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Abstract— In fields such as minimally invasive surgery, ef-
fective control strategies are needed to guarantee safety and
accuracy of the surgical task. Mechanical designs and actuation
schemes have inevitable limitations such as backlash and joint
limits. Moreover, surgical robots need to operate in narrow
pathways, which may give rise to additional environmental
constraints. Therefore, the control strategies must be capable
of satisfying the desired motion trajectories and the imposed
constraints. Model Predictive Control (MPC) has proven effec-
tive for this purpose, allowing to solve an optimal problem by
taking into consideration the evolution of the system states, cost
function, and constraints over time. The high nonlinearities in
tendon-driven systems, adopted in many surgical robots, are dif-
ficult to be modelled analytically. In this work, we use a model
learning approach for the dynamics of tendon-driven robots.
The dynamic model is then employed to impose constraints
on the torques of the robot under consideration and solve an
optimal constrained control problem for trajectory tracking
by using MPC. To assess the capabilities of the proposed
framework, both simulated and real world experiments have
been conducted.

I. INTRODUCTION

Accuracy and precision are of uttermost importance to
ensure safety in many robotic applications, especially in
minimally invasive surgery, where little (or preferably no)
damage should be produced to the patient’s body. Moreover,
effective control strategies are needed to guarantee safe
execution of surgical tasks [1]. Due to mechanical design
and actuation, robots have inherent limitations such as
joint position, velocity, acceleration, and torque bounds.
In addition, the operational environment may also lead
to other constraints due to limited working volume or
safety margins [2]. This is particularly true for minimally
invasive surgery, where motion often occurs in very narrow
and constrained spaces. Controllers capable of ensuring
constraint satisfaction and task execution are therefore vital
in these scenarios.

Different approaches have been investigated to guarantee
limit avoidance in robotic systems. The Gradient Projection
Method [3]–[5] uses the projection of a secondary task onto
the null space of the primary task to guarantee the execution
of the desired motion, while minimizing a secondary desired
cost function. This method works only with redundant
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Fig. 1: The Micro-IGES surgical robotic tool [16]

robots and does not always guarantee constraint satisfaction,
since bounds are converted to soft bounds with low priority
[6]. The Augmented Jacobian method [7] allows to place
the constraints at the same priority level of the main task
by augmenting the robot Jacobian. Many other approaches
have also been developed such as nonlinear variables
transformation [8], [9], adding repulsive forces pushing the
joints far from bounds [10], using barrier functions [11],
Saturation in the Null Space [12], constrained stochastic
optimization [13].

An optimal way to deal with many and various constraints
is to formulate the control problem as a Quadratic Pro-
gramming (QP) optimization with a desired cost function
to minimize (e.g. tracking error) with respect to the control
variable, and bounds to satisfy [14]. Despite the great ef-
fectiveness of finding optimal solutions, this method is only
locally temporally optimal, since it doesn’t take into account
the future evolution of the controlled system [15].

In order to improve the optimality of the solution, Model
Predictive Control (MPC) can be adopted. In fact, it allows
to include the evolution of the system within a defined
prediction horizon and thus obtain smoother solutions.

MPC might be employed for tracking control tasks where
a desired trajectory is known or can at least be predicted
within the prediction horizon. This is the typical case of
many surgical applications where motion tasks are usually
defined, such as in knot-tying, suturing, or tumor resection.
Even though the surgical environment is less structured, it is
still possible to estimate how it is evolving, for instance, by
tracking tissue deformation [17], and thus still have some
tracking reference.

Different types of mechanical transmissions have been
used in the design of surgical robot, with the vast majority



being tendon-driven [18]. Many research efforts focused
on modelling this kind of actuation analytically [19]–[22].
Nonetheless, due to the highly complex nonlinearities in
tendon-driven systems, other researchers employed machine
learning approaches [23] such as Artificial Neural Networks
[24], Gaussian Mixture Regression, K-nearest Neighbour
Regression, and Extreme Machine Learning [25].

Thus far very little work has been conducted on optimal
control of surgical robots, especially in the case of fully
constrained systems, both kinematically and dynamically.
Even though in robotic surgery motions are typically not
very fast, dynamic constraints may rise to limit the magnitude
of the applied end-effector force or to limit tendon forces,
as for tendon-driven systems. Recently, Faroni et al. [15]
presented a work on MPC for controlling an articulated
industrial robot under only kinematic constraints (on joint
positions, velocities, accelerations).

The main contributions of our manuscript are to extend
the state of the art of MPC by imposing constraints both on
the kinematics and dynamics of highly nonlinear systems
like tendon-driven robots, and apply the optimal control
method to the Micro-IGES [16] surgical robot in order to
allow it to follow a desired path (as could be for tumor
resection), while satisfying different constraints. In this
work, however, we are not directly addressing the kinematic
mapping, which is described in [26], but rather providing
a framework which allows to satisfy imposed constraints,
given a certain kinematic model. Ongoing work is focusing
on improving the kinematic model accuracy and will then
be merged with this presented work.

The paper is structured as follows. Section II presents
the Micro-IGES robotic surgical tool (Figure 1) and the
computation of its dynamic model to be included in the MPC
formulation. Section III describes the approach to solve the
MPC for trajectory tracking under the imposed kinematic and
dynamic constraints. In Section IV the results for modelling
the dynamics of the Micro-IGES tendon-driven robot are
shown, along with a discussion of the results of the motion
control strategy. Lastly, conclusions are drawn in Section V.

II. TENDON-DRIVEN SYSTEM

In this Section an overview of the Micro-IGES surgi-
cal robotic tool is presented, describing its kinematic and
dynamic models. Besides, a brief description of artificial
neural network for modelling the dynamics of the system
is included.

A. Micro-IGES Surgical Robotic Tool

The Micro-IGES [16] (Figure 2) is a surgical robotic tool,
composed of a rigid shaft (27 cm) and a flexible section
(39 mm in zero/home configuration). The shaft is responsible
for the roll and translation Degrees of Freedom (DOFs). The
articulated end, instead, consists of 2 elbows for pitch and
yaw, with each elbow made of a pair of coupled joints, a 1
DOF revolute joint for the wrist pitch, and the jaws. The jaws
provide two more DOFs: one for the wrist yaw and one for
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Fig. 2: Micro-IGES surgical tool: 2a) CAD model; 2b)
kinematic model

the gripper’s opening/closing. Each joint of the articulated
part is driven by an antagonistic pair of tendons, with each
pair being connected to the corresponding driving capstan
at the proximal drive unit. The coupling of the two pairs
of joints of the elbows occurs at the driving unit: the two
capstans that drive the two serial joints for each DOF of
the elbow (pitch and yaw) are coupled by a series of gears
with 1:2 ratio. Due to the current setup, in this work, the
translation DOF cannot be used, therefore only 5 independent
DOFs are considered (Roll, Elbow 1, Elbow 2, Wrist Pitch,
Wrist Yaw). In order to control the Wrist Yaw DOF, with
null gripping angle, the two jaws need to move equally (their
motion is not independent).

B. Robot Kinematic and Dynamic Model

The nonlinearities in tendon transmission make the math-
ematical derivation of the system kinematics and dynamics
tedious. In addition, tendon-driven systems for minimally
invasive surgery usually lack sensors at the distal side,
therefore joint values cannot be measured and controlled
directly. Because of the generally nonlinear motor to joint
(and joint to motor) mapping q = l(θ), being θ ∈ Rnm the
vector of motor positions and q ∈ Rn j the vector of joint
positions, the kinematic model of the robot can be rewritten
as P = Pq(q) = P(θ), with P ∈Rm being the Cartesian end-
effector position. The mapping form motor positions to end-
effector Cartesian pose results to be highly nonlinear due to
the hysteresis, backlash, tendon elongation effects caused by
the tendon transmission. In this work, however, we are not
directly addressing the kinematic mapping, which is partially
addressed in [26], but another ongoing work is focusing on
improving the accuracy of the kinematics.

The system dynamics, in absence of external interactions
(i.e. no contact with the environment), can be rewritten as:

τmot = L(q)T
τj(q, q̇, q̈) =Γd(θ , θ̇ , θ̈) , (1)

where τmot is the vector of motor torques and τj ∈ Rn j is
the vector of joint torques, which is typically known for



articulated robots [27]. The matrix L, with Li, j =
∂qi
∂θ j

, is the
motor to joint differential matrix [28]. Γd takes into consid-
eration all the dynamic effects, included the nonlinearities
in the tendon transmission. Due to the small accelerations
usually required in robotic surgery, in this work we assume
that the motor torques only depend on the motor positions
and velocities, meaning τmot = τmot(θ , θ̇). It thus turns out
that the control problem can be formulated as a function
of the motor positions, velocities, and accelerations, which
can be directly measured and controlled. In this work, the
vector of controllable motor positions are defined by θ =[
θR θe1 θe2 θW θ j1

]
, corresponding to the robot joints

described in II-A.

C. Dynamics Model Learning

In order to estimate Γd in (1), machine learning approaches
can be used. Artificial Neural Networks (ANN) are able
to approximate any suitably smooth function, given enough
hidden layers [29]. Feedforward networks consist of different
layers of neurons. The first layer is the input layer, the last
one is the output layer, and all the others in between are
called hidden layers. Each layer has several neurons, each
one receiving inputs from the neurons of the previous layer
and sending an output to the neurons of the following layer.
Given a dataset of input points x ∈ Rnin and output points
y ∈ Rnout , and a network with one input, one hidden, and
one output layer, nin inputs, M nodes in the hidden layer,
and nout outputs, then approximated mapping y∼ f(x) for
each output of the network is computed as:

yk(x,w) = h̃
( M

∑
i=1

w(2)
k, j h

( nin

∑
i=1

w(1)
i, j xi +w(1)

j,0

)
+w(2)

k,0

)
, (2)

where h̃,h are the activation functions, and w are the network
weights.

Due to the parametric nature of ANN, it is easily possi-
ble to compute the derivatives of the network output with
respect to the network weights through back-propagation.
Additionally, it is also possible to compute in a similar way
the derivatives of the output with respect to the inputs. For
each network layer, with input xi and output yi, the derivative
of the output with respect to the input can be computed as:

∂yi
∂xi

=
∂yi
∂hi

∂hi
∂zi

∂zi
∂xi

, (3)

where zi = Wixi +Wi,0, with Wi being the matrix of weights
of the layer and Wi,0 the biases, and hi the activation
function. The first two partial derivatives can be easily
computed analytically once the activation function is chosen
(for instance sigmoid), and ∂zi

∂xi
= Wi. Based on the structure

of the neural network as a cascade of layers, the final
derivative of the network output with respect to the network
inputs can be calculated iteratively by applying the chain
rule to the derivatives of each layer. In order to have a more
robust model estimation, less affected by possible outliers in
the data, the method proposed in [30], [31] is employed in
this work to learn the mapping from

[
θ θ̇

]
→ Γd.

III. METHOD

In this Section we describe the proposed approach for
solving the optimal control problem.

A. Model Predictive Control

Model predictive control consists in formulating an opti-
mal problem with a cost function to be minimized over a
finite prediction horizon, with respect to the control inputs.
Once a solution is found, only the first control action is
executed and the procedure is repeated by shifting the
horizon forward. The existence of the horizon allows to take
into consideration the evolution of the desired cost function,
of the constraints, of the system states.

Given a desired trajectory, the tracking problem can be
formulated at the position, velocity, or acceleration level.
However, the control at velocity and acceleration level, may
lead to greater inaccuracies because they are based on a
linearization of the robot Cartesian pose by means of the
robot Jacobian. Therefore, the tracking problem is here
expressed in terms of a cost function minimizing the error
between the desired Cartesian pose and the current one. In
this work, only the 3D robot Cartesian position is considered.

Generally, the constraints to satisfy are joint positions, ve-
locities, accelerations, and torques. In tendon-driven systems
the torque bounds may result from limited motor capabilities
or from limitations on the tendon forces and external forces
to apply in order to improve safety conditions. Due to
this limitations, the desired Cartesian position may not be
achieved, leading to a deformation of the followed path.
To reduce this issue, a scaling factor s can be introduced
[15]. Considering a trajectory defined by a curvilinear ab-
scissa ξ (t) as Pd(ξ ), starting from the current time t =
tk, the evolution of the desired position can be described
by Pd(tk+1) = Pd(tk)+

∂Pd
∂ξ

∂ξ

∂ t ∆t = Pd(tk)+ sk∆Pd(tk). The

scaling factor sk =
∂ξ

∂ t allows to slow down the rate of change
of the path to follow, without modifying the path itself and
it is also equivalent to a dilation of the time of execution.
As a matter of fact, at each time instant ξ is computed as
ξk+1 = ξk + sk∆t, where ∆t is the sampling time.

The optimal control problem is then formulated as:

min
θ̈0,...θ̈N−1

s1...sN

1
2

N

∑
k=1
||Pk(θk)−Pd,k− sk∆Pd,k||2Wp

+Ws(s̃− sk)
2 + ||Γ̃d,k||2Wt + ||θ̈k−1||

2
Wa

+ ||σk||2Wσ

(4a)

s.t.
[

θ̇k
θ̈k

]
=

[
0 1
0 0

][
θk
θ̇k

]
+

[
0
1

]
θ̈k (4b)

θm ≤ θk ≤ θM (4c)

θ̇m ≤ θ̇k ≤ θ̇M (4d)

θ̈m ≤ θ̈k−1 ≤ θ̈M (4e)

τmot,m−σk ≤ Γ̃d,k(θk, θ̇k)≤ τmot,M +σk (4f)
0≤ sk ≤ 1 (4g)
0≤ σk (4h)
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Fig. 3: Motor excitation for learning the dynamic model. The
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where Γ̃d is the vector of learned dynamic torques, the
subscripts m, M indicate lower and upper bounds, and
Wp,Ws,Wt,Wa,Wσ are the weights for each component
of the cost function. Due to possible infeasibilities, some
slack variables σ are also added in the torque constraints
(4f). This allows to relax the bounds, if necessary. s̃ is
a reference scaling factor, which is generally set to 1. In
order to solve the nonlinear MPC problem, the fast nonlinear
MPC ACADO toolkit [32] has been used. The formulation
at the position level allows to exploit the capabilities of
the solver, whose solution is more accurate than in case of
linear solvers as in [15]. Even though the robot states are
θ =

[
θR θe1 θe2 θW θ j1

]
∈ R5, the torque vector Γ̃d

is a six-dimensional-vector, since it includes also the torque
for the second jaw.

B. Torque Linearization

The dynamic constraints in (4f) are highly nonlinear, as
it is computed by means of ANN as described in II-B.
Since ACADO toolkit is a symbolic solver, it would require
adding this constraint in an analytical form. In principle, this
would be possible since the network architecture (number of
layers and nodes) and the activation functions are all known.
However, for large ANN, the computational effort due to
the large number of operations ACADO needs to perform
to obtain the network output and then formulate the whole
MPC in a symbolic form, becomes very high. Because of
this, ACADO toolkit takes very long to generate the MPC
code. Therefore, the following simplification is adopted in
order to overcome this issue.

At each time instant t = tk, the dynamic torques of the
system can be linearized as:

Γ̃d,k ' Γ̃d,k−1 +Mp,k(θk−θk−1)+Mv,k(θ̇k− θ̇k−1) , (5)

where Mp,k =
∂ Γ̃d
∂θ

∣∣∣
k−1

, Mv,k =
∂ Γ̃d
∂ θ̇

∣∣∣
k−1

, for k = 0...N. These
matrices can be easily and analitically computed by means
of (3). Those values are functions of the motor states and
control variables, and, as such, change over time. However,
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Motor RMSE
i Train Test Validation
1 0.028 0.028 0.029
2 0.063 0.065 0.064
3 0.037 0.037 0.039
4 0.040 0.041 0.040
5 0.049 0.048 0.049
6 0.039 0.039 0.038

TABLE I: RMSE (in mNm) between the learned torque
models of each motor and the collected data for the Micro-
IGES robot on the different datasets.

they are considered constant within the prediction horizon,
resulting in Γ̃d,k−1 = Γ̃d,−1 = Γ̃d(θ−1, θ̇−1), Mp,k = Mp,0 =
∂ Γ̃d
∂θ

∣∣∣
−1

, Mv,k = Mv,0 =
∂ Γ̃d
∂ θ̇

∣∣∣
−1

. This allows to express those
values as a function of the motor states and control at the
instant precedent to the current prediction horizon.

The dynamic constraint can then be rewritten as
τ̂m ≤Mp,0θk +Mv,0θ̇k ≤ τ̂M, with τ̂m(M) = τmot,m(M) −

Γ̃d,−1 +Mp,0θ−1 +Mv,0θ̇−1 .

IV. RESULTS

In this Section we present the results for modelling the
dynamics of the Micro-IGES robot along with the results
for the control, both in a simulated environment and in real
experiments.

A. Micro-IGES Dynamic Model

In order to build the dynamic model of the Micro-IGES
Γ̃d, feedforward neural networks are used as described in II-
C. To have better results, 6 independent networks have been
used, one for each torque component. In this work, each
network has the same structure consisting of 2 hidden layers
with 10 and 30 neurons each. However, different structures
for each network could have been used. The input of each
network is the 10-dimensional vector of

[
θ θ̇

]
. In order to

limit the value of the network output, the activation function
of each output layer has been set to be a sigmoid function.
This allows to restrict the network estimated values within
the motors maximum allowances of ±4.3 mNm. Without this
consideration, if the model is not well learned, the network



TABLE II: Test description for the path tracking. T,Tact are the desired and the actual motion times; τlim, θ̇lim, θ̈lim are the
motor torque, velocities, and acceleration limits (all set equal for each motor); |εP|max, |τ|max, |εlin|max are the maximum
absolute position error,maximum absolute torque, and maximum absolute torque linearization error; s̄ is the average scaling
factor.

Test T (s) Tact(s) τlim(mNm) θ̇lim(rad/s) θ̈lim(rad/s2) |εP|max(mm) |τ|max(mNm) s̃ s̄ |εlin|max(mNm)
x y z

1 30 32.1 1 10 10 0.5 0.8 1.6 0.949 1 0.934 0.084
2 30 31.6 1 100 100 0.6 0.6 2.0 1.0004 1 0.949 0.038
3 30 31.6 0.5 100 100 0.7 0.7 2.3 0.503 1 0.948 0.054
4 30 31.6 0.5 10 10 2.0 2.1 3.2 0.530 1 0.949 0.024
5 30 36.3 0.5 10 10 0.7 1.3 2.0 0.501 0.85 0.827 0.049
6 15 20.9 0.5 10 10 1.8 1.2 2.0 0.507 0.85 0.718 0.124
7 15 18.5 0.5 10 10 1.8 2.1 1.9 0.538 1 0.811 0.063

output may be unreasonable and worsen the performances of
the controller.

For the data acquisition, the robot is commanded to move
along a circular path of 15 mm in radius, controlling only
the x,y Cartesian components (expressed with respect to the
robot base frame). The path is discretized in 55 points. In
order to collect a richer dataset, at each point each joint
combination is then excited. This consists in exciting the
joints with a sinusoidal motion with an amplitude of 5◦.
From the motor to joint mapping, the corresponding motor
positions are computed. Each joint can have a state 0 (still)
or 1 (moving). Consequently, for each Cartesian point, 25

joint combinations are obtained. In total 17442 data points
have been collected. Figure 3 shows the commanded motor
values for the data acquisition. To learn the dynamic model,
the dataset is divided into a training (75%), validation (15%),
and test (10%) sets. The Root Mean Squared Errors between
the acquired data and the learned models are shown in Table
I, whereas Figure 4 shows the results for the learned model
on a subset of the training set.

B. Motion Control

1) Simulation Results: The proposed control approach is
based on the MPC problem formulated in (4) where the
computed dynamic model of the Micro-IGES robot has been
employed to impose the torque constraints while performing
trajectory tracking, as it would be in case of tumor resection.
The path to follow is a circle of 15mm in radius (same as the
one used for the data acquisition), however, for the control
also the z component is specified. The robot needs to track
the circle while keeping z constant, with respect to the robot
base frame. The motion task is thus specified as:

Pd =
[
r cos(α) r sin(α) z̃

]T

α = α f σ , σ =
t
T

,
(6)

where z̃ = 0.0514 m, α f = 4π (the robot makes two
loops), and T is the desired period of the motion. A
first order polynomial is chosen for σ since the control
problem is directly solved at the position level, and,
consequently, no condition on the Cartesian velocity or
acceleration are imposed. The sampling time has been set
to 10ms and 10 steps are used for the prediction horizon

of the MPC. The motor positions are bounded between
±
[
280 55 47 74 74

]
rad, whereas the velocity,

acceleration, and torque bounds have been set to different
values to assess the capabilities of the control framework.
The bounds on the motor positions are a consequence of
the motor to joint mapping. As a matter of fact, due to the
routing of the tendons around the capstan, the motors may
need to complete more than one full turn in order for the
joints to reach their limits.

To validate the framework, different tests have
been run. The weights in the MPC cost function
have been set to Wp = diag([108 108 108]),
Ws = 10, Wt = diag([102 102 102 102 102 102]),
Wa = diag([10−2 10−2 10−2 10−2 10−2]), Wσ =
diag([106 106 106 106 106 106]) and they have not
been changed in each test. Table II reports the different
setups and the results for each test. Figure 5 plots the results
both for the motor values (Figure 5a) and the Cartesian
position errors (Figure 5b) for each test.

Due to the scaling factor, each motion lasts longer than
the specified period T . This is the cost to pay in order
to satisfy at best the imposed constraints. For each test
the motor positions, velocities, and accelerations are always
within the imposed bounds. The bounds on the torque,
instead, are sometimes relaxed. This is due to the presence
of the slack variables in the optimization problem. This
allows to overcome possible infeasibilities and guarantee the
total execution of the task. Smaller scaling factors, however,
achieved by means of smaller s̃, allow to reduce the bound
relaxations.

Regarding the tracking accuracy, good results are obtained
in each test. The errors are generally small (in the order of
few millimeters or even less). Larger errors occur in the
Test 4. This is because the system undergoes simultaneous
saturations of multiple joints and the optimal scaling factor
is not enough to allow the system to reduce the motor
excitations. Reducing the scaling factor by setting s̃ to 0.85
allows to have better performances. Also having larger
acceleration bounds may help, since it reduces the risk of
motor saturation. Achieving large accelerations, however,
has the disadvantage of increasing the torque linearization
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Fig. 5: Simulation results for the different tests. The dashed black lines are the imposed motor limits. Accelerations for Test
2 and 3 fall outside the shown bounds simply because their bounds are set to 100 rad/s2 (see Table II).

errors. Nonetheless, in the tests run the linearized torque is
always close to the expected ANN output. Higher accuracy
can be achieved by increasing the weights in Wp. Yet, this
may increase the bounds violations, especially when tight
bounds are imposed. Optimal weight tuning, such as the
recent work by Mehndiratta et al. [33], may be useful to
solve this issue, even though it is a challenging task which
requires more in-depth studies.

2) Experimental Results: The proposed control scheme
has also been tested on the real system. The robot was
commanded the motor values computed through the MPC
control strategy resulting from Test 2 and Test 5 from Table
II. Each test was repeated 5 times. Due to inaccuracies in
the kinematic model the correct execution of the desired
trajectory is not guaranteed, and, therefore, results not re-
ported. However, improving the kinematic model was out
of the scope of this work, where we were only focusing
on assessing the capabilities of the framework to satisfy the

imposed constraints. Another work is being carried out in
order to improve the kinematic accuracy of the robot through
online model adaptation.

Table III and Figure 6 show the results for the tests
considered. The motor positions, velocities, and accelerations
are guaranteed to be within the bounds, being the same as in
the simulation case. In both cases, the torque linearization
proved effective, with the linearized torque models being
almost coincident with the actual ANN models. Moreover,
for the Test 2, the learned ANN models behave quite well,
being close to the measured values for almost all motors
(the Elbow 2 motor is the one where the model perfor-
mances are the worst) with the maximum RMSE between
the ANN torques and the actual measured torques be-
ing

[
0.256 0.452 0.505 0.330 0.230 0.212

]
mNm.

In addition, also the real motor torques reside within the
imposed bounds.

With regards to Test 5, instead, the maximum RMSE are[
0.195 0.435 0.408 0.363 0.143 0.185

]
mNm. Even
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Fig. 6: Torque values for the experiments on the real system for both Test 2 and Test 5 as described in (Table II). The
dashed black lines are the imposed torque bounds.

|τ|max(mNm)
Test 2 0.108 0.574 0.581 0.594 0.296 0.427
Test 5 0.141 0.844 0.658 0.637 0.414 0.397

TABLE III: Maximum absolute values of the motor torques
for each experimental test.

though the ANN models are inside the bounds, due to the
model inaccuracies, the actual torques violate the constraints,
with the maximum absolute torque values being reported in
Table III. This shows that more accurate models are still
needed. Yet, if the ANN models are accurate enough, then
constraints satisfaction can be guaranteed.

V. CONCLUSIONS

In conclusions, the proposed framework allows to easily
impose the learned dynamic model as a constraint in an
MPC formulation for robot trajectory tracking. Simulation
results showed that the framework proved successful in
allowing the robot to accurately follow a desired trajectory
while satisfying the imposed bounds both on the kinematics
and dynamics, also under different bound ranges. This is
important in application scenarios like minimally invasive
surgery, where high motion accuracy and safety must be
guaranteed. However, one of the limitation resides in the
inaccuracy of the learned model. Because of that, constraint
satisfaction may not be guaranteed on the real system if
the learned model is not accurate enough. Online adaptive
learning techniques will be used in future work to solve this
issue, along with a more probabilistic approach to estimate
the model uncertainty. Moreover, in this work the weights
in the MPC cost function have been set by the authors
heuristically. However, optimal weight tuning may improve
the efficacy of the proposed approach, improving accuracy
and bound satisfaction. This, however, is a challenging task

which will also be addressed in future work. Finally, in this
work the path to follow was supposed to be fixed. However,
the framework can be generalized also to time changing
paths, as long as some future estimates are available, for
instance by modelling the tissue deformation as in [17].
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