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Abstract—Primary channel activity statistics play an impor-
tant role in improving the performance of Dynamic Spectrum
Access (DSA) / Cognitive Radio (CR) systems. The statistical
information of the idle/busy periods of a primary channel can
be estimated based on the outcomes of spectrum sensing. Recent
studies have shown that these statistics can be estimated accu-
rately even under Imperfect Spectrum Sensing (ISS) scenarios.
Those studies, however, have assumed no constraints on the
required sample size of observations of the idle/busy periods
in order to provide accurate estimation (i.e., large sample size
was assumed to test the accuracy of these statistics estimation
methods). In real-world scenario, DSA/CR systems are limited to
the hardware design capabilities, which include limited memory
capacity, energy consumption and computational capability. As
a result, it is very important to find how many samples of the
idle/busy periods are required to provide an acceptable level
of accuracy for the estimated statistics. Therefore, this work
analyses the impact of the sample size on the estimation of the
primary channel statistics under ISS and it finds closed-form
expressions for the required sample size of the idle/busy periods
to achieve a targeted accuracy. In addition, the analytical results
achieved in this work are validated by means of simulations and
hardware experiments.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum sensing, primary channel activity statistics.

I. INTRODUCTION

As we are stepping into the era of the fifth generation
(5G) of wireless communications, we are expecting to witness
new emerging wireless technologies and a rapid growth in the
number of wireless-connected devices. Such growing tendency
also brings burdens of rising demand for frequency spec-
trum to support such tremendous number of interconnected
terminals. Dynamic Spectrum Access (DSA) [1] based on
Cognitive Radio (CR) [2] concept is an effective solution
to overcome spectrum scarcity problem. In such system,
Secondary Users (SUs) are able to exploit the unused patterns
of the frequency channel that is assigned to a Primary User
(PU). Spectrum sensing is the key enabler of the DSA/CR
systems, which enables SUs to monitor and access the primary
channel whenever the PU is idle and to evacuate the channel
whenever the PU returns to use the channel (i.e., busy). It is
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important to highlight the two operation scenarios of spectrum
sensing. First, Perfect Spectrum Sensing (PSS), which can be
assumed when DSA/CR system operates under sufficiently
high SNR conditions where no sensing errors could occur.
Second, Imperfect Spectrum Sensing (ISS), which can be
assumed when DSA/CR system operates under low SNR
conditions where sensing errors are likely to occur. Due to
the noise and fading channels in wireless communications,
ISS is a more realistic assumption for DSA/CR systems.

Although the objective of spectrum sensing is to monitor
the state of the primary channel whether is idle or busy,
the outcomes of spectrum sensing can also be exploited to
obtain statistical information about the primary channel. These
statistics are very beneficial for enhancing the performance of
DSA/CR systems. For example, they can help in predicting
the future trends of spectrum occupancy [3], [4], they can
help in selecting the most underutilised primary channel [5]-
[7] and they can also improve the performance by mitigating
the interference between SUs and PUs [8].

Several works in the literature have analysed the estimation
of the primary channel activity statistics based on the spectrum
sensing decisions. The majority of the works, however, have
focused on the estimation of the primary channel duty cycle
as in [9]-[11]. The mean of the idle/busy periods has been
studied in [12], [13]. A more comprehensive analysis for a
broader range of primary channel statistics (minimum, mean,
variance, skewness, kurtosis, duty cycle and distribution) has
been studied under PSS in [14]. On the other hand, [15]
has analysed the statistics (minimum, mean, duty cycle and
distribution) under ISS. Another approach of reconstruction
method in the form of algorithms have been proposed in [16]—
[18] to correct the estimation of these statistics under ISS.

The majority of the previous works have analysed the
primary channel activity statistics without any constraints on
the sample size used to estimate these statistics (i.e., an
arbitrarily large sample size as large as required to achieve
the best attainable estimation accuracy). Although the work
in [19] has analysed the impact of the sample size on the
statistics estimation, it was conducted under the assumption
that spectrum sensing is perfect (i.e., PSS). Since DSA/CR



receivers are more likely to operate under low SNR conditions
where sensing errors are likely to occur, this work analyses
the impact of the sample size on the estimation of the primary
channel statistics under (a realistic) ISS scenario. In addition,
it finds closed-form expressions for the required sample size
of the idle/busy periods under ISS to achieve a targeted level
of accuracy.

The rest of the paper is organised as follows. First, Section
IT introduces the system model. Then the sample size of
the idle/busy periods under ISS is analysed in Section III.
The estimation of the mean, duty cycle and distribution as
a function of the sample size under ISS are analysed in
Section IV, V and VI, respectively. The validation of the
analytical results is shown in Section VII. Finally, Section
VIII concludes the paper.

II. SYSTEM MODEL

Consider a single PU occupying a particular primary chan-
nel. The occupancy patterns of such PU can be represented
by a sequence of idle and busy time periods. The durations of
these periods are random depending on the activity behavior
of the PU. However, the experimental measurements in [20]
have shown that these idle/buy periods are best represented by
Generalised Pareto (GP) distribution. A SU, on the other hand,
monitors the activity patterns of the PU based on spectrum
sensing. In spectrum sensing, periodic sensing events are
performed using sensing period 7. At each sensing event the
instantaneous state of the channel is detected and reported as
idle (J{y) or busy (J(1). The outcomes of spectrum sensing,
therefore, would result in a set of binary decisions, based on
which the durations of idle/busy periods can be calculated.
The time duration elapsed between any two changes in the
state of the channel represents an estimation of the original
duration as shown in Fig. 1(a), where T; refers to the original
idle/busy periods (i = O for idle and ¢ = 1 for busy), and
T; refers to the estimated idle/busy periods under PSS (i.e.,
without sensing errors). It can be noticed that the accuracy
of such estimation (i.e., under PSS) is only affected by the
time resolution imposed by the employed sensing period T’.
Since DSA/CR systems are more likely to experience low
SNR conditions, sensing errors are likely to occur in the
sensing decisions. Therefore, ISS is a more realistic scenario,
where sensing errors can occur either within the idle periods
as false alarms or within busy periods as missed detections,
as shown in Fig. 1(b). Due to sensing errors, the estimated
idle/busy periods under ISS T; can be highly inaccurate (as
shorter fragments) with respect to the original periods 7.
Sensing errors can be modelled as independent and identically
distributed (i.i.d.) random variables and their probability can
be given by probability of false alarm Py, and probability of
missed detection P,,4.

III. SAMPLE SIZE ANALYSIS UNDER ISS

Let us consider as a set of idle/busy periods {7}, }_,
to represent N samples of the real activity and inactivity
duration times of a PU within a particular channel, where
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Fig. 1. Estimation of idle/busy periods based on spectrum sensing: (a) perfect
spectrum sensing (PSS), (b) imperfect spectrum sensing (ISS).

1 refers to the state of the channel, ¢ = O for idle and 7 = 1
for busy. A SU on the other hand monitors the activity of
the primary channel using spectrum sensing method. The
outcomes of spectrum sensing can be used to calculate the
duration of the idle/busy periods of the PU. Since spectrum
sensing is not perfect in real-world operation as discussed in
Section II, the calculated duration of the idle/busy periods can
easily be corrupted by the presence of sensing errors. Sensing
errors divide the original duration of the idle/busy periods
into shorter fragments. The number of these fragments as a
result is higher than the original number of periods N. In
other words, the number of the observed idle/busy periods
under ISS, N;ss, would be greater than (depending on the
probability of spectrum sensing error) the original number of
periods N (i.e., N;ss > N). These N,,s periods are short
fragments of the original NV periods. If probability of sensing
error is zero, PSS can be assumed such that the original
periods are observed without sensing errors and they are
therefore not divided into fragments (i.e., N,ss = N). The
only difference between the idle/busy periods observed under
PSS and the original ones is the accuracy of calculating the
duration of these periods, which depends on the resolution
of the employed sensing period 7. Since ISS is a more
realistic scenario for the DSA/CR systems operating under low
SNR conditions, it is very important to find a mathematical
expression for the number of idle/busy periods observed under
ISS, N;ss, as a function of the original number of periods
N when probabilities of sensing errors, Py, and P4, are
predefined by DSA/CR system.

To find the sample size IV;ss as a function of the original
sample size IV, consider a single idle period 7 and a single
busy period 77 which are observed under PSS as Ty and 71,
respectively, based on K sensing events within each period
(assuming they have same duration). If a single false alarm
occurs within the K sensing events of the idle period and a
single missed detection occurs within the K sensing events of



the busy period as shown in Fig. 1(b), the total number of idle
periods becomes three (the same applies to the busy periods
as well). This is because the single false alarm divides the
original idle period into two fragments of idle periods and the
single missed detection produces another new idle period. As
a result, the total number of idle periods becomes three (the
two fragments plus the new one). Therefore, one can say:

Niss:N+Nfa+de (1)

where Ny, and N,,q represent the number of false alarms
and missed detections, respectively. They can be found by
multiplying the number of sensing events by the probabilities
of sensing errors as:

Nyo=KPp, = E:g_ifon - Pra
Npna = K Ppa = ZNleﬁ" +Fina

Note that the estimated mean under PSS is equal to the true
mean E(T;) = E(T;) as discussed in [14].

Expression (1) is true if all false alarms and missed
detecions occur as solo sensing errors within the idle/busy
periods. This, however, is not the case as sensing errors can
also appear attached to other periods or consecutive to other
sensing errors. Therefore, we can correct (1) by taking the
following two cases into consideration. Note that these two
cases were discussed in [13] for a different purpose (to find
an accurate mean estimator under ISS). However, here we
discuss the impact of these two cases on the sample size.

e Case I: As shown in Fig. 2, when a sensing error occurs
at the first (or last) sensing event within a period, it will
be observed as a part of the next period attached to it, thus
causing no fragments or additional periods. Therefore, these
sensing errors should not be counted in expression (1). One
can subtract 2 (the first and the last sensing events) from the
total number of sensing events observed within a period when
calculating Ny, and N,,,4 in order to consider only the sensing
errors which cause additional periods.

e Case II: As shown in Fig. 3, when a sensing error occurs
consecutively to another one, it will have the same effect of
a single sensing error in terms of the resulting number of
fragments. Therefore, consecutive errors should be counted as
single error in expression (1) (i.e., only the first sensing error
in a burst should be counted while the remaining consecutive
errors should not). In order to consider this in the calculation
of Ny, and Ny, the probability of having consecutive sensing
errors should be subtracted from the original probability of
sensing error as:
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Fig. 2. Case I: A single sensing error at the edge of a period [13].
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Fig. 3. Case II: Two consecutive sensing errors in the middle of a period
[13].
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From these two cases, the actual number of false alarms
and missed detections which cause fragments or additional
periods can be written with reference to (2) and (3) as:

Njo =N (IE(TTO) - 2) P4 (6)
Ny = N (E(fl) _ 2) P )

The final expression for the sample size under ISS, as
a function of the original sample size and probabilities of

sensing errors is:
E(T{ N E(T; .
Niss:N<1+ <(TO)_2> Pfa+ (ST:)_Q) Pmd)
®)

Similarly, we can also find the corresponding original sample
size based on the observed sample size under ISS as:

Ni%
(1 + <]E(To) ) P o+ (]E(Tl) _ 2) Pmd)

IV. REQUIRED SAMPLE SIZE FOR THE MEAN ESTIMATION
UNDER ISS

N =

(©))

Given a set {IA’”L}nN:1 of N idle/busy periods observed
under PSS, the mean E(T;) of the observed periods can be
found based on the sample mean estimator 7;:

. 1L
E(Ti) ~m; =< > Tin
@)= = 5 3T,

The maximum relative error of the mean estimator 772; under
PSS as a function of the sample size N is found as [19]:

(10)
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where V(T;) denotes the variance of the idle/busy periods,
and « is standard deviation interval defined by the confidence
level p. For a given confidence level p, x can be found
from concentration inequalities as explained in [19]. However,
concentration inequalities may lead to loose upper bounds of
the maximum relative error. A more accurate result can be
achieved by applying the central limit theorem on the mean
estimator 112; where & can be obtained for a certain confidence
level p as [19]:

K> V2 erf 1 (p)

In order to find the maximum relative error of the mean
estimator 7n; under ISS as a function of the sample size N,
we use the obtained expression in (9), which finds the original
sample size as a function of the ISS sample size, along with
(11) as:
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Note that if probabilities of sensing errors (P, and Py,q) are
zero, (13) will be the same as (11) for the calculated relative
error under PSS. Therefore, the result shown in (13) can be
considered as a general form to find the maximum relative
error of the mean estimator based on the sample size under
both scenarios.

The required sample size of the idle/busy periods observed
under ISS to achieve a targeted maximum relative error of the
mean estimator can be found from (13) as:

o 2 2
Wi (i) (v + )
5mazE(Tz) 6
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V. REQUIRED SAMPLE SIZE FOR THE DUTY CYCLE
ESTIMATION UNDER ISS

The duty cycle of the idle/busy periods of the primary
channel is one of the most important statistical information
for DSA/CR systems, which helps determine the amount of
opportunities available in the primary channels. The channel
duty cycle ¥ can be estimated based on the observed sample
size under PSS as:

J=_1 (15)
mi + My
where m, and mg are the sample mean of the busy and idle
periods, respectively. The maximum relative error of the duty
cycle estimator ¥ under PSS as a function of the sample size
N is found as [19]:
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In order to find the maximum relative error of the duty cycle
estimator W under ISS as a function of the sample size Ny,
we use the obtained expression in (9), which finds the original
sample size as a function of the ISS sample size, along with

(16) as:
o on[ OB s ()
v Niss [E(Tp) + E(T1)]*
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The required sample size of the idle/busy periods observed
under ISS to achieve a targeted maximum relative error of the
duty cycle estimator can be found from (17) as:
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VI. REQUIRED SAMPLE SIZE FOR THE DISTRIBUTION
ESTIMATION UNDER ISS

The distribution of the idle/busy periods can also be esti-
mated based on the outcomes of spectrum sensing. Since the
experimental measurements in [20] have shown that Gener-
alised Pareto (GP) distribution is the best description for the
original idle/busy periods of a PU, the CDF of these periods
can be estimated based on the PSS observation as [14]:

ai(T — i T/&

%

Fﬁ.(T)—l[H s T>pi (19
where [i;, ’)\\l and @ are the location, scale and shape parame-
ters of the GP distribution. The location j1; also represents the
minimum period duration and it can be assumed to be known

1; =~ l;, while A; and @; can be found as [14]:

-1 D2\

Ni= 2@+(J”>Um—m) (20a)

& = 2 <1 n (“)> (20b)
2 Vi



where m; and v; are the sample mean and variance estimators,
respectively. Note that the variance estimator is found in [14]
as v; = v; — % The accuracy of the CDF estimator F7, (1))
in (19) as a function of the sample size IV under PSS is found
in terms of the Kolmogorov-Smirnov (KS) distance as [19]:

DIT = k(14 a;) ™ '

[N~}
[N

1 /1 o, [+ ) In(1 + ay) — o ‘
[~ (am+ o T
(2D
where (7;) and Y(7;) are given in [19, eq. (45)].

In order to find the KS distance of the CDF estimator
Fy (T') under ISS as a function of the sample size N5, we
use the obtained expression in (9), which finds the original
sample size as a function of the ISS sample size, along with
(21) as:

D?:g =r(l+ ai)_"%‘_l X
(1 + (E(To) )P + (E(Tl) 2) Pmd)
|: Niss

( 1 QT;) + [(1+ Ozi)ln(14—|- o) — ai]z“r(Ti)) ] 1

)‘73 Q;
(22)

The required sample size of the idle/busy periods observed
under ISS to achieve a targeted KS distance of the CDF
estimator can be found from (22) as:

2
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1 [(1+ ;) In(1 + ;) — a)?
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VII. NUMERICAL, SIMULATION AND EXPERIMENTAL

RESULTS

In this section we validate the obtained analytical results
by means of simulations and experiments. First of all, the
obtained expression in (9) is tested, which finds the sample
size that would be observed under ISS for a given original
sample size of the idle/busy periods. In simulations, we gen-
erate N = 10* samples of the idle/busy periods (drawn from
the GP distribution). These periods can then be observed using
spectrum sensing method with a sensing period of T t.u. (time
units). Applying sensing errors on the sensing decisions (based
on the predefined probability of sensing error) results in ISS
observations for the generated idle/busy periods. Therefore,
the sample size of the ISS observations can be calculated
in the simulations for the N = 10* samples using different
probabilities of sensing error (Pyq, Pnq € {0.001,0.01,0.1})
and compared with the theoretical one obtained by (9). As
shown in Fig. 4, the analytical results match the simulation

N =104, p; = 10 t.u., E(T}) = 50 t.u.
T T T T T

107

o Simulation
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Original number of periods N = 10*

o
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o
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Number of periods under ISS, N;

o
S

Sensing period, T (t.u.)

Fig. 4. The sample size under ISS as a function of the sensing period T,
when the original sample size N = 10%.

results for the calculated sample size under ISS with respect to
T5. It can also be noticed that the number of observed periods
under ISS increases as the probabilities of error increase
because the presence of more sensing errors produces a larger
number of shorter fragments of the original periods.

After validating (9), we can validate the obtained maxi-
mum relative error expressions (13) and (17) for the mean
and variance estimators, respectively, and the KS distance
expression (22) for the CDF estimator. In simulation, we
estimate the mean, variance, and distribution of the periods
(using the proposed estimators under ISS in [15]). Then the
maximum relative error of these estimators (using confidence
level p = 0.95) can be calculated with respect to the sample
size of the ISS observations and compared with the analytical
expressions. These analyses are also validated experimentally
using a hardware Prototype for the Estimation of Channel
Activity Statistics (PECAS), where a full description for the
implementation of such prototype can be found in [21]. As
shown in Fig. 5, the relative errors of the mean and variance
estimators as well as the KS distance of the CDF estimator
decrease as the sample size of the ISS increases. It can also
be noted that the analytical results obtained in this work
reproduce accurately the sample sizes required to achieve
the desired estimation accuracies and can therefore be useful
in DSA/CR system designs under any scenario of spectrum
sensing (especially the realistic ISS scenario).

VIII. CONCLUSION

The significance of the primary channel activity statistics
on the performance of the DSA/CR systems has led many
research campaigns to study these statistics and to investigate
different methods to accurately estimate such statistics from
spectrum sensing observations. However, these studies were
conducted without any constraints on the sample size used
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with respect to the sample size under ISS, when confidence level p = 0.95.

to estimate primary channel statistics (i.e., an arbitrarily large
sample size as large as required to achieve the best attainable
estimation accuracy), ignoring the fact that DSA/CR systems
are constrained by the practical limitations of the hardware
design. In this context, this work has analysed the impact of
the sample size of the ISS observations on the estimation ac-
curacy of the primary channel activity statistics, which, to the
best of the authors’ knowledge, has not been investigated in
the literature. In addition, it has found closed-form expressions
for the required sample size of the ISS observations to achieve
a desired level of accuracy. The outcomes of this work will
help DSA/CR system designs to select the minimum required
sample size that can guarantee achieving a predefined level
of accuracy for the estimation of the primary channel activity
statistics under ISS.
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