
Extending SHAPES for SIMD Architectures
An approach to native support for Struct of Arrays in languages

Alexandros Tasos1 Juliana Franco2 Tobias Wrigstad3 Sophia Drossopoulou1 Susan Eisenbach1

1 Imperial College London 2 Microsoft Research 3 Uppsala University
{a.tasos17,s.drossopoulou,s.eisenbach}@imperial.ac.uk juliana.franco@microsoft.com tobias.wrigstad@it.uu.se

Abstract
SIMD (Single Instruction, Multiple Data) instruction sets are
ubiquitous on modern hardware, but rarely used in software
projects. A major reason for this is that efficient SIMD code
requires data to be laid out in memory in an unconventional
manner, forcing developers to explicitly refactor their code
and data structures in order to make use of SIMD.

In previous work, we proposed SHAPES, an abstract lay-
out specification for enabling memory optimisations for man-
aged, object-oriented languages. In this paper, we explain how,
by extending SHAPES with well-known constructs from the
literature, which are not specific to SIMD, we can extend
SHAPES to compile programs to use SIMD instructions.

The resulting language (sketch) seems able to exploit
SIMD capabilities without sacrificing ease of development.

1. Introduction
The premise of SIMD is that an operation is simultaneously
applied to multiple units of data. In a CPU where a SIMD
register can fit N elements, a SIMD addition instruction will
perform N additions simultaneously. This implies a speedup
bound of N in single-core performance.

A barrier to the wider exploitation of SIMD is the need to
lay out data in a manner that can be at odds with application
logic and good software engineering practise, such as abstrac-
tion. The semantics of SIMD memory instructions in most
architectures require data to be laid out in a contiguous fash-
ion in memory. That is, there are no memory scatter–gather
operations available most of the time1.

As an example of the impact of layout on SIMD, consider
using SIMD for calculating the dot products of n 4D vectors,
with fields x, y, z, and w. Iterating over an array of 4D vectors
laid out as depicted in the top of Figure 1 runs only slightly
faster than the scalar counterpart, as it iterates over one vector
pair at a time and takes slightly less instructions per iteration.
Changing the representation of the data to Struct of Arrays
(SoA)—so that vector coordinates are stored in their own
subarrays, as depicted in the bottom of Figure 1—enables
the iteration over 4 vector pairs at a time.

1 Even when scatter–gather instructions are available (e.g. on AVX), they will
suffer multiple cache misses and have a cycle latency of 10 or more [6].

Figure 1. Array of structs (AoS), Struct of arrays (SoA).

Due to the contiguity requirement of SIMD instructions,
SoA is better suited for SIMD. AoS, however, is “easier” for
developers to use in virtually all imperative languages as it
allows the development of object abstractions that group data
together in a capsule. Representing a 4D point as a 4-tuple of
floats is superior to manipulating four separate floats and keep-
ing track on which one is x and which one is y, etc. Translating
into SoA therefore breaks object abstraction. This makes it
impossible to pass a point as argument to a function, without
creating a specialised proxy object wrapping the array and an
index, and maintaining parallel structures in code. Thus, SoA
transformations lead to increased complexity, code duplica-
tion, and bugs. The code for the example above (Figures 5
and 6 in the Appendix) demonstrates that shifting from AoS
to SoA yields can yield significantly different—and more
complicated—code, with little possiblity for reuse.

We postulate that automatic SoA transformations in a
high-level language with constructs tailored to SIMD would
allow developers to exploit the SIMD capabilities of CPUs
in a convenient manner. With that in mind, we extend the
SHAPES layout annotations [1] with programming concepts
that are useful for writing programs with SIMD capabilities.
This paper presents the main ideas and the design space.

2. Motivating Example
As an example of how automatic SoA transformations can
be beneficial to leveraging SIMD, consider a (simplified)
skeletal animation of 3D models in the MD5Anim format
[8]. MD5Anim models consist of data, e.g. joints, weights
and vertices. Animation changes the position of vertices in
3D space. Joints are organised in a tree. There is a 1-N
relationship between joints and weights, and vertices and
weights, respectively. Animation goes through three phases:

1 2018/6/26

1 struct Joint { quaternion loc_orient, glob_orient;
2 std::vector<Joint*> children; };
3 struct Weight { Joint* jnt; float x, y, z; float wv; };

Listing 1. MD5Anim structures definitions in C++.

Figure 2. Memory layout of joints and weights.

Phase 1 Calculate the joints’ new orientations in a top-
down recursive manner.

Phase 2 (the focus of this paper) Calculate the weights’ new
positions from the weights’ current positions and joints’
new orientations.

Phase 3 Calculate the vertices’ new positions from the
weights’ positions.

The data structures used are shown in Listing 1 and an ex-
ample memory representation is shown in Figure 2. Although
easily understandable, the implementation in Listing 1 in-
hibits optimisation opportunities regarding cache coherency
and the use of SIMD instructions.

Shapes To address locality and AoS–SoA transformation,
we have in the past proposed SHAPES [1], which is a set
of abstract layout annotations for managed languages to en-
able memory optimisations under abstract memory. SHAPES
leverages the following concepts: pools and layouts.

Pools are arenas for allocating objects of a specific type
in contiguous memory. Pools are a grouping construct and
not first-class citizens. Layouts describe the pools’ memory
organisation, for example how fields of objects should be
ordered, or grouped for more efficient memory use.

The pools and layout annotations of the SHAPES system
allow placing objects in structures close to each other (but not
necessarily in order or even contiguously), on even strides and
with hot fields grouped together. By adding pool and layout
annotations to Listing 1, we obtain Listing 2.

Data structure declarations in SHAPES are parameterised
by pool parameters that abstractly track the location of in-
stances of the structures at run-time. In Listing 2, wp is a pool
of Weight elements and the Joints the weights refer to are
stored in the pool jp (Line 1). The wp pool is organised ac-
cording to the layout WeightSoa (Line 11). This layout splits
the objects in the pool into a SoA representation, effectively
creating five contiguous subpools, one for eah field in the
Weight struct. The respective (to Figure 2) memory layout we
obtain is depicted in Figure 3.

1 struct Joint[jp: Pool(Joint[jp])] { // jp is a pool parameter
2 quaternion loc_orient;
3 quaternion glob_orient;
4 Array<unique Joint[jp]> children; }; // array of unique ptrs
5 struct Weight[wp:Pool(Weight[wp,jp]),jp:Pool(Joint[jp])] {
6 Joint[jp] jnt;
7 float x, y, z;
8 float wv; };
9

10 // Layout declaration used for wp (not shown)
11 layout WeightSoa = rec{jnt} + rec{x} +
12 rec{y} + rec{z} + rec{wv};

Listing 2. MD5Anim structures definitions in SHAPES.

Figure 3. Memory layout achieved by using SHAPES.

3. SHAPESSIMD

Although the layout obtained from Listing 2 is now eligible
for SIMD optimisation (the only data dependencies for the
new position of a weight are the joint’s global orientation and
the position coordinates of the weight), SHAPES is lacking
in features suitable for SIMD. To that extent, we add the
following extensions:

Arrays Arrays give an order for the placement of objects in
memory, but considering the object-oriented, managed nature
of SHAPES, arrays come with a caveat: Storing objects in
arrays will store pointers to the objects contiguously, but
not the objects. Using value semantics to overcome this
problem, introduces a need for “default object values”, likely
incurs copying overhead, requires extra complexity to allow
referencing, and are not suitable for recursive data structures.
Instead, we rely on unique pointers to lay out array elements
as if they had value semantics in the pool backing it.

Unique pointers A unique pointer [9] is the only pointer
to an object in the system. Uniqueness is a strong property
that allows many optimisations, including automatic memory
management without a GC. We can leverage uniqueness for
data placement—an array of unique pointers can be efficiently
mapped to a form of value semantics under the hood. Since
replacing a unique element drops the unique element entirely,
a possible implementation strategy is to copy the source value
into the designated memory placement in the array.

2 2018/6/26

Borrowing Borrowing [10] allows relaxing uniqueness tem-
porarily, usually for a well-defined lexical scope. Borrowing
is key to reducing the pain of programming with unique ref-
erences, as unique values are often destroyed upon reading
to preserve uniqueness. We introduce borrowing as a means
of accessing elements of an array directly without having to
copy the element out of the array.

Exclusive pools Making a pool exclusive to one data struc-
ture is important to control object placement. If array A has
an exclusive pool P for storing its objects, it also implies that
objects in P do not have the right to further create or reference
other objects in P , as that might lead to mismatches between
the array and the pool backing the array and unclear object
placement. Normal SHAPES pools permit this.

SIMD Environment We further extend SHAPES with an
explicit simd environment, similar to ISPC [2] and Sierra [4].
The execution model of these languages with respect to SIMD
is to consider multiple program instances that have the same
program counter and are running in a lock-step manner. For
now, this is the execution model we are considering for
SHAPES’ simd environment.

High-level Iteration For iteration over an array’s elements,
we add a foreach construct as syntactic sugar, which iterates
over N array elements per iteration where N is controlled
by target hardware. This is similar to foreach in ISPC. High-
level iteration facilitates reasoning about code and thus sim-
plifies optimisation.

3.1 SHAPESSIMD Example
Listing 2 shows the definitions in Figure 1 expressed using
SHAPES.

The SHAPESSIMD the code for Phase 2—which calculates
the weights’ new positions from the weights’ current posi-
tions and joints’ new orientations—is shown in Listing 3. For
comparison, an equivalent SIMD version that uses SoA man-
ually is presented in Listing 7 in the Appendix. The code is
derived from [7].

The foreach statement on Line 3 indicates that weights
are processed in groups of N , where N depends on the
SIMD instruction set being targeted. When targeting the SSE
instruction set, for instance, 4 contiguously allocated weights
in the pool are processed per loop iteration.

By changing the declaration of the jp pool to use the
WeightSoa layout, we expect the following performance im-
provements:

– All joints are stored in a pool, thus we expect them to
remain in the cache. This is important for the gather that
is performed when fetching the quaternion components
from each joint (Lines 5–8).

– More importantly, without polluting our code, we have
ensured that the weights are stored in an SoA format,
hence we were able to exploit SIMD parallelism without
requiring major refactorings or sacrifices in readability.

1 [wp : Pool(Weight[wp,jp]), jp : Pool(Joint[jp])]
2 void move_weights(weights:Array<unique Weight[wp,jp]>){
3 simd {
4 foreach e <- weights { // e borrowed at each iteration
5 float x = e.jnt->glob_orient.x; // One gather
6 float y = e.jnt->glob_orient.y; // per quaternion
7 float z = e.jnt->glob_orient.z; // component
8 float w = e.jnt->glob_orient.w;
9

10 float px = e.x;
11 float py = e.y;
12 float pz = e.z;
13

14 float x2 = x + x; float xx2 = x * x2;
15 float y2 = y + y; float yy2 = y * y2;
16 float z2 = z + z; float zz2 = z * z2;
17

18 float xy2 = x * y2; float wx2 = w * x2;
19 float xz2 = x * z2; float wy2 = w * y2;
20 float yz2 = y * z2; float wz2 = w * z2;
21

22 float a11 = 1 - yy2 - zz2;
23 float a12 = xy2 + wz2;
24 float a13 = xz2 - wy2;
25 float a21 = xy2 - wz2;
26 float a22 = 1 - xx2 - zz2;
27 float a23 = yz2 + wx2;
28 float a31 = xz2 + wy2;
29 float a32 = yz2 - wx2;
30 float a33 = 1 - xx2 - yy2;
31

32 e.x = a11*px + a12*py + a13*pz;
33 e.y = a21*px + a22*py + a23*pz;
34 e.z = a31*px + a32*py + a33*pz;
35 }
36 }
37 }

Listing 3. Calculation of weights’ new positions in SHAPES

3.2 Discussion
The combination of arrays and pools allows a developer to
specify an array object that uses the already familiar syntax
of accessing/modifying array elements, and also gives them
the ability to change the underlying representation from AoS
to SoA by simply changing a pool’s layout.

Now, an array A with an exclusive pool P whose elements
have type unique T , can automatically be represented in
memory as a contiguous storage of objects (laid out according
to the layout specification of P) in the same order as they are
held by the array. (Unique pointers even make it possible to
obtain the same layout for a singly linked list.)

As an alternative to the simd environment, we could rely
on the autovectoriser. However, the “black box” behaviour
of autovectorisers means that developers have no confidence
over the machine code generated. Moreover, given the mul-

3 2018/6/26

1 struct IspcSoa { uint64_t a; char b; uint64_t c; };
2 typedef soa<4> IspcSoa IspcSoaX4;
3 // Equivalent to
4 struct IspcSoaX4 {
5 uniform uint64_t a[4];
6 uniform char b[4];
7 uniform uint64_t c[4]; };

Listing 4. ISPC Struct of Arrays

titude of optimising compilers available, it seems futile to
attempt to cater to the lowest common denominator of au-
tovectorisers. Instead, wrapping an operation in a simd block
construct clearly states a programmer’s intentions that the
code should be compiled using SIMD instructions. Unless
the data operated on has the type sketched above—an array A
with an exclusive pool P whose elements have type unique

T , compiling to SIMD is not sensible and the compiler can
act accordingly—this may include emitting a warning.

Inside the simd block, the borrowing construct (Line 4) al-
lows us to directly manipulate elements in arrays, voiding the
need to assign to all of the fields of an object simultaneously.

Gaps in the Data The implementation details of pools in
SHAPES are abstracted away from the developer. One such
detail is the possibility of gaps between objects inside a pool.
That is, these gaps can be filled in later when a new object
is constructed inside a pool. We believe that making pool-
backed arrays expose this feature is beneficial to the developer.
The ability to guarantee that no gaps exist in the array (e.g.
by leveraging moving GC) can be added as a later extension.

4. Related work
Languages with Explicit SIMD Support We have already
discussed ISPC [2] and Sierra [4] and how SHAPES aims to
adopt a subset of their features.

ISPC can transform a structure type into a layout that
resembles SoA, via the keyword soa<N>. This defines a new
structure type at compile time with the same fields, but the
type of the field is changed from T to T [N]. Listing 4 shows
such an example. Sierra has an equivalent keyword, varying.

We aim to improve upon ISPC and Sierra thusly:

– Because pools are part of the SHAPES runtime, padding
will likely be avoided (there is padding between fields b

and c of IspcSoaX4 in Listing 4).
– In ISPC and Sierra, pointers to elements in an soa type

need to be represented by a pointer to an array and
an index. However, because SHAPES captures pool
membership at the type-level, we can represent pointers by
only an index, plus one pool pointer per activation record.

– We plan to optimise the pool representation so as to make
it more amenable to the hardware prefetcher.

Layout Changing Constructs A package [5] for the Julia
language allows the transformation of AbstractArrays into

ones that uses SoA under the hood. These are however
restricted to base types that are immutable isbits (i.e. a type
with no reference fields). Unlike our approach, however, in
this implementation all fields will be fetched at indexing and
all fields must be modified when assigning into an array.

Mattis et al.[11] describe and implement an object layout
for column-based databases intended to be easily optimisable
by the PyPy JIT interpreter.

The Jai language design [3] targets game development,
and aims to allow the layout of arrays to be changed to SoA.

5. Conclusion
All of our proposed extensions to SHAPES are useful on their
own, with or without SIMD. By combining them and the simd

environment, we hope to provide an environment that allows
better exploitation of SIMD compared to existing approaches.

Moreover, despite the possibility of gaps in our implemen-
tation, we expect that the code generated will not be subopti-
mal, as we can exploit the fact that reading from and writing
into the fields of empty slots should not affect the semantics
of well-behaving programs and that conditional statements
will not be translated into suboptimal code.

References
[1] Franco, Juliana, et al. “You Can Have it All: Abstraction and Good

Cache Performance.” Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. ACM, 2017.

[2] Pharr, Matt, and William R. Mark. “ISPC: A SPMD Compiler for
High-Performance CPU Programming.” Innovative Parallel Computing
(InPar), 2012. IEEE, 2012.

[3] Rodriguez, Jose. A Jai Primer. URL: https://github.com/BSVino/
JaiPrimer/blob/fc9ff9e722c190eeabe33a78d50d2588ae6b7e49/
JaiPrimer.md Accessed: 2018-05-18.

[4] Leißa, Roland, Immanuel Haffner, and Sebastian Hack. “Sierra: a SIMD
Extension for C++.” Proceedings of the 2014 Workshop on Programming
models for SIMD/Vector processing. ACM, 2014.

[5] Kornblith, Simon. Julia Structs of Arrays. URL: https://github.
com/simonster/StructsOfArrays.jl/blob/v0.0.3/src/
StructsOfArrays.jl Accessed: 2018-05-18.

[6] Fog, Agner. “The Microarchitecture of Intel, AMD and VIA CPUs: An
Optimization Guide for Assembly Programmers and Compiler Makers.”
Copenhagen University College of Engineering (2012): 02-29.

[7] Van Waveren, J. M. P. “From Quaternion to Matrix and Back.” Id
Software, Inc (2005).

[8] Henry, David. “MD5Mesh and MD5Anim Files Formats.” URL:
http://tfc.duke.free.fr/coding/md5-specs-en.html. Accessed:
2018-05-18.

[9] John Hogg. Islands: Aliasing Protection in Object-oriented Lan-
guages.” SIGPLAN Not. 26(11):271–285. 1991.

[10] John Boyland. “Alias burying: Unique variables without destructive
reads.” Software: Practice and Experience, 31(6):533–553. 2001.

[11] Mattis, Toni, Johannes Henning, Patrick Rein, Robert Hirschfeld,
and Malte Appeltauer. "Columnar objects: Improving the performance
of analytical applications." In 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!), pp. 197-210. ACM, 2015.

4 2018/6/26

https://github.com/BSVino/JaiPrimer/blob/fc9ff9e722c190eeabe33a78d50d2588ae6b7e49/JaiPrimer.md
https://github.com/BSVino/JaiPrimer/blob/fc9ff9e722c190eeabe33a78d50d2588ae6b7e49/JaiPrimer.md
https://github.com/BSVino/JaiPrimer/blob/fc9ff9e722c190eeabe33a78d50d2588ae6b7e49/JaiPrimer.md
https://github.com/simonster/StructsOfArrays.jl/blob/v0.0.3/src/StructsOfArrays.jl
https://github.com/simonster/StructsOfArrays.jl/blob/v0.0.3/src/StructsOfArrays.jl
https://github.com/simonster/StructsOfArrays.jl/blob/v0.0.3/src/StructsOfArrays.jl
http://tfc.duke.free.fr/coding/md5-specs-en.html

A. Appendix

1 #include <xmmintrin.h>
2 struct Vec4f { float x, y, z, w; };
3 void dp(float* dest, Vec4f* lhs, Vec4f* rhs, size_t len) {
4 for(size_t i = 0; i < len; i++) {
5 __m128 a0 = _mm_mul_ps(_mm_loadu_ps((float*) &lhs[i]), _mm_loadu_ps((float*) &rhs[i]));
6 __m128 a1 = _mm_movehl_ps(a0, a0);
7 __m128 a2 = _mm_add_ps(a1, a0);
8 __m128 a3 = _mm_shuffle_ps(a2, a2, 0); // Constant 0 broadcasts dot product to all SIMD lanes
9 __m128 dot = _mm_add_ps(a3, a2);

10 dest[i] = _mm_cvtss_f32(dot);
11 }
12 }

Listing 5. Naive SIMD dot product calculation (1 dot product at a time). Written for the Intel SSE SIMD instruction set.

1 #include <xmmintrin.h>
2 struct Vec4fSoa { float *x, *y, *z, *w; };
3 void dp(float* dest, Vec4fSoa* lhs, Vec4fSoa* rhs, size_t len)
4 {
5 // Assume for simplicity that len is a multiple of 4 (we do not show the code
6 // responsible for handling the residual vector pairs).
7 for(size_t i = 0; i < len; i += 4) {
8 __m128 px = _mm_mul_ps(_mm_loadu_ps(&lhs->x[i]), _mm_loadu_ps(&rhs->x[i]));
9 __m128 py = _mm_mul_ps(_mm_loadu_ps(&lhs->y[i]), _mm_loadu_ps(&rhs->y[i]));

10 __m128 pz = _mm_mul_ps(_mm_loadu_ps(&lhs->z[i]), _mm_loadu_ps(&rhs->z[i]));
11 __m128 pw = _mm_mul_ps(_mm_loadu_ps(&lhs->w[i]), _mm_loadu_ps(&rhs->w[i]));
12 __m128 a0 = _mm_add_ps(px, py);
13 __m128 a1 = _mm_add_ps(pz, pw);
14 __m128 dots = _mm_add_ps(a0, a1);
15 _mm_storeu_ps(dest, dots);
16 }
17 }

Listing 6. SIMD Dot product calculation (4 dot products at a time). Written for the Intel SSE SIMD instruction set.

1 #include <xmmintrin.h>
2 #include <stddef.h>
3

4 struct quaternion { float x, y, z, w; };
5 struct Joint { quaternion loc_orient, glob_orient; };
6 struct Weights { Joint* jnt; float *px, *py, *pz; float *wv; };
7

8 void move_weights(struct Weights* arr, size_t len) {
9 __m128 ONES = _mm_set1_ps(1);

10 // Assume for simplicity that len is a multiple of 4 (we do not show the code
11 // responsible for handling the residual weights).
12 for (size_t i = 0; i < len; i += 4) {
13 quaternion& orient0 = arr->jnt[i + 0].glob_orient;
14 quaternion& orient1 = arr->jnt[i + 1].glob_orient;
15 quaternion& orient2 = arr->jnt[i + 2].glob_orient;
16 quaternion& orient3 = arr->jnt[i + 3].glob_orient;
17

18 // Gathers have to be performed explicitly with intrinsics
19 __m128 x = _mm_set_ps(orient3.x, orient2.x, orient1.x, orient0.x);
20 __m128 y = _mm_set_ps(orient3.y, orient2.y, orient1.y, orient0.y);

5 2018/6/26

21 __m128 z = _mm_set_ps(orient3.z, orient2.z, orient1.z, orient0.z);
22 __m128 w = _mm_set_ps(orient3.w, orient2.w, orient1.w, orient0.w);
23

24 __m128 px = _mm_loadu_ps(&arr->px[i]);
25 __m128 py = _mm_loadu_ps(&arr->py[i]);
26 __m128 pz = _mm_loadu_ps(&arr->pz[i]);
27

28 __m128 x2 = _mm_add_ps(x, x);
29 __m128 y2 = _mm_add_ps(y, y);
30 __m128 z2 = _mm_add_ps(z, z);
31 __m128 xx2 = _mm_mul_ps(x, x2);
32 __m128 yy2 = _mm_mul_ps(y, y2);
33 __m128 zz2 = _mm_mul_ps(z, z2);
34

35 __m128 xy2 = _mm_mul_ps(x, y2);
36 __m128 wz2 = _mm_mul_ps(w, z2);
37 __m128 xz2 = _mm_mul_ps(x, z2);
38 __m128 wy2 = _mm_mul_ps(w, y2);
39 __m128 yz2 = _mm_mul_ps(y, z2);
40 __m128 wx2 = _mm_mul_ps(w, x2);
41

42 __m128 a11 = _mm_sub_ps(_mm_sub_ps(ONES, yy2), zz2);
43 __m128 a12 = _mm_add_ps(xy2, wz2);
44 __m128 a13 = _mm_sub_ps(xz2, wy2);
45 __m128 a21 = _mm_sub_ps(xy2, wz2);
46 __m128 a22 = _mm_sub_ps(_mm_sub_ps(ONES, xx2), zz2);
47 __m128 a23 = _mm_add_ps(yz2, wx2);
48 __m128 a31 = _mm_add_ps(xz2, wy2);
49 __m128 a32 = _mm_sub_ps(yz2, wx2);
50 __m128 a33 = _mm_sub_ps(_mm_sub_ps(ONES, xx2), yy2);
51

52 __m128 npx = _mm_mul_ps(a11, px);
53 npx = _mm_add_ps(npx, _mm_mul_ps(a12, py));
54 npx = _mm_add_ps(npx, _mm_mul_ps(a13, pz));
55

56 __m128 npy = _mm_mul_ps(a21, py);
57 npy = _mm_add_ps(npy, _mm_mul_ps(a22, py));
58 npy = _mm_add_ps(npy, _mm_mul_ps(a23, pz));
59

60 __m128 npz = _mm_mul_ps(a31, px);
61 npz = _mm_add_ps(npz, _mm_mul_ps(a32, py));
62 npz = _mm_add_ps(npz, _mm_mul_ps(a33, pz));
63

64 _mm_storeu_ps(&arr->px[i], npx);
65 _mm_storeu_ps(&arr->py[i], npy);
66 _mm_storeu_ps(&arr->pz[i], npz);
67 }
68 }

Listing 7. Weight displacement calculation (SSE intrinsics).

6 2018/6/26

	Introduction
	Motivating Example
	SHAPESSIMD
	SHAPESSIMD Example
	Discussion

	Related work
	Conclusion
	Appendix

