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In the experiment that first demonstrated gyrotactic behaviour of bottom-heavy swim-
ming microalgae (e.g. Chlamydomonas), Kessler (Nature, vol. 313, 1985, pp. 218-220)
showed that a beam-like structure, often referred to as a gyrotactic plume, would
spontaneously appear from a suspension of gyrotactic swimmers in a downflowing pipe.
Such a plume is prone to an instability to form blips. This work models the gyrotactic
plume as a steady parallel basic state and its subsequent breakdown into blips as an
instability, employing both the Generalised Taylor Dispersion (GTD) theory and the
Fokker-Planck model for comparison. Upon solving for the basic state, it is discovered
that the steady plume solution undergoes sophisticated bifurcations. When there is
no net flow, there exists a non-trivial solution of the plume structure other than the
stationary uniform suspension, stemming from a transcritical bifurcation with the average
cell concentration. When a net downflow is prescribed, there exists a cusp bifurcation.
Furthermore, there is a critical concentration, at which the cell concentration at the
centre would blow up for the GTD model. The subsequent stability analysis using the
steady plume solution shows that the Fokker-Planck model is inconsistent with what
was experimentally observed, as it predicts stabilisation of axisymmetric blips at high
concentration of the plume and destabilisation of the first non-axisymmetric mode at low
flow rates.

1. Introduction

In the natural environment and industrial applications, the motility (or swimming
motion) of micro-organisms plays an important role in their transport processes. These
motile micro-organisms often swim towards light, food, oxygen or against gravity, as it
would offer a better living condition. These stimulus-guided motility of micro-organisms
are called ‘taxis’. In a suspension of these micro-organisms, such taxes can significantly
impact on how they distribute themselves both spatially and temporally as well as
on rheological properties. For example, in a shallow suspension of swimming algae
where bioconvective patterns are often observed, light, oxygen and gravity are known
to suppress or encourage the pattern formation (Bees 2020).

Gyrotaxis is an example of such taxes, and is seen in some unicellular species of algae,
such as Chlamydomonas, Dunaliella and Heterosigma, which are bottom-heavy (i.e. the
centre of gravity is offset from the centre of buoyancy). These micro-organisms typically
experience a gravitational torque due to the bottom-heaviness, and it makes them
orient upwards in the absence of flow. However, in the presence of a vortical flow, their
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orientation deviates from the vertical due to the viscous torque from the flow vorticity
(Kessler 1985b). For example, in a vertical pipe with a downward flow, the balance
between the viscous torque and the gravitational torque creates a swimming-oriented
flux of cells towards the centre, resulting in their accumulation along the centerline of
the pipe. The column of such accumulated cells, often called a gyrotactic plume, can
further accelerate the flow at the centreline due to the negative buoyancy force exerted
by the cells, thereby further increasing the shear and attracting even more cells towards
itself (Kessler 1986a).

The gyrotactic plume was first documented in a series of experimental studies carried
out with vertical pipe flows by Kessler (1984, 1985a,b, 1986a), who coined the term
‘gyrotaxis’ to describe how the orientation of a bottom-heavy cell is influenced by the
vorticity in the surrounding flow and the gravity. Further to the formation of a gyrotatic
plume along the pipe centreline in the downward flow, he observed that, under certain
conditions, the plume could experience an instability, which subsequently breaks it down
into multiple blips. The blips are the localised regions of a higher density of the cells, and
are spontaneously formed along the gyrotactic plume at the late stage of the instability.
In general, they are more pronounced when the background concentration is high. They
are also almost uniformly spaced vertically and remain axisymmetric (Kessler 1986a;
Denissenko & Lukaschuk 2007).

Kessler (1986a) originally modelled the spatial distribution of the cells with a simple
advection-diffusion-based transport equation for cell concentration to understand his
experimental observations, where the horizontal advection velocity was modelled to be
proportional to ambient vorticity and the diffusivity was assumed to be constant and
isotropic. Although the model is somewhat primitive, it enabled him to subsequently find
an analytic solution of the plume structure for the special case where the imposed pressure
gradient is zero. Since the pioneering work of Kessler, numerous efforts have been made to
improve the description for the transport of cell concentration. Pedley & Kessler (1990)
introduced the first model accounting for the random walk of individual cells, in which the
swimming orientation of an individual cell was described by the Jeffery’s equation (Jeffery
1922; Hinch & Leal 1972a,b) with a superposed white noise for rotational random walk. A
probability density function (p.d.f) for the cell orientation was obtained by formulating a
Fokker-Plank equation, and the diffusivity was approximated from the related correlation
of the cell orientation vector. Hill & Bees (2002) and Manela & Frankel (2003) later
proposed the use of generalised Taylor dispersion (GTD) theory, which approximates the
diffusivity from the p.d.f of a single tracer particle defined in both orientation and physical
space. Bees & Croze (2010) and Bearon et al. (2012) recently employed the GTD model
to study the dispersion of gyrotactic cells in a downward pipe flow. In particular, Bearon
et al. (2012) showed that the prediction of the GTD model on the cell-concentration
distribution is significantly different from that of the model of Pedley & Kessler (1990).
Importantly, a recent numerical study by Croze et al. (2013) further showed that the
GTD model provides a much more accurate prediction for the cell distribution obtained
from individual-based simulation than the one by Pedley & Kessler (1990) especially
when the shear (or vorticity) rate of the surrounding flow is high. Recently, Jiang &
Chen (2020) have also demonstrated the superiority of the GTD model without making
any approximation to the Smoluchowski equation. These observations were supported by
the recent experimental result in Croze et al. (2017).

In the light of emerging evidence supporting the use of the GTD model at least
for unidirectional flows (for this issue, see also Bearon et al. 2011), the present study
aims to study the emergence of the blips observed in the original pipe-flow experiment
of Kessler (1986a) using the GTD model. Recently, the stability of gyrotactic plumes
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Figure 1. Schematic diagram of the flow configuration and the frames of reference. Here,
the stability analysis is performed on the global frame of reference x = (r, ψ, z), but the cell
swimming direction is calculated in the local frame of reference e = (e1, e2, e3).

emerging in a downward plane channel flow was studied by Hwang & Pedley (2014b)
using a model basically identical to the one by Pedley & Kessler (1990). Interestingly,
they reported the emergence of a varicose-type instability mode sharing some similarities
with the blips observed in pipe flow (e.g. spacing between blips). Despite the encouraging
observation, no such analysis is available for pipe flows, and therefore it is not possible to
make any direct comparison with the previous experiments (Kessler 1986a; Denissenko
& Lukaschuk 2007; Croze et al. 2017). Nevertheless, bifurcation and stability of any
gyrotactic micro-organism suspensions have only been studied either using the early
primitive model of Pedley et al. (1988) (e.g. Hill et al. 1989) or using the model of
Pedley & Kessler (1990) (e.g. Bees & Hill 1997; Pedley 2010a; Hwang & Pedley 2014a,b;
Maretvadakethope et al. 2019). For this reason, the issue of how important having an
accurate cell-transport model is for the prediction of the pattern-forming motions in the
suspension remains completely elusive.

The objective of the present study is to extensively study the bifurcation and stability
of downflowing suspensions in a vertical pipe using the GTD model. Unlike the channel
flow studied by Hwang & Pedley (2014b), in this set up we shall see the emergence of
bistability and the related hysteresis in the bifurcation of the basic state, the possibility
of which was previously conjectured by Bees & Croze (2010). Further to this, a particular
emphasis of the present study is given to an extensive and comparative assessment of
the model by Pedley & Kessler (1990) and the GTD model for studying bifurcation
and stability of the suspension in a downward pipe flow. From this, we shall see that the
prediction of the GTD model offers a much more realistic description for the experimental
observation on the blip instability than that of the model by Pedley & Kessler (1990),
highlighting the need for having a correct cell transport model to accurately describe
pattern-forming fluid motions in suspensions of gyrotactic micro-organisms.
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This paper is organised as follows. In §2, the equations of motion are introduced and
formulated for linear stability analysis with the model of Pedley & Kessler (1990) and
the GTD model. In §3, the bifurcation of the basic state given in the form of a steady
axisymmetric and axially uniform plume is first shown with particular emphasis on their
bistable nature in a range of the given parameters. The instability of these basic states is
subsequently studied in §4. The implication of these findings is discussed in §5 from both
experimental and theoretical perspectives. The paper is concluded with a brief discussion
on the shortcoming of the GTD model with an outlook to improve this model.

2. Problem formulation

2.1. Equations of fluid motion

We consider a downward fluid flow in a cylindrical vertical pipe, in which a puller
type of spherical gyrotactic micro-organisms are suspended (e.g. Chlamydomonas nivalis,
Dunaliella and Volvox ). We express the position of a point in space in terms of cylindrical
co-ordinates r∗, ψ∗ and z∗, the radial, azimuthal and streamwise (or axial) co-ordinates,
and the corresponding unit vectors i, j and k. The fluid has density ρ∗ and kinematic
viscosity ν∗, and the gravity is in the same direction as z∗. The local coordinates of
e = (e1, e2, e3) are introduced for the swimming orientation of the cells, and are defined
on the surface of unit sphere (i.e. ‖e‖ = 1), where e1, e2 and e3 indicate the radial,
upward (−z∗) and azimuthal components, respectively. Both of the coordinate systems
and the flow geometry are sketched in figure 1. We will also repeat some of the key
assumptions made in Hwang & Pedley (2014a,b), where a more detailed discussion and
justifications on the assumptions in the present study can be found. The fluid motion is
described by the following equations:

∇∗ · u∗ = 0, (2.1)

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = − 1

ρ∗
∇∗p∗ + ν∗∇∗2u∗ + n∗υ∗g′∗k +∇∗ ·Σ∗p. (2.2)

Here, the velocity, u∗ = (v∗, w∗, u∗), is resolved into the cylindrical components, p∗ is the
pressure, n∗ the cell number density, υ∗ the volume of a single cell and g′∗ = g∗∆ρ∗/ρ∗

the reduced gravity, where g∗ and ∆ρ∗ are the gravitational acceleration and the density
difference between the microorganism and the fluid, respectively. Following Hwang &
Pedley (2014b), we neglect the stresslet term ∇∗ · Σ∗p, which would be dominantly
contributed by the locomotion of the suspended cells (Pedley & Kessler 1990). For
the ‘puller’-type swimmers, the stresslet term Σ∗p is not, in general, responsible for the
generation of any instabilities (Saintillan & Shelley 2007, 2008; Pedley 2010a). This term
is also negligible compared to the negative buoyancy (Pedley & Kessler 1990). We will
also neglect any near-field cell-cell interactions (Kessler et al. 1992; Ishikawa & Pedley
2007) based on the assumption that the suspension is dilute enough. The validity of the
assumption of dilute suspension here will be revisited later in §5.2.

2.2. Models for cell transport

Now, we introduce the transport equation for the cell concentration given in the form
of an advection-diffusion equation:

∂n∗

∂t∗
+∇∗ · [(u∗ + V ∗c 〈e〉)n∗] =∇∗ · (D∗m · ∇

∗n∗), (2.3)

where u∗ + V ∗c 〈e〉 is the advection velocity, in which V ∗c is the cell swimming velocity
assumed to be constant and 〈e〉 represents the locally ensemble-averaged swimming
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orientation vector, and D∗m is the ‘effective’ diffusivity tensor, the detailed definition of
which will be introduced below with the subscript m. Here, we note that the diffusivity
tensor D∗m is designed to model the spatio-temporal dispersion of the cells phenomeno-
logically. It models the random walk originating from the cell motility and the random
cell orientation. Whilst it can also incorporate translational Brownian motion, because
the typical size of the cells of interest in the present study (e.g. Chlamydomonas) is too
large to experience such a thermal fluctuation, we neglect this here (see Pedley & Kessler
1992; Saintillan 2018).

Based on (2.3), we now introduce two models for 〈e〉 and D∗m. The first model, often
called the Fokker-Planck model, was first introduced by Pedley & Kessler (1990). The
second model is based on the GTD theory, first proposed by Brenner (1980). This theory
was previously applied to gyrotactic micro-organisms by Hill & Bees (2002) and Manela
& Frankel (2003). For simplicity, hereafter, we shall refer to the Fokker-Planck model as
model F, and the model based on GTD theory as model G, respectively. The behaviours
of 〈e〉 and D∗m with respect to external velocity gradient in the two models have been
extensively discussed in several previous studies (Manela & Frankel 2003; Bearon et al.
2012; Croze et al. 2013, 2017). Therefore, in the following sections, we will introduce
them only briefly.

2.2.1. Model F

In model F, each cell is modelled as a motile spheroid performing a random rotational
motion with gyrotaxis. For this purpose, a probability density function (p.d.f.) f of the
cell swimming orientation is introduced to describe the random rotation in the e-space,
which satisfies the following steady Fokker-Planck equation (Pedley & Kessler 1990):

∇e · [ė∗f ] = D∗R∇
2
ef, (2.4a)

subject to ∫
‖e‖=1

f(e)d2e = 1, (2.4b)

and ė∗ is given by the Jeffrey’s equation (Jeffery 1922; Hinch & Leal 1972a,b)

ė∗ =
1

2β∗
[−k + (k · e)e] +

1

2
Ω∗ ∧ e. (2.4c)

Here, Ω∗ = ∇∗ ∧ u∗ is the vorticity, and β∗ the gyrotactic time scale. The random
rotational motion is represented by a constant isotropic diffusivity D∗R (Pedley 2010b).
We also note here that the cell is assumed to be spherical in (2.4c), so that the effect of
cell eccentricity (hence the effect of strain rate) is neglected. This assumption excludes
the appearance of instability mechanisms due to the cell shape: for example, rod-like
swimming cells in suspension may yield the instability proposed by Koch & Shaqfeh
(1989) and Saintillan et al. (2006). However, for more rounded algal species like those
in the Chlamydomonas genus, O’Malley & Bees (2012) showed that the effective cell
eccentricity of a swimming cell is much smaller than that of an inanimate body due to
the influence of flagella beating. Therefore, in effect, a spherical approximation of the
cell is a reasonable approximation at the continuum level.

In model F, the average cell swimming direction is obtained as

〈e〉 ≡
∫
‖e‖=1

ef(e) d2e. (2.5)

The diffusivity tensor is given by the covariance matrix multiplied by a correlation time
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scale τ∗: i.e.

D∗F = V ∗c
2τ∗(〈ee〉 − 〈e〉〈e〉), (2.6)

where the subscript F in place of m denotes the diffusivity obtained from model F.
As discussed by Pedley (2010b), such a form of diffusivity is essentially ad hoc, as the
correlation time scale takes into account both the natural variability of the cell properties
in the population and the randomness in the cell swimming direction. Therefore, the
correlation time scale τ∗ has often been used from the values directly obtained from
experimental measurements (Hill & Häder 1997; Vladimirov et al. 2000). In the present
study, we will use τ∗ = 5.35s, which is slightly different from τ∗ = 5s used in previous
studies (e.g. Hwang & Pedley 2014b), as this will allow us to set model F and G to share
the same radial diffusivity in stationary suspension. A detailed discussion on this issue
will be given in §2.7.

2.2.2. Model G

Model G was developed from the Smoluchowski equation, which describes the prob-
ability density function in both physical and orientational space. In this respect, the
‘diffusivity’ in (2.3) would be interpreted as a consequence of the dispersion resulting
from the interaction between the random cell orientation and the translational swimming
motion. Model G uses the averaged cell swimming direction vector same as that of model
F (i.e. (2.5)). However, it gives a different form for the effective diffusivity (Manela &
Frankel 2003; Hill & Bees 2002):

D∗G =

∫
‖e‖=1

[f(e)B∗(e)eV ∗c + f(e)B∗(e)B∗(e) ·G∗]sym d2e, (2.7)

where the subscript G in the place of the subscript m indicates that the diffusivity
originates from model G, and G∗(≡ ∇∗u∗) is the local velocity gradient tensor. In (2.7),
f(e) is obtained from (2.4a) as in model F, and the vector B∗(e) satisfies

∇e · [ė∗fB∗ −D∗R∇e(fB∗)]− fB∗ ·G∗ = V ∗c (e− 〈e〉)f, (2.8a)

subject to ∫
‖e‖=1

fB∗(e)d2e = 0. (2.8b)

Here, B∗(e) is the long-time limit of the difference between the overall average position,
and the average position of the cell given its instantaneous orientation is e (Hill &
Bees 2002). Thus, the form of (2.8) implies that the dimension of B∗ is length, and
its appropriate scale would be V ∗c /D

∗
R.

2.3. Non-dimensionalisation and boundary conditions

The equations of motion (2.1), (2.2), (2.3), and (2.4a) are non-dimensionalised by

x =
x∗

h∗
, t =

t∗V ∗c
h∗

, u =
u∗

V ∗c
, p =

p∗

ρ∗V ∗2c
, n =

n∗

N∗
, (2.9a − e)
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where N∗ is the cell concentration if the suspension is set to be uniform, and h∗ is the
pipe radius. The resulting dimensionless equations are

∇ · u = 0, (2.10a)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + Ri n k, (2.10b)

∂n

∂t
+∇ · [(u + 〈e〉)n] =

1

DR
∇ · (Dm · ∇n), (2.10c)

∇e ·
[
λ[−k + (k · e)e]f +

1

2DR
Ω ∧ ef

]
=∇2

ef, (2.10d)

with boundary conditions

u|r=1 = (0, 0, 0)T , (2.10e)[
(u + 〈e〉)n− 1

DR
Dm · ∇n

]
|r=1 · i = 0, (2.10f )

where

Ri =
N∗υ∗g′∗h∗

V ∗2c
, Re =

V ∗c h
∗

ν∗
, λ =

1

2β∗D∗R
, DR =

D∗Rh
∗

V ∗c
. (2.10g)

Here, Re is the Reynolds number based on the cell swimming speed, Ri the Richardson
number, and DR the dimensionless rotational diffusivity. We note that (2.10d) is further
divided by DR, since the appropriate time scale in the cell-orientation space would be
1/D∗R, different from h∗/V ∗c in the physical space. Lastly, the dimensionless translational
diffusivities for model F and G are given by

DF =
D∗FD

∗
R

V ∗2c
= τ(〈ee〉 − 〈e〉〈e〉) (2.10h)

and

DG =
D∗GD

∗
R

V ∗2c
=

∫
‖e‖=1

[f(e)B(e)e + f(e)B(e)B(e) ·G]
sym

d2e, (2.10i)

respectively, where τ = τ∗D∗R, B = B∗D∗R/V
∗
C and G = G∗/D∗R = ∇u/DR. As

mentioned previously, τ in (2.10h) will be chosen appropriately later. To compute DG,
it is convenient to introduce b(e) = f(e)B(e), which from (2.10i) satisfies the following
equation:

∇e · [ėb−∇eb]− b ·G = (e− 〈e〉)f, (2.10j )

where ė = ė∗/D∗R. Once b(e) is obtained from (2.10j), the translational diffusivity of
model G is given by the following expression:

DG =

∫
‖e‖=1

[
b(e)e +

b(e)b(e)

f(e)
·G
]sym

d2e. (2.10k)

2.4. Basic state

The basic state of (2.10) is first calculated by assuming that the velocity and cell-
concentration fields are steady, axisymmetric and homogeneous along the axial direction:
i.e.

u = u0 = (0, 0, U(r)), n = N(r),
∂

∂t
=

∂

∂z
=

∂

∂ψ
= 0. (2.11a − c)
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The basic-state pressure P0(r, z) is obtained by integrating (2.10b) in the radial direction:

∂P0

∂z
=

2

Re

∂U

∂r
|r=1 +Ri, (2.12a)

which is composed of the pressure gradient driving the flow,

∂P d0
∂z

=
2

Re

∂U

∂r

∣∣∣
r=1

, (2.12b)

and the hydrostatic pressure gradient balancing out the gravitational term (i.e. Ri) in
(2.12a).

Removal of the hydrostatic balance from (2.10) then yields the following equations for
basic state:

−r ∂P
d
0

∂z
+

1

Re

∂

∂r
r
∂U

∂r
+ rRi(N − 1) = 0, (2.13a)

−∂P
d
0

∂r
= 0, (2.13b)

∂

∂r
(rN〈er〉0) =

1

DR

∂

∂r
(rDrr,0

∂N

∂r
), (2.13c)

with boundary conditions

U(1) = 0,

[
〈er〉0N −

Drr,0

DR

∂N

∂r

] ∣∣∣
r=1

= 0, (2.13d)

and the compatibility condition at the centre

∂U

∂r

∣∣∣∣
r=0

= 0,
∂N

∂r

∣∣∣∣
r=0

= 0. (2.13e)

Here, the subscript 0 in 〈er〉0 and Drr,0 indicates the variables from §2.3, which are used
for the calculation of steady basic state.

Since the total number of the cells is preserved over the given control volume, we
impose the normalisation condition for the cell concentration,∫ 1

0

N(r)rdr =
1

2
. (2.14)

The flow rate Q is assumed to be given, such that∫ 1

0

U(r)rdr =
Q

2π
. (2.15)

2.5. Linear stability analysis

Now, we consider a small perturbation about the basic state:

u = u0 + εu′ + O(ε2), p = P0 + εp′ + O(ε2), n = N + εn′ + O(ε2), (2.16)

where u0 = (0, 0, U(r)), u′ = (v′, w′, u′) and ε � 1. We also define Ω0 = ∇ ∧ u0,
Ω′ = ∇∧u′, G0 = ∇u0/DR and G′ = ∇u′/DR accordingly. Here, we note that the axial
velocity perturbation and the cell concentration over a given control volume V0 should
satisfy ∫

V0

n′dV =

∫
V0

u′dV = 0, (2.17)
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as the flow rate Q is fixed and the total number of the cells over the entire domain is
preserved in time. The linearised equations for the small perturbation are then given as

∂u′

∂z
+

1

r

∂rv′

∂r
+

1

r

∂w′

∂ψ
= 0, (2.18a)

∂u′

∂t
+ U

∂u′

∂z
+ v′

∂U

∂r
= −∂p

′

∂z
+

1

Re
∇2u′ + Ri n′, (2.18b)

∂v′

∂t
+ U

∂v′

∂z
= −∂p

′

∂r
+

1

Re
(∇2v′ − v′

r2
− 2

r2
∂w′

∂ψ
), (2.18c)

∂w′

∂t
+ U

∂w′

∂z
= −1

r

∂p′

∂ψ
+

1

Re
(∇2w′ − w′

r2
+

2

r2
∂v′

∂ψ
), (2.18d)

∂n′

∂t
+ n′(

〈er〉0
r

+
∂〈er〉0
∂r

) + 〈er〉0
∂n′

∂r
+ U

∂n′

∂z
+ 〈ez〉0

∂n′

∂z
+
〈ez〉0
r

∂n′

∂ψ
+ v′

∂N

∂r

+ 〈er〉′
∂N

∂r
+N

∂〈er〉′

∂r
+N

〈er〉′

r
+N

∂〈ez〉′

∂z
+
N

r

∂〈eψ〉′

∂ψ

=
1

DR

[
D′rr
r

∂N

∂r
+
∂D′rr
∂r

∂N

∂r
+D′rr

∂2N

∂r2
+
∂D′rz
∂z

∂N

∂r
+

1

r

∂D′rψ
∂z

∂N

∂r

+
1

r

(
Drr,0

∂n′

∂r
+Drz,0

∂n′

∂z
+ 2Drψ,0

∂2n′

∂r∂ψ
+
∂Drψ,0

∂r

∂n′

∂ψ
+ 2Dψz,0

∂2n′

∂ψ∂z

)
+
∂Drr,0

∂r

∂n′

∂r
+ 2

∂Drz,0

∂r

∂n′

∂z
+Drz,0

∂2n′

∂r∂z

+ Drr,0
∂2n′

∂r2
+Dzz,0

∂2n′

∂z2
+

1

r2
Dψψ,0

∂2n′

∂ψ2

]
, (2.18e)

with the boundary conditions at the wall

u′|r=1 = v′|r=1 = w′|r=1 = 0, (2.18f )

Nv′+N〈er〉′+n′〈er〉0 =
1

DR

(
D′rr

∂N

∂r
+Drr,0

∂n′

∂r
+Drz,0

∂n′

∂z
+
Drψ,0

r

∂n′

∂ψ

)
. (2.18g)

Here, D′m and 〈e〉′ are computed by linearising (2.10d) and (2.10j) in a similar manner
to Hwang & Pedley (2014a,b). The detailed set of lengthy linearised equations can be
found in Appendix A.

Finally, the following normal-mode solution is introduced for linear stability analysis:

u′(r, ψ, z, t) = û(r)ei(αz+mψ−ωt) + c.c, p′(r, ψ, z, t) = p̂(r)ei(αz+mψ−ωt) + c.c.

n′(r, ψ, z, t) = n̂(r)ei(αz+mψ−ωt) + c.c, (2.19)

where α is the real axial wavenumber, m the wavenumber in the azithumal direction
(positive integer), and ω the complex frequency. Substitution of the normal-mode solution
into (2.18) yields an eigenvalue problem, as detailed in Appendix B.

2.6. Numerical methods

To obtain the basic state from (2.13) and subsequently examine its stability, 〈e〉 and
Dm in (2.10c) need to be computed as a function of Ω/DR (model F and G) and G
(model G): see §2.2. The steady solution f(e) to (2.10d) is obtained using the solver
identical to that of Hwang & Pedley (2014a), and the reader may refer to §3 in Hwang
& Pedley (2014a) for the detailed result on 〈e〉 and DF . As for model G, the mean
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Parameter Description Reference Value Units

ρ∗ Fluid density 1 g/cm3

g∗ Gravitational acceleration 980 cm/s2

ν∗ Dynamic viscosity 0.00957 cm2/s
h∗ Radius of pipe 0.1 ∼ 0.4 (0.19) cm
N∗ Average cell number density 0 ∼ 3.13× 105 cells/cm3

∆ρ/ρ Relative cell concentration 0.05 −
υ∗ Cell volume 2.1× 10−9 cm3

g′(= g∗∆ρ/ρ) Relative gravity 49 cm/s2

β∗ gyrotactic time scale 3.4 sec
V ∗c Swimming speed 6.3× 10−3 cm/s
τ∗ Correlation time scale 5.35 s

D∗V (= V ∗c
2τ∗) Nominal translation cell diffusivity 2.12× 10−4 cm2/s

D∗R Rotational diffusivity 0.067 1/s

Table 1. Parameters and their reference values in the present study. Most of the parameters
for the cell properties are taken from the data for C. Nivalis (Pedley & Kessler 1990; Bees &
Hill 1998; Pedley 2010b).

swimming orientation vector 〈e〉 is the same as the one for model F. Therefore, only
DG used for model G needs to be obtained. With the same discretisation schemes and
resolution used for (2.10d) in Hwang & Pedley (2014a), (2.10j-2.10k) are solved to obtain
DG. The numerical results agree very well with the ones given by Bearon et al. (2012).
Similarly, 〈e〉′ and D′m used in (2.18e) are calculated by applying the same discretisation
schemes to the equations in Appendix A.

In order to compute the basic state, the radial direction of (2.13) is discretised using
a Chebyshev collocation method described in Weideman & Reddy (2000). Two solvers
have been written in MATLAB: one is based on a Newton-Ralphson method, and the other
solves the unsteady version of (2.13) to obtain its steady solution, the latter of which is
used to study the stability of the basic state to axially uniform and radially independent
perturbation. The solutions from the two solvers have been validated against each other
when stable solutions are admitted. They are found to be identical up to the given
numerical precision. Finally, for the purpose of studying bifurcation of the basic state,
the Newton-Raphson solver is combined with a pseudo-arclength continuation algorithm
(see §3).

For the linear stability, the radial direction of (B 2) is discretised using the same
discretisation method as the one for the basic state. The discretised eigenvalue problem is
solved using the function eig in MATLAB. The computation is performed with Nr = 175,
showing no difference from the results with Nr = 100. The computed eigenvalues for
Ri = 0 are validated against pipe flow stability data of Schmid & Henningson (1994,
2001) and Meseguer & Trefethen (2003) with excellent agreement.

2.7. Parameters

A list of parameters and their values used in the present study are summarised in table
1. Here, it should be noted that τ∗ is not a free parameter, as mentioned in §2.2. Instead,
τ∗ is set, such that model F and G provide consistent and quantitatively comparable
results. Therefore, in the present study, we follow the approach of Bearon et al. (2012),
in which τ∗ is chosen to match DG,rr with DF,rr in the absence of any flow (i.e. stationary
medium). This gives τ = 0.36, consistent with that of Bearon et al. (2012).
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Parameter Description Reference Value

Ri Richardson number 0 ∼ 160
Q Dimensionless Flow Rate 0 ∼ 7
Re Reynolds number based on V ∗c 0.066 ∼ 0.26 (0.126)
λ gyrotactic time scale divided by D∗R 2.2
DR Rotational diffusivity normalised by V ∗c /h

∗ 2.13

Table 2. Dimensionless parameters and their values in the present study.

In this study, the radius of the cylindrical pipe is chosen to be around 0.2cm, so that
we obtain results comparable with the same as Hwang & Pedley (2014b), at around
0.2cm. The parameters for cell’s biological properties, including cell swimming speed
V ∗c , gyrotactic time scale β∗, relative cell density ∆ρ/ρ and rotational diffusivity D∗R,
are taken for C. nivalis from previous studies (e.g. Pedley & Kessler 1990; Bees & Hill
1998; Pedley 2010b; Hwang & Pedley 2014b), except the shape of the cell which we
assume to be spherical. As in the linear stability analysis of Hwang & Pedley (2014b)
and the experiment of Croze et al. (2017), only the flow rate Q and the background cell
concentration (represented by Ri) are varied in this study. Based on the parameter values
given in table 1, the dimensionless parameters and their values examined are given in
table 2.

3. Basic state

3.1. Very low flow rate

At very low flow rate (i.e. Q → 0), model F and G share the same asymptotic value
for 〈e〉 and the radial diagonal component of Dm (see Bearon et al. (2012) and figure 7).
Therefore, the two models would give almost identical result when Q is small enough.
Hence, here we report the result from model G first in this case.

When Q = 0, a stationary uniform suspension (i.e. U(r) = 0 and N(r) = 1) is a
solution to (2.13). However, a further numerical search has also found that there exists
another solution at Q = 0 featured with non-trivial U(r) and N(r), consistent with
Bees & Croze (2010). Bifurcation diagrams of these two solutions with respect to Ri are
shown for small positive Q in figure 2, where the centreline concentration N(0) and axial
velocity U(0) are used to represent the state of the steady solutions. For Q = 0, the
two solutions meet at Ri = Ric(' 189.9), and their stability has been checked using the
unsteady solver described in §2.6. The stationary solution (U(r) = 0 and N(r) = 1) is
found to be stable for Ri < Ric, but becomes unstable for Ri > Ric. On the other hand,
the non-trivial solution, featured with a downflow and a high cell concentration along
the pipe axis, is unstable for Ri < Ric. This solution gains its stability when Ri > Ric,
and the form of the solution is subsequently changed with an upflow and a lower cell
concentration along the pipe axis. The interchange of the stability of the two solutions
at Ri = Ric indicates that the stationary suspension in the vertical pipe experiences a
transcritical bifurcation with Ri.

When a small downflow (Q > 0) is applied, the transcritical bifurcation point given at
zero flow rate turns into a saddle-node point. At Ri > Ric, the axial velocity is upward
instead of downward (i.e. U(0) < 0), even though the overall net flow is downward
(Q > 0). If a small upflow (Q < 0) is applied instead, then the opposite is true, as
shown by the grey area in figure 2. The transition from a transcritical to a saddle-node
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(a) (b)

Figure 2. Bifurcation of steady solutions withRi at very low flow rate : (a) the cell concentration
N(0) and (b) the centreline velocity U(0) along the pipe axis. Here, , stable; - - - -,
unstable. The grey area indicates where Q < 0 contours would be. The insets show N(r) and
U(r) at Ri = 160: blue , the lower branch; red - - - -, the middle branch. Note that as
Q→ 0, the results from model F and G coincides.

bifurcation is a consequence of an imperfect bifurcation caused by the addition of a small
non-zero flow rate. This behaviour of the solutions with two parameters, Ri and Q, can
be understood within the framework of co-dimension two bifurcation (i.e. bifurcation
with two parameters). The overall bifurcation is also closely related to how the system
would evolve with the flow direction. However, given the scope of the present study, we
shall only focus on the downflowing case and leave the upflowing case as future work.

3.2. Model F

The solution featured with N(0) > 1 and U(0) > 0 in figure 2 is further continued for
much higher flow rates with model F. Figure 3(a) shows the result from such continuation
with model F, in which the concentration at the pipe axis N(0) is used to represent the
state of the corresponding steady solution. At sufficiently low flow rate (Q . 1), the
bifurcation of the solutions featured with two saddle-node points (highlighted by the
crosses in figure 3(a)), indicating the emergence of three solutions at the given flow rate.
With the increasing order of N(0), the three types of solutions will be denoted by lower,
middle and upper branches, respectively, and they are visualised in figure 4. Here, we note
that N(0) was found to uniquely represent each solution per parameter set, and hence
was used as a representation for each solution. In general, as the solution is continued
from the lower to upper branch, both the velocity and cell-concentration profiles near
the pipe axis (r = 0) tend to be sharper. This is expected because the lower-branch state
is a homotopy of the uniform suspension obtained with increasing flow rate (i.e. state
without gyrotactic instability), while the middle- and upper-branch states are homotopy
of nonlinearly developed plumes from the gyrotatic instability at zero flow rate (i.e. state
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Figure 3. Bifurcation of the steady solutions at high flow rates (model F): (a) N(0) with
respect to Ri for several flow rates Q; (b) surface plot of N(0) in the Q−Ri space. In (a),
, stable; - - - -, unstable. The blue cross (x) indicates the first saddle-node point where lower
and middle branches meet, while the red cross (x) indicates the second saddle-node point where
middle and upper branches meet. In (b), the blue and red curves indicate the trajectories of
the two saddle-node points with change in Q, respectively. The graph at the bottom shows the
projection of the trajectories onto the Q−Ri plane.
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middle- and upper-branch solutions, respectively.
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with nonlinearly staruated gyrotactic instability). Examination of the stability of each
solution to axially and radially uniform perturbations (i.e. unsteady calculation of the
basic state) reveals that the lower and upper branches are stable, whereas the middle
one is unstable, indicating bistable nature of the basic state featured with hysteresis.

As the flow rate Q is further increased, the two saddle-node points become closer. They
eventually merge and disappear with the increasing Q. The curves in figure 3(b) shows
how the two saddle-node points evolved with Q in the Q−Ri−N(0) space. At the bottom
of this figure, the trajectories of the two saddle-node points are projected onto the Q−Ri
plane to visualise how the Ri values at these points change with Q. The two saddle-node
points in the Q−Ri plane indeed merge as Q increases. Beyond this merging point, the
bistable behaviour of the steady solutions disappears, as there exits only single steady
solution. This type of codimension two bifurcation is a cusp bifurcation (see Zeeman 1976;
Thom 1989). Further discussion on the bifurcation in relation to previous experimental
observations will be given in §5.3.

Lastly, it is worth mentioning that, in model F, the density at the pipe axis N(0)
decreases with increasing Ri for sufficiently large Ri (see the upper branch in figure 3(a)).
As discussed in Hwang & Pedley (2014b), the decrease of N(0) is the direct consequence
of increasing Drr with the increase of background base-flow shear (see figure 7(b) of this
paper and figure 3(b) of Hwang & Pedley (2014b)), which smooths out the gyrotactic
focusing near the pipe axis.

3.3. Model G

Now, we compare the steady basic-state solutions obtained from model F to those from
model G. Figure 5(a) shows the bifurcation diagram of the steady solution obtained
using model G. When the cell concentration at the pipe axis is relatively small (i.e.
N(0) < 102), the same kind of cusp bifurcation is seen in this case (compare with figure
3(a)). Also, the related form of the steady solutions is qualitatively identical to that
obtained with model F, as shown in figure 6. However, as the solution is continued
further from the middle branches, its behaviour turns out to be very different from that
obtained with model F. In particular, for all the flow rates considered, the bifurcation
curves do not properly form the upper branches, contrary to the model F (compare
with figure 3(b)). Indeed, irrespective of the flow rate Q, the continued solution from
the middle branch asymptotically exhibits a singular behaviour at Ri = Ris(' 59.86)
in figure 5(a)), implying N(0) → ∞ with the continuation. This suggests that a steady
downflowing upper-branch solutions may not necessarily exist for Ri > Ris.

The origin of the singularity in the steady solution can be further studied from the
following explicit form of N(r) obtained with (2.13c) and (2.13d) (Bees & Croze 2010):

N(r) = N(0) exp
(
DR

∫ r

0

〈er〉0
Drr,0

dr
)
. (3.1)

This form of the solution indicates that the singularity would be directly related to the
behaviour of 〈er〉0/Drr,0 with prescribed background shear S(≡ −1/DRdU/dr). Note
that S is varying with the radial position r (figure 8) because of the coupling via the
negative buoyancy. In effect, S(r) can also be interpreted as the local rotary Péclet
number. Figure 7(a) shows the behaviour of 〈er〉0/Drr,0 with the background shear S for
both model F and G (see also figure 1(f) in Bearon et al. (2012)). For model F, the values
of 〈er〉0/Drr,0 are bounded between a relatively small negative value (min(〈er〉0/Drr,0) =
−3.47) and zero for all the values of S. However, in the case of model G, 〈er〉0/Drr,0

monotonically decreases with S and is roughly linearly proportional to S for sufficiently
large S (figure 7(a)). It should be mentioned that this difference in 〈er〉0/Drr,0 between



Downflowing gyrotactic suspension 15

(a) (b)

(c)

0 0.2 0.4 0.6 0.8 1

r

0

5

10

15

20

U
(r

)

Increasing N(0)

Q=1.1

(d)

0 0.2 0.4 0.6 0.8 1

r

0

5

10

15

20

U
(r

)

Increasing N(0)

Q=2.1

(e)

0 0.2 0.4 0.6 0.8 1

r

0

5

10

15

20

U
(r

)

Increasing N(0)

Q=3.1

Figure 5. Bifurcation of the steady solutions at high flow rates (model G): (a) N(0) with
respect to Ri for several flow rates Q; (b) Surface plot of N(0) in the Q−Ri space. In (a),
, stable; - - - -, unstable. Here, the blue, red and black crosses (x) indicate the first, second and
third saddle-node points, respectively, as the solution is continued from the lower to the upper
branch. The grey area indicates the cases where the volume fraction at the pipe axis is greater
than 2.5% (see §5.2). Note that all curves asymptotically approach a vertical line corresponds
to Ris ' 59.86. In (b), the blue and red curves indicate the trajectories of the two saddle-node
points with change in Q, respectively. The graph at the bottom shows the projection of the
trajectories onto the Q−Ri plane. (c− e) Velocity profile U(r) of the steady solutions along the
continuation from Ri = 50 to the singularity at each Q. The colour of the lines changes from
green to blue, representing increasing N(0) along the continuation.

model F and G must originate from the difference in the translational diffusivity, because
they share exactly the same 〈er〉 (see also §2). This is shown in figure 7(b).

Figure 8 visualises the radial profiles of S(r) and 〈er〉0/Drr,0(r) for model F and G
along the continuation curves at Q = 2.1. As the solution is continued from the lower
to the upper branch, the absolute values of S(r) monotonically increase for both model
F and G (figures 8a, b) However, 〈er〉0/Drr,0(r) do not behave like S(r). In particular,
〈er〉0/Drr,0(r) for model F is bounded due to the nature shown in figure 7(a). As a result,
〈er〉0/Drr,0(r) in figure 8(b) is bounded, whereas that in 8(d) is not. This suggests that
the singularity developed at Ris from model G originates from the unboundedness of
〈er〉0/Drr,0(S).

If the behaviour of 〈er〉0/Drr,0 in model G is further simplified, the Ris in figure
5(b) can be predicted analytically. For this purpose, we consider a simplified model for
〈er〉0/Drr,0, in which the translational diffusivity is set such that 〈er〉0/Drr,0 is linearly
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proportional to the background shear dU/dr:

Drr,0 = −〈er〉0DR

η

(
dU

dr

)−1
=
〈er〉0
ηS

. (3.2)

In this model, 〈er〉0 is kept to be the same as that used in both model F and G, and η is
obtained from the slope of 〈er〉0/Drr,0 for S = 0: i.e. η ≡ −∂(〈er〉0/Drr,0)/∂S|S=0. The
behaviour of this simplified model is shown in figure 7(a), in which 〈er〉0/Drr,0 of this
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against radial position r along the continuation at Q = 2.1 in (a-b) model F and (c-d) model G.

Figure 9. Bifurcation diagram of the linearised model with Ri for several Q. Here, the state of
steady solution is represented by the cell concentration at the pipe axis N(0). As the solution is
continued from the lower branch, N(0)→∞ at Ri = Ris(' 57.68). Also, , stable; - - - -,
unstable, and the blue crosses (x) indicate the saddle-node point. The grey area indicates the
cases where the volume fraction at the pipe axis is greater than 2.5% (see §5.2).
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model behaves similarly to that of model G with η = 1.10. We shall refer to this model
as the ‘linearised model’.

Coincidentally, the behaviour of 〈er〉0/Drr,0 against S in this ‘linearised model’ is the
same as that of Kessler (1986a). In Kessler (1986a), 〈er〉0 is linear to shear rate S and
Drr,0 is constant. In contrast, in both model G and the subsequent ‘linearised model’,
Drr,0 ∼ S−2 and 〈er〉0 ∼ S−1 as S increases towards infinity. As a result, the ‘linearised
model’ shares the same linear behaviour in 〈er〉0/Drr,0(S) with the simpler model of
Kessler (1986a), even though their approximations for 〈er〉0 and Drr,0 respectively are
different. In the following, we will exploit the similiarity in 〈er〉0/Drr,0(S) between the
‘linearised model’ and Kessler (1986a) to understand the bifurcation.

Bifurcation of the steady solutions of the linearised model is shown in figure 9 for η =
1.10. The bifurcation diagram of the linearised model confirms the behaviour qualitatively
similar to that of model G: as the solution is continued from the lower to upper branch,
the cell concentration at the pipe axis gradually becomes singular at Ri ' Ris(= 57.68)
irrespective of Q (compare with figure 5(a)). The only qualitative difference between
figure 5(a) and figure 9 is the small extra bumpy behaviour in the bifurcation curves
of model G, likely the consequence of the nonlinear behaviour of 〈er〉0/Drr,0 in this
model. This suggests that the singularity at the centreline cell concentration in model
G indeed originates from the monotonically decreasing 〈er〉0/Drr,0 with the background
shear rate S. In fact, as S → ∞, 〈er〉0 scales with S−1 while Drr,0 scales with S−2,
hence 〈er〉0/Drr,0 scales with S (Bearon et al. 2012). This implies that the origin of the
singularity in N(0) is essentially associated with the lack of translational diffusion flux
relative to the advection flux caused by swimming in the radial direction in model G, as
the local shear rate S increases with N(0) towards infinity along the continuation.

The emergence of this singularity can be more precisely analysed. We now consider
the following equation for N(r), which can be obtained from (2.13) with Drr,0 in (3.2)
of the linearised model:

−1

r

d

dr

(
r
d

dr
lnN(r)

)
= 8γ(N(r)− 1)−G, (3.3)

where γ = ηRiRe/8 and G = η∂U/∂r|r=1. Since N(r) near the singular regime is highly
concentrated near the pipe axis, we assume that the cell concentration is highly focused
in a small region around the axis: i.e. r ∈ [0, ε]. Then, from the constraint of N(r) given
by (2.14), N(r) ∼ O(ε−2) in r ∈ [0, ε]. Therefore, in this region, we can introduce a
relevant rescaling of the radial coordinate r = εR, where R is of order unity, and define
a normalised profile N0(R) = N(r/ε)/N(0). Then, at O(ε−2), (3.3) is approximated as(

1

N0

dN0

dR

)2

− 1

RN0

dN0

dR
− 1

N0

d2N0

dR2
= 8γN0(R). (3.4)

Now, it is evident that (3.4) does not contain G anymore, although it still describes the
behaviour of most of the cell concentration in the suspension. This implies that, in the
regime where the singular solution nearly develops, the form of the steady basics-state
solution should approximately be independent of pressure gradient as well as of flow rate
for r ∈ [0, ε], confirming the numerical result for N(0) > O(103) shown in figure 9.

The solution to (3.4) was previously obtained by Kessler (1986a) with the far field
boundary condition N0(∞) = 0: i.e.

N0(R) =
1

(1 + γR2)2
. (3.5)

We note that (3.4) is the leading-order approximation of (3.3) valid only for R ∈ [0, 1]
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Figure 10. The cell concentration profile of the steady solutions noramlised by the pipe axis
value for several flow rates (Q = 1, 2, 3, 4, 5): (a) the linearised model; (b) model G. Here,
N(0) = 20, ; N(0) = 33, ; N(0) = 55, ; N(0) = 90, for the
coloured lines. The thick black solid line indicates the solution of Kessler (1986a) given in (3.5).

(or equivalently r ∈ [0, ε]). Therefore, (3.5) would be a good approximation of the full
numerical solution of (3.3) for any Q in this region. The normalised cell concentration
of its numerical solutions for several Q and N(0) is compared with (3.5) in figure 10(a).
Indeed, (3.5) shows an excellent agreement with the numerical solutions for R ∈ [0, 1].
We note that (3.5) is also a good approximation of the cell-concentration profile of model
G near the pipe axis, as demonstrated in figure 10(b).

Finally, if the solution (3.5) is substituted into (2.14), the resulting cell concentration
at the pipe axis is obtained as

N(0) =
1

1− γ
. (3.6)

From the definition of γ, this implies that N(0) would be singular, if γ → 1. At γ = 1,
Ri = 8/(ηRe), which should be a good approximation of Ris. Indeed, for the given Re
and η of the linearised model, the value of 8/(ηRe)) is 57.66, showing excellent agreement
with the numerical one Ris ' 57.68 (see figure 9).

The physical mechanism for the singularity is as follow. As Ri increases, the acceler-
ation from the negative buoyancy of cells would increase local downflow and the shear
rate S, attracting more cells towards the centre from more negative 〈er〉0/Drr,0 for the
increased S. The increased cell concentration would therefore increase the local downflow
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further, and the same process would be repeated until the resulting averaged swimming
flux and the radial diffusion are balanced (i.e. formation of a steady solution). Therefore,
N(0) would increase drastically with a small increment in Ri. The physical process
described here is identical to that of the gyrotactic instability. However, in the current
case as well as that of Kessler (1986a), there is a certain threshold of Ri(= Ris), beyond
which the formation of steady solution is no longer possible.
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Figure 11. Spatial structure of the unstable (a) axisymmetric (m = 0) and (b)
non-axisymmetric (m = 1) mode at Ri = 92, Q = 1, α = 0.56, computed using a lower-branch
basic state. Here, the contours indicate N(r) + an′(r, z) with an arbitrary value of a for
visualisation, and the vectors represent the axial and radial perturbation velocity field.

4. Linear stability

Now, linear stability analysis is performed with the steady plume solutions computed
in §3. Here, we will focus on the axisymmetric mode and the first non-axisymmetric
mode, which are similar to the varicose and sinuous modes in downward channel flow
(Hwang & Pedley 2014b). The typical spatial structures of these two modes are visualised
in figure 11, demonstrating the similarity to figure 8 in Hwang & Pedley (2014b): the
axisymmetric mode is composed of a plume, the thickness of which varies along the axial
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Figure 12. Stability of the axisymmetric mode (model F): (a) maximum growth rate ωi,max

and (b) the corresponding αmax of the steady solution at each Ri and Q. In (a), , stable;
- - - -, unstable to streamwise-uniform perturbation.

direction, whereas the non-axisymmetric mode is composed of an anaxially meandering
plume. In the present study, we will be focusing on the axisymmetric mode (m = 0) as
it is more physically relevant and observable in experiments. The first non-axisymmetric
mode (i.e. when m = 1) is also presented briefly.

Given the existence of multiple basic state solutions for a given set of Ri and Q, it is
not straightforward to present the conventional neutral stability diagram. Therefore, in
this section, we present the stability of the steady solutions along each of the continuation
curves shown in §3. For each steady solution (basic state) and the corresponding set of
the parameters, the maximum growth rate ωi,max is sought out for all real α. Here, the
value of α used to search for ωi,max ranges from 0.001 to 20, and the corresponding αmax
is also computed.

4.1. Axisymmetric mode

4.1.1. Model F

Figure 12 shows how the maximum growth rate ωi,max and the corresponding stream-
wise wavenumber αmax change with Ri for each fixed Q along the continuation curves
in figure 3(a). At low Q(. 1), the basic state becomes unstable to axially varying
perturbations near the first saddle-node point where N(0) increases rapidly with Ri, as
the solution continued from the lower to the middle branch. With a further continuation,
the solution stabilises, in that the value of ωi begins to reduce, before the second saddle-
node point (figure 12(a)). The streamwise wavenumber retaining the maximum growth
rate also behaves similarly to ωi,max: αmax grows as the solution continued from the
lower to the middle branch, and it decays again with a further continuation. Finally, as
Q increases, ωi,max obtained for all the steady solutions along the continuation decreases,
implying that increasing the flow rate stabilises the streamwise perturbation.

Comparison of figure 12(a) with figure 3(a) also indicates that the destabilisation
seems to correlate with the rapid increase in N(0) of the basic state at least for the lower
and middle branches. This suggests that the instability is presumably associated with
the sharp gradient in the base flow and cell concentration near the pipe axis, consistent
with the previous observation in Hwang & Pedley (2014b) where the instability of this
type (varicose mode Hwang & Pedley 2014b) was shown to originate from the following
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(a) (b)

Figure 13. (a) The maximum growth rate ωi,max and (b) the corresponding αmax in the
N(0) − Q plane (model F). Note that the contours do not contain any overlap because the
basic state is stable before N(0) decreases in the branch continuation.

simplified process:

∂n′

∂t
∼ −n′

(∂〈er〉0
∂r

+
〈er〉0
r

)
. (4.1)

This process also appears through the first to third terms in (2.18e) in the present pipe
flow. We note that ∂〈er〉0/∂r and 〈er〉0/r must be negative near the pipe axis, because
the cells swim towards the centre (〈er〉0 < 0) near the pipe axis and 〈er〉0 = 0 at the
pipe axis, implying that the same mechanism of the instability is active in the vertical
pipe case.

To further explain the correlation between the growth rate and the nature of the
steady solution near the pipe axis, the maximum growth rate ωi,max in the Q − N(0)
plane is plotted in figure 13. For N(0) . 10, the basic state is destabilised on increasing
N(0), consistent with the explanation given above. However, as N(0) is further increased
(N(0) & 10), the solution is found to be stabilised again. Here, we note that there are no
overlapping contour lines in figure 13, which one might have expected from the existence
of multiple N(0) for a given flow rate (see figure 3(a)). This is because the basic state is
stabilised (ωi < 0) well before N(0) starts to decrease along the upper branch (see figure
3(a)). In other words, the stabilisation takes place while N(0) is still increasing along the
continuation.

The stability analysis result here is qualitatively similar to that in Hwang & Pedley
(2014b), although the stability diagram in the Q−Ri space is not directly shown here due
to the complexity emerging from the bifurcation of basic state: the most unstable mode of
the flow appears in the form of an axisymmetric blip instability like their varicose mode,
and this instability is stabilised if the flow rate is sufficiently large. However, it should
be mentioned that Hwang & Pedley (2014b) did not explore for Ri > 90. Therefore, it is
unclear whether the stabilisation observed at higher N(0) in the present pipe flow would
also occur in their channel flow.

4.1.2. Model G

Now, we perform a linear stability using model G. Figure 14 shows how the maximum
growth rate ωi,max changes with Ri along the continuation curves in figure 5(a) for each
fixed Q. Due to the wider range of the values of ωi,max emerging in model G, here we
have chosen to plot ωi,max in log scale in figure 14. Similar to the result of model F,
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Figure 14. Stability of the axisymmetric mode (model G): (a) maximum growth rate ωi,max

and (b) the corresponding αmax of the steady solution at each Ri and Q. In (a), , stable;
- - - -, unstable to streamwise-uniform perturbation.
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Figure 15. (a) The maximum growth rate ωi,max and (b) the corresponding αmax in the
N(0)−Q plane (model G).

the basic state is destabilised near the first saddle-node point. However, in contrast with
figure 12, the basic state is no longer stabilised with the continuation to upper branches.
Instead, it is found that the growth rate continues to increase, and the basic state always
remains unstable along the continuation curve.

The maximum growth rate ωi,max in the Q −N(0) space is also plotted in figure 15.
It is interesting to note that the growth rate appears to be almost independent of Q at
high enough N(0). This is presumably because the profile of the basic state solution is
almost independent of Q for sufficiently high N(0), as discussed in §3.3. This observation
is also consistent with the notion that the instability is essentially driven by the local
flow dynamics near the centreline of the pipe through (4.1).

The main difference in the stability of model F and G appears from the upper-
branch basic state. In a way, this would not be surprising because model F and G show
significantly different upper-branch states. Model F exhibits decreasing N(0), as the
steady basic-state solution is continued along the upper branch. By the contrary, model
G shows increasing N(0) with the continuation. This feature greatly impacts on the
stability result, and we shall provide a further discussion on this issue in §5.1.



24 L. Fung, R. N. Bearon and Y. Hwang

(a)

50 100 150 200 250

Ri

0

0.05

0.1

0.15

0.2

i

Q=0.1

Q=0.6

Q=1.1

Q=1.6

Q=2.1

Q=2.6

Q=3.1

Q=4.1

Q=5.1

(b)

60 80 100 120 140 160

Ri

0

0.05

0.1

0.15

0.2

i

Q=0.1

Q=0.6

Q=1.1

Q=1.6

Q=2.1

Q=2.6

Figure 16. Stability of the non-axisymmetric mode: maximum growth rate ωi,max at each Ri
and Q, using (a) model F; and (b) model G. In both figures, , stable; - - - -, unstable to
streamwise-uniform perturbation. In (a), the point with maximum N(0) is marked with a black
circle in each curve. In (b), the blue, red and black crosses (x) indicate the first, second and
third saddle-node points respectively.

4.2. Non-axisymmetric mode

Finally, we have computed the stability of the non-axisymmetric mode (sinuous mode).
It was found that, at m = 1, the non-axisymmetric mode is always the most unstable
when α = 0 in both model F and G (i.e. when the perturbation is streamwise-uniform).
Figure 16 shows how the maximum growth rate ωi,max changes with Ri along the
continuation curves shown in figure 3(a) and 5(a) for model F and G respectively. At
low Q(∼ 0.1), the base flow becomes unstable to azimuthally varying (and streamwise-
uniform) perturbation at a lower Ri than the streamwise varying axisymmetric pertur-
bation in both models, before the continuation reaches the first saddle-node point. For
model F, the growth rate peaks at the middle branch, similar to the axisymmetric mode.
However, as the solution continued to the upper branch, the non-axisymmetric mode is
destabilising again, even though N(0) is decreasing at the upper branch. For model G,
the non-axisymmetric mode stabilises after the first saddle-node point despite increasing
N(0).

As Q increases, ωi,max obtained for all the steady solutions along the continuation
decreases. At higher Q(& 1), for model F, ωi,max remains increasing along the branch
continuation even though N(0) started decreasing (as shown by the point indicating
maximum N(0) along each continuation curve). For model G, because of the strong
stabilising effect of the flow rate, the mode is only unstable when Q . 3.0. In figure 16(b),
at higher Q(& 1), the mode is destabilising with increasing N(0) before the third saddle-
node point. The growth rate ωi,max peaks at the third saddle-node point. Beyond the
third saddle-node point where N(0) tends toward infinity (i.e. approaching the singularity
at Ris), ωi,max decreases along the continuation curve. This is also the regime where
there is a self-similar profile at the centre of the pipe, as discussed in §3.3, implying that
the non-axisymmetric mode is stabilising when the self-similar plume structure becomes
narrower.

The fact that the mode is most unstable when α = 0 and that it is not as correlated
to N(0) as the axisymmetric mode strongly suggest that the non-axisymmetric mode is
driven by a different mechanism. In fact, Hwang & Pedley (2014b) showed that sinuous
mode is driven by gyrotactic instability, even though Hwang & Pedley (2014b) did not
take into account the spanwise variation. According to Hwang & Pedley (2014b), the
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gyrotactic instability is expected to originate from the following simplified process:

∂n′

∂t
∼ −

(
〈er〉′

∂N

∂r
+N

∂〈er〉′

∂r
+N

〈er〉′

r
+N

∂〈ez〉′

∂z
+
N

r

∂〈eψ〉′

∂ψ

)
, (4.2)

which also corresponds to the first term and the second line of (2.18e). We note that this
gyrotactic instability mechanism is different from that of (4.1), which is driven by the
gradient in the base flow average cell swimming. Although both mechanisms originate
from gyrotaxis, the former is driven directly by gyrotaxis, while the latter is the result
of the net flux of cells in the radial direction due to non-uniform shear rate. A more
in-depth discussion on both mechanisms can be found in Hwang & Pedley (2014b).

To confirm this mechanism, we have performed the stability analysis with the second
line of (2.18e) suppressed. The non-axisymmetric mode is found no longer unstable for
all the parameter space for both model F and G, which shows that the mode is indeed
driven by the gyrotactic mechanism.

5. Summary and discussion

Thus far, we have explored the bifurcation and stability of a downflowing gyrotactic
microorganism suspension in a vertical pipe flow. This work probably provides an almost
full analytical picture (bifurcation and stability of steady basic state) for the original
experiment of Kessler (1985b,a, 1986a,b) with the most up-to-date continuum models
(model G, in particular), while extending the stability analysis of Hwang & Pedley
(2014b) for channel to pipe. In particular, both model F and G have been used in the
present study, offering some useful physical insights into the benefits and drawbacks of
the existing continuum descriptions.

5.1. Model F and G

The basic-state steady solutions from model F and G have been compared in a series
of previous experimental and numerical studies (Bearon et al. 2012; Croze et al. 2013,
2017). In the present study, a bifurcation analysis has been performed and revealed a
complete description of the existence of multiple solutions, their mutual relations and
the existence boundaries for the first time. In a stationary suspension, both model F
and G exhibit a transcritical bifurcation with Ri (figure 2). With the addition of a small
flow rate Q, this transcritical bifurcation with Ri evolves into an imperfect bifurcation
involving a saddle-node point (figure 2). The further increase of the flow rate results in
the disappearance of the saddle-node point, exhibiting a cusp bifurcation in terms of two
parameters, Ri and Q (figures 3(b) and 5(b)).

Despite the qualitative similarity in the behaviour of the steady solutions of model F
and G, especially at low flow rates, they also exhibit several vital differences. These
differences between model F and G stem fundamentally from how the translational
diffusivity Dm changes with S, especially when S is high (see figure 7(b)). The difference
in Drr(S) results in different bifurcation behaviour, as shown by the comparison between
figure 3(a) and 5(a). The differences are particularly profound at high N(0), where the
background shear rate S is large. In model F, the plume structure of the steady solution
eventually smooths out as it is continued from the middle to the upper branch. This
should be related to the recovery of Drr in model F on increasing S. In contrast, the
monotonically decreasing Drr(S) in model G causes the plume structure of the steady
solution to be more focused as it is continued to the upper branch. This is also the
essential reason why model G does not admit any steady solution, especially for high Ri.
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On the contrary, in model F, there always exists at least one steady solution, albeit not
physically realistic.

As for the stability of the basic state, the main difference between the two models
is that model F shows restabilisation of the axisymmetric mode on increasing N(0),
whereas model G exhibits a rapid increase in its growth rate (figures 13 and 15). Given
that the only difference between model F and G is in the expression of the translational
diffusivity, this difference should also originate from the diffusivity. It has been shown
both numerically (Croze et al. 2013) and experimentally (Croze et al. 2017) that the
diffusivity prediction of model F is not as accurate as model G in modelling gyrotactic
focusing. This suggests that the restabilisation at high N(0) is likely not physical but an
artefact of model F. Furthermore, model F showed that the non-axisymmetric mode has
higher growth rate than the axisymmetric mode at high Ri, but this is not supported by
any of previous experiments, in which only the axisymmetric instability mode (i.e. blip)
has been observed. On the contrary, the axisymmetric mode remained the dominant
mode in most of the parameter space in model G, which is more consistent with the
observation of blips in experiments. These stability results suggest that model F shows
little consistency with the experimental observations, and would not be as accurate as
model G in predicting the blip occurrence.

5.2. Limitation and outlook of the continuum descriptions

Despite the interesting bifurcation structure and the stability of the basic state,
which may offer sound explanations on the previous experiments, care must also be
taken in interpreting the present analysis with the assumptions made in modelling of
the suspension. We have assumed in §2 that the contribution of swimming motions of
individual microorganisms to the flow field (i.e. the ∇∗ · Σ∗p term in (2.2)) would be
negligible throughout the present study. However, the plume structure of the computed
steady solutions exhibits a very high cell density at the pipe axis, implying that this
assumption would not be valid near the pipe axis region. Perhaps, a minimal way
to address this issue with the continuum models in the present study would be to
incorporate the ignored stresslet term. To this end, we have recomputed the steady
solutions using model G with the stresslet term included, assuming that it is dominated
by the contribution of swimming motions of individual microorganisms to the flow field
(for a detailed discussion, see also Pedley & Kessler 1990). The stresslet term considered
is given by

Σ∗p = n∗T ∗(〈ee〉 − 1

3
I), (5.1)

where T ∗ = 10−10gcm2s−1 (Pedley 2010b).

Figure 17 shows the effect of the stresslet term on the bifurcation of the steady solutions
computed with model G. The stresslet term only slightly modifies how N(0) changes
with Ri, without significant impact on the result (figure 17(a)). We have also arbitrarily
increased T to further understand any potential role of the stresslet in the bifurcation
(figure 17(b)). As shown at the top of figure 17(b), the changes in the stresslet strength do
not alter the singular behaviour of N(0) (i.e. N(0)→∞ ). Moreover, the stresslet term
seems to appear to introduce further bifurcation probably involving the emergence of
unsteady solutions, as the Newton solver failed to converge within the prescribed residue
(> 10−4) in the parameter space where the middle-branch solutions reside (dashed lines in
figure 17(b)). However, this issue has not been further pursued in the present study as the
singular behaviour of N(0) is still found to exist even with such a unphysically strong
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(a) (b)

Figure 17. Bifurcation of steady basic-state solution (a) with (lighter lines) and without (darker
lines) the stresslet for several Q and (b) for several arbitrarily scaled stresslet strengths T at
Q = 2. The grey area indicates the cases where the volume fraction at the pipe axis is greater
than 2.5%. In (a), the lighter and darker lines almost overlap. In (b), the dashed line (- - - -)
represents the solutions obtained with large residue (> 10−4) in the solver.

stresslet, implying that the removal of this singularity requires a more sophisticated
modelling effort.

It should be mentioned that, even with the stresslet term included, the interactions
between the cells and the wall and the near-field interactions between cells are still
neglected in the current continuum models. Cell-wall interactions may well be negligible
in the present study as the cells tend to swim away from the wall. However, an accurate
description of such interactions (e.g. Berke et al. 2008; Spagnolie & Lauga 2012; Elgeti
& Gompper 2013; Ezhilan & Saintillan 2015; Bearon & Hazel 2015; Vennamneni et al.
2020) may become important when there is an upflow at the centre and cells tend to
move towards the wall. In particular, the current no-flux boundary condition in both
model F and G does not incorporate the swimming behaviour near the wall, because it
simply extends the averaged swimming velocity and the diffusivity obtained without the
influence of the wall to the near-wall region. Recently, this issue was comprehensively
addressed in by Jiang & Chen (2019) with full Smoluchowski equation. As for cell-cell
interactions, the model with the stresslet term may well be invalid near the centre of
the pipe where the cells are highly concentrated. It is known that in the semi-dilute
regime, the volume fraction have significant impact on the translational diffusivity (e.g.
Hernandez-Ortiz et al. 2005; Ishikawa & Pedley 2007; Mehandia & Nott 2008; Underhill
et al. 2008). To address this issue, we have highlighted the parameter space, where the
modelling assumption would break down, in grey in figure 5(a) and 17. The greyed-
out areas represent the parameter regime in which the volume fraction at the pipe axis
is higher than a threshold value of 2.5 × 10−2. This value was previously shown to
yield significant changes to the rotational and translational diffusivities by the near-field
interaction between cells (Ishikawa & Pedley 2007).

In the previous study by Ishikawa & Pedley (2007) for a suspension of squirmers,
it was shown that when the ambient flow is stationary, the rotational diffusivity DR

increases with the volume fraction of the cells while the translational diffusivity decreases.
Therefore, although N(0) → ∞ was found at Ri → Ris due to decreasing Drr at high
shear, in reality, the near-field interaction at such a high N(0) is likely to increase the
effective rotational diffusivity DR at the pipe axis. However, in general, in the presence of
ambient shear, the issue of how 〈er〉0 and Drr,0 would change with DR has not been very
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well understood. In this respect, it would be interesting to see how additional modelling
incorporating the observations made in the semi-dilute suspensions would modify the
plume structure of the solutions in the future.

Finally, besides the violation of the dilute-suspension assumption, the high cell concen-
tration at the centre also gives rise to a rapidly changing shear rate in the plume structure
of the solutions. This may also break down the assumptions made in model G. In the
application of the GTD theory outlined by Frankel & Brenner (1991, 1993) and Manela
& Frankel (2003), the shear rate of the flow was approximated to be locally homogeneous
at each spatial point without taking into account the effect of inhomogeneity in the shear.
In particular, Bearon & Hazel (2015) has shown that even in the absence of gyrotaxis
that causes the net swimming towards the pipe axis, swimmers may still aggregate in
the regions of high shear due to the inhomogeneity in the flow shear. In effect, such
inhomogeneous shear can also generate an extra net advective cell-concentration flux
towards the centre. Vennamneni et al. (2020) categorised such a phenomenon as low-
shear trapping, in which the phenomenological model G fails to capture due to its quasi-
homogeneous assumption. Given that the formation of the upper-branch solutions in the
present study is strongly linked to the high shear rate near the centre, this effect might
also be significant.

5.3. Implications to experimental observations

While the mode structure from the stability analysis is reminiscent of the blips observed
in experiments, one needs to be cautious in comparing the experimental observation with
the result from the current analysis, performed primarily with the ‘steady’ base-flow
solution under the dilute-suspension assumption. In §3.3, we have demonstrated that the
solution blows up as γ = ηRiRe/8→ 1, irrespective of the flow rate Q. We note that η is
strictly a parameter from the given cell properties and ReRi is proportional to N∗(h∗)2

if the biological properties of the cell and fluid viscosity are fixed. Here, we can define the
cross sectional area of the pipe as A∗ = (h∗)2π. Therefore, the physical interpretation of
the singularity at γ → 1 is that there exist a maximum cell number per unit length of
the pipe N∗A∗ which the self-focused steady plume (upper branch) can hold.

Interestingly, the idea of having a limited capacity in the cell number per unit length
of pipe of the steady plume has also been discussed in Kessler (1986a). In the present
study, we have extended the theory by demonstrating that if the flow rate is low enough
with the centreline velocity at the order of the swimming speed, there exists a lower-
branch state which can surpass such a threshold. However, as shown in figures 5(a) and
9, the upper-branch state still has the cell capacity threshold given by γ = 1, implying
that there exist a set of certain initial conditions which never reach any of the steady
states within the framework of model G. Meanwhile, if the flow rate is high enough, the
hysteresis disappear (figures 5(a) and 9) and a steady solution given in this form is no
longer possible beyond the cell capacity threshold.

In both the experiments of Kessler (1986a) and Denissenko & Lukaschuk (2007) where
blips are observed, the total number of cells (per unit length) N∗A∗ is an order of
magnitude higher than the capacity threshold. Therefore, no steady solution is obtained
with model G in the regimes studied in Kessler (1986a) and Denissenko & Lukaschuk
(2007), not allowing for any direct comparison with the experiment. However, model G
and the dilute-suspension assumption remain to be valid for the experiment of Croze
et al. (2017), where the range of parameters did fall within the regime where steady
solutions can be found. Unfortunately, in Croze et al. (2017), the flow profile and the
blips are not directly measured.

Perhaps the most robust feature of the steady solutions found in the present study
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would be the existence of a cusp bifurcation which emerges in both model F and G.
The cusp bifurcation involves bistability of the steady solutions. In such a system, the
asymptotic state is highly sensitive to the form of the given initial condition and is often
featured with a hysteresis which involves a discontinuous change of the state upon a
continuous change of the bifurcation parameter (Ri in this case). Such sensitivity might
explain why the experimental observations made for the blip formation in the Q − Ri
space are so scattered and qualitatively different from the prediction of Hwang & Pedley
(2014b) (see figure 5 in Croze et al. 2017).
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Appendix A. Linearised equations for perturbed average swimming
orientation vector and diffusivity

In (2.18e), the values of D′m and 〈e〉′ are required. To obtain these values, we first need
to compute f(e)′ with a perturbation of Ω′:

∇e ·
[
λ[e2 − (e2 · e)e]f ′ +

1

2DR
Ω ∧ ef ′

]
−∇2

ef
′ = −∇e ·

[
1

2DR
Ω′ ∧ ef

]
. (A 1)

Then, 〈e〉′ can be computed with f(e)′ by

〈e〉′ =

∫
‖e‖=1

ef ′(e) d2e. (A 2)

For model F, D′F is obtained easily by (Hwang & Pedley 2014b)

D′F = τ(〈ee〉′ − 〈e〉〈e〉′ − 〈e〉〈e〉′). (A 3)

However, for model G, the process is more involved, as D′G not only depends on Ω′, but
also G′ =∇u′. Hence,

D′G =

∫
‖e‖=1

[
b′e +

b′b

f
·G +

bb′

f
·G − bbf ′

f2
·G +

bb

f
·G′

]sym
d2e, (A 4)

where the perturbed b′ due to G′ (and Ω′) is needed. b′ can be computed by solving

∇e · [ėb′ −∇eb
′]−b′ ·G = −〈e〉′f + (e−〈e〉)f ′+b ·G′−∇e ·

[
1

2DR
(Ω′ ∧ e)b

]
. (A 5)

In practice, the left-hand side of (A 1) and (A 5) is the same linear operator used in
(2.10d) and (2.10j), while their right-hand side can be viewed as different forcing terms.
Therefore, f ′ and b′ can be obtained by imposing the different forcing term on the right-
hand side of (A 1) and (A 5), similarly to the framework of Hwang & Pedley (2014a,b).
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Appendix B. Equations for linear stability

Using the framework in Appendix A, 〈e〉′ and D′m can be written as linear combinations
of the components of Ω′ (Model F and G) and G′ (Model G), hence also as a linear
combination of u′. This allows us to write 〈e〉′ and D′m as follows:

〈er〉′0 =
ξ1
DR

(
∂v′

∂z
− ∂u′

∂r
); (B 1a)

〈ez〉′0 =
ξ2
DR

(
∂v′

∂z
− ∂u′

∂r
); (B 1b)

〈ez〉′0 =
ξ3
DR

(
1

r

∂u′

∂ψ
− ∂w′

∂z
) +

ξ4
rDR

(
∂rw′

∂r
− ∂v′

∂ψ
); (B 1c)

D′rr =
1

DR
(ξ5

∂u′

∂r
+ ξ6

∂v′

∂r
+ ξ7

∂w′

∂r
+ ξ8

∂u′

∂z
+ ξ9

∂v′

∂z
+ ξ10

∂w′

∂z

+
1

r
(ξ11

∂u′

∂ψ
+ ξ12(

∂v′

∂ψ
− w′) + ξ13(

∂w′

∂ψ
+ v′))); (B 1d)

D′rz =
1

DR
(ξ14

∂u′

∂r
+ ξ15

∂v′

∂r
+ ξ16

∂w′

∂r
+ ξ17

∂u′

∂z
+ ξ18

∂v′

∂z
+ ξ19

∂w′

∂z

+
1

r
(ξ20

∂u′

∂ψ
+ ξ21(

∂v′

∂ψ
− w′) + ξ22(

∂w′

∂ψ
+ v′))); (B 1e)

D′rψ =
1

DR
(ξ23

∂u′

∂r
+ ξ24

∂v′

∂r
+ ξ25

∂w′

∂r
+ ξ26

∂u′

∂z
+ ξ27

∂v′

∂z
+ ξ28

∂w′

∂z

+
1

r
(ξ29

∂u′

∂ψ
+ ξ30(

∂v′

∂ψ
− w′) + ξ31(

∂w′

∂ψ
+ v′))), (B 1f )

where ξ1−4 are the same for model F and G, but ξ5−31 are different for model F and G.

Application of the normal-mode assumption of (2.19) to (2.18), we get

iαû+
1

r

∂rv̂

∂r
+

1

r
imŵ = 0, (B 2a)

iωû+ LOS û+
∂U

∂r
v̂ = −iαp̂+ Ri n̂, (B 2b)

iωv̂ + LOS v̂ = −∂p̂
∂r

+
1

Re
(− v̂

r2
− 2im

r2
ŵ), (B 2c)

iωŵ + LOSŵ = −1

r
imp̂+

1

Re
(− ŵ
r2

+
2im

r2
v̂), (B 2d)
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iωn̂ + Lnn̂

+
∂N

∂r
v̂ + (

∂N

∂r
+N

∂

∂r
+
N

r
)(
iαξ1
DR

v̂ − ξ1
DR

∂û

∂r
)

+ iαN
ξ2
DR

(iαv̂ − ∂û

∂r
) +

imN

r
(
ξ3
DR

(
im

r
û− iαŵ) +

ξ4
rDR

(
∂rŵ

∂r
− imv̂))

=
1

D2
R

[
(
1

r

∂N

∂r
+
∂N

∂r

∂

∂r
+
∂2N

∂r2
)

(
ξ5
∂û

∂r
+ ξ6

∂v̂

∂r
+ ξ7

∂ŵ

∂r

+ iα(ξ8û+ ξ9v̂ + ξ10ŵ) +
im

r
(ξ11û+ ξ12v̂ + ξ13ŵ) +

1

r
(−ξ12ŵ + ξ13v̂)

)
+ iα

∂N

∂r

(
ξ14

∂û

∂r
+ ξ15

∂v̂

∂r
+ ξ16

∂ŵ

∂r
+ iα(ξ17û+ ξ18v̂ + ξ19ŵ)

+
im

r
(ξ20û+ ξ21v̂ + ξ22ŵ) +

1

r
(−ξ21ŵ + ξ22v̂)

)
+
im

r

∂N

∂r

(
ξ23

∂û

∂r
+ ξ24

∂v̂

∂r
+ ξ25

∂ŵ

∂r
+ iα(ξ26û+ ξ27v̂ + ξ28ŵ)

+
im

r
(ξ29û+ ξ30v̂ + ξ31ŵ) +

1

r
(−ξ30ŵ + ξ31v̂)

)]
, (B 2e)

where

LOS = iαU − 1

Re

(
1

r

∂

∂r
(r
∂

∂r
)− α2 − m2

r2

)
, (B 2f )

and

Ln = (
〈er〉0
r

+
∂〈er〉0
∂r

) + 〈er〉0
∂

∂r
+ iαU + iα〈ez〉0 +

im〈ez〉0
r

− 1

DR

[
1

r

(
Drr,0

∂

∂r
+ iαDrz,0 + 2imDrψ,0

∂

∂r
+ im

∂Drψ,0

∂r
− 2αmDψz,0

)
+
∂Drr,0

∂r

∂

∂r
+ 2iα

∂Drz,0

∂r
+ iαDrz,0

∂

∂r

+ Drr,0
∂2

∂r2
− α2Dzz,0 −

m2

r2
Dψψ,0

]
. (B 2g)

The boundary condition at the wall is

û|r=1 = v̂|r=1 = ŵ|r=1 = 0 (B 2h)

and

Nv̂ +N〈er〉′ + 〈er〉0n̂ =
1

DR

(
D′rr

∂N

∂r
+Drr,0

∂n̂

∂r
+ iαDrz,0n̂+ im

Drψ,0

r
n̂

)
. (B 2i)

The compatibility conditions at the centre of the pipe are

û = v̂ = ŵ = p̂ =
∂n̂

∂r
= 0 when m > 2; (B 2j )

v̂ + iŵ = 0, û =
∂n̂

∂r
= p̂ = 0 when m = 1; (B 2k)

v̂ = ŵ = 0,
∂û

∂r
=
∂n̂

∂r
= 0 when m = 0. (B 2l)

These equations can now be discretised in the radial direction and solved as an eigenvalue
problem, as mentioned in §2.6.
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