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Abstract. 3D printing has been widely used in daily life, industry, architecture, 

aerospace, crafts, art, etc. Minimizing 3D printing material consumption can 

greatly reduce the costs. Therefore, how to design 3D printed objects with less 

materials while maintain structural soundness is an important problem. The cur-

rent treatment is to use thin shells. However, thin shells have low strength. In this 

paper, we use stiffeners to stiffen 3D thin-shell objects for increasing the strength 

of the objects and propose a stress guided optimization framework to achieve 

minimum material consumption. First, we carry out finite element calculations to 

determine stress distribution in 3D objects and use the stress distribution to guide 

random generation of some points called seeds. Then we map the 3D objects and 

seeds to a 2D space and create a Voronoi Diagram from the seeds. The stiffeners 

are taken to be the edges of the Voronoi Diagram whose intersections with the 

edges of each of the triangles used to represent the polygon models of the 3D 

objects are used to define stiffeners. The obtained intersections are mapped back 

to 3D polygon models and the cross-section size of stiffeners is minimized under 

the constraint of the required strength. Monte-Carlo simulation is finally intro-

duced to repeat the process from random seed generation to cross-section size 

optimization of stiffeners. Many experiments are presented to demonstrate the 

proposed framework and its advantages.  

Keywords: 3D printing, thin-shell stiffened objects, minimum material con-

sumption, finite element analysis, stress-guided optimization. 

1 Introduction 

With quick development of 3D printing technologies, the price of desktop 3D printers 

has become more affordable to general customers. Nowadays, people can make 3D 

prints easily with these affordable printers. With more and more widely applications of 

3D printing, saving material consumption of 3D printing can significantly reduce the 

costs which can be achieved by using thin shells. Since thin-shell objects have low 

strength, we use stiffeners to stiffen thin-shell objects and proposed a stress guide opti-

mization framework to obtain stiffened thin-shell objects with minimum material con-

sumption and required strength. 
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Our proposed stress guide optimization framework achieves minimum material con-

sumption through optimizing stiffener distribution and minimizing the cross-section 

size of stiffeners. In order to generate optimal distribution of stiffeners, the stress field 

of the input thin-shell objects under given loads and boundary conditions is calculated 

with the Finite Element Analysis (FEA). According to the stress distribution, some 

points called seeds are placed randomly on the surface of 3D thin-shell objects. The 3D 

objects and seeds are mapped to a 2D space so that a Voronoi diagram can be generated 

from these mapped seeds. The generated Voronoi diagram is mapped back to the 3D 

space and the edges of the mapped Voronoi diagram represent the distribution of stiff-

eners. After that, cross-section size of stiffeners is optimized to minimize the volume 

of the stiffeners. Since the generation of seeds uses a uniform random process which 

may not lead to a global optimal solution of stiffener distribution, Monte-Carlo simu-

lation is introduced and iterated a given number of times to avoid any local minimum. 

2 Related Work 

The work proposed in this paper is related to 3D printing, finite element analysis, and 

structural optimization. We briefly review the existing work in these areas.  

3D printing: There are a lot of papers on 3D printing. The deformation problem was 

investigated in [1]. The articulation of 3D printed models was examined in [2]. 

Mechanical movements of 3D printed objects were studied in [3, 4]. And the 

appearance of 3D printed models was discussed in [5, 6]. 

Finite element analysis Enormous publications can be found about finite element 

analysis. For example, the finite element method in solid and structures was introduced 

in [7]. The finite element analysis of stiffened plates was given in [8]. The finite element 

calculations of stiffened shell were presented in [9]. The vibration of stiffened plates 

was investigated with the finite element method in [10]. Stress analysis of stiffened 

composited plates was carried out in [11]. The plates and shells with geometrically 

linear and nonlinear problems were studied in [12]. And mesh distortions of plate and 

shell finite elements were examined in [13].  

Structural optimization is also a well investigated filed. Here we only briefly 

review some representative literature on optimization of 3D printing objects. Three 

approaches: hollowing, thickening, and strut insertion were introduced in [14] to obtain 

structurally sound and lightweight 3D prints. Thickness parameters of shells were 

optimized in [15]. The number of struts in a skin-frame structure is minimized in [16]. 

The material consumption of honeycomb-like 3D models is reduced via a hollowing 

optimization algorithm in [17]. Stiffened objects were first investigated in [18]. A 

method to produce optimized structures for any input surface with any load 

configurations was researched in [22]. 

3 Overview 

The algorithm overview is shown in Fig. 1. For an input thin-shell object, the finite 

element calculation is first carried out to obtain its stress distribution (Fig. 1(a)). The 
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seeds used to determine the positions of stiffeners are dispersed randomly in high stress 

areas (Fig. 1(b)). By mapping the object and seeds in a 3D space to a 2D space, a Vo-

ronoi diagram is generated (Fig. 1(c)). After determining the intersections between the 

edges of the Voronoi diagram and the edges of each of the triangles used to represent 

the thin-shell object and mapping them back to a 3D space, the stiffener distribution is 

determined (Fig. 1(d)). Having determined the stiffener distribution, cross-section size 

optimization of stiffeners is performed to obtain the minimum volume of the stiffeners. 

In order to optimize the seed generation, Monte-Carlo simulation is introduced to refine 

the stiffener distribution further. The final stress field obtained from finite element cal-

culations is shown in Fig. 1(e) which significantly improves the stress distribution.  

 
(a)     (b)                             (c)      

 

 (d) (e) 

Fig. 1. Algorithm overview. 

 

The finite element formulation of thin-shell objects and stiffened thin-shell objects 

has been presented in [10,19]. In what follows, we only investigate the distribution of 

stiffeners, size optimization of stiffeners, Monte-Carlo simulation, and present the re-

sults obtained from our proposed framework.  

4 Distribution of stiffeners 

The distribution of stiffeners is obtained through four steps. They are: seed generation, 

quasi-conformal parameterization, creation of Voronoi diagram, and stiffener extrac-

tion.  

4.1 Seed generation 

The stress field of an input thin-shell object is first calculated under given boundary 

conditions and forces. Based on the obtained stress distribution, a given number of 

seeds are distributed on the object. The seeds are placed through a probability that 
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places more seeds in the areas with a higher stress. By doing so, the areas with higher 

stresses are stiffened by more stiffeners.  

In what follows, 𝑛𝑡  stands for the number of triangles of the object mesh, 𝑠𝑖  the 

stress of a randomly selected triangle 𝑡𝑖, 𝜎𝑠 the material strength, 𝑛𝑠 the number of ex-

pected seeds, and 𝑝∗ for the probability threshold.  

First, a triangle 𝑡𝑖 is randomly selected from the 𝑛𝑡 triangles, and a probability 𝑝 is 

also randomly generated between 0 and 1. If a randomly generated probability 𝑝 is big-

ger than the probability threshold 𝑝∗ but smaller than 𝑠𝑖 ∕ 𝜎𝑠 which is the ratio of the 

stress 𝑠𝑖 over the material strength 𝜎𝑠, the triangle is seeded and marked. If the ran-

domly selected triangle 𝑡𝑖 has been seeded and marked, a new triangle is randomly se-

lected. The process is repeated until the number 𝑛𝑠 of the expected seeds are reached. 

This algorithm is shown below.  

 

4.2 Quasi-conformal parameterization 

Generating a Voronoi diagram from the placed seeds in the 3D thin-shell object and 

tracing stiffeners from the 3D Voronoi diagram and the 3D mesh is more complicated 

than in 2D since it requires searching for geodesic lines between arbitrary two points. 

In order to tackle this problem, we use a quasi-conformal parameterization method 

called the least square conformal maps (LSCM) [20] to map the 3D mesh to 2D which 

transforms the problem of tracing stiffeners in 3D space into the one of finding inter-

sections between a segment and mesh edges, which is easier to deal with. 

Conformal Maps: As shown in Fig. 2, an application 𝒳 mapping a (𝑢, 𝑣) domain 

to a surface is said to be conformal if for each (𝑢, 𝑣), the tangent vectors to the iso-u 

and iso-v curves passing through 𝒳(𝑢, 𝑣) are orthogonal and have the same norm, 

which can be written as: 

      𝑁(𝑢, 𝑣)  ×  
𝜕𝒳(𝑢,𝑣)

𝜕𝑢
=

𝜕𝒳(𝑢,𝑣)

𝜕𝑣
                   (1) 
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where 𝑁(𝑢, 𝑣) denotes the unit normal to the surface. In other words, a conformal map 

is locally isotropic, i.e. maps an elementary circle of the (𝑢, 𝑣)  domain to an elemen-

tary circle of the surface. 

Conformality in a Triangulation: Consider a triangulation 𝓖 = {[1···n], 𝓣 ,(𝒑j) 

𝟏 ≤ 𝒋 ≤ 𝒏}, where [1···n],n ≥ 3 corresponds to the vertices, 𝓣 is a set of n'  triangles 

represented by triples of vertices, and  𝒑𝒋 ∈ ℝ3 denotes the geometric location at the 

vertex j. Each triangle has a local orthonormal basis, where (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), (𝒙𝟑, 𝒚𝟑) 

are the coordinates of its vertices in this basis (i.e., the normal is along the z-axis). The 

local bases of two triangles sharing an edge are consistently oriented. 

 
Fig. 2. Conformal map [20] 

 

By considering the restriction of 𝒳 to a triangle T and applying the conformality 

criterion to the inverse map 𝒰 : (x,y) → (u,v), Equation (1) becomes: 
𝜕𝒳

𝜕𝑢
− 𝑖

𝜕𝒳

𝜕𝑣
= 0                 (2) 

where 𝒳 has been written in a complex number, i.e. 𝒳 = x + iy. According to the theo-

rem on the derivatives of inverse functions, this implies that 

             
𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
= 0                                   (3) 

where 𝒰 = u + iv. 

Since this equation cannot in general be strictly enforced, the violation of the con-

formality condition is minimized in the least squares sense, which defines the criterion: 

                                 (4) 

where 𝐴𝑇is the area of the triangle and the notation |z| stands for the modulus of the 

complex number z. Summing over the whole triangulation, the criterion to minimize is 

then 

             𝐶(𝒯) =   ∑ 𝐶(𝑇)𝑇∈𝒯                          (5) 

After the seeds are obtained on the 3D mesh, they are projected to the 2D space with 

the above LSCM parameterization for further processing.  

4.3 Creation of Voronoi diagram 

A Voronoi diagram is a partition of a plane into regions close to each of a given set of 

seeds. With the algorithm described in 4.1, the seeds on the 3D mesh shown in Fig. 3(a) 

are generated. These seeds are mapped to a 2D space with the algorithm given in 4.2, 

and the following algorithm is used to generate a Voronoi diagram from the generated 

seeds as shown in Figs. 3(b) and 3(c).  

https://en.wikipedia.org/wiki/Partition_of_a_set
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For the input boundary surface S and a given number n of seeds {𝑠𝑖}, 𝑖 ∈ (1, 𝑛) de-

fined in the interior domain of S, a Voronoi tessellation of S is defined to be the collec-

tion of Voronoi cells Ω𝑖, i ∈ (1, n) of these seeds with 

 Ω𝑖 = {x ∈ S | ∥ x − 𝑠𝑖  ∥ ≤ ∥  x − 𝑠𝑗  ∥, ∀𝑗 ≠ 𝑖}         (6) 

In the above equation, ∥∙∥ denotes the Euclidean norm. A Voronoi tessellation is 

called a centroidal Voronoi tessellation (CVT) [21] if each seed coincides with the cen-

troid of its Voronoi cell, where the centroid 𝑐𝑖 of its Voronoi cell Ω𝑖 is defined as  

 𝐜𝑖 =
∫𝑥∈Ω𝑖

 𝜌(𝐱)𝐱𝑑𝜎 

∫𝑥𝑖∈Ω𝑖
 𝜌(𝐱)𝑑𝜎

              (7) 

where 𝑑𝜎 is the area differential, and 𝜌(𝐱) is the density function over the domain S. 

 
(a)                 (b)                     (c) 

Fig. 3. Generation of Voronoi diagram. 

4.4 Stiffener Extraction 

Having created the Voronoi diagram in 2D, the next work is to extract stiffeners from 

the Voronoi diagram. Suppose two ends of an edge of the Voronoi diagram is repre-

sented as 𝑝a and 𝑝b respectively. And the edge intersects with the projected input mesh 

at mi (i = 1,··· ,I ) where I is the number of intersections as shown in Fig. 4. 

 
Fig. 4. Stiffener extraction 

 

The stiffener extraction step takes each edge from the Voronoi diagram. All local 

triangles tl
i are iterated to detect all intersections p1, p2 in all triangles where p1 stands 

for mi, and p2 stands for mi+1 (i=1,2,…,I-1). In order to easily project 2D intersection 

points back to 3D, the obtained intersections p1 and p2 are converted to area coordinates 

L1 and L2 using the local triangle tl
i. After all edges of the Voronoi diagram have been 

processed, all intersections represented in local area coordinates are mapped back to 

3D coordinates. The algorithm is summarized in Algorithm 2. 

5 Size optimization 

With the obtained distribution of stiffeners from previous steps, we further minimize 

the material consumption by finding optimized cross-section sizes of stiffeners. The 
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objective of the size optimization is to minimize the volume of stiffeners. The con-

straints of the size optimization consist of 1) user specified lower bound 𝑤 and upper 

bound 𝑤 for the width of stiffeners, 2) user specified lower bound ℎ and upper bound 

ℎ for the height of stiffeners, and 3) the material strength 𝜎𝑠 for both stiffeners and 

plates.  

 
Considering the above optimization objective and constraints, the problem of the 

size optimization can be formulated as the following constrained minimum problem: 

arg min
𝑤,ℎ

Σ 𝑣𝑜𝑙(ℜ𝑖)             

  𝑠. 𝑡. 
𝑤 ≤ 𝑤 ≤ 𝑤               (9) 

ℎ ≤ ℎ ≤ ℎ 

𝑆ℜ𝑖
<  𝜎𝑠 

𝑆𝑗 < 𝜎𝑠 

where 𝑤 is the width of stiffener cross-section, h is the height of stiffener cross-section, 

𝑆ℜ𝑖
 stands for the stress of stiffener ℜi, and 𝑠𝑗  means the stress of triangle 𝑡𝑗. 

6 Monte-Carlo simulation 

As indicated in Algorithm 1, the seeded triangle ti and probability 𝒑 are both randomly 

generated from a uniform distribution. The stiffener distribution relies on the generated 

seeds from this algorithm which may be a local minimum, not a global optimal solution. 

In order to tackle this problem, a Monte-Carlo simulation algorithm based on Monte-

Carlo stochastic sampling is introduced.  

Monte-Carlo sampling is one of the most classic sampling methods used to solve the 

problems such as evaluation of integrals, physical simulation, optimization and so on. 



8 

With this sampling algorithm, a number of nm Monte-Carlo simulation iterations is 

specified, and then the process of determining the distribution of stiffeners and size 

optimizations of stiffeners is repeated nm times with different randomly generated seeds 

rs to search for a global optimal solution.  

In this research, the number nm of Monte-Carlo iterations is set to be 100. The ex-

periment indicates 100 Monte-Carlo simulation iterations are large enough to obtain a 

global optimal solution. 

7 Results and discussions 

In this section, we introduce the implementation and parameter setting of the proposed 

framework, effects of different probability thresholds and Monte-Carlo simulation, and 

3D printed objects and the stress comparisons before and after they are stiffened with 

the method proposed in this paper.  

7.1 Implementation and parameter setting 

The proposed algorithm is implemented in MATLAB with FEM calculations compiled 

into MEX functions for speed reason. The results are tested on a PC with an Intel Xeon 

E5 CPU and 32GB memory, running on Windows OS. 

The minimal wall thickness allowed by the used printer is 1 mm. Therefore, both the 

w and h are set to be 1 mm. The material strength 𝜎𝑠  of the photosensitive resin used to 

print all the 3D objects is 42 N/m2. The upper bounds 𝑤 and ℎ are taken to be 4 mm. 

7.2 Effect of different probability thresholds 

The probability threshold p* is introduced here to control the spread of the seeds over 

the geometry. When p* is set to a low value, the triangles with small probabilities will 

not be filtered out and marked as seeded ones, causing a wide spread of seeds over all 

triangles. On the contrary, if p* is set to a high value, triangles with the stress less than 

p*𝜎s will never be selected which guarantees the concentration of seeds around critical 

areas.  

Fig. 5 shows the effect of different probability thresholds p* on the generated stiff-

eners. It can be seen a small p* such as p* = 0 in Fig. 5(a) leads to a more uniform 

distribution of seeds over the mesh, while a large p* such as p* = 0.5 in Fig. 5(c) drives 

seeds towards the areas with higher stress and brings in more stiffeners to enhance them. 

 
(a) p* = 0                           (b) p* = 0.3                             (c)  p* = 0.5 

Fig. 5. Effect of different thresholds p* on the distribution of seeds.  
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7.3 Effect of Monte-Carlo simulations  

Figure 6 shows the effect of random number generator seed rs. With the same stress 

map and same number of seeds (ns = 35), the distributions of seeds in Figs. 6(a), 6(b) 

and 6(c) are different, leading to different Voronoi diagrams shown in 6(d), 6(e) and 

6(f) and different stiffener distributions shown in 6(g), 6(h), and 6(i), respectively. 

 
(a)                         (b)                              (c) 

 
                       (d)                               (e)                                   (f) 

 
                              (g)                              (h)                              (i) 

Fig. 6. Effect of Monte-Carlo simulations of a Guscio. The random number gener-

ator seeds rs for each column are 10, 20 and 30 respectively. 

7.4 3D printed objects and stress comparisons 

With the optimization algorithm of stress-guided stiffened objects proposed in this pa-

per, the minimum stiffener volumes of some stiffened objects are obtained, their 3D 

printed models are shown in Fig. 7, and the stress changes with and without the opti-

mized stiffeners are shown in Fig. 8 - Fig. 16, respectively. 

 
Fig. 7. All printed 3D objects 
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Figure 8 shows the stress distributions, stiffeners, and 3D printed model of a stress-

guided stiffened plate. In the figure, (a) depicts the stress distribution in the flat plate 

without stiffeners with a maximum stress of 278.198 MPa, (b) shows the optimized 

stiffeners with a total volume of 418.5148 mm3, (c) gives the stress distribution in the 

flat plate stiffened by the optimized stiffeners with a maximum stress 24.6426 MPa, 

and (d) is a photo of the 3D printed model of the stiffened plate. By applying the opti-

mized stiffeners, the maximum stress reduces from 278.198 MPa to 24.6426 MPa. 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed plate 

Fig. 8. Stress-guided stiffened Plate 

 

The example of a Botanic is given in Fig. 9 to show the stress distributions, stiffen-

ers, and 3D printed model. Fig. 9(a) shows the initial stress distribution of Botanic 

without stiffeners with a maximum stress of 90.927 MPa, (b) shows the optimized stiff-

eners with a total volume of 418.856 mm3, (c) gives the stress distribution in the Botanic 

stiffened by the optimized stiffeners with a maximum stress 33.8706 MPa, and (d) is a 

photo of the 3D printed model of the stiffened Botanic. By applying the optimized stiff-

eners, the maximum stress reduces from 90.927 MPa to 33.8706 MPa. 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed botanic 

Fig. 9. Stress-guided stiffened Botanic 

 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed snail 

Fig. 10. Stress-guided stiffened Snail 
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The stress fields, stiffeners and 3D printed model of a stiffened Snail are shown in 

Fig. 10. In the figure, the initial maximum stress within the Snail without any stiffeners 

is 33.273 MPa as shown in (a). After applying the stiffeners (b) with a total volume of 

84.0108 mm3 to the Snail, the maximum stress shown in (c) drops from 33.273 MPa to 

28.3634 MPa in the final printed 3D model (d). 

 
 

(a) Initial stress   (b) Stiffeners   (c) Final stress    (d) 3D printed dome 

Fig. 11. Stress-guided stiffened Dome 

 

Figure 11 shows the stress distributions, stiffeners, and 3D printed object of a Dome. 

The maximum stress 59.028 MPa in the initial stress distribution (a) without any stiff-

eners is reduced to the maximum stress 34.3583 MPa in (c) by applying the stiffened 

stiffeners (b) with a total volume of 754.704 mm3. (d) is a photo of the 3D printed model 

of the stiffened Dome. 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed bridge 

Fig. 12. Stress-guided stiffened Bridge 

 

The stress fields, stiffeners and 3D printed model of a stiffened bridge are shown in 

Fig. 12. In the figure, the initial maximum stress within the bridge without any stiffeners 

is 94.4982 MPa as shown in (a). After applying the stiffeners (b) with a total volume of 

535.109 mm3 to the bridge, the final maximum stress (c) drops from 94.4982 MPa to 

16.8744 MPa in the final printed 3D model (d). 

 
          (a) Initial stress        (b) Stiffener    (c) Final stress       (d) 3D printed hemisphere 

Fig. 13. Stress-guided stiffened Hemisphere 
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Figure 13 shows the stress distributions, stiffeners, and 3D printed object of a hem-

isphere. The initial stress distribution without stiffeners has a maximum stress of 

42.0198 MPa shown in (a), (b) shows the optimized stiffeners with a total volume of 

1961.93 mm3, (c) gives the stress distribution in the hemisphere stiffened by the opti-

mized stiffeners with a maximum stress 31.2246 MPa, and (d) is a photo of the 3D 

printed model of the stiffened hemisphere. The applied optimized stiffeners help to re-

duce to the maximum stress from 42.0198 MPa to 31.2246 MPa. 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed guscio 

Fig. 14. Stress-guided stiffened Guscio 

 

Figure 14 shows the stress distributions, stiffeners, and 3D printed object of a 

Guscio. The maximum stress 43.8379 MPa in the initial stress distribution (a) without 

any stiffeners is reduced to the maximum stress 29.5158 MPa in (c) by introducing the 

stiffened stiffeners (b) with a total volume of 711.483 mm3. A photo of the 3D printed 

model of the stiffened Guscio is shown in Fig. 14(d). 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed lilium 

Fig. 15. Stress-guided stiffened Lilium 

 

Figure 15 shows the stress distributions, stiffeners, and 3D printed object of a Lilium. 

The initial stress distribution without stiffeners has a maximum stress of 52.0412 MPa 

shown in (a), (b) shows the optimized stiffeners with a total volume of 227.294 mm3, 

(c) gives the stress distribution in the Lilium stiffened by the optimized stiffeners with 

a maximum stress 35.3578 MPa, and (d) is a photo of the 3D printed model of the 

stiffened Lilium. The applied optimized stiffeners help to reduce the maximum stress 

from 52.0412 MPa to 35.3578 MPa. 

 
(a) Initial stress   (b) Stiffener    (c) Final stress    (d) 3D printed leaf 
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Fig. 16. Stress-guided stiffened Leaf 

 

The stress fields, stiffeners and 3D printed object of a leaf are shown in Fig. 16. In 

this example, the initial maximum stress in the leaf without any stiffeners is 54.9437 

MPa as shown in (a). After attaching the stiffeners (b) with a total volume of 112.512 

mm3 to the leaf, the final maximum stress drops from 54.9437 MPa to 20.2208 MPa as 

depicted in (c), and the final printed 3D model is given in (d). 

8 Conclusion and future work 

In this paper, we have developed a stress guided optimization framework to minimize 

the material consumption of 3D printing. The framework consists of the finite element 

analysis to obtain the stress distribution in thin-shell objects, random generation of 

seeds guided by the obtained stress field, mapping the 3D objects and generated seeds 

to a 2D space to create a Voronoi diagram for optimizing the distribution of stiffeners. 

Apart from optimizing the stiffener distribution, the cross-section size of stiffeners is 

minimized to save materials for 3D printing. The Monte-Carlo simulation is introduced 

to optimize the seed generation and achieve a global optimal solution. 

A lot of experiments were carried out to demonstrate the effectiveness and ad-

vantages of the proposed method. The stress comparisons between the thin-shell objects 

with and without stiffeners demonstrate that thin-shell objects stiffened with the opti-

mized distribution and cross-section size of stiffeners significantly reduce the material 

consumption of 3D printed objects.  

This paper assumes the cross-sectional profiles of the stiffeners are the same for each 

model. To achieve a more efficient structure, it is more reasonable to use various cross-

sectional shapes. In the future, one of the aims is to apply various cross-sections and 

obtain stiffened structures with even less materials. 
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