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Abstract

This study makes progress towards a data-driven parameterization for mesoscale

oceanic eddies. To demonstrate the concept and reveal accompanying caveats, we

aimed at replacing a computationally expensive, standard high-resolution ocean

model with its inexpensive low-resolution analogue augmented by the parame-

terization. We considered eddy-resolving and non-eddy-resolving double-gyre

ocean circulation models characterized by drastically different solutions due to the

nonlinear mesoscale eddy effects. The key step of the proposed approach is to

extract from the high-resolution reference solution its eddy field varying in space

and time, and then to use this information to improve the low-resolution analogue

model.

By interactively coupling both the continuously supplied history of the eddy
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field and the explicitly modelled low-resolution large-scale flow, we obtained

the additional eddy forcing term which modified the low-resolution model and

significantly augmented its solutions. This eddy forcing term represents the action

of the eddy field, its coupling with the large-scale flow and is a key dynamical

constraint imposed on the augmentation procedure.

Although the augmentation drastically improved the low-resolution circulation

patterns, it did not recover the robust, intrinsic, large-scale low-frequency vari-

ability (LFV), which is an important feature of the high-resolution solution. This

is by itself an important (negative) result that has significant implication for any

data-driven eddy parameterization, especially, given the fact that we used the most

complete information about the space-time history of the eddy fields. Note, when

we supplied the reference (true) eddy forcing, rather than just the eddy field, the

LFV was recovered. This suggests that the LFV is crucially dependent on the

details of the space-time eddy forcing/large-scale flow correlations, which are not

fully respected by the proposed augmentation procedure.

In order to overcome the deficiency and recover the LFV,we statistically filtered

the augmented low-resolution model solution by projecting it onto the leading

Empirical Orthogonal Functions (EOFs) of the large-scale component of the high-

resolution reference solution. This operation allowed us to remove spurious effects

associated with higher EOFs. We tested and confirmed that without using the data-

driven eddy information this filtering alone cannot augment the low-resolution

solution; but in conjunction with the eddy information, it produced desirable

outcome.

Moreover, as a natural step towards parameterization, we took advantage of

data-driven stochastic inverse modelling to obtain inexpensive emulators of the
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eddy field and showed generally promising results of augmenting the coarse-

resolution model with the obtained emulators. Our results showed that obtaining

the LFV characteristics for the eddy parameterization, which is already capable of

reproducing the large-scale flow pattern, should become a standard parameteriza-

tion requirement, but it can be challenging to meet.

Keywords: Ocean dynamics, Mesoscale eddies, Eddy forcing, Parameterizations

1. Introduction1

Numerical model solutions of complex oceanic flows are highly sensitive to2

the spatial grid resolution (Shevchenko and Berloff, 2015; Shevchenko et al.,3

2016). If the resolution is too coarse for representing mesoscale eddy dynamics,4

the resulting errors can be accumulated on large scales, which are nominally well-5

resolved even with dynamically coarse grids. On the one hand, this problem is now6

well understood in the oceanmodeling community (Marshall et al., 2012; Bachman7

et al., 2017); on the other hand, resolving all the dynamically important scales is8

an insurmountable task, and many parameterizations aiming to circumvent this9

have been proposed and implemented (Gent and McWilliams, 1990; Frederiksen,10

1999; Frederiksen et al., 2012; Porta Mana and Zanna, 2014; Berloff, 2015, 2016;11

Zanna et al., 2017; Berloff, 2018; Mak et al., 2018; Ryzhov et al., 2019). However,12

there is still no unified framework because different approaches are designed to13

account for different processes, and also each parameterization accounts for the14

effects of a certain range of scales.15

Progress with parameterizations is hampered because the ocean circulation16

does not have spectral gaps between different ranges of scales; however, many17

theoretical insights rely on simple conceptual models with clear scale separation18
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(e.g., the Lorentz toy model (Majda et al., 1999; Fatkullin and Vanden-Eijnden,19

2004; Kravtsov et al., 2005; Crommelin and Vanden-Eijnden, 2008; Arnold et al.,20

2013; Chorin and Lu, 2015)). Furthermore, different scales are nonlinearly tangled21

and accounting for this by understanding their interactions is difficult (Bachman22

et al., 2017) but ultimately needed. The above-mentioned two aspects make the23

problem of flow scale decomposition for the purposes of parameterizations open24

and important. For now, the main constraint for a flow decomposition is rather25

intuitive and vague: given the resolution of a coarse-grid model, we assume that26

the unrepresented and dynamically distorted scales range from the Kolmogorov27

scale to about 10 intervals of the computational grid; and the scales larger than the28

grid interval are increasingly better accounted for by the model dynamics.29

More specifically, in this paper we consider the classical, wind-driven, mid-30

latitude ocean circulation model featuring two large-scale counter-rotating gyres31

with the western boundary currents, and with their intense eastward jet exten-32

sion that separates the gyres. Our focus is on the eastward jet region, where33

the solutions of the model most critically depend on the spatial grid resolution34

(Shevchenko and Berloff, 2015). With an inadequate resolution, misrepresenta-35

tion of the mesoscale eddy dynamics results in an underdeveloped and even absent36

eastward jet extension, whereas with a proper resolution, the eastward jet reappears37

as a pronounced, meandering and vortex-shedding large-scale feature character-38

ized by vigorous eddy dynamics and intensive eddy/large-scale interactions. Note,39

that the flow decomposition into the large- and small-scale (i.e., mesoscale eddy)40

components is not unique because of both the absence of the spectral gap and the41

highly nonlinear dynamics — this complicates the analyses and parameterizations42

of the eddy effects.43
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Our goal is to improve the analogue coarse-resolution double-gyre model by44

feeding it with information obtained from solutions of the high-resolution model,45

which is treated as the reference truth or the observed data. Ideally, this data-46

driven approach should enable us to reproduce in the coarse-resolution model the47

main characteristics of the high-resolution reference solution: (a) the large-scale48

circulation pattern (specifically, the eastward jet extension with its adjacent recir-49

culation zones) and (b) its intrinsic, large-scale low-frequency variability (LFV).50

As we show in this paper, the latter characteristic proves more elusive to rectify,51

even if the augmentation makes use of the full eddy information. To be precise,52

one should aim at comparing the augmented coarse-resolution solution with the53

large-scale component of the high-resolution solution, which is obtained by sta-54

tistical filtering. Nevertheless, we focus on rectifying the large-scale circulation55

patterns and LFV, which are interconnected, that are clearly transparent in the full56

high-resolution solution as well, so we use it for the comparison.57

Recently, Ryzhov et al. (2019) introduced a novel approach for augmenting58

the coarse-resolution analogue model with data inferred from the high-resolution59

truth; it involves the following main steps: (i) running the high-resolution model,60

saving the solution data and verifying that the analogue low-resolution model61

significantly misrepresents certain key features of the large-scale circulation; (ii)62

decomposing the high-resolution data into some large-scale and small-scale (eddy)63

fields; (iii) producing the eddy forcing term, which is based on the decomposed64

fields and provides an important dynamical constraint, in order to exert extra65

forcing and augment the low-resolution model in a dynamically consistent way.66

Overall, an advantage of this approach is in combining its data-driven nature67

with the transparent dynamical constraint, and this is strengthened by significant68
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flexibility of its practical implementations.69

In this paper our goal is to extend the approach of (Ryzhov et al., 2019) by70

significantly reducing and simplifying the information supplied from the high-71

resolution reference truth. Now, instead of augmenting the model with the true72

eddy forcing history coarse grained on the low-resolution grid, we supply only the73

true eddy field (and its statistical emulation by a space-time stochastic process in a74

separate experiment). This means that the eddy forcing term is now interactively75

and continuously calculated online from the supplied eddy field history and the76

dynamical low-resolution solution, which is treated as the prognostic large-scale77

circulation. The approach is based on the implicit assumption that the low-78

resolution model, if it is properly augmented, is adequate for representing the79

large-scale circulation patterns and the LFV.80

2. Double-gyre model81

2.1. Governing equations82

We use the same model configuration as in (Ryzhov et al., 2019). The model83

has been extensively tested both in eddy-permitting and eddy-resolving regimes84

(Marshall et al., 2012; Maddison et al., 2015; Shevchenko and Berloff, 2015;85

Shevchenko et al., 2016; Ying et al., 2019). A brief description is as follows. The86

quasi-geostrophic (QG) potential vorticity (PV) evolution in 3 stacked isopycnal87

layers (i = 1..3 from top to bottom) with densities ρi (ρ1 = 1000, ρ2 = 1001.498,88

ρ3 = 1001.62 kg m−3) and heights Hi (H1 = 250, H2 = 750, H3 = 3000 m) is89

given by90

∂qi
∂t

+ J(ψi, qi) + β
∂ψi
∂x

=
W (x, y)

ρiHi

δ1i − γ∆ψiδ3i + ν∆2ψi , (1)
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where qi is the PVanomaly,ψi is the streamfunction, J(·, ·) is the Jacobian operator,91

δij is the Kronecker delta, ∆ is the horizontal Laplacian, β = 2 · 10−11 m−1 s−1 is92

the planetary vorticity gradient, ν is the eddy viscosity (varies for different spatial93

resolutions used in the study), γ = 4 · 10−8 s−1 is the bottom friction parameter.94

The basin is north-south oriented square −L ≤ x, y ≤ L, where 2L = 3840 km.95

The upper-ocean layer is forced by the stationary asymmetric wind stress curl96

W (x, y) =

 −πτ0A
L

sin π(L+y)
L+Bx

, y ≤ Bx ,

πτ0
LA

sin π(y−Bx)
L−Bx , y > Bx ,

(2)

where the asymmetry, tilt, and wind stress magnitude parameters are A = 0.9,97

B = 0.2, and τ0 = 0.08 N m−2, respectively.98

The PV anomalies and streamfunctions are related through99

q1 = ∆ψ1 + S1(ψ2 − ψ1) ,

q2 = ∆ψ2 + S21(ψ1 − ψ2) + S22(ψ3 − ψ2) ,

q3 = ∆ψ3 + S3(ψ2 − ψ3) , (3)

where the stratification parameters S1, S21, S22, S3 are chosen to yield the first and100

second baroclinic Rossby deformation radii of 40 and 23 km, respectively. The101

boundary conditions are no-flow-through and partial-slip (with the partial-slip102

length scale equal to 120 km); the mass is conserved in each layer. The model is103

solved using the high-resolution CABARET method that features a second-order,104

non-dissipative and low-dispersive, conservative advection scheme (Karabasov105

et al., 2009).106

Given an adequately fine spatial resolution, the model is capable of resolving107

the eddies that maintain the well-developed eastward jet extension of the western108

boundary current. Otherwise, the eastward jet extension is under-predicted or even109
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absent because the backscatter process of the energy transfer from the eddies to110

the large-sale flow is under-resolved by the model (Jansen and Held, 2014; Jansen111

et al., 2015; Shevchenko and Berloff, 2016; Berloff, 2018).112

2.2. Differences of flow structures in eddy-resolving and eddy-permitting regimes113

We consider two spatial grid resolutions for simulating the eddy-permitting114

(low-resolution) and eddy-resolving (high-resolution) flow regimes: 129 × 129115

and 513 × 513, respectively. For resolving the western boundary layer (Berloff116

and McWilliams, 1999), the low-resolution configuration is run with the viscosity117

ν = 50 m2 s−1, whilst the high-resolution one has ν = 2 m2 s−1. In both cases,118

the model is first spun-up for 100 years until a statistically equilibrated state is119

achieved; then, its daily output is saved for another 90 years for further analyses.120

The differences in the resulting flows are well-documented (Shevchenko and121

Berloff, 2015; Ryzhov et al., 2019), so here we only note that the low-resolution122

model does not induce a proper eastward jet extension (Fig. 1a), whereas the123

high-resolution one features a well-pronounced, eddy-driven eastward jet with124

the adjacent recirculation zones (Fig. 1b). Throughout the paper we make use125

of the standard deviation instead of the time-mean when address the problem of126

rectifying the large-scale circulation patterns. The standard deviation accentuates127

more saliently the differences also easily seen in time-mean patterns.128

Not only the spatial patterns but also the temporal variabilities of the reference129

solutions are different. To reveal details of the latter, we used the Data-Adaptive130

Harmonic Decomposition (DAHD) method (Chekroun and Kondrashov, 2017;131

Kondrashov et al., 2018), which characterizes a complex and multiscale spatio-132

temporal variability by extracting spatial data-adaptive harmonic modes (DAHMs)133

such that each one of them oscillates at a single temporal frequency and is spatially134

8



(a) (b)

Figure 1: Standard deviation of the upper-layer PV anomaly (q1) produced by the (a) low-resolution

(1292) and (b) high-resolution (5132) models. The solutions emphasise the crucial effect of the

spatial resolution. Nondimensional color scale units (PV is normalized using the length scale

3× 104 m, corresponding to the low-resolution grid interval, and the velocity scale 0.01 m/s) are

the same across all the figures.
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orthogonal to all other modes at that frequency (see Appendix A for details).135

The DAHD has been successfully applied to characterize variabilities in different136

geophysical datasets including ocean circulation (Kondrashov et al., 2018; Ryzhov137

et al., 2019; Kondrashov et al., 2020), sea ice (Kondrashov et al., 2018a,b), and138

space physics (Kondrashov and Chekroun, 2018).139

Here, we applied the DAHD to the upper-ocean PV anomaly fields of the140

reference solutions. To make our analysis computationally tractable, first, these141

fields were compressed using the standard principal component analysis (PCA)142

(Preisendorfer, 1988) to retain the leading d = 2000 empirical orthogonal function143

(EOF) modes. These modes capture 98% and 95% of the variance in the low- and144

high-resolution solutions, respectively. Next, the original PV anomaly fields were145

projected onto the retained EOFs to obtain the corresponding principal components146

(PCs). These d = 2000 PCs were used as inputs for the DAHD frequency-domain147

formulation, which is tailored for analysis of high-dimensional datasets (Chekroun148

and Kondrashov, 2017; Ryzhov et al., 2019) and based on the singular value149

decomposition (SVD) of the d × d symmetrized complex cross-spectral matrix150

S(f):151

Sp,q =

ρ̂
p,q(f) if q ≥ p,

ρ̂q,p(f) if q < p,

(4)

where 1 ≤ p, q ≤ d; and ρ̂p,q(f) is the Fourier transform of the double-sided cross-152

correlation coefficients ρ(p,q)(m) estimated for all pairs of the channels (PCs) p153

and q, and for the time lag m, up to its maximum M − 1; i.e. −(M − 1) ≤154

m ≤ M − 1. Each singular value σk(f) of S(f) is associated with a pair155

of negative/positive eigenvalues (λ+k (f), λ−k (f)) obtained by using the standard156

DAHDtime-domain formulation and an eigen-decomposition of amatrix formedof157
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the elements ρ(p,q)(m) (Kondrashov et al. (2018); Ryzhov et al. (2019); Kondrashov158

et al. (2020)):159

λ+k (f) = −λ−k (f) = σk(f), 1 ≤ k ≤ d, (5)

The DAHD power spectrum is obtained by plotting eigenvalues |λ(f)| which160

represent energy conveyed by associated DAHMs; the frequency f is equally161

spaced with the Nyquist interval [0, 0.5] across theM values:162

f = 0.5
(`− 1)

M − 1
, ` = 1, . . . ,M . (6)

The adequate spectral resolution in the low-frequency part is achieved by163

considering 30K days long PCs, sub-sampled every 5 days. Thus, we have N =164

6000 samples and use the largest possible embedding windowM = N/2 = 3000165

for the maximum spectral resolution in the frequency domain.166

Despite the overall similarity of the DAHD spectra shown in Fig. 2 and char-167

acterized by the bands of higher values separated by the gaps from the broadly168

distributed bands of lower values, as well as by the power-law behaviors in the high-169

frequency range, the low-resolution solution spectrum has significantly smaller170

magnitudes, which indicate the reduced eddy activity. In the upper band, there171

are two |λ| values at each frequency, each of them corresponding to a negative-172

positive pair (see Eq.5). The observed gap in the spectrum can be interpreted as a173

dominance of a particular physical mechanism of energy distribution and transfer174

across all the temporal frequencies. However, the exact interpretation of the spec-175

tra is significantly hindered by the nonlinear character of the underlying physical176

interactions. Here, we use the spectra to diagnose the LFV and its profound effect177

on the spectrum.178

The striking difference is the pronounced LFV in the high-resolution solution179

(see the blue dots in Fig. 2b at the period ≈ 17 years), and its complete absence180
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(a) (b)

Figure 2: Temporal spectral content of the reference solutions with: (a) 1292 and (b) 5132 grids.

Shown are the 30 largest values of |λ| per frequency, as given by the DAHD power spectrum of the

upper-layer PV anomalies. The blue dots in panel (b) indicate maximum of the broadband spectral

peak corresponding to the low-frequency variability (LFV)≈ 17yr in the high-resolution solution;

this LFV is absent in the low-resolution solution (panel (a)).
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in the low-resolution solution (Fig. 2a). This interdecadal LFV was studied181

elsewhere (Berloff and McWilliams, 1999; Berloff et al., 2007; Shevchenko et al.,182

2016), and here we just note that the quality of an augmented low-resolution model183

can be tested by the model’s capability to simulate this LFV.184

2.3. Low-frequency variability as an indicator of properly resolved small scales185

As we pointed out in the previous section, one of the most remarkable dynami-186

cal features which differentiate the low- and high-resolution solutions is the LFV in187

the latter. The LFV manifests itself as the total energy modulation with the period188

≈ 17 years (Berloff and McWilliams, 1999; Kondrashov and Berloff, 2015). A189

peculiar characteristic of the LFV is that it appears only if the double-gyre model190

resolves the eddies and hence activates the essential eddy backscatter mechanism191

(Berloff et al., 2007; Shevchenko and Berloff, 2016). The backscatter here means192

that the energy from the small scales is transferred to the large scales and thus193

impacts the large-scale circulation. If the spatial resolution is too coarse (even in194

eddy-permitting regimes), the small scales are not resolved and in turn the large195

scales are also under-saturated, which introduces many inconsistencies in the flow196

when comparing solutions corresponding to differing spatial resolutions.197

Ryzhov et al. (2019) demonstrated that the low-resolution model is in principle198

capable of inducing the LFV, provided that it is augmented with the eddy forcing199

history provided by the high-resolution data. Our goal now is to reduce the amount200

of the information inferred from the high-resolution data, but still be able to capture201

the LFV and induce it in the augmented low-resolution model. Thus, instead of202

using the complete high-resolution data for estimating the true eddy forcing and203

using it to augment the low-resolution model, we intend to use only the true eddy204

component of the flow, and to calculate the augmenting eddy forcing interactively205
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by using the large-scale flow predicted by the augmented low-resolution model.206

3. Scale decomposition of the high-resolution solution207

The high-resolution solution, which is treated as the truth, should be decom-208

posed into a combination of large-scale and small-scale (eddy) components. The209

former one should be adequately captured by an augmented low-resolution model;210

whilst the latter one may remain largely unresolved. However, we know that the211

true eddy forcing adequately augments the low-resolution model, and this is a212

necessary condition for our next steps.213

An issue of significant concern is that the large-scale/eddy flow decomposi-214

tion, which is central to the proposed augmentation scenarios, is neither unique215

nor clearly constrained by dynamical or statistical arguments. For now, various216

methods assume (Hasselmann, 1988; von Storch et al., 1995; Schmid, 2010; Li217

and von Storch, 2013; Dijkstra, 2013, 2018; Viebahn et al., 2019; Agarwal et al.,218

2020) that the implemented flow decomposition (i.e., scale separation) is practi-219

cally meaningful, and then build upon this assumption; our work is fully within220

this framework.221

A formal scale decomposition for an arbitrary 2D time-dependent field Ξ (in222

our case, Ξ stands for the layer-wise streamfunctions ψi and PV anomalies qi)223

reads224

Ξ (x, y, t) = Ξ (x, y, t) + Ξ′ (x, y, t) , (7)

where the overbar and prime indicate the large-scale and eddy components, respec-225

tively. With this in mind, we decomposed the high-resolution streamfunctions ψi226

by the moving-average square filter of sizeW ; and the corresponding PV anoma-227

lies are obtained by differentiation (akin eq. (3)). We justify our choice of W228
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by focusing on mesoscale eddies, which are scaled by the first baroclinic Rossby229

deformation radius, but we also admit that the problem contains many length scales230

and they vary geographically making the flow decomposition a difficult and open231

problem. The problem stems from the fact that for linear flows (when all the active232

scales are well separated in the Fourier spectra), the filter size should linearly de-233

pend on the ratio between the fine - and coarse - resolution grids. However, in our234

case, there is no separation between the active scales and the filter size is chosen235

based on the expected dynamical features we would like to filter out assuming the236

coarse-resolution model being unable to resolve them. In our case, these features237

are mesoscale eddies with length scales of order of the first baroclinic Rossby238

deformation radius (≈ 10− 100 km).239

Preliminary analyses (Ryzhov et al., 2019) suggest that the filter size ofW = 21240

of high-resolution grid intervals (≈ 150 km in physical units) is adequate, but we241

also tested W = 41 as a tribute to the unavoidable sensitivity analysis. The242

eddy fields (calculated on the high-resolution spatial grid 513× 513) were coarse-243

grained to be fed into the low-resolution (129× 129) model by averaging over four244

adjacent grid cells in each spatial direction.245

Guided by the fact that the LFV is eddy-driven, we substituted (7) into the246

governing equation (1) and for each layer obtained:247

∂qi
∂t

+ J(ψi, qi) = Fi
(
ψi, qi, ψ

′
i, q
′
i

)
+Hi(ψi, qi) + Li(ψ′i, q′i) , (8)

where the operatorHi contains all terms involving only the large-scale components;248

the linear operatorLi contains the eddy tendency term and all linear terms involving249

the eddy components; and the remaining term,250

Fi = −
(
J(ψi, q

′
i) + J(ψ′i, qi) + J(ψ′i, q

′
i)
)
, (9)
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is the eddy forcing (Berloff, 2005) due to nonlinear coupling of the large-scale and251

eddy components. The linear eddy termLi can be neglected, since its contribution252

to the eastward jet (as we checked) is about 2% of that of the eddy forcing.253

Ryzhov et al. (2019) established that the eddy-forcing term, when properly254

preprocessed with respect to the low-resolution dynamics, can be effectively added255

into the low-resolution model to improve significantly the mean flow and transient256

(spectrally treated) characteristics of its solutions. In this work, our goal is to257

reduce the amount of the high-resolution information by feeding the eddies rather258

than the eddy forcing information (which depends on both the eddies and large259

scales) into the augmented model.260

4. Feeding the eddy field into the low-resolution model261

With only the eddies being fed to the augmented model, the external infor-262

mation is subtler, which makes it harder for the low-resolution model to resolve263

desired dynamics resembling the fine-resolution reference solution such that the264

eastward extension of the jet is noticeably rectified and the low-frequency variabil-265

ity is present. At the same time, gauging the possibility of reducing the amount266

of data necessary for successful parameterization and errors introduced due to the267

incompleteness of the data is practically important.268

The governing equations for the augmented low-resolution model are, thus:269

∂qi
∂t

+ J(ψi, qi) = Fi (ψi, qi, ψ′i, q′i) +Hi(ψi, qi) , (10)

where the small-scale (eddy) fields ψ′i, q′i are taken from the high-resolution data,270

and the prognostic low-resolution, large-scale variables ψi, qi are continuously271

updated online during numerical integration of the model. We used all 90 years272
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of the daily output to extract the eddy fields and then linearly interpolated them in273

time in-between the data records. An important issue of determining the minimal274

length of the eddy history for the quality augmentation of the low-resolution model275

is left outside the scope of the paper and will be addressed elsewhere.276

We assessed the quality of the augmented low-resolution solution by looking277

into the simulated eastward jet region, focusing on its large-scale circulation pat-278

terns (evinced by the standard deviation in time) and LFV. The augmented-model279

eastward jet has improved but is still substantially different from the reference truth,280

as can be seen by comparing Fig. 3a and Fig. 1a. Similarly large discrepancies are281

seen in the augmented-model DAHD spectrum (Fig. 3b), which completely lacks282

the LFV. The interactive eddy forcing (Fig. 4a) can be significantly less efficient283

because it is noticeably weaker than the true eddy forcing (Fig. 4c). We checked284

this by considering the more energetic eddy field extracted with the larger filter size285

W = 41 (Fig. 4b), but although the resulting eddy forcing is as intensive as the286

true one, the augmented model is still incapable of generating the LFV as implied287

by the DAHD spectrum (Fig. 3d). From this, we conclude that feeding even the288

most complete eddy fields into the model is still not sufficient for augmenting the289

solution. So, one has to use additional information from the high-resolution data290

to induce the LFV.291

It has been already established (Ryzhov et al., 2019) that the true (off-line)292

eddy-forcing (Fig. 4b) generates the LFV in the augmented solution; therefore,293

we know that one way or another the model can be successfully augmented with294

the right amount of the extra information. One way to add this information is295

by interactively projecting the augmented solution onto the leading, true large-296

scale EOFs, and this can be viewed as a weak statistical constraint imposed by297
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(a) (b)

(c) (d)

Figure 3: Statistics of the upper-layer PV anomaly field for the low-resolution augmented solution

(1292 grid) obtained by feeding the true eddy field extracted with theW = 21 filter): (a) standard

deviation showing partial reconstruction of the eastward jet extension; (b) temporal spectral content

provided by DAHD; the LFV (blue dots) is not reproduced, compared to the reference truth in

Fig. 2b. Panels (c)-(d) are same as (a)-(b), but for the eddies extracted with the filter sizeW = 41;

the eastward jet extension is now well reproduced, but there is still no LFV.
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(a) (b)

(c)

Figure 4: Standard deviations of different eddy forcings: (a) on-line eddy forcing from the solution

augmented with eddies extracted with filter sizeW = 21; (b) same as (a), but forW = 41; (c) true

(offline) eddy forcing, as in Ryzhov et al. (2019)). The on-line eddy forcing in (a) is about 4 times

weaker than the off-line forcing, which is one of the reasons for the augmentation failure.
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the filtering. The corresponding set of EOFs are obtained through the standard298

singular value decomposition, such that299

Q
i

HR = PCi ·EOF i , (11)

where Qi

HR is the large-scale true PV anomaly in the i-th layer and in the matrix300

form rearranged so, that the rows correspond to the spatial degrees of freedom,301

whilst the columns represent their time evolutions; PCi = U i · Si, EOF i =302

(V i)
∗, whereU i, Si, V i are the left eigenvector, diagonal singular value, and the303

right eigenvector matrices, respectively; ·∗ is matrix transpose.304

Projection of the on-line augmented PV anomalyQi onto some nEOFsEOF i
n305

takes the form:306

Q
i

n = Qi ·
(
EOF i

n

)∗ ·EOF i
n , (12)

and the updated fieldQi is used on the next time step of the model (Eq. 10).307

There are two key parameters at the projection step: the number n of EOFs308

and the time interval Tproj between successive projections; these parameters are309

chosen empirically, for optimizing both the results and computational costs. We310

found by sensitivity experiments that the number of the EOFs should be relatively311

large, and 2000 out of 1292 = 16641 total EOFs are good enough; and Tproj should312

not be much longer than 100 model days, used here as the benchmark value. With313

these parameters, the augmented model recovered not only more than 95% of the314

LFV spectral power but also the correct frequencies. We varied the number of315

the EOFs and obtained qualitatively similar results within the 500–2000 range,316

and the lower values degrade the solution. Since the EOF projections are made317

infrequently, the filtering process is computationally inexpensive.318

The additionally filtered model solutions now exhibit the LFV as diagnosed319

by DAHD spectra shown in Fig. 5a for W = 21 and Fig. 5b for W = 41. It is320
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worth noting that even in the solution augmented with weaker eddies (W = 21)321

the LFV is also reproduced, albeit it is not as energetic as with the stronger eddies322

(W = 41). The eastward jet extension is also reproduced similarly to the case323

without large-scale filtering (see Fig. 3).324

(a) (b)

Figure 5: The DAHD temporal spectra of the upper-layer PV anomaly field in augmented and

additionally filtered model solutions: (a)W = 21 (weaker eddies) ; (b)W = 41 (stronger eddies).

The LFV (see the peaks with the blue dots) is now present in both solutions, and it is more intensive

with stronger eddies.

In addition to the detailedDAHD spectral space-time diagnostic of PV anomaly325

field, it is also useful to consider the manifestation of LFV in the total poten-326

tial energy, which is a global characteristic of the solution. Figure 6 shows327

the Fourier spectral analysis of the potential energy time series by the standard328

Multitaper method (Percival and Walden, 1993), which reveals broadband LFV329

peaks at frequency ≈ 0.06 year−1 (about 17 years period), both for the refer-330

ence high-resolution and augmented low-resolution solutions, whilst the reference331

low-resolution solution features no LFV with a mostly flat spectrum. Due to the332
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projection, the augmented solution acquires oversaturated high frequencies near333

the LFV peak; this may be dealt with by carefully selecting the projection basis of334

the filtering procedure so to filter out spurious small-scale effects and is beyond the335

scope of the current study as we aimed at imbuing the coarse-resolution solution336

with the correct LFV.337

Figure 6: Power spectrum density (PSD) of the potential energy by theMultitapermethod, featuring

the energetic and broadband LFV with the main period of ≈ 17 years, in both the reference high-

resolution solution and augmented low-resolution solution (supplied by the eddy field obtained

with filterW = 41 and periodically projected onto 2000 EOFs of the large-scale "truth" basis), as

opposed to the lack of such LFV in the reference low-resolution solution.

Finally, we would like to emphasize that feeding the eddies to induce the aug-338

menting eddy forcing in the low-resolution model (Eq. 9) is absolutely necessary339

for generating the LFV, and we verified this by turning it off. If the filtering based340

on the EOF projection procedure is applied alone, it does not augment the solu-341
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tion thus confirming that the main component of the parameterization is the eddy342

forcing.343

5. Statistical emulation of the eddy field344

Here we developed data-driven statistical emulators of the true eddy field for345

feeding them into the low-resolution model instead of the original high-resolution346

eddy fields. The number of statistical emulation methods has recently surged,347

including stochastic approaches in climate science (Penland and Matrosova, 2001;348

Strounine et al., 2010; Franzke et al., 2015; Kondrashov et al., 2015; Chen et al.,349

2016; Palmer, 2019; Seleznev et al., 2019; Foster et al., 2020), as well as other350

machine-learning (deep learning) methods developed for fluid dynamics appli-351

cations (Brunton et al., 2020; Bolton and Zanna, 2019). The detailed analysis352

of emulated eddy fields is beyond the scope of this study, and in the context of353

assessing the skill of our emulators we focus solely on one of the central problems354

in climate ocean model simulations, namely, the correct rectification of the eddy355

field’s impact on the large-scale circulation. Thus we aimed for the solution of356

the low-resolution model, when augmented by an emulated eddy field, to be able357

to reproduce the long-term statistics of the high-resolution reference solution. We358

utilized the same skill measures as for the true eddy field explored in previous359

section. These are the geometrical shape of the large-scale circulation patterns, as360

well as the manifestation of the LFV.361

We used a 30000-day long high-resolution dataset of the eddy stream function362

Ψ̂ for the three layers combined. The dataset is then coarse-grained onto the low363

spatial resolution (129 × 129), and further compressed by the PCA. We retained364

the leading 1000 PCs that account for ≈ 98% of the variability.365
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As a basic and most straightforward emulator, we considered a linear stochastic366

regression model (Kravtsov et al., 2005, 2006; Kondrashov et al., 2005, 2015) in367

the following discrete form:368

ξt+1 − ξt = Aξt + r
(0)
t , (13)

where t is the time index (in days), ξ is a vector of PCs, and A is a matrix of369

the regression coefficients. While Eq. 13 can include additional model layers of370

hidden variables obtained in a sequential regression procedure, it is not necessary371

here since the regression residual r(0)t is well approximated by a spatially correlated372

white noise, r(0)t = ΣẆ , whereW is a Wiener process and Σ is the Cholesky373

decomposition of the correlation matrix of the residuals from the model fitting.374

The emulated PCs are obtained by initializing the model from the first data375

point of the training interval and by running it for 30000 days. The eddy field is376

reconstructed in space from the emulated PCs by using the EOF basis, and then377

it is fed into the low resolution model in our augmentation procedure. While this378

basic emulator of the eddy field yields a fairly reasonable geometrical structure of379

the jet extension in the augmented solution (Fig. 7a), it does not induce the LFV380

as evident by the flat spectral density curve of the full potential energy (Fig. 7b),381

which is also similar to the non-augmented low-resolution solution.382

A closer analysis shows that the lack of the LFV in the augmented solution383

is related to the spectral content of the emulated eddy field, in which energy at384

low frequencies is underestimated in comparison to the true eddy field. In turn,385

because the LFV in the true eddy field is considerably weaker than in the true386

reference solution, it is challenging to capture it by an emulator based on PCA387

PCs, which typically mix different temporal scales.388

The DAHD method (sec. 2.2 and Appendix A) provides a novel emulation389
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alternative, as it combines identification of frequency-ranked modes and their390

efficient modelling. It extracts pairs of data-adaptive harmonic modes (DAHMs)391

that form an orthonormal set of spatial patterns oscillating harmonically in time,392

and, thus, represent global monochromatic space-time filters. Projection of the393

dataset onto DAHMs yields pairs of narrowband time series of data-adaptive394

harmonic coefficients (DAHCs), which are modulated in amplitude, but do not395

mix temporal scales.396

Chekroun andKondrashov (2017) showed that the Stuart–Landau (SL) stochas-397

tic oscillator – a nonlinear oscillating system near a Hopf bifurcation and driven398

by an additive noise, is best suited to model amplitude modulations and fre-399

quency for the narrowband and in-phase quadrature time series of a DAHC pair400

(ζ+t (f), ζ−t (f)), associated with a given spectral pair (λ+(f), λ−(f)) (see Sec. 2.2401

and Appendix B), here written in a compact formwith a complex number notation:402

zt+1(f)− zt(f) = (µ(f) + iγ(f))zt(f)− (1 + iβ(f))|zt(f)|2zt(f) + εt , (14)

where zt(f) = ζ+t (f) + iζ−t (f), µ(f), γ(f) and β(f) are real parameters and εt is403

an additive noise. Furthermore, multiple SL-oscillators associated with the same404

non-zero frequency are linearly coupled and synchronized across frequencies by405

the pairwise-correlated white noise, while the model parameters are estimated by406

a regression with constraints (see Appendix B for numerical details). The original407

dataset with its multiple time scales can be modeled in a computationally efficient408

manner since the contribution of each temporal frequency is simulated in parallel.409

Kondrashov et al. (2018) developed a stochastic DAHD emulator for the LFV410

in the model considered, and here we extended these results to the eddies. We411

used the leading d = 100 PCs of the eddy streamfunction capturing ≈ 70% of the412

variance and applied the DAHD with the embedding window of M = 100 days.413
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Then, we fit the model of coupled d = 100 stochastic oscillators for the DAHCs414

and obtained their emulations for the M = 100 frequencies. After emulated415

DAHCs were back-transformed into the space-time eddy field by using DAHMs416

and EOFs, and combined across all the emulated frequencies, we fed the outcome417

into the augmented model. The geometrical shape of the augmented solution is418

again reproduced fairly well, and it is very similar to Fig. 7a (not shown for419

brevity). Furthermore, since the LFV is now better captured in the emulated eddy420

field (compare to the high-resolution "truth"), it is also induced in the augmented421

solution (Fig. 7b), albeit it is less energetic then when the true eddy field is used422

(see Fig. 6).423

(a) (b)

Figure 7: (a) Standard deviation of the upper-layer PV anomalies in the augmented solution with

an artificial eddy field emulated by a PCA-based linear model (Eq. 13) (the periodical projection

onto the 2000 EOFs of the large-scale "truth" basis is applied as well). The pattern of the standard

deviation for the case of the DAHDmodel (Eq. 14) is similar (however, its magnitude is noticeably

larger) and is not shown for brevity; (b) Power spectrum densities of the potential energy by the

Multitapering method: the LFV is reproduced much better in the case of the DAHD-emulated eddy

field.
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6. Conclusions424

In this paper we focused on improving solutions of an eddy-permitting low-425

resolution model by augmenting it with the information from the reference high-426

resolution model solution, which was treated as the observed truth. Our approach427

can be viewed as a basis for developing data-driven parameterizations for the428

mesoscale oceanic eddies and their effects, and in perspective for other types of429

turbulent fluid motions. Ultimately, the parameterization should involve statistical430

emulations of the key unresolved or under-resolved flow features. We adopted a431

systematic approach towards such a parameterization framework; this paper is the432

second one in the series, after (Ryzhov et al., 2019).433

For the ocean circulation model, we considered the classical, wind-driven434

double gyres in the quasigeostrophic approximation with 3 active isopycnal layers,435

and in an idealized, closed, midlatitude basin configuration. Solutions of the436

double-gyre model are notoriously sensitive to the spatial grid resolution, which437

is typical for the general ocean circulation models. Two prominent flow features,438

which are crucially dependent on the resolution, are in the focus of our study:439

(1) the eastward jet extension of the western boundary currents with its adjacent440

recirculation zones, and (2) the intrinsic, large-scale low-frequency (interdecadal)441

variability of the gyres that is most pronounced in the eastward jet region. Both of442

these features are essentially mesoscale eddy-driven, therefore, for their dynamical443

representation in the model the eddies have to be either properly resolved, which444

is computationally expensive, or adequately parameterized in terms of a simpler445

model.446

In the high-resolution reference solution both of the key features are well447

represented, whereas the low-resolution reference solution lacks any of them. Mo-448
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tivation for including (1) is straightforward, because any eddy parameterization449

is, first of all, tested for its ability to simulate the large-scale climatological fields.450

Motivation for including (2) is to test the ability of the parameterization to simulate451

intrinsic climate variabilities similar to the relatively well understood interdecadal452

variability featured in our model. Our hope is that testing mesoscale eddy param-453

eterization skills will eventually include climate variability signals as the standard454

test beds.455

Our model augmentation procedure involves the following main steps. First,456

the high-resolution (true) solution is decomposed into large-scale and small-scale457

(eddy) flow components by simple moving-average filtering in space. This flow458

decomposition is neither unique nor obviously constrained by dynamical or sta-459

tistical arguments. Here, we only assumed that the filter width should be about460

scaled with the first baroclinic Rossby deformation radius, since our study targets461

mesoscale eddies.462

In the prequel study (Ryzhov et al., 2019), the decomposed flow components463

were used to find the history of the eddy forcing, which is just part of the advection464

operator that involves the eddy field; then, this history was coarse-grained and465

applied to augment the low-resolution model with many analyses and sensitivity466

studies attached to this statement and reported in the paper. In the present study467

we extended the approach by supplying the primary eddy fields instead of the468

eddy forcing, which is a higher-level and subtler information. Moreover, we tested469

the augmentation procedure skills in terms of the challenging reproduction of the470

LFV. The eddy field component was interactively coupled with the corresponding471

low-resolution model solution, which was treated as the simulated large-scale flow472

component, via the (on-line) eddy forcing operator, which can be viewed as an473
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additional dynamical constraint imposed on the augmentation procedure.474

We found that the augmentation significantly improved representation of the475

eastward jet extension, but the LFV was still missing. The immediate hypothesis476

was that this was because the eddies are too weak, hence, the interactive eddy477

forcing was to weak to generate the LFV. We tested this hypothesis by increasing478

the filter size used to extract the eddies, and the resulting new eddy forcing turned479

out to be of the same intensity as the true eddy forcing; however, this further480

improved the modelled eastward jet but did not generate the LFV. From this481

we concluded that the LFV was crucially dependent on the correlations between482

the large-scale flow and the eddy forcing, which were not fully respected by the483

augmentation procedure.484

We also realized that the eddy history alone was not sufficient, and some485

additional information had to be supplied as part of the augmentation. We do not486

yet have the ultimate answer on what this information should be, but in order to487

make progress we decided to supply some large-scale flow information in terms of488

interactive, weak filtering of the simulated large-scale flow towards the observed489

truth. This idea was implemented as a statistical filtration - interactively projecting490

the simulated transient flow anomalies onto the leading empirical orthogonal491

functions (EOFs) of the reference (high-resolution) true flow.492

This approach worked well, and we experimentally found the optimal number493

of the EOFs and the optimal frequency of the applied filtering procedure, so that494

the LFVwas almost fully recovered. Since the filtering can be applied infrequently495

(about every 100 days in our case) rather than continuously, which is also pos-496

sible, its computational cost is nearly negligible. However, the exact amount of497

information needed from the high-resolution "truth" for a correct rectification of498
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the LFV remains unknown and its assessment should be addressed elsewhere. We499

hypothesised that this information should contain correct correlations between the500

eddy and large-scale fields. We also demonstrated that the filtering was of sec-501

ondary importance relative to the supplied eddy forcing, because when the latter502

was switched off, the filtering alone was not capable of augmenting the solution503

to any acceptable level.504

Finally, we developed a statistical emulation of the eddy field as spatio-temporal505

stochastic process, and used it in our augmented procedure. Results showed that506

the frequency-ranked data-adaptive harmonic decomposition (DAHD) emulator re-507

produces the LFV substantially better than the PCA-based linear stochastic model.508

An agenda for further research stemming from this paper is to build on and509

improve statistical emulators for the eddy field, as well as to consider extending the510

proposed approach beyond the relatively simple quasigeostrophic approximation511

to comprehensive general circulation models. Constraining the large-scale/eddy512

flow decomposition and making it consistent with the low-resolution ocean model513

is also very important. Finally, adding new criteria (e.g., higher-order statistical514

moments and spatio-temporal correlations) for assessing eddy parameterization515

skills should not be too far away.516
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Appendix A. Data-adaptive harmonic decomposition (DAHD)528

Here we present a brief summary of the DAHD frequency-domain imple-529

mentation and stochastic emulation methodology following (Chekroun and Kon-530

drashov, 2017; Kondrashov and Chekroun, 2018; Kondrashov et al., 2018,b) and531

tailored to high-dimensional datasets. We consider a multivariate time series532

X(t) = (X1(t), . . . , Xd(t)) formed with d spatial channels and t = 1, . . . , N time533

points (sampled evenly). Double-sided (unbiased) cross-correlation coefficients534

ρ(p,q)(m) are estimated for all the pairs of channels p and q and time lagm up to a535

maximumM − 1:536

ρ(p,q)(m) =


1

N−m
∑N−m

t=1 Xp(t+m)Xq(t), 0 ≤ m ≤M − 1,

ρ(q,p)(−m),m < 0.

(15)

where M is the embedding window and each of ρ(p,q)(m) sequences is of length537

M
′

= 2M − 1. The DAHD numerical algorithm computes its spectral elements538

(λj,Wj , j = 1, ..., d(2M − 1)) by utilizing a d× d symmetrized complex cross-539

spectral matrix S(f) built from the Fourier transforms of the cross-correlation540

sequences (see Eq. 4). The data-adaptive harmonic modes (DAHMs) represent541

collection of spatio-temporal patterns Wj = (Ej
1, . . . ,E

j
d) oscillating with differ-542
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ent but single frequency f in time-embedded space 1 ≤ m ≤M ′:543

Ej
k(m) = Bj

k cos(2πfm+ θjk), 1 ≤ k ≤ d, (16)

where the amplitudesBj
k and phases θ

j
k are data-adaptive, f takes distinctM values544

that are equally spaced in Nyquist interval [0 0.5],545

f =
(`− 1)

M ′ − 1
, ` = 1, . . . ,

M ′ + 1

2
, (17)

and |λj| informs on energy conveyed by Wj . In particular, for each f 6= 0,546

there are 2d positive-negative eigenelements which are necessarily paired as547

(λ+k (f) = −λ−k (f), k = 1, ..., d), while the phases for the associated DAHM548

pair (W+
k (f),W−

k (f)) satisfy θ+k = θ−k +π/2, i.e. these modes are shifted by one549

fourth of the period and are thus always in exact phase quadrature, similar to the550

sine-and-cosine pair in the Fourier analysis, but in a data-adaptive and global-in-551

space fashion. There are also d (non paired) spectral elements (λk,Wk) associated552

with the frequency f = 0. The Fourier transforms of the DAHMs are computed as553

eigenvectors of the matrixS(f)S(f) (Chekroun and Kondrashov, 2017, Theorem554

V.1 and Eq.74):555

S(f)S(f)Ŵk(f) = λ2kŴk(f) (18)

and spatiotemporal patterns of (W+
k (f),W−

k (f)) are obtained then by the inverse556

Fourier transform. A projection of X onto given Wj yields the time series of the557

DAHD expansion coefficients (DAHCs):558

ζj(t) =
M ′∑
m=1

d∑
k=1

Xk(t+m− 1)Ej
k(m) (19)

where 1 ≤ t ≤ N −M ′+ 1. The time series of a given DAHC pair (ζ+k (t), ζ−k (t))559

associated with the modes (W+
k (f),W−

k (f)) at the frequency f 6= 0, are narrow-560

band, nearly in phase quadrature and heavily modulated in amplitude.561
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Appendix B. Frequency-Ranked Stochastic Emulators562

The collective behavior of the d pairs at the frequency f 6= 0 (see Appendix A)563

is simulated by a system of linearly coupled Stuart-Landau stochastic oscillators:564

dζ+k
dt

= βk(f)ζ+k − αk(f)ζ−k − σk(f)ζ+k ((ζ+k )2 + (ζ−k )2)

+
d∑
i 6=k

aik(f)ζ+i +
d∑
i 6=k

bik(f)ζ−i + ε+k ,

dζ−k
dt

= αk(f)ζ+k + βk(f)ζ−k − σk(f)ζ−k ((ζ+k )2 + (ζ−k )2)

+
d∑
i 6=k

cik(f)ζ+i +
d∑
i 6=k

dik(f)ζ−i + ε−k ,

(20)

where 1 ≤ k ≤ d; themodel parameters are estimated by a pairwisemultiple linear565

regression with linear constraints on αk(f) and βk(f) to ensure antisymmetry566

for the linear coupling within a given pair, as well as equal and positive values567

σk(f) > 0 to ensure numerical stability. The stochastic forcing in Eq. 20 is568

informed by regression residuals from themodel fitting, namely

 ε+t
ε−t

 = ΣdW ,569

where Σ is the 2d × 2d Cholesky decomposition of the correlation matrix of the570

residuals and dW is a 2d-valued Wiener process. The linear stochastic emulator571

(Eq. 13) is used to model the time series of the DAHCs associated with f ≡ 0,572

which are not paired.573

Any subset of DAHCs can be convolved with its corresponding set of DAHMs,574

to produce a partial or full reconstruction of the original dataset. Thus, the575

following j-th reconstructed component (RC) at time t and for channel k is defined576

as:577

Rj
k(t) =

1

Mt

Ut∑
m=Lt

ζj(t−m+ 1)Ej
k(m), 1 ≤ m ≤M ′ (21)
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where Lt (Ut) is a lower (upper) bound in {1, . . . ,M ′} that depends on time and578

the normalization factor Mt equals M ′ except near the ends of the time series.579

The sum of all the RCs across all the frequencies recovers the original time series,580

and stochastically emulated DAHCs are back-transformed to the phase-space of581

the original dataset by using Eq. 21.582
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