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Abstract  

The predictive capability of a new artificial intelligence method, random subspace (RS), for the 

prediction of suspended sediment load in rivers was compared with commonly used methods: 

random forest (RF) and two support vector machine (SVM) models using a radial basis function 

kernel (SVM-RBF) and a normalized polynomial kernel (SVM-NPK). Using river discharge, 

rainfall and river stage data from the Haraz River, Iran, the results revealed: (a) the RS model 

provided a superior predictive accuracy (NSE = 0.83) to SVM-RBF (NSE = 0.80), SVM-NPK 

(NSE = 0.78) and RF (NSE = 0.68), corresponding to very good, good, satisfactory and 

unsatisfactory accuracies in load prediction; (b) the RBF kernel outperformed the NPK kernel; 

(c) the predictive capability was most sensitive to gamma and epsilon in SVM models, maximum 

depth of a tree and the number of features in RF models, classifier type, number of trees and 
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subspace size in RS models; and (d) suspended sediment loads were most closely correlated with 

river discharge (PCC = 0.76). Overall, the results show that RS models have great potential in 

data poor watersheds, such as that studied here, to produce strong predictions of suspended load 

based on monthly records of river discharge, rainfall depth and river stage alone. 

 

Keywords suspended sediment, rivers, artificial intelligence, random forest, random subspace, 

support vector machine 

 

1 Introduction 

The prediction of suspended sediment load in rivers is one of the most important issues in the 

field of water resources management and river engineering (Melesse et al., 2011; Kisi et al., 

2012; Lafdani et al., 2013). Suspended sediment can directly affect the capacity of reservoir 

storage, operation of hydraulic structures, water quality and dispersion of non-point source 

pollutants (Melesse et al., 2011; Fan et al., 2012; Tang et al., 2014;). The Suspended sediment 

load is the result of several physical processes including detachment, transportation and 

deposition of grains, which depends on the magnitude and intensity of precipitation, discharge in 

the river network, physical characteristics of the soil, topography and land use. In many studies, 

rainfall and discharge are reported as the most important controlling factors for suspended 

sediment load (Jie and Yu, 2011). However, human activity such as land-use change, and in 

particular deforestation, can increase fine sediment input to rivers (Ali and Abbas, 2013; Heng 

and Suetsurgi, 2014; Bathrellos et al., 2017). In this sense, suspended sediment load in rivers can 

be considered as the cumulative result of watershed management practices (Cigizoglu, 2004). 
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The impact of poor land management practices are clearly seen in rivers in Iran. These rivers 

carry much higher suspended sediment loads than similar rivers in neighboring countries. For 

example, Aras, Haraz and Sefid-roud rivers in Iran carry around 8, 7.5 and 8.9 g/l but Euphrates 

(Al-Furat) in Syria, Tigris in Iraq and Kabul in Afghanistan carry about 0.1, 1.2 and 1.1 g/l, 

respectively (Ahmadi, 2010). Therefore, accurate estimation of the temporal variation in 

suspended sediment load in Iranian rivers is paramount to assess current watershed management 

practices and their future optimization. 

 

Like many other processes in rivers, suspended sediment dynamics are complex and non-linear 

(Nourani, 2009; Rajaee, 2011) due to hysteresis effects (Mao and Carrillo, 2017). As a result, 

modelling suspended sediment dynamics requires a robust and reliable model with a non-linear 

structure (Dai and Lu, 2010; Kisi et al., 2012; Wenske et al., 2012; Vigiak et al., 2017 ). Some 

methods, such as process-based models, empirical relationships and statistically-based models 

(Melesse et al., 2011) have been developed to predict suspended sediment load and its 

relationship with driving variables such as rainfall and river hydraulics (e.g. velocity, discharge 

and shear stress). Process-based models usually require many variables and detailed spatial and 

temporal environmental data for the model build, calibration and validation (Hamel et al., 2017; 

Kisi et al., 2012). Such information is rarely available in developing countries, such as Iran, 

because direct measurement of variables such as river velocity, channel topography, rainfall 

intensity and suspended sediment is expensive. Furthermore, process-based simulations are 

complex, time-consuming and require highly-skilled end users that do not always reside in these 

countries (Jha and Bombardelli, 2011). 
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Recently, development of artificial intelligence has opened up new and exciting ways to predict 

environmental behavior, including variations in suspended sediment load. Artificial intelligence 

techniques do not seek to explain the physical processes and mathematical reasoning for changes 

in environmental behavior but to recognize patterns, both expected and unexpected, within data. 

These patterns can highlight environmental relationships in space and time that may unveil 

critical details about behavior, reveal previously unsuspected relationships, or mitigate 

uncertainty in estimates. Thus these types of techniques are at their most beneficial in situations 

when process-based models cannot be applied (e.g. lack of understanding of the underlying 

physics of the process) or that suffer from inadequacies due to the limitation of data. Therefore 

the key advantage of artificial intelligence methods is that that some parameters which are 

difficult or expensive to measure, such as suspended sediment load, could be easily predicted 

using other factors which are more readily available, such as rainfall depth, discharge and river 

stage. Such attempts have included the use of multi-layer perceptrons (MLPs) (Jain, 2001; 

Cigizoglu, 2002, 2004; Kisi, 2004; Partal and Cigizoglu, 2008), support vector machine (SVM) 

(Azamathulla and Wu, 2011; Lafdani et al., 2013), genetic programing (GP) (Aytek and Kisi, 

2008; Kisi et al., 2012;), and adaptive neuro-fuzzy inference system (ANFIS) (Çimen, 2016; 

Choubin et al., 2018).. At present however, there is no consensus over which of these artificial 

intelligence methods produces the most accurate predictions of suspended sediment load, and 

more widely, in the prediction of other hydrological parameters. 

 

For example, Melesse et al. (2011) applied four models of MLP - multiple linear regressions 

(MLR), multiple non-linear regression (MNLR) and autoregressive integrated moving average 

(ARIMA) - to suspended sediment load prediction in the Mississippi, Missouri and Rio Grande 
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rivers in USA. Their results showed that the MLP models have a higher predictive capability 

than multiple linear regression, multiple non-linear regression and Autoregressive integrated 

moving average models. Chiang and Tsai (2011) reported that SVM models outperformed ANN 

models in estimation of suspended sediment loads in rivers in Taiwan. Zounemat-Kermani et al. 

(2016) also evaluated the predictive power of SVM and ANN models using different kernel and 

model algorithms for suspended sediment load estimation in USA and found differing results. 

They used four different kernels of SVM, namely, linear (SVM-L), polynomial (SVM-P), radial 

basis function (SVM-RBF) and sigmoid (SVM-S), as well as three ANN model algorithms; the 

conjugate gradient, gradient descent and Broyden-Fletcher-Goldfarb-Shannon (BFGS) 

approaches. Their results revealed that the SVM-RBF and ANN-BFGS models outperformed the 

other models. In a study in China, Li et al. (2016) applied random forest (RF), ANN and SVM 

methods for prediction of Poyang lake water levels. Their results revealed the RF model 

produced better predictions of daily water level prediction than the other two approaches. 

Francke et al. (2008) applied sediment rating curves, ANN, RF, Quantile Regression Forests 

(QRF) and generalized linear models for estimation of suspended sediment load in Isábena 

catchment, northeastern Spain. Their results showed that the RF and QRF methods had a better 

predictive performance than the other methods. In water quality prediction, Shkurin (2015) 

revealed that the RF model is superior to the SVM and ANN methods. ANN is the most common 

machine learning method due to computational efficiency but this approach has a black box 

structure, lower predictive power and higher errors in the modelling phase (Bui et al., 2016). 

Thus, ANFIS models, which are a combination of ANN and fuzzy logic (FL) models, have been 

proposed (Khosravi et al, 2018a). ANFIS models generally have a better predictive capability 
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than ANN and FL models, but they are poor at  finding the best weight parameters which heavily 

influences the prediction accuracy (Bui et al., 2016).  

In summary, these studies reveal a contrasting set of results over the predictive power of 

different artificial intelligence methods. Therefore, the main goal of the present study is to 

explore a range of these methods and to evaluate which provides the most accurate prediction of 

monthly suspended sediment load, using Haraz River in Iran as a case study. This river is an 

ideal example to explore because it typically transports a huge volume of suspended load 

resulting from poor land management practices in the watershed, inappropriate river engineering 

interventions, and an excess of in-channel sediment mining. We will evaluate three artificial 

intelligence methods: (1) a new method in the field of hydrology called Random Subspace (RS); 

(2) SVM with a RBF kernel and a Normalized Polynomial Kernel (NPK); and (3) and RF models 

that benefit from small error rates and improved noise insensitivity (Mert et al., 2016). The 

results from the RS model will be compared with those from the SVM and RF techniques whose 

predictive power has been proven previously (Lafdani et al, 2013; Shkurin, 2015). We will also 

perform a sensitivity analysis for the parameters of the three models. We wish to discover if the 

new model of RS provides superior predictive power to existing artificial intelligence methods in 

suspended sediment load prediction, and to evaluate its suitability for use in data scarce regions, 

such as those of our study watershed. 

 

2 Study area 

The Haraz watershed is located in the mountainous Mazandaran Province (northern part of Iran) 

covering an area of about 4014 km
2
, lying between the longitudes of 51°43′ to 52°36′E, and the 
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latitudes of 35°45′ to 36°22′N (Fig. 1). The main causes of flooding, which produces a huge 

volume of suspended sediment load, are high-intensity, short-duration rainfall events and land-

use change (Khosravi et al, 2016). The mean annual rainfall is 723 mm and October is the 

wettest month of the year with rainfall of 160 mm (Khosravi et al., 2016). The altitude ranges 

from 300 to 5595 m above sea level and the ground slope varies between 0° and 66°. 

Geologically, the Haraz watershed is covered by Triassic, Jurassic, Cretaceous, Permian, Tertiary 

and Quaternary geologic formations. There are four types of soil; in order of prevalence, 

Inceptisol, Mollisol, Entisol and Alfisol (Choubin et al., 2018). The land use consists of pasture 

(92%), forest lands (5.9%), barren lands (0.7%), water bodies (0.07%), gardens (0.13%), 

irrigated land (0.33%) and residential areas (0.24%) (Khosravi et al., 2018c).  

Fig. 1  

 

3 Data 

Monthly river discharge, river suspended sediment discharge, rainfall depth and river stage data 

from 1972 to 2002 (30 years) from Kareh-Sang Hydrometric Station, which is located at the 

outlet of the case study, were collected from Mazandaran regional water authority and used in 

the model building phase, and the data from 2002 to 2010 (8 years) were used for model 

validation. The rainfall data were collected from various rain-gage stations, from which a 

spatially-averaged value was derived as model input (Melesse, 2011). Table 1 shows the monthly 

maximum, minimum, mean and standard deviation for stage (S), river discharge (Q), rainfall (R) 

and suspended sediment discharge (SSL) at Haraz watershed. The mean SSL at the outlet of the 

Haraz watershed was 2345 ton/day.  
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Table 1  

 

The distributions of the collected data (Table 2) show that all input variables had positive 

skewness and positive kurtosis, which shows the possibility of leptokurtic distributions (Melesse 

et al., 2011). Since the data (  ) do not have a normal distribution, all the input data were 

normalized (  
 ) using the following equation to scale the data in the range of 0-1 (Melesse et al., 

2011; Lafdani et al., 2013): 

  
                       (1) 

where  xmin and xmax refer to the minimum and maximum values of the data, respectively. 

Table 2 

 

4 Machine learning models 

4.1 Support vector machine (SVM) 

The SVM was first introduced by Vapnik (1995) and Vapnik et al. (1997), and is a supervised 

learning binary algorithm based on the structural risk minimization and statistical learning 

method (Bui et al., 2012). The goal of a SVM model is to minimize model complexity and 

errors. SVM transforms input space into a higher-dimensional feature space to find an optimal 

separating hyper-plane from a training dataset (Pham et al., 2016). In practice, the SVM can 

change the nonlinear nature of a variable into a linear one. This technique produces simple and 

processable classes by construction of a hyper-plane. This mathematical relationship is called a 
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kernel function (Tehrany et al., 2014). An optimal separating hyper-plane is projected in the 

original space of n coordinates (xi parameters in vector x) between the points of two distinct 

classes within a certain error limit (Tehrany et al., 2014). Consider that x and y correspond to 

input variables and output variables, respectively. If      ,   
 
       and i = 1, …, n, then 

the optimal separating hyper-plane is calculated using a classification decision function ( Tien 

Bui et al., 2012): 

                         
                                                              (2) 

where n is the number of input variables, αi are Lagrange multipliers, K(xi, xj) is the kernel 

function and b is the offset of the hyper-plane from the origin 

The kernel function can be linear, polynomial, RBF or sigmoidal. The two most common kernel 

functions are the normalized polynomial kernel (NPK) and RBF, although RBF is most often 

used due to its simple design, good generalization, strong tolerance to input noise, and online 

learning ability. The NPK and RBF kernel functions are defined, respectively, as follows (Dixon 

and Candade, 2008; Tehrany et al., 2014): 

                 
 

        (3) 

                       
 
         (4) 

where γ controls the degree of nonlinearity of the SVM model and d is the polynomial degree in 

the kernel function and C is a free parameter trading off the influence of higher-order versus 

lower-order terms in the polynomial Small and large values of γ cause under- and over-fitting of 

the training data, respectively. Detailed descriptions of the RF model and their parameters can be 

found in Lafdani et al. (2013) and Tehrany et al. (2014). 
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The SVM model was trained using sequential minimal optimization (SMO). SMO is an 

optimization algorithm used for solving the quadratic programming problem which arises during 

the training of a SVM model on a dataset. A trial and error method using 10-fold cross-validation 

techniques was applied to determine the optimal kernel parameters (Pradhan, 2013).  

 

4.2 Random forest (RF) 

The RF is a flexible, nonparametric, ensemble learning technique first developed by Breiman 

(2001), and is a hybrid procedure between a decision tree and a regression.RF is composed of 

multiple trees in which the bootstrap samples are used for constructing each tree (Breiman et al., 

1984). The Breiman’s bagging idea and Ho’s (Ho, 1995) random selections are the two main 

processes that constitute the random forest model (Chapi et al., 2017). The RF model assessed 

the degree to which the estimation error increases when the output of data for certain variables is 

permuted while all others are left fixed (Pham et al., 2017a). Detailed descriptions of the RF 

model can be found in Breiman (2001) and Pham et al. (2017a). 

During the bootstrap method, the samples which are not included are called out of bag 

(OOB)These OOB samples from the training set were used to assess the prediction error and thus 

validate the RF model (i.e. the prediction performance was assessed by evaluating predictions on 

observations which were not used in the building of the next base learner).  

4.3 Random subspace (RS) 

The RS model is a classic integrated algorithm that builds a decision tree based on a classifier 

that supports the highest precision and accuracy for the training data. This method was 
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introduced by Ho (1998) to improve performance of the weak classifiers (Pham et al., 2017b). 

The RS approach involves randomly drawing samples from the original training set to form a 

bootstrap sample, which is then used to build the decision tree (Mielniczuk and Teisseyre, 2014). 

For each node of the decision tree, a subset of features are selected randomly, and the best split is 

chosen.. Features in a RS model include attributes, predictors and independent variables. The use 

of randomly drawn features rather than the entire feature set reduces the correlation between 

estimators Finally, the tree is built to reach its maximum size.. Thus this method profits from 

utilizing random subspaces in both construction and aggregation, and produces an efficient 

hybrid model for avoiding over-fitting problems and for handling datasets with many redundant 

features (Onan, 2015). Detailed descriptions of the RS model can be found in Ho (1998) and 

Pham et al. (2017b).  

 

5 Model evaluation and comparison 

In order to evaluate each of the model’s predictive capabilities, six commonly used criteria were 

applied; the coefficient of determination (R
2
), root mean square error (RMSE), mean absolute 

error (MAE), Nash-Sutcliffe efficiency (NSE), bias or percent bias (PBIAS) and the ratio of 

RMSE to the standard deviation of observation (RSR) (Table 3). 

Table 3 

 

6 Sensitivity analysis and determination of the optimum parameters 

A sensitivity analysis was performed using trial and error in Waikato Environment for 

Knowledge Analysis software (WEKA 3.9, 2018) to determine which parameters had the 
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greatest influence on model results. The range of values for each input variable were run in 

WEKA. Optimum parameters of each model were determined using RMSE values; the value of 

each parameter with the lowest RMSE was considered to give the optimum parameter value. 

 

7 Results and discussion 

7.1 Selection of data input variables 

In order to select the most important driving variable (i.e. conditioning factor) and monthly lag 

times between input variables, the partial autocorrelation coefficient (PAC) methods were 

applied (Melesse et al., 2011; Lafdani et al., 2013; Khozani et al., 2019; Sharafati et al., 2019;) 

(Table 4 and 5). According to the results of the PAC test (Table 4), the four parameters S, Q, R 

and SSL had an auto-correlation, with the highest coefficient belonging to a one month lag time.  

Table 4 

The Pearson correlation coefficient (PAC) was calculated for the following conditioning factors: 

Q, S, R, Q-1, S-1, R-1 and SSL-1 (where -1 indicates 1 month lag time). The PAC results showed 

that all input variables had a reasonable influence on the suspended sediment load (Table 5); the 

most and least important conditioning factors were river discharge (0.76) and rainfall depth 

(0.17), respectively. This result is in accordance with the results of Kisi et al. (2012), who 

showed that when Q was removed from the model inputs, the predictive power reduced sharply. 

However, the result contradicts other work which has showed that both discharge and rainfall 

depth are the two most important factors for suspended sediment modelling (Kisi et al., 2012; Jie 

and Yu, 2011). This contradiction is likely because in the present paper the watershed is very 

large, so the connectivity between rainfall, runoff and suspended sediment loads is low.  
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Table 5 

Another method called Relief-F feature selection was applied to determine the ranking of the 

most and least important conditioning factors. This method was introduced by Kira and Rendell 

(1992) as a simple, fast and effective technique to identify the attribute weighting. The approach 

was applied to select a subset of relevant features and remove superfluous and noisy data. The 

relief-F weight varied between −1 and 1; the more positive weights were associated with higher 

predictive attributes. According to this method, the most and least important conditioning factors 

were river discharge (0.084) and stage with a one month lag time (0.024), respectively, matching 

the results derived from the Pearson correlation method. A one month lag time has been found to 

produce the best prediction in others models of suspended load (Aytek and Kisi, 2008; Melesse 

et al., 2011; Kisi et al., 2012; Choubin et al., 2018). Kisi et al. (2012), for example, showed that 

SSL-1 increased the accuracy of predictions while SSL-2 decreased the accuracy. 

Trial-and-error approaches using default operators, and the RMSE of the predicted suspended 

sediment load, were used to determine the best combination of input variables (Table 6). In 

combination 1, only the most important variable (Q) was considered for prediction, then, in 

combination 2, Q and the next most important variable (S) were considered. This trend was 

continued until all variables were considered for modelling. Results shows that the best input 

combination was combination 7, in which all of variables were considered as inputs (Table 5). 

Therefore combination 7 was used for further modelling and analysis.  

 

Although river discharge was the most important variable, RMSE was the highest for 

combination 1 because of a hysteresis effect between river discharge and sediment load, and 
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because the sediment load for a given discharge was higher for the rising limb of the hydrograph 

than the recession limb. 

 

Table 6  

 

7.2 Modeling process and selection of optimal parameters  

7.2.1 SVM model 

The optimum parameter of each model was determined based on trial and error and the 

minimization of RMSE in the testing phase. The results are shown in Table 7. The operators of 

both RBF and NPK kernel functions were optimized because the only difference between RBF 

and NPK is that the γ parameter is used in RBF while an exponent operator is used in the 

structure of NPK. The optimum parameters for C, ε, γ, Exponent, filter type, regression 

optimized were 1, 0.001, 0.01, 2, normalize train data and regression SMO improved, 

respectively.  

 

Table 7 shows that by increasing the C value, the RMSE reduced for the training phase, but 

increased for the testing phase. Thus, since C = 1 had the lowest RMSE (0.102) this was selected 

as the optimal value. By increasing ε, the RMSE values for both the training and testing phases 

reduced, and then at a value of 0.005, it increased. Thus, ε = 0.001 was chosen as the optimal 

value for both the training and testing datasets (RMSE was 0.096 and 0.102 for the training and 

testing phases, respectively). Results showed that the higher the γ value, the lower the RMSE for 

the training dataset, but for the testing dataset, RMSE first reduced at first and then increased at 

values higher than 0.01. Thus γ= 0.01 was chosen as the optimum value. After the determination 
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of these optimum values, the suspended sediment load was estimated using both kernels. Results 

in Table 7 show that the γ, ε and exponent values were more sensitive parameters than C . 

 

Table 7. RMSE values used in the determination of the optimum parameter values for the SVM 

model 

 

7.2.2. Random Forest model 

In the RF model, maximum depth of tree (MD), number of trees (NT), number of features (NF) 

and number of execution slots (NES) were optimized. The number of features and execution 

slots were defined as the number of randomly chosen attributes and the value used to construct 

the ensemble, respectively. The optimum values MD, NT, NF and NES were 1, 200, 1 and 0, 

respectively.  

Table 8 shows that an increase in the maximum depth of tree value led to the RMSE first 

increasing for the training phase and then decreasing. The reverse happened in the testing phase. 

A MD value equal to 1 had the lowest RMSE for the testing phase (0.15) and was selected as the 

optimal value. RMSE was invariant with the number of execution slots. Increasing the number of 

features led to RMSE for the training phase increasing and then reducing. In the testing phase the 

reverse occurred. Thus, an NF equal to 1 was selected as the optimum value because it gave the 

lowest RMSE (0.11). Four values of 100, 200, 300 and 400 were used to identify the best value 

for the number of trees. Results showed that increasing the number of trees reduced the RMSE 

for the training phase initially and then it increased. However, the RMSE remained the same for 

the testing phase. The MD and NF parameters were more sensitive than NES and NT. 
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Table 8. RMSE values used in the determination of the optimum parameter values for the RF 

model 

 

7.2.3. Random Subspace model 

To produce the best predictions of suspended sediment using a random subspace model, batch 

size, classifier type, number of decimal places (NDP), number of execution slots, number of 

iteration (or tree) (NT) and subspace size (SS) were optimized. The subspace size is the 

percentage of the number of attributes (<1), (Pham et al., 2017b).The optimal numbers were 100, 

SVM, 2, 1, 50 and 0.8, respectively (Table 9).  

Table 9 shows that the value of the batch-size, NDP and NES parameters had no effect on the 

predictive power of the RS model. As a consequence, the default model values were used (100, 2 

and 1, respectively). Five classifiers were considered and tested: Random committee, Gaussian 

Processes, Bagging, MLP and SVM. According to Table 9, Bagging and SVM classifiers had the 

greatest effect on the predictive capability of the RS model in the training (0.05) and testing 

(0.11) phases. Thus, the SVM was selected as the most powerful classifier and its parameter was 

optimized according to Table 7. Values of 5, 10, 15, 20 and 50 were selected for the number of 

trees, because RMSE deceased with an increase in the number of tress in the testing phase but 

was constant in the training phase. Higher  SS values had lower RMSE in both the training and 

testing phases. The sensitivity analysis showed that the random subspace model was sensitive to 

classifier type, number of trees and subspace size.  
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Table 9. RMSE values used in the determination of the optimum parameter values for the RS 

model  

 

8. Evaluation and comparison of the applied models 

Model performance is compared in Table 10 using various evaluation criteria. The RS model had 

the best predictive power, indicated by the lowest RMSE (989.6 ton/day), MAE (10.5 ton/day), 

PBIAS (-5.9) and RSR (0.33) and the highest R
2
 (0.90) and NSE (0.83). The SVM model was the 

next best performing model, with the RBF kernel performing better than the NPK kernel. This 

result is in accordance to previous conclusions made by Dibike et al. (2001), Lin et al. (2006) 

and Lafdani et al. (2013). Results from the PBIAS showed that the random forest, random 

subspace and SVM-RBF models overestimated the suspended sediment load (indicated by 

negative values of -51.1, -5.9 and -11.9), while the SVM-NPK underestimated load. 

According to the R
2
 value, all the models had a very good performance. In terms of NSE, 

however, the RF can only be classified as merely good. Choubin et al. (2018) stated that PBIAS 

is the most appropriate performance measure. The PBIAS valuesreveal that the RF, RS, SVM-

RBF and SVM-NPK had unsatisfactory (-51.1), very good (-5.9), good (-11.9), and satisfactory 

(15) performances, respectively. 

 

Table 10. Comparison of models’ prediction power 
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The temporal variation in observed and predicted SSL values are illustrated in Fig. 2a-d. The 

figure shows that the RS estimates were closer to the corresponding observed values than those 

of the other models. Among the models, the RF model produced the poorest predictions, 

confirming. the results in Table 10. This can be further seen in the scatter plots of observed and 

predicted SSL in Fig 3a-d using data from 2002 to 2010.  

Fig. 2 

Fig 3 

To further analyse the models’ performance, a Taylor plot was constructed (Fig. 4). This plot 

revealed that the RS model had the highest correlation coefficient followed by the SVM-RBF, 

SVM-NPK and RF. Also, the normalized standard deviation values show that the RF model had 

a standard deviation that closely matched that of the observed data. 

Fig. 4.  

Although some models such as SVM and RF have performed successfully in SSL prediction in 

previous studies (Lafdani et al., 2013; Francke et al., 2008), in the present study, the new RS 

model outperformed the other models including SVM-RBF, SVM-NPK and RF. This occurred 

for a number of reasons. First, a random subspace model has a hybrid construction of the base 

learners which led to smaller error rates and enhanced noise insensitivity Second, RF hybrid 

models, unlike other hybrid models, use modified feature spaces to build hybrids of learners 

(Panov & Dzeroski, 2007). Third, in the model combination phase, the RS model benefits from 

weighted majority voting (Neo & Ventura, 2012). Weighted majority voting is a weighting factor 

that is used to reduce the error of the random subspace model, thus, the negative impact of poor 

base-learners on predictive capability can be omitted.  
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Although SVM is one of the most popular types of AI models because its predictive power has 

been proven in previous work (Lafdani, 2013; Zounemat-Kermani et al., 2016), the model 

suffers from a number of weaknesses, including: (a) the kernel function can be sensitive to over-

fitting the model selection criterion (Cawley and Talbot, 2010); (b) the loss function does not 

have an obvious statistical interpretation; and (c) in many classification problems the probability 

of class membership is required because a method such as kernel logistic regression, instead of 

post-processing output of the SVM, should be used. A random forest model also has some 

disadvantages: (i) the model is prone to errors in classification owing to differences in 

perceptions and the need to apply statistical tools; (ii) the module has high complexity, 

particularly if many values are uncertain; and (iii) the model is unwieldy. 

The meta-heuristic algorithms overcome the weaknesses of the classic ANFIS model (Khosravi 

et al. 2018a). Thus, we recommend that new hybrid algorithms of ANFIS with meta-heuristic 

algorithms such as invasive weed optimization (IWO), differential evolution (DE), firefly 

algorithm (FA), particle swarm optimization (PSO) and bees algorithm (BA) should be 

investigated for SSL prediction. Also, we make two further recommendations: (a) that daily, 

weekly, monthly and seasonal datasets be considered as input variables to determine which 

period is the best combination for prediction of suspended sediment load; and (b) that rainfall 

intensity is included as an additional input variable due to its control on hillslope erosion, river 

discharge and thus suspended sediment loads in catchments.  

Overall, our results reveal that RS models have great potential in data poor watersheds, such as 

the one studied here, to produce strong predictions of suspended load based on monthly records 

of river discharge, rainfall depth and river stage alone. This type of data driven model could 

complement existing process-based models in well gauged watersheds to recognize patterns 
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within collected data that could unveil critical details about behavior, reveal previously 

unsuspected environmental relationships, or mitigate uncertainty in model estimates. In data poor 

watersheds, especially in developing nations where technical skills and understanding of the 

processes occurring in the watershed may be lacking, RS models could even be used alone or 

replace process-based models, because they represent well the highly stochastic behavior of 

sediment transport and are inexpensive to build and run. Future work should focus on testing 

artificial intelligence models developed in one watershed on measured suspended loads in others 

to reveal how widely the approach can be applied and how the performance of different 

algorithms varies. 

 

9 Conclusion 

The accurate prediction of suspended sediment load is important for understanding changes in 

reservoir storage capacity, river morphology, water quality and in the transport of non-point 

source pollution. Due to the non-linear nature of suspended sediment load in a river, the 

application of data mining and machine learning algorithms in its prediction has increased. In the 

present study, the suspended sediment load of Haraz River in the north of Iran was predicted 

using a new artificial intelligence model called random subspace (RS) and its predictive 

capabilities compared with two popular models; random forest (RF) and support vector machine 

(SVM) using radial bases function (RBF) and normalized polynomial kernels (NPK). The input 

variables were river discharge (Q), Q with one month lag time (Q-1), water stage (S), water stage 

with 1 month lag time (S-1), rainfall depth (R), rainfall with 1 month lag time (R-1), suspended 

sediment load (SSL), and SSL with 1 month lag time (SSL-1). 



21 
 

The results showed that the RS model provided a superior predictive accuracy to SVM-RBF, 

SVM-NPK and RF, which corresponded to very good, good, satisfactory and unsatisfactory 

accuracies in SSL prediction. The RBF kernel performed better than the NPK in SVM 

application. Changes in suspended sediment load were most closely related to changes in Q 

followed by S, SSL-1, Q-1, S-1, R-1 and R. Predictive capability was most sensitive to the 

gamma and epsilon in SVM models, maximum depth of tree and number of feature in RF 

models, classifier type, and number of tree and subspace size in RS models. The results show 

that RS models have great potential in data poor watersheds, such as the one studied here, to 

produce strong predictions of suspended load based on river discharge, rainfall depth and river 

stage data alone.  
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Table 1. Statistical summary of the input data. SSD: suspended sediment discharge; SD: 

standard deviation.  

 Stage (m) Water discharge (m
3
/s) Rainfall (mm) SSD (t/d) 

Maximum 0.225 228.5 176.0 47559 

Minimum 0.180 1.3 0.0 44 

Mean 0754 30.0 33.1 2345 

SD 0.303 22.0 27.5 4799 

 

Table 2. Statistical moments of the input data distributions. SSD: suspended sediment discharge. 

Moment Stage Water discharge Rainfall SSD 

Skewness 1.4 3.7 1.1 4.9 

Kurtosis 3.1 23.5 1.9 32.6 
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Table 3. Model evaluation criteria. RMSE: root mean square error; MAE: mean absolute 

error; NSE: Nash-Sutcliffe efficiency; PBIAS: percent Bias; RSR: ratio of RMSE to the 

standard deviation. 

 Objective 

function 
Characteristics Value range 

Performance 

classification 
References 

R
2
 

Emphasizes high 

sediment loads 

0.7 < R
2
 < 1 

0.6 < R
2
 < 0.7 

0.5 < R
2
 < 0.6 

R
2
 < 0.5 

Very good 

Good 

Satisfactory 

Unsatisfactory 

Moriasi et al., 

(2007), Ayele 

et al. (2017) 

RMSE   

The lower the 

RMSE, the 

better the 

model 

performance 

Dawson et al. 

(2006) 

MAE   

The lower the 

MAE, the 

better the 

model 

performance 

Dawson et al. 

(2006) 

NSE 

Most common; 

emphasizes high 

sediment loads; 

under-represents 

low sediment 

loads 

0.75 < NSE ≤ 1.00 

0.65 < NSE ≤ 0.75 

0.50 < NSE ≤ 0.65 

0.4 < NSE ≤ 0.50 

NSE ≤ 0.4 

Very good 

Good 

Satisfactory 

Acceptable 

Unsatisfactory 

Moriasi et al. 

(2007), 

Boskidis et al. 

(2012) 

PBIAS 
Monotony; cannot 

be used alone 

PBIAS < ± 10 

± 10 ≤ PBIAS < ± 15 

± 15 ≤ PBIAS < ± 25 

PBIAS ≥ ± 25 

Very good 

Good 

Satisfactory 

Unsatisfactory 

Legates et al. 

(1999)  

RSR 
Monotony; cannot 

be used alone 

0.00 ≤ RSR ≤ 0.50 

0.50 < RSR ≤ 0.60 

0.60 < RSR ≤ 0.70 

RSR > 0.70 

Very good 

Good 

Satisfactory 

Unsatisfactory 

Moriasi et al. 

(2007) 
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Table 4. Partial autocorrelation coefficient values for each input variable. SSD: suspended 

sediment discharge. 

Lag time, in months 
Water 

stage 

Flow 

discharge 
Rainfall SSD 

1 1.20 0.91 0.33 0.62 

2 -0.24 -0.21 0.10 -0.03 

3 -0.02 0.04 0.16 -0.10 

4 0.07 -0.01 0.00 0.13 

5 0.14 0.18 0.18 0.00 
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Table 5. Pearson correlation coefficient values and Relief-F weights for each input variable. 

Test 
Water 

stage 
Discharge Rainfall 

Water 

discharge 

with 1 

month 

lag-time 

Discharge 

with 1 

month 

lag-time 

Rainfall 

with 1 

month 

lag-time 

Suspended 

sediment 

load with 

1 month 

lag-time 

PCC 0.50 0.76 0.17 0.34 0.40 0.19 0.49 

Relief-

F 

weight 

0.03 0.084 0.028 0.024 0.034 0.026 0.058 

 

 

 

Table 6. Root mean square error (RMSE) of predicted suspended loads in the testing phase using 

different combinations of input variables. SVM: support vector machine; RF: random forest; RS: 

random subspace. 

Input combination Combination Model RMSE 

Q Combination 1 

SVM-RBF 0.197 

SVM-NPK 0.201 

RF 0.298 

RS 0.286 

Q, S Combination 2 

SVM-RBF 0.161 

SVM-NPK 0.178 

RF 0.278 

RS 0.269 

Q, S, SSL-1 Combination 3 

SVM-RBF 0.161 

SVM-NPK 0.178 

RF 0.278 

RS 0.269 

Q, S, SSL-1, Q-1 Combination 4 

SVM-RBF 0.137 

SVM-NPK 0.143 

RF 0.259 

RS 0.249 

Q, S, SSL-1, Q-1, S-1 Combination 5 

SVM-RBF 0.130 

SVM-NPK 0.135 

RF 0.250 

RS 0.240 

Q, S, SSL-1, Q-1, S-1, R-1 Combination 6 

SVM-RBF 0.118 

SVM-NPK 0.121 

RF 0.238 

RS 0.219 

Q, S, SSL-1, Q-1, S-1, R-1, R Combination 7 

SVM-RBF 0.102 

SVM-NPK 0.104 

RF 0.230 

RS 0.210 
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Table 7. RMSE values used in the determination of the optimum parameter values for the SVM 

model.  

C (ε = 0.001, γ = 0.01) 1 2 3 4 

Training phase 0.097 0.096 0.097 0.085 

Testing phase 0.102 0.102 0.105 0.106 

ε (C = 1, γ = 0.01) 0.1 0.01 0.001 0.005 

Training phase 0.11 0.097 0.096 0.10 

Testing phase 0.12 0.105 0.102 0.106 

γ (C = 1, ε = 0.001) for RBF 0.001 0.01 0.08 0.1 

Training phase 0.11 0.097 0.076 0.073 

Testing phase 0.12 0.102 0.11 0.12 

Exponent (C = 1, ε = 0.001) 

for NPK 
1 2 3 4 

Training phase 0.11 0.096 0.098 0.11 

Testing phase 0.12 0.102 0.13 0.013 
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Table 8. RMSE values used in the determination of the optimum parameter values for the RF 

model. MD: maximum depth; NES: number of execution slots; NF: number of features; NT: 

number of trees. 

MD (NES = 1, NF = 0, 

NT = 100) 
0 1 2 3 

Training phase 0.025 0.078 0.063 0.055 

Testing phase 0.23 0.15 0.19 0.22 

NES (MD = 1, NF = 0, 

NT = 100) 
0 1 2 3 

Training phase 0.07 0.07 0.07 0.07 

Testing phase 0.15 0.15 0.15 0.15 

NF (MD = 1, NES = 0, 

NT = 100) 
0 1 2 3 

Training phase 0.07 0.09 0.08 0.07 

Testing phase 0.15 0.11 0.13 0.15 

NT (MD = 1, NES = 0, 

NF = 1) 
100 200 300 400 

Training phase 0.09 0.08 0.09 0.09 

Testing phase 0.11 0.11 0.11 0.11 
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Table 9. RMSE values used in the determination of the optimum parameter values for the RS 

model. BS: batch size; NDP: number of decimal places; NES: number of execution slots; NT: 

number of trees; SS: subspace size.  

BS (classifier = Reptree, 

NDP = 2, NES = 1, NT = 

10, SS = 0.5) 

50 100 150 200 250 

Training phase 0.05 0.05 0.05 0.05 0.05 

Testing phase 0.21 0.21 0.21 0.21 0.21 

classifier (BS = 100, 

NDP = 2, NES = 1, NT = 

10, SS = 0.5) 

Random 

Committee 

Gaussian 

processes 
Bagging 

multi-

layer 

perceptron 

Support 

vector 

machine 

Training phase 0.0013 0.08 0.05 0.06 0.08 

Testing phase 0.24 0.13 0.19 0.28 0.11 

NDP (BS = 100, 

classifier = SVM, NES = 

1, NT = 10, SS = 0.5) 

0 1 2 3 4 

Training phase 0.08 0.08 0.08 0.08 0.08 

Testing phase 0.11 0.11 0.11 0.11 0.11 

NES (BS = 100, classifier 

= SVM, NDP = 2, NT = 

10, SS = 0.5) 

0 1 2 3 4 

Training phase 0.08 0.08 0.08 0.08 0.08 

Testing phase 0.11 0.11 0.11 0.11 0.11 

NT (BS = 100, classifier 

= SVM, NDP = 2, NES = 

1, SS = 0.5) 

5 10 15 20 50 

Training phase 0.07 0.08 0.08 0.08 0.08 

Testing phase 0.14 0.11 0.11 0.11 0.10 

SS (BS = 100, classifier = 

SVM, NDP = 2, NES = 

1, NT = 50) 

0.1 0.3 0.4 0.5 0.8 

Training phase 0.11 0.11 0.10 0.10 0.10 

Testing phase 0.12 0.11 0.11 0.11 0.10 
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Table 10. Comparison of prediction power of the models. 

Models R
2
 RMSE MAE NSE PBIAS RSR 

Random forest 0.71 1553.7 22.0 0.68 -51.1 0.63 

Random subspace 0.90 989.6 10.5 0.83 -5.90 0.33 

Support vector machine-RBF 0.87 1054.6 14.2 0.80 -11.9 0.38 

Support vector machine-NPK 0.84 1196.1 21.8 0.78 15.0 0.44 
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Figure captions 

Fig. 1. Case study location. 

Fig. 2. Temporal variation in observed and predicted suspended sediment load for the testing 

phase: (a) SVM_RBF, (b) SVM-NPK, (c) RF and (d) RS. 

Fig. 3. A comparison between observed and predicted suspended sediment load for the testing 

phase: (a) SVM-RBF, (b) SVM-NPK, (c) RF and (d) RS. 

Fig. 4. Taylor plot for comparison of models’ prediction performance. 

  



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Case study location 
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Fig. 2. Temporal variation in observed and predicted suspended sediment load for the testing 

phase: a) SVM_RBF, b) SVM-NPK, c) RF and d) RS. 
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Fig. 3. A comparison between predicted and observed suspended sediment load for the testing 

phase: a) SVM-RBF, b) SVM-NPK, c) RF and d) RS 
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Fig. 4. Taylor plot for comparison of models’ prediction performance 
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