledge is expressed as a semantic network, 

the novice’s knowledge "overlays" a part of this network.

(5) Process models A representation of the user’s problem

solving processes. For example, student’s incorrect, or

"buggy" arithmetic procedures were modelled in BUGGY (Brown 

and Burton, 1978).

It is only with the last modelling technique, process models, that

a serious attempt at cognitive emulation is made. The other types of

model are more directed to representing what a user knows, expects.
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etc.; rather than the how question addressed by process models.

Unlike ad hoc models, process models are executable using standard 

inference engines (Sleeman, 1984). So, in principle at least, this 

emulation technique could be adopted more widely than it currently is

Where the intended user group is homogeneous, the entire expert 

system can be designed in accordance with the characteristics of that 

group. In contrast, heterogeneity in the proposed users may require 

that several a priori user models about the different types of user

are built into the system. The problem is then one of

selecting/tailoring a model to a particular user at run-time. A 

number of ways of inferring a suitable user model have been developed;

the system takes the initiative and questions the user

the system infers the user’s characteristics from their

behaviour

the system is told to expect a user of a certain type,

perhaps by setting a parameter

The appropriate mode of system-user dialogue (e.g. linear command

syntax, menus, natural language, graphical displays, etc.) can be

selected using the same basic methods (Bundy, 1984).

5.5.5 Expert system applications

Some notable applications of user modelling techniques in expert 

systems include :

(1) In a medical system developed by Wallis and Shortliffe
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(1982), difficulty level is expressed as an integer. The 

concepts used by the system to explain its reasoning varies 

according to the difficulty level selected by the user.

(2) The Interviewer/Reasoner model (Gerring, Shortliffe and van 

Melle, 1982) - as the name implies-consists of two main 

parts. The "Reasoner" is a rule-based AI program which does 

most of the computation; the "Interviewer" is a user- 

oriented display program that mediates between the user and 

the system.

(3) Intelligent Front Ends (IFEs). This type of expert system 

acts as a friendly interface to a software package that 

would otherwise be incomprehensible to many potential users 

(Bundy, 1984). IFEs use AI techniques to enable the user to 

communicate with the underlying package using their own 

terminology. Through a user-oriented dialogue a model of

the user's problem is constructed, and translated into a form 

the package understands.

(4) UMFE (Sleeman, 1984) is a user modelling front-end sub-system 

which tailors its explanations to the user's level of 

understanding. Concepts used by the back-end expert system are 

graded by UMFE acording to difficulty. Depending on the use r ’s 

response to initial concepts, UMFE is able to infer additional 

concepts the user may/may not find comprehensible.

5.5.6 Problems in user emulation

The requirements of effective user modelling are often beyond the 

scope of existing AI techniques to deliver :
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AMBIGUITIES IN USER MODELLING

Sparck Jones (1985) observes that a simple one-to-one match between a 

given user and user model could be impossible to establish in certain 

expert system applications. In medical advisory systems, for example, 

it is necessary to distinguish between the patient and doctor (system 

user) as separate people, and possibly between the different roles a 

single user performs. Thus user emulation can require manipulating a 

muliplicity of user models with different functions and different 

bases. Moveover, the system’s knowledge of a user may need to be 

dynamic - responding to changes in the user’s understanding, skill, 

etc. as they occur (Sparck Jones, 1985).

FALSE EXPECTATIONS

Sophisticated user-oriented dialogues (e.g. natural language 

interfaces) and other user modelling techniques can give the user a 

misleading impression of an expert system’s capabilities. Where the 

intelligence exhibited by the user interface is unmatched by the 

performance of the underlying system, there is a danger that the user 

will place an unjustified reliance on the system’s decisions (Boden, 

1985). Boden suggests that the system should ’flag’ its limitations 

to the user in these circumstances.

IMPLICATIONS FOR THE UNDERLYING SYSTEM

According to Sparck Jones (1985), user modelling cannot be effective 

unless the modelling component has proper access to the knowledge and 

operations of the "back-end" system. The provision of a non-trivial 

natural language capability may require an equally close coupling 

between interface and back-end sub-systems (Sparck Jones, 1984).
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REPRESENTATIONAL COMPLEXITY

It is unlikely that all the user’s knowledge about the problem domain, 

about the task to be performed, and about the computer system can be 

integrated into a unitary user model (Hammond and Barnard, 1985). For 

instance, Young (1981) found that users’ knowledge of pocket 

calculator usage fell into two distinct types. On the one hand, he 

describes ’task-action mapping rules’ - a set of rules/procedures 

for reaching certain task goals. These are complemented by 

’conceptual models’ representing knowledge about the relations between 

system entities. [These models often have an analogical basis, e.g. 

the "Typewriter" model used in word processing (Hammond and Barnard, 

1985)]. Moreover, as the tasks tackled by expert systems become more 

open-ended and complex, multiple knowledge representations will become 

increasingly necessary to capture the user’s knowledge (Sleeman,

1984).

CONFLICTING DEMANDS

A basic conflict can arise between the user modelling and task 

performance components of a system : the former requires 

responsiveness to the user, while the latter is computationally- 

oriented. Gerring et al.’s (1982) Interviewer/Reasoner model 

addresses this issue by implementing these components as separate 

(though interacting) programs. A similar rationale underlies the 

notion of Intelligent Front Ends to complex software packages (Bundy, 

1984).

More important here, emulating the user may conflict with 

emulating expert reasoning. For as Kiss (reported by Fox, 1983)

138



points out, although emulating user cognition may improve 

intelligibility, it can also lead to systems which lack power and 

which fail to complement human processing methods. In view of the 

contrasting benefits available from emulating experts and user, 

techniques are required to enable both forms of emulation to co-exist 

within a single system. A system architecture in which user and 

expert cognition are modelled in separate components, along the lines 

suggested above, offers one potential solution. We shall return to 

this and related issues in the discussion (Section 5.8).

5.6 EMULATING HUMAN INFORMATION PROCESSING

5.6.1 Introduction

Invoking the principle of cognitive emulation at this level (see Fig. 

5.1) implies one, or both, of the following :

Seeking compatability between the architecture of expert 

systems and the architecture of human information processing 

(c.f. Fox, 1983)

expert system work directly inspired by research in cognitive 

psychology : i.e. specific findings, models and hypotheses.

As such, expert systems adopting this approach are analogous to 

the "representative programs" developed by cognitive scientists. 

Representative programs attempt to embody general mechanisms of human 

thinking without simulating any individual person. They thus perform 

a role in cognitive science comparable to that of the "representative 

firm" in economics (Simon, 1979).
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The discussion of cognitive emulation at this level centres on 

five key issues :

(1) The extent to which the standard three-element system 

architecture of expert systems corresponds to the 

architecture of human cognition.

(2) The psychological plausibility of particular knowledge 

representation formalisms and system architectures.

(3) Attempts to make expert systems compatible with the 

limitations of human information processing.

(4) The explicit representation of knowledge.

(5) Approaches to the handling of uncertainty in expert systems 

inspired by cognitive psychology.

5.6.2 The architecture of expert systems and human cognition

5.6.2.1 Structural comparisons

There is a basic similarity in the system architecture of, on the one 

hand, performance-oriented expert systems and, on the other, computer 

simulations of human cognition developed by cognitive scientists. In 

both types of program it is frequently possible to distinguish three 

fundamental architectural components :

(1) A static store of permanent knowledge represented in some 

explicit form, e.g. production rules, frames.

(2) A dynamic store for holding temporary data.

(3) A processing element which uses the knowledge in (1) to make 

inferences based on (2).
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As noted in Chapter 2, in the context of applied expert systems the 

names given are typically (1) knowledge base, (2) dynamic database, 

and (3) inference engine; while in cognitive science these elements 

more often translate as (1) long-term memory, (2) working (or short

term) memory and (3) cognitive processor. This correspondance is 

illustrated in Fig. 5.2 and Fig. 5.3 respectively.

Why research in these two areas should have converged on the same 

basic system architecture is open to various interpretations (e.g. 

Davis and King, 1977; Hayes-Roth, Waterman and Lenat, 1978). Hayes- 

Roth et a l . (1978) make the point that the two areas offer nearly 

complementary theories of information processing : with cognitive 

psychology focusing on problems of knowledge acquisition, retrieval 

and storage; and Al/expert systems on issues of knowledge 

representation and utilization.

On one interpretation, the correspondence between Figures 5.2 and

5.3 could be taken as evidence that current expert systems emulate 

human cognition in a fundamental respect. But this would represent an 

over-simplification of the more complex picture uncovered by cognitive 

research. In particular, the modularity of the three structural 

elements implied in Fig 5.3 is called into question by some 

empirical findings. A few selected examples from the cognitive 

literature will serve to illustrate this apparent non-modularity :

LONG-TERM MEMORY I WORKING MEMORY

The concept of working memory has gone through many transformations in 

the psychological literature. In earlier accounts it was seen 

essentially as a uniform, limited-capacity and separate store for the 

storage and processing of short-term information (see e.g. Newell and
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Fig. 5.2 - Expert system architecture

LONG-TERM WORKING
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COGNITIVE
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^iê* 5.3 - Human cognitive architecture shown as comprising three
independent elements
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LONG-TERM MEMORY

WORKING
MEMORY

COGNITIVE
PROCESSOR

5.4 - Human cognitive architecture shown as comprising three
overlapping elements
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Simon, 1972). But this view has become increasingly superceded by 

more complex formulations in which, for example, working memory is 

defined as the currently 'activated' portion of long-term memory (e.g. 

Anderson, 1983a; Card et a l .. 1983). Indeed, Card et a l . (1983) 

represent the relation between the two types of memory as shown in 

Figure 5.4, with working memory nested within long-term memory.

WORKING MEMORY I COGNITIVE PROCESSOR

Studies of individuals with highly skilled memories led Chase and Ericsson 

(1982) to propose a model of working memory that includes rapid- 

accessing retrieval mechanisms to long-term memory. On this view, 

there is an intimate connection between working memory and attentional 

processes. Baddeley (1981) has reached a similar conclusion. In his 

account - based on a mature research programme - working memory is 

partitioned into three sub-stores; one of which (the "Central 

Executive") is assumed to have a limited amount of processing capacity 

of its own.

COGNITIVE PROCESSOR/LONG-TERM MEMORY

The acquisition of cognitive skill and expertise is accompanied by the 

proceduralization of knowledge (see Chapter 2). And there is plenty 

of evidence for the importance of procedurally-represented knowledge 

in human cognition generally (e.g. Elio, 1986; Norman and Rumelhart,

1981). While it is possible to model procedural knowledge using some 

kind of declarative formalism - production rules, say - there remains 

a strong likelihood that human procedural knowledge is held in a 

highly compiled and contextually dependent form : with control and 

knowledge packaged closely together.
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On the basis of findings such as these, one could argue that Fig.

5.A offers a more accurate diagrammatic representation of how long-term 

memory, working memory and cognitive processes are related than Figure 

5.3. However, the modularity of cognitive architecture implied by 

Figure 5.3 is less contentious if viewed as a simplifying assumption 

necessary in cognitive modelling. While this clearly weakens the 

claim that the system architecture of standard expert systems emulates 

the human cognitive architecture, a certain structural similarity 

remains.

5.6.2.2 Formal comparisons

It is informative to compare performance-oriented expert systems with 

cognitive simulations from a formal as well as a structural viewpoint. 

In particular, there are some notable difference in the formal 

properties of production systems adapted for either purpose (Davis and 

King, 1977; Haves-Roth et a l .. 1978; Young, 1979). The early, 'pure* 

production systems used to model human problem solving, 

perception, etc. (e.g. Newell and Simon, 1972; Newell, 1973) were 

characterised by :

. a single-level rule base (long-term memory)

. constrained rule format (e.g. no negation, disjunctive 

conditions, or nesting of conditions permitted)

. simple pattern matching capabilities (e.g. variable substitution, 

but no evaluation of complex predicates)

. syntactic conflict resolution (e.g. based on rule of the 

specificity of conditions)
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. condition driven control (i.e. forward-chaining) using a linear 

cycle of recognize-act cycles

. size-limited working memory

These features represent a set of purity and simplicity restrictions 

adopted to capture the invariants of human cognition (Hayes-Roth e^ 

a l ., 1978; Young, 1979). The constraints placed on rule format, for 

instance, enable a stronger analogy to be drawn with psychological 

stimulus-response behaviours than would otherwise be possible. At 

its strictest, this amounts to a highly principled approach to 

cognitive modelling; one in which every aspect of the system is 

assumed to have a psychological correlate (Davis and King, 1977).

The main cost is loss of computational power - not usually a 

critical problem in cognitive modelling, but a serious drawback in 

performance-oriented expert systems. This helps explain why many of 

the purity restrictions are relaxed in applied systems to allow, for 

example :

additional types of knowledge representation (including 

semantic nets, frames, procedural attachment)

probabilistic measures of uncertainty attached to rules

backward-chaining and bi-directional control structures

specialized and multi-layered working memories (e.g. 

blackboards)

meta-rules that control the invocation of object rules
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. partial matching between working memory elements and rule 

conditions (or consequents in backward-chaining systems)

. knowledge in different states of activation (e.g. quiescent, 

semi-active, fully-active)

no limit on the number of symbols created and maintained in 

working memory for pattern matching

Interestingly, many of these relaxations have started to appear in 

more recent cognitive simulations. This point is very well 

illustrated by one major attempt to model the human cognitive 

architecture : developed by Anderson (1983a). While ACT* retains an 

overall production system architecture it includes, along side the 

standard production rule memory :

a long term declarative memory expressed in a network 

representation

. analogical(spatial) representations

. a working memory consisting of currently activated knowledge 

in long-term memory, and thus of variable size

. a pattern matching mechanism capable of partial matching and 

sensitive to probabilistic criteria

This is not an isolated example. Another is a cognitive model of 

human planning behaviour (Hayes-Roth and Hayes-Roth, 1979). This 

illustrates well the relaxation on working memory uniformity, since 

the model employs a blackboard architecture with multiple, multi
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layered working memories (i.e. blackboards). In general, the belief 

that a single, simple system architecture or knowledge formalism is 

sufficient to capture all human cognitive functioning - or even a 

substantial part of it - is no longer widely subscribed to in 

cognitive psychology.

The willingness of cognitive modellers to adopt a wider range of 

AI techniques serves to blur the distinction between knowledge 

engineering and cognitive science. A  continuation of the convergence 

between the two fields would provide a compelling argument for the 

cognitive emulation principle. Research developments in the near 

future should make it clear whether the architectural requirements of 

applied expert systems and cognitive models coincide fundamentally or 

n o t .

It may turn out that the cognitive scientist's more principled 

approach to program design is the limiting factor on this process of 

convergence. For whereas the expert system builder is entitled to use 

all the programming devices at his or her disposal, the cognitive 

scientist must - in principle, at least - be able to justify program 

features on theoretical grounds. While this stricture has discouraged 

ad hoc program fixes ("kludges") in simulation programs, it has not 

prevented psychological validity being claimed for a wide variety of 

system architectures and knowledge formalisms. It is these claims 

that we shall now consider.

5.6.3 Psychological validity of different system architectures and 

knowledge representation formalisms

AI researchers have developed a large number of system architectures
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and knowledge formalisms (see e.g. Barr and Feigenbaum, 1981; or 

Rumelhart and Norman, 1983). Some of these have been advanced as 

general models of human information processing, such as production 

systems (Newell and Simon, 1972) and the blackboard architecture 

(Hayes-Roth, 1983). More often though, an individual architecture or 

formalism is adopted because it appears well-adapted to modelling a 

particular cognitive function. Table 5.2 illustrates the different 

areas of research various architectures/formalisms have found special 

favour in. Cognitive scientists justify these choices on theoretical 

grounds, but also in terms of sufficiency (Young, 1979). In other 

words, because so little is known about human cognition, a successful 

simulation program has some claim to psychological validity solely on 

the grounds that it works.

Many cognitive scientists (e.g. Anderson, 1983a; Rumelhart and 

Norman, 1983; Sloman, 1984) now take seriously the hypothesis that 

human thinking is a multi-representational system - one that may parallel 

the range of representations used in psychological modelling. On this 

view, each aspect of the represented world is mapped into the 

representation best suited to a particular use.

Table 5.3 makes the point that variants on all the architectures/ 

formalisms included in Table 5.2 have also found employment in expert 

systems research. It is thus not possible at present to assess the 

psychological validity of an expert system simply by whether it 

employs a particular architecture/formalism or not. Instead, the 

question of psychological validity needs to be addressed on a more
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Table 5.2

Research areas in cognitive science in which selected system 
architectures and knowledge representations are typically adopted

Representation/
Architecture

Reasearch
Area

Sample
Reference

Production Systems Problem Solving 
Perceptual Processes 
Skill Acquisition

Newell and Simon (1972) 
Newell (1973)
Anderson (1983a)

Semantic Networks Long-term Memory Anderson and Bower (1973)

Schema-based 
Formalisms 
(frames, scripts, 
MOPs)

Text Understanding 
Memory for Episodes

Schank and Abelson (1977) 
Schank (1982)

Spatial
Representations

Imagery
Vision

Kosslyn (1980) 
Marr (1982)

Blackboard Model Reading
Planning

McClelland and Rumelhart 
Hayes-Roth and Hayes-Roth

(1981)
(1979)
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Table 5.3

Examples of expert system research employing different system 
architectures and knowledge representations.

Representation/
Architecture

System
Name

Application
Area Reference

Production System MYCIN Medicine Shortliffe (1976)

Semantic Networks PROSPECTOR Geology Duda et al. (1979)

Frames PIP Medicine Pauker et al. (1976)

Spatial ACRONYM Image Brooks (1983)
Representations understanding

Blackboard Model JOBBES Job selection Boyle (1985)
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contextual basis. One might ask, for example:

does the selected architecture/formalism perform the 

designated task adequately? (i.e. is it sufficient? )

is the architecture/formalism selected based on a 

psychological considerations? Is it being used in a 

principled way?

is the architecture/formalism selected representative of 

those used by cognitive scientists to model human 

performance on comparable tasks?

5.6.4 Limitations on human information processing

Human information processing capacity is limited (see Chapter 2).

This has led to several suggestions as to how expert systems might be 

adapted to reflect these limitations. To consider a few:

Fox, Alvey and Myers (1983) discuss the need for a "low-demand" 

expert system package to cater for situations where the computer may 

only be one of a number of activities. So, for example, it is 

unrealistic to assume that in routine clinical practice, with a 

patient present perhaps, that a doctor's activities will be centred 

around the computer. [This is an assumption often made in MMI 

research.] What is required under such conditions, suggest Fox 

a l .. (1983), is a system which makes minimal demands on the user. The 

authors describe PROPS, a prototype expert system package human- 

engineered to facilite speedy querying and user control of the system.

A comparable problem can arise in real-time process control
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applications. For instance, Paterson, Sachs and Turner (1985) point 

out that operators at one particular gas development installation have 

access to around 35,000 items of data. These authors suggest the need 

for an expert system to reduce the problem of cognitive overload that 

can arise where operators are faced with large amounts of rapidly 

changing data. Paterson et a l .. (1985) have developed a demonstrator 

system, ESCORT, which analyzes plant data to identify potential 

control and instrumentation failures, and provides operators with 

advice on crisis handling and avoidance.

To keep the technology within the realms of human understanding 

and control, Michie (e.g. 1982) argues for a human window into an 

expert system s operations. The human window is determined by the 

human brain's own limitations on memory and calculation, which Michie 

(1982) defines as 10 bits and 20 binary discriminations 

respectively *. Put another way, the notion of a human window depends 

on a system being both 'executable' by, and 'intelligible' to, a system 

user. Intelligibility is said to increase as the number of patterns 

to be processed decreases; while executability is inversely related 

to the amount of search required. On this basis, exhaustive minimax 

search procedures are intelligible but not (humanly) executable, and 

table-lookup procedures are executable but not intelligible. In order 

to preserve intelligibility, Michie (1982) proposes a structured 

approach to machine induction, one which restricts rule complexity.

Each rule would be allowed a maximum of seven subpatterns - in 

accordance with Miller's (1956) estimate of human short-term memory

* Qualitative estimates such as these are highly controversial.
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capacity.

The understandability of rules in expert systems has received a 

lot of attention. Some of the main findings and recommendations in 

this area (see e.g. Welbank, 1983) include:

rule size In the medical field, a typical rule may have 

three conditons and one action (Welbank, 1983, p.40). 

Following Michie (see above), seven conditions would seem to 

be a desirable maximum. Rules can be made smaller by 

introducing intermediate concepts.

grain size Granularity refers to the level of detail at 

which a system represents its concepts. Whether this is 

'coarse' or 'fine', it should correspond to the level 

employed by the system user.

complexity Disjunctive conditions ('or'), negation 

('not'), quantifiers ('some', 'all', etc.) and nested 

conditions are all well-known in cognitive psychology as 

causing difficulties in understanding (e.g. Johnson-Laird and 

Wason, 1977), and should be used minimally, or not at all.

How uncertainty is expressed within a rule formalism also has 

implications for intelligibility. However, because the representation 

of uncertainty is a major research theme in its own right , this 

research is dealt with separately in a later section (5.6.6.)

5.6.5 The explicit representation of knowledge

Conventional computer systems can be viewed as comprising two main
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components: ’program’ and 'data'. The program is typically an 

algorithmic procedure, perhaps written in a language like COBOL or 

PASCAL. Data refers to the information manipulated by the program - 

held in database files, working storage, etc. This organization fails 

to make explicit the relationships inherent in the data, or the 

control knowledge which is contextually-embedded in the program code. 

Such systems, particularly when they are very large, prove difficult 

to develop, maintain or understand.

By constrast, a characteristic feature of expert systems, from 

DENDRAL and MYCIN onwards, has been the attempt to improve 

intelligibility through a knowledge-based approach. An expert 

system's knowledge base encodes information in a way designed to 

capture its meaning - that is, as modular chunks of knowledge (facts, 

rules, etc.), which make explicit the relationships among items of 

data and other entities within some domain. Furthermore, much of the 

control knowledge embedded in an algorithmic procedure, can be 

represented declaratively as say, rules, within an expert system.

This means that in comparison with previous types of information 

processing system, expert systems typically have a larger declarative 

component (the knowledge base) and a smaller procedural component (the 

inference engine). [For further discussion of the relative merits of 

procedural and declarative formalisms see Winograd (1975) or Barr and 

Feigenbaum (1981].

Despite the gains in system intelligibility the use of declarative 

formalisms has brought, it has become apparent that a great deal of 

knowledge remains effectively 'compiled' into conventional rule-based

155



expert systems (e.g. Aikins, 1983; Clancey, 1983). For example, 

Clancey (1983) found that the following types of knowledge were not 

explicitly represented in MYCIN;

the strategic knowledge underlying the ordering of rules, 

and the ordering of rule conditions (these jointly exert a 

major influence on system behaviour given MYCINVs backward- 

chaining inferencing mechanism)

the structural knowledge implicit in the hierarchical 

organization of the MYCIN rule base

the support knowledge which provides the justification 

for the inclusion of individual rules in the knowledge base

Clancey (1983) suggests that the implicit nature of such knowledge 

helps explain why MYCIN proved difficult to modify by other than the 

original rule authors. It also prevented Clancey from directly 

adapting MYCIN to support a tutoring role. A complete reorganization 

of the MYCIN knowledge base was required for this purpose, implemented 

in the NEOMYCIN system (Clancey and Letsinger, 1981). Here 

intelligibility is enhanced by representing strategies explicitly as 

meta-rules (i.e. as rules that control the invocation of other rules). 

An alternative approach is adopted in CENTAUR (Aikins, 1983). In this 

system a hybrid knowledge representation - frames and production rules 

- is used to make explicit the context in which individual rules are 

routinely invoked. Small sets of rules are stored in the slots of 

different hypothesis frames, and are only considered for "firing" when 

the parent frame is itself activated.
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Keravnou and Johnson (1985) have taken the explication of strategic 

knowledge a step further. In their ’competent expert systems’ methodology 

each diagnostic strategy (or sub-strategy) is represented as a task frame, 

which makes explicit the dynamic context in which a particular 

strategy is invoked. So, different frame slots specify the conditions 

that ’enable’ a strategy to be invoked, and which ’disable* it, or 

which allow a disabling condition to be ’relaxed’, the sub-tasks that 

must be achieved if the strategy is to succeed, and so on.

How much futher expert system researchers can take the process of 

knowledge explication is not yet clear. At present, the tendency is to 

see every move in the direction of greater explicitness as necessarily 

beneficial. However, a highly explicit representation of domain knowledge 

is at odds with what is known about the compiled nature of much expert 

knowledge. There is also a danger that explicit representations will 

result in distorted models of expert reasoning, since inferencing 

methods are closely linked to particular representation formalisms.

5.6.6 The qualitative treatment of uncertainty

A great deal has been written about the representation of uncertainty in 

expert systems. Conventional decision support systems have used 

techniques based on probability theory, such as Bayes’ Theorem, to 

handle uncertainty in a rigorous, quantifiable fashion. In 

knowledge-based expert systems various ad hoc combinations of logic 

and probability theory have been employed. MYCIN (Shortliffe, 1976) 

and PROSPECTOR (Duda et a l .. 1979) are two well-known systems using 

such ad hoc quantitative methods. MYCIN is illustrative of the kind 

of techniques currently in use. Rules in the knowledge base have
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’Certainty Factors’ attached to them. A certainty factor is a number 

in the range -1.0 to 1.0 expressing the strength of belief that the 

conclusion of the rule is true, assuming all its premises are true. 

During a consultation these values combine to yield an overall 

confidence estimate attached to the system’s advice.

Our concern here is not with the shortcomings of existing 

techniques from a theoretical or technical standpoint - although these 

are by no means trivial (e.g. Rich, 1983; White, 1984). Rather, it is 

with the lack of correlation between such techniques and how 

uncertainty is normally processed in human cognition. Earlier 

(Section 2.4.2) we reviewed psychological research indicating that 

people are more skilled and feel more comfortable handling uncertainty 

in a qualitative, rather than a quantitative fashion. [This is not to 

identify qualitative approaches exclusively with human cognition, or 

quantitative methods with formal Al. For instance, many models of 

human pattern recognition are amenable to rigorous statistical 

expression and testing (Reed, 1972); and, equally, a formalized, 

qualitative treatment of uncertainty in Al is also possible (e.g.

Cohen, 1985, see below).]. A number of qualitative techniques are now 

available for improving the psychological validity and/or 

intelligibility of how expert systems handle uncertainty:

(1) Fox et a l .. (1980) found that a forward-chaining production rule 

system, PSYCO, in which medical diagnostic knowledge was 

expressed entirely non-numerically as production rules, performed 

as well as a Bayesian statistical system fed with comparable data. 

Each production rule simply encoded the empirical link between a
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small set of clinical data (condition part) and a particular 

disease (action part). Fox (1982) suggests that this categorical 

form is more like experts' own representations of facts than are 

purely quantitative estimates of likelihood. At the same time it 

is a more intelligible form, making it easier for the user to 

test and trace the system’s reasoning on other cases (Fox, 1982).

(2) Human judgment under uncertainty appears governed in part by 

availability (see Section 2.4.2). This theory states that the 

more available a bit of stored information is, the more readily 

it comes to mind, and the more impact it will have on subsequent 

decision making. Fox (1980) captured this idea in an 

experimental production system simulating aspects of clinical 

decision-making. The bulk of rules in the rule base expressed 

learnt symptom-disease links, with the relative strength of 

particular disease-symptom pairs reflected in the ordering of 

the rule conditions. The interpreter was sensitive to this 

ordering, so that the more "certain" hypotheses got triggered and 

tested first. Again, this simulation compared favourably with a 

Bayesian system in an experimental trial.

(3) Along with availability, representativeness is the other main 

’heuristic’ identified by Kahneman and Tversky (Kahneman et a l ., 

1982; see Section 2.4.2) as exerting a major influence

on human decision-making under conditions of uncertainty. This 

has been explicitly formalised into a qualitative technique for 

handling uncertainty in expert systems. The paper by Cohen _et 

a l . (1985) should be consulted for further details. More 

generally, any system in which test cases are judged on their
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computed similarity (or degree of match) to hypothesis 

'prototypes' is operating in accordance with the 

representativeness principle. PIP (Pauker et a l .. 1976) is one 

example discussed earlier in the chapter (Section 5.3.2).

(4) Most recently, Fox (1984a) has sketched another qualitative 

approach to uncertainty, based in part on his intuitions as an 

English speaker. He suggests that the 50 to 100 words in English 

for describing facts and data ('possible', 'probable', etc.) can 

be arranged into a hierarchy of belief terms. These can then be 

used to represent people’s beliefs "qualitatively with an 

explicit semantics, not numerically with an implicit semantics" 

(Fox, 1984a, p.22). He observes that for such a scheme to become 

generally accepted, agreement about the relative precedence of 

belief terms would first be needed. In the meantime, designers 

could be left to define these relations explicitly - but 

arbitrarily - in rules, as the domain requires. The following 

rule from Fox (1984a) illustrates the approach:

IF Patient couldfbe suffering from Disease

AND Disease is definitely fatal

THEN Patient maylbe in danger

(5) Earlier (Section 5.6.5) it was noted how Clancey (1983) and 

others have sought to explicate the knowledge compiled into 

uniform knowledge bases consisting largely of empirical rules. 

Cohen and Greenberg (1983) make a similar point in relation to 

uncertainty. They argue that numerical estimates of uncertainty 

are just a summary of the reasons people have for believing/
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disbelieving a particular hypothesis, which become inaccessible 

when represented numerically. On this view if an intelligent 

reasoner is normally able to discriminate among these reasons 

then the summary representation is inadequate (Cohen, 1985).

This would be true, for example, where two statements are ajudged 

equally "probable", but only one can be proven. Cohen (1985) 

presents an AX approach to reasoning about uncertainty based on 

such qualitative considerations. The implication of this type of 

approach for knowledge acquisition is that experts should be 

required to justify their expressions of uncertainty. But this 

is likely to prove difficult in view of the inaccessible and 

highly compiled nature of much expert thinking (see Chapter 2).

(6) A combination of qualitative and quantitative methods has also 

been advocated. In the context of medical expert systems, 

Szolovits and Pauker (1978) propose a heuristic process of 

hypothesis formation, followed by the weighing of evidence for 

and against each hypothesis. In short: "categorical proposes, 

probabilistic disposes". Similarly, Spiegelhalter and Knill-Jones 

(1984) conclude that a synthesis between statistical and 

knowledge-based techniques could overcome many of the long

standing criticisms of statistical décision-support systems. It 

should be apparent, though, that cognitive emulation is not the 

primary concern of these researchers.

5.7 EMULATING NEURAL PROCESSING

5.7.1 Introduction
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So far we have tacitly assumed that if a cognitive model can be 

implemented in an expert system, then traditional Al will provide the 

necessary techniques. [Traditional Al seeks to represent knowledge of 

the world in formal symbols, enabling programs to be written which 

instruct a computer how to make inferences by manipulating these 

symbols.] In this section we briefly consider a radically different 

Al paradigm - one inspired by current neurological models of how the 

brain works. This approach to cognitive emulation has yet to be 

applied in expert systems work (to the author's knowledge), but is 

outlined here because of its potential future importance.

5.7.2 Rationale

Al has been an active area of research since the 1950s. The relative 

lack of progress in the intervening period has led to some 

disillusionment with the dominant Al paradigm based on symbol 

manipulation. One doubt is whether serial processing programs - 

however fast - can ever approach the power of human thinking. Another 

concerns the impracticality of writing all the detailed instructions 

needed for a program to respond intelligently to unexpected events.

The slow progress of symbolic Al has provided the impetus for an 

alternative ’connectionist' approach, which is modelled closely on the 

computational properties of the human brain. These properties 

include (Feldman, 1985; Hinton, 1985):

a neural impulse takes a few milliseconds to be generated 

(about a million times slower than the basic computing speed 

of modern computers)
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a human can perform a simple task such as picture naming in 

around 500 milliseconds, or about 100 steps (the best 

available Al programs require millions of time steps to 

perform comparable tasks)

the cortex of the human brain contains some 100 billion 

neurons

each neuron is connected with up to about 10 000 others

the human brain is a massively parallel natural computer

The connectionists argue that our knowledge is stored in the 

strength of inter-neuronal connections, and that thinking somehow 

emerges from the process of these connections forming and reforming. 

Massively parallel computational models of vision, natural language, 

knowledge representation, learning, etc. are currently under 

construction (see, for example, the papers in Rumelhart et al., 1986).

5.7.3 Distinguishing features

The main features that distinguish the connectionist approach from 

traditional Al are (Economist, 1985);

(1) A belief that hardware matters - that symbolic processing cannot 

be abstracted from the hardware in which it is carried out.

(2) Connectionist models imply massively parallel computer 

architectures (although they can be simulated on serial digital 

computers).

(3) In connectionist machines memory and processing are diffusely
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distributed throughout the network, with little central control.

(4) Connectionist models are largely unprogrammed: only general 

instructions are given. The system reaches a solution by 

ungovernedly trying out different connections in the network 

until it settles into a stable state, i.e. no detailed algorithms 

or rules are involved.

Figure 5.5 illustrates in highly simplified form some typical features 

of connectionist networks. Elements (e.g. neurons, processing units) 

are linked by connections of differing strengths, represented here by 

an integer. The plus and minus signs denote a positive or negative 

link respectively. A double-headed arrow indicates a symmetrical 

connection rather than an asymmetrical one (single-headed). The 

diagram also hints at the essentially probabilistic nature of problem

solving activity in many connectionist models.

5.7.4 Assessment

The connectionist approach has not gone unchallenged. Theoretical 

critisms include:

It has not yet been adequately explained how high-level 

symbolic manipulation (e.g. perception) can arise from low- 

level energy states (e.g. pattern recognition).

To build a connectionist network able to simulate human 

thinking would require a machine with more connections than 

currently seems possible.

Connectionist models do not offer an alternative to symbolic 
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AI, because the difference is essentially one of level.

That is, connectionists network may represent how symbolic 

processing is implemented in the human brain - but symbolic 

processing is not dependent on this (or any other) 

"implementation language".

The development of a connectionist network may depend 

heavily on careful prior structuring by the theorist, rather

than developing purely in accordance with general 

principles (Anderson, 1983a).

More immediately, the special hardware required to make massively 

parallel connectionist models a practical option for knowledge 

engineering is still being developed, while many theoretical issues in 

connectionist modelling remain to be resolved (Feldman, 1985;

Hinton, 1985). There is a more fundamental objection, however. That

is to say, the human engineering objectives of expert systems -

explicit knowledge representation, intelligible reasoning, 

explanation, etc. - are inconsistent with the nature of connectionist 

models. As already noted, knowledge is embedded in the strength of 

connections: the reasoning process is diffuse, probabilistic and 

highly parallel - in short, system operation is unintelligible to a 

normal adult. Nevertheless, if it becomes apparent that some types of 

intelligent problem solving can only be simulated using a 

connectionist framework, then expert system designers will need to 

resolve the human engineering problem that is posed. This issue is 

explored further in Section 5.8.
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5.8 GENERAL DISCUSSION

A large amount of work in expert systems and related fields is 

relevant to the subject of cognitive emulation. Even restricting the 

scope of this chapter to such central expert system topics as 

knowledge elicitation and representation, problem solving and system 

architecture, has left a lot of ground to cover. This chapter has 

aimed to provide a representative survey of important work in this 

area. Six broad approaches to cognitive emulation have been 

distinguished based principally on the level at which the emulation of 

human cognition is addressed (see Fig. 5.1). In each case I have 

tried to describe and evaluate the major development work, as well as 

identify some of the outstanding research issues.

Having considered each approach individually, it remains to 

consider the different approaches in combination. This is an 

important and unavoidable issue for two reasons. First, it may be 

difficult to emulate human cognition at one level without giving 

thought to emulation issues at proximate levels. Second, different 

approaches can confer different knowledge engineering benefits - 

offering a big incentive for a combined design solution. In simplified 

form, the main benefits offered by the six outlined approaches to 

emulation are:

[1] Individual expert Emulation facilitates the effective 

elicitation, representation and utilization of an individual 

expert's knowledge for system construction.

[2] Domain expertise Accurate formalization of domain knowledge, 

explication of typical reasoning strategies, etc.
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[3] Expert cognition Fast, accurate and ’non-brittle’ expert-level 

performance.

[4] User cognition Ensuring usability by modelling the knowledge, 

expectations and preferences of the intended user group.

[5] Human information processing Matching system characteristics to 

human cognition for intelligibility. To perform difficult 

’human* tasks.

[6] Neural processing models Still at an early research stage, but 

ultimately for solving complex synthetic problems.

There are thus clear benefits to be achieved from a strategy of 

emulation encompassing a variety of approaches. Unfortunately, the 

design implications of different approaches are often contradictory - 

a point illustrated by Table 5.4, which contrasts the design features 

best suited to achieving expert-level performance and user 

intelligibility respectively. The performance-oriented features are 

characteristic of approaches which emulate expert problem solving 

([1 ], [2] or [3]), or which reflect more general models of human 

problem solving ([5] and [6]); whereas the features facilitating 

intelligibility are associated more with emulating specific user 

groups [4], and adaptations to the limitations of human information 

processing [5].

The question then arises : how can approaches to cognitive 

emulation with such conflicting design implications be combined? The 

basis for an architectural solution was mentioned in relation to user 

emulation (Section 5.5). In this solution - exemplified by the system
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Table 5.4

Design features facilitating expert-level performance and
intelligibility

EXPERT SYSTEM 
ATTRIBUTE

PERFORMANCE INTELLIGIBILITY

System Architecture Non-modular (e.g. 
distributed 
processing and 
memory)

Modular

Processing Mode Parallel Serial

Reasoning Strategies Expert-oriented User-oriented

Problem Formulation Expert-oriented User-oriented

Domain
Conceptualization

Expert-oriented User-oriented

Representation Language Low level High level

Knowledge Compiled
Procedural

Explicit
Declarative

Knowledge Chunks Relatively large 
and complex

Relatively small 
and simple
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architecture of intelligent front ends (Bundy, 1984), the 

Interviewer/Reasoner model (Gerring et al.. 1982), UMFE (Sleeman, 

1984), etc. - two main system elements are distinguished. As shown in 

Fig 5.6., the user interacts only with a front-end sub-system 

modelled on the intended user group and optimised for intelligibility. 

This module would also communicate with a back-end performance program 

modelled on expert cognition or any other useful model of human 

problem solving (e.g. a connectionist model).

There are many research issues outstanding with this type of 

architecture - not least the development of Al techniques for 

translating between the two modules (see Bundy, 1984). But 

modularization along these lines may offer ,the only viable solution 

for combining emulation approaches which fundamentally conflict in 

their design implications.

In Section 4.1.4 we noted the related problem of emulating the 

(distinctive) knowledge organization and reasoning strategies of 

several experts within a single system. A  modular solution may also 

be considered here. One possibility is described by Lambird, Lavine 

and Kanal (1984): for certain purposes expert system can be organized 

as a co-operating community of experts, with each ’specialist’ 

comprising its own knowledge base and corresponding inference 

mechanism. Lambird et a l . (1984) are primarily concerned with such 

distributed problem solving expert systems for use in applications 

with very large information and processing loads; for example, image 

understanding. Equally, however, it might provide a technique to 

enable the cognitive emulation of a number of experts within an 

integrated system. Fig. 5.7 illustrates this possibility as an
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USER > > FRONT-END ^ BACK-END
SUBSYSTEM SUB-SYSTEM

Fig. 5.6 - An outline system architecture for combining user- 
intelligibility (front-end) and expert-level performance (back-end).

BACK-END SUBSYSTEM

E2El

►USER FRONT-END
SUBSYSTEM

E4

Fig. 5.7 - An outline system architecture for integrating the 
cognitive models of four experts (El-4) and the intended user group.

171



elaboration of Fig. 5.6.

Modularization of the sort being discussed could also serve to 

combine emulation approaches with formal methods. Indeed, this is 

essentially what intelligent front ends (Bundy, 1984) are already 

doing. The 'front end’ is a friendly interface modelled on the user’s 

understanding of a domain and preferred mode of interaction, while the 

’back end’ is a complex statistical package, a relational database 

system, etc..

The potential for substantial design conflicts within the 

emulation strategy has gone largely unremarked in earlier discussions 

of the subject (e.g. Fox, 1982; Slatter, 1985). One reason is that 

under favourable conditions the different levels of approach to 

emulation can probably be fluently combined. Consider, for example, 

the following conditions:

the task is of a relatively simple, analytic kind such as 

classification

domain knowledge is largely empirical in nature, 

expressable as IF-THEN rules

the amount of domain knowledge is relatively small

the system users are themselves experts or partial experts

Under such conditions expert knowledge can be expressed in a 

declarative intelligible form without too much distortion; there is no 

significant conflict in conceptualization, reasoning strategies, etc. 

between experts and system users; and the cognitive models suitable
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for modelling the task - i.e. 'pure' production systems - can be 

tailored to give intelligble behaviour. These conditions are 

approximated in the case of PSYCO (Fox et a l ., 1980), a clinical 

diagnostic system which manages to combine the emulation of 

established cognitive principles, intelligible knowledge 

representation and reasoning, and fidelity to expert cognition within 

an adapted production rule system.

However, the emulation approach can be expected to become 

increasingly fragmented as one moves away from these favourable 

conditions towards situations involving:

complex synthetic tasks such as design

more varied types of knowledge (e.g. temporal, spatial, 

causal)

very large amounts of knowledge

system users who are complete domain novices

It is under conditions such as these that the use of modular 

system architectures becomes a relevant design option.

There are thus grounds for supposing that different approaches to

emulation can, in principle at least, be combined - though in 

different ways according to circumstances. It is also necessary to 

consider whether any conditions exist in which a single one of the six

described approaches would be sufficient for a given knowledge

engineering purpose. A possible scenario is where a piece of expert 

software is required to fulfill a highly specialised, but essentially
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limited task. For example, an autonomous expert system module 

embedded in a real-time process control application might have little 

need for a user interface, allowing optimization on expert cognition.

The role the expert system is designed to perform for the user is 

clearly important in this regard. Arguably, pure problem solving 

systems require less elaborate user interfaces than systems engaging 

in co-operative problem solving with the user (see Section 5.4). Even 

so, the requirement of the system designer for modularity, 

intelligibility, etc. suggests that usability will almost always be a 

consideration.

The flowchart in Fig. 5.8 is an attempt to formalize in summary 

form the guidlines for selecting and combining emulation approaches 

given above. It can be seen as a companion to the earlier decision 

rule (Fig 4.1.). The difference is this: Fig 4.1. is intended to help 

identify when a strategy of cognitive emulation is worth pursuing; 

while Fig 5.8. aims to assist in identifying which particular emulation 

approach(es) to pursue. The flowchart reflects the fact that formal 

methods alone will sometimes be sufficient to generate a design 

solution. It also allows for a combination of formal methods with 

emulation approaches. Failure to find a workable singular or combined 

solution leads to either abandonment of the proposed system or a 

respecification of requirements.

5.9 SUGGESTED READING

At present no general textbooks covering this subject area in greater 

depth are available. The reader is thus advised to follow up references 

given in this chapter which coincide with their specific interests.
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Fig. 5-8 - Flowchart for selecting/combining emulation 
approaches.

175



6 CONCLUSION

This book has provided an assessment of the cognitive emulation 

strategy in expert system design. In this final chapter the main 

conclusions of previous chapters are reviewed. A more designer- 

oriented summary is also provided, for the benefit of knowledge 

engineers interested in adopting an emulation approach. Finally, 

there is a summary of the original contributions made by the thesis.

6.1 SUMMARY OF MAIN CONCLUSIONS

6 .1.1 The principle of cognitive emulation

Chapter 1 introduced the term cognitive emulation, which denotes an 

approach to expert system design in which human thinking is the 

guiding principle. Domain experts are one obvious focus for attempts 

at emulation; system users another. An emulation approach implies a 

close coupling between knowledge engineering and cognitive psychology. 

The psychological models, methods and techniques of the cognitive 

scientist provides a rationale for the emulation strategy. Cognitive 

emulation is distinguished from cognitive modelling per se by its 

engineering perspective. At present the number of research projects 

in which cognitive emulation is an explicit concern is growing, but 

outside of research centres awareness of the emulation principle 

remains limited.

6.1.2 Human expert thinking

Chapter 2 reviewed our present understanding of human expert thinking 

Cognitive research in this area confirms the belief that human
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expertise is essentially a knowledge-based skill, acquired through 

many years of practice in a specialist domain. Prodigious amounts of 

knowledge are acquired, and this goes a long way in explaining the 

superior performance of domain experts compared to novices. However, 

qualitative changes in knowledge organization and reasoning strategies 

also play an important role. They enable the expert to rely less on 

formal problem solving methods, and more on pattern recognition and 

memory. Expert cognition is better adapted than novice cognition to 

the unique characteristics of a particular domain.

Frequently observed correlates of developing expertise include 

enhanced working memory capacity, speed-up and tuning of decision 

processes, and proceduralization of task-related knowledge. Such 

changes can be classed as 'benefits', since they tend to improve task 

performance. However, the development of expertise also has its 

associated costs. In particular, proceduralized knowledge and 

automated processes are relatively inaccessible, making it harder for 

experts to report accurately on their thinking. So, in a sense, 

expert-level performance is achieved at the expense of 

intelligibility.

6.1.3 Arguments

Chapter 3 assembled the principal arguments for and against cognitive 

emulation. The main conclusion reached was as follows. Cognitive 

emulation is a strategy for expert system design that can be neither 

explicitly rejected nor unselectively pursued. On the one hand, a 

significant element of cognitive modelling seems inherent in knowledge
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engineering, and is desirable in order to promote expert-level 

performance, user acceptance, effective knowledge acquisition, and a 

principled approach to design. Militating against a pure, unselective 

strategy, on the other hand, are the known weaknesses, limitations and 

inefficiences of human thinking, the desire to improve on expert-level 

performance, and the requirement that an expert system should embody 

the specialist skill of several experts.

6.1.4 Constraining and facilitating factors

Chapter 4 examined the viability of cognitive emulation at a more 

practical level; considering which are the factors likely to constrain 

and facilitate a cognitive approach. Some of these factors cut both 

ways :

The areas in which an emulation approach might come into 

conflict with established knowledge engineering objectives 

such as efficiency, modifiability and accuracy were 

carefully detailed. In other areas, though, cognitive 

emulation was shown to coincide rather than conflict with 

existing knowledge engineering objectives.

The relative immaturity of both cognitive science and expert 

systems technology represent constraints on applying an 

emulation strategy at present. However, developments in 

these fields are likely to facilitate a cognitive approach in 

the future.

The inherent emulability (or not) of human cognition in artificial 

systems is another possible constraint on emulation. However, in
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practice, the effects of this factor are difficult to disentangle from 

the constraining effects of present day technology and scientific 

understanding. Two clear benefits of cognitive emulation emerged. 

First, despite its limitations, cognitive psychology can serve as a 

useful source of ideas and techniques for expert system builders. 

Second, the utility of an emulation approach tends to increase with 

task difficulty - especially for very large, highly complex and 

'synthetic' tasks that are unamenable to formal methods. A decision 

to adopt a strategy of emulation needs to consider the constraints and 

facilitating factors operating in a particular case. Figure 4.1 is 

designed to help with such a decision.

6.1.5 Applications and different approaches

Chapter 5 reviewed existing and potential applications of cognitive 

emulation in expert system design. As currently applied by expert

systern Researchers, cognitive emulation is far from being a unitary---

strategy. On the contrary, a survey of the published literature 

reveals a multiplicity of approaches, inspired by different cognitive 

models, knowledge engineering objectives, etc.. Six basic approaches 

were identified. These centred on modelling the cognitive processes 

representative of :

an individual domain expert

experts in a particular domain (e.g. clinical

diagnosticians)

human experts in general

users
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people in general - human information processing perspective 

people in general - neural networks perspective

Several important points emerged from an assessment of these six

approaches:

(1) Much of the valuable detail of human thinking can be captured and 

embodied in an expert system if appropriate tools and techniques 

are employed.

(2) Earlier research focused on emulating the individual expert’s 

ability to solve a problem. However, this ignores the fact that 

in the real world experts perform a much wider range of cognitive 

functions, including tutoring, guidance and remedy negotiation. 

Some recent research efforts have attempted to emulate the 

ability to engage in co-operative problem solving of this sort.

(3) A variety of techniques are also under development for emulating 

the knowledge organization and reasoning strategies 

characteristic of some specialist domain, dynamic aspects of 

expert cognition, and relevant aspects of user cognition.

(4) The three-part system architecture of standard expert systems 

parallels the outline ’architecture* for human cognition proposed 

by cognitive psychologists. This similarity is somewhat 

deceptive, however, as there are also significant differences 

between the two.

(5) For certain kinds of expert problem solving, it may prove 

necessary to model human thinking at a non-symbolic level - that
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is, in 'massively parallel networks' modelled on human neural 

processing.

The issues raised by combining alternative approaches to emulation were 

considered, since each approach confers different knowledge 

engineering benefits. Under favourable conditions, different 

approaches can be integrated within a single system. On the other 

hand, where the approaches to be combined have contradictory design 

implications, a modularized design solution is recommended. Some 

general guidelines for selecting and combining emulation approaches 

were given.

6.2 SUMMARY OF DESIGN ADVICE

Implicitly and explicitly, earlier chapters of this book contain many 

pieces of advice about designing expert systems from a cognitive 

perspective. For the benefit of expert system practioners interested 

in adopting a cognitive approach this advice is summarized below. The 

advice given should be read as a provisional set of suggestions, 

rather than as precise methodological guidelines.

Deciding whether to adopt an emulation strategy (see also Section 4.3)

Only adopt an explicit strategy of cognitive emulation if the answer 

to all the following questions is yes.

Is it impossible to satisfy all the requirements of a 

proposed expert system application using formal methods?

Can a cognitive model be found corresponding to the
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requirements of the proposed application?

Can the cognitive model be implemented as a computer 

program?

Is the cognitive model powerful/predictive enough to support 

the proposed application?

Selecting a particular emulation strategy (see also Section 5.8).

if All the requirements of a proposed application can be satisfied

using a single emulation approach 

then Adopt that emulation approach

if The requirements of a proposed application can only be satisfied

by a combination of emulation approaches

and The approaches have compatible design implications

then Adopt an integrated system design solution

if The requirements of a proposed application can only be satisfied

by a combination of emulation approaches

and The approaches have incompatible design implications 

then Adopt a modularized system design solution

Knowledge elicitation (see also Section 5.2).

Match the elicitation technique to the type of knowledge to

be elicited.

Use a variety of elicitation techniques (expert knowledge is
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rarely of just one type).

Give consideration to techniques widely used in cognitive 

psychology such as protocol analysis, Repertory Grid 

Technique, conceptual sorting and memory probing.

Be alert to rejection or distortion of elicited knowledge 

due to the constraints imposed by inappropriate expert 

system tools (knowledge representations, inference engines,

etc.).

Knowledge Analysis, and the use of intermediate 

representations for coding elicited knowledge, are two 

techniques for overcoming such distorting influences.

Be alert to the potential sources of invalidity in verbal 

data.

Knowledge representation (see especially Section 5.6)

Match the knowledge representation to the type of knowledge 

to be represented.

Use a variety of knowledge representations (expert knowledge 

is rarely of just one type).

For user intelligibility, represent human knowledge 

explicitly.

For expert-level problem solving, represent human knowledge 

in a compiled, proceduralized form.
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For both, consider a modularized system design - with 

knowledge represented in a user-oriented and in an expert- 

oriented form.

The size, complexity and grain size of knowledge units (e.g 

production rules) should accord with human cognition.

Production rules are a natural representation for certain 

kinds of human pattern-directed knowledge.

The interconnectivity of human long-term memory is 

appropriately modelled in an associative network.

Spatial and temporal knowledge should be represented 

analogically.

Cognitive prototypes can be represented as frames, with the 

slots set to default (typical) values.

Knowledge utilization

Model the problem solving approach of an expert system on an 

appropriate domain expert.

Represent expert reasoning strategies explicitly as meta

rules, task frames, etc..

The prominence of pattern recognition in expert problem 

solving implies that forward inferencing should be a feature 

of any expert system modelled on human expertise.

Breadth-first retrieval strategies (through a network) are a
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better approximation of human memory retrieval than either 

depth-first or serial searches through a set of independent 

knowledge elements.

In general, human reasoning involves a subtle interplay of 

forward and backward inferencing, serial and parallel 

processes. Modelling this interplay should be an important 

objective for 'cognitive emulators'.

The powerful pattern representation and pattern matching 

facilities offered by AI languages such as PROLOG can be 

exploited in emulating human pattern processing.

Avoid Bayes' Rule, or any other formal method of 

approximate reasoning - unless there is evidence that the 

human expert is explicitly using such an approach. Consider 

the qualitative approaches listed in Section 5.6.6.

. An autonomous problem solving system is not always the most 

appropriate design solution. Try to identify and model the 

cognitive functions (e.g. critiquing, tutoring) that human 

experts are actually performing for users in a given 

application area.

The cognitive function(s) the system is to perform should be 

identified at an early stage, so that knowledge acquisition 

can focus on relevant aspects of expert/user cognition.

Using the design advice

There are two main ways in which the above advice might be used.
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Taken collectively, the suggestions represent elements of a principled 

approach to cognitive emulation in expert system design.

Alternatively, individual bits of advice can be acted on in an ad hoc 

fashion, as opportunities or needs arise in a particular project. For 

most practical purposes, an ad hoc approach will remain the realistic 

option for some time to come. It accords with current knowledge 

engineering practice - which is eclectic and pragmatic - and with the 

current limitations of expert systems technology and cognitive 

psychology. As these constraints drop away, however, the scope for a 

principled approach will increase.

6 .3 ORIGINAL CONTRIBUTIONS OF THE THESIS

6.3.1 Major contributions

(1) Through a detailed review of the theoretical arguments involved, 

establishing the major conclusion that ; Cognitive emulation i 

strategy for expert system design that can be neither explicitly 

rejected nor unselectively pursued.

(2) A clear articulation of the major factors constraining and 

facilitating a cognitive approach to knowledge engineering, and 

how these might be assessed in deciding to adopt an emulation 

strategy in a particular case.

(3) A detailed analysis of the similarities and differences between 

human cognition and typical expert systems. In particular, a 

comparative analysis of the system architecture of standard expert 

systems with the outline architecture for human cognition proposed

is a
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by psychologists.

(4) Development of a six-fold classification of approaches to 

cognitive emulation within the expert system field, and of sub

classifications where applicable.

(5) Presentation of general guidelines for selecting and combining 

emulation approaches, and of proposals for modularized design 

solutions where the necessary combination of approaches has 

contradictory implications.

6.3.2 Minor contributions

(1) Compilation of an extensive bibliography (over 200 items) of 

relevant research literature in this area.

(2) Inferring an initial set of guidelines about designing expert 

systems from the standpoint of cognitive emulation.

(3) Examining the cognitive changes that accompany the development of 

human expertise from a cost-benefit perspective.

(4) Presenting various novel hypotheses, for example : that the

utility of the emulation principle will tend to increase as task 

difficulty increases.

(5) Emphasis on the heuristic role of ideas from Cognitive Psychology/ 

Expertise Research in expert system development.
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GLOSSARY

algorithm A detailed step-by-step procedure for performing a task 

that is guaranteed to succeed.

analogical This is a class of knowledge representation formalisms

representations in which there is a structural similarity between the 

representation and the situation that is represented. 

Examples include maps, models and diagrams. Analogical 

representations contrast with 'propositional’ 

representations, such as semantic networks and logic, 

which do not require this structural correspondence.

backward

chaining

Backward chaining is an inferencing strategy which 

involves working back from a conclusion or goal to see 

if the conditions that would make it true are satisfied. 

The strategy is appropriate in problem domains where the 

conclusions can be specified in advance; for example, 

electronic fault diagnosis.

declarative In a declarative representation knowledge typically

representations comprises a static collection of facts accompanied by 

a small set of procedures for manipulating them.

epistemology Epistemology is the theory of the method or grounds for 

knowledge. In knowledge engineering, epistemological 

analysis is carried out to identify the basic classes of 

elements (e.g. 'solutions'), relations (e.g. taxonomic),
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etc. underlying the verbal statements elicited from 

domain experts. Epistemological analysis offers a means 

of conceptualizing knowledge at a level distinct from the 

available representational technology.

forward

chaining

Forward chaining is an inferencing strategy which builds 

up from the available data about a problem to deduce 

conclusions. It is appropriate where the possible 

conclusions cannot be pre-specified, or where the number 

of conclusions is large relative to the number of initial 

problem states. For example, designing a computer 

hardware configuration.

frames A common knowledge representation formalism in expert 

systems. A frame is a data structure for representing 

stereotyped situations in terms of 'slots’ and 

'fillers'. For example, the frame for 'chair' might 

contain a 'number-of-legs' slot which, in the case of a 

prototypical chair, would have a filler value of 

'4 legs'. Various types of information are attached to 

a frame, including information about how to use the 

frame.

heuristic A 'rule of thumb' method or aid to solving a problem. 

Unlike an algorithm, a heuristic is not guaranteed to 

succeed, but is useful in the majority of cases.
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logic One of the first knowledge representation formalisms 

used in AX. It enables conclusions to be deduced from 

initial premises using purely syntactic rules of 

inference. Logic is also the basis of such AI 

languages as PROLOG (PROgramming in LOGic).

procedural In a procedural representation knowledge is

representations contextually-embedded in procedures, e.g. computer

algorithms.

production A production rule is an item of knowledge which takes

rule the form - IF this condition is true, THEN this

action is appropriate. For example:

IF (a) the sun is shining, and 

(b) the day is Sunday 

THEN consider going fishing

production

system

A  production system is a type of AI progam consisting 

of three main elements :

(1) a knowledge base, comprising a set of 

production rules;

(2) a 'working memory' consisting of data relevant 

to the current problem;

(3) a control program, called an 'interpreter' or 

'inference engine'.

The control program selectively fires rules in (1) 

based on the current state of (2). This cycle 

repeats until the program terminates.
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scripts A script is a frame-like structure specifically 

designed for representing typical sequences or events

semantic

network

A knowledge formalism in which information is 

represented as a set of nodes and links. The 

nodes represent concepts, and the links stand 

for the relationships between the concepts. For 

example, the concepts 'eagle' and 'bird' could be 

linked by the relationship 'is a kind o f .
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