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Abstract. We recently defined an invariant of contact manifolds with convex boundary in
Kronheimer and Mrowka’s sutured monopole Floer homology theory. Here, we prove that
there is an isomorphism between sutured monopole Floer homology and sutured Heegaard
Floer homology which identifies our invariant with the contact class defined by Honda, Kazez
and Matić in the latter theory. One consequence is that the Legendrian invariants in knot
Floer homology behave functorially with respect to Lagrangian concordance. In particular,
these invariants provide computable and effective obstructions to the existence of such concor-
dances. Our work also provides the first proof which does not rely on Giroux’s correspondence
that Honda, Kazez and Matić’s contact class is well-defined up to isomorphism.

1. Introduction

The purpose of this article is to establish an equivalence between two invariants of contact
3-manifolds with boundary—one defined using Heegaard Floer homology and the other using
monopole Floer homology. Our equivalence fits naturally into the ongoing program of estab-
lishing connections between the many different instantiations of Floer theory. In addition to
the theoretical appeal of such connections, an equivalence between invariants in different Floer
homological settings allows one to combine the intrinsic advantages of the different settings, of-
ten with interesting topological or geometric consequences. This principle is illustrated nicely
by Taubes’s isomorphism between monopole Floer homology and embedded contact homology
[52, 53, 54, 55, 56], whose first step, a correspondence between monopoles and Reeb orbit sets,
proved the Weinstein conjecture for 3-manifolds [51].

Our work provides another illustration of this principle. One of the primary advantages of
Heegaard Floer homology is its computability. On the other hand, monopole Floer homology
enjoys a certain functoriality with respect to exact symplectic cobordism which has yet to
be proven in the Heegaard Floer setting. The equivalence described in this paper enables us
to combine these advantages to give a new, computable obstruction to the existence of La-
grangian concordances between Legendrian knots, a subject of much recent interest. Another
application of our equivalence is a Giroux-correspondence-free proof that the contact invariant
in sutured Heegaard Floer homology is well-defined up to isomorphism.

Below, we describe our equivalence and its applications in more detail. We then outline the
proof. We work in characteristic 2 throughout this paper.
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1.1. Our equivalence. Let us first recall the invariants of closed contact 3-manifolds defined
by Kronheimer and Mrowka and by Ozsváth and Szabó. Suppose (Y, ξ) is a closed contact
3-manifold, and η is an oriented curve in Y . In [26, 25], Kronheimer and Mrowka associate to
such data a class

cHM (ξ) ∈

̂

HM •(−Y, sξ; Γη)
1

in the monopole Floer homology of −Y with local coefficients. Here, sξ is the Spinc structure
on −Y associated with ξ, and Γη is a local system on the monopole Floer configuration space
with fiber a Novikov ring Λ. In [43], Ozsváth and Szabó likewise define a class

cHF (ξ) ∈ HF +(−Y, sξ; Γη)

in Heegaard Floer homology with local coefficients, but by very different means. Remarkably,
these two invariants are equivalent. This is made precise in the theorem below, which follows
from Taubes’ work [52, 53, 54, 55, 56] together with work of Colin, Ghiggini, and Honda
[10, 11, 9] on the isomorphism between Heegaard Floer homology and embedded contact
homology.

Theorem 1.1 (Taubes, Colin–Ghiggini–Honda). For every s ∈ Spinc(−Y ), there is an iso-
morphism of Λ[U ]-modules

Φs : HF +(−Y, s; Γη)→

̂

HM •(−Y, s; Γη),

such that Φsξ(cHF (ξ)) = cHM (ξ).

Remark 1.2. Kutluhan, Lee, and Taubes also proved this isomorphism [29, 30, 31, 32, 33].
We need to specifically use the Taubes and Colin-Ghiggini-Honda isomorphisms in this work,
however, because they identify the contact invariants cHF (ξ) and cHM (ξ) while Kutluhan-Lee-
Taubes do not.

This article sets out to establish a similar equivalence for invariants of contact 3-manifolds
with boundary, or, more precisely, what we call sutured contact manifolds. These are triples
(M,Γ, ξ) where (M, ξ) is a contact 3-manifold with convex boundary and dividing set Γ ⊂ ∂M .
In [19], Honda, Kazez, and Matić associate to such data a class

cHF (ξ) ∈ SFH (−M,−Γ)2

in the sutured Heegaard Floer homology of (−M,−Γ) which, in a sense, generalizes Ozsváth
and Szabó’s invariant of closed contact manifolds (it generalizes the hat version of Ozsváth
and Szabó’s invariant). In [3], we gave a similar generalization of Kronheimer and Mrowka’s
invariant. Ours assigns to a sutured contact manifold a class

cHM (ξ) ∈ SHM (−M,−Γ)3

in a version of sutured monopole Floer homology with local coefficients.4 Our main theorem
is the following, settling a conjecture made in [3, Conjecture 1.9].

1In [26, 25], this class is denoted by ψ.
2In [19], this class is denoted by EH.
3In [3], this class is denoted by ψ.
4In fact, our invariant can be made to take values in the “natural” refinement of SHM defined in [2].
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Theorem 1.3 (Main Theorem). There is an isomorphism of Λ-modules

SFH (−M,−Γ)⊗ Λ→ SHM (−M,−Γ),

sending cHF (ξ)⊗ 1 to cHM (ξ).

1.2. Applications. The main topological application of Theorem 1.3 discussed in this paper
is to the study of Lagrangian concordance initiated by Chantraine in [7]. Recall that for
Legendrian knots K1,K2 ⊂ (Y, ξ), K1 is Lagrangian concordant to K2—written K1 ≺ K2—if
there is an embedded Lagrangian cylinder C in the symplectization of (Y, ξ) such that

C ∩ ((−∞,−T )× Y ) = (−∞,−T )×K1,

C ∩ ((T,∞)× Y ) = (T,∞)×K2

for some T > 0. Two Legendrian knots related by Lagrangian concordance must have the same
classical invariants (Thurston-Bennequin and rotation numbers) [7]. A challenging problem,
therefore, which has attracted a lot of recent attention, is to find tools for deciding whether two
knots with the same classical invariants are Lagrangian concordant. Note that this is more
difficult than the already formidable task of deciding whether two smoothly isotopic knots
with the same classical invariants are Legendrian isotopic, though many known Legendrian
isotopy invariants are in fact Lagrangian concordance obstructions, see e.g. [8].

In [5], we defined a Legendrian invariant which assigns to a Legendrian knot K ⊂ (Y, ξ) a
class

LHM (K) ∈ KHM (−Y,K)

in monopole knot Floer homology with local coefficients. It is defined in terms of a certain
contact structure ξK on the sutured knot complement Y (K) with two meridional sutures,

(1) LHM (K) := cHM (ξK) ∈ SHM (−Y (K)) =: KHM (−Y,K).

Furthermore, we used the functoriality of cHM under exact symplectic cobordism (a feature
whose analogue in Heegaard Floer homology has not been established independently of The-
orem 1.1) to show that LHM behaves functorially under Lagrangian concordance, as follows.

Theorem 1.4 (Baldwin–Sivek). If K1,K2 ⊂ (Y, ξ) are Legendrian knots with K1 ≺ K2, then
there is a map

KHM (−Y,K2)→ KHM (−Y,K1),

sending LHM (K2) to LHM (K1).

In this way, the class LHM provides an obstruction to the existence of Lagrangian concor-
dances between Legendrian knots. Unfortunately, this class is not easily computable. A much
more computable Legendrian invariant is that defined by Lisca, Ozsváth, Stipsicz, and Szabó
in [36]. Theirs takes the form of a class

LHF (K) ⊂ ĤFK (−Y,K)

in Heegaard knot Floer homology. Though originally defined in terms of open books for (Y, ξ),
Stipsicz and Vértesi discovered in [50] that it can also be formulated as

LHF (K) = cHF (ξK) ∈ SFH (−Y (K)) = ĤFK (−Y,K).
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In fact, their work was the inspiration for our subsequent definition of LHM . The equivalence
below then follows immediately from Theorem 1.3.

Theorem 1.5. There is an isomorphism of Λ-modules

ĤFK (−Y,K)⊗ Λ→ KHM (−Y,K),

sending LHF (K)⊗ 1 to LHM (K). �

Remark 1.6. The second author defined a similar but different invariant of Legendrian knots
in KHM in [48]. In fact, it was his construction that inspired our series [3, 4, 5]. It is still
unknown how his Legendrian invariant is related to LHM and therefore to LHF .

A Legendrian invariant is said to be effective if it can distinguish smoothly isotopic Leg-
endrian knots with the same classical invariants. The invariant LHF is effective in that there
are Legendrian knots as above for which the invariant vanishes for one but not for the other.
Theorem 1.5 then implies that LHM is effective as well, resolving [5, Conjecture 1.1].

Theorem 1.7. The invariant LHM is effective. �

Remark 1.8. The classes LHF and LHM are invariant under negative Legendrian stabilization,
and therefore provide invariants of transverse knots as well. Theorem 1.5, combined with
computations in Heegaard Floer homology [36], implies that LHM is also an effective transverse
knot invariant, in the sense that it can distinguish smoothly isotopic transverse knots with
the same self-linking numbers.

An even more striking consequence of Theorems 1.4 and 1.5 is that the invariant LHF is
also functorial under Lagrangian concordance, as follows.

Theorem 1.9. If K1,K2 ⊂ (Y, ξ) are Legendrian with K1 ≺ K2, then there is a map

ĤFK (−Y,K2)⊗ Λ→ ĤFK (−Y,K1)⊗ Λ,

sending LHF (K2)⊗ 1 to LHF (K1)⊗ 1. �

Remark 1.10. We remark that decorated smooth concordances induce similar maps on knot
Floer homology, as defined and studied by Juhász [21] and Juhász-Marengon [22]. It is not
clear how those maps are related to ours.

Once again, the value of establishing this functoriality in the Heegaard Floer setting has to
do with the relative computability of invariants in that setting. In fact, before the discovery
of LHF , Ozsváth, Szabó, and Thurston defined in [45] an intrinsically computable invariant of
Legendrian knots in the tight contact structure (S3, ξstd) using the grid diagram formulation
of knot Floer homology. Their invariant assigns to a Legendrian K ⊂ (S3, ξstd) a class

ΘHF (K) ∈ ĤFK (−S3,K).

It was shown in [6] that these two Heegaard Floer invariants are equivalent where they overlap,
per the following theorem.
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Theorem 1.11 (Baldwin–Vela-Vick–Vértesi). For any Legendrian knot K ⊂ (S3, ξstd), there
is an automorphism

ĤFK (−S3,K)→ ĤFK (−S3,K),

sending LHF (K) to ΘHF (K).

Combined with Theorem 1.9, this theorem implies that the invariant ΘHF = LHF provides
an entirely computable obstruction to the existence of Lagrangian concordances between Leg-
endrian knots in (S3, ξstd), as follows.

Theorem 1.12. If K1 and K2 are Legendrian knots in (S3, ξstd) with

ΘHF (K1) 6= 0 and ΘHF (K2) = 0,

then there is no Lagrangian concordance from K1 to K2. �

As mentioned by the authors of [6], proving a result like Theorem 1.12 was a major part of
their motivation for establishing the equivalence described in Theorem 1.11.

It is easy to find examples demonstrating the effectiveness of the obstruction in Theorem
1.12. In particular, there are infinitely many pairs (K1,K2) of smoothly isotopic Legendrian
knots with the same classical invariants which satisfy the hypotheses of Theorem 1.12 [38, 37,
24, 1]. The results of [38] imply that such K1 and K2 are not Legendrian isotopic, whereas
Theorem 1.12 implies the much stronger fact that K1 is not Lagrangian concordant to K2.

It bears mentioning that the Legendrian contact homology DGA of Chekanov and Eliash-
berg [14] enjoys a similar sort of functoriality under Lagrangian concordance [13]. However, it
can be difficult to apply this DGA obstruction in practice. Consider, for example, the two Leg-
endrian representatives K1 and K2 of m(10132) with (tb, r) = (1, 0) described by Ng, Ozsváth,
and Thurston in [37]. One can show that K1 is not Lagrangian concordant to K2 by showing
that the DGA is trivial for K2 while nontrivial for K1. But proving this nontriviality is tricky
as the DGA for K1 does not even admit any nontrivial finite-dimensional representations [49].
By contrast, it is quite easy to check that ΘHF vanishes K2 but not for K1, and in so doing,
apply the Heegaard Floer obstruction in Theorem 1.12.

Another advantage of ΘHF is that it is preserved under negative Legendrian stabilization,
whereas the Legendrian contact homology DGA is trivial for stabilized knots. In particular, for
K1 and K2 satisfying the hypotheses of Theorem 1.12, we may also conclude that no negative
stabilization of K1 is Lagrangian concordant to any negative stabilization of K2. The DGA,
by contrast, cannot tell us anything about Lagrangian concordances between stabilized knots.

In Section 4, we give another demonstration of our obstruction, providing several additional
examples of Legendrian knots with the same classical invariants which are not smoothly iso-
topic or Lagrangian concordant, but which are smoothly concordant. In these examples, La-
grangian concordance is obstructed by Theorem 1.12 while the Legendrian contact homology
DGA provides no such obstruction.

Another important application of our work concerns the well-definedness of Honda, Kazez,
and Matić’s contact invariant. Given a sutured contact manifold (M,Γ, ξ) and a partial open
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book ob compatible with ξ, Honda, Kazez, and Matić define an element

cHF (ob) ∈ SFH (−M,−Γ).

They then prove that the elements associated to any two open books compatible with ξ agree,
and define cHF (ξ) to be this common element. Their proof that this class is independent of the
choice of open book relies on Giroux’s correspondence—in particular, on its assertion that any
two open books compatible with ξ are related by positive stabilizations and destabilizations.5

By contrast, our construction of cHM (ξ) does not rely on this assertion.

Moreover, in proving Theorem 1.3, what we actually show (see Theorem 3.1), again without
using Giroux’s correspondence, is that for any partial open book ob compatible with ξ there
is a Λ-module isomorphism

(2) SFH (−M,−Γ)⊗ Λ→ SHM (−M,−Γ)

sending cHF (ob)⊗ 1 to cHM (ξ). Our work thus gives a proof which does not rely on Giroux’s
correspondence that the elements associated to any two partial open books compatible with ξ
are related by an automorphism of SFH (−M,−Γ); in other words, that cHF (ξ) is well-defined
up to isomorphism. While our well-definedness statement is weaker than that of Honda, Kazez,
and Matić (see the remark below), the value of our proof lies in the fact that a complete proof
of Giroux’s correspondence has yet to appear.

Remark 1.13. We do not claim to have given a Giroux-correspondence-free proof that cHF (ξ)
is well-defined as an element of SFH (−M,−Γ), the point being that we do not know whether
the isomorphism in (2) is independent of the choice of partial open book. However, the
question of whether cHF (ξ) vanishes does not depend on the particular isomorphism, and it
is often only this vanishing or non-vanishing that is used in applications.

1.3. Proof outline. We outline our proof of Theorem 1.3 below following a very brief review
of sutured monopole Floer homology and our contact invariant.

A closure of a balanced sutured manifold (M,Γ), as defined by Kronheimer and Mrowka in
[28], is a closed manifold Y together with a distinguished surface R ⊂ Y , formed from (M,Γ)
in a certain manner, and containing M as a submanifold. Let

Spinc(Y |R) := {s ∈ Spinc(Y ) | 〈c1(s), [R]〉 = 2g(R)− 2}
denote the set of “top” Spinc structures on Y with respect to R. The sutured monopole Floer
homology of (M,Γ) is defined as

SHM (M,Γ) :=

̂

HM •(Y |R; Γη) :=
⊕

s∈Spinc(Y |R)

̂

HM •(Y, s; Γη),

where η is a curve in R of a certain form. Given a sutured contact manifold (M,Γ, ξ), we give
a procedure in [3] for extending ξ to a contact structure ξ̄ on a certain class of closures (Y,R)
with respect to which R is convex and such that

(3) 〈c1(sξ̄), [R]〉 = 2− 2g(R).

5Henceforth, any mention of “Giroux’s correspondence” will refer to this assertion; proofs can be found in
the literature for the other parts of the correspondence.
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For a certain class of η ⊂ R as above, we refer to the quadruple (Y,R, ξ̄, η) as a contact closure
of (M,Γ, ξ). The pairing in (3) implies that

sξ̄ ∈ Spinc(−Y |−R),

which means that

̂

HM •(−Y, sξ̄; Γη) is a direct summand of SHM (−M,−Γ). We define

cHM (ξ) := cHM (ξ̄) ∈

̂

HM •(−Y, sξ̄; Γη) ⊂ SHM (−M,−Γ),

and prove that this class is independent of the choices involved in its construction. Note that
Theorem 1.1 provides an isomorphism

HF +(−Y |−R; Γη) //

̂

HM •(−Y |−R; Γη) =: SHM (−M,−Γ)

∈ ∈ ∈

cHF (ξ̄) � // cHM (ξ̄) =: cHM (ξ).

Therefore, in order to prove Theorem 1.3, it suffices to prove the following.

Theorem 1.14. There is a contact closure (Y,R, ξ̄, η) of (M,Γ, ξ) for which there exists an
isomorphism of Λ-modules

A : SFH (−M,−Γ)⊗ Λ→ HF +(−Y |−R; Γη),

sending cHF (ξ)⊗ 1 to cHF (ξ̄).

Our strategy for proving Theorem 1.14 makes use of an interesting topological reformulation
of the contact invariant of ξ̄ from [3]. One starts with a partial open book for (M,Γ, ξ), which
provides a description of this contact manifold as obtained from an [−1, 1]-invariant contact
structure ξS on the product sutured manifold

H(S) = (S × [−1, 1], ∂S × {0})
by attaching contact 2-handles along certain curves s1, . . . , sn in ∂H(S). These curves corre-
spond naturally to Legendrians in a contact closure (YS , R, ξ̄S , η) of (H(S), ξS), and we proved
that contact (+1)-surgery on these Legendrian curves results in a contact closure (Y,R, ξ̄, η)
of (M,Γ, ξ). It then follows from the functoriality of the contact invariant under such surgeries
[43, Theorem 4.2] that the map

B : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη)

induced by the natural 2-handle cobordism corresponding to these surgeries satisfies

B(cHF (ξ̄S)) = cHF (ξ̄).

The contact class cHF (ξ̄S) is always nonzero and the domain of B,

HF +(−YS |−R; Γη) ∼= Λ,

is 1-dimensional, so this class may be characterized simply as the generator of this module. We
prove that if the initial contact closure (YS , R, ξ̄S , η) is of a certain form, where, in particular,
g(R) is sufficiently large, then there is a Λ-module isomorphism as claimed in the theorem,
and the above characterization of cHF (ξ̄S) enables us to show that

(4) A(cHF (ξ)⊗ 1) = B(cHF (ξ̄S)).
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Since the latter equals cHF (ξ̄), this proves Theorem 1.14 and therefore Theorem 1.3.

It bears mentioning that Lekili has already shown in [34] that the modules in Theorem 1.14
are isomorphic. Given a sutured Heegaard diagram for (−M,−Γ), Lekili constructs a pointed
Heegaard diagram for −Y in a certain natural way, and, by comparing these diagrams, defines
a quasi-isomorphism between the corresponding chain complexes. Our map A is defined using
a similar, but slightly different diagram for −Y . A novel aspect of our construction is that, for
g(R) sufficiently large and for sufficient winding of the curves in the Heegaard diagram, we are
able to show that A is a chain map and quasi-isomorphism without resorting to the somewhat
involved holomorphic disk analysis that appears in Lekili’s proof. A similar principle, applied
to counting holomorphic triangles, is used to prove the equality in (4).

1.4. Organization. In Section 2, we review the constructions and properties of the contact
invariants in Heegaard and monopole Floer homologies and their sutured variants. In Section
3, we prove Theorem 1.3 as outlined above. In Section 4, we provide examples which further
illustrate the effectiveness of Theorem 1.12 in obstructing Lagrangian concordances.

1.5. Acknowledgements. We thank Ko Honda for helpful correspondence. We also thank
the referees for several careful readings and many helpful comments, and especially for point-
ing out a mistake (twice!) in earlier drafts of this article; our corrections led to substantial
improvements in the proofs of our main results.

2. Background

2.1. Sutured monopole Floer homology and contact invariants. Let Λ be the Novikov
ring over Z/2Z defined by

Λ =

{∑
α

cαt
α

∣∣∣∣ α ∈ R, cα ∈ Z/2Z, #{α < n|cα 6= 0} <∞ for all n ∈ Z
}
.

Suppose Y is a closed, oriented 3-manifold and η is a smooth 1-cycle in Y . Kronheimer and
Mrowka defined in [27, 28] a version of monopole Floer homology with local coefficients which
assigns to the pair (Y, η) a Λ[U ]-modulê

HM •(Y ; Γη) =
⊕

s∈Spinc(Y )

̂

HM •(Y, s; Γη).

Furthermore, Kronheimer and Mrowka in [26, 25] assign to a contact structure ξ on Y a class

cHM (ξ) ∈

̂

HM •(−Y, sξ; Γη) ⊂

̂

HM •(−Y ; Γη)
6

which depends only on the isotopy class of ξ. We note that the construction of cHM (ξ) does
not rely on Giroux’s correspondence.

We recall below the definition of sutured monopole Floer homology and our construction
of the contact invariant for sutured contact manifolds defined therein.

6As mentioned in the introduction, this class is denoted by ψ(ξ) in [25].
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Suppose (M,Γ) is a balanced sutured manifold. Let A(Γ) be a closed tubular neighborhood
of Γ in ∂M , and let T be a compact, connected, oriented surface with g(T ) ≥ 2 and π0(∂T ) ∼=
π0(Γ). Let

h : ∂T × [−1, 1]→ A(Γ)

be an orientation-reversing homeomorphism sending ∂T×{±1} to ∂(R±rA(Γ)). Now consider
the preclosure

P = M ∪h T × [−1, 1]

formed by gluing T × [−1, 1] according to h. The balanced condition ensures that P has two
homeomorphic boundary components, ∂+P and ∂−P , given by

∂±P = (R± rA(Γ)) ∪ T × {±1}.

One can then glue ∂+P to ∂−P by an orientation-reversing homeomorphism to form a closed,
oriented 3-manifold Y containing a distinguished surface

R := ∂+P = −∂−P ⊂ Y.

In [28], Kronheimer and Mrowka define a closure of (M,Γ) to be any pair (Y,R) obtained in
this manner. They refer to T as the auxiliary surface used to form this closure.

Remark 2.1. If (Y,R) is a closure of (M,Γ), then (−Y,−R) is a closure of (−M,−Γ).

Remark 2.2. It is sometimes useful to think of Y as obtained by gluing R × [−1, 1] to P ,
by a map which identifies R × {±1} with ∂∓P , and R as R × {0}. In particular, from this
perspective, ∂M is a codimension 1 submanifold of Y .

Suppose (Y,R) is a closure of (M,Γ) formed as above, and fix an oriented curve η ⊂ R which
is dual to a homologically essential curve in the auxiliary surface T . As in the introduction,
we let

(5) Spinc(Y |R) := {s ∈ Spinc(Y ) | 〈c1(s), [R]〉 = 2g(R)− 2}

be the set of “top” Spinc structures on Y with respect to R, and define the sutured monopole
Floer homology of (M,Γ) to be the Λ-module

SHM (M,Γ) :=

̂

HM •(Y |R; Γη) :=
⊕

s∈Spinc(Y |R)

̂

HM •(Y, s; Γη).

Indeed, Kronheimer and Mrowka prove in [28, Proposition 4.6] that the isomorphism class of
this module is independent of the choice of closure (Y,R) and curve η, and is therefore an
invariant of (M,Γ). We later proved in [2] that the modules assigned to different closures are
related by canonical isomorphisms.

Suppose now that (M,Γ, ξ) is a sutured contact manifold. Let (Y,R) be a closure of (M,Γ)
formed by gluing on a thickened auxiliary surface T × [−1, 1] to form a preclosure P , as
described above, and then gluing ∂+P to ∂−P by a map which sends c × {+1} to c × {−1}
for some nonseparating curve c ⊂ T . In [3, Section 3], we gave a procedure for extending ξ to
a contact structure ξ̄ on Y such that R is convex with respect to ξ̄ with

〈c1(sξ̄), [R]〉 = 2− 2g(R).
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For any curve η ⊂ T ⊂ R dual to c, we refer to the quadruple (Y,R, ξ̄, η) as a contact closure
of (M,Γ, ξ). The above pairing implies that

sξ̄ ∈ Spinc(−Y |−R).7

It therefore makes sense to define the element

cHM (ξ) := cHM (ξ̄) ∈

̂

HM •(−Y, sξ̄; Γη) ⊂

̂

HM •(−Y |−R; Γη) =: SHM (−M,−Γ).

We proved in [3] that this element is independent of the choices involved in its construction.
Our proof does not rely on Giroux’s correspondence.

2.2. Partial open books for sutured contact manifolds. We assume the reader is familiar
with (non-partial) open books for closed contact manifolds. Following [3, Definition 4.9], a
partial open book is a quadruple (S, P, h, {c1, . . . , cn}), where:

• S is a surface with nonempty boundary,
• P is a subsurface of S,
• h : P → S is an embedding which restricts to the identity on ∂P ∩ ∂S,
• {c1, . . . , cn} is a set of disjoint, properly embedded arcs in P whose complement in S

deformation retracts onto S r P .

Remark 2.3. The collection {c1, . . . , cn} is called a basis for the partial open book. It is often
not included as part of the definition since the sutured contact manifold compatible with the
partial open book, described below, is independent of the basis.

Given a partial open book

ob = (S, P, h, {c1, . . . , cn}),

let ξS be the [−1, 1]-invariant contact structure on S× [−1, 1] for which each S×{t} is convex
with Legendrian boundary and dividing set consisting of one boundary-parallel arc for each
component of ∂S, oriented in the direction of ∂S. Let (H(S), ξS) denote the sutured contact
manifold obtained from (S× [−1, 1], ξS) by rounding corners, as illustrated in Figure 1 below.
In particular, the dividing set on ∂H(S) is isotopic to ∂S×{0}. Let si be the curve on ∂H(S)
given by

(6) si = (ci × {1}) ∪ (∂ci × [−1, 1]) ∪ (h(ci)× {−1}).

(In a slight abuse of notation, we identifyH(S) with (S×[−1, 1], ξS), ignoring corner rounding.)
We say that the partial open book ob is compatible with the sutured contact manifold (M,Γ, ξ)
if the latter can be obtained from (H(S), ξS) by attaching contact 2-handles along the curves
s1, . . . , sn. Honda, Kazez, and Matić proved the following in [19, Theorem 1.3].

Theorem 2.4 (Honda–Kazez–Matić). Every sutured contact manifold admits a compatible
partial open book decomposition.

7We incorrectly computed this pairing in [3] to be 2 − 2g(R); this error does not affect the validity of any
of the results in that paper.
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Remark 2.5. A (non-partial) open book for a closed contact 3-manifold can be thought of
as a partial open book in which P is the complement of a disk in S. The corresponding closed
contact 3-manifold is formed by attaching contact 2-handles to (H(S), ξS) as above and then
filling the resulting S2 boundary with a Darboux ball.

Figure 1. Left, (S × [−1, 1], ξS), with negative region shaded, for a genus
2 surface with 3 boundary components. Right, the convex boundary of the
sutured contact manifold (H(S), ξS) obtained by rounding corners.

2.3. Sutured Heegaard Floer homology and contact invariants. .....................................................................................................................................................................................................................................................................................................................
To define the sutured Heegaard Floer homology of a balanced sutured manifold (M,Γ), as
introduced by Juhász in [20], one starts with an admissible sutured Heegaard diagram

(Σ,α = {α1, . . . , αn},β = {β1 . . . , βn})

for (M,Γ). In particular,

• Σ is a compact surface with boundary,
• M is obtained from Σ× [−1, 1] by attaching 3-dimensional 2-handles along the curves
αi × {−1} and βi × {1}, for i = 1, . . . , n, and
• Γ is given by ∂Σ× {0}.

The admissibility condition means that every nontrivial periodic domain has both positive
and negative coefficients.

The sutured Heegaard Floer complex SFC (Σ,α,β) is the Z/2Z vector space generated by
intersection points

x ∈ Tα ∩ Tβ = (α1 × · · · × αn) ∩ (β1 × · · · × βn) ⊂ Symn(Σ).

The differential is defined by counting holomorphic disks in the usual way; namely, for a
generator x as above,

dx =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#
(
M(φ)/R

)
· y,
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where π2(x,y) is the set of homotopy classes of Whitney disks from x to y; µ(φ) refers to the
Maslov index of φ; and M(φ) is the moduli space of pseudoholomorphic representatives of φ.
The sutured Heegaard Floer homology of (M,Γ) is the homology

SFH (M,Γ) := H∗(SFC (Σ,α,β))

of this complex.

Suppose now that (M,Γ, ξ) is a sutured contact manifold and that

ob = (S, P, h, {c1, . . . , cn})

is a partial open book compatible with ξ. Let Σ be the surface formed by attaching 1-handles
H1, . . . ,Hn to S, where the feet of Hi are attached along the endpoints of ci. Orient Σ so that
the induced orientation on S as a subsurface of Σ is opposite the given orientation on S. For
i = 1, . . . , n, let αi and βi be embedded curves in Σ such that:

• αi is the union of ci with a core of Hi, and
• βi is the union of h(ci) with a core of Hi.

We require that these curves intersect in the region Hi ⊂ Σ in the manner shown in Figure 2.
Then (Σ,β,α) is an admissible sutured Heegaard diagram for (−M,−Γ), as observed in [19,
Section 2]. In particular, we note the following for later use.

Remark 2.6. Since

R+(−M,−Γ) = R+(M,Γ),

we note that the oriented surface Σ agrees with R+(Γ) in the identification of (−M,−Γ) with
the sutured manifold specified by (Σ,β,α).

βi αi

ci

Hi

−S

Figure 2. The handle Hi, the curves αi and βi, and the intersection point ci.

For each i = 1, . . . , n, let ci be the intersection point between αi and βi in Hi, and define

(7) c = {c1, . . . , cn} ∈ Tβ ∩ Tα ⊂ Symn(Σ).

This generator is a cycle in the complex SFC (Σ,β,α), and Honda, Kazez, and Matić define

cHF (ob) := [c] ∈ SFH (−M,−Γ)

in [19]. They prove that this class is independent of the basis of the open book. They moreover
prove that if ob′ is obtained from ob via positive stabilization then

cHF (ob) = cHF (ob′).



ON THE EQUIVALENCE OF CONTACT INVARIANTS IN SUTURED FLOER HOMOLOGY THEORIES 13

Giroux’s correspondence then implies that the classes associated to any two partial open books
compatible with ξ are equal. Accordingly, Honda, Kazez, and Matić define

cHF (ξ) := cHF (ob)

for any partial open book compatible with ξ.

2.4. Heegaard Floer homology with local coefficients and contact invariants. Sup-
pose Y is a closed, oriented 3-manifold and η is a smooth 1-cycle in Y . To define the Heegaard
Floer homology of Y in a Spinc structure s ∈ Spinc(Y ) with local coefficient system associated
with η, one starts with an weakly s-admissible pointed Heegaard diagram

(Σ,α = {α1, . . . , αn},β = {β1, . . . , βn}, z)
for Y . This admissibility condition means that every nontrivial periodic domain P with

〈c1(s), [P ]〉 = 0

has a negative multiplicity, where [P ] refers to the class in H2(Y ) represented by P . We may
view η as a (possibly non-embedded) curve on Σ. The chain complex

CF +(Σ,α,β, z, s; Γη)

is the Λ[U ]-module ⊕
x∈Tα∩Tβ
sz(x)=s

(
Λ[U,U−1]

U · Λ[U ]

)
〈x〉,

generated by intersection points x ∈ Tα ∩Tβ whose associated Spinc structure sz(x) equals s.
For ease of notation, we will adopt the convention in [42] and use [x, i] to denote U−ix, which
then vanishes for i < 0. The differential is defined on such a pair by

∂([x, i]) =
∑

φ∈π2(x,y)
µ(φ)=1

#
(
M(φ)/R

)
· [y, i− nz(φ)] · t∂α(φ)·η,

and extended linearly with respect to multiplication in Λ. Here, ∂α(φ) ·η refers to the oriented
intersection in Σ of the α portion of the boundary of the domain of φ in Σ with the curve η.
The Heegaard Floer homology of Y is the homology

HF +(Y, s; Γη) := H∗(CF +(Σ,α,β, z, s; Γη), ∂)

of this complex. This module is an invariant of the class [η] ∈ H1(Y ). Given an embedded
surface R ⊂ Y in addition to η, we define

HF +(Y |R; Γη) :=
⊕

s∈Spinc(Y |R)

HF +(Y, s; Γη),

just as for monopole Floer homology. Heegaard Floer homology obeys the following adjunction
inequality [41, Corollary 7.2].

Theorem 2.7 (Ozsváth–Szabó). If Z is a connected, embedded surface in Y and HF +(Y, s; Γη)
is nonzero then

|〈c1(s), [Z]〉| ≤ max{0,−χ(Z)}.
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Suppose now that (Y, ξ) is a closed contact 3-manifold and η is a smooth 1-cycle in Y . To
define the associated Ozsváth-Szabó contact invariant, one chooses a (non-partial) open book
ob compatible with (Y, ξ) and assigns to this open book a class

cHF (ob) ∈ HF +(−Y, sξ; Γη),

following [43, 19]. As in the partial open book case, this class is independent of the basis and
is invariant under positive stabilization. Giroux’s correspondence then implies that this class
is an invariant of the contact structure ξ. Accordingly, Ozsváth and Szabó define

cHF (ξ) := cHF (ob)

for any open book ob compatible with ξ. This invariant is functorial with respect to contact
(+1)-surgery, as follows from [43, Theorem 4.2].8

Theorem 2.8 (Ozsváth–Szabó). Suppose (Y ′, ξ′) is the result of contact (+1)-surgery on a
Legendrian link L ⊂ (Y, ξ) disjoint from η. Let W be the corresponding 2-handle cobordism,
obtained from Y × [0, 1] by attaching contact (+1)-framed 2-handles along L × {1}, and let
ν ⊂W be the cylinder ν = η × [0, 1]. Then there are open books ob and ob′ compatible with ξ
and ξ′, respectively, such that the induced map

HF +(−W ; Γν) : HF +(−Y ; Γη)→ HF +(−Y ′; Γη)

sends cHF (ob) to cHF (ob′).

The following version of Theorem 1.1 relates the Heegaard Floer and monopole Floer contact
invariants. This version of the theorem does not rely on Giroux’s correspondence.

Theorem 2.9 (Taubes, Colin–Ghiggini–Honda). For every s ∈ Spinc(−Y ) and every open
book ob compatible with ξ, there is an isomorphism of Λ[U ]-modules

Φs : HF +(−Y, s; Γη)→

̂

HM •(−Y, s; Γη),

such that Φsξ(cHF (ob)) = cHM (ξ).

2.5. Reformulating the invariant of a contact closure. We explain below a reformulation
of the invariant of a contact closure which will be critical in our proof of Theorem 3.2 (a strong
version of Theorem 1.14) in the next section.

Suppose (M,Γ, ξ) is a sutured contact manifold with compatible partial open book

(S, P, h, {c1, . . . , cn}).

Suppose (YS , R, ξ̄S , η) is a contact closure of the sutured contact manifold (H(S), ξS) defined
in Subsection 2.2. Adopting the perspective of Remark 2.2, we may view the curves s1, . . . , sn
defined in (6) as embedded curves in YS disjoint from R. After small perturbation, we may
assume that these si are Legendrian with respect to ξ̄S , via the Legendrian Realization Prin-
ciple [23, 18]. Each si intersects the dividing set of ∂H(S) in two places, which implies that

8This theorem was originally stated with coefficients in Z/2Z, but the proof works in the setting of local
coefficients just as well.
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the ∂H(S)-framing on si is one more than its contact framing. In [3, Section 4.2.3], we proved
that the result of contact (+1)-surgeries on the resulting Legendrian link

L = s1 ∪ · · · ∪ sn
is a contact closure (Y,R, ξ̄, η) of (M,Γ, ξ). We further showed that̂

HM •(−YS |−R; Γη) ∼= Λ

is generated by the contact class cHM (ξ̄S). Theorem 2.9 then implies that the same is true in
Heegaard Floer homology. Specifically,

HF +(−YS |−R; Γη) ∼= Λ

is generated by the contact class of any open book compatible with ξ̄S .

Remark 2.10. One does not need Theorem 2.9 to prove that this Heegaard Floer module is
1-dimensional or that the contact class is nonzero for some open book for ξ̄S ; one does need
the theorem, however, to see that the contact class is nonzero for any open book without
appealing to Giroux’s correspondence.

Let W be the 2-handle cobordism from YS to Y corresponding to the surgery on L. Note
that R ⊂ YS and R ⊂ Y are homologous (in fact, isotopic) in W . Therefore, letting

(8) Spinc(−W |−R) := {t ∈ Spinc(−W ) | 〈c1(t), [−R]〉 = 2g(R)− 2}

denote the set of “top” Spinc structures on −W with respect to −R, we have that the cobor-
dism map in Theorem 2.8 restricts to a map

(9) HF +(−W |−R; Γν) : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη),

given by

HF +(−W |−R; Γν) :=
∑

t∈Spinc(−W |−R)

HF +(−W, t; Γν).

By Theorem 2.8 and the discussion above, we have the following reformulation of the contact
invariant of ξ̄.

Corollary 2.11. There exists an open book ōb compatible with ξ̄ such that

cHF (ōb) = HF +(−W |−R; Γν)(1),

where 1 refers to a generator of HF +(−YS |−R; Γη) ∼= Λ.

2.6. Cobordism maps in Heegaard Floer homology. We recall below the construction of
the map on Heegaard Floer homology induced by a 2-handle cobordism of the sort in Theorem
2.8, as will need it in the next section.

Suppose L is a framed link in Y disjoint from an embedded curve η ⊂ Y . Let W be the
cobordism obtained from Y × [0, 1] by attaching 2-handles along L × {1} and let ν ⊂ W be
the cylinder ν = η × [0, 1]. To define the map on Heegaard Floer homology induced by the
cobordism

(−W, ν) : (−Y, η)→ (−Y ′, η)
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in the Spinc structure t ∈ Spinc(−W ), one starts with a weakly t-admissible pointed Heegaard
triple diagram

(Σ,γ,β,α, z)

for −W which is left-subordinate to the framed link L ⊂ −Y , as in [44, Section 5.2]. This
admissibility condition means that every nontrivial triply-periodic domain P which is a sum
of doubly-periodic domains and satisfies

〈c1(t), [P ]〉 = 0

has a negative multiplicity. Note that if the pointed triple diagram is weakly t-admissible then
the induced diagrams for Yγβ, Yβα, and Yγα are weakly admissible for the restrictions of t to
these 3-manifolds.

For this triple diagram, we have that Yγβ is a connected sum of copies of S1×S2, Yβα = −Y ,
and Yγα = −Y ′, and there is an intersection point Θ ∈ Tγ ∩ Tβ such that [Θ, 0] is the unique
generator of

CF +(Σ,γ,β, z; Γη)

in the top Maslov grading among generators killed by U . The map

HF +(−W, t; Γν) : HF +(−Y, t|−Y ; Γη)→ HF +(−Y ′, t|−Y ′ ; Γη)

is induced by the chain map

f+
γβα,t;Γν

: CF +(Σ,β,α, z, t|Yβα ; Γη)→ CF +(Σ,γ,α, z, t|Yγα ; Γη),

defined on [x, i] by

f+
γβα,t;Γν

([x, i]) =
∑

y∈Tγ∩Tα

∑
φ∈π2(Θ,x,y)

sz(φ)=t
µ(φ)=0

#M(φ) · [y, i− nz(φ)] · t∂α(φ)·η,

where π2(Θ,x,y) is the set of homotopy classes of Whitney triangles with vertices at Θ,x,y,
M(φ) is the moduli space of holomorphic representatives of φ, and sz(φ) is the Spinc structure
on −W represented by φ. This map is an invariant of the class [ν] ∈ H2(−W,−∂W ). Ozsváth
and Szabó prove in [44, Theorem 3.3] that for each element x ∈ HF +(−Y ; Γη),

HF +(−W, t; Γν)(x) = 0

for all but finitely t ∈ Spinc(−W ). Furthermore, they prove the following adjunction inequality
[44, Proof of Theorem 1.5].

Theorem 2.12 (Ozsváth–Szabó). If Z is a connected, embedded surface in W with nonneg-
ative self-intersection and the map HF +(−W, t; Γν) is nonzero then

|〈c1(t), [Z]〉|+ Z · Z ≤ max{0,−χ(Z)}.
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3. Proof of Main Theorem

Let (M,Γ, ξ) be a sutured contact manifold.

The goal of this section is to prove the following version of our main theorem, Theorem 1.3,
stated in terms of the classes associated to partial open books compatible with ξ rather than
cHF (ξ), so as not to rely on Giroux’s correspondence.

Theorem 3.1. For any partial open book ob compatible with ξ, there exists an isomorphism
of Λ-modules

SFH (−M,−Γ)⊗ Λ→ SHM (−M,−Γ),

sending cHF (ob)⊗ 1 to cHM (ξ).

This follows, as outlined in the introduction, from the version of Theorem 1.14 below.

Theorem 3.2. For any partial open book ob compatible with ξ, there is

• a contact closure (Y,R, ξ̄, η) of (M,Γ, ξ) and
• an open book ōb compatible with ξ̄

for which there exists an isomorphism of Λ-modules

A : SFH (−M,−Γ)⊗ Λ→ HF +(−Y |−R; Γη),

sending cHF (ob)⊗ 1 to cHF (ōb).

Let us explain in more detail how Theorem 3.1 follows from Theorem 3.2. For this, suppose
ob is a partial open book compatible with ξ. Let (Y,R, ξ̄, η), ōb, and A be as in the conclusion
of Theorem 3.2. Theorem 2.9 provides an isomorphism of Λ-modules

ΦR : HF +(−Y |−R; Γη)→

̂

HM •(−Y |−R; Γη) =: SHM (−M,−Γ)

sending cHF (ōb) to

cHM (ξ̄) =: cHM (ξ),

where ΦR is the sum over “top” Spinc structures with respect to −R,

ΦR :=
∑

s∈Spinc(−Y |−R)

Φs.

The composition

ΦR ◦A : SFH (−M,−Γ)⊗ Λ→ SHM (−M,−Γ)

is therefore an isomorphism of Λ-modules sending cHF (ob)⊗ 1 to cHM (ξ), as desired.

It just remains to prove Theorem 3.2. We do so as outlined in the introduction (in particular,
we show in Subsection 3.6 that Theorem 3.2 follows from Theorems 3.26 and 3.29), except that
we again take care to talk about the classes associated to open books rather than to contact
structures, in order to make clear that our proof is independent of Giroux’s correspondence.



18 JOHN A. BALDWIN AND STEVEN SIVEK

3.1. Heegaard diagrams for closures and cobordisms. Fix a partial open book

ob = (S, P, h, {c1, . . . , cn})
compatible with (M,Γ, ξ). Let

(H(S) = S × [−1, 1], ξS)

be the associated product sutured contact manifold defined in Section 2.2, and let

L = s1 ∪ · · · ∪ sn
denote the ∂H(S)-framed link on the boundary of H(S), where

(10) si = (ci × {1}) ∪ (∂ci × [−1, 1]) ∪ (h(ci)× {−1})
An important ingredient in the proof of Theorem 3.2 involves understanding the map (denoted
in the introduction by B) induced by −W , where W is the 2-handle cobordism from a closure
of H(S) to a closure of (M,Γ), corresponding to surgery on the link L in the first closure. In
order to understand this map, we first describe pointed Heegaard diagrams for these closures
and a pointed Heegaard triple diagram for this cobordism.

Let Σ be the surface formed by attaching 1-handles H1, . . . ,Hn and H ′1, . . . ,H
′
n to S, where:

• the feet of Hi are attached along the endpoints of ci,
• the feet of H ′i are attached along the endpoints of a cocore of Hi.

We orient Σ so that the induced orientation on S as a subsurface of Σ is opposite the given
orientation on S. For each i = 1, . . . , n, let αi, βi, γi be embedded curves in Σ such that:

• αi is the union of ci with a core of Hi,
• βi is the union of a cocore of Hi with a core of H ′i,
• γi is the union of h(ci) with a core of Hi.

We require that these curves intersect in the region Hi ⊂ Σ in the manner shown on the right
in Figure 3.

S Σ

ci

ci αi

βi

γi

Hi

H′i

Θi
ciβα

ciγα

w+
i

w−i

Figure 3. On the left, a portion of S near ciγα. In the middle, the corre-
sponding portion of Σ with the curves αi, βi, γi. On the right, a closeup of
these curves in Hi. We have labeled the intersection points Θi, ciβα, c

i
γα and

the points w±i , and have shaded the triangle ∆i.
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Remark 3.3. Note that the sutured Heegaard diagram

(11) (Σ, {β1, . . . , βn}, {α1, . . . , αn})

is an n-fold stabilization of the standard diagram for −H(S). Meanwhile, the sutured diagram

(12) (Σ, {γ1, . . . , γn}, {α1, . . . , αn})

is obtained from the standard Heegaard diagram for (−M,−Γ) associated with the partial open
book ob, as described in Subsection 2.3, by attaching the handles H ′1, . . . ,H

′
n. In particular, it

is a sutured Heegaard diagram for the sutured manifold obtained from (−M,−Γ) by attaching
n contact 1-handles. We will ignore this difference, however, and think of the Heegaard
diagram in (12) as encoding (−M,−Γ) since (1) there is a canonical isomorphism

H∗(SFC(Σ, {γ1, . . . , γn}, {α1, . . . , αn})) ∼= H∗(SFC(Σ r (∪iH ′i), {γ1, . . . , γn}, {α1, . . . , αn}))
=: SFH(−M,−Γ),

and (2) a contact closure of a sutured manifold obtained from (−M,−Γ) via contact 1-handle
attachments is also a contact closure of (−M,−Γ), as explained in [3, Section 4.2.2].

We now describe a Heegaard triple diagram which encodes closures of the sutured manifolds
specified by the Heegaard diagrams in (11) and (12) as well as the cobordism −W . Let T be
a compact, oriented, connected surface with boundary and g(T ) ≥ 2, such that

π0(∂T ) ∼= π0(∂Σ) ∼= π0(∂S).

Let RS be the closed, oriented surface formed by gluing T to S by a diffeomorphism of their
boundaries. Let RΣ be the surface formed by gluing T to Σ in a similar manner. Let Da and
Db be two disjoint disks in T . Let RS and RΣ denote the complements of these disks in RS
and RΣ,

RS = RS rDa rDb,

RΣ = RΣ rDa rDb,

and let

Σ = RS ∪RΣ

be the closed surface formed by gluing these complements together by the identity maps on
∂Da and ∂Db. In other words, Σ is obtained by connecting RS and RΣ via two tubes. We will
think of the αi, βi, γi curves above as lying in RΣ ⊂ Σ. See the middle diagram in Figure 4
for an illustration of Σ = RS ∪RΣ in the case that S is an annulus, h is a right-handed Dehn
twist around the core, {c1, . . . , cn} consists of just the cocore c1, and T is a genus 2 surface
with 2 boundary components.

Suppose RS has genus g. Then RΣ and Σ have genera n+g and n+2g+1, respectively. Let

(13) {an+1, . . . , an+2g} and {bn+1, . . . , bn+2g}

be the sets of pairwise disjoint, properly embedded arcs in RS shown in Figure 5. In particular,
each bi is the image of ai under the 180◦ rotation of the surface around the axis shown in the
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RΣ RS

−→ =

c1

h(c1)

S Σ Σ

Σ ST rDa rDbT rDa rDb

∂Da

∂Db

Figure 4. Top left, the annulus S with basis arc c1 and its image under the
right-handed Dehn twist around the core (it looks like a left-handed Dehn twist
because we reverse the orientation of S in forming Σ). Top middle and right,
Σ and the curves α1, β1, γ1. Middle, the corresponding surface Σ = RΣ ∪ RS .
Bottom, the triple diagram (Σ, γ, β, α) without the curves γ2, . . . , γ8, which are
just small Hamiltonian translates of β2, . . . , β8, and the curve δ in orange.

figure. Furthermore, each bi intersects aσ(i) in exactly one point and is disjoint from aj for
j 6= σ(i), where σ is the permutation of {n+1, . . . , n+2g} given by

(14) σ(n+i) =

{
n+i+1, i odd

n+i−1, i even



ON THE EQUIVALENCE OF CONTACT INVARIANTS IN SUTURED FLOER HOMOLOGY THEORIES 21

A

RS

180◦

an+2g

an+2g−1

an+4

an+3

an+2

an+1

bn+2g
bn+2g−1

bn+4

bn+3

bn+2

bn+1

d

Figure 5. The arcs ai, bj on RS . The arc bi is the image of ai under rotation
of 180◦ about the axis A. The arc d connects the boundary components of RS .

Note that the ai have endpoints on ∂Db and cut RS into an annulus with ∂Da as a boundary
component. Likewise, the bj have endpoints on ∂Da and cut RS into an annulus with ∂Db as
a boundary component.

Observe that the regular neighborhoods

Ui = N(αi ∪ βi) ⊂ Σ,

Vi = N(βi ∪ γi) ⊂ Σ

are once-punctured tori. In particular, there exist disks D1, . . . , Dn ⊂ S such that

(15) RS r (∪ni=1Di) ∼= RΣ r (∪ni=1Ui)
∼= RΣ r (∪ni=1Vi).

We may assume that these Di, as disks in RS , are disjoint from the arcs in (13). Let

ϕα : RS r (∪ni=1Di)→ RΣ r (∪ni=1Ui),(16)

ϕγ : RS r (∪ni=1Di)→ RΣ r (∪ni=1Vi)(17)

be diffeomorphisms which restrict to the identity map on TrDarDb. For i = n+1, . . . , n+2g,
let αi, βi be the curves in Σ = RS ∪RΣ given by

αi = ai ∪ ϕα(ai),

βi = bi ∪ ϕγ(bi).

Let

αn+2g+1 = ∂Da ⊂ Σ,

βn+2g+1 = ∂Db ⊂ Σ.

For n+1, . . . , n+2g+1, let γi be a small Hamiltonian translate of βi in Σ such that βi and γi
intersect in exactly two points, both contained in RS ⊂ Σ. See Figure 6 for a closeup near the
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intersections of the curves αi, βi, γi, for i = n+1, . . . , n+2g, on RS ⊂ Σ. Let

α = {α1, . . . , αn+2g+1},
β = {β1, . . . , βn+2g+1},
γ = {γ1, . . . , γn+2g+1}.

We claim the following:

• (Σ,β,α) is a Heegaard diagram for a closure Yβα = −YS of −H(S),

• (Σ,γ,α) is a Heegaard diagram for a closure Yγα = −Y of (−M,−Γ),9

• (Σ,γ,β,α) is a Heegaard triple diagram for the cobordism Wγβα = −W : −YS → −Y ,
where W : YS → Y is the 2-handle cobordism corresponding to surgery on the framed
link L ⊂ ∂H(S) ⊂ YS .

These claims will be unsurprising to the expert. These sorts of Heegaard diagrams for closures
are used in Lekili’s work [34] and are very similar to those in Ozsváth-Szabó’s work [43, Section
3]. Nevertheless, we provide an explanation below. We will explain the first of these Heegaard
diagrams in depth; the claim regarding the second admits a similar explanation. Along the
way, we identify the distinguished surfaces

−Rβα = −R in Yβα = −YS , and

−Rγα = −R in Yγα = −Y.

We will then address the third claim, regarding the Heegaard triple diagram for the cobordism.

Remark 3.4. As indicated above, we will often use −R to refer to the distinguished surfaces
in −YS and −Y . When more specificity is desired, we will use −Rβα and −Rγα, respectively.

βi

ασ(i)

γi

βj γj

ασ(i)

βj

ασ(j)

γj

xiβα

xiγα

xjβα

xjγαΘi

Θj

Figure 6. Intersections of the αi, βi, γi curves for i = n+1, . . . , n+2g. The
figures on the left and right show the same curves, after rotating this portion
of RS by 180◦ about the axis A of Figure 5. We have labeled the intersection
points Θi, xiβα, x

i
γα and shaded the triangle ∆i; likewise for j = σ(i).

9Really, −YS and −Y are the 3-manifolds underlying closures of −H(S) and (−M,−Γ); a closure, as defined
in Subsection 2.1, comes with the additional information of a distinguished surface.
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Recall from Remark 3.3 that

(Σ, {β1, . . . , βn}, {α1, . . . , αn})

is a Heegaard diagram for the sutured manifold −H(S). It follows that

(RΣ, {β1, . . . , βn}, {α1, . . . , αn})

specifies the preclosure P obtained from −H(S) by attaching T × [−1, 1] in the usual way.
That is, P is obtained from RΣ × [−1, 1] by attaching thickened disks to RΣ × {−1} along
β1, . . . , βn and to RΣ × {1} along α1, . . . , αn. Let us denote these unions of thickened disks
by Cβ and Cα, respectively, so that

P = RΣ × [−1, 1] ∪ Cβ ∪ Cα.

The boundary of P consists of two homeomorphic components, ∂P = ∂+P t −∂−P. Let

Rβα := ∂+P.

Per Remark 2.2, one may form a closure Yβα = −YS of −H(S) by gluing Rβα × [−1, 1] to P ,
and one may do so in such a way that

• Da × {∓1} ⊂ Rβα × {∓1} is identified with Da × {±1} ⊂ ∂±P , and
• Db × {∓1} ⊂ Rβα × {∓1} is identified with Db × {±1} ⊂ ∂±P .

It follows from Remark 2.6 that the distinguished surface −R ⊂ −YS may be identified with
−Rβα. The diagram on the left in Figure 7 is a schematic illustration of this closure. Note that
the disjoint union RΣ × {0} tRβα × {0} separates Yβα into two pieces Vβ and Vα, containing
Cβ and Cα, respectively. Let Tβ and Tα be the tubes in Vα and Vβ, respectively, defined by

Tβ = (Db × [0, 1] ⊂ RΣ × [0, 1]) ∪ (Db × [−1, 0] ⊂ Rβα × [−1, 0]),

Tα = (Da × [−1, 0] ⊂ RΣ × [−1, 0]) ∪ (Da × [0, 1] ⊂ Rβα × [0, 1]).

Then the handlebodies

Hβ = Vβ r Tα ∪ Tβ,
Hα = Vα r Tβ ∪ Tα

provide a Heegaard splitting of Yβα, as indicated in the diagram on the right in Figure 7.
The Heegaard surface in this splitting is therefore obtained by connecting RΣ × {0} and
Rβα×{0} via two tubes. In particular, sinceRβα ∼= RS , this Heegaard surface may be identified
with Σ. Under this identification, one sees that the Heegaard diagram (Σ,β,α) specifies a
splitting of precisely this form, where the periodic domains RΣ and −RS in Σ represent Rβα.
Similar reasoning shows that (Σ,γ,α) determines an analogous Heegaard splitting of a closure
Yγα = −Y of (−M,−Γ), with distinguished surface −Rγα = −R.

We turn now to the claim about the triple diagram. Viewing −H(S) as the sutured manifold
determined by the sutured Heegaard diagram

(Σ, {β1, . . . , βn}, {α1, . . . , αn}),
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RΣ × [−1, 1]

Cβ

Cα

Rβα × [−1, 0]

Rβα × [0, 1]

Rβα × {0}

Vα

Vβ

Tβ

Tα

Figure 7. Left, a schematic of the closure Yβα. Right, a schematic of the
standard Heegaard splitting of the closure: the handlebody Hα is the union of
Vα and Tα, shown in white and light gray, respectively; the handlebody Hβ is
the union of Vβ and Tβ, shown in medium and dark gray, respectively.

we first observe that γi ⊂ Σ is isotopic in −H(S) to the curve si in (10), for i = 1, . . . , n,
and that the Σ-framing of γi coincides with the ∂H(S)-framing of si. Indeed, this observation
only requires thinking about how Σ is embedded in −H(S). In particular, the subsurface

H1 ∪ · · · ∪Hn ∪ S ⊂ Σ

on which the γi lie is isotopic in −H(S) to the union

(A1 ∪ · · · ∪An)× {1} ∪ ∂S × [−1, 1] ∪ S × {−1},

where each Aj is a rectangular neighborhood of cj ⊂ S (note that Aj is disjoint from α after
isotoping the latter, which is why Aj can be pushed into S × {1}). Furthermore, this isotopy
carries γi to the union

(ci × {1}) ∪ (∂ci × [−1, 1]) ∪ (h(ci)× {−1}),

which is precisely the curve si. Moreover, it is also not hard to see that βi bounds a meridional
disk for γi. Alternatively, the above observation is made clear in Figure 8.

This observation, combined with the facts that

• γi intersects βi in exactly one point and is disjoint from the other curves in β, for
i = 1, . . . , n, and
• γi is isotopic to βi for i = n+ 1, . . . , n+ 2g + 1,

is equivalent to the statement that

(Σ,γ,β,α)

is a left-subordinate Heegaard triple diagram for the cobordism Wγβα = −W associated to
surgery on the framed link

L = s1 ∪ · · · ∪ sn ⊂ Yβα,
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as in [44]. In particular,

(Σ, {βn+1, . . . , βn+2g+1}, α)

specifies the complement of a bouquet for this framed link.

=

Figure 8. From left to right: the first picture shows a neighborhood in S of
the arc ci. The arc ci is shown in red, its image h(ci) is shown in green. The
second picture shows the result of attaching the 1-handles Hi and H ′i to S to
form Σ. The curve αi is shown in red, γi in green, βi in blue. The third picture
shows the corresponding curves on Σ × [−1, 1]. The fourth picture shows the
result of attaching thickened disks to Σ× [−1, 1] along αi and βi. The resulting
manifold is S× [−1, 1], as is evident by comparing the fourth and fifth pictures,
and γi is isotopic to si, where si is shown in green in the last picture. It is also
clear from this diagram that the Σ-framing of γi is taken to the ∂H(S)-framing
of si under this isotopy.

Remark 3.5. We will use −R to refer to the isotopic surfaces −Rβα and −Rγα in −W .

To define Heegaard Floer homology groups and the map between them from these diagrams,
we must specify the location of the basepoint z. For this, let us wind αn+2g+1 halfway along
the curve δ, as in Figure 9, so that it meets each of βn+2g+1 and γn+2g+1 in two points

uβα, vβα and uγα, vγα,

respectively, as indicated in the figure. We place the basepoint z in the small bigon created
by this isotopy, as shown in the figure.

Finally, let us fix an oriented, embedded curve

(18) η ⊂ T rDa rDb ⊂ RS ⊂ Σ

which is dual to a nonseparating curve c in T . This defines curves in Yβα = −YS and Yγα = −Y
which we will also denote by η. Let

ν = η × I ⊂ −W

be the cylindrical cobordism from η ⊂ −YS to η ⊂ −Y . These η and ν will be used to define
both the Heegaard Floer homology groups of −YS and −Y , with local coefficients in Γη, and
the map induced by −W between these groups, as in Subsections 2.4 and 2.6.
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....
....

....
....

z

δ

uβα

vβα

uγα

vγα

Θn+2g+1

αn+2g+1

βn+2g+1

F E

z

Figure 9. Left, before winding. Middle, after winding, and the basepoint z.
Right, a closeup near the intersection points uβα, vβα, uγα, vγα, and Θn+2g+1.
The triangle ∆n+2g+1 is shaded.

Remark 3.6. The condition on η above along with the condition that the maps ϕα and ϕγ in
(16) and (17) restrict to the identity on T rDa rDb ensures that the triple (YS , R, η) meets
the topological requirements for a contact closure; namely, that it is formed from a preclosure
P by gluing ∂+P to ∂−P by a map which sends c×{+1} to c×{−1} for some nonseparating
curve c in the auxiliary surface, with η dual to c, as described in Subsection 2.1.

3.2. Periodic domains and winding. In this subsection, we catalogue certain important
periodic domains in the pointed Heegaard triple diagram (Σ,γ,β,α) and introduce a proce-
dure called winding. This setup will be used crucially for results in later subsections.

Let us henceforth orient γi, βi, and αi as in

• Figure 3 for i = 1, . . . , n (the βi here are not oriented; see below)
• Figures 5 and 6 for i = n+1, . . . , n+2g, and
• Figure 9 for i = n+2g+1.

We orient each γi in the same direction as the parallel βi for i = n+1, . . . , n+2g+1. We will
not need to orient β1, . . . , βn, which is why we have not specified an orientation on the βi in
Figure 3.

Let Pβα and Pγα be the (β,α)- and (γ,α)-periodic domains in (Σ,γ,β,α) with multiplic-
ities 2 and 1 in the regions Σ and S of Σ, respectively, and with

∂Pβα = βn+2g+1 − αn+2g+1,

∂Pγα = γn+2g+1 − αn+2g+1,

as in Figure 10. Observe that Pβα corresponds, in the diagram (Σ,β,α) before winding
αn+2g+1 as in Figure 9, to the periodic domain 2RΣ +RS . Since the periodic domains RΣ and
−RS in that diagram both represent Rβα ⊂ Yβα, as explained in the previous subsection, it
follows that the periodic domain Pβα represents the homology class

2[Rβα]− [Rβα] = [Rβα] ∈ H2(Yβα;Z).
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By the same argument, Pγα represents the homology class

[Rγα] ∈ H2(Yγα;Z).

EF

1

1

0

2

2

Figure 10. The multiplicities of Pβα near βn+2g+1 and αn+2g+1.

For i = n+1, . . . , n+2g+1, let Pi be denote the small (γ,β)-periodic domain in (Σ,γ,β,α)
with

∂Pi = γi − βi.
This domain has multiplicities ±1 in two thin bigon regions. We note that

{Pn+1, . . . ,Pn+2g+1}
is a basis for the Q-vector space Πγβ of rational (γ,β)-periodic domains in the pointed Hee-
gaard triple diagram (Σ,γ,β,α, z), though we will not really make use of this fact.

Note that there is no triply-periodic domain in the sutured Heegaard triple diagram

(Σ, {γ1, . . . , γn}, {β1, . . . , βn}, {α1, . . . , αn})
whose boundary contains a nonzero multiple of βi for i = 1, . . . , n. This is because in the
complement of the attaching curves, there are regions on either side of βi which intersect ∂Σ.
Letting Πγα and Πγβα be the Q-vector spaces of rational (γ,α)- and triply-periodic domains,
respectively, in this sutured triple diagram, we have just argued that Πγα = Πγβα. Let us fix
a basis

(19) {D1, . . . ,Dp}
for this vector space. Note that βi intersects each of γi and αi positively in one point, and is
disjoint from all other γ and α curves, for i = 1, . . . , n. It follows that γi and αi occur with
opposite multiplicities in the boundary of every Dj . By a change of basis, we may therefore
assume that

(20) ∂Dj = αij − γij +

ij−1∑
k=1

aj,k(αk − γk),

for some integers
1 ≤ i1 < · · · < ip ≤ n,

where aj,ir = 0 for all r = 1, . . . , p.
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We will extend this basis in two ways. First, let Π2
γβα denote the Q-vector space of rational

triply-periodic domains in the pointed Heegaard triple diagram (Σ,γ,β,α, z) which are sums
of rational doubly-periodic domains. The collection

{Pγα,D1, . . . ,Dp,Pn+1, . . . ,Pn+2g+1}

is linearly independent in Π2
γβα and therefore extends for some m to a basis

(21) {Pγα,D1, . . . ,Dp,Tp+1 . . . ,Tm,Pn+1, . . . ,Pn+2g+1}

for this vector space. By adding multiples of Pi, we may assume that no Tj contains a nonzero
multiple of βi in its boundary, for i = n+1, . . . , n+2g+1. Moreover, for each such i, there is an
oriented curve in Σ which intersects γi and αi positively in exactly one point each, intersects
all other γ and α curves zero times algebraically, and is disjoint from β1, . . . , βn (this is evident
from Figure 5). It follows that γi and αi occur with opposite multiplicities in the boundary
of each Tj . In particular, by adding multiples of Pγα, we may assume that no Tj contains a
nonzero multiple of γn+2g+1 or αn+2g+1 in its boundary. By further change of basis, we may
therefore assume that

(22) ∂Tj = αij − γij +

ij−1∑
k=1

aj,k(αk − γk) +

n∑
k=1

bj,kβk,

for some integers

n+ 1 ≤ ip+1 < · · · < im ≤ n+ 2g,

where aj,ir = 0 for all r = 1, . . . ,m.

Next, let Πγα denote the Q-vector space of rational (γ,α)-periodic domains in the pointed
Heegaard diagram (Σ,γ,α, z). We extend the basis (19) to a basis

(23) {Pγα,D1, . . . ,Dp,Dp+1, . . . ,Dm}

for this space (we are reusing the notation m; see Remark 3.7). By the same reasoning as
above, we may assume for j = p+1, . . . ,m that

(24) ∂Dj = αij − γij +

ij−1∑
k=1

aj,k(αk − γk),

for some integers

n+ 1 ≤ ip+1 < · · · < im ≤ n+ 2g,

where aj,ir = 0 for all r = 1, . . . ,m.

Remark 3.7. For expository purposes, we are abusing notation slightly above; namely, we
are repurposing the notation m, ip+1, . . . , im, and aj,k from (21) and (22). This will not lead
to confusion as we will never use the bases (21) and (23) at the same time.

For much of what follows in this paper, we will need to isotope the α curves by a procedure
called winding, described below.
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Note that for each i = n+1, . . . , n+2g, there is a homologically essential curve νi ⊂ RS such
that νi intersects αi exactly once and is disjoint from all other αj . We may assume that νi is
disjoint from the disks D1, . . . , Dn in (15). Let

(25) ηi = ϕα(νi) ⊂ RΣ ⊂ Σ,

where ϕα is the map in (16). Then ηi also intersects αi exactly once and is disjoint from the
other α curves. Let η±i and η−i be parallel copies of ηi, oriented as on the left in Figure 11.
One may then wind αi along these curves in the directions given by their orientations. The
diagram on the right in Figure 11 shows the result of winding αi once along each of η±i .

αi

η+
i η−i

w+
i

w−i

w+
i

w−i

Figure 11. Left, the intersection of η+
i and η−i with αi, and the points w+

i

and w−i . Right, the curve αi after winding once along η+
i and η−i .

We will need to keep track of the effect of such winding on the coefficients of various domains
of these Heegaard diagrams. In order to do so, we introduce new basepoints

w+
1 , . . . , w

+
n+2g and w−1 , . . . , w

−
n+2g ⊂ RΣ ⊂ Σ,

where

• w±i are the points in Hi ⊂ Σ ⊂ Σ shown in Figure 3, for i = 1, . . . , n, and

• w±i are the points on η±i shown in Figure 11, for i = n+1, . . . , n+2g.

Note that if D is a domain of the diagram (Σ,γ,β,α, z) with

∂αi(D) · η±i = ±a

for some i = n+1, . . . , n+2g, then the quantity

nw±i
(D)

changes by ±a after winding αi once along η±i , and is unaffected by all other winding. Fur-
thermore, the quantity

nw±j
(D)

is unaffected by winding, for j = 1, . . . , n. For any such domain D, and any i = 1, . . . , n+2g,
we will use the shorthand

(26) nwi(D) := min{nw+
i

(D), nw−i
(D)}.



30 JOHN A. BALDWIN AND STEVEN SIVEK

We describe below how the rational periodic domains in the bases (21) and (23) behave
with respect to winding. Note first that

nw±i
(Pγα) = 2 for all i,(27)

nw±i
(Pj) = 0 for all i, and j = n+ 1, . . . , n+ 2g + 1.(28)

Moreover, for j = 1, . . . , p,

nw±ij
(Dj) = ±1,(29)

nw±ik
(Dj) = 0 for all k 6= j.(30)

The quantities in (27)-(30) are not affected by winding. On the other hand, for j = p+1, . . . ,m,

nw±ij
(Tj) and nw±ij

(Dj)

change by ±1 after winding αij once along η±ij and are unaffected by all other winding (note

that ij above does not necessarily refer to the same number in nw±ij
(Tj) as in nw±ij

(Dj); recall

that we are simply using the same notation for each basis, per Remark 3.7).

Note also that

(31) nE(Dj) = nF (Dj) = 0 = 2nE(Pγα)− nF (Pγα)

for all j = 1, . . . ,m, where E and F are the points shown in Figure 9. In particular, the fact
that

nE(Dj) = nF (Dj) = 0

follows from the facts that nz(Dj) = 0 and the boundary of Dj is disjoint from γn+2g+1 and
αn+2g+1.

3.3. Top Spinc structures. We will identify below the generators of the vector spaces

CF +(Σ,β,α, z) and CF +(Σ,γ,α, z)

in the “top” Spinc structures with respect to the genus g distinguished surfaces

−Rβα = −R in Yβα = −YS , and

−Rγα = −R in Yγα = −Y.

Recall from the previous subsection that the (β,α)- and (γ,α)-periodic domains Pβα and Pγα
represent the homology classes of Rβα and Rγα, respectively. Suppose [x, i] is a generator of

CF +(Σ,β,α, z) or CF +(Σ,γ,α, z).

We therefore have that

〈c1(sz(x)), [Rβα]〉 = 〈c1(sz(x)), [Pβα]〉 = e(Pβα) + 2nx(Pβα), or(32)

〈c1(sz(x)), [Rγα]〉 = 〈c1(sz(x)), [Pγα]〉 = e(Pγα) + 2nx(Pγα),(33)
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respectively, where the rightmost equalities follow from [41, Proposition 7.5], and where e(D)
refers to the Euler measure of the domain D. For each i = n+1, . . . , n+2g, let xiβα and xiγα
be the unique intersection points

xiβα = βi ∩ ασ(i) ∩RS ,
xiγα = γi ∩ ασ(i) ∩RS ,

shown in Figure 6, and define

xβα = {xn+1
βα , . . . , xn+2g

βα } ∈ Sym2g(RS),

xγα = {xn+1
γα , . . . , xn+2g

γα } ∈ Sym2g(RS).

Recall that αn+2g+1 intersects each of βn+2g+1 and γn+2g+1 in two points

uβα, vβα and uγα, vγα,

respectively, as indicated in Figure 9. Our main result is the following.

Lemma 3.8. A generator [x, i] ∈ CF +(Σ,γ,α, z) satisfies

sz(x) ∈ Spinc(Yγα|−Rγα)

iff x is of the form

x = y ∪ {uγα} ∪ xγα or x = y ∪ {vγα} ∪ xγα,

where

y ∈ (γ1 × · · · × γn) ∩ (α1 × · · · × αn) ⊂ Symn(Σ).

The analogous statement holds when replacing γ with β everywhere.

Proof. First, let us suppose that x is of the form described in the lemma. Note that

e(Pγα) = 2χ(RΣ) + χ(RS) = −6g − 4n,

ny(Pγα) = 2n,

nxγα(Pγα) = 2g,

nuγα(Pγα) = nvγα(Pγα) = 1.

The formula (32) then implies that

〈c1(sz(x)), [−Rγα]〉 = 2g − 2,

as desired. For the converse, it is easy to see that if x is not of this form, then nx(Pγα) > 2n+
2g+1 (changing x from a generator of this form to another generator moves intersection points
from the portion of Σ where Pγα has multiplicity 1 to the portion where it has multiplicity 2)
which implies that

〈c1(sz(x)), [−Rγα]〉 < 2g − 2.

See [34, Lemma 11] for what is virtually the same argument. �

Remark 3.9. Note that the generators in the top Spinc structures do not change after winding
by the procedure described in the previous subsection.
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3.4. Technical lemmas. In this subsection, we use the set up of the previous two subsections
to prove some technical lemmas. These lemmas are needed for our admissibility results in the
next subsection and for many of the results in Subsections 3.7 and 3.8.

In preparation for the results below, we introduce some new terminology. This terminology
makes reference to the pointed Heegaard triple diagram (Σ,γ,β,α, z) for −W . In particular,
we say that t ∈ Spinc(−W ) satisfies the adjunction inequality if

|〈c1(t), [Z]〉|+ Z · Z ≤ max{0,−χ(Z)}
for every connected, embedded surface Z ⊂ −W with nonnegative self-intersection. Define

A(−W |−R) ⊂ Spinc(−W |−R)

to be the set of s ∈ Spinc(−W |−R) which either

(1) satisfy the adjunction inequality, or
(2) restrict to a Spinc structure on each of Yγβ, Yβα, Yγα represented by a generator of

the corresponding Heegaard Floer complex.

Likewise, we say that s ∈ Spinc(−Y ) satisfies the adjunction inequality if

|〈c1(t), [Z]〉| ≤ max{0,−χ(Z)}
for every connected, embedded surface Z ⊂ −Y , and we define

A(−Y |−R) ⊂ Spinc(−Y |−R)

to be the set of s ∈ Spinc(−Y |−R) which either

(1) satisfy the adjunction inequality, or
(2) are represented by a generator of the corresponding Heegaard Floer complex,

and similarly for −YS .

Remark 3.10. We are abusing notation slightly above since A(−W |−R) and A(−Y |−R)
technically depend on the Heegaard (triple) diagram; the diagram we are using will generally
be implicit, however, whenever this notation is used.

Remark 3.11. The Floer homology groups HF +(−YS |−R; Γη) and HF +(−Y |−R; Γη) and
the map

HF +(−W |−R; Γν) : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη)

can be nontrivial only for Spinc structures in A(−YS |−R), A(−Y |−R), and A(−W |−R),
by Theorems 2.7 and 2.12. We can and will therefore restrict our attention to these Spinc

structures.

We next define a quantity L > 0 which depends only on the sutured Heegaard diagram

(Σ, {γ1, . . . , γn}, {α1, . . . , αn})
for (−M,−Γ). We will refer to this quantity below and in later subsections as well. The
definition of L makes reference to the basis (19)

{D1, . . . ,Dp}
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for the vector space Πγα of rational periodic domains in this sutured diagram. For j = 1, . . . , p,
choose a connected, embedded surface Zj ⊂ (−M,−Γ) with [Zj ] = [Dj ] in H2(−M). Let

Bj = max{0,−χ(Zj)},

and let

B = max{B1, . . . , Bp}.
Let

Cj = max{|e(Dj) + 2ny(Dj)|},
where the maximum is over all

(34) y ∈ (γ1 × · · · × γn) ∩ (α1 × · · · × αn) ⊂ Symn(Σ),

and let

C = max{C1, . . . , Cp}.
We define

(35) L := max{B,C, 1}.

We may now prove the following a priori bound on 〈c1(s), [Dj ]〉 for s ∈ A(−Y |−R).

Lemma 3.12. If s ∈ A(−Y |−R) then |〈c1(s), [Dj ]〉| ≤ L for j = 1, . . . , p.

Proof. Suppose s ∈ A(−Y |−R). If s satisfies the adjunction inequality then we have that

|〈c1(s), [Dj ]〉| ≤ B ≤ L.

If s is represented by a generator x of CF +(Σ,γ,α, z) then

x = y ∪ {uγα} ∪ xγα or x = y ∪ {vγα} ∪ xγα

for some y as in (34), by Lemma 3.8. Therefore,

|〈c1(s), [Dj ]〉| = |〈c1(sz(x)), [Dj ]〉| = |e(Dj) + 2nx(Dj)| = |e(Dj) + 2ny(Dj)| ≤ C ≤ L,

where the second equality is from [41, Proposition 7.5], and the third from the fact that

nuγα(Dj) = nvγα(Dj) = nxγα(Dj) = 0. �

A similar bound holds for the cobordism −W , per the following.

Lemma 3.13. If t ∈ A(−W |−R) then |〈c1(t), [Dj ]〉| ≤ L for j = 1, . . . , p.

Proof. If t ∈ A(−W |−R) then t|−Y ∈ A(−Y |−R), and

|〈c1(t), [Dj ]〉| = |〈c1(t|−Y ), [Dj ]〉| ≤ L

for j = 1, . . . , p by Lemma 3.12. �

We further have the following a priori bound on 〈c1(t), [Pj ]〉 for t ∈ A(−W |−R).

Lemma 3.14. If t ∈ A(−W |−R) then |〈c1(t), [Pj ]〉| = 0 for j = n+1, . . . , n+2g+1.
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Proof. Note first that
|〈c1(t), [Pj ]〉| = |〈c1(t|Yγβ ), [Pj ]〉|,

where
Yγβ ∼= #2g+1(S1 × S2).

Moreover, the diagram (Σ,γ,β, z) is an n-fold stabilization of the standard genus 2g+1 Hee-
gaard diagram for this manifold. In particular, the homology classes [Pn+1], . . . , [Pn+2g+1] are
represented by {pt} × S2s and the generators of CF +(Σ,γ,β, z) represent the torsion Spinc

structure. If t satisfies the adjunction inequality then |〈c1(t), [Pj ]〉| = 0 since the [Pi] are rep-
resented by spheres in Yγβ; if t restricts to a Spinc structure on Yγβ represented by a generator
then |〈c1(t|Yγβ ), [Pj ]〉| = 0 since every such Spinc structure is torsion. �

Finally, we have the following bound on 〈c1(t), [Tj ]〉 for t ∈ A(−W |−R), where the number
Q below may depend on the closure.

Lemma 3.15. There exists some Q > 0 such that

|〈c1(t), [Tj ]〉| ≤ Q
for j = p+1, . . . ,m and any t ∈ A(−W |−R).

Proof. For j = p+ 1, . . . ,m, choose a connected, embedded surface Zj ⊂ −W with [Zj ] = [Tj ]
in H2(−W ). Let

Gj = max{0,−χ(Zj)},
and let

G = max{Gp+1, . . . , Gm}.
For j = p+1, . . . ,m, let us write Tj as a sum

Tj = Tγβj + Tβαj + Tγαj
of rational (γ,β)-, (β,α)-, and (γ,α)-periodic domains (recall that the Tj are sums of doubly-
periodic domains, by definition). Let

Hγβ
j = max{|〈c1(sz(x)), [Tγβj ]〉| | x ∈ Tγ ∩ Tβ},

Hβα
j = max{|〈c1(sz(x)), [Tβαj ]〉| | x ∈ Tβ ∩ Tα},

Hγα
j = max{|〈c1(sz(x)), [Tγαj ]〉| | x ∈ Tγ ∩ Tα}.

Let

Hj = Hγβ
j +Hβα

j +Hγα
j ,

and let
H = max{Hp+1, . . . ,Hm}.

Define
Q := max{G,H, 1}.

Now suppose t ∈ A(−W |−R). Since Tj is a sum of rational doubly-periodic domains, we have
that [Tj ] · [Tj ] = 0. If t satisfies the adjunction inequality then

|〈c1(t), [Tj ]〉| ≤ G ≤ Q.
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If t restricts to a Spinc structure on each of Yγβ, Yβα, Yγα represented by a generator, then
we have that

|〈c1(t), [Tj ]〉| ≤ H ≤ Q,
by construction. This proves the claim. �

We now prove Lemmas 3.16 and 3.17 and the accompanying Lemmas 3.18 and 3.19, which
are the main results of this subsection. Roughly, these lemmas state that by making the genus
g of the distinguished surface large enough and winding sufficiently, we can ensure that any
periodic domain of a certain form will have either a very negative Maslov index contribution
(as measured by evaluations of Chern classes of Spinc structures on its homology class) or a
very negative multiplicity somewhere. These lemmas will be essential for proving admissibility
results in the next subsection, as well as for the results which go into the proofs of Theorems
3.26 and 3.29 in Subsections 3.7 and 3.8. The latter are the key theorems used to prove
Theorem 3.2 in Subsection 3.6. Recall below that p is the size of the basis (19).

Lemma 3.16. Fix some N > 0. Suppose

g ≥ 2pL+ 2.

After sufficient winding, the following is true: for any rational linear combination

P = aγαPγα +

p∑
i=1

biDi +
m∑

i=p+1

ciTi +

n+2g+1∑
i=n+1

diPi

where some |cj | ≥ 1, and any t ∈ A(−W |−R), we have that either:

• 〈c1(t), [P ]〉 ≤ −N , or
• nwij (P ) ≤ −N for some j ∈ {1, . . . ,m}.

Proof. Fix some N > 0 and fix some g ≥ 2pL+ 2. Let Q be as in Lemma 3.15. Let

K = max{|nw±i (Tj)| | i = 1, . . . , n+ 2g and j = p+1, . . . ,m}.

Let us wind αi along each of the curves η+
i and η−i a total of

(36) J ≥ 2Km+ 2N +mQ

times in the directions given by their orientations, for each i = n+1, . . . , n+2g. Now suppose
P is as in the hypothesis of the lemma. Suppose r and s satisfy

|br| = max{|bi| | i = 1, . . . , p} and |cs| = max{|ci| | i = p+1, . . . ,m}.
Before winding, we have that

nwir (P ) ≤ K(m− p)|cs| − |br|+ 2aγα ≤ Km|cs| − |br|+ 2aγα,(37)

nwis (P ) ≤ K(m− p)|cs|+ 2aγα ≤ Km|cs|+ 2aγα,(38)

as follows from (27), (28), (29), and (30). (Recall that the ij subscripts refer to curves in the
boundaries of Dj and Tj as in (20) and (22).) After winding, nwir (P ) is unchanged, but

(39) nwis (P ) ≤ Km|cs|+ 2aγα − J |cs|.
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Suppose nwir (P ) and nwis (P ) are both greater than −N after winding. Then

|br| < 2aγα +Km|cs|+N ≤ 2aγα +Km|cs|+N |cs|,(40)

2aγα > J |cs| −Km|cs| −N ≥ (Km+ 2N +mQ)|cs| −N ≥ (Km+N +mQ)|cs|.(41)

The top inequalities follow from (37) and the fact that |cs| ≥ 1; the bottom inequalities follow
from (39), (36), and |cs| ≥ 1. To prove the lemma, it suffices to show that

〈c1(t), [P ]〉 ≤ −N.

Note that

〈c1(t), [P ]〉 ≤ aγα(2− 2g) + pL|br|+mQ|cs|
≤ 2aγα(−1− 2pL) + pL(2aγα +Km|cs|+N |cs|) +mQ|cs|
= −2aγα − pL2aγα + pL(Km+N +mQ)|cs|+mQ|cs| − pLmQ|cs|
≤ −2aγα − pL(Km+N +mQ)|cs|+ pL(Km+N +mQ)|cs|+mQ|cs| − pLmQ|cs|
= −2aγα +mQ|cs| − pLmQ|cs|
< −(Km+N +mQ)|cs|+mQ|cs| − pLmQ|cs|
= (−Km−N)|cs| − pLmQ|cs|
≤ −N,

as desired. The first line follows from Lemmas 3.14 and 3.15. The second line follows from
(40), the fact that

g ≥ 2pL+ 2 ⇐⇒ 1− g ≤ −1− 2pL,

and the fact that aγα > 0. The latter fact follows from the inequality (41) since K,m,N,Q
are nonnegative by definition. The fourth and sixth lines in the inequalities above also follow
from (41). �

Lemma 3.17. Fix some N > 0. Suppose

g ≥ pLN + pL+N + 1.

The following is true: for any rational linear combination

P = aγαPγα +

p∑
i=1

biDi +

n+2g+1∑
i=n+1

diPi

where aγα ≥ 1, and any t ∈ A(−W |−R), we have that either:

• 〈c1(t), [P ]〉 ≤ −N , or
• nwij (P ) ≤ −N for some j ∈ {1, . . . , p}.

Proof. Suppose P is as in the hypothesis of the lemma. Suppose

|br| = max{|bi| | i = 1, . . . , p}.

Then

nwir (P ) ≤ −|br|+ 2aγα.
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Suppose nwir (P ) is greater than −N . Then

(42) |br| < 2aγα +N.

To prove the lemma, it suffices to show that

〈c1(t), [P ]〉 ≤ −N.
Note that

〈c1(t), [P ]〉 ≤ aγα(2− 2g) + pL|br|
≤ 2aγα(−pLN − pL−N) + pL|br|
≤ 2aγα(−pLN − pL−N) + pL(2aγα +N)

= −pLN(2aγα − 1)−N(2aγα)

≤ −N,
as desired. The second line follows from the fact that

g ≥ pLN + pL+N + 1 ⇐⇒ 1− g ≤ −pLN − pL−N ;

the third from (42); the last from the fact that aγα ≥ 1. �

Lemmas 3.18 and 3.19 below are analogues of those above, but for the basis (23) rather
than (21). Their proofs are identical to those of Lemmas 3.16 and 3.17, so we omit them (the
properties of the domains Tj used in these proofs—namely, Lemma 3.15 and the behaviors of
the coefficients nw±i

(Tj) under winding—have direct analogues which hold after replacing the

Tj with the Dj , for j = p+ 1, . . . ,m).

Lemma 3.18. Fix some N > 0. Suppose

g ≥ 2pL+ 2.

After sufficient winding, the following is true: for any rational linear combination

P = aγαPγα +

p∑
i=1

biDi +

m∑
i=p+1

ciDi

where some |cj | ≥ 1, and any s ∈ A(−Y |−R), we have that either:

• 〈c1(s), [P ]〉 ≤ −N , or
• nwij (P ) ≤ −N for some j ∈ {1, . . . ,m}.

Lemma 3.19. Fix some N > 0. Suppose

g ≥ pLN + pL+N + 1.

The following is true: for any rational linear combination

P = aγαPγα +

p∑
i=1

biDi

where aγα ≥ 1, and any s ∈ A(−Y |−R), we have that either:

• 〈c1(s), [P ]〉 ≤ −N , or
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• nwij (P ) ≤ −N for some j ∈ {1, . . . , p}. �

Remark 3.20. One can just as easily prove analogues of Lemmas 3.18 and 3.19 with respect
to a basis of periodic domains for the diagram (Σ,β,α, z) for −YS .

3.5. Admissibility. In order to use the diagrams (Σ,β,α, z), (Σ,γ,α, z), and (Σ,γ,β,α, z)
to define chain complexes and a chain map which compute the homology groups HF +(−YS |−R; Γη)
and HF +(−Y |−R; Γη) and the map

HF +(−W |−R; Γν) : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη),

these diagrams must satisfy certain admissibility conditions, as described in Subsections 2.4
and 2.6. We prove below that we can achieve the required admissibility for g sufficiently large
and after sufficient winding.

Proposition 3.21. For sufficiently large g and sufficient winding, the diagram (Σ,γ,β,α, z)
is weakly t-admissible for all t ∈ A(−W |−R).

Proof. Fix some N > 0. Fix some

g ≥ max{2pL+ 2, pLN + pL+N + 1}
for L as in (35). Wind sufficiently so that the conclusion of Lemma 3.16 holds for this N . With
this g and this winding, we may prove the admissibility claimed in the proposition. Suppose
t ∈ A(−W |−R). Suppose P is a nontrivial triply-periodic domain in (Σ,γ,β,α, z) which is a
sum of doubly-periodic domains. Then [P ] · [P ] = 0. Suppose

〈c1(t), [P ]〉 = 0.

We must show that P has a negative multiplicity. If the coefficient of Tj in P is nonzero for
some j ∈ {p+1, . . . ,m} then P has a negative multiplicity by Lemma 3.16. Otherwise, if the
coefficient of Tj in P is zero for j = p+1, . . . ,m and the coefficient of Pγα in P is nonzero
then P has a negative multiplicity by Lemma 3.17 (either the coefficient of Pγα is negative, in
which case P has a negative multiplicity, or the coefficient is positive, in which case Lemma
3.17 applies). We may thus assume that the coefficients in P of Pγα and Tj are zero for
j = p+1, . . . ,m. Therefore, P is a linear combination

P =

p∑
i=1

biDi +

n+2g+1∑
i=n+1

diPi.

Since P is nontrivial, either some bj is nonzero or some di is nonzero. In the first case,

nw±ij
(P ) = ±bj

by (28), (29), (30). In the second case, P has multiplicities ±di in some thin regions. In either
case, P has a negative multiplicity, completing the proof. �

The result below is proven is exactly the same way as Proposition 3.21, except that we use
Lemmas 3.18 and 3.19 instead of Lemmas 3.16 and 3.17; we therefore omit its proof.

Proposition 3.22. For sufficiently large g and sufficient winding, the diagram (Σ,γ,α, z) is
weakly s-admissible for all s ∈ A(−Y |−R). �
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Remark 3.23. One can just as easily prove the analogous admissibility result for the diagram
(Σ,β,α, z) and s ∈ A(−YS |−R).

3.6. Theorems 3.26 and 3.29 imply Theorem 3.2. In this subsection, we state Theorems
3.26 and 3.29, and explain how they imply Theorem 3.2, which then implies our main theorem,
Theorem 3.1, as explained at the beginning of this section.

In preparation for the statements of these theorems, let us define

Θ = {Θ1, . . . ,Θn+2g+1} ∈ Tγ ∩ Tβ,

where each Θi is one of the two intersection points between γi and βi, as shown in

• Figure 3 for i = 1, . . . , n,
• Figure 6 for i = n+1, . . . , n+2g, and
• Figure 9 for i = n+2g+1,

so that [Θ, 0] is the unique generator in the top Maslov grading of

CF +(Σ,γ,β, z)

among generators killed by U . For each t ∈ Spinc(−W ), the map

HF +(Wγβα, t; Γν) : HF +(Yβα, t|Yβα ; Γη)→ HF +(Yγα, t|Yγα ; Γη)

is then defined as in Subsection 2.6, in terms of a chain map

f+
γβα,t;Γν

: CF +(Σ,β,α, z, t|Yβα ; Γη)→ CF +(Σ,γ,α, z, t|Yγα ; Γη)

defined on a generator [x, i] by

f+
γβα,t;Γν

([x, i]) =
∑

φ∈π2(Θ,x,y)
sz(φ)=t
µ(φ)=0

#M(φ) · [y, i− nz(φ)] · t∂α(φ)·η,

assuming the diagram (Σ,γ,β, α, z) is weakly t-admissible.

Remark 3.24. We hereafter assume that g is sufficiently large and we have wound sufficiently
so that

• (Σ,γ,β,α, z) is weakly t-admissible for t ∈ A(−W |−R), and
• (Σ,β,α, z) and (Σ,γ,α, z) are weakly s-admissible for s in A(−YS |−R) and A(−Y |−R),

per Propositions 3.21 and 3.22 and Remark 3.23.

Let us denote by

CF +(Σ,β,α, z|−Rβα; Γη) and CF +(Σ,γ,α, z|−Rγα; Γη)

the direct sums of the chain complexes

CF +(Σ,β,α, z, s; Γη) and CF +(Σ,γ,α, z, s; Γη)

over Spinc structures s in A(−YS |−R) and A(−Y |−R), respectively. Let us define

f+
γβα;Γν

: CF +(Σ,β,α, z|−Rβα; Γη)→ CF +(Σ,γ,α, z|−Rγα; Γη)
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to be the sum of the maps f+
γβα,t;Γν

over t ∈ A(−W |−R). This induces the map

(43) B := HF +(−W |−R; Γν) : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη)

on homology, by Theorems 2.7 and 2.12 (see Remark 3.11).

For each i = 1, . . . , n, let ciβα and ciγα be the unique intersection points

ciβα = βi ∩ αi ∩Hi,

ciγα = γi ∩ αi ∩Hi

shown in Figure 3, and define

cβα = {c1
βα, . . . , c

n
βα} ∈ SFC (Σ, {β1, . . . , βn}, {α1, . . . , αn}),

cγα = {c1
γα, . . . , c

n
γα} ∈ SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn}).

Remark 3.25. These cβα and cγα are representatives of the contact elements cHF (obS) and
cHF (ob) associated to the partial open books obS = (S, ∅, ∅, ∅) and ob = (S, P, h, {c1, . . . , cn}),
by the discussion in Subsection 2.2.

We will prove the two theorems below in the next two subsections.

Theorem 3.26. For sufficiently large g and sufficient winding, there are quasi-isomorphisms

fβα : SFC (Σ, {β1, . . . , βn}, {α1, . . . , αn})⊗ Λ→ CF +(Σ,β,α, z|−Rβα; Γη)(44)

fγα : SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ→ CF +(Σ,γ,α, z|−Rγα; Γη)(45)

sending cβα ⊗ 1 to [cβα ∪ {uβα} ∪ xβα, 0] and cγα ⊗ 1 to [cγα ∪ {uγα} ∪ xγα, 0], respectively.

Remark 3.27. Theorem 3.26 also holds without tensoring with the Novikov ring on the left
side and without twisted coefficients on the right.

Remark 3.28. The fact that cβα and cγα are cycles implies that

[cβα ∪ {uβα} ∪ xβα, 0] and [cγα ∪ {uγα} ∪ xγα, 0]

are cycles for sufficiently large g and sufficient winding, by Theorem 3.26.

Theorem 3.29. For sufficiently large g and sufficient winding, the map

B = (f+
γβα;Γν

)∗ : H∗(CF +(Σ,β,α, z|−Rβα; Γη))→ H∗(CF +(Σ,γ,α, z|−Rγα; Γη))

sends

[[cβα ∪ {uβα} ∪ xβα, 0]] to [[cγα ∪ {uγα} ∪ xγα, 0]].

We explain below how Theorems 3.26 and 3.29 imply Theorem 3.2.

Proof of Theorem 3.2. Suppose g is sufficiently large and we have wound sufficiently to guar-
antee the conclusions of Theorems 3.26 and 3.29. Fix a contact structure ξ̄S on YS such that
(YS , R, ξ̄S , η) is a contact closure of (H(S), ξS). Let ξ̄ be the contact structure on Y obtained
from ξ̄S via contact (+1)-surgery on a Legendrian realization of the link

L = s1 ∪ · · · ∪ sn ⊂ YS .
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As discussed in Subsection 2.5, (Y,R, ξ̄, η) is a contact closure of (M,Γ, ξ). Note that

SFC (Σ, {β1, . . . , βn}, {α1, . . . , αn})⊗ Λ

is generated by cβα ⊗ 1. It therefore follows from Theorem 3.26 that [cβα ∪ {uβα} ∪ xβα, 0] is
a cycle which represents a generator

1 ∈ HF +(Yβα|−Rβα; Γη) = HF +(−YS |−R; Γη) ∼= Λ.

By Theorem 3.29, the map

B = HF +(−W |−R; Γν) : HF +(−YS |−R; Γη)→ HF +(−Y |−R; Γη)

satisfies

(46) B(1) = [[cγα ∪ {uγα} ∪ xγα, 0]].

Meanwhile, Corollary 2.11 says that there is an open book ōb compatible with ξ̄ such that

(47) B(1) = cHF (ōb).

It follows from (46) and (47) that

(48) [[cγα ∪ {uγα} ∪ xγα, 0]] = cHF (ōb).

As the class cHF (ob)⊗ 1 is given by

cHF (ob)⊗ 1 = [cγα ⊗ 1] ∈ H∗(SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ) = SFH (−M,−Γ)⊗ Λ,

per Remark 3.25, Theorem 3.26 combined with (48) implies that the isomorphism

A := (fγα)∗ : SFH (−M,−Γ)⊗ Λ→ HF +(−Y |−R; Γη)

sends cHF (ob)⊗ 1 to cHF (ōb), proving Theorem 3.2. �

3.7. Proof of Theorem 3.26. The maps fβα and fγα we have in mind in (44) and (45) of
Theorem 3.26 are the Λ-linear maps

fβα : SFC (Σ, {β1, . . . , βn}, {α1, . . . , αn})⊗ Λ→ CF +(Σ,β,α, z|−Rβα; Γη)

fγα : SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ→ CF +(Σ,γ,α, z|−Rγα; Γη)

which send a generator x⊗ 1 to [x∪{uβα}∪xβα, 0] and [x∪{uγα}∪xγα, 0], respectively. We
will focus exclusively on the case of fγα; the proof of Theorem 3.26 for fβα proceeds identically.

Lemma 3.30. Sufficiently large g and sufficient winding guarantee that fγα is a chain map.

As we shall see, this follows easily from Lemma 3.31 below. Roughly, this lemma states (in
the case k = 1) that for large g and sufficient winding, the Whitney disks with nz = 0 between
generators of the Heegaard Floer complex

CF +(Σ,γ,α, z|−Rγα; Γη)

with any hope of having holomorphic representatives (i.e. with no negative multiplicities) are
supported in the Σ portion of Σ, meaning that they have holomorphic representatives iff the
corresponding Whitney disks in the sutured diagram

(Σ, {γ1, . . . , γn}, {α1, . . . , αn})
do.
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Lemma 3.31. Fix a pair of intersection points,

(49) x,y ∈ (γ1 × · · · × γn) ∩ (α1 × · · · × αn) ∈ Symn(Σ)

and an integer k. For sufficiently large g and sufficient winding, the following is true: for any
Whitney disk

φ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {s} ∪ xγα)

with s ∈ {uγα, vγα}, where

(1) µ(φ) = k,
(2) nz(φ) = 0, and
(3) D(φ) has no negative multiplicities,

we have that

• s = uγα, and
• the domain D(φ) is supported in Σ ⊂ Σ.

Our proof of this lemma involves a careful balancing of multiplicities against Maslov index
along the lines of, and using crucially, the technical Lemmas 3.18 and 3.19.

Proof of Lemma 3.31. Fix x and y as in (49), and an integer k. We will break the proof into
two cases.

Case 1: s = uγα. Suppose

g ≥ 2pL+ 2

as in the hypothesis of Lemma 3.18, for L as in (35). Fix a Whitney disk in

π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with domain D satisfying nz(D) = 0 (if no such disk exists then the lemma holds vacuously).
The boundary of D consists of

• integer multiples of complete γi and αi curves for i = n+1, . . . , n+2g+1, and
• integer multiples of arcs of the γi and αi curves for i = 1, . . . , n.

Recall from Subsection 3.2 that for each i = 1, . . . , n+2g+1 there is a curve which intersects
γi and αi positively in exactly one point each and all other γ and α curves zero times alge-
braically. It follows that γi and αi appear with opposite multiplicities in the boundary of D.
We may therefore assume, after adding some integer linear combination of the elements in the
basis (23),

{Pγα,D1, . . . ,Dm},
that the boundary of D is disjoint from

• γij and αij for j = p+1, . . . ,m, and
• γn+2g+1 and αn+2g+1.

This D will serve as a reference domain for the rest of the proof.

Fix some integer M such that

(50) M − |k| > |µ(D)|+ max{|nwij (D)| | j = 1, . . . ,m}.
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In particular, this implies that

µ(D) < M + k, and(51)

nwij
(D) < M, for j = 1, . . . ,m.(52)

Note that winding cannot change the second inequality. Indeed, winding can only potentially
affect

nwij
(D)

for j = p+1, . . . ,m, as discussed in Subsection 3.2, and it does not do so in this case since the
boundary of D is disjoint from αij for such j, by construction. As mentioned above, the curves
γi and αi appear with opposite multiplicities in the boundary of D for all i = n+1, . . . , n+2g.
If this multiplicity is nonzero for some such i, then we can ensure that

(53) nwi(D) ≤ −2M

by winding sufficiently around ηi, as described in Subsection 3.2. After such winding, we may
therefore assume that (53) holds for every i = n+1, . . . , n+2g for which γi and αi appear with
nonzero multiplicities in the boundary of D, and that the conclusion of Lemma 3.18 holds for
N = M .

With the above established, let us now suppose φ is any Whitney disk,

φ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα),

where µ(φ) = k, nz(φ) = 0, and D(φ) has no negative multiplicities, as in the hypothesis of
the lemma. Then we can write

(54) D(φ) = D + P

for some integer linear combination P of the elements of the basis in (23).

Let s ∈ A(−Y |−R) denote the Spinc structure represented by the generators

x ∪ {uγα} ∪ xγα and y ∪ {uγα} ∪ xγα.

We have that

µ(φ) = µ(D) + 〈c1(s), [P ]〉,
by [42, Theorem 4.9]. The fact that µ(φ) = k, together with (51), then forces

(55) 〈c1(s), [P ]〉 > −M.

Meanwhile, the fact that D(φ) has no negative multiplicities, together with (52), forces

(56) nwij
(P ) > −M

for j = 1, . . . ,m. Now (55) and (56), together with Lemma 3.18, imply that the coefficient of
Dj in P is zero for all j = p+1, . . . ,m. That is, P is an integer linear combination

P = aγαPγα +

p∑
i=1

biDi.
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Therefore, we can rewrite (54) as

(57) D(φ) =
(
D +

p∑
i=1

biDi
)

+ aγαPγα.

We will show next that the domain in parentheses is contained in Σ ⊂ Σ,

(58) D +

p∑
i=1

biDi ⊂ Σ.

Since this domain is disjoint from the basepoint z and D1, . . . ,Dp are contained in Σ, the only
way (58) can fail is if γi and αi appear with (opposite) nonzero multiplicities in the boundary
of D for some i = n+1, . . . , n+2g. Suppose, for a contradiction, that this is the case. Then
the fact that D(φ) has no negative multiplicities, combined with (53) and the fact that

nw±i
(Pγα) = 2,

forces

aγα ≥M.

We set P ′ = P/M and apply the N = 1 case of Lemma 3.1910 to P ′ to see that either

• 〈c1(s), [P ′]〉 ≤ −1, or
• nwij (P

′) ≤ −1 for some j ∈ {1, . . . , p},

which is equivalent to either

• 〈c1(s), [P ]〉 ≤ −M , or
• nwij (P ) ≤ −M for some j ∈ {1, . . . , p}.11

But these contradict either (55) or (56). We may conclude that (58) holds. Furthermore, note
that (57) and (58) imply that

D +

p∑
i=1

biDi

is the domain of a Whitney disk in π2(x,y). In summary, we have shown that for g ≥ 2pL+ 2
and sufficient winding, any Whitney disk φ as in the statement of the lemma has domain

(59) D(φ) = D(φ′) + aγαPγα,

for some nonnegative integer aγα (if it is not nonnegative then D(φ) has a negative multiplic-
ity), where

(60) φ′ ∈ π2(x,y)

10We can do this because the hypothesis of Lemma 3.19 in the N = 1 case is that g ≥ 2pL + 2, which we
have assumed, and that the coefficient of Pγα is ≥ 1, which is true for P ′ since aγα/M ≥ 1.

11The reader may wonder why we cannot conclude these inequalities directly from Lemma 3.19; that is,
why dividing by M above is a necessary step. The answer is that to apply Lemma 3.19 directly we would
need that g ≥ pLM + pL+M + 1 while we have only assumed that g ≥ 2pL+ 2. We do not want to assume
g ≥ pLM + pL+M + 1 at the outset, as this M may depend on the specific diagram for the closure.
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is a Whitney disk in the sutured Heegaard diagram

(61) (Σ, {γ1, . . . , γn}, {α1, . . . , αn}).

To complete the proof of the lemma in this case, we show next that for sufficiently large g
and sufficient winding it must also be true that aγα = 0 in (59). For this, fix some

φ′′ ∈ π2(x,y)

for reference. Fix some N with

(62) N − |k| > |µ(φ′′)|+ max{|nwi(φ
′′)| | i = 1, . . . , n}.

Note that the range of values for N which satisfy this inequality depends only on k and the
sutured diagram. As before, this implies that

µ(φ′′) < N + k, and(63)

nwi(φ
′′) < N, for i = 1, . . . , n.(64)

Suppose

(65) g ≥ max{2pL+ 2, pLN + pL+N + 1},
and wind sufficiently that any Whitney disk φ as in the statement of the lemma can be written
in the form (59). Suppose φ is such a disk, and write D(φ) in this form,

D(φ) = D(φ′) + aγαPγα.
The domains D(φ′) and D(φ′′) differ by a doubly-periodic domain in the sutured Heegaard
diagram (61). We can therefore write

D(φ′) = D(φ′′) +

p∑
i=1

biDi

for some integers b1, . . . , bp. We thus have

D(φ) = D(φ′′) + P,

where

P = aγαPγα +

p∑
i=1

biDi.

Therefore,
µ(φ) = µ(φ′′) + 〈c1(s), [P ]〉.

The fact that µ(φ) = k, together with (63), then forces

(66) 〈c1(t), [P ]〉 > −N.
Suppose for a contradiction that aγα 6= 0. Then aγα ≥ 1 since it is an integer. But then
Lemma 3.19, together with (66), implies that

nwij
(P ) ≤ −N

for some j = 1, . . . , p. But this, together with (64), implies that

nwij
(D(φ)) < 0,
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a contradiction. This shows that aγα = 0, proving Lemma 3.31 in this case.

Case 2: s = vγα. This case follows quickly from the previous case. Let B be the bigon shown

in Figure 12, with vertices at uγα and vγα and nz(B) = 1.

uγα

vγα

z

Figure 12. The bigon B, shaded.

Observe that for any

φ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {vγα} ∪ xγα)

where µ(φ) = k, nz(φ) = 0, and D(φ) has no negative multiplicities, as in the hypothesis of
the lemma, we can write

(67) D(φ) = D(φ′) +B − Σ

for some Whitney disk

φ′ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

where µ(φ′) = k + 1, nz(φ
′) = 0, and D(φ′) has no negative multiplicities (B − Σ contributes

1− 2 = −1 to the Maslov index). We proved in the previous case that for sufficiently large g
and sufficient winding, any such φ′ satisfies

D(φ′) ⊂ Σ.

Suppose then that g is large enough and we have wound sufficiently that this holds, and let
φ be as above. Then D(φ) has a negative multiplicity in the region RS by (67), since B − Σ
does and D(φ′) has multiplicity zero in this region, a contradiction. We conclude that for
sufficiently large g and sufficient winding, there is no Whitney disk φ as in the statement of
the lemma when s = vγα. �

We now explain how Lemma 3.31 implies Lemma 3.30.

Proof of Lemma 3.30. Suppose g is large enough and the winding sufficient for the conclusion
of Lemma 3.31 to hold. It suffices to show (by Lemma 3.8), for each pair x,y as in (49) that
the coefficient of [y ∪ {s} ∪ xγα, 0] in fγα(dx⊗ 1) is the same as its coefficient in ∂fγα(x⊗ 1),
for s = uγα or vγα, where d is the differential on

SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})
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and ∂ is the differential on CF +(Σ,γ,α, z|−Rγα; Γη). Note that both coefficients

〈fγα(dx⊗ 1), [y ∪ {s} ∪ xγα, 0]〉 and 〈∂fγα(x⊗ 1), [y ∪ {s} ∪ xγα, 0]〉

are zero if s = vγα. This is by definition for the first and by Lemma 3.31 in the case k = 1 for
the second. We therefore only need consider the case s = uγα. By definition, we have that

〈fγα(dx⊗ 1), [y ∪ {uγα} ∪ xγα, 0]〉 = 〈dx,y〉,(68)

〈∂fγα(x⊗ 1), [y ∪ {uγα} ∪ xγα, 0]〉 = 〈∂([x ∪ {uγα} ∪ xγα, 0]), [y ∪ {uγα} ∪ xγα, 0]〉.(69)

But it follows immediately from Lemma 3.31 that the coefficients on the right hand sides of
(68) and (69) are equal: any Whitney disk contributing to the coefficient in (68) contributes
the same amount to the coefficient in (69), and Lemma 3.31 tells us that the converse is true
(note that any domain contained in Σ is disjoint from η). �

We will henceforth assume that g is sufficiently large and that we have wound sufficiently
to guarantee that fγα is a chain map.

To show that fγα is a quasi-isomorphism (assuming sufficiently large g and sufficient wind-
ing), we will show that it is a filtered chain map for some filtrations on the domain and
codomain complexes, and that it induces an isomorphism between E1 pages of the spectral
sequences associated to these filtrations. We will first define a filtration on the codomain
CF +(γ,α|−Rγα; Γη) in each Spinc structure.

Let E and F be the points in RS and RΣ shown in Figures 9 and 10. Given generators

[x ∪ {s} ∪ xγα, i] and [y ∪ {s′} ∪ xγα, j] of CF +(Σ,γ,α, z|−Rγα; Γη)

representing the same Spinc structure, for x,y as in (49) and s, s′ ∈ {uγα, vγα}, choose a
Whitney disk

φ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s′} ∪ xγα)

with nz(φ) = i− j, and define the relative grading

F([x ∪ {s} ∪ xγα, i], [y ∪ {s′} ∪ xγα, j]) = 2nE(φ)− nF (φ).

This relative grading is well-defined since any two such φ differ by a periodic domain P and

2nE(P )−nF (P ) = 0

for all (γ,α)-periodic domains, by (31). Moreover, we have the following.

Lemma 3.32. For x and y as above, we have that

2nE(φ)−nF (φ) = 0

for any

φ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s′} ∪ xγα)

with s = s′ and nz(φ) = 0.

Proof. As in (54), we can write

D(φ) = D + P
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for some domain D with nz(D) = 0 whose boundary is disjoint from γn+2g+1 and αn+2g+1,
and some linear combination P of the elements of the basis in (23). We then have

2nE(P )− nF (P ) = 0 = 2nE(D)− nF (D).

The first equality follows from (31), while the second follows from the facts that nz(D) = 0
and that the boundary of D is disjoint from γn+2g+1 and αn+2g+1. These equalities then imply
that 2nE(φ)− nF (φ) = 0. �

In addition, we note here that

2nE(Σ)− nF (Σ) = 1,

2nE(B)− nF (B) = 0,

where B is the bigon in Figure 12. These facts will be useful for Lemmas 3.33 and 3.34 below.
For each Spinc structure, let us choose some lift of this relative grading to an absolute grading,
which we also denote by F .

Lemma 3.33. Sufficiently large g and sufficient winding guarantee that the absolute grading
F defines a filtration.

Proof. Fix x,y as in (49). We must show that for sufficiently large g and sufficient winding,
the following is true: if the coefficient

(70) 〈∂([x ∪ {s} ∪ xγα, i]), [y ∪ {s′} ∪ xγα, j]〉

is nonzero, then

F([x ∪ {s} ∪ xγα, i]) ≥ F([y ∪ {s′} ∪ xγα, j]).

We will break the proof into three cases.

Case 1: s = s′. Suppose the coefficient in (70) is nonzero. Then there is a Whitney disk

φ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s} ∪ xγα)

with nz(φ) = i− j ≥ 0. We can write

D(φ) = D(φ′) + (i− j)Σ,

for some

φ′ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s} ∪ xγα)

with nz(φ
′) = 0. We therefore have that

F([x ∪ {s} ∪ xγα, i])−F([y ∪ {s} ∪ xγα, j]) = 2nE(φ)− nF (φ)

= 2nE(φ′)− nF (φ′) + i− j
= i− j ≥ 0,

where the last equality follows from Lemma 3.32.

Case 2: (s, s′) = (uγα, vγα). Suppose the coefficient in (70) is nonzero. Then there is a Whit-

ney disk

φ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {vγα} ∪ xγα)
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with µ(φ) = 1, no negative multiplicities, and nz(φ) = i− j ≥ 0. We can write

D(φ) = D(φ′) +B + (i− j − 1)Σ,

for some

φ′ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with nz(φ
′) = 0 and

µ(φ′) = −2(i− j − 1).

If i− j − 1 < 0, which since i− j ≥ 0 means that

i− j − 1 = −1,

then D(φ′) has no negative multiplicities; otherwise, D(φ) clearly would as well, a contradic-
tion. But Lemma 3.31 in the case

k = −2(i− j − 1) = 2

shows that for sufficiently large g and sufficient winding, D(φ′) ⊂ Σ for all such φ′. However,
in this case, D(φ) has negative multiplicities in the region RS since

B + (i− j − 1)Σ

does and D(φ′) has multiplicity zero in this region, another contradiction. We conclude that
for sufficiently large g and sufficient winding, i− j − 1 ≥ 0, in which case

F([x ∪ {uγα} ∪ xγα, i])−F([y ∪ {vγα} ∪ xγα, j]) = 2nE(φ′)− nF (φ′) + 2nE(B)− nF (B)

+ i− j − 1

= i− j − 1 ≥ 0,

as desired.

Case 3: (s, s′) = (vγα, uγα). Suppose the coefficient in (70) is nonzero. Then there is a Whit-

ney disk

φ ∈ π2(x ∪ {vγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with nz(φ) = i− j ≥ 0. We can then write

D(φ) = D(φ′)−B + (i− j + 1)Σ

for some

φ′ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with nz(φ
′) = 0. We therefore have that

F([x ∪ {vγα} ∪ xγα, i])−F([y ∪ {uγα} ∪ xγα, j]) = 2nE(φ′)− nF (φ′)− 2nE(B) + nF (B)

+ i− j + 1

= i− j + 1 > 0,

as desired. �



50 JOHN A. BALDWIN AND STEVEN SIVEK

Let ∂0 denote the component of the differential ∂ on CF +(Σ,γ,α, z|−Rγα; Γη) which pre-
serves the grading F , and let d denote the differential on

SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ,

as in the proof of Lemma 3.30. We have the following.

Lemma 3.34. Sufficiently large g and sufficient winding guarantee that for each generator

[x ∪ {s} ∪ xγα, i] of CF +(Σ,γ,α, z|−Rγα; Γη),

we have that

(71) ∂0([x∪{s}∪xγα, i]) =

{
[d(x) ∪ {uγα} ∪ xγα, i] + [x ∪ {vγα} ∪ xγα, i− 1], if s = uγα,

[d(x) ∪ {vγα} ∪ xγα, i], if s = vγα.

For i = 0, the term [x ∪ {vγα} ∪ xγα, i− 1] above is interpreted as zero in CF +.

Proof. Fix x,y as in (49). We will break the proof into three cases.

Case 1: s = s′. Suppose the coefficient

(72) 〈∂0([x ∪ {s} ∪ xγα, i]), [y ∪ {s} ∪ xγα, j]〉
is nonzero. Then there is a Whitney disk

φ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s} ∪ xγα)

with µ(φ) = 1, no negative multiplicities, and nz(φ) = i− j ≥ 0. We can then write

D(φ) = D(φ′) + (i− j)Σ,
for some

φ′ ∈ π2(x ∪ {s} ∪ xγα,y ∪ {s} ∪ xγα)

with nz(φ
′) = 0. By Lemma 3.32, we have 2nE(φ′)− nF (φ′) = 0. Therefore,

2nE(φ)− nF (φ) = (i− j)(2nE(Σ)− nF (Σ)) = i− j.
But then i− j = 0 since since ∂0 preserves F . Thus,

nz(φ) = i− j = 0.

Lemma 3.31 in the case k = 1 then shows that for sufficiently large g and sufficient winding,
D(φ) ⊂ Σ for such φ. It follows that for sufficiently large g and sufficient winding,

(73) 〈∂0([x ∪ {s} ∪ xγα, i]), [y ∪ {s} ∪ xγα, j]〉 =

{
〈d(x),y〉, if j = i,

0, otherwise,

as desired.

Case 2: (s, s′) = (uγα, vγα). Suppose the coefficient

(74) 〈∂0([x ∪ {uγα} ∪ xγα, i]), [y ∪ {vγα} ∪ xγα, j]〉
is nonzero. Then there is a Whitney disk

φ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {vγα} ∪ xγα)
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with µ(φ) = 1, no negative multiplicities, and nz(φ) = i− j ≥ 0. We can write

D(φ) = D(φ′) +B + (i− j − 1)Σ

for some

φ′ ∈ π2(x ∪ {uγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with nz(φ
′) = 0 and

µ(φ′) = −2(i− j − 1).

By Lemma 3.32, we have 2nE(φ′)− nF (φ′) = 0. This then implies that

2nE(φ)− nF (φ) = 2nE(B)− nF (B) + (i− j − 1)(2nE(Σ)− nF (Σ))

= i− j − 1.

But this quantity must be zero since ∂0 preserves F , so we can write

D(φ) = D(φ′) +B,

and µ(φ′) = 0. Furthermore, φ′ must have no negative multiplicities; otherwise, φ clearly would
as well, a contradiction. But Lemma 3.31 in the case k = 0 says that for sufficiently large g
and sufficient winding, D(φ′) ⊂ Σ for all such φ′. In this case, the constituent pieces D(φ′) and
B of D(φ) are disjoint domains with holomorphic representatives. Since holomorphic disks of
Maslov index zero are constant, we have D(φ′) = 0, which implies that

D(φ) = B.

In this case, φ has a unique holomorphic representative, and y = x. We may therefore conclude
that for sufficiently large g and sufficient winding,

(75) 〈∂0([x ∪ {uγα} ∪ xγα, i]), [y ∪ {vγα} ∪ xγα, j]〉 =

{
1, if y = x and j = i− 1,

0, otherwise,

as desired.

Case 3: (s, s′) = (vγα, uγα). Suppose the coefficient

(76) 〈∂0([x ∪ {vγα} ∪ xγα, i]), [y ∪ {uγα} ∪ xγα, j]〉

is nonzero. Then there is a Whitney disk

φ ∈ π2(x ∪ {vγα} ∪ xγα,y ∪ {uγα} ∪ xγα)

with nz(φ) = i− j ≥ 0. Note that

2nE(φ)− nF (φ) = i− j + 1,

as established in the proof of Lemma 3.33 in this case. But this quantity must be zero since
∂0 preserves F , so i− j = −1. But this contradicts the assumption that i− j ≥ 0. Therefore,

(77) 〈∂0([x ∪ {vγα} ∪ xγα, i]), [y ∪ {uγα} ∪ xγα, j]〉 = 0

for all i, j and x,y. Putting the formulae (73), (75), and (77) together completes the proof of
Lemma 3.34. �
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Suppose now that g is large enough and that we have wound sufficiently for the con-
clusions of Lemmas 3.30, 3.31, 3.33, and 3.34 to hold. Note that the above filtration on
CF +(Σ,γ,α, z|−Rγα; Γη) defines a filtration on

SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ

by simply declaring the filtration grading of a generator x to be equal to that of [x∪ {uγα} ∪
xγα, 0]. In particular, d = d0, where d0 is the component of d which preserves the filtration
grading on the sutured Floer complex, and fγα is a filtered chain map. The E1 page of the
spectral sequence associated to the filtration on this sutured Floer complex is therefore simply
the homology

H∗(SFC (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ, d0) = SFH (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ.

We claim the following.

Lemma 3.35. The map between E1 pages induced by fγα,

E1(fγα) : SFH (Σ, {γ1, . . . , γn}, {α1, . . . , αn})⊗ Λ→ H∗(CF +(Σ,γ,α, z|−Rγα; Γη), ∂0),

is an isomorphism.

Proof. We claim that every generator of the homology

H∗(CF +(Σ,γ,α, z|−Rγα; Γη), ∂0)

is represented by a linear combination of generators of the form [x ∪ {uγα} ∪ xγα, 0]. To see
how the lemma follows from this claim, suppose it is true and recall that E1(fγα) is induced
by the map which sends a generator x to [x∪ {uγα} ∪ xγα, 0]. In particular, this map sends a
linear combination

(78) x1 ⊗ r1 + · · ·+ xk ⊗ rk,
where the ri ∈ Λ, to the linear combination

(79) [x1 ∪ {uγα} ∪ xγα, 0]r1 + · · ·+ [xk ∪ {uγα} ∪ xγα, 0]rk.

It follows easily from Lemma 3.34 that the sum in (78) is a cycle (resp. boundary) with respect
to d = d0 iff the sum in (79) is a cycle (resp. boundary) with respect to ∂0. This implies that
E1(fγα) is an isomorphism.

It remains to prove the claim. Given a linear combination

(80) w = x1 ⊗ r1 + · · ·+ xk ⊗ rk,
as in (78), let us use the following notation

[w, uγα, i] := [x1 ∪ {uγα} ∪ xγα, i]r1 + · · ·+ [xk ∪ {uγα} ∪ xγα, i]rk,

[w, vγα, i] := [x1 ∪ {vγα} ∪ xγα, i]r1 + · · ·+ [xk ∪ {vγα} ∪ xγα, i]rk.

Now suppose
c = [wi, uγα, i] + [zi, vγα, i] + · · ·+ [w0, uγα, 0] + [z0, vγα, 0]

is a cycle with respect to ∂0, where the wj and vj are linear combinations as in (80). For the
claim, it suffices to show that there is some

b ∈ CF +(Σ,γ,α, z|−Rγα; Γη)
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such that

(81) ∂0b+ c = [w0, uγα, 0].

Applying the formula for ∂0 in (71), one easily sees that the fact that c is a cycle implies that

dzi = 0,

dzi−1 = wi,

dzi−2 = wi−1,

...

dz0 = w1.

It therefore follows, after another application of (71), that

b = [zi, uγα, i+ 1] + · · ·+ [z0, uγα, 1]

satisfies (81). This completes the proof of the lemma. �

Proof of Theorem 3.26. The fact that fγα is a quasi-isomorphism follows immediately. This is
because a filtered chain map between filtered chain complexes which induces an isomorphism
between the E1 pages of the associated spectral sequences induces an isomorphism on homol-
ogy, assuming that the filtrations are bounded from below, which they clearly are in this case
(see, e.g., the proof of [46, Proposition A.6.1]). �

3.8. Proof of Theorem 3.29. In preparation for the proof of Theorem 3.29, we introduce
the following notation. Let ∆i be the small triangle with vertices at

Θi, ciβα, c
i
γα, for i = 1, . . . , n,

Θi, xiβα, x
i
γα, for i = n+1, . . . , n+2g,

Θi, uβα, uγα, for i = n+2g+1,

shown shaded in Figures 3, 6, and 9, and let

∆Σ = ∆1 + · · ·+ ∆n,

∆S = ∆n+1 + · · ·+ ∆n+2g+1,

∆Σ = ∆Σ + ∆S .

From Lemma 3.8, the image

f+
γβα;Γν

([cβα ∪ {uβα} ∪ xβα, 0])

is a linear combination of generators of the form [y ∪ {s} ∪ xγα, 0], where s ∈ {uγα, vγα}.
As we shall see, Theorem 3.29 follows easily from Lemma 3.36 below, which is a kind of

Whitney triangle version of Lemma 3.31.

Lemma 3.36. Fix an intersection point

(82) y ∈ (γ1 × · · · × γn) ∩ (α1 × · · · × αn) ∈ Symn(Σ)
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and an integer k. For sufficiently large g and sufficient winding, the following is true: for any
Whitney triangle

φ ∈ π2(Θ, cβα ∪ {uγα} ∪ xβα,y ∪ {s} ∪ xγα)

with s ∈ {uγα, vγα}, where

(1) µ(φ) = k,
(2) nz(φ) = 0,
(3) D(φ) has no negative multiplicities, and
(4) HF +(−W, t; Γν)([[cβα ∪ {uγα} ∪ xβα, 0]]) 6= 0 for t = sz(φ),

we have that

• s = uγα,
• y = cγα, and
• the domain D(φ) = ∆Σ.

The proof of this lemma is very similar to that of Lemma 3.31. We therefore omit some of
the redundant details in our explanation below.

Proof of Lemma 3.36. Fix y as in (82). We will break the proof into two cases.

Case 1: s = uγα. Suppose

g ≥ 2pL+ 2

as in the hypothesis of Lemma 3.16. Suppose t ∈ Spinc(−W ) is a Spinc structure for which

(83) HF +(−W, t; Γν)([[cβα ∪ {uγα} ∪ xβα, 0]]) 6= 0.

In particular, this implies that t ∈ A(−W |−R). Fix a Whitney triangle in

π2(Θ, cβα ∪ {uβα} ∪ xβα,y ∪ {uγα} ∪ xγα)

with domain T satisfying nz(T ) = 0 and sz(T ) = t (such a triangle must exist by (83), since the
quantity on the left is a linear combination of generators whose coefficients count holomorphic
triangles with domains satisfying these properties). The boundary of T−∆S consists of

• integer multiples of complete γi, βi, αi curves for i = n+1, . . . , n+2g+1, and
• integer multiples of arcs of the γi, βi, αi curves for i = 1, . . . , n.

We may therefore assume, after adding some integer linear combination of the elements in the
basis (21),

{Pγα,D1, . . . ,Dp,Tp+1 . . . ,Tm,Pn+1, . . . ,Pn+2g+1},
that the boundary of T −∆S is disjoint from

• βi for i = n+1, . . . , n+2g+1,
• γij and αij for j = p+1, . . . ,m,
• γn+2g+1 and αn+2g+1,

in analogy with the discussion in the proof of Lemma 3.31. This T − ∆S will serve as a
reference domain for the remainder of the proof.
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Fix some integer M such that

(84) M − |k| > |µ(T )|+ max{|nwij (T )| | j = 1, . . . ,m}.

(Recall once more that the ij subscripts refer to curves in the boundaries of Dj and Tj as in
(20) and (22).) Now suppose φ is any Whitney triangle,

φ ∈ π2(Θ, cβα ∪ {uβα} ∪ xβα,y ∪ {uγα} ∪ xγα),

where µ(φ) = k, nz(φ) = 0, D(φ) has no negative multiplicities, and sz(φ) = t, as in the
hypothesis of the lemma. The last condition implies that D(φ) differs from T by a sum of
doubly-periodic domains [42, Proposition 8.5]. We can therefore write

D(φ) = T + P

for some integer linear combination P of elements of the basis in (21). The fact P is a sum of
rational doubly-periodic domains implies that sz(T ) = sz(φ) = t and also that

µ(φ) = µ(T ) + 〈c1(t), [P ]〉.

Then, exactly as in the proof of Lemma 3.31 (but appealing to Lemma 3.16 for N = M and
Lemma 3.17 for N = 1 rather than Lemmas 3.18 and 3.19), we can conclude using that after
a sufficient amount of winding (which does not depend on P ), in order for µ(φ) = k and for
D(φ) to have no negative multiplicities, P must be an integer linear combination

P = aγαPγα +

p∑
i=1

biDi +

n+2g+1∑
i=n+1

diPi,

such that

T +

p∑
i=1

biDi −∆S ⊂ Σ

in direct analogy with the proof of (58). We can therefore write

(85) D(φ) =
(
T +

p∑
i=1

biDi −∆S

)
+ ∆S + aγαPγα +

n+2g+1∑
i=n+1

diPi.

Since there are only finitely many t ∈ Spinc(−W ) satisfying (83), as discussed in Subsection
2.6, this conclusion holds simultaneously for all such t after sufficient winding. In summary,
for g ≥ 2pL+2 and sufficient winding, any Whitney triangle as in the statement of the lemma
has domain

(86) D(φ) = D(φ′) + ∆S + aγαPγα +

n+2g+1∑
i=n+1

diPi,

for integers aγα and dn+1, . . . , dn+2g+1 (note that aγα must be nonnegative), where

(87) φ′ ∈ π2({Θ1, . . . ,Θn}, cβα,y)

is a Whitney triangle in the sutured Heegaard triple diagram

(Σ, {γ1, . . . , γn}, {β1, . . . , βn}, {α1, . . . , αn}).
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To complete the proof of the lemma in this case, we next show that for sufficiently large g
and sufficient winding it must also be true that aγα = dn+1 = · · · = dn+2g+1 = 0 in (85) and
that D(φ′) = ∆Σ. This will imply that

D(φ) = ∆Σ + ∆S = ∆Σ,

which in particular implies that y = cγα, as desired.

We will first show that that aγα = dn+1 = · · · = dn+2g+1 = 0. For this, fix some

φ′′ ∈ π2({Θ1, . . . ,Θn}, cβα,y).

Fix some N with

N − |k| > |µ(φ′′)|+ max{|nwi(φ
′′)| | i = 1, . . . , n}.

Let

(88) g ≥ max{2pL+ 2, pLN + pL+N + 1},

and wind so that any Whitney triangle φ as in the statement of the lemma can be written in
the form (86). Suppose φ is such a triangle, with sz(φ) = t, and write D(φ) in this form,

D(φ) = D(φ′) + ∆S + aγαPγα +

n+2g+1∑
i=n+1

diPi.

The domains D(φ′) and D(φ′′) differ by a triply-periodic domain in the sutured Heegaard
triple diagram. From the equality Πγβα = Πγα established in Subsection 3.2, all such domains
are actually (γ,α)-periodic domains. So, we can write

D(φ′) = D(φ′′) +

p∑
i=1

biDi

for some integers b1, . . . , bp. We therefore have

D(φ) = D(φ′′) + ∆S + P,

where

P = aγαPγα +

p∑
i=1

biDi +

n+2g+1∑
i=n+1

diPi.

Since P is a sum of rational doubly-periodic domains,

sz(D(φ′′) + ∆S) = sz(φ) = t,

which implies that

µ(φ) = µ(D(φ′′) + ∆S) + 〈c1(t), [P ]〉 = µ(φ′′) + 〈c1(t), [P ]〉.

Then we may proceed exactly as in the proof of Lemma 3.31, using Lemma 3.17 rather than
Lemma 3.19, to conclude that aγα = 0. We therefore have that

D(φ) = D(φ′′) + ∆S +

p∑
i=1

biDi +

n+2g+1∑
i=n+1

diPi.
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Moreover, we must have di = 0 for all i = n+1, . . . , n+2g+1 since otherwise D(φ) would have
a negative multiplicity −|di| in some thin region between γi and βi. Therefore, we have

D(φ) = D(φ′′) + ∆S +

p∑
i=1

biDi = D(φ′) + ∆S ,

as desired. It remains to show that D(φ′) = ∆Σ.

The fact that D(φ) has no negative multiplicities implies that D(φ′) has no negative multi-
plicities. We claim this implies that D(φ′) = ∆Σ. To see this, we refer the diagram in Figure
13 below which shows the possible multiplicities of D(φ′) near Θi and ciβα. Either ciγα is not a

component of y in which case y = −x; or ciγα is a component of y in which case y = 1− x. In
the first case, we must have x = 0. But that would imply that x− 1 = −1, which would mean
that D(φ′) has a negative multiplicity. Therefore, y = 1− x. But this forces x = 1. It follows
that the domain of D(φ′) near Θi and ciβα consists just of the triangle ∆i. This implies that

D(φ′) = ∆Σ, as claimed, completing the proof of the lemma in this case.

Θi

ciβα

ciγα
0 0

0 0

x

y

x− 1

Figure 13. The possible multiplicities of D(φ′) near Θi and ciβα and ciγα.

Case 2: s = vγα. As in the proof of Lemma 3.31, this case follows easily from the previous

case. Let B denote the bigon shown in Figure 12. Observe that for any

φ ∈ π2(Θ, cβα ∪ {uβα} ∪ xβα,y ∪ {vγα} ∪ xγα)

as in the hypothesis of the lemma, where µ(φ) = k, we can write

(89) D(φ) = D(φ′) +B − Σ

for some Whitney triangle

φ′ ∈ π2(Θ, cβα ∪ {uβα} ∪ xβα,y ∪ {uγα} ∪ xγα)

as in the hypothesis of the lemma, where µ(φ′) = k + 1. We proved in the previous case that
for sufficiently large g and sufficient winding, any such φ′ satisfies

D(φ′) = ∆Σ.

Suppose that g is large enough and we have wound sufficiently that this holds, and let φ be
as above. Then D(φ) has a negative multiplicity in the region RS by (89), since B − Σ has
multiplicity −1 in this region outside of B, and D(φ′) has multiplicity zero in this region
outside of the small triangles ∆S , a contradiction. We conclude that for sufficiently large g
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and sufficient winding, there is no Whitney triangle φ as in the statement of the lemma when
s = vγα. �

As mentioned above, Theorem 3.29 follows easily from Lemma 3.36.

Proof of Theorem 3.29. Since there are only finitely many y as in (82), Lemma 3.36 in the
case k = 0 tells us that for sufficiently large g and sufficient winding,

(f+
γβα;Γν

)∗([[cβα ∪ {uβα} ∪ xβα, 0]]) = #M(φ) · [[cγα ∪ {uγα} ∪ xγα, 0]] · t∂α(φ)·η,

where φ is the homotopy class of Whitney triangles with domain ∆Σ. But this homotopy class
has a unique holomorphic representative, and ∆Σ is entirely disjoint from η. Thus,

#M(φ) · t∂α(φ)·η = 1,

completing the proof of Theorem 3.29. �

4. Obstructing Lagrangian concordance

In this section, we provide further examples which demonstrate the effectiveness of the
invariant ΘHF in obstructing Lagrangian concordance, per Theorem 1.12. Our main result is
the following.

Theorem 4.1. There are infinitely many pairs (K1,K2) of Legendrian knots in (S3, ξstd) such
that:

• K1 and K2 are smoothly concordant and have the same classical invariants tb and r,
• K1 is a negative stabilization of another Legendrian knot,
• K2 is neither a positive nor negative stabilization of another Legendrian knot, and
• ΘHF (K1) 6= 0 while ΘHF (K2) = 0.

In particular, the last condition implies by Theorem 1.12 that there is no Lagrangian concor-
dance from K1 to K2.

The fact that K1 in Theorem 4.1 is a stabilization implies that its Legendrian contact ho-
mology DGA is trivial. Legendrian contact homology therefore fails to obstruct a Lagrangian
concordance from K1 to K2 for these examples.

In our proof of Theorem 4.1 below, we will adopt the convention that the (p, q)-cable of a
knot K, denoted by Cp,q(K), has longitudinal winding p and meridional winding q. We will
also, for notational convenience, we will denote the (r, s)-cable of Cp,q(K) simply by

Cp,q;r,s(K) := Cr,s(Cp,q(K)).

Given a Legendrian knot K, we will use K+ to denote its transverse pushoff which satisfies

sl(K+) = tb(K)− r(K).

Finally, given a knot K we will denote by tb(K) and sl(K) the maximal Thurston-Bennequin
and self-linking numbers among Legendrian and transverse knots smoothly isotopic to K.



ON THE EQUIVALENCE OF CONTACT INVARIANTS IN SUTURED FLOER HOMOLOGY THEORIES 59

Proof of Theorem 4.1. In our examples, K1 will be a Legendrian representative of the iterated
torus knot C3,2;3,2(U) and K2 will be a Legendrian representative of

C3,2;3,2(P (−m,−3, 3))#61,

where P (−m,−3, 3) is the usual pretzel knot, for any m ≥ 3. Such K1 and K2 are smoothly
concordant as these pretzel knots and the twist knot 61 are all smoothly slice.

To define the Legendrian representative K1, we rely on the following result of Ng, Ozsváth,
and Thurston from [37, Section 3.3]. The Legendrian K in the proposition below was first
discovered and studied by Etnyre and Honda in [16].

Proposition 4.2 (Ng–Ozsváth–Thurston). There is a Legendrian representative K of the
iterated torus knot C3,2;3,2(U) with (tb(K), r(K)) = (5, 2) and ΘHF (K) 6= 0.

We then define K1 to be the Legendrian knot obtained by negatively stabilizing this knot
K three times. It follows that

(tb(K1), r(K1)) = (2,−1) and ΘHF (K1) 6= 0

since ΘHF is preserved by negative stabilization.

We now record some facts that will be relevant in defining K2. First, we record that
sl(C3,2;3,2(U)) = 7, where this maximal self-linking number is realized by the transverse pushoff
of the unique Legendrian representative with (tb, r) = (6,−1); see [16] for the full Legendrian
classification of C3,2;3,2(U). Since g(C3,2;3,2(U)) = 4, the three inequalities

sl(C3,2;3,2(U)) ≤ 2τ(C3,2;3,2(U))− 1 ≤ 2gs(C3,2;3,2(U))− 1 ≤ 2g(C3,2;3,2(U))− 1

are actually equalities. Here, τ is the Ozsváth–Szabó concordance invariant [40] and gs is the
smooth slice genus; see [47] for the first inequality and [40] for the second. In particular, we
have that τ(C3,2;3,2(U)) = 4. We now use these facts to prove the following.

Lemma 4.3. Suppose K is a smoothly slice knot with tb(K) = −1. Then there is a Legendrian
representative of C3,2;3,2(K) with (tb, r) = (6,−1). This Legendrian knot achieves the bound

tb(C3,2;3,2(K)) = 6, and its transverse pushoff achieves the bound sl(C3,2;3,2(K)) = 7.

Proof. According to [35, Corollary 1.17], we have tb(C3,2(K)) ≥ 1. As C3,2(K) is smoothly
concordant to the right-handed trefoil C3,2(U), we have

τ(C3,2(K)) = τ(C3,2(U)) = 1,

which implies that

tb(C3,2(K)) ≤ 2τ(C3,2(K))− 1 = 1

by [47]. It follows that tb(C3,2(K)) = 1. Applying [35, Corollary 1.17] once more, we may

then conclude that tb(C3,2;3,2(K)) = 6, as claimed in the lemma. Since C3,2;3,2(K) is smoothly
concordant to C3,2;3,2(U), we have that

τ(C3,2;3,2(K)) = τ(C3,2;3,2(U)) = 4,

and, therefore, that

sl(C3,2;3,2(K)) ≤ 2τ(C3,2;3,2(K))− 1 = 7.
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This bound is achieved by the transverse pushoff of a tb-maximizing Legendrian representative:
since tb = 6 is even for this representative its rotation number must be odd, and up to reversing
orientation we can ensure that r ≤ −1; hence, the transverse pushoff has sl = tb − r ≥ 7,
which implies that this inequality is actually an equality. �

There are infinitely many knotsK satisfying the hypothesis of Lemma 4.3. These include the
examples of [12, Theorem 2.10] and the pretzel knots P (−m,−3, 3), for m ≥ 3, as mentioned
in [12, Section 4.4]. Fix any such K and let L1 be a Legendrian representative of C3,2;3,2(K)
with tb(L1) = 6 and r(L1) = −1, whose existence is guaranteed by Lemma 4.3.

Etnyre, Ng, and Vértesi [17] classified Legendrian and transverse representatives of the 61

knot, which in their notation is the twist knot K4. Namely, there is a single tb-maximizing Leg-
endrian representative L2 with (tb, r) = (−5, 0), and all other representatives are stabilizations
of L2, so it follows that tb(61) = −5 and sl(61) = −5.

We now define the Legendrian representative K2 of C3,2;3,2(K)#61 to be the connected sum
K2 = L1#L2. We show below that K2 satisfies the conditions in Theorem 4.1.

Proposition 4.4. The Legendrian knot K2 has the same classical invariants as K1, it is not
a stabilization, and ΘHF (K2) = 0.

Proof. Both L1 and L2 maximize tb within their knot types, so we have

tb(K2) = tb(L1) + tb(L2) + 1 = tb(L1) + tb(L2) + 1 = tb(K2)

by Lemma 3.3 and Corollary 3.5 of [15]. More precisely, we compute that tb(K2) = 2 and

r(K2) = r(L1) + r(L2) = −1.

This shows that K2 has the same classical invariants as K1. The fact that K2 is a tb-maximizer
also implies that it is not a stabilization. In order to show that ΘHF (K2) = 0, we appeal to a
result of Vértesi [57, Corollary 1.3], which says that there is an isomorphism

ĤFK (m(L1))⊗ ĤFK (m(L2))→ ĤFK (m(L1#L2))

sending

ΘHF (L1)⊗ΘHF (L2) to ΘHF (L1#L2) = ΘHF (K2).

It therefore suffices to show that ΘHF (L2) = 0. But L2 represents an alternating knot type, so
it has thin knot Floer homology [39]. Therefore, by [37, Proposition 3.4], we have ΘHF (L2) 6= 0
if and only if sl(L+

2 ) = 2τ(L2) − 1. The left side is −5, but the right side is −1 since L2 is
smoothly slice, so we have that ΘHF (L2) = 0, as desired. �

This completes the proof of Theorem 4.1. �
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[37] Lenhard Ng, Peter Ozsváth, and Dylan Thurston. Transverse knots distinguished by knot Floer homology.

J. Symplectic Geom., 6(4):461–490, 2008.
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[41] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and three-manifold invariants: properties and appli-

cations. Ann. of Math. (2), 159(3):1159–1245, 2004.
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[45] Peter Ozsváth, Zoltán Szabó, and Dylan Thurston. Legendrian knots, transverse knots and combinatorial

Floer homology. Geom. Topol., 12(2):941–980, 2008.
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