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Abstract 9 

Observations of changes in the geomagnetic field provide unique information about processes in the 10 

outer core where the field is generated. Recent geomagnetic field reconstructions based on 11 

palaeomagnetic data show persistent westward drift at high northern latitudes at the core-mantle 12 

boundary (CMB) over the past 4000 years, as well as intermittent occurrence of high latitude weak or 13 

reverse flux patches. To further investigate these features we analysed time-longitude plots of a 14 

processed version of the geomagnetic field model pfm9k.1a, filtered to remove quasi-stationary 15 

features of the field. Our results suggest that westward drift at both high northern and southern 16 

latitudes of the CMB have been a persistent feature of the field over the past 9000 years. In the 17 

northern hemisphere we detect two distinct signals with drift rates of 0.09°/year and 0.25°/year and 18 

dominant zonal wavenumbers of m = 2 and m = 1 respectively. Comparisons with other geomagnetic 19 

field models support these observations but also highlight the importance of sedimentary data that 20 

provide crucial information on high latitude geomagnetic field variations. The two distinct drift 21 

signals detected in the northern hemisphere can largely be decomposed into two westward 22 

propagating waveforms. We show that constructive interference between these two waveforms 23 

accurately predicts both the location and timing of previously observed high latitude weak/reverse 24 

flux patches over the past three to four millennia. In addition, we also show that the 1125-year 25 

periodicity signal inferred from the waveform interference correlates positively with variations in the 26 

dipole tilt over the same time period. The two identified drift signals may partially be explained by 27 

the westward motion of high latitude convection rolls. However, the dispersion relation might also 28 

imply that part of the drift signal could be caused by magnetic Rossby waves riding on the mean 29 

background flow. 30 
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1. Introduction 33 

Earth’s magnetic field is believed to be generated by convection in Earth’s iron-rich liquid outer core, 34 

a process known as the geodynamo. Observed changes of the geomagnetic field, also known as 35 

secular variation, have the potential to constrain the processes responsible for maintaining it. As 36 

early as the 17th century, Halley (1692) noted that specific features of the geomagnetic field at 37 

Earth’s surface appear to drift predominantly in a westward direction. By calculating the drift rate 38 

around latitudinal circles, Bullard et al. (1950) inferred a global average rate of 0.18°/year for the 39 

westward drift of the non-dipolar field at Earth’s surface over the period 1907 - 1945.  40 

With the development of geomagnetic field models designed to map the field at the core-mantle 41 

boundary (CMB), Bloxham and Gubbins (1985) established that the westward drift is not a global 42 

phenomenon but mainly restricted to the region between 90°E and 90°W. By studying the non-43 

axisymmetric flux at the core, Finlay and Jackson (2003) showed that the observed drift is most 44 

prominent in the equatorial region, with westward motion of flux at a rate of 17 km/year (equivalent 45 

to 0.27°/year) persisting throughout the past four centuries. Westward drift is also observed at high 46 

latitudes, with (south)west movement of an intense flux patch beneath Patagonia over the same 47 

time period and more recently the accelerated westward motion (up to 0.90°/year) of an intense flux 48 

patch beneath Canada, potentially associated with a high-latitude jet (Livermore et al., 2017). All of 49 

these observations are consistent with, or can at least partially be explained by, a giant westward 50 

drifting eccentric planetary gyre (Barrois et al., 2018), originally isolated in core flow inversions by 51 

Pais and Jault (2008). This planetary gyre has been successfully reproduced in numerical dynamo 52 

simulations involving both gravitational coupling of the inner core to the mantle and differential 53 

inner core growth causing preferential buoyancy release in the outer core beneath the Indian Ocean 54 

(Aubert et al., 2013).  55 

An alternative hypothesis for the observed westward drift, originally proposed by Hide (1966), 56 

involves the propagation of magnetohydrodynamic waves. According to this theory the horizontal 57 

velocity of the fluid is not necessarily the same as the westward drift velocity. Rotating magnetic-58 

Coriolis waves are split into two classes, fast ‘inertial’ modes and slow ‘magnetic’ modes, with the 59 

latter operating on timescales of 100-10,000 years (Finlay et al., 2010). Hide (1966) investigated a 60 

specific quasi-geostrophic (i.e. with little variation in the z-direction) form of the slow magnetic-61 

Coriolis waves, often called magnetic Rossby waves, which he found were likely to contribute to 62 

secular variation. These waves propagate westwards and are dispersive (shorter wavelengths have 63 



faster phase velocities). Hori et al. (2015; 2018) recently demonstrated that westward drifts in 64 

dynamo simulations, similar to those observed over the past four centuries, could be explained by 65 

such magnetic Rossby waves riding on mean flow advection. Various excitation mechanisms have 66 

been proposed that could produce these waves, including turbulence in the core (Hide, 1966), 67 

topographic differences at the CMB (Hide, 1966) or even length-of-day (LOD) variations through 68 

topographic core-mantle coupling (Yoshida and Hamano, 1993). 69 

Investigations of azimuthal motions in geomagnetic field models constrained by palaeomagnetic data 70 

have shown evidence for both eastward and westward drift (Dumberry and Finlay, 2007, Wardinski 71 

and Korte, 2008, Amit et al., 2011, Nilsson et al., 2014, Hellio and Gillet, 2018). The azimuthal 72 

motions in the field are most clearly seen at mid- to high northern latitudes, linked to movements of 73 

intense flux patches at the CMB (Dumberry and Finlay, 2007), which is likely a reflection of structures 74 

that can be resolved by these models. Based on the (now superseded) CALS7K.2 model, Dumberry 75 

and Finlay (2007) and Wardinski and Korte (2008) observed more or less equal occurrence of 76 

eastward and westward drift, with typical drift rates of ±0.15°/year at 40-60°N. Amit et al. (2011) 77 

based their analysis on the CALS3K.3 model (Korte et al., 2009), using an algorithm to identify and 78 

track movements of intense (normal polarity) flux patches found mostly around the edge of the inner 79 

core tangent cylinder. They also observed both eastward and westward motions with average drift 80 

rates around 0.20°/year, although westward drift was slightly more common. Studies based on more 81 

recent geomagnetic field reconstructions (Nilsson et al., 2014, Hellio and Gillet, 2018), however, 82 

show a clear dominance of westward drift over the past 4000 years with drift rates of 0.20 – 83 

0.25°/year reported by Hellio and Gillet (2018) and persistent slow drift rates of  ~0.07°/year 84 

(equivalent to a 5000 year rotation period) reported by Nilsson et al. (2014). 85 

In addition to persistent westward drift, Nilsson et al. (2014) also noted the intermittent occurrence 86 

(1500BC, 300BC, 700AD, 1900AD) of weak or reversed flux patches at high northern latitudes at the 87 

CMB, potentially originating at low latitudes and migrating polewards. Campuzano et al. (2019) 88 

described in more detail the evolution of the most recent of these high latitude weak/reverse flux 89 

patches. They find that the flux patch emerged at the equator in the Atlantic hemisphere around 90 

1000-1400 AD and moved north-eastward at a rate of 10 km/year. They further note that the 91 

evolution of this flux patch was more or less antisymmetric to the simultaneous south-westward 92 

migration of another reverse flux patch associated with the development of the South Atlantic 93 

Anomaly (SAA), suggesting that these observations could be linked. However, similar hemispherical 94 

asymmetries have not been observed for the other occurrences of high latitude weak/reverse flux.   95 

Attempts have also been made to identify and track movements of reverse flux patches. Based on 96 

the method of Amit et al. (2011), Terra-Nova et al. (2015) noted that reverse flux patches mostly 97 



exhibit westward drift and generally migrate toward higher latitudes. Terra-Nova et al. (2015) also 98 

concluded that the detection of reverse flux patches is strongly dependent on spherical harmonic 99 

degrees 4 and above, which is at the limit of what current palaeomagnetic field models can robustly 100 

resolve, particularly in the southern hemisphere of the core (Nilsson et al., 2014). 101 

Overall, the observations of azimuthal motions and reverse flux patches in the palaeomagnetic 102 

record vary significantly between different studies. The discrepancies can largely be explained by 103 

differences between the geomagnetic field models (many of which are now superseded) rather than 104 

the methods used to analyse the data (e.g. Terra-Nova et al., 2016). A range of new millennial scale 105 

geomagnetic field models has been produced over the past few years (Nilsson et al., 2014, Pavón-106 

Carrasco et al., 2014, Hellio and Gillet, 2018, Constable et al., 2016, Campuzano et al., 2019, Arneitz 107 

et al., 2019). These models are based on more or less the same data compilation, which has been 108 

vastly improved from the earliest versions, e.g. used to constrain CALS7K.2 (Korte et al., 2005). This 109 

data compilation typically includes archaeomagnetic data from GEOMAGIA50.v3 database (Brown et 110 

al., 2015), which is continually updated, and in some cases sedimentary data compiled by Korte et al. 111 

(2011) and later augmented by Panovska et al. (2015). Overall the agreement between the different 112 

palaeomagnetic field models has improved, but significant differences still exist. The most important 113 

difference between these models can be traced to the choices of how to treat sedimentary data, 114 

which if included will improve data coverage while also leading to smoother models, e.g. due to post-115 

depositional processes (Nilsson et al., 2018). Different strategies of how to address data 116 

uncertainties and outliers and how much weight is given to different data types (e.g. sedimentary 117 

data) also have potentially large impacts on the resulting models.  118 

The main objective of this study is to investigate the persistence of westward drift at the CMB on 119 

Holocene timescales and whether or not this is linked to the occurrence of reverse flux at high 120 

northern latitudes. The analyses will primarily be based on the pfm9k.1a model, which uses a crude 121 

Bayesian approach to synchronize timescales of different sediment records based on the 122 

palaeomagnetic data (Nilsson et al., 2014). To evaluate how robust our observations are, we 123 

compare our results with similar analyses on models constructed using different modelling strategies 124 

and data as well as different models from the same model family. 125 

2. Methods 126 

2.1 Time-longitude plots 127 

To investigate eastward and westward drift we use so-called time-longitude (TL) plots, calculated 128 

with a 2° and 10-year grid size, and follow the approach of Finlay and Jackson (2003) and Dumberry 129 



and Finlay (2007). First we remove the time-averaged axisymmetric part of the field and then high-130 

pass filter the Gauss coefficients with a cut-off frequency of 1/2500 years-1. The cut-off frequency, 131 

similar to 1/2000 years-1 used by Dumberry and Finlay (2007), was found to be enough to filter out 132 

quasi-stationary field structures without removing too much of the original signal. We estimate that 133 

the residual field captures 52% of the variability of the original radial field (Br) at the core mantle 134 

boundary (CMB) (see supplementary material). The filtered model is given the suffix ‘_p’ to 135 

distinguish it from the original model. To avoid end-effects related to the zero-phase Butterworth 136 

filter we remove 300 years at the beginning and end of the model. Although pfm9k.1a model covers 137 

the time period 7500 BC to 2000 AD, it was only intended to be used for the period 7000 BC to 1900 138 

AD and we therefore restrict our analyses to the to the period 7000 BC to 1700 AD.  139 

2.2. Radon drift determination 140 

To quantitatively estimate the azimuthal drift rates observed in the time-longitude plots we use a 141 

technique based on Radon transform (for more details see, Dumberry and Finlay, 2007, Finlay and 142 

Jackson, 2003). The Radon transform of a 2D TL image provides a measure of the amount of coherent 143 

signal found along different angles of the image, which directly translates to different azimuthal drift 144 

rates. In addition to Radon drift determinations of TL plots at latitudes from 70°S to 70°N, we 145 

calculated drift rates based on Radon transforms for pfm9k.1a_p at 60°N over 2500-year moving 146 

windows at 100-year time steps. The resulting so-called time-drift plots, with the signal power in 147 

each window normalised to the maximum value, are useful to investigate the persistence over time 148 

of observed high latitude westward drift. 149 

2.3 Frequency–wavenumber analysis 150 

To further investigate the identified drift rates, we use two-dimensional frequency-wavenumber 151 

power spectra of the TL plots at 60°N, where the strongest drifts occur, which were calculated using 152 

fast Fourier transform. Peaks in these power spectra identify dominant zonal wavenumbers m = 153 

360°/λ (where λ	is	the	angular	wavelength)	and	frequencies	f	=	1/T	(where	T	is	the	period	in	154 

years). Based	on	the time-drift plots from the Radon transform we calculated the frequency-155 

wavenumber power spectra for three partially overlapping time-windows; 2000BC – 1700AD, 156 

5000BC – 1000BC and 7000BC – 4000BC. In the following, unless explicitly specified, we adopt the 157 

convention of expressing frequencies and drift rates as negative (positive) for westward (eastward) 158 

propagation directions.  159 



3. Results 160 

3.1 Analysis of the past 9000 years from the pfm9k.1a model 161 

Time-longitude plots at 60°N, of the original model (pfm9k.1a) and filtered model (pfm9k.1a_p) are 162 

shown in Figure 1. We chose 60°N as this is where the high latitude intense flux patches are mainly 163 

seen and, as we will see from the Radon transform results, also where the strongest azimuthal drift 164 

rates are observed. The time-longitude plots show mostly evidence for westward drift, manifested as 165 

diagonal lines going from the bottom right to top left. Eastward drift is also observed (e.g. around 166 

2000–1000BC; -90–0°E), but these features appear to be less continuous in time. The filtered version 167 

(Fig. 1b) shows drift signatures much more clearly, so we focus on that in the following.  Moreover, 168 

to better illustrate slow drift we extend the longitudinal range to -360° - 360°, i.e. showing two 169 

duplicate time-longitude plots next to each other in that panel.  170 

We distinguish at least two different westward drift rates, (i) a slow -0.09°/year (corresponding to 2.7 171 

km/year) drift superimposed by a (ii) faster -0.25°/year (7.6 km/year) propagating signal, marked by 172 

the dash-dot and dashed lines respectively in the figure. The slow westward drift rate is similar to the 173 

-0.07°/year drift (corresponding to a 5000-year rotation period) previously noted by Nilsson et al., 174 

(2014) over the past 4000 years. However, after high-pass filtering the model we find evidence that 175 

this slow westward drift has been persistent throughout the past 9000 years. The faster drift rate is 176 

consistent with classic westward drift originally proposed by Bullard (1950) and recently noted by 177 

Hellio and Gillet (2018) in their model COV-LAKE covering similar timescales. 178 

The lines in Figure 1b (and Fig. 1a) have deliberately been plotted along transects of positive residual 179 

field (corresponding to weak or reverse flux in the unfiltered model; Fig. 1a) where the drift signal 180 

appears to be stronger. The drift lines are only continuous, indicating movement of a single flux 181 

patch, over shorter time periods. In general, the observed drift lines are rather patchy, consistent 182 

with a stop-and-go motion described by Nilsson et al. (2014) or a preferred location/configuration of 183 

flux. The faster drift signal is mostly visible in the Pacific hemisphere between 90°E and 270°E. We 184 

also note a general occurrence of more intense flux around 0, 90, 180, 270°E, suggesting the 185 

potential presence of one or two standing waves. 186 

In Figure 2a we show the results from Radon transform of TL plots at latitudes from 70°S to 70°N for 187 

pfm9k.1a_p. As previously stated, the strongest (dominantly westward) drift rates are observed at 188 

high northern latitudes, around 60°N, with two distinct drift rates (-0.09°/year and -0.25°/year) being 189 

resolved. The analysis also reveals dominant westward drift (-0.22°/year) at high southern latitudes, 190 

around 60°S, as well as notable peaks in signal power associated with eastward drift (~0.15°/year) at 191 

northern mid-latitudes. 192 



The results of the time-drift plots shown in Figure 2b indicate persistent westward drift at 60°N 193 

throughout the past 9000 years. There is a strong ~0.09°/year westward drift signal present for most 194 

of the record with faster westward drift rates (~0.25°/year) appearing around 3000BC and onwards. 195 

In the earliest few time windows the two signals appear to merge into a single peak around -196 

0.20°/year. 197 

The frequency-wavenumber spectra for the three overlapping time intervals at 60°N are shown in 198 

Figure 3a-c. For the first time window (2000 BC to 1700 AD) the power spectra show westward 199 

propagating waves with dominant zonal wavenumbers of m = 1 and m = 2. This is consistent with the 200 

two identified drift rates being described by an m = 2 waveform (f = -1/2000 year-1 with drift rate d = 201 

λ f = -0.09°/year) and an m = 1 waveform (f = -1/1440 year-1 with drift rate d = λ f = -0.25°/year) 202 

respectively (see stars in Figure 3a as well as the dashed-dotted and dashed lines in Figure 1). We 203 

also find a weak m = 2 signal in eastward direction around f = 1/2000 year-1 (as well as f = 1/1000 204 

year-1), which would be expected from the presence of a standing wave, previously mentioned. 205 

From 5000 to 1000 BC the m = 1 waveform (representing the faster drift rates) is more or less absent, 206 

which is consistent with the observations from time-drift plot in Figure 2b. The weaker m = 2 207 

eastward drift signal also persists at similar frequencies.  In the earliest time-window (7000 – 4000 208 

BC) the strongest signal is found at an intermediate frequency around f ≈ -1/1800 year-1 with zonal 209 

wavenumber m = 1, which corresponds to the -0.20°/year drift rates observed in Figure 2b. 210 

In Figure 3d we show the frequency-wavenumber spectrum of the TL plot at 60°S latitude over the 211 

first time window (2000 BC to 1700 AD). The strongest signal is associated with a westward 212 

propagating m = 1 waveform at frequency f ≈ -1/1650 year-1, which is consistent with the single peak 213 

in drift rates at high southern latitudes of -0.22°/year determined using the Radon transform method 214 

(Fig. 2a).  215 

3.2 Effects of model resolution 216 

The resolution of pfm9k.1a at the core mantle boundary varies spatially (and temporally) due to the 217 

uneven distribution of the palaeomagnetic data used to constrain the model (e.g. more than 88% of 218 

the data come from the northern hemisphere). Based on comparisons with the gufm1 model, Nilsson 219 

et al. (2014) estimated that the pfm9k.1a model resolution at 1900AD is roughly equivalent to a 220 

spherical harmonic truncation at degree 5-6 in the northern hemisphere and degree 3-4 in the 221 

southern hemisphere. These truncation levels could probably be regarded as upper limits for the full 222 

9000-year range of the model. The low model resolution at high southern latitudes limits the 223 

waveform structures we can expect to resolve in this region but could also lead to a distortion of the 224 

signal due to aliasing effects. 225 



To demonstrate this we performed the same analyses as in section 3.1 on a low-resolution version of 226 

the pfm9k.1a model, truncated at spherical harmonic degree 4 (pfm9k.1a[lmax=4]). In Figure 4a and 227 

4b, respectively, we show the results of both the Radon drift determination (7000BC – 1700AD) and 228 

the frequency-wavenumber spectrum of the TL plot at 60°N (2000 BC to 1700 AD) based on the 229 

truncated pfm9k.1a, filtered in the same way as the original model. The Radon drift determination of 230 

the truncated model (Fig. 4a) fails to distinguish the two drift rates at high northern latitudes (Fig. 2a) 231 

and instead only shows a single peak. Similar to our observations for 60°S in the original model, the 232 

truncated model does not show any m = 2 structures at 60°N but instead shows a broad peak at 233 

zonal wavenumber m = 1 covering the frequency range of the previously proposed waveforms (Fig. 234 

4b).  235 

This comparison implies that the observed differences between the northern and southern 236 

hemisphere drift signals could be explained by spatial variations in the model resolution. However, a 237 

visual comparison between the TL plots at 60°S of the original model and at 60°N of the truncated 238 

model (see supplementary material, Figure S2) also reveals that the detected signals drift in and out 239 

of phase with each other, suggesting that model resolution can only explain part of the differences. 240 

We also note that the largely comparable observations at 60°N from the early part of pfm9k.1a_p, 241 

i.e. -0.20°/year drift rates dominated by zonal wavenumbers m = 1 (Fig. 2b and Fig. 3c), suggest that 242 

the lack of two distinct signals in this time period could potentially also be related to limited model 243 

resolution due to the decrease in data density with increasing time. In the same way that the model 244 

resolution in the southern hemisphere limits (and potentially distorts) what we can detect we should 245 

also expect that the model resolution in the northern hemisphere probably prevents us from 246 

detecting anything beyond zonal wavenumber m = 2. 247 

3.3 Model comparison 248 

To investigate the robustness of our observations, so far based only on pfm9k.1a_p, we applied the 249 

Radon drift determination to different models constructed with different modelling strategies and 250 

data (Fig. 5a-d) as well as to different models within the same model family (Fig. 5e-g). Note that for 251 

COV-LAKE and COV-ARCH, which consist of ensembles of models, the suffix ‘_M’ is added to highlight 252 

that the results are based on the mean model. 253 

In all cases, except for COV-ARCH_M_p which is the only model that excludes sedimentary data, we 254 

find strong signals associated with the two distinct westward drift rates at high northern latitudes as 255 

identified in pfm9k.1a_p. In COV-ARCH_M_p at similar latitudes, we find a peak around -0.22°/year 256 

and only a weak signal associated with the -0.09°/year drift rates. Similarly to the southern 257 

hemisphere signal in pfm9k.1a_p, the frequency-wavenumber spectrum for COV-ARCH_M_p is 258 



dominated by m = 1 structures (see supplementary information, Figure S5). This is likely due to the 259 

lack of archaeomagnetic data at high northern latitudes, reducing the spatial resolution of the model 260 

in this region of the CMB and the ability to resolve m = 2 structures (see section 3.2).  261 

All three models that include sedimentary data show elevated drift signals at high southern latitudes. 262 

The dominance of westward drift, observed in pfm9k.1a_p, is reproduced in two models (Fig. 5b-c), 263 

with peaks around similar drift rates (-0.22°/year). We note that in these two models the observed 264 

westward drift at 60°S is associated with zonal wavenumbers m = 1 (see supplementary material), 265 

similarly to pfm9k.1a_p. The absence of corresponding strong drift signals at high southern latitudes 266 

in COV-ARCH_M_p is perhaps not surprising given the general lack of archaeomagnetic data from 267 

this region. In addition to the observed high latitude westward drift, two models (Fig. 5a and 5c) also 268 

show support for eastward drift at northern mid-latitude, previously identified in pfm9k.1a_p.  269 

To compare Radon drift determinations between models from the same model families we focus on 270 

latitude 60°N (Fig. 5e-g). Of the investigated model families there are three bootstrap models 271 

available: pfm9k.1b, COV-LAKE, COV-ARCH. It is worth noting that the pfm9k.1a model is not the 272 

same as the average model of pfm9k.1b but could rather be regarded as one of the most likely draws 273 

from this ensemble due to the synchronization of the individual sediment timescales. We find good 274 

support for the 0.09°/year westward drift signal in both pfm9k.1b and COV-LAKE but not in COV-275 

ARCH, which is consistent with the observations from the model average. Elevated signal power 276 

around drift rates -0.25°/year are present in most of COV-LAKE and COV-ARCH, but only weakly 277 

represented in pfm9k.1b. The lack of a clear -0.25°/year signal in pfm9k.1b, compared to pfm9k.1a, 278 

shows how sensitive these observations are to age uncertainties in sedimentary data. In all three 279 

model families, there is also support for weaker eastward drift with similar rates. 280 

4. Discussion 281 

4.1 Potential sources for the detected high-latitude westward drift at the CMB 282 

We have shown, based on the pfm9k.1a model, that azimuthal motions at high northern latitudes of 283 

the CMB over the past 9000 years are dominated by westward drift concentrated to two distinct 284 

rates (-0.09°/year and -0.25°/year). While the slow drift rates have remained a persistent feature 285 

over most of the studied time interval, the faster drift rates appear to wax and wane with strong 286 

signals detected around 7000-6000 BC and during the last 3-4 millennia (see Fig. 1 and Fig. 2). We 287 

also find evidence for dominant strong westward drift (-0.22°/year) at high southern latitudes, but 288 

limitations with the model resolution prevents direct comparisons with the northern hemisphere 289 

observations. Comparisons between different models support the conclusions from pfm9k.1a but 290 



also highlight how sensitive these observations are to the distribution and uncertainties of the data 291 

used to constrain the models. Based on these results we therefore restrict the following discussion to 292 

observations from the northern hemisphere and the past 3-4 millennia. 293 

The observed drift is dominated by zonal wavenumbers m = 2 and m = 1. The m = 2 signal essentially 294 

describes a slow westward motion of two intense high latitude flux patches, previously noted by 295 

Nilsson et al. (2014) for the past 4000 years. This could be interpreted as representing high latitude 296 

convection rolls (Gubbins and Bloxham, 1987) carried along by the mean zonal flow in the core. As 297 

shown in the TL plot in Figure 1, this pattern is only partly explained by continuous movement of 298 

individual flux patches and more generally generated by the appearance and disappearance of flux, 299 

e.g. migrating from lower or higher latitudes (or indeed from east or west). This would explain why 300 

similar patterns have gone largely unnoticed by other approaches designed to track the movements 301 

of individual flux patches (Amit et al., 2011, Terra-Nova et al., 2015, Terra-Nova et al., 2016). Such 302 

discontinuities of flux movements at the CMB will likely arise as an effect of chronologic data 303 

uncertainties (Nilsson et al., 2014), but it is perhaps also unlikely that individual flux patches remain 304 

intact/underformed over long timescales. 305 

The observed m = 1 drift rate is of the same magnitude as the classic westward drift (Bullard, 1950) 306 

and most likely the same signal as previously observed by Dumberry and Finlay (2007) and Hellio and 307 

Gillet (2018). The fact that the two detected drift rates shows a dispersive relationship (Figure 3a) 308 

indicates that one or both could, at least partially, be generated by magnetic Rossby waves. Such 309 

waves are expected to be mostly relevant at high latitudes as investigated here (Hori et al., 2015). 310 

However, the observed dispersion relation, with longer (m = 1) wavelengths propagating with faster 311 

phase velocity, is opposite to the predicted dispersion for magnetic Rossby waves (Hide, 1966). One 312 

interpretation is that the m = 1 signal represents a wave riding on the mean background flow, 313 

represented by the m = 2 signal as suggested above. This would suggest a wave propagation speed of 314 

-0.16 °/year, after subtracting the background flow.  315 

An alternative explanation may be provided by the forced magnetohydrodynamic waves proposed by 316 

Yoshida and Hamano (1993), which are expected to result in secular variation frequencies 317 

independent of zonal wavenumber. Such waves are hypothesised to be generated by variations in 318 

LOD that induce flow in the core due to topographic differences of the CMB. In their model, the 319 

frequency of the secular variation is the same as that of the external forcing, i.e. the variations in 320 

LOD. Interestingly, millennial-scale reconstructions of LOD based on historical records of solar and 321 

lunar eclipses (Morrison and Stephenson, 2001) show variations on similar timescales as the 322 

detected drift rates and have previously also been shown to correlate with changes in the dipole tilt 323 

(Nilsson et al., 2011). 324 



4.2 Wave interference and occurrence of high latitude weak/reverse flux 325 

As shown in Figure 3a, the observed westward drift at 60°N over the past 4000 years can largely be 326 

decomposed into two waveforms, represented by the two stars in the figure. To further examine the 327 

interference pattern predicted by the inferred waveforms we construct a simple model composed of 328 

two sinusoidal waves of the form 329 

𝑊(𝜙, 𝑡) = cos	(𝑚𝜙 − 𝜔𝑡) 330 

where 𝜙 = longitude, t = time and 𝜔 = 2𝜋𝑓 is the angular frequency of the waves (with angles given 331 

in radians). The superposition of the two waves gives rise to an interference pattern with an 332 

envelope wave propagating eastward with a group velocity 2𝑣! =
∆#
∆$
4 of 0.07°/year. Constructive 333 

interference appears as an intensification of positive residual flux where the drift lines intersect in 334 

Figure 1. The time interval 𝑡%  and longitudinal offset 𝜙% = 𝑣!𝑡%  between these points is calculated by 335 

setting 𝑊(𝜙% , 𝑡%) = 2𝜋 for one of the two inferred waveforms, which yields 𝑡% = 1125 years and 𝜙%  336 

corresponding to 79°. The resultant interference pattern could be described as an eastward 337 

propagating beat frequency of 1/1125 years-1. 338 

When we compare this to the unfiltered radial field at 60°N at the CMB (Fig. 6a), we find that this 339 

interference pattern coincides, both in terms of timing and location, with the three high latitude 340 

weak/reverse flux patches previously noted by Nilsson et al. (2014). A similar pattern is also observed 341 

in other models (see supplementary information, Figures S3-S5), although the fine scale structure 342 

differs. To facilitate the comparisons, we have drawn yellow contour lines around what we (slightly 343 

arbitrarily) have defined as weak/reverse flux, weak flux corresponding to absolute Br below a certain 344 

threshold (|𝐵&| ≤ 0.25|𝐵&|'(), where |𝐵&|'() is defined over the whole CMB). As noted by Nilsson 345 

et al. (2014), the high latitude weak/reverse flux patches appear to originate from lower latitudes 346 

and migrate northwards. This suggests an important meridional component potentially related to 347 

something similar to the eccentric planetary-scale gyre observed in recent core-flow inversion (e.g. 348 

Pais and Jault, 2008, Gillet et al., 2015) 349 

To better quantify the occurrence of high latitude weak/reverse flux we calculated the area of the 350 

core at latitudes greater than 45°N covered by weak/reverse flux. The results, shown in Figure 6b, 351 

confirm that the occurrence of high latitude weak/reverse flux is generally consistent with the 352 

inferred 1125-year periodicity signal over the past three millennia, i.e. with maximum extents of 20-353 

40% coinciding with the appearance of the three high latitude weak/reverse flux patches previously 354 

mentioned, followed by relatively quiet periods in between. We note that the maximum extents of 355 

weak/reverse flux are generally lower for the models based on palaeomagnetic data compared to 356 

gufm1. However, the results are consistent if we compare to gufm1 truncated at spherical degree 5-357 



6, suggesting that the difference is due to the lower spatial resolution of the palaeomagnetic models 358 

(see Nilsson et al., 2014). 359 

4.3 Millennial-scale periodicity in the geomagnetic field 360 

A millennial-scale periodicity signal (~1350 year), similar to the 1125-year signal inferred from the 361 

interference pattern, has previously been identified in dipole tilt variations over the past 9000 years 362 

(Nilsson et al., 2011, Korte et al., 2011). Figure 6c shows that the changes in dipole tilt are mostly in 363 

phase with the predicted periodicity signal, with large tilt angles coinciding with occurrence of high 364 

latitude weak/reverse flux in the northern hemisphere. The agreement with the predicted periodicity 365 

signal becomes poorer the further back in time ones goes as the density of data decrease. 366 

Interpretations of the observed westward drift in terms of high latitude convection rolls and/or 367 

magnetic Rossby waves imply a largely anti-symmetric field with respect to the equator. If these 368 

interpretations are correct, we may expect to find concentrations of weak or reverse field at high 369 

southern latitudes at similar times and longitudes where these are observed in the northern 370 

hemisphere (Fig 6a). This is consistent with the more or less anti-symmetric appearance and 371 

poleward migration of reverse flux patches in the Atlantic hemisphere associated with the 372 

development of the SAA, previously noted by Campuzano et al. (2019). In fact, the present field with 373 

SAA related to both high latitude reverse flux at the CMB and a strong equatorial dipole (Amit and 374 

Olson, 2008) might provide a good analogue of previous periods large dipole tilt over the past three 375 

millennia. However, while the growth of the SAA has been associated with a 9% drop in the axial 376 

dipole field, potentially driven by the poleward migration of the reverse flux (Finlay et al., 2016, 377 

Gubbins, 1987), we do not see any similar changes in dipole field in current models during the 378 

proposed analogues in the past. 379 

5. Conclusions 380 

Through analyses on TL plots of the geomagnetic field model pfm9k.1a, filtered to remove quasi-381 

stationary field structures, we have found evidence for persistent and dominant westward drift at 382 

high latitudes of the CMB over the past 9000 years. At high northern latitudes we identify two 383 

distinct drift rates of -0.09°/year and -0.25°/year with dominant zonal wavenumbers m = 2 and m = 1 384 

respectively, both of which are present over the past 3-4 millennia. Comparisons with other 385 

geomagnetic field models that include sedimentary data show similar westward drift signals over the 386 

same time period. Constructive interference between two westward propagating waveforms, 387 

inferred from these observations, predicts the recurrence of high-latitude weak/reverse flux every 388 

~1125 years with a longitudinal offset of approximately 80° to the east from the previous occurrence. 389 



These predictions are largely in agreement with model observations over the same time period. In 390 

addition, the predicted 1125-year periodicity signal is positively correlated with variations in the 391 

dipole tilt over the past three millennia. We speculate that the two identified drift signals could be 392 

related to the westward motion of high latitude convection rolls and/or magnetic Rossby waves, 393 

originally proposed by Hide (1966). The detection of such waves in Earth’s core could provide 394 

important constraints on the strength of the otherwise hidden toroidal part of the geomagnetic field 395 

(e.g. Hori et al., 2015). Improved model resolution at high northern and southern latitudes of the 396 

core would help to distinguish the proposed underlying processes, e.g. through further investigation 397 

into the dispersion relation, if a potential m = 3 signal can be resolved, and the proposed equatorial 398 

anti-symmetry of the detected signals. 399 
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Figures 501 

502 
Figure 1: Time longitude (TL) plots (60°N) of the radial field at the core mantle boundary predicted by 503 

(a) pfm9k.1a and (b) pfm9k.1a_p, with the axisymmetric part of the field removed and high-pass 504 

filtered with cut-off frequency of 1/2500 yr-1. The first and last 300 years of the filtered model were 505 

not considered during the analyses due to end-effects associated with the filtering process. Dot -506 

dashed diagonal grey lines correspond to westward drift at rates of -0.09°/year (f = -1/2000 yr-1, m = 507 

2) and dashed grey lines correspond to drift rates of -0.25°/year (f = -1/1440 yr-1, m = 1).  508 

  509 



510 

Figure 2: (a) Radon drift determination on time longitude (TL) plot of pfm9k.1a_p over the time 511 

period 7000 BC to 1700 AD. The radon drift determination was performed for latitudes 70°S to 70°N 512 

at 2° increments. The temporal and spatial resolution for each TL plot was 10 years and 2°. Vertical 513 

green dashed and light blue dot-dashed lines denote westward rift rates of -0.25°/year and -514 

0.09°/year respectively. (b) Radon drift determination on TL plots of pfm9k.1a_p at 60°N over a 515 

2500-year moving window (100 year increments). The signal power is normalised to the maximum 516 

signal power (thick black line) in each time window. Vertical green dashed and light blue dot-dashed 517 

lines denote westward rift rates of -0.25°/year and -0.09°/year respectively. 518 
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520 
Figure 3: Frequency-wavenumber spectra of time-longitude plots based on pfm9k.1a_p at 60°N over 521 

time periods (a) 2000BC–1700AD, (b) 5000BC–1000BC, (c) 7000BC–4000BC and (d) at 60°S over 522 

2000BC-1700AD. The light blue stars, frequency f = -1/2000 yr-1 and zonal wavenumber m = 2, and 523 

green stars, frequency f = -1/1440 yr-1 and zonal wavenumber m = 1, are shown for reference only. 524 

Positive (negative) frequencies indicate eastward (westward) drift. 525 
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 527 

Figure 4: (a) Radon drift determination on time longitude (TL) plot of pfm9k.1a[lmax = 4]_p (pfm9k.1a 528 

truncated at spherical harmonic degree 4) over the time period 7000 BC to 1700 AD. The radon drift 529 

determination was performed for latitudes 70°S to 70°N at 2° increments. The temporal and spatial 530 

resolution for each TL plot was 10 years and 2°. Vertical green dashed and light blue dot-dashed lines 531 

denote westward rift rates of -0.25°/year and -0.09°/year respectively. (b) Frequency-wavenumber 532 

spectra of time-longitude plots over the time period 2000BC–1700AD at 60°N based on pfm9k.1a[lmax 533 

= 4]_p. The light blue stars, frequency f = -1/2000 yr-1 and zonal wavenumber m = 2, and green stars, 534 

frequency f = -1/1440 yr-1 and zonal wavenumber m = 1, are shown for reference only. Positive 535 

(negative) frequencies indicate eastward (westward) drift.  536 
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538 

Figure 5: (upper panel) Model comparison of Radon drift determinations on time longitude (TL) plot 539 

of (a) CALS10k.2_p and (b) HFM.OL1.A1_p over the time period 7000 BC to 1700 AD and of (c) COV-540 

LAKE_M_p and (d) COV-ARCH_M_p over the time period 900 BC to 1700 AD. The suffix ‘M’ indicates 541 

that it is the mean model from an ensemble. All drift determinations were performed for latitudes 542 

70°S to 70°N at 2° increments. The temporal and spatial resolution for each TL plot was 10 years and 543 

2°. Vertical green dashed and light blue dot-dashed lines denote westward rift rates of -0.25°/year 544 

and -0.09°/year respectively. (lower panel) Comparison of Radon drift determinations at 60°N 545 

between 50 randomly selected models (grey lines) from the same ensembles; (e) pfm9k.1b_p, (f) 546 

COV-LAKE_p and (g) COV-ARCH_p. The average signal (red line) and the drift determination of 547 

pfm9k.1a_p (blue line) are shown for reference. Vertical light blue dot-dashed and green dashed 548 

lines denote westward rift rates of -0.09°/year and -0.25°/year respectively. 549 

* For a more informative comparison the individual pfm9k.1b bootstrap models were remade using 550 

the same temporal damping that was used for pfm9k.1a, chosen to smooth out variations on 551 

timescales shorter than 300-400 years (see Nilsson et al., 2014).552 
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554 
Figure 6: Time-longitude (TL) plots at 60°N of radial field at the core mantle boundary predicted by 555 

(a) gufm1 (1590 – 1990 AD) and pfm9k.1a (2000 BC – 1590 AD). Solid yellow lines denote areas with 556 

weak/reverse flux (for details see main text). Dot-dashed diagonal grey lines correspond to westward 557 

drift at rates of -0.09°/year (f = -1/2000 yr-1, m = 2), dashed grey lines correspond to drift rates of -558 

0.25°/year (f = -1/1440 yr-1, m = 1) and black crosses mark the time and longitude of constructive 559 

interference between the two waveforms. Model comparison of (b) High latitude weak/reverse flux 560 

occurrence calculated as the area of the core above 45°N latitude covered by weak/reverse flux (see 561 

main text for details), (c) dipole tilt variations. The dashed grey lines (b-c) shows the 1125-periodicity 562 

signal (arbitrarily scaled amplitude) resulting from the interference pattern of inferred waveforms 563 

with peak values coinciding with crosses in (a). 564 


