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We discuss possible application of the classical double copy procedure to construction of a generalisation 
of the Schwarzschild metric starting from an α′-corrected open string analogue of the Coulomb solution. 
The latter is approximated by a point-like charge solution of the Born-Infeld action, which represents 
the open string effective action for an abelian vector field in the limit when derivatives of the field 
strength are small. The Born-Infeld solution has a regular electric field which is constant near the origin 
suggesting that corrections from the derivative terms in the open string effective action may be small 
there. The generalization of the Schwarschild metric obtained by the double copy construction from the 
Born-Infeld solution looks non-singular but the corresponding curvature invariants still blow up at r = 0. 
We discuss the origin of this singularity and comment on possible generalizations.
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1. Introduction

The (classical) double copy is a procedure to construct gravity solutions from gauge theory ones. It originated from the KLT relations in 
string theory and BCJ duality associated to scattering amplitudes in field theory (for a review see [1]).

A simple example of the double copy is a relation between the Schwarzschild metric and the Coulomb potential Aμ = (φ(r), 0, 0, 0), 
φ = Q /r, created by a point charge [2]. After a gauge transformation we get Aμ = φ(r) kμ where kμ = (1, xi/r) is null. Then the metric 
in the Kerr-Schild form gμν = ημν + φ kμkν becomes the Schwarzschild metric with mass M = 2Q .

So far almost all examples of the double copy started with linear Maxwell fields. The validity and physical origins of the classical 
double copy construction at the full non-linear, quantum and string theory levels are not clearly understood at present but one might 
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speculate that it may extend beyond the leading order in α′ and relate exact open-string and closed-string backgrounds. Here we will 
make a first naive attempt to study such an extension.

Gauge theory equations of motion appear as the leading order approximation to the effective field equations for the massless vector 
field in the open string theory [3]. The tree-level open string effective action is given, in the abelian case, by the Born-Infeld [4] term √

det(ημν + 2πα′ Fμν) [5] plus terms depending on derivatives of the field strength Fμν (for a review see [6]). We may attempt to first 
ignore all derivative corrections and generalize the Maxwell’s theory Coulomb solution to its Born-Infeld counterpart [4]. The correspond-

ing electric field is E = Q /

√
r4

0 + r4, where r2
0 = T −1 Q and T = 1

2πα′ is string tension. In contrast to the Coulomb case here the field is 
non-singular at the origin. This may be interpreted as a consequence of the inclusion of the α′ corrections that are expected to “regular-
ize” point-like singularities in string theory [7]. Since the field of the Born-Infeld solution is approximately constant near the origin, this 
suggests that it may be possible to consider it as an approximation to a solution of the full (tree-level) open string effective field equations 
in the region close to r = 0.

One may wonder whether this regular Born-Infeld solution may double-copy to a generalization of the Schwarzschild metric that will 
also be non-singular at the origin.2 Making the simplest assumption that the form gμν = ημν + φ kμkν of the standard “leading-order” 
double copy ansatz is not modified by the α′-corrections, the resulting metric with the potential φ corresponding to the regular Born-
Infeld solution will look formally non-singular at r = 0. However, as we will find below, the corresponding curvature invariants happen to 
diverge at the origin. This has to do with too slow φ ∼ r decay of the scalar potential at r → 0.

We do not expect this singular α′-dependent double-copy metric to solve a closed-string generalization of the Einstein equations. First, 
the string-theory generalization of the double copy ansatz may require its non-trivial α′-modification. One may also need to generalize 
the double copy ansatz to allow for a non-zero dilaton field [8,9] which is expected to be non-trivial for the closed-string generalization 
of the Schwarzschild solution beyond the leading order in α′ . Finally, our use of the Born-Infeld solution as an approximation to the exact 
open-string solution may be too naive: it is possible that (a resummation of) the derivative corrections in the open-string equations may 
lead to a subtle modification of the Born-Infeld solution resulting in a non-singular double-copy metric.

This paper is organised as follows. In Section 2 we will discuss the structure of the open string effective action and the Born-Infeld 
solution that we will use. In Section 3 we will recall how the classical double copy procedure may be applied to get the Schwarzschild 
metric from the Coulomb potential. In Section 4 we will present the double copy metric corresponding to the Born-Infeld solution and 
discuss the singularity of the corresponding curvature invariants. Section 5 will contain some concluding remarks. There are also three 
technical appendices.

2. Open string effective action and the Born-Infeld solution

The effective action for the abelian gauge field in the bosonic open string theory has the following structure [5,10,11] (we consider 
reduction to 4 dimensions; T −1 ≡ 2πα′)3

S = c

∫
d4x

√
−det(ημν + T −1 Fμν)

[
1 + T −3 Bμνρσλγ (T −1 F ) ∂μFνρ∂σ Fλγ +O(∂4 F )

]
, (2.1)

where the ∂ F -independent part is the Born-Infeld action and B is a particular function of the field-strength Fμν = ∂μ Aν −∂ν Aμ . Explicitly, 
the leading order α′ 5 derivative terms are [11]

S =c

∫
d4x

(√
−det(η + T −1 F ) − 1

48π
T −5

[
(∂α Fμν)(∂α F μν)Fρσ F ρσ

+ 8(∂α Fμν)(∂α F νλ)Fλρ F ρμ + 4(∂α Fμν)(∂β F μν)Fβλ F αλ
]
+O(T −7)

)
. (2.2)

The resulting equation for Fμν may be written as:

2∂μ

[∂
√−det(η + T −1 F )

∂ Fμν

]
− 1

12π
T −5

[
(∂α Fλγ )(∂α F λγ )(∂μF μν)

+ 2(∂μ∂α Fλγ )(∂α F λγ )F μν + 4∂μ

[
(∂α Fσγ )(∂μF σγ )F αν

]
+ 4∂μ

[
(∂α Fβγ )(∂α F γμ)F νβ + (∂α Fγ λ)(∂

α F νγ )F λμ
]] +O(T −7) = 0 . (2.3)

The Born-Infeld equation corresponding to the vanishing of the first term here is equivalent to (η − T −2 F 2)−1
λμ ∂λ F μν = 0.

Ignoring the contributions of the derivative correction terms in (2.2) let us look for a point-like charge solution of the Born-Infeld term 
in (2.3). In the purely electric case the Born-Infeld part of (2.3) reduces to ∂i

(
Ei/

√
1 − T −2 E2

)
= 0. If the electric field is spherically 

symmetric (corresponding to a point-like charge), i.e. has only the radial component depending on r one finds [4]4

Er = F0r = −∂r A0(r) = Q√
r4

0 + r4
, r2

0 ≡ T −1 Q . (2.4)

2 One may argue that to discuss a possibility of a double copy for Born-Infeld fields one should be assuming that there exists its non-abelian version that satisfies some 
form of color/kinematics duality.

3 In superstring case derivative corrections start with 4-derivative terms.
4 For some applications of this solution see [12].
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In contrast to the standard Coulomb solution the Born-Infeld solution is regular at r = 0. Since the electric field (2.4) is approximately 
constant near r = 0, one may hope that at least near the origin this background may be trusted as a solution to the full open string 
effective action, including the derivative corrections. A further discussion of this point is presented in Appendix A.

Our aim below will be to construct the double copy metric corresponding to the scalar potential in (2.4) that generalizes the 
Schwarzschild metric which is the double copy of the Coulomb potential.

3. Schwarzschild metric as the double copy of the Coulomb solution

Let us first briefly review the application of the classical double copy procedure to the Schwarzschild solution [2]. The Schwarzschild 
metric is a particular case of

ds2 = −[
1 − φ(r)

]
dt2 + dr2

1 − φ(r)
+ r2(dθ2 + sin2 θ dϕ2) , (3.1)

with φ = 2M/r. Changing coordinates to (t̄, xi), t̄ ≡ t + 2M ln(r − 2M), the Schwarzschild metric can be written in the Kerr-Schild form

gμν = ημν + φ kμkν , kμ ≡ (
1,

xi

r

)
, kμkμ = 0 . (3.2)

This may be interpreted as a double copy corresponding to an abelian gauge potential

Aμ = φ(r)kμ , φ = Q

r
, (3.3)

assuming that Q ≡ 2M .5 The potential (3.3) is gauge-equivalent to the Coulomb potential Aμ = φ(1, 0, 0, 0)

For general φ(r), the change of coordinates bringing the metric (3.1) to the Kerr-Schild form (3.2) can be found by looking for radial 
null geodesics of (3.1). Setting −(1 − φ)dt2 + dr2

1−φ
= 0 gives the following integral representation for t (denoted by t∗(r)):

t∗(r) = ±
∫

dr

1 − φ(r)
. (3.4)

In the Schwarzschild case of φ = 2M/r this gave t∗(r) = r + 2M ln(r − 2M). The Kerr-Schild form of (3.1) is then obtained by changing 
from (t, r, θ, φ) to (t̄, xi) coordinates where xi are the standard cartesian ones and t̄ ≡ t − r + t∗(r). To perform the change of coordinates 
it is sufficient to use the differential of t̄ = t − r + t∗ , i.e.

dt̄ = dt + φ(r)

1 − φ(r)
dr. (3.5)

4. Double copy of the Born-Infeld solution

To construct the classical double copy metric for the Born-Infeld solution in (2.4) we need the corresponding gauge potential Aμ . 
Integrating (2.4) over r with the boundary condition A0

∣∣
r→∞ → 0 gives

A0(r) ≡ φ(r) =
∞∫

r

dr′ Er(r
′) = Q

r
2 F1

(1

4
,

1

2
,

5

4
,− r4

0

r4

)
= Q

r

[
1 − r4

0

10r4
+O(

r8
0

r8
)
]

, (4.1)

where 2 F1 is the standard hypergeometric function. By a gauge transformation Aμ = (φ, 0, 0, 0) can be transformed into (cf. (3.3))

Aμ = φ(r)kμ = φ(r)
(

1,
xi

r

)
. (4.2)

The corresponding double copy metric is then (3.2) with φ(r) given by (4.1). Here ds2 = gμν(x)dxμdxν with xμ = (t̄, xi) and t̄ related to t
as in (3.5). Using this relation and the transformation between the cartesian and the spherical coordinates we find that the metric takes 
the same “Schwarschild” form (3.1) now with Coulomb φ = Q

r replaced by φ(r) in (4.1). It thus generalizes the Schwarschild metric to the 
case when r2

0 = 2πα′ Q is non-zero.
In contrast to the Schwarschild metric the components of the resulting metric (3.1) look non-singular since φ(r) in (4.1) has a regular 

expansion for small r:

φ(r) = c0 + c1r + c5r5 +O(r9) = Q

r0
�( 5

4 )
[
�( 1

4 )
√

π − r

�( 1
4 ) r0

+ r5

5r5
0

]
+O(r9) . (4.3)

Somewhat surprisingly, the corresponding curvature invariants still turn out to be singular at r = 0. For example, the scalar curvature is 
given by

R = 2φ(r)

r2
− 2Q (r4 + 2r4

0)

r(r4 + r4
0)3/2

= 2Q �( 1
4 )�( 5

4 )

r0
√

π

1

r2
− 4Q [�( 1

4 ) + 2�( 5
4 )]

r2
0 �( 1

4 )

1

r
+O(r3) . (4.4)

5 We shall ignore normalization constants in the definition of mass and charge.
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This singularity is due to the presence of the first two (c0 and c1r) terms in the r → 0 expansion of φ in (4.3).
If φ

∣∣
r→0 = c0 	= 0 then the metric (3.1) has a conical singularity at r = 0. This is not, however, a serious issue as we can set c0 = 0 by 

changing the integration constant in (4.1) (or by a gauge transformation of the potential (4.2)) and then define the double copy metric 
(3.2) using φ in this gauge.6 The real problem is that φ

∣∣
r→0 = c1r = c1

√
x2

i is non-analytic in cartesian coordinates and this effectively 
produces singularity in the curvature invariants. This c1r term can not be eliminated by a gauge transformation as it is responsible for the 
non-zero constant value of the Born-Infeld electric field Er = −∂rφ in (2.4) at r = 0 (see also Appendix C).

In general, if we start with the metric (3.1) with φ having a regular r → 0 expansion

φ(r) = c0 + c1r + c2r2 + c3r3 + c4r4 + c5r5 +O(r6), (4.5)

then the r → 0 expansion of the curvature squared invariant is found to be

Rμνρσ Rμνρσ
∣∣
r→0 = 4c2

0

r4
+ 8c0c1

r3
+ 4c2

1 + 8c0c2

r2
+ 8(c1c2 + c0c3)

r
(4.6)

+ 4(c2
2 + 2c1c3 + 2c0c4) + 8(c2c4 + c1c4 + c0c5)r +O(r2) . (4.7)

Thus it is non-vanishing c0 and c1 that are, indeed, responsible for the singularity. Explicitly, in the case of φ(r) in (4.3) we find (see also 
(B.5))

Rμνρσ Rμνρσ = 4[φ(r)]2

r4
+ 8Q 2(r8 + r4

0r4 + 1
2 r8

0)

r2(r4 + r4
0)3

= 4Q 2 �( 1
4 )2�( 5

4 )2

πr2
0

1

r4

− 32Q 2�( 5
4 )2

√
π r3

0

1

r3
+ 4Q 2

r4
0

�( 1
4 )2 + 16�( 5

4 )2

�( 1
4 )2

1

r2
+ 16Q 2 �( 5

4 )2

5r7
0

√
π

r +O(r3) . (4.8)

Note that the expressions in (4.4) and (4.8) (before expanding near r → 0) reduce to the standard Schwarzschild values (R =
0, Rμνρσ Rμνρσ = 12Q 2

r6 ) once we set r0 = 2πα′ Q = 0 for fixed r. For non-zero r0 the corresponding metric (3.1) has a non-trivial Ricci 
tensor (see Appendix B). It is not clear if there is some generalization of the Einstein equations for which the metric (3.1) with φ in (4.1)
is a solution.

5. Concluding remarks

Our aim in this note was to explore if the simplest classical double copy ansatz may produce a non-singular generalization of the 
Schwarzschild metric if applied to the exact open-string analog of the Coulomb solution. The latter was assumed to be approximated by 
the Born-Infeld solution. We suggested that since the Born-Infeld action is the leading term in the open string effective action expansion 
in powers of field strength derivatives and since the electric field of the Born-Infeld analog of the Coulomb solution is approximately 
constant near r = 0 this solution may be trusted near the origin.

The resulting double copy metric reduces to the Schwarzschild one in the α′ → 0 limit and at first sight seems regular near r = 0. 
However, the decay of the Born-Infeld scalar potential φ for r → 0 happens to be too slow (reflecting the non-vanishing value of the 
Born-Infeld field at the origin) for the corresponding curvature invariants to be regular. This does not of course imply the singularity of 
a closed string generalization of the Schwarzschild solution since there is no a priori reason to expect this double copy construction to 
produce a solution of the closed string effective equations and also given that the Born-Infeld field (2.4) is not an exact solution of the 
open-string theory.

One direction to investigate further is the influence of derivative corrections in the open string effective action on the behaviour of the 
corresponding solution near r = 0, going beyond a simplified analysis in Appendix A. In particular, one may wonder if a resummation of 
derivative corrections may alter the φ

∣∣
r→0 → r behaviour of the scalar potential that may resolve the singularity of the double copy metric. 

It is also interesting to study a possible generalization of the double copy ansatz [9] that allows for a non-trivial dilaton. More generally, 
the status of the double copy construction beyond the leading order in α′ expansion and whether it may provide a map between exact 
open-string and closed-string solutions remains to be explored.
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6 In this case, however, instead of φ
∣∣ = 0 we will have φ

∣∣ = −c0 so that will change the standard Minkowski asymptotic form of the metric (3.1).
r→∞ r→∞
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Appendix A. Born-Infeld solution as an approximation to open-string solution

Assuming the same ansatz for Fμν (no magnetic field, time-independent electric field) that led to the Born-Infeld solution in (2.4), 
only the ν = 0 component of the equations (2.3) is non-trivial and may be written as (ignoring higher order terms in (2.3))

∂i

( Ei√
1 − T −2 E 2

)
+ 1

6π T 3

[1

2
(∂k Ei)(∂k Ei)∂ j E j + (∂i∂ j Ek)(∂ j Ek)Ei

+ 2∂ j[(∂i Ek)(∂ j Ek)Ei] + ∂i[(∂ j Ek)(∂ j Ei)Ek] + ∂i[(∂ j Ek)(∂ j Ek)Ei]
]

= 0. (A.1)

Assuming further that Ei is spherically-symmetric we get (E ≡ Er(r))

∂r

[ r2 E√
1 − T −2 E2

]
+ 3

4π T 3
∂r E

[
2rE2 + r3(∂r E)2 + 2r2 E(∂r E + r∂2

r E)
]

= 0 . (A.2)

From here we may find the leading correction to the Born-Infeld solution coming from the presence of the field strength derivative terms 
in the open string effective action. Setting E(r) = E(0)(r) + E(1)(r), where E(0)(r) is the Born-Infeld solution (2.4) we obtain from (A.2) the 
following first-order differential equation for E(1) (r2

0 = T −1 Q ):

dE(1)

dr
+ 2(r4 − 2r4

0)

r(r4 + r4
0)

E(1) = 3r6
0r7(7r8 − 6r4

0r4 + r8
0)

π(r4 + r4
0)6

. (A.3)

Its solution may be written as:

E(1) = − r6
0r4(7r8 + 2r4

0r4 + r8
0)

2π(r4 + r4
0)5

= − r4

2πr6
0

+ 3r8

2πr10
0

+O(r12) . (A.4)

Its expansion for r → 0 starts at order r4 so it does not change the E
∣∣
r→0 = Q

r2
0

= const behaviour of the Born-Infeld field (2.4) near the 
origin, suggesting it can be trusted near r = 0. Equivalently, the derivative terms do not alter the leading c1r term in the scalar potential 
(4.3) that was found to be responsible for the singularity of the double-copy metric.

Appendix B. Curvature tensor for the double copy metric

The curvature tensor for the metric of the form (3.1) can be computed for general function φ(r) with the non-trivial components being

Rt
rtr = φ′′

2(1 − φ)
, Rt

θθt = Rr
θθr = − r

2
φ′, Rt

ϕϕt = Rr
ϕϕr = Rt

θθt sin2 θ,

Rr
ttr = 1

2
(1 − φ) φ′′, Rθ

ttθ = Rϕ
ttϕ = 1 − φ

2r
φ′, Rθ

rθr = Rϕ
rϕr = φ′

2r(1 − φ)
,

Rθ
ϕθϕ = Rϕ

θϕθ sin2 θ = φ(r) sin2 θ. (B.1)

For the Ricci tensor and scalar we get:

Rtt = − 1 − φ

2r
(2φ′ + rφ′′), Rrr = 2φ′ + rφ′′

2r − 2rφ
, Rθθ = Rϕϕ

sin2 θ
= φ + rφ′ , (B.2)

R = 2φ

r2
+ 4φ′

r
+ φ′′ . (B.3)

The explicit form of the Ricci tensor corresponding to the metric (3.1) with φ in (4.1) is

Rtt = Q r4
0 (1 − φ)

r7(1 + r4
0

r4 )3/2
= Q r0

√
π − Q 2 �( 1

4 )�( 5
4 )

r3
0

√
π

1

r
+ 4Q 2 �( 5

4 )

r4
0�( 1

4 )
+O(r3),

Rrr = Q r4
0

(1 − φ)(1 + r4
0

r4 )3/2
= − Q

√
π

r0[r0
√

π − Q �( 1
4 )�( 5

4 )]
1

r
+ 4Q 2π �( 5

4 )�( 1
4 )

r2
0[r0

√
π − Q �( 1

4 )�( 5
4 )]2

+O(r),

Rθθ = Rϕϕ

sin2 θ
= φ(r) − Q

r

(
1 + r4

0

r4

)−1/2 = Q �( 1
4 )�( 5

4 )

r0
√

π
− r2

0 �( 1
4 ) + 8Q �( 5

4 )

2r2
0 �( 1

4 )
r +O(r3). (B.4)

The curvature squared invariant is

Rμνρσ Rμνρσ = 4φ2

r4
+ 4φ′2

r2
+ φ′′2 = 4φ2

r4
+ 8Q 2(r8 + r4

0r4 + 1
2 r8

0)

r2(r4 + r4)3
, (B.5)
0
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with its expansion at r → 0 given in (4.8). The Weyl tensor squared is also singular at r → 0

Cμνρσ Cμνρσ = (2φ − 2rφ′ + r2φ′′)2

3r4
= 4Q 2�( 1

4 )2�( 5
4 )2

3πr2
0

1

r4
+O(r−3). (B.6)

Appendix C. Gauge transformation of the vector potential near r = 0

Given the vector potential Aμ = φ(r)(1, xi/r) with φ
∣∣
r→0 = c0 + c1r + c5r5 + ... as in (4.2), (4.3), let us see if there is a gauge 

transformation that eliminates c0 and c1 terms, i.e. if Aμ can be transformed into

Ãμ = φ̃(r)
(
1,

xi

r

)
, φ̃(r)

∣∣
r→0 = c̃5r5 + ... . (C.1)

The relation Ãμ = Aμ − ∂μχ implies

∂0χ = c0 + c1r + (c5 − c̃5)r
5 + ..., ∂iχ = c0xi

r
+ c1xi + (c5 − c̃5)xir

4 + ... . (C.2)

These equations lead to

χ(t, x) =[
c0 + c1r + (c5 − c̃5)r

5] t + f (x) , (C.3)

∂i f (x) = c0xi

r
+ c1xi + (c5 − c̃5)xir

4 −
[ c1xi

r
+ 5(c5 − c̃5)xir

3
]

t. (C.4)

The left-hand side of (C.4) is time-independent, so it is consistent only if c5 = c̃5 and c1 = 0. Thus c1 cannot be eliminated by a gauge 
transformation.
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