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1 Introduction

Many Beyond-Standard-Model (BSM) physics scenarios include new light, weakly-coupled

particles. If a new particle has mass . 100 MeV, then it will be produced in the hot cores of

stars/supernovae, and will contribute to energy transport in the star. The non-observation

of anomalous energy transport, in various different types of star, can then place strong

constraints on the coupling of the particle to the Standard Model (SM) particles that make

up the star [1]. These bounds are often referred to as ‘stellar cooling’, though they more

properly correspond to anomalous energy loss or transport.

Previous calculations of particle production in stars have often assumed that a simple

‘kinetic theory’ calculation, using in-vacuum matrix elements for processes producing the

new state, with thermal abundances for the SM initial and final states, is a good approx-

imation ([2–5] are some examples). However, the large electron density in stellar cores

results in large characteristic plasma frequencies, giving non-negligible collective effects.

These are especially important for new light particles that gain an in-medium mixing with

SM excitations. In particular, if the new particle is light compared to the thermal mass

of the SM excitation, then such mixing effects can parametrically change the production

rate, compared to the naive kinetic theory estimate.

These phenomena have been taken into account for dark photon emission from stars

(not including supernovae) in [6, 7], after their possible importance was first identified

by [8]. In this work, we point about that similar effects hold for other forms of BSM

particle interactions, and can lead to important changes in stellar cooling constraints. In

the case of dark photon, these effects can be included by choosing a sterile/active basis,

in which the sterile mode couples to the medium purely through its Lagrangian mass

mixing. However, such a basis choice is not generically possible, and we explain how

to compute production rates in more general cases. We also extend the analysis of dark

photon production to include energy loss from core-collapse supernovae, correcting previous

literature which used the kinetic theory approximation [4, 5, 9], and to take into account

trapping constraints in stars. The resulting constraints are shown in figure 3.

New light vectors which couple coherently to SM plasma oscillations have an in-medium

mixing with the SM photon. At vector masses well below the stellar plasma frequency, this

mixing suppresses the production rate. At masses around the plasma frequency, resonant

conversion of SM photons to the new vector can enhance the production rate, while at

masses above the plasma frequency the kinetic theory approximation holds. Figure 4

shows how this changes the solar bounds on a massive B − L vector.

New light scalars can mix with SM plasmons — the in-medium ‘longitudinal mode of

the photon’ [1]. Since the plasmon dispersion relation crosses the light-cone, resonant pro-

duction of the light scalar is possible down to arbitrarily low scalar masses, and unlike the

case for a light vector, is not suppressed by powers of the mass. So, for scalar masses below

the stellar plasma frequency, resonant production can dominate, parametrically strength-

ening the stellar cooling bounds. Figure 6 shows this effect for a light Higgs-portal scalar.

Quantitatively, we improve previous coupling bounds by a factor of ∼ 103 (in the coupling

squared) for both a φēe coupling, and a scalar coupling to nucleons.
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While light scalar or vectors are the simplest cases, mixing effects may also be impor-

tant for other new particle candidates, the detailed investigation of which we leave to future

work. For some candidates, symmetries of the low-energy theory prevent an in-medium

mixing with SM states (e.g. charge conservation for a milli-charged particle, or parity for

an axion-like particle). However, plasma effects may still have an important impact on

thermal production rates of such particles (via screening, thermal masses, etc.), although

we will not discuss them here. In addition to stellar cooling, there are also other physical

scenarios in which our calculations may be useful, among them early-universe cosmology.

The main aim of this paper is to illustrate how plasma mixing effects may have im-

portant consequences for the thermal production of new light particles, not to calculate

precise and robust constraints on such particles. Consequently, we do not do the detailed

stellar modelling that would be required to derive properly reliable bounds, instead taking

representative stellar models and approximate analytic versions of observational bounds

from the literature. However, this suffices to demonstrate the parametric changes that our

new physical effects bring about, and shows that they would have important effects in a

detailed analysis.

The structure of this paper is as follows: in section 2 we introduce the machinery of

thermal field theory, and obtain the proper expressions for production rates of new light

BSM states. Following this, in section 3 we apply these results to stellar cooling, and update

the constraints on BSM couplings from observations. Finally, in section 4, we discuss our

results, and review directions for future work.

2 Thermal production rates and plasma mixing

The conceptually-simplest way to handle medium effects in a thermalised plasma, such

as that found in a stellar core, is to use the apparatus of thermal field theory (TFT) —

for a comprehensive overview, see e.g. [10]. In this framework, weakly-coupled excitations

in a medium correspond to poles in the thermal propagators of fields, with the decay

and production rates of these excitations being related to the imaginary parts of the pole

locations. If we have a state X that couples weakly to the species making up a thermalised

bath, then writing the thermal propagator in terms of the free propagator and the ‘thermal

self-energy’, DX = 1
DF

X−ΠX
, we are interested in the imaginary part of ΠX (see appendix A

for a short review of propagators in the real-time thermal field theory formalism).

This paper’s central point is that, if X mixes with the bath fields, either through terms

in the Lagrangian, or through medium-induced effects, then ΠX is not just given by the sum

of one-particle-irreducible (1PI) TFT diagrams. Instead, diagrams with intermediate bath

species propagators must also be included. This is illustrated, in the case where X mixes

with a single bath species A, by figure 1. At the level of a leading-order ‘kinetic theory’

calculation, the extra terms correspond to including X production through its medium-

induced mixing with A. This point may seem trivial, but we will see that many calculations

in the literature correspond to ignoring mixing effects, which can lead to parametrically

incorrect results.
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To see the effects of mixing more explicitly, we can consider the species-non-diagonal

terms. Supposing again that X mixes with a single bath species A (in the models we

consider, A will generally be the SM photon), the in-medium propagation eigenstates will

be given by null eigenvectors of the 2 × 2 matrix(
K2 −ΠAA −ΠAX

−ΠXA K2 −m2
X −ΠXX

)
, (2.1)

where K = (ω,~k) is the 4-momentum, and we have taken mA = 0. Here, the self-energies

ΠAX etc. do correspond to the sum of 1PI diagrams (evaluated at real energy-momentum).

If the couplings of X to bath states are O(g), where g is small, then since ΠAX = O(g)

and ΠXX = O(g2), for a given ~k there exist null eigenvectors when

ω2
c = k2 + ΠAA +

(ΠAX)2

ΠAA −m2
+O(g4) , (2.2)

ω2
c = k2 +m2 +

(
ΠXX − (ΠAX)2

ΠAA −m2

)
+O(g4) , (2.3)

where ωc ≡ ω + iωi is the complex frequency. The second expression corresponds to

the weakly-coupled state, and we can see how the self-energy corresponds to the sum of

the terms from figure 1. These expressions make sense if g is small compared to all other

parameters. In particular, if ΠAA−m2 becomes very small (‘on-resonance’), they may cease

to apply, as discussed in section 2.2. The canonically-normalised propagation eigenstates

are, in the (A,X) basis,√
Z−1
A

(
1

ΠAX

ΠAA−m2

)
+O(g2) ,

(
− ΠAX

ΠAA−m2

1

)
+O(g2) , (2.4)

where

Z−1
A ≡ 1− dReΠ

dω2
, (2.5)

is the wavefunction renormalisation factor for A, with the derivative being evaluated on-

mass-shell. The renormalisation factor for the mostly-X eigenstate is 1 +O(g2).

The mostly-X eigenstate has at least g-suppressed interactions with the thermal bath.

So, if the bath is of finite size (such as a star) and g is small enough, it will free-stream

out of the bath, rather than coming to thermal equilibrium. In this case, we are interested

in the production rate of X by the bath. If the order-g couplings of X to the bath involve

production/absorption of one X, rather than scattering of X, then the production rate can

be related, via detailed balance, to the damping rate given by the imaginary part of the

frequency. Since the production and absorption rates satisfy Γprod = e−ω/TΓabs, and the

overall damping rate is Γ = Γabs−Γprod (for a bosonic excitation), we have Γprod = fB(ω)Γ,

where fB(E) ≡ (eE/T − 1)−1 is the bosonic thermal occupation number. The production

rate per volume for the (assumed bosonic) mostly-X state is therefore given by

dNprod

dV dt
=

∫
d3k

(2π)3
Γprod = −

∫
d3k

(2π)3

fB(ω)

ω
Im

(
ΠXX − (ΠAX)2

ΠAA −m2

)
+O(g4) . (2.6)
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Figure 1. Illustration of the 1PI contributions to the thermal field theory self-energy of a particle

X, versus the ‘mixing’ contributions involving intermediate bath species propagators, where we take

X to mix with a single bath species A. The double-lined A propagator indicates the full (resummed)

TFT propagator. The third row shows some of the tree-level contributions to the imaginary part of

the self-energy, with the ‘mixing’ diagrams corresponding to X production involving its medium-

induced mixing with A (indicated by the star). Many calculations of thermal particle production

in the literature only consider the class of diagrams show in the 1PI column, ignoring the ‘mixing’

contributions.

The essential point of this paper is that, for production of new weakly-interacting particles

from a SM bath, many previous analyses correspond to only considering the ΠXX term,

whereas in fact the other term can sometimes be very important.1 One straightforward

example where this cannot be ignored is the case of low-mass dark photon production, as

has been noted in a number of papers [6–8]. We will see that this also occurs in other cases

of phenomenological interest.

2.1 SM plasma oscillations

Suppose that there exists an as-yet-undiscovered light bosonic state, which couples weakly

to the SM (a new fermionic state, if it is not detectably SM-charged, can only mix with the

SM neutrinos, and such a mixing would not be important in most scenarios we consider).

If this state does not carry SM quantum numbers, then, in the TFT treatment of a low-

energy (T � ΛQCD) SM plasma, it can only mix with the photon field. In this section,

1An additional point is that, though we have calculated these ‘mixing effects’ within the thermal field

theory framework, they are better thought of as ‘plasma’ effects rather than ‘thermal ones’, and will also

occur out of thermal equilibrium. Appendix G works out a particular case by considering classical plasma

oscillations in the fluid approximation, with the presence of a new weakly-coupled field in addition to

electromagnetism; this gives a toy example of a non-thermal calculation of this kind.

– 5 –
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we review the photon field’s TFT behaviour (more comprehensive reviews can be found

in [1, 11]).

We can write the in-medium photon self-energy, in an isotropic medium, as

Πµν(K) = (ε+µ ε
+
ν
∗

+ ε−µ ε
−
ν
∗
)ΠT + εLµε

L
νΠL , (2.7)

where ε± are the usual orthogonal polarisation vectors [1], and εLµ = 1√
K2

(−|k|, ω~̂k) is the

longitudinal polarisation vector (working in the rest frame of the medium). We will write

Π = Πr + iΠi for the real and imaginary parts of the self-energy. For a non-relativistic,

dilute plasma, the real parts are [1]

ΠT,r = ω2
p

(
1 +

k2

ω2

T

me

)
, ΠL,r =

K2

ω2
ω2
p

(
1 +

3k2

ω2

T

me

)
, (2.8)

to first order in the small average electron velocities, where

ω2
p =

e2ne
me

(
1− 5

2

T

me
+O

(
T 2

m2
e

))
+O

(
me

mn

)
, (2.9)

with T the temperature of the medium and ne the electron number density. Figure 2 plots

the corresponding dispersion relations. The essential physics is that the usual transverse

modes are simply modified by the presence of a small effective plasma mass, whereas the

longitudinal modes oscillate at an almost-fixed frequency set by the same plasma mass,

propagating only through thermal diffusion effects.

This unusual dispersion relation for the longitudinal modes has the very important

consequence that, for a light new particle of mass m < ωp, there is always a k where the

dispersion relations of the new particle and the longitudinal photon cross. This means

that the denominator in equation (2.6) can become small, allowing resonant production of

the new state, as pointed out in the case of a dark photon by [12]. Resonant production

from mixing with transverse photons is also possible, but only for m in a narrow range

around ωp.

The situation changes somewhat for relativistic or degenerate plasmas. As we increase

the typical electron velocity, the propagation speed of the longitudinal mode increases,

moving the point where the longitudinal dispersion relation crosses the lightcone to higher

k. In the ultra-relativistic limit, both dispersion relations are always above the lightcone.

However, the ratio of the cross-over point to the plasma frequency increases only loga-

rithmically with the typical electron energy, so even for the highly relativistic plasma in a

supernova core, cross-over still occurs at ω only a few times the temperature. Thus, there

is still the possibility of resonant production for very light, weakly-coupled states through

mixing with the longitudinal mode. Details are given in appendix C.

One point to note is, well below the light-cone, the photon self-energy will have more

complicated behaviour, and the longitudinal propagator will generally have extra poles

corresponding to ion acoustic oscillations etc. (cf. [13]). However, we are interested in

the emission of weakly-coupled massive particles, so in the behaviour above the light-cone

— in particular, resonant production can only occur for the longitudinal and transverse

photon oscillations.

– 6 –
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For notational convenience, we define mT (K)2 ≡ ΠT,r(K), (K2/ω2)ωL(K)2 ≡ ΠL,r;

the longitudinal definition factors out the K2/ω2 dependence that appears automat-

ically from the polarisation contractions. From the previous section, the width for

transverse modes is ΓT (K) ' −ΠT,i/ω in the dilute non-relativistic limit (in fact,

as per [11], this is always true to good accuracy), and for longitudinal modes we

write −ΠL,i ≡ (K2/ω2)ωσL(K), where this equation defines σL(K). In the non-

relativistic case, Z−1
L = 1 − dΠr

dω2 ' K2/ω2
p, so, the physical width of longitudinal

plasmons is ΓL ' (ZL/ωp)(−ΠL,i) = σL.

2.2 Dark photons

Dark photons provide the simplest example of a new state mixing with SM photons. The

physics in this case has been described in previous literature [6, 7], but we go over it here

to show the similarity with other cases to follow, and since we will extend the dark photon

constraints to include SN cooling and stellar trapping.

Suppose we have a new vector A′, the ‘dark photon’, which couples to the SM EM

current J ,

L ⊃ −1

4
F 2 − 1

4
F ′2 +

1

2
m2A′2 + eJ(A+ εA′) . (2.10)

Note that, after a field redefinition, this is equivalent to kinetic mixing L ⊃ −1
4F

2− 1
4F
′2−

ε
2FF

′ + 1
2m

2A′2 + eJA. We will assume that there are no additional BSM states at low

energies, so that the mass m is a Stueckelberg mass (this is natural even with very small

m, since J is a conserved current), rather than coming from a low-scale Higgs mechanism.

Then, ΠXX = ε2ΠAA, ΠAX = εΠAA, so writing ΠAA ≡ Π = Πr + iΠi,

− Im(ω2
c ) = Im

(
ε2m2 Π

Π−m2

)
+O(ε4) = ε2

m4(−Πi)

Π2
i + (Πr −m2)2

+O(ε4) . (2.11)

In [6, 7], this result was obtained by going to the active/sterile basis, in which the sterile

state couples to the SM only via its mass mixing with the active state. As per section 2,

we then have no ΠXX 1PI contribution, but just the (ΠAX)2/(ΠAA −m2) term. The end

result is, of course, independent of the basis chosen, as illustrated by our choice of the

(vacuum) mass basis.

If the SM photon oscillations are weakly damped, Πi � Πr (as is generally the case

for the environments of interest here), we can split the production rate into four different

contributions, with parametrically different properties:

• Continuum transverse production: the production of transverse weakly-coupled states

has rate

Γ =
1

eω/T − 1
ε2m4 ΓT

ω2Γ2
T + (m2

T −m2)2
. (2.12)

For |m2
T −m2| � ωΓT , i.e. off-resonance, this is

Γ ' ε2 m4

(m2
T −m2)2

ΓT,prod . (2.13)

– 7 –
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For m� mT , this is simply the ‘naive’ production rate ε2ΓT,prod, while for m� mT ,

it is suppressed by m4/m4
T . In an active/sterile basis, this suppression comes from

the propagator for the heavy active state [6].

• Resonant transverse production: for |m2
T −m2| < ωΓT , the production rate is2

Γ ' 1

eω/T − 1
ε2

m4

ω2ΓT
. (2.14)

If we consider production at a given frequency ω, then for a spatially-varying medium,

there is some region for which the resonance condition holds. The size of this region

will be set by ∼ ωΓT /(∂xm
2
T ), so the overall power emitted will be independent of

ΓT , in the small-width approximation. If we assume a spherically-symmetric medium,

with mT a function of ω, k, r, we have [12]

P =

∫
dr 4πr2

∫
d3k

(2π)3

1

eω/T − 1
ε2m4 (−Πi)

(Πi)2 + (m2
T −m2)2

(2.15)

'
∫
dω 2kω

1

eω/T − 1
ε2m4

(
r2

∣∣∣∣∂m2
T

∂r

∣∣∣∣−1
)
r s.t.m2

T (ω,k,r)=m2

, (2.16)

where the integral is over ω such that we match the resonance condition at some r.

• Continuum longitudinal production: the production of longitudinal weakly-coupled

states has rate

Γ =
1

eω/T − 1
ε2m2ω2 σL

ω2σ2
L + (ω2 − ω2

L)2
. (2.17)

Off-resonance, this is

Γ ' 1

eω/T − 1
ε2

m2ω2

(ω2 − ω2
L)2

σL . (2.18)

As expected, the production rate is always suppressed by m2 (since σL has already

had the leading m2 dependence factored out). Since the EM current is conserved,

longitudinal emission is always suppressed by m2, in vacuum and in medium [6].

• Resonant longitudinal production: for |ω2 − ω2
L| < ωσL,3

Γ ' 1

eω/T − 1
ε2
m2

σL
. (2.19)

As noted in section 2.1, this differs from the resonant transverse case in that, if m <

ωL, there is always a k such that the resonance condition holds. Therefore, we can find

2As mentioned in section 2, this expression holds if ε is small compared to (Π −m2)/Π. In particular,

at Πr = m2, if ε > 1
2
ωΓT /m

2, then to leading order in ωΓT /m
2, we have Γ ' (1/2)ΓT,prod, so the dark

photon production rate never parametrically exceeds that for the SM photon.
3Analogously to transverse resonant production, this expression is valid for ε� σL/ω. If ε > (1/2)σL/ω,

then to leading order in σL/ω, we have Γ ' (1/2)(eω/T − 1)−1(m2/ω2)σL, so the resonant longitudinal

production rate is always down by a factor of m2/ω2 relative to σL.

– 8 –
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Figure 2. The photon dispersion relation in solar core plasma (left) and early universe plasma

at T = 1 MeV (right), showing non-relativistic and relativistic dispersion relations respectively.

Blue lines show transverse dispersion relations, orange lines show longitudinal. For both plasmas,

transverse and longitudinal oscillations are weakly damped, resulting in narrow resonances around

the plotted frequencies. The grey dotted lines indicate the light cone. Green lines show example

dispersion relations for weakly-coupled light particles (m = 140 eV on left, m = 30 keV on right).

Since, as discussed in appendix C, the effects of increasing temperature and chemical potential once

T, µ � me are almost degenerate, the right-hand plot is qualitatively similar to the shape of the

dispersion relations in e.g. a SN core.

the emissivity at a given position, at leading order in the small-σL approximation, via

dṄprod

dV
=

∫
d3k

(2π)3
Γprod =

∫
2kωdω

(2π)2

1

eω/T − 1
ε2m2ω

ωσL
(ωσL)2 + (ω2 − ω2

L)2
(2.20)

' 1

4π
ε2m2kωLωL

1

eωL/T − 1

∣∣∣∣∣1− dω2
L

dω2

∣∣∣∣
ωL

∣∣∣∣∣
−1

. (2.21)

As expected, at large masses m � mT , ωL we are in the kinetic theory regime for

longitudinal and transverse emission. At masses small compared to the plasma frequencies,

longitudinal production is dominant, being suppressed by m2.

2.3 B − L vector

As well as the electromagnetic current, there is another non-anomalous (assuming Dirac

neutrinos) conserved current in the SM corresponding to B − L. A light vector coupling

weakly to this current,

L ⊃ −1

4
XµνX

µν +
1

2
m2X2 + gJB−LX , (2.22)

where JB is the SM B − L current, is a popular candidate for new vector portal physics,

e.g. [14]. Since B−L does not have any mixed anomalies with the SM gauge groups, there

are no order-g2 production processes that are enhanced by powers of E2/m2, where E is the

energy of the process. This means that a B−L vector avoids the tight constraints, coming

from high-energy experiments, that apply to vectors coupling to non-conserved currents.4

4If SM neutrinos are Majorana, then there is a (B − L)3 anomaly — however, the cutoff scale implied

by this anomaly is extremely high, and it is not a phenomenological concern.
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In this paper, we will suppose that the only light fermions coupling to X are those of the

SM (the phenomenology we study is not significantly affected by whether neutrinos are

Dirac or Majorana), and that X has a Stueckelberg mass.

In a medium consisting entirely of protons and electrons, the tree-level behaviour of a

B − L vector is exactly the same as for a dark photon. We therefore expect differences in

thermal production of a light B − L vector vs a dark photon to be driven by the neutron

content of the medium.

For a dilute, non-relativistic plasma, the dominant contribution to the real parts of the

X and A self-energies is from the electrons, and the imaginary parts are also dominated by

emission from electrons (either electron-ion bremsstrahlung, or Compton scattering). So,

we can write

ΠXX
r,i =

g2

e2
ΠAA
r,i (1 + αr,i) , (2.23)

ΠAX
r,i =

g

e
ΠAA
r,i (1 + βr,i) , (2.24)

where α and β are suppressed by some function of the small parameter me/mi. Then,

− Im(ω2
c ) =

g2/e2

Π2
i + (Πr −m2)2

(−Πi)
(
m4(1 + αi) + 2m2(βr + βi − αi)Πr

+ (Π2
r + Π2

i )(αi − 2βi)
)
, (2.25)

where Π ≡ ΠAA is the photon self-energy, and we have ignored higher order terms in α, β.

As expected, the only part that is not α, β suppressed is the dark photon rate m4Πi, which

will dominate at high masses, when the m4 factor does not suppress it. In particular, we

have the same resonant production contributions as for a dark photon, which were not

visible in the ‘kinetic theory’ rate corresponding to ΠXX
i = (g2/e2)ΠAA

i (1 + αi).

The part of the production that is unsuppressed as m → 0 depends on αi − 2βi +

O(α2, β2) (for transverse emission; longitudinal emission is always suppressed by m2).

The αi and βi contribution from electron-ion bremsstrahlung are O(me/mn) (arising from

interference between emission from electrons and from ions), but these cancel at leading

order, αi − 2βi = O(m2
e/m

2
n). This becomes clear if we go to a basis Ã = A + (g/e)X,

X̃ = X − (g/e)A, where X̃ only couples to neutrons — then,

ΠX̃X̃
i = ΠXX

i − 2(g/e)ΠAX
i + (g/e)2ΠAA

i = (g/e)2ΠAA
i (αi − 2βi) , (2.26)

and X̃ production in electron-ion bremsstrahlung is suppressed by m2
e/m

2
n, since X̃ can

only be emitted from the ion leg.

Compton production has no interference between emission from electrons and ions,

and has αi, βi = O(m2
e/m

2
n) at leading order. The lowest-order in me/mn contribution

to m-independent production therefore comes from bremsstrahlung between different ion

species, which is suppressed by (me/mn)3/2. At masses well below the plasma frequencies,
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this contribution will dominate the production, while at masses comparable or above, the

dark-photon-like contribution is largest.5

The production of B − L bosons in relativistic and/or degenerate plasmas is more

complicated, and we leave it to future work.

2.4 φf̄f scalar

A scalar with renormalisable couplings to SM fermions,

L ⊃ 1

2
(∂µφ)2 − 1

2
m2φ2 +

∑
f

gφfφf̄f , (2.27)

in the low-energy theory, will also couple coherently to SM plasma oscillations. This action

can arise, for example, from mixing with the SM Higgs.

The low-energy SM does not contain any scalar states, so vacuum φ-SM mixing is not

possible. However, in a plasma, φ can mix with the in-medium ‘longitudinal photon’ mode.

For non-relativistic (relative to f) momentum transfers, f̄f ' f̄γ0f , so the contribution

to the mixing self-energy from f will be

ΠφA
µ '

g

eQf
ΠAA

0µ ⇒ ΠφA
µ (εL)µ ' g

eQf

k√
K2

ΠL , (2.28)

where Qf is the EM charge of f . Thus, on mass-shell, there is a ∼ k/m enhancement over

the longitudinal vector self-energy. As we will see below, this will translate into a different

mass dependence of the overall production rate.

The damping rate for φ is, from equation (2.6), given by

ωΓφ = −Πφφ
i −

ΠAA
i ((ΠAφ

r )2 − (ΠAφ
i )2)− 2(ΠAA

r −m2)ΠAφ
r ΠAφ

i

(ΠAA
i )2 + (ΠAA

r −m2)2
, (2.29)

Considering a φēe coupling as an example, this gives

Γφ '
g2

e2
k2ω

ωσL
(ωσL)2 + (ω2 − ω2

p)
2
. (2.30)

For ωp < T , this has a continuum contribution which is approximately the naive kinetic

theory rate. If m < ωp, then there is also a resonant contribution, with emission at ω ' ωp
at a rate

dṄprod

dV
' 1

4π

g2

e2
k2
ωp
ω2
p

1

eωp/T − 1
. (2.31)

5As discussed in appendix B, for sufficiently low-temperature plasmas, there is the additional complica-

tion that ion-ion bremsstrahlung is further suppressed by the ratio vi/α, where vi ∼
√
T/mi is the typical

velocity of an ion, if this ratio is � 1. This occurs since the Coulomb interaction between ions is repul-

sive, and for low velocities, prevents them from getting within a de Broglie wavelength of each other, so

limiting the accelerations they feel in the collision. For example, in the solar core, the velocity of protons is

∼ 10−3 � α. In this case, the ion-ion bremsstrahlung contribution is suppressed by
√
Tm

3/2
e /(m2

nα). Since√
me/mn ∼ 0.02, there is the potential that m2

e/m
2
n contributions may be numerically important in such

circumstances. For sufficiently dense plasmas, plasma screening will also be important, since the relevant

ion separations during collisions is large due to Coulomb repulsion.
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Note that, unlike the case for a vector, this resonant contribution is not suppressed at

small m. This resonant contribution may be larger or smaller than the continuum one,

depending on the properties of the plasma. If m � ωp < T , then using ω2
p ' nee

2/me,

resonant emission gives

Qres ' 4πααφ
n2
eT

m2
e

, (2.32)

while Compton and bremsstrahlung continuum emission give (from appendix B)

QComp '
8ααφ
π

ne
T 4

m2
e

, Qbrem ' 3
neni
me

√
T

me
α2αφZ

2
i , (2.33)

so
Qres

QComp
' π2

2

ne
T 3

,
Qres

Qbrem
' 4π

3αZi

√
T

me
. (2.34)

We see that resonant production occurs at the same order in α as Compton production, but

for a dense plasma where ne > T 3, the resonant rate is larger. Bremsstrahlung production

is suppressed by α compared to resonant production, but is enhanced by the inverse electron

velocity. Since electron velocities in stellar cores can be almost relativistic, the resonant

contribution can dominate, as we will see in section 3.4.

For relativistic / degenerate electrons, the calculations are slightly more compli-

cated (see appendix D for details). However, the overall picture of resonant produc-

tion being unsuppressed at small m, and being potentially larger than the continuum

contribution, remains.

2.4.1 Coupling to nucleons

In the low-energy SM, we can consider a scalar coupling to nucleons, φn̄n and φp̄p. For

simplicity, we will take the n and p couplings to be equal here (this is approximately true

for e.g. a Higgs portal scalar) — it is simple to extend to unequal couplings.

The real part of the mixing self-energy is, for non-relativistic nucleons,

ΠφL
r '

∑
i

egZiAi
ni
mi

k
√
K2

ω2
≡ k
√
K2

ω2
Ω2
eB , (2.35)

where ΩeB is suppressed byO(m2
e/m

2
n) relative to the plasma frequency. For a single species

of ion, Ω2
eB ' (g/e)(me/mn)ω2

p. The damping rate is again given by equation (2.29), which

simplifies to

ωΓφ ' (−Πφφ
i ) +

k2

ω2
Ω2
eB

(
2ωΣ(ω2 − ω2

L) + ωσLΩ2
eB

ω2σ2
L + (ω2 − ω2

L)2

)
, (2.36)

where we have written −ΠφL
i = k

√
K2Σ/ω, and taking Ω4

eB � ω2Σ2. At ω � ωL, the

second term is suppressed by Ω2
eB/ω

2, so production is dominated by −Πφφ
i , as expected.

We also have a resonant contribution to the production rate, given by

dṄ

dV
' 1

4π

(ωL
m

ΠφL
r

)2 1

eωL/T − 1

∣∣∣∣∣1− dω2
L

dω2

∣∣∣∣
ωL

∣∣∣∣∣
−1

(2.37)

' 1

4π

k2
ωp

ω2
p

Ω4
eB

1

eωp/T − 1
. (2.38)
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Both the resonant and non-resonant contributions will, in the case of equal couplings to

protons and neutrons, be suppressed by m2
e/m

2
n relative to the φēe rates. As per the

B − L case, different ions have couplings almost proportional to their mass, resulting in a

suppression of ion-ion bremsstrahlung, which would otherwise contribute at (me/mn)3/2.

The emissivity relative to Compton and bremsstrahlung is parametrically the same as in

the previous section.

3 Bounds on weakly-coupled bosons

We now evaluate some of the parametrically-new production rates discussed in the previous

section for the physical plasmas inside stellar cores, and use these to estimate bounds on

the masses and couplings of new bosons. We emphasise that our calculations should not be

viewed as precise constraints, which would generally require a detailed numerical study of

the observational data and stellar models. In addition, we do not aim to be comprehensive

— we choose a number of new physics scenarios to illustrate our points, leaving many

possibilities for future work.

Following [1], there are a number of scenarios in which we are particularly sensitive to

novel energy losses from stars:

• The Sun. The Sun is not an exceptional star, but it is better-measured than others

— in particular, it is the only star whose neutrino emission . With modern solar

models, novel forms of energy loss can be constrained down to around 10% of the

measured solar luminosity [7, 15] (global modelling using specific energy loss profiles

can improve this limit to the few percent level [16]). This gives a limit on the average

energy loss per unit mass of εnew . 0.2 erg g−1 sec−1. In the solar core, which is

roughly half hydrogen and helium by mass,

Tcore ∼ 1 keV , ρcore ∼ 150 g cm−3 , ωp ∼ 0.3 keV . (3.1)

• Red Giant (RG) cores just before helium ignition. Red Giant cores before the onset of

helium fusion are basically small, hot white dwarfs at the centre of the enormously-

larger stellar atmosphere, whose electrons are mostly degenerate. Since the core is

inert (not undergoing fusion), the main energy transfer process is energy loss by neu-

trino emission, εν ∼ 4 erg g−1 sec−1. Novel energy loss processes can be constrained

down to around this magnitude, εnew . 10 erg g−1 sec−1, since a more efficient loss

process would delay the onset of helium ignition, in disagreement with observations

that match stellar models (e.g. [17]). The conditions in the core just before helium

ignition are approximately

Tcore ∼ 10 keV , ρcore ∼ 106 g cm−3 , µe ∼ 1.3me , ωp ∼ 20 keV . (3.2)

• Horizontal branch (HB) star cores during helium-burning. During their helium-

burning phase, the energy released by fusion puffs up the core of the star, low-

ering its density and making it non-degenerate. The power from helium fusion is
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ε3α ∼ 80 erg g−1 sec−1. If there are additional energy-loss processes, these cause the

core to contract, heating it up, enhancing the rate of the helium fusion, and so short-

ening the helium-burning lifetime of the star. This lifetime is measured to around

the ∼ 10% level, and agrees with standard stellar models, so novel energy losses are

constrained to be εnew . 10 erg g−1 sec−1 constraints (e.g. [18]). The core properties

are approximately,

Tcore ∼ 10 keV , ρcore ∼ 104 g cm−3 , ωp ∼ 2 keV . (3.3)

• Core-collapse supernovae (SN). In the first few seconds of a core-collapse supernova,

the core is basically a very hot proto-neutron star, with degenerate electrons and

almost-degenerate nucleons. It is sufficiently hot and dense to be optically thick even

to neutrinos. The dominant energy loss mechanisms is via the outwards diffusion of

neutrinos, which occurs over a ∼ 10 s timescale — the resulting neutrino burst was

measured for SN1987A [1], with properties that agreed with SN model predictions. In

order for a new energy-loss mechanism not to have disrupted the SN1987A neutrino

burst, the averaged energy loss rate would have to have been less than that from the

neutrinos, εnew . 1019 erg g−1 sec−1 [1].

Tcore ∼ 30− 60 MeV , ρcore ∼ 3× 1014 g cm−3 , µe ∼ 350 MeV , ωp ∼ 20 MeV .

(3.4)

As we will see, for particle emission processes that do not depend on high powers

of the temperature or density, stellar limits are generally more constraining than SN

limits for masses . 50 keV. However, SN limits apply up to masses ∼ 100 MeV.

It should be emphasised that there is still significant uncertainty regarding the be-

haviour of core-collapse supernovae [19], with conflicting models in the literature of

even the very basic energy source involved [20]. As a result, SN constraints on new

light particles should be viewed as order-of-magnitude estimates at best.

• Very degenerate stellar remnants: white dwarfs (WDs) and neutron stars (NSs).

These have the desirable properties of fairly inefficient SM energy-loss mechanisms

(either neutrino emission, or surface photon emission), as well as reasonable tem-

perature and high density compared to the aforementioned stellar core situations.

However, the emission of new particles in scattering process is generally highly sup-

pressed by Pauli-blocking. As a result, WDs can only impose similar constraints to

those from stars in some cases, while NSs do not seem to be competitive [1]. For

resonant emission, the situation is ever worse: since these highly degenerate systems

have plasma frequencies mT , ωL � T , emission at resonant frequencies is heavily

Boltzmann-suppressed, so is never significant.
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3.1 Emission and trapping

The production calculations in section 2 looked at the production rate per unit volume for a

weakly-coupled in-medium mode, assuming a uniform, time-independent thermal medium.

For stellar cooling bounds, we are interested in the energy flux that escapes the core — that

is, in the energy transport between regions with different medium properties. However, as

long as medium properties vary slowly enough, then a weakly-coupled mode emitted from

one region will propagate adiabatically into the weakly-coupled mode for the new region

(if the weakly-coupled and strongly-coupled modes go through level-crossing during the

propagation, there will be resonant conversion, which needs to be taken into account).

Consequently, as long as absorption (and resonant conversion) during the course of the

propagation is small, almost all of the energy emitted in weakly-coupled excitations at the

centre is transported to weakly-coupled excitations further out. When the whole star is

optically thin to weakly-coupled excitations, energy is lost to infinity, and the total energy

loss rate is obtained by integrating over the per-volume production rate.

If weakly-coupled excitations are not able to free-stream through the whole star, then

they contribute to energy transport within the star, and let the outer layers of the star

lose energy to infinity (once the optical depth becomes low). Since our models of stellar

structure fit observations fairly well, there is generally no room for a whole additional degree

of freedom to contribute to radiative heat transport, unless that degree of freedom is heavy

enough that its Boltzmann-suppressed abundance is too small to contribute significantly [1].

We will see in sections 3.3 and 3.4 how this opens up some extra parameter space at high

masses and couplings, for stellar bounds on new particles. As discussed in section 3.2.1,

numerical simulations of supernovae also seem to indicate that energy transport by particles

with mean free path significantly larger than that of neutrinos is not compatible with

SN1987A observations, allowing similar energy-transport bounds to be placed.

3.2 Dark photon production in supernovae

The uncertainty surrounding the behaviour of core-collapse supernovae is an obstacle to

using detailed explosion models to constrain new physics. As mentioned in the Introduc-

tion, our focus in this paper is on highlighting the physical consequences of plasma effects,

rather than attempting comprehensive and robust stellar modelling. Accordingly, we adopt

a single representative supernova model (from [21], which is similar to others found in the

literature, see e.g. the review [22]), and impose the simple ‘Raffelt bound’ approximation

on the energy loss from new particles. That is, we demand that the average energy loss

per unit mass from the core via new particles is . 1019 erg g−1 sec−1 [1] — in a variety

of simulations, this is within a factor ∼ 10 of the critical energy loss rate at which the

neutrino signal would be detectably modified [23]. Thus, the constraints we derive should

not be considered as robust parameter space exclusions. However, as we will see, plasma

mixing can lead to orders-of-magnitude differences in the production and absorption rates,

compared to a kinetic theory calculation [4, 5, 9]. Such effects will therefore be very im-

portant to include in any eventual robust study, and our calculations indicate how such

exclusion bounds will vary with dark photon mass.
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In the supernova environment, the real part of the photon self-energy is dominantly

generated by electrons,6 the form of which is discussed in section 2.1 and appendix C. The

imaginary parts of the photon self energy gets contributions from various processes, and

the large rate of nucleon-nucleon interactions means that neutron-proton bremsstrahlung

is dominant. Following [5], we can approximate the bremsstrahlung production rate by

relating it to proton-neutron scattering data, using the soft approximation for photon

emission. This is only strictly correct in the limit that the emitted energy is small compared

to the kinetic energy of the collision, but from [5], we expect that the overall error from this

approximation will be comparable to the other uncertainties in our calculation. Further

details are given in appendix F. For some supernova models, the SM photon oscillations

may become broad resonances in the supernova core, in which case the split of dark photon

production into continuum and resonant contributions loses its applicability.

In figure 3 we plot the bounds obtained for our SN model after including the mixing

effects discussed in section 2.2 — the bounds that would be obtained neglecting such effects

are also shown.7 At masses below the typical plasma frequency, transverse continuum emis-

sion has the expected ε ∼ 1/m2 scaling. Meanwhile, longitudinal continuum and resonant

emission both scale as ε ∼ 1/m. At masses around the plasma frequency, resonant trans-

verse emission is possible, and leads to a stronger constraint, while at higher masses contin-

uum emission of longitudinal and transverse modes is close to the kinetic theory prediction.

For dark photon masses below approximately 0.1 MeV, bounds from stellar cooling

become dominant, also shown in figure 3. Production in these environments is less sup-

pressed since the plasma frequency is lower, and they are better modelled and measured

than supernovae. For masses below 2me there are also strong constraints from cosmology

— a small dark photon abundance is produced in the early universe, which then decays

to three photons, which would be visible in the observed gamma ray background [8] (or,

for sufficiently early decays, through effects on the CMB or BBN). Such constraints could

be relaxed by allowing the dark photon to decay to light hidden sector states, though the

viability of this possibility is model dependent. There are also cosmological constraints

for m > 2me mixings [26, 27], but these constrain significantly smaller mixings than the

supernova cooling limits.

In addition to affecting the neutrino signal through energy loss from the SN core, new

particles that decay to SM could have other experimentally-visible signatures in SN. [9]

considers some of these signatures for a dark photon, including gamma radiation from the

injection of e+e− pairs when dark photons decay slightly outside the star. However, they

use the kinetic theory calculation for dark photon production, so their constraints would

need re-calculating with the correct production and absorption rates. We leave this to

future work.
6The proton contribution is suppressed, since protons are non-relativistic in the SN; the neutron-neutron

contribution vanishes in the limit that neutrons can be treated as free, and remains suppressed after allowing

for interactions in a typical SN environment [24].
7Our results are compatible with [25], which considers a range of SN profiles, finding roughly an order

of magnitude variation in the bounds obtained. Our SN profile is close to those denoted “Fischer” in [25],

and leads to similar constraints.
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Figure 3. Constraints on dark photon couplings from SN1987A observations, for a particular

supernova model as described in the text. The solid black region indicates the overall constraints.

Subcomponents of the total emission are indicated; dotted (orange), resonant transverse emission,

long-dashed (blue), continuum transverse emission, dot-dashed (green), continuum longitudinal

emission, dashed (purple), resonant longitudinal emission. The limit on ε that would be obtained

from a kinetic theory calculation is shown in dotted black. Assuming purely SM decays of the dark

photon, the parameter space above the shaded region is not excluded by the energy loss constraint

we impose because of absorption and/or decays to electron-positron pairs (at masses & 2 MeV)

(although energy transport via the dark photon may mean that the neutrino signal is still observably

shortened — see section 3.2.1). Under the same assumption, beam dump experiments exclude the

region shaded in blue [28]. The orange shaded region is excluded by stellar cooling bounds [6, 7]

(where we have also incorporated the effects of trapping inside the star, as per section 3.1), while

in models without hidden sector decays masses below ∼ MeV will be constrained by cosmological

observations (green, [8] — the small gap at large mixing will very probably be closed by beam dump

experiments such as [29]). It should be stressed that models of core-collapse supernovae are very

uncertain, and limits such as those derived here, which assume a particular SN model [21], should

be treated as order-of-magnitude estimates at best.

3.2.1 Trapping and decay

If ε is large enough, then for the SN core there is some (frequency-dependent) radius within

which dark photon radiation gets reprocessed into nearly black-body radiation.8 The core

will then lose energy, at a given frequency, approximately like a black-body sphere of that

radius (with surface temperature the medium temperature at that radius), along with

8Along a given ‘line of sight’ out of the core, the occupation number f of a weakly-coupled state

propagating in that direction will evolve as v df/dx = −fΓabs+(1+f)Γprod = Γprod−fΓdamp where v is the

velocity of the weakly-coupled state. So, for intervals over which the ‘damping depth’ τd ≡
∫
dxΓdamp/v

is large, the occupation number converges to the black-body value fB = Γprod/Γdamp, while for intervals

over which τd � 1, we simply integrate the production rate along the line. For frequencies ω & T , we have

Γdamp ' Γabs, so the damping depth is approximately the optical depth. For ω � T , Γdamp ' (ω/T )Γabs,

so the damping depth is significantly smaller than the optical depth.
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volume emission from the region outside. If these black-body radii are large enough, and

correspond to small enough medium temperatures, then the overall energy loss rate via the

dark photon will become small compared to the neutrino rate.

We make the assumption that, to significantly affect the neutrino signals, there needs

to be energy loss greater than the Raffelt bound from the part of the core at temperature

& 1.5 MeV [5]. As per section 3.1, it is likely that provided the dark photon mean free

path is greater than of neutrinos in the core, the increased efficiency of energy transport

would observably shorten the neutrino signal [21, 30, 31]. Imposing this condition would

allow dark photon coupling roughly an order of magnitude stronger than those constrained

by the energy loss bound to be ruled out; however, detailed simulations would be required

to obtain quantiative bounds. Since such strong couplings are already ruled out by beam

dump experiments, we only show the energy loss bounds in figure 3.

For the supernova profile we use, the T = 1.5 MeV boundary is at a radius of approx-

imately 14.5 km, by which point the electron chemical potential has dropped significantly,

to ∼ MeV. This corresponds to the typical region from which neutrinos can free stream

out of the supernova. Note however, it might be that energy has to escape to much larger

distances, before the dark photons suppress neutrino productions significantly [25].

Up to such radii, continuum absorption of dark photons is dominated by inverse proton-

neutron bremsstrahlung, expressions for which are given in appendix F (at much larger

radii, inverse Compton scattering off electrons may become important). The ω−3 depen-

dence of the bremsstrahlung absorption rate means that low-frequency dark photons are

trapped more efficiently than higher-frequency ones, and so the frequency dependence of

the effective black-body radius is important. For dark photon masses & 100 keV, contin-

uum absorption of transverse dark photons is more efficient than longitudinal continuum

absorption, because of the small plasma frequency in the outer part of the supernova

core. For small enough dark photon masses, transverse absorption will be suppressed by

the expected m4/ω4
p factor, so transverse photons will escape most easily, but such small

masses are constrained by stellar cooling observations. Longitudinal dark photons can

be resonantly absorbed if there is a shell where the supernova conditions are such that∣∣ω2 − ω2
L

∣∣ < ωσL is satisfied, and if present this shell is typically optically thick for ε at the

trapping bound. Meanwhile, resonant reabsorption of transverse modes occurs for dark

photon masses around the typical plasma frequencies.

If the dark photons decay to electrons and positrons before escaping the neutrino

emission region, this will also prevent efficient energy loss (although as for absorption, the

neutrino signal may still be observably shortened). In the centre of the supernova, decay

to electrons is blocked by the high chemical potential, unless the mass of the dark photon

is above twice the effective electron mass, meff ' 15 MeV. However, towards the outside,

the chemical potential drops sharply, and the effective electron mass is close to its vacuum

value. In appendix E we give explicit formula for the decay rate.

The effect on the allowed values of ε is plotted in figure 3. For dark photon masses

m & 2me, decays dominate the absorption, although this is sensitive to the details of the

supernova profile. If the dark photon can decay to lighter hidden sector states, which

interact sufficiently weakly with the supernova medium that they can escape, decays and
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Figure 4. Constraints on the coupling of a B − L vector, from force tests (blue, [32–36]), stellar

cooling (see text) and cosmological observations (green, [8]). The solar bounds (red) take into

account the mass-independent part of the production rate discussed in section 2.3, shown by the

solid line — the dotted line shows the constraints that would arise if the coupling to neutrons

were neglected. As explained in the text, the value of the mass-independent contribution to the

production shown here is an order-of-magnitude estimate. The HB star bounds (orange) do not

take into account the coupling to neutrons, so are shown dotted at low masses, where the neutron

contribution will be important. The dashed red line indicates the bounds that would be obtained

from a naive ‘kinetic theory’ calculation, which ignored in-medium mixing effects.

absorption would be reduced and larger values of ε constrained. This could also relax

limits from beam dump experiments, and, as mentioned, alter cosmological constraints.

The interplay of these effects would be interesting to study in the future.

3.3 B − L vector bounds

From section 2.3, B-L production in a dilute, non-relativistic plasma should be well-

approximated by the dark photon production rate, plus a mass-independent production rate

that is suppressed by at least (me/mn)3/2. As discussed in footnote 5, the proton velocity in

the Sun is small enough that the extra ∼ v/α suppression of ion-ion bremsstrahlung makes

it numerically comparable to the (me/mn)2 contribution from electron-ion bremsstrahlung.

The plasma screening length inside the solar core is also small enough that it may affect the

ion-ion bremsstrahlung calculation. We have not treated all of these contributions precisely,

so our numerical value for the mass-independent production rate should be treated as an

order-of-magnitude estimate. For the Sun, where the core is roughly half hydrogen and

half 4He by mass, we obtain the bounds shown in in figure 4. There will also be low-mass

bounds from HB and RG stars — however, since these are unlikely to rule out significant

areas of parameter space not already constrained by force bounds, we restrict ourselves

to the solar calculation as an illustration. Figure 4 also shows the trapping bounds for
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emission from the Sun and from HB stars, as discussed in section 3.1 — these constraints

translate directly to the dark photon case, in the high-mass region.

Comparing to the existing literature, stellar bounds on massive B − L vectors have

been considered in [2, 37, 38]. [2] performs the naive kinetic theory calculation, ignoring

plasma mixing effects. [37, 38] treat the production of on-shell vectors as being the same as

for dark photons, which ignores the mass-independent production rate from non-hydrogen

nuclei calculated in section 2.3. [37, 38] also claim that there is a strong bound from the

enhanced emission of SM neutrinos. However, the B − L mediated emission of neutrinos

has rate ∼ g4
B−L, which is extremely small, while the rates in the aforementioned papers

appear to be ∼ g2
B−L.

Figure 4 also shows the bounds on a light B − L vector from fifth-force tests [32–

36], which are more constraining than stellar cooling bounds for masses . eV. It also

indicates the cosmological bounds arising from late-time three-photon decays of a B − L
population, produced in the early-universe plasma. These can be derived directly from

the dark photon bounds [8], since the dominant contribution to early-universe production

happens around electron-positron freeze-out, when only the electron coupling is important.

The cosmological bounds depend on the B − L vector not having hidden sector decays.

Another possible probe of B − L vectors or dark photons would be the direct detection of

weakly-coupled states emitted from the Sun, in dark matter experiments on Earth [39, 40].

As is the case for dark photons, there will also be supernova cooling bounds on B −
L vectors of mass . a few hundred MeV. Since neutrons play an important role in a

supernova core, we expect the constraints to be rather different from those in the dark

photon case. We leave an analysis of these to future work.

The importance of plasma mixing effects does not just apply to B − L vectors or

dark photons, but to any new vector coupling to the SM. For example, the bounds on a

new vector coupling to baryon number derived in [3, 5] did not consider mixing effects, so

would need to recomputed with those taken into account. Again, we would expect kinetic-

theory-like emission at energies above the plasma frequencies, some enhancement from

resonant emission at masses around the plasma frequencies, and then some suppression

due to interference effects at lower masses.

3.4 φf̄f scalar bounds

As discussed in section 2.4, the production rate for a scalar that couples coherently to SM

plasmons has a resonant contribution for m < ωp, and a continuum contribution that is

roughly similar to the naive kinetic theory value. The resonant contribution is lower-order

in α than the continuum bremsstrahlung rate, and is expected to be larger for plasmas

with large electron velocities.

3.4.1 Coupling to electrons

Using the non-relativistic resonant production rate from equation (2.31), and taking a

sample HB star model from [41], imposing the rough constraint ε . 10 erg g−1 sec−1 gives

αφēe . 8× 10−31 , (3.5)
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for m � keV, where αφēe ≡ g2
φēe/(4π). For comparison, the kinetic theory production

rate would give αφēe . 1.5 × 10−29 (in agreement with the estimate from [1]). Since the

continuum production is dominated by 4He bremsstrahlung, we expect the ratio of resonant

to transverse power per volume to be given by equation (2.34),

Qres

Qbrem
' 4π

3αZi

√
T

me
= 37

√
T

108 K
, (3.6)

Since our HB model has 〈
√
T/108 K〉 ' 0.5 averaged over the core, this gives the correct

ratio of ∼ 20 between the continuum and resonant constraints.

For a RG core, where the electrons are degenerate, we can use the formulae from

appendix D to calculate the resonant production rate. Using a sample RG core model

from the MESA package [42], and imposing ε . 10 erg g−1 sec−1, we obtain

αφēe . 4× 10−32 , (3.7)

for m� 10 keV. Calculating the continuum production rate in this case is more difficult,

due to the electron degeneracy, but we expect resonant production to dominate at small

masses. To summarise, for small scalar masses, we have the constraints

αφēe .


1.5× 10−29 (HB continuum production)

8× 10−31 (HB star resonant production)

4× 10−32 (RG core resonant production) .

(3.8)

The corresponding mass-dependent constraints are shown in figure 5.

A calculation similar to that performed in section 3.2 could be done to find SN bounds

on the φēe coupling. We are not aware of any existing calculation in the literature, and we

leave such a treatment to future work.

3.4.2 Coupling to nuclei

Performing the analogous calculations for a scalar coupling to nucleons, assuming that we

couple equally to protons and neutrons, we obtain

αφN̄N .


5× 10−23 (HB continuum production)

3× 10−24 (HB star resonant production)

1× 10−25 (RG core resonant production) ,

(3.9)

for small scalar masses (note that our continuum production bound is slightly tighter

than that given in [1], since only Compton scattering is considered there, and electron-ion

bremsstrahlung production is dominant for low-mass scalars). We again obtain a ratio of

∼ 20 between resonant and continuum production for HB stars, and a significantly stronger

bound from RGs. Figure 5 shows the mass-dependent bounds.
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Figure 5. Stellar cooling constraints on a scalar φ with a φēe coupling (left), or a φN̄N coupling

to nucleons (right), where we assume that φ couples equally to protons and nucleons. Both the

continuum and resonant limits continue to very small φ masses. Continuum production of φ in HB

stars gives approximately the same energy loss as a naive kinetic theory calculation. There will also

be continuum production from RG cores, but this is more complicated to calculate due to electron

degeneracy, so we leave it to future work (we expect it to be sub-dominant to resonant production

at small masses). At high masses and couplings, the contribution of φ to energy transport in

the star becomes small enough that it is not constrained by observations (section 3.1), as shown

the in left-hand plot (the trapping constraints occur at larger α than shown in the right-hand

plot). In a full model, there will also be other constraints on these parameter spaces, including

force bounds and cosmological observations (for example, figure 6 shows the constraints on a Higgs

portal scalar model).

3.4.3 Higgs portal scalar

The |H|2 operator is the unique renormalisable portal through which a neutral scalar can be

coupled to the SM. In the low-energy SM, its effects can be parameterised by a mixing angle

sin θ, with the scalar φ coupling to fermions as (mf/v) sin θφf̄f , where v ' 246 GeV is the

electroweak vev. This gives a coupling to electrons of gφēe = (me/v) sin θ = 2× 10−6 sin θ,

and a coupling to nucleons of gφN̄N ' 8×10−4 sin θ [43] (this is approximately the same for

neutrons and protons, since most of the coupling does not come from the valence quarks).

Since gφēe/gφN̄N ' 2 × 10−3 > me/mn ' 5 × 10−4 — as expected, since most of the

nucleon mass comes from QCD, not from the Higgs VEV — the φēe coupling dominates

the φ production rate in stellar cores, resulting in the stellar cooling bounds shown in

figure 6. An interesting point is that the enhanced stellar cooling constraints are able to

probe potentially natural parameter space for a Higgs portal scalar, as indicated in figure 6.

Comparing these to other constraints, the stellar cooling bounds are more stringent

than fifth-force constraints at masses & 0.2 eV. Having a UV complete model also enables

us to consistently compare the stellar bounds to cosmological constraints (assuming that the

universe was reheated above the electroweak scale, and that there was no cosmologically-

important new physics below the EW scale). [44] estimates the early-universe φ production,

which is dominated by temperatures around the electroweak scale, and then constrains the

later energy injection from φ → γγ decays. This gives the bounds shown in figure 6,

indicating that the stellar bounds are probably the most constraining up to masses ∼
10 keV. We leave an improved calculation of early-universe φ production, incorporating

plasma effects, to future work. It would also be interesting to calculate the minimal bounds,

assuming only that the reheating temperature is & MeV.
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Figure 6. Constraints on a scalar φ with a Higgs portal coupling (section 3.4.3), where sin θ is the

mixing with the SM Higgs. Force bounds [32–36] are in blue, stellar cooling bounds (see text) in red

and orange, and cosmological constraints in green. The latter arise from a freeze-in relic abundance

decaying around the present day, contributing to the observed photon background [44] (we show

these bounds as extending up to couplings at which φ would decay at BBN time, though it would

require further work to verify whether the constraints are valid there). Since most of the nucleon

mass comes from QCD, rather than from the Higgs VEV, the ratio of nucleon to electron φ couplings

is smaller than the nucleon-electron mass ratio. The electron coupling therefore dominates the φ-

SM mixing, and thus the resonant φ production, as well as dominating the continuum production.

The stellar cooling bounds are therefore the appropriate rescaling of the φēe bounds show in the

left-hand panel of figure 5, and likewise continue to very small φ masses. The grey line shows the

approximate fine-tuning bound sin θ . mφ/vEW [45], demonstrating that our new stellar constraints

are able to probe natural parameter space.

4 Discussion

In this work, we have demonstrated how, in the medium of a SM thermal bath, plasma

effects can introduce an effective in-medium mixing between hypothetical new, weakly-

coupled bosons and SM photons (if the new bosons couple coherently to SM plasma os-

cillations). Such mixing affects the production of the new bosons by allowing resonant

production from SM photons, and also by allowing cancellation between new boson and

photon emission amplitudes. This can make a parametric difference to production rates

from plasmas where chemical potentials are important, such as stellar cores.

Dark photons provide the simplest example of these effects, which were treated cor-

rectly in some, though not all, of the previous literature. In section 3.2, we estimate the

production of dark photons in core-collapse supernovae, previous calculations of which ig-

nored mixing effects [4, 5, 9], and use this to place new constraints in the mass-mixing

parameter space. Note that there are very probably extra constraints one could place from

arguments beyond simple energy-loss-from-core [9], but we leave those to future work.
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We also update the stellar-cooling constraints to include trapping effects, for heavy and

more-strongly-coupled dark photons.

Extending these results to other types of new vectors, we illustrate the effects in the

case of a weakly-coupled B − L vector. In section 3.3, we estimate B − L stellar cooling

bounds, correcting previous literature [2, 37, 38]. Weakly-coupled scalars can have an

in-medium mixing with longitudinal photon oscillations. Resonant production of such

scalars, in particular from the cores of RG stars, places significantly stronger constraints

(section 3.4, figure 6) than previous calculations which ignored mixing effects. Other

BSM particle candidates which could result in similar effects include vectors coupling to

other SM current (though the non-conservation of these currents generally leads to strong

constraints from high-energy experiments), other forms of scalar coupling, and higher-spin

new particles (e.g. KK gravitons, as considered in [23]). We leave the calculation of such

constraints to future work.

Since the low-energy SM preserves parity, axion-like particles do not mix with SM

plasma excitations, up to effects suppressed by weak-scale masses. However, if there is a

parity-violating background, such as a strong magnetic field, then plasma mixing effects

may become important. Nevertheless, even for a supernova, which may have magnetic

fields of order 1015 Gauss [46], rough estimates indicate that this effect will be sub-leading.

The temperature in a SN core is also hot enough that mixing with pions will have a small

effect, but the pion mass is large enough that this will also be sub-dominant to other

processes.

Up until the recombination era (i.e. for temperatures & eV), the universe was a hot,

basically homogeneous plasma, so our calculations of the production rate for light, weakly

coupled particles from this plasma will apply. Such production can also, with some assump-

tions, be used to place constraints on the properties of light particles, and as per stellar

cooling calculations, plasma effects may make an important difference. For example, the

cosmological bounds on a light B − L vector, as shown in figure 4, are from the late-time

decay of a small relic B − L abundance produced in the early universe, and at the masses

indicated, this abundance is dominated by resonant production around electron-positron

freeze-out [8]. However, the early universe differs from stellar cores in a number of ways —

chemical potentials were probably very small, and variation was in time instead of space

— so the new particle candidates for which plasma effects make an important difference to

observable quantities are not necessarily the same as those for stellar cooling bounds. We

leave calculations of plasma effects on such early universe physics to future work.9

‘Medium effects’ of the kind discussed in this paper are sometimes important in lab-

oratory searches for BSM particles, particularly at very low masses (e.g. [47, 48]). If we

are interested in particle masses well above the plasma frequency of bulk materials, ∼ eV,

then bulk medium effects will be negligible. For particle production in processes involving

nuclei, the effective ‘plasma frequency’ of the nuclear ‘medium’, which we expect to be

∼ 10 MeV, may be significant. For example, the beam dump constraints on dark pho-

9There have been a number of papers investigating the early-universe cosmology of dark photons, in-

cluding [8, 26, 27].
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tons shown in figure 3 come from the production of dark photons in high-energy collisions

between electrons/protons and target nuclei. However, the very small size of nuclei in-

troduces important differences with respect to the stellar production case; in particular,

nuclei are optically thin to SM photons as well as to dark photons. Thus, the previous

arguments about only needing to consider the production of the weakly-coupled in-medium

state will not hold. Further work would be required to calculate the nuclear medium effects

on particle production in experiments such as beam dumps.

An important point is that the mixing effects giving rise to resonant production etc

are better viewed as ‘plasma’ effects, rather than ‘thermal’ ones. In particular, although

we have used the apparatus of thermal field theory to calculate them, they will also occur

out of thermal equilibrium. In appendix G, we show how modified production rates can be

derived by considering classical plasma oscillations in the fluid approximation, including

the presence of a new weakly-coupled field in addition to electromagnetism. This serves as

an independent check of our thermal field theory calculations, as well as indicating how to

extend them to other situations.

Future observations of stars, and of the early universe, will improve our sensitivity

to anomalous energy losses, and if deviations from Standard Model predictions are found,

may provide hints of new, light BSM particles. In either case, correct calculations of

BSM production rates are vital in translating such observations into knowledge about

new physics.

Note added. In the final stages of preparing this manuscript, the paper [25] which also

studies plasma effects on supernova dark photon bounds, was posted on the arXiv.
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A Thermal field theory — Real time formalism

In the real-time formalism of thermal field theory [10], for each physical field φ1 we introduce

a ‘ghost’ field φ2, with the in-medium propagator being a matrix that mixes the 1, 2 fields.

This doubling of degrees allows the formalism to keep track of the analytic structure of

the contour along which the time integral is evaluated. We can write the full in-medium

propagator Dab (with a, b ∈ {1, 2}) as

D−1
ab = (DF )−1

ab + iΠab , (A.1)

where DF is the free-field propagator in the thermal bath, and Πab is the self-energy.

From [10], the propagator can be diagonalised in the {1, 2} basis by the matrix

U =

(√
1 + n(ω)

√
n(ω)√

n(ω)
√

1 + n(ω)

)
, (A.2)
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giving

Dab(K) = U(ω)

(
i

K2−m2−Π(K)
0

0 −i
K2−m2−Π∗(K)

0

)
U(ω) , (A.3)

for a single species of mass M , where Π(K) is the ‘real-time’ self-energy.

B Damping rates in a dilute non-relativistic plasma

For a vector coupling to electrons with coupling g, the damping rate from Thomson scat-

tering is [7], writing αg = g2/4π,

ΓT ' σL '
8πααgne

3m2
e

√
1− ω2

p/ω
2 , (B.1)

for ω > ωp, and zero for smaller ω (since ωp is the minimum energy carried by a SM photon

in the plasma).

The damping rate from electron-ion bremsstrahlung is

ΓT '
16π2α2αg

3m2
eω

3

√
2πme

3T
neniZ

2
i ḡi(ω, T )

1

1 + fB(ω)
, (B.2)

to lowest order in me/mi, where ḡ is the thermally-averaged Gaunt factor [49]. In the Born

approximation,

ḡ =

√
3

π
eω/(2T )K0(ω/(2T )) , (B.3)

(this approximation is valid for ω � T , but ḡ is order-1 throughout). In the simplest case

of emitting a massless vector, integrating over ω gives a power per unit volume of∫
d3k

(2π)3
fB(ω)ωΓT '

√
2π

3

8α2αgneniZ
2
√
T

3m
3/2
e

〈ḡ〉 . (B.4)

The leading-order expressions for σL are the same.

For a vector coupling to nucleons, we also have ion-ion bremsstrahlung. The situa-

tion here is slightly more complicated, since the ions interact through a repulsive Coulomb

potential, rather than an attractive one as for electron-ion collisions. In the Born approxi-

mation, the damping rates are as for the attractive case, if we substitute (X1/m1−X2/m2)2

for 1/m2
e, and the reduced mass µ for the rest of the me, where m1 and m2 are the masses

of the ions, and X1, X2 their charges under the new vector.

If the ion thermal velocities are low enough — in particular, if Z1Z2e
2/vi � 1, where

vi ∼
√
T/mi is a typical ion thermal velocity — then the ion wavefunctions are significantly

distorted during the collision, and the Born approximation ceases to hold. In this regime,

the emission can be treated as approximately classical. [50] gives the classical dipole radia-

tion spectrum from collisions with a given initial approach velocity v0; for high frequencies,

this is suppressed by

exp

(
−παZ1Z2

v0

ω

µv2
0/2

)
. (B.5)
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So, in a thermal bath, emission at frequencies� T v0
αZ1Z2

is exponentially suppressed — the

Coulomb repulsion between the ions stops them from getting close enough to undergo larger

accelerations. We can calculate the classical radiative energy loss analytically, obtaining

dP

dV
' 8π

3
ααgZ1Z2

(
X1m2 −X2m1√

m1m2

)2 Tn1n2

m1m2
, (B.6)

for transverse radiation of a massless vector. If the plasma screening length is compa-

rable to the ion separations during collisions, r0 ∼ αZ1Z2/T , then screening effects will

become important.

C Photon self-energies in relativistic/degenerate plasmas

This appendix mostly reviews results from [11], both to collect them in a convenient form,

and to allow us to extend them to mixing self-energies in appendix D.

Evaluating the real part of the one-loop electron self-energy diagram, using free field

propagators for the electrons, we obtain

Πµν
r (K) = e2

∫
d3p

(2π)3

1

2Ep
(fe(Ep) + fē(Ep))

× P ·K(PµKµ +KµP ν)−K2PµP ν − (P ·K)2gµν

(P ·K)2 − (K2)2/4
, (C.1)

which is correct to order α. As discussed in [1, 11], the K4 term in the denominator gives an

O(α2) correction everywhere on the dispersion relation (‘on-mass-shell’). It can therefore

be ignored at leading order — this also prevents the on-mass-shell self-energy from gaining

a O(α2) imaginary part due γ → e+e− decays, which are prevented by the electron also

gaining a thermal mass [11].

Ignoring the K4 term, we can do the angular parts of the integral, obtaining

ΠT,r(ω, k) =
4α

π

∫ ∞
0

dp fp
p2

E2

(
ω2

k2
− ω2 − k2

k2

ω

2kv
log

(
ω + vk

ω − vk

))
, (C.2)

ΠL,r(ω, k) =
4α

π

ω2 − k2

k2

∫ ∞
0

dp fp
p2

E2

(
ω

kv
log

(
ω + vk

ω − vk

)
− ω2 − k2

ω2 − k2v2
− 1

)
. (C.3)

Approximating the energy integral by taking it to be dominated by a particular electron

velocity v∗, we obtain the analytic approximations [11]

ΠT,r(ω, k) ' ω2
p

3

2v2
∗

(
ω2

k2
− ω2 − v2

∗k
2

k2

ω

2v∗k
log

(
ω + v∗k

ω − v∗k

))
, (C.4)

ΠL,r(ω, k) ' K2

k2
ω2
p

3

v2
∗

(
ω

2v∗k
log

(
ω + v∗k

ω − v∗k

)
− 1

)
, (C.5)

where

ω2
p ≡

4α

π

∫ ∞
0

dp
p2

E
fp

(
1− 1

3
v2

)
, (C.6)

ω2
1 ≡

4α

π

∫ ∞
0

dp
p2

E
fp

(
5

3
v2 − v4

)
, (C.7)

v∗ ≡ ω1/ωp . (C.8)
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Figure 7. G(x) (blue curve) and H(x) (green curve), as defined in equation. (C.9) and (C.10).

These expression are accurate to order α in the degenerate (T � µ − me), ‘classical’

(me − µ � T ), and relativistic (T � me or µ � me) limits. As per [1], if we define the

functions

G(x) =
3

x

(
1− 2x

3
− 1− x

2
√
x

log

(
1 +
√
x

1−
√
x

))
, (C.9)

H(x) =
G(x)− x
x− 1

=
3

2x3/2
log

(
1 +
√
x

1−
√
x

)
− 1− 3

x
, (C.10)

then the above expressions are

ΠT ' ω2
p

(
1 +

1

2
G(v2

∗k
2/ω2)

)
, (C.11)

ΠL '
K2

ω2
ω2
p(1 +H(v2

∗k
2/ω2)) . (C.12)

We see that the dispersion relations both have ω = ωp at k = 0, and that the frequency

at which the longitudinal dispersion relation crosses the lightcone goes to infinity as the

electron velocity goes to one. However, the crossing frequency increases rather slowly. For

example, in a SN core, with T ' 30 MeV and µe ' 350 MeV, we have v∗ ' 1−2×10−6. On

the light-cone, this gives 1 +H(v2
s) ' 18.7, and since ωp ' 20 MeV, the crossing frequency

is
√

(1 +H(v2
∗))ωp ' 85 MeV. In general,

H(1− δ2) ' 3 log δ−1 + . . . (C.13)

To evaluate resonant longitudinal production rates (e.g. 2.21), we need the expression

1−
dω2

L

dω2

∣∣∣∣
K2=m2

' 1 +
m2

2k2

3 +
2x3/2

(1− x)
(

2
√
x− log

(
1+
√
x

1−
√
x

))
 , (C.14)

where x = v2
∗k

2/ω2. For x = 1− δ2, this is

' 1− m2

2k2δ2 log δ−1
+ . . . (C.15)

Since δ > m2/ω2, this factor is always O(1).
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D Scalar self-energies

The one-loop electron self-energy expressions for φφ and φ-photon mixing, for a gφφēe

coupling, are

(Πµ)φA(K) = gφe

∫
d3p

(2π)3

1

2Ep
(fe(Ep) + fē(Ep))

me
(P ·K)Kµ −K2Pµ

(P ·K)2 − (K2)2/4
, (D.1)

Πφφ(K) = g2
φ

∫
d3p

(2π)3

1

2Ep
(fe(Ep) + fē(Ep))

(P ·K)2 −m2
eK

2

(P ·K)2 − (K2)2/4
, (D.2)

(as compared to the photon-photon expression in equation (C.1)). By the same arguments

as in appendix C, if we are just interested in the behaviour on the photon mass shell, or

for K2 sufficiently small, we can ignore the K4 term in the denominator, giving

ΠφL ' geme

2π2k

√
K2

∫ ∞
0

dp v2fp

(
ω

vk
log

(
ω + vk

ω − vk

)
− 2

K2

ω2 − k2v2

)
. (D.3)

where we have written ΠφL ≡ εµL(Πµ)φA. For a non-relativistic plasma, this gives

ΠφL ' gek
√
K2

ω2

ne
me

, (D.4)

in agreement with the expression in section 2.4. The ΠφL
r self-energy is related to the

resonant scalar production rate by

dṄ

dV
' 1

4π

(ωL
m

ΠφL
r

)2 1

eωL/T − 1

∣∣∣∣∣1− dω2
L

dω2

∣∣∣∣
ωL

∣∣∣∣∣
−1

. (D.5)

E Decay to electrons and positrons

In appendix C, we noted that for a photon excitation of small invariant mass, the in-medium

mass of the electron prevents the decay γ → e+e−. However, if the new weakly coupled

state has mass m > 2m̃e, where m̃e is the effective electron mass, the weakly-coupled state

can decay into an electron and a positron, and we need the corresponding imaginary parts

of ΠXX , ΠXA and ΠAA to evaluate the absorption rate from this decay. The simplest case,

and the only one which is relevant to the calculations in this paper, is that of a heavy dark

photon, where we only need to calculate ΠAA
i at large invariant mass.

From [51], the effective electron mass (at k = 0) is

m̃e =
me

2
+

√
m2
e

4
+m2

eff , (E.1)
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where

m2
eff = α

∫ ∞
0

EdE(f−(E) + f+(e) + 2fB(E)) (E.2)

= α

∫ ∞
0

EdE

(
1

e(E−µ)/T + 1
+

1

e(E+µ)/T + 1
+ 2

1

eE/T − 1

)
. (E.3)

For example, in a SN core with T = 30 MeV, µ = 350 MeV, we have m̃e ' 12 MeV. For an

ultra-relativistic electron, the dispersion relation has ω2−k2 ranging from m2
eff at k = 0 to

2m2
eff as k → ∞. The decay rate for longitudinal excitations is (ignoring the longitudinal

residue factor, and in the rest frame of the plasma)

ΓL,dec(ω, k) ' α

2ωk
K2

∫ E+

E−

dE g(E)

(
1− 4

(
E

k
− ω

2k

)2
)

(1− f−(E)) , (E.4)

where f−(E) = 1/(e(E−µ)/T + 1) is the electron occupation number, giving Pauli block-

ing, g(E) is an order-1 function summarising the in-medium residue factor for the elec-

tron/positron, and E± are the maximum and minimum decay energies in the plasma

rest frame. Ignoring the frequency variation in the electron effective mass, E± =

(1/2) (ω ± βcmk), where βcm ≡
√

1− 4m̃2
e/m

2. For transverse excitations (again ignor-

ing the transverse residue factor),

ΓT,dec(ω, k) ' α

2ωk
K2

∫ E+

E−

dE g(E)

(
1 + 2

(
E

k
− ω

2k

)2

− β2
cm

2

)
(1− f−(E)) . (E.5)

Ignoring Pauli-blocking (i.e. setting f− = 0) and residue factors, we obtain

ΓT,dec = ΓL,dec =
α

3

m2

ω
β

(
1 +

2m2
e

m2

)
, (E.6)

which is the correct decay rate in vacuum.

F Dark photon production and absorption in supernovae

Here we give cross sections for dark photon production and absorption in the soft ap-

proximation, following [5] but adapting to include thermal mixing effects (which requires

separating the longitudinal and transverse cases).

Assuming the energy of an emitted photon is small compared to the energy of the

proton-neutron interaction, the cross section for the emission of a photon can be related

to that for elastic neutron-proton scattering by

dσpn→pnγ ' −4πα (εµJ
µ)2 d

3k

2ω
dσpn→pn, (F.1)

where J is the dipole current

J =
P1

P1.K
− P2

P2.K
, (F.2)
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with K the four-momentum of the emitted photon, and P1 and P2 the initial and final

four-momentum of the proton. As well as a dipole contribution from neutron-proton in-

teractions there will also be quadrupole pieces from proton-proton interactions, however

these are smaller.

For the longitudinal polarisation we have

1

4π

∫
dΩk (ε · J)2 ' 2

3

Ecm
mn

K2

ω4
(1− cos θcm) . (F.3)

in the centre of mass frame, and assuming the nucleons are non-relativistic. This is sup-

pressed by m2/ω2 and in the limit m � ω ∼ T is small as expected. For the transverse

modes we have, summing over the two polarisations,

1

4π

∫
dΩk

∑
i

(εi · J)2 ' 4

3

Ecm
mn

1

ω2
(1− cos θcm) . (F.4)

Assuming nucleons are non-degenerate in the supernova environment, the initial proton

and neutron states can be integrated over. The rate of energy loss per unit volume, by

continuum emission of dark photons is then given by

dE

dV dt
=

4αnnnp

(πmnT )3/2

∫ ∞
m

dE E3e−E/T I(L,T ) (E)σnp (E) , (F.5)

where m is the dark photon mass. The quantity

σnp (E) =

∫
d cos θcm (1− cos θcm)

dσnp
d cos θcm

, (F.6)

can be extracted from data and is given in [5]. The functions IL,T include the effects of

mixing and are given by

IT (E) = ε2
m4(

m2
T −m2

)2 4

3

(√
1−

(m
E

)2
−
(m
E

)
arccos

(m
E

))
, (F.7)

and

IL (E) = ε2
∫ E

m
dω

ω4(
ω2
L − ω2

)2 2
√
ω2 −m2m2

3ω3E
, (F.8)

where the notation is the same as in section 2.1, with ωL given by equation (C.12). As

discussed in section 2.2, for resonant emission the value of the imaginary part of the photon

self energy cancels out when computing the overall energy emitted.

The absorption cross sections are obtained analogously, and for the dark photon the

inverse mean free path is

1

λT
=

32

3π
αnnnp

(
πT

mn

)3/2 1

ω3

√
1−

(
m
ω

)2 ε2m4(
m2
T −m2

)2 〈σnp (T )〉 , (F.9)

for transverse modes, and

1

λL
=

32

3π
αnnnp

(
πT

mn

)3/2 m2

ω
√

1−
(
m
ω

)2 ε2(
ω2
L − ω2

)2 〈σnp (T )〉 , (F.10)
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for longitudinal modes. Here

〈σnp (T )〉 =

∫ ∞
0

dx
1

2
x2e−xσnp (xT ) , (F.11)

is a thermally averaged cross section, and numerical values as a function of temperature

are again given in [5].10

G Classical equations of motion

To illustrate how our ‘mixing effects’ arise outside the thermal field theory formalism, we

can look at the classical EoM for plasma oscillations in the fluid approximation, with the

presence of an additional weakly-coupled field (as per e.g. [47]). For example, considering

the case of longitudinal oscillations in the presence of a φēe scalar, the electric field E and

scalar field φ are sourced by (assuming that ions have Z = 1)

~∇ · ~E = −e(ne − ni) , (∂2
t −∇2 −m2)φ ' gne , (G.1)

where we have assumed that the electron motions are non-relativistic. The continuity

equations are

ṅe + ~∇ · (ne~ve) = 0 , ṅi + ~∇ · (ni~vi) = 0 , (G.2)

and the momentum equations (ignoring thermal diffusion) are

mene(̇~ve + ~ve · ~∇~ve) ' − ne(e ~E − g~∇φ)−meneν(~ve − ~vi) , (G.3)

mini(̇~vi + ~vi · ~∇~vi) ' nie ~E +meneν(~vi − ~ve) , (G.4)

where we have included a ‘frictional drag’ term from electron-ion collisions, parameterised

by an ‘effective collision frequency’ ν (we have ignored magnetic fields, since the velocities

are non-relativistic).

To find the equation of motion for small oscillations, we linearise about the equilibrium

values of quantities, writing ne = n0(1 + δe), ni = n0(1 + δi), φ = φ0 + δφ, and and ve, vi, E

as small quantities themselves. Taking the limit where the ion mass is much heavier than

the electron mass, we can set vi, δi = 0 throughout. Writing the linearised quantities as

e−i(ωt−kx) (i.e. taking propagation to be in the x direction), and solving for ve, δe in terms

of E, δφ, we obtain the equations((
−ik 0

0 ω2 − k2 −m2

)
− n0

me

k

ω(ω − iν)

(
−ie2 egk

ieg −g2k

))(
E

δφ

)
= 0 . (G.5)

For g = 0, we obtain the separate equations

1−
ω2
p

ω(ω − iν)
⇒ ω =

√
ω2
p −

ν2

4ω2
p

+
iν

2
, (G.6)

10Our expressions match those of [25] and differ from those of [5] by numerical factors.
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for E, and ω2− k2−m2 = 0 for δφ, as expected. With g 6= 0, if we write ω =
√
k2 +m2 +

g2ωg ≡ ω0 + g2ωg, then the weakly-coupled mode has

Imωg = −k2 n0

2me

ν

ω2
0ν

2 + (ω2
0 − ω2

p)
2
. (G.7)

Around the resonance, when ω0 ' ωp, this has the form of equation (2.30), since as per

above, σL ' ν there. This confirms that the resonant production is not m-suppressed

for small m. Inserting the general relationship between ν and σL into equation (G.7), we

obtain equation (2.30), as required.

Analogous calculations can be done for the new particle candidates discussed in this

work, replicating the results of the thermal field theory calculations as required.
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