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Abstract. In many practical situations, we only know the interval con-
taining the quantity of interest, we have no information about the prob-
ability of different values within this interval. In contrast to the cases
when we know the distributions and can thus use Monte-Carlo simula-
tions, processing such interval uncertainty is difficult – crudely speaking,
because we need to try all possible distributions on this interval. Some-
times, the problem can be simplified: namely, it is possible to select a
single distribution (or a small family of distributions) whose analysis
provides a good understanding of the situation. The most known case
is when we use the Maximum Entropy approach and get the uniform
distribution on the interval. Interesting, sensitivity analysis – which has
completely different objectives – leads to selection of the same uniform
distribution. In this paper, we provide a general explanation of why uni-
form distribution appears in different situations – namely, it appears
every time we have a permutation-invariant objective functions with the
unique optimum. We also discuss what happens if there are several op-
tima.
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form distribution · Sensitivity analysis

1 Formulation of the Problem

Interval uncertainty is ubiquitous. When an engineer designs an object, the
original design comes with exact numerical values of the corresponding quanti-
ties, be it the height of ceiling in civil engineering or the resistance of a certain
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resistor in electrical engineering. Of course, in practice, it is not realistic to main-
tain the exact values of all these quantities, we can only maintain them with some
tolerance. As a result, the engineers not only produce the desired (“nominal”)
value x of the corresponding quantity, they also provide a tolerance ε > 0 with
which we need to maintain the value of this quantity. The actual value must be

in the interval x = [x, x], where x
def
= x− ε and x

def
= x+ ε.

All the manufacturers need to do is to follow these interval recommendations.
There is no special restriction on probabilities of different values within these
intervals – these probabilities depends on the manufacturer, and even for the
same manufacturer, they may change every time the manufacturer makes some
adjustments to the manufacturing process.

Data processing under interval uncertainty is often difficult. Because of
the ubiquity of interval uncertainty, many researchers have considered different
data processing problems under this uncertainty; this research area is known as
interval computations; see, e.g., [5, 10, 11, 14].

The problem is that the corresponding computational problems are often
very complex, much more complex than solving similar problems under proba-
bilistic uncertainty – when we know the probabilities of different values within
the corresponding intervals. For example, while for the probabilistic uncertainty,
we can, in principle, always use Monte-Carlo simulations to understand how
the input uncertainty affects the result of data processing, a similar problem
for interval uncertainty is NP-hard aready for the simplest nonlinear case when
the whole data processing means computing the value of a quadratic function
– actually, it is even NP-hard if we want to find the range of possible values of
variance in a situation when inputs are only known with interval uncertainty [8,
13].

This complexity is easy to understand: interval uncertainty means that we
may have different probability distributions on the given interval. So, to get
guaranteed estimates, we need to consider all of them – which leads to very
time-consuming computations. For some problems, this time can be sped up,
but in general, the problems remain difficult.

It is desirable to have a reasonably small family of distributions rep-
resenting interval uncertainty. Considering all possible distributions on an
interval will take forever. It is therefore desirable to look for cases when interval
uncertainty can be represented by a single distribution – or at least by a rea-
sonably small family of distributions, e.g., by finitely many distributions or by
a finite-dimensional family.

Maximum entropy idea. In general, the problem of selecting a single distribu-
tion from the family of all distributions which are consistent with our knowledge
(i.e., with measurement results and known general principles) is well known in
data processing. A usual solution to this problem is to select the distribution
which best represents the corresponding uncertainty. Some possible distributions
have little uncertainty – e.g., we can have a distribution which is located at some
point with probability 1. Selecting such a distribution would mislead the data
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processing algorithm into thinking that we have no uncertainty at all. Similarly,
selecting a distribution which is located on a proper subinterval of the original
interval would be misleading – since it will lead to a decrease in perceived un-
certainty. From this viewpoint, a proper selection should select a representative
distribution with the largest possible uncertainty.

A reasonable measure of uncertainty is entropy

S = −
∫
ρ(x) · ln(ρ(x)) dx, (1)

where ρ(x) denotes the probability density function; see, e.g., [6, 13]. So, a rea-
sonable idea is to select, among all possible distributions, a distribution with the
largest possible entropy. This idea is known as the Maximum Entropy approach,
and it has indeed very successful in many applications; see, e.g., [6].

For interval uncertainty, maximum entropy leads to the uniform dis-
tribution. What do we get when we apply the maximum entropy approach to
the case of interval uncertainty, when all we know is that the probability distribu-
tion is located in some interval [a, b]? In this case, we want to find a distribution
ρ(x) for which the entropy (1) is maximized under the condition that the overall

probability is 1, i.e., that
∫ b
a
ρ(x) dx = 1.

The usual way to solve such constraint optimization problems is to use the
Lagrange multiplier method, where the problem of optimizing a function f(A)
under the constraint g(A) = 0 is reduced to an unconstrained problem of opti-
mizing the auxiliary function f(A) + λ · g(A), with the parameter λ (known as
the Lagrange multiplier) to be determined from the condition that the resulting
optimizing alternative A satisfy the original constraint.

In our case, this means that we maximize the auxiliary function

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

(∫ b

a

ρ(x) dx− 1

)
.

Strictly speaking, this expression has infinitely many unknowns – namely, the
values ρ(x) corresponding to all possible values x. However, in practice, we can
always take into account that even with the best possible measuring instruments,
we can only measure the value of the physical quantity x with some uncertainty
h. Thus, from the practical viewpoint, it makes sense to divide the interval [a, b]
into small subintervals [a, a + h], [a + h, a + 2h], . . . within each of which the
values of x are indistinguishable, and instead of the function ρ(x), consider the
probabilities p1, p2, . . . of the value x being in each of these intervals. In these

terms, the entropy takes the form S = −
n∑
i=1

pi · ln(pi), the requirement that

probabilities add up to 1 take the form
n∑
i=1

pi = 1, and the resulting equivalent

unconstrained optimization problem takes the form of maximizing the expression

−
n∑
i=1

pi · ln(pi) + λ ·

(
n∑
i=1

pi − 1

)
.
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To find the maximum value of this expression, the usual idea is to differentiate
this expression with respect to each unknown pi and equate the resulting deriva-
tive to 0. As a result, we get the formula − ln(pi)−1+λ = 0, hence ln(pi) = 1+λ,
and pi = exp(1 + λ).

This value is the same for all i. Thus, the probability to be in each of the
small subintervals is the same – i.e., we select a uniform distribution on the
original interval [0, 1].

Need to go beyond the maximum entropy approach: first argument.
In different practical problems, we can have different objective functions. For
example, in many cases, it is important to know how sensitive is the system to
different perturbations. In this case, it is also desirable to select one distribution
(or at least a reasonably small family of distributions).

The corresponding objective function is very different from the entropy. How-
ever, interestingly, it turned out that the best choice of a representative distri-
bution is still a uniform distribution on the given interval; see, e.g., [4]. Why?

The fact that two different optimization problems lead to the exact same
selection makes us think that there must be a fundamental reason behind these
two results – and in this paper, we indeed describe such a reason.

Need to go beyond the maximum entropy approach: second argument.
When we select a single distribution, we can find the largest possible entropy of
the corresponding distributions. But what if, in addition to the largest possible
value of the entropy, we want to know the whole range of values of entropy –
i.e., we also want to know the smallest possible value?

This smallest possible value is not attained on a single probability distribu-
tion – in the discrete case, it is attained for all distributions for which pi0 = 1
for some i0 and for which pi = 0 for all i 6= i0. In this case, we cannot select a
single distribution – the maximum entropy approach does not help, but we can
still select a small representative family of distributions.

Again, a natural question is: can we generalize this result so that it would
cover other practically useful situations?

2 Analysis of the Problem

What do entropy and sensitivity measure have in common? We would
like to come up with a general result that generalizes both the maximum entropy
and the sensitivity results. To come up with such a generalization, it is reasonable
to analyze what these two results have in common.

Let us use symmetries. In general, our knowledge is based on symmetries,
i.e., on the fact that some situations are similar to each other. Indeed, it all the
world’s situations were completely different, we would not be able to make any
predictions. Luckily, real-life situations have many features in common, so we
can use the experience of previous situations to predict future ones.

For example, when a person drops a pen, it starts falling down to Earth
with the acceleration of 9.81 m/sec2. If this person moves to a different location



Distributions That Best Represent Interval Uncertainty 5

and repeats the same experiment, he or she will get the exact same result. This
means that the corresponding physics is invariant with respect to shifts in space.

Similarly, if the person repeats this experiment in a year, the result will be
the same. This means that the corresponding physics is invariant with respect
to shifts in time.

Alternatively, if the person turns around a little bit, the result will still be
the same. This means that the underlying physics is also invariant with respect
to rotations, etc.

This is a very simple example, but such symmetries are invariances are ac-
tively used in modern physics (see, e.g., [1, 15]) – and moreover, many previously
proposed fundamental physical theories such as:

– Maxwell’s equations that describe electrodynamics,
– Schroedinger’s equations that describe quantum phenomena,
– Einstein’s General Relativity equation that describe gravity,

can be derived from the corresponding invariance assumptions; see, e.g., [2, 3, 7,
9].

Symmetries also help to explain many empirical phenomena in computing;
see, e.g., [12]. From this viewpoint, a natural way to look for what the two
examples have in common is to look for invariances that they have in common.

Permutations – natural symmetries in the entropy example. We have
n probabilities p1, . . . , pn. What can we do with them that would preserve the
entropy? In principle, we can transform the values into something else, but the
easiest possible transformations is when we do not change the values themselves,
just swap them.

Bingo! Under such swap, the value of the entropy does not change. In pre-

cise terms, both the objective function S = −
n∑
i=1

pi · ln(pi) and the constraint∑n
i=1 pi = 1 do not change is we perform any permutation

π : {1, . . . , n} → {1, . . . , n},

i.e., replace the values p1, . . . , pn with the permuted values pπ(1), . . . , pπ(n).

Permutations also work for the sensitivity example. Interestingly, a more
complex criterion used in the sensitivity example is also permutation-invariant:
as well as many other generalization of entropy.

Thus, we are ready to present our general results.

3 Our Results

Definition 1.

– We say that a function f(p1, . . . , pn) is permutation-invariant if for every
permutation π : {1, . . . , n} → {1, . . . , n}, we have

f(p1, . . . , pn) = f(pπ(1), . . . , pπ(n)).



6 M. Beer et al.

– By a permutation-invariant optimization problem, we mean a problem of
optimizing a permutation-invariant function f(p1, . . . , pn) under constraints
of the type g(p1, . . . , pn) = a or g(p1, . . . , pn) ≥ a for permutation-invariant
functions g.

Proposition 1. If a permutation-invariant optimization problem has only one
solution, then for this solution, we have p1 = . . . = pn.

Discussion. This explains why we get the uniform distribution both in the
maximum entropy case and in the sensitivity case.

Proof. We will prove by contradiction. Suppose that the values pi are not all
equal. This means that there exist i and j for which pi 6= pj . Let us swap pi and
pj , and denote the corresponding values by p′i, i.e.:

– we have p′i = pj ,
– we have p′j = pi, and
– we have p′k = pk for all other k.

Since the values pi satisfy all the constraints, and all the constraints
are permutation-invariant, the new values p′i also satisfy all the con-
straints. Since the objective function is permutation-invariant, we have
f(p1, . . . , pn) = f(p′1, . . . , p

′
n). Since the values (p1, . . . , pn) were optimal, the

values (p′1, . . . , p
′
n) 6= (p1, . . . , pn) are thus also optimal – which contradicts to

the assumption that the original problem has only one solution.
This contradiction proves for the optimal tuple (p1, . . . , pn) that all the values

pi are indeed equal to each other. The proposition is proven.

Discussion. What is the optimal solution is not unique? We can have a case
when we have a small finite number of solutions.

We can also have a case when we have a 1-parametric family of solutions
– i.e., a family depending on one parameter. In our discretized formulation,
each parameter has n values, so this means that we have n possible solutions.
Similarly, a 2-parametric family means that we have n2 possible solutions, etc.

Here are precise definitions and related results.

Definition 2. Let the number n of variable pi be fixed.

– We say that a problem has a small finite number of solutions if its number
of solutions is smaller than n.

– We say that a problem has a d-parametric family of solutions if it has nd

solutions.

Proposition 2. If a permutation-invariant optimization problem has a small
finite number solutions with

∑
pi = 1, then it has only one solution.

Discussion. Due to Proposition 1, in this case, the only solution is the uniform
distribution p1 = . . . = pn.
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Proof. Since
∑
pi = 1, there is only one possible solution for which p1 = . . . =

pn: the solution for which all the values pi are equal to 1/n.

Thus, if the problem has more than one solution, some values pi are different.
Let us pick one such value pk. Let S denote the set of all the indices j for which
pj = pk, and let m denote the number of elements in this set. Since some values
pi are different, we have 1 ≤ m ≤ n− 1.

Due to permutation-invariance, each permutation of this solution is also a
solution. For each m-size subset of the set of n-element set of indices {1, . . . , n},
we can have a permutation that transforms S into this set and thus, produces

a new solution to the original problem. There are

(
n

m

)
such subsets. For all m

from 1 to n − 1, the smallest value of the binomial coefficient

(
n

m

)
is attained

when m = 1 or m = n− 1, and this smallest value is equal to n. Thus, if there
is more than one solution, we have at least n different solutions – and since we
assumed that we have fewer than n solutions, this means that we have only one.
The proposition is proven.

Proposition 3. If a permutation-invariant optimization problem has a 1-
parametric family of solutions pi ≥ 0 with

∑
pi = 1, then this family is char-

acterized by a real number c ≤ 1/(n− 1), for which all these solutions have the
following form: pi = c for all i but one and pi0 = 1− (n−1) · c for the remaining
value i0.

Discussion. In particular, for c = 0, we get the above-mentioned 1-parametric
family of distributions for which entropy is the smallest possible.

Proof. As we have shown in the proof of Proposition 2, if in one of the solutions,
for some value pi we have m different indices j with this value, then we will have

at least

(
n

m

)
different solutions. For all m from 2 to n − 2, this number is at

least as large as

(
n

2

)
=
n · (n− 1)

2
and is, thus, larger than n.

Since overall, we only have n solutions, this means that it is not possible to
have 2 ≤ m ≤ n− 2. So, the only possible values of m are 1 and n− 1.

If there was no group with n−1 values, this would means that all the groups
must have m = 1, i.e., consist of only one value. In other words, in this case,
all n values pi would be different. In this case, each of n! permutations would
lead to a different solution – so we would have n! > n solutions to the original
problem – but we assumed that overall, there are only n solutions. Thus, this
case is also impossible.

So, we do have a group of n−1 values with the same pi. Then we get exactly
one of the solutions described in the formulation of the proposal, plus solutions
obtained from it by permutations – which is exactly the described family.

The proposition is proven.
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