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Abstract

OPT is a three dimensional (3D) imaging technique that can produce 3D reconstructions of
transparent samples, requiring only a widefield imaging system and sample rotation. OPT can
be readily applied to chemically cleared samples, or to live transparent organisms such as nema-
todes or zebrafish. For preclinical imaging, there is a trade-off between optical accessibility and
biological relevance to humans. Adult Danio rerio (zebrafish) represent a promising compro-
mise, with greater homology to humans than smaller animals, and superior optical accessibility
than mice. However, their size and physiology present a number of imaging challenges including
non-negligible absorption and optical scattering, and limited time for image data acquisition if
the fish are to be recovered for longitudinal studies. A key goal of this PhD thesis research was
to develop OPT to address these challenges and improve in vivo imaging capabilities for this
model organism.

This thesis builds on previous work at Imperial where angularly multiplexed OPT using
compressed sensing was developed and applied to in vivo imaging of a cancer-burdened adult
zebrafish, with a sufficiently short OPT data acquisition time to allow recovery of the fish after
anaesthesia. The previous cross-sectional study of this work was extended to a longitudinal
study of cancer progression that I undertook. The volume and quality of data acquired in
the longitudinal study presented a number of data processing challenges, which I addressed
with improved automation of the data processing pipeline and with the demonstration that
convolutional neural networks (CNN) could replace the iterative compressed sensing algorithm
previously used to suppress artifacts when reconstructing undersampled OPT data sets.

To address the issue of high attenuation through the centre of an adult zebrafish, I developed
conformal-high-dynamic-range (C-HDR) OPT and demonstrated that it could provide sufficient
dynamic range for brightfield imaging of such optically thick samples, noting that transmitted
light images can provide anatomical context for fluorescence image data.

To reduce the impact of optical scattering in OPT, I developed a parallelised quasi-confocal
version of OPT called slice-illuminated OPT (slice-OPT) to reject scattered photons and demon-
strated this with live zebrafish. To enable 3D imaging with short wave infrared (SWIR) light,
without the requirement of an expensive Ge or InGaAs camera, I implemented a single pixel
camera and demonstrated single-pixel OPT (SP-OPT) for the first time.
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Chapter 1

Thesis overview

This thesis reports the development of optical projection tomography (OPT) instrumentation
and its application to in vivo three-dimensional imaging of zebrafish. OPT is a 3D imaging
technique that can produce 3D reconstructions of transparent samples, requiring only a widefield
imaging system and sample rotation. It is therefore comparatively low-cost, straightforward to
implement, and readily scalable to image samples from sub-mm to cm scale. OPT can be readily
applied to chemically cleared samples, e.g. of cleared mouse brain or pancreatic tissue, or to live
transparent organisms such as nematodes or zebrafish. It can provide absorption or fluorescence
contrast to address the increasing interest in translating cell-based-assays from two-dimensional
(2D) cell monocultures to more complex disease models for basic research and for drug discovery,
and enables whole organism imaging for developmental biology and preclinical studies of cancer,
diabetes and other diseases. The capability for in vivo imaging enables whole organism studies
of disease progression and response to interventions to be undertaken as longitudinal studies,
thereby increasing the value of the data and reducing the numbers of animals required for
medical research.

For preclinical imaging, there is a trade-off between optical accessibility and biological rele-
vance to humans. Smaller animals, such as Caenorhabditis elegans (C. elegans) can be imaged at
high resolution with diffraction limited imaging but may miss key elements of physiology. Mice
are more homologous to humans, but in vivo fluorescence imaging is limited to low-resolution
diffuse optical tomography, or highly localised intravital microscopy. As vertebrates, Danio
rerio (zebrafish) represent a promising compromise, with higher physiological relevance than
Drosophila melanogaster or C. elegans. Zebrafish larvae are widely studied using standard mi-
croscope techniques, but they lack an adaptive immune system and full organ development.
Adult zebrafish address these concerns while still providing much greater optical accessibility
than mice. However, their size and physiology present a number of imaging challenges including
non-negligible absorption and optical scattering, and limited time for image data acquisition if
the fish are to be recovered for longitudinal studies. A key goal of this PhD thesis research was
to develop OPT to address these challenges and improve in vivo imaging capabilities for this
model organism.

This thesis builds on previous work at Imperial where angularly multiplexed OPT using
compressed sensing was developed and applied to in vivo imaging of a cancer-burdened adult
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zebrafish, with a sufficiently short OPT data acquisition time to allow recovery of the fish after
anaesthesia. The previous cross-sectional study of this work was extended to a longitudinal
study of cancer progression that I undertook at the start of this PhD thesis research alongside the
development of low-cost OPT instrumentation for partner laboratories. The volume and quality
of data acquired in the longitudinal study presented a number of data processing challenges,
which I addressed with improved automation of the data processing pipeline and with the
demonstration that convolutional neural networks (CNN) could replace the iterative compressed
sensing algorithm previously used to suppress artifacts when reconstructing undersampled OPT
data sets. To address the issue of high attenuation through the centre of an adult zebrafish
and the challenge of capturing both transmitted light and light from around the edges of the
fish, I developed conformal-high-dynamic-range (C-HDR) OPT and demonstrated that it could
provide sufficient dynamic range for brightfield imaging of such optically thick samples, noting
that transmitted light images can provide anatomical context for fluorescence image data. To
reduce the impact of optical scattering in OPT, I developed a parallelised quasi-confocal version
of OPT called slice-illuminated OPT (slice-OPT) to reject scattered photons and demonstrated
this with live zebrafish. Slice-OPT used a digital micromirror device (DMD) to provide the
required slice illumination. I also applied the DMD to implement a single pixel camera and
demonstrated single-pixel OPT (SP-OPT) for the first time. This system can image in the
short-wave infrared (SWIR) window, where the impact of scattering is reduced compared to
the visible-near infrared coverage of silicon detectors, without the need for costly Ge or InGaAs
cameras.

Following this introduction, chapter 2 briefly reviews fluorescence imaging instrumentation,
starting with a description of light-matter interactions in tissue: absorption and subsequent
fluorescence, and optical scattering and its reduction with optical clearing. An overview of 3D
microscopy techniques is then presented followed by an overview of model organisms and a
review of the 3D imaging techniques that have been used to study them.

Chapter 3 describes OPT in greater detail, outlining its experimental implementation, his-
torical development and the theoretical basis of image reconstruction using the Radon transform.
Two specific OPT implementations are then described, which I helped develop: a low-cost instru-
ment using LED excitation and a more sophisticated OPT instrument using a newly available
cost-effective multimode diode laser source. This chapter also introduces compressive sensing
and outlines how it can be applied to accelerate OPT data acquisitions by providing reasonable
3D image reconstructions from undersampled OPT data sets.

Chapter 4 describes the refinement of the angularly multiplexed OPT previously developed
in the Photonics Group at Imperial and its application to longitudinal study of cancer progres-
sion in adult zebrafish. The experimental system and the data handling challenges of image
registration, alignment, and regularisation parameter selection are described, along with the
work I undertook to address these challenges. The data from the longitudinal study is then
presented, highlighting the benefits of using longitudinal data.

Chapter 5 addresses the long data processing times required when reconstructing undersam-
pled OPT data sets using an iterative algorithm. I discuss how neural networks can be used
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to reduce this reconstruction time and introduce the convolutional neural network architecture,
function, and training. I then describe my implementation of CNN-OPT and show how its speed
and reconstructed image quality surpasses that obtained with iterative reconstruction. I also
show how training data acquired of fixed and cleared mouse tissue can be used for CNN-OPT
of (live) zebrafish OPT data, which means that live fish do not have to be sacrificed to train
the CNN.

Chapter 6 describes my development and application of conformal high dynamic range OPT
(C-HDR-OPT) to enable brightfield OPT of adult zebrafish. I outline the motivation for absorp-
tion imaging, and how implementing this with larger (more attenuating) samples is confounded
by the limited dynamic range of the detector. A previously reported high dynamic range (HDR)
approach and its limitations are described and the principle of C-HDR is introduced, for which
I discuss a method of image fusion. The application of the C-HDR-OPT system to an adult
zebrafish is demonstrated.

Chapter 7 describes a new approach to reduce the impact of optical scattering on OPT
experiments that uses a DMD to illuminate the sample with “slices” of light for each projection
image and detect the resulting fluorescence with a co-aligned mask of virtual slits on the camera.
The mechanism of action of slice-OPT is derived for a simple imaging model and the system
design and data acquisition process is described. I then discuss its application to a juvenile
zebrafish.

Chapter 8 discusses ongoing and unfinished work to reduce the impact of optical scattering
by enabling the use of SWIR radiation. Since SWIR cameras are only recently available and are
very costly, I decided to use the DMD to implement a single pixel camera with a low-cost Ge
photodetector and demonstrated single pixel OPT (SP-OPT) for the first time, imaging a bead
phantom. I also discuss a potential extension of the HDR approach to single pixel imaging to
address a major limitation of this approach.

Chapter 9 concludes this thesis with a summary of progress and a discussion of the oppor-
tunities for future work to extend that reported here.



Chapter 2

Introduction to whole organism
optical imaging

2.1 Interaction of light and tissue

Biological tissues are optically inhomogenous materials that interact strongly with ultraviolet
to near infrared (NIR) wavelength photons through absorption and scattering. Unscattered
light propagating through tissue is exponentially attenuated as described by the Beer-Lambert
law [7]:

I (x) = I0exp (−µtx) ; µt = µa + µs (2.1)

where I (x) is the intensity of unscattered light a distance x along its direction of propagation,
I0 is the intensity at x = 0, µt is the extinction coefficient, µa is the absorption coefficient, and
µs is the scattering coefficient.

2.1.1 Absorption and fluorescence

Absorption of visible and near infrared light is caused by photons exciting electronic and vibra-
tional molecular states respectively. The absorption spectrum in tissue therefore depends on its
molecular composition and density; in soft tissue the spectrum is dominated by the absorption
spectra of water, hemoglobin, fat, and melanin in skin [8] (figure 2.1). The amount of each of
these components in a given tissue sets how deep light propagates into the sample, and the vari-
ation in proportion of these chromophores in a tissue sample gives rise to absorption contrast in
brightfield microscopy. The effective absorption coefficient for a heterogenous material is given
by the Beer-Lambert law with:

µa =
∑

aiµ
i
a, (2.2)

where µia is the absorption coefficient of chromophore i with a volume fraction of the tissue, ai.
For typical lean tissue composition the absorption spectrum is dominated by blood at shorter
wavelengths, with µa ∼ 1 cm−1 for blue and green light, which drops to µa ∼ 10−3 cm−1

24



CHAPTER 2. INTRODUCTION TO WHOLE ORGANISM OPTICAL IMAGING 25

Figure 2.1: Absorption spectra for melanin [1], fat [2], water [3], and hemoglobin [4]. The
variation in proportion of these chromophores in a tissue sample gives rise to absorption contrast
in brightfield microscopy.

for red and near infrared light, and returns to µa ∼ 1 cm−1 for short wave infrared light due
to increased water absorption. The region of low absorption between 650 nm and 1350 nm is
known as the near-infrared optical window.

Most absorbed energy is dissipated as heat. However, some chromophores emit a new photon
during relaxation from the excited state. This phenomenon is either fluorescence, if allowed by
selection rules, or phosphorescence, if forbidden [9]. It can be represented using a Jablonski
diagram, shown in figure 2.2 for a model chromophore with a ground state, S0, and three
excited states – two singlet, S1 and S2, and one triplet T1. Additionally each electronic energy
level is associated with a manifold of vibrational and rotational (not shown) energy levels.

Under standard biological conditions, all molecules will be in a vibrational level, close to
the ground vibrational level, of S0. A molecule can absorb a photon of appropriate energy to
transition to an excited state. Once excited, the molecule will rapidly relax to the lowest energy
vibrational state of S1 through vibrational relaxation, and internal conversion. Subsequently,
the molecule can fluoresce, decay non-radiatively, or phosphoresce via intersystem crossing.
Phosphorescence is a forbidden transition, and is most common in larger atoms/molecules with
larger atoms where the assumptions underlying the selection rules are not valid [9]. Internal
conversion and vibrational relaxation cause the emission transition to be of lower energy than the
excitation transition. This is known as the Stokes shift, linearly excited fluorphores emit photons
of longer wavelength than that of the excitation light. With the use of spectral filters, the
fluorescence can be separated from the excitation light and imaged – providing rich spectroscopic
contrast, with no background from the much stronger excitation light.

The wavelength of fluorescence depends on the energy level structure of the emitting molecule.
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Figure 2.2: Jablonski diagram of the transitions between the electronic states of a model
molecule – where S0 is the ground state, S1 and S2 are the first and second excited singlet
states, and T1 is the first triplet excited state. Some of the vibrational energy levels associated
with the electronic energy levels are also shown.

Spectrally resolved imaging can therefore be used to identify the locations and densities of differ-
ent molecular species. Many endogenous chromophores fluoresce, such as nicotinamide adenine
dinucleotide phosphate, collagen, and flavins [10]. However, a key advantage of fluorescence
imaging is the ability to use exogenous dyes, and genetically encoded fluorescent proteins.
Chemical labels can be added to samples to bind to specific targets [11]. However, due to tox-
icity, these are generally only appropriate for fixed tissues. Alternatively, fluorescent proteins
can be genetically encoded into the organism, to be expressed alongside the target protein of
the study [12]. Fluorescent proteins can also be used to create biosensers. If two different flu-
orescent proteins are in close proximity (< ∼ 10 nm), an excited “donor” fluorophore emitting
at a shorter wavelength can non-radiatively couple to an “acceptor” fluorophore that emits at
a longer wavelength, transferring the excitation and causing emission at the longer wavelength.
This is Forster resonance energy transfer (FRET) [13], and how efficiently this occurs depends
on the proximity and relative alignment of the fluorescence dipoles. If a biochemical sensor
that changes its conformation upon binding its analyte is placed between the two fluorescent
proteins then the amount of FRET can be used to quantify that process.

2.1.2 Scattering

At optical wavelengths, absorption is a comparatively weak effect; in tissue, the dominant
light-matter interaction is elastic scattering. Optical scattering is caused by refractive index
heterogeneities, which modify propagating wavefronts and reduce imaging quality. The scatter-
ing coefficient, µs, describes the inverse of the scattering mean free path. However, unlike in
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the case of absorption the scattered wave is not removed from the system, and the result of the
interaction – not just its rate – must be considered.

The strength of scattering into a particular direction is described by the phase function,
p(φ, φ′); the probability density function for scattering into direction φ′ from direction φ. For
multiple scattering events in materials with randomly oriented scattering structures, this can
be reduced to the scattering anisotropy parameter, the mean scattering cosine:

g =
∫ π

0
p(θ)cosθ2πsinθdθ, (2.3)

where θ = φ′−φ is the deflection angle. The value of g indicates how significantly the scattering
affects the propagating wave:

g


< 0, backwards scattering,

= 0, isotropic scattering,

> 0, forwards scattering.

(2.4)

If there is predominantly forward scattering, with small angles of deflection, photons will be able
to travel significantly further before having their directions randomised and spatial information
lost. This can be represented by modifying µs to give the reduced scattering coefficient, which
measures the inverse of the transport mean free path, L, defined as:

µ′s = (1− g)µs. (2.5)

Since many cells and microorganisms are approximately spherical, scattering can be mod-
elled by treating tissue as a homogenous ensemble of spherical particles. This physical system
is described by Mie scattering, which is the solution to Maxwell’s equations of a plane wave
incident on a sphere of different refractive index to its medium. This corresponds to Rayleigh
scattering for particles, size r, with a small diffraction parameter; x = 2πr/λ� 1. Mie scatter-
ing results in a reduced scattering coefficient that can be approximated as [14]:

µ′s (λ) ≈ a
(

λ

500nm

)−b
≈ a′

(
fRay

(
λ

500nm

)−4
+ (1− fRay)

(
λ

500nm

)−bMie
)
, (2.6)

where in the first expression, b is the scattering power, which characterises the scattering wave-
length dependence, and a is a normalisation constant. The second expression describes the
scattering as a mixture of Rayleigh-like and non-Rayleigh-like scattering; fRay indicates the
fraction of Rayleigh scattering, and bMie is the non-Rayleigh scattering power. The two repre-
sentations are approximately equivalent for 400–1300 nm.

Table 2.1 shows a compilation of parameters for equation 2.6 from the literature for various
human tissues. Figure 2.3 shows average scattering spectra for soft tissues, such as muscle or
liver; fatty tissues; and fibrous tissues, such as tumour. Each tissue type shows the same trend;
the reduced scattering coefficient monotonically decreases as wavelength increases. At shorter
wavelengths, where the diffraction parameter is smaller, the Rayleigh scattering approximation
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Figure 2.3: Reduced scattering coefficient for a number of tissue types in human, modelled
with Mie scattering approximation, using the values presented in table 2.1 for other soft tissues,
other fibrous tissues, and fatty tissue.

holds and µ′s falls with the fourth power of λ. However, in the Mie scattering regime the
improvements with wavelength are decreased.

The transport mean free path, the limit of ballistic imaging, is the inverse of the reduced
scattering coefficient. Figure 2.4 shows how L varies with wavelength for the tissues modelled in
figure 2.3. Due to the large reduced scattering coefficients, diffraction limited imaging is limited
in tissue to ∼ 1 mm. Beyond this depth, imaging resolution is limited by scattering.

2.1.2.1 Clearing

Optical scattering can be reduced by chemical clearing techniques. This involves reducing
refractive index inhomogeneities by replacing the water in a sample with interstitial fluid of
a higher refractive index, or by changing the composition of tissue components to lower their
refractive index [15]. Although localised clearing of skin can be performed with some agents
without ill effect [16], both methods are incompatible with living cells and organisms, and
therefore systematic clearing is only used for fixed ex vivo tissue.

An ideal clearing method would remove all optical scattering, preserve fluorescence and
morphology, act quickly, have a low cost, and be safe to handle. In practice, any given method
will only have some of these properties, and a compromise must be made for the requirements
of any given study. For mesoscopic samples, the techniques can be broadly grouped as being
based on hyperhydration, hydrogels, or organic solvents.

A mixture of the organic solvents benzyl alcohol and benzyl benzoate (BABB) can be
applied in a two step approach [11]. First dehydration with lipid solvation and then clearing
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a b a′ fray bmie

Skin

Mean: 50 1.4 50 0.4 0.7
SD: 10 0.5 10 0.2 0.4

Brain

Mean: 20 2 30 0.3 1
SD: 10 1 10 0.4 1

Breast

Mean: 17 1.1 19 0.3 0.7
SD: 8 0.8 7 0.3 1

Bone

Mean: 23 0.7 15 0.02 0.3
SD: 15 0.7 8 0.03 0.3

Other soft
tissues

Mean: 20 1.3 20 0.2 1.1
SD: 10 0.5 10 0.2 0.5

Other
fibrous tissues

Mean: 27 1.6 29 0.5 0.6
SD: 5 0.1 5 0.3 0.6

Fatty tissue

Mean: 18 0.7 19 0.2 0.4
SD: 9 0.2 9 0.1 0.3

Table 2.1: Compilation of scattering parameters for human tissue [14]
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Figure 2.4: Transport mean free path for a number of tissue types in human, modelled using
Mie scattering approximation, using the values presented in table 2.1 for other soft tissues, other
fibrous tissues, and fatty tissue.

by refractive index matching. The necessary clearing protocol can be undertaken in a day, but
it does not preserve fluorescent proteins. Better preservation of fluorescence can be achieved
using BABB derivative methods using tetrahydrofurane [17], and by dehydrating with larger
alcohols [18]. Better transparency can be achieved using dibenzyl ether instead of BABB, as used
in the 3DISCO (three-dimensional imaging of solvent-cleared organs) family of methods [19–22],
which variously preserve fluorescent proteins [19,20,22], sample morphology [21], and can clear
whole rats [22].

A number of urea based acqueous reagents can clear samples over weeks and better preserve
fluorescent signal. These include Scale [23], and its development CUBIC (clear unobstructed
brain imaging cocktails and computational analysis) [24], which alleviates some of the swelling
produced by Scale. The last family of techniques clear samples by replacing lipid bilayers with
a hydrogel scaffold. CLARITY (clear lipid-exchanged acrylamide-hybridized rigid imaging/im-
munostaining/in situ hybridization-compatible tissue-hydrogel) renders the sample permeable
to both photons and macromolecules [25] – enabling multiround phenotyping.

2.2 Fluorescence Microscopy

Optical microscopy has been limited, historically, to thin samples [26] – by both the inability
to reject out-of-focus signal, and from the loss of spatial information due to optical scattering
(figure 2.5a). Imaging of three dimensional samples has become possible due to developments in
controlling illumination and rejecting both scattered and out-of-focus light. Confocal microscopy
combines point illumination and detection to produce sectioned images of 3D samples [27] (figure
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a b c

d e

Figure 2.5: (a) Epifluorescence widefield microscope with the depth of field (DOF) set to
cover the sample. Fluorescence is emitted by the whole sample. Each camera pixel measures
fluorescence from a column of the sample, causing all depth information is lost. (b) Confocal
microscope. Fluorescence is restricted in the sample by pinhole illumination. Only ballistic
photons from the focal plane are efficiently admitted to the photomultiplier tube (PMT) by
the pinhole. (c) Multiphoton laser scanning microscope. Fluorescence is restricted to the focal
volume, removing the need for a pinhole. (d) Selective plane illumination microscope (SPIM).
The sample is optically sectioned by illuminating the focal plane with a light sheet. (d) OPT.
A widefield microscope can be adapted for 3D imaging by mounting the sample on a rotation
stage.
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2.5b). Only photons emitted from the focal point of the illumination and detection are efficiently
admitted by a pinhole located in front of the detector, so scattered photons and those not from
the focal volume are suppressed in the measured signal. Multiphoton laser scanning microscopy
exploits the optical window in the near infrared to reach greater depths [28]. The illumination
intensity is only high enough for multiphoton excitation at the focal spot of the illuminating
laser – so no pinhole is required to section the emitted light, and emitted photons that are
scattered can contribute to the signal (figure 2.5c).

Laser scanning techniques can use relatively high peak intensity during imaging, and confocal
microscopy excites out-of-plane fluorophores whose fluorescence is subsequently rejected, which
accelerates photobleaching. Furthermore, reactive chemical species created during excitation
can damage live cells, a process called phototoxicity. Selective plane illumination microscopy
(SPIM) illuminates the sample with a light sheet coincident with the focal plane — so that only
areas being imaged are illuminated [29] (figure 2.5d). OPT uses low peak intensity widefield
illumination and detection – separating depth information by acquiring projections at many
angles [11] (figure 2.5e).

2.2.1 Laser scanning microscopy

The utility of standard widefield microscopy with three dimensional samples is limited by the
background of out-of-focus light – restricting imaging to monolayer cell cultures and physically
sectioned tissues. Confocal microscopes use pinhole detection and point illumination to reject
photons that do not come from the focal volume. By rejecting out of focus signal, the confocal
microscope is able to optically section the sample with a typical axial resolution of around
0.8 µm [27]. Images are acquired by raster scanning the laser across the sample, recording the
intensity with a point detector. Three dimensional images are produced by repeating this process
at different focal planes. Imaging depth is limited by optical scattering of the fluorescence on
the way out of the sample, and also of the illumination on the way in. Confocal microscopy
cannot normally image deeper than 50 µm into tissue [27].

Although capable of imaging three dimensional samples, confocal microscopy’s imaging
depth is limited by scattering and absorption, which degrade resolution and contrast [30]. This
challenge can be addressed by multiphoton laser scanning microscopy, which exploits the ob-
servation that µa and µs are smaller in the NIR than for visible wavelengths. Short-pulse
high-power NIR lasers can produce sufficient intensity for nonlinear excitation in the focal re-
gion, which can be used to excite visible fluorophores [28]. Significant excitation only occurs
at the focal volume, so multiphoton-excited fluorescence images are directly sectioned. This
removes the need for a pinhole, dramatically increasing efficiency. Since optical scattering only
affects the precision of excitation, scattered emission photons can contribute to the signal, as
their source is still known to be the focal point. Limiting excitation to the focal point also
significantly reduces out-of-plane phototoxicity. However, the efficiency of multiphoton excita-
tion is much lower than single photon excitation and so laser scanning multiphoton microscopy
imaging is relatively slow.

Laser scanning techniques usually interrogate the sample one pixel at a time – limiting
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imaging speed. Spinning disk confocal microscopy parallelises the process by using an array
of pinholes, instead of one, imaged onto a pixelated detector [31]. The pinholes are spaced far
enough apart that cross talk is minimised. The array of pinholes are on a rotating disk and
placed so that every position in the field of view (FOV) is interrogated at some point in time.
Multiphoton microscopy can also be implemented by scanning multiple excitation beams [32].

2.2.2 Selective plane illumination microscopy

Confocal and multiphoton microscopy can image three dimensional samples. However, both
techniques illuminate parts of the sample that do not contribute to the image; the photon
efficiency is low because of the collection pinhole and inefficient excitation, respectively. Also,
in confocal microscopy phototoxicity is induced in regions not being imaged. Selective plane
illumination microscopy (SPIM) produces 2D optical sections by selectively illuminating the
sample, and imaging the resulting fluorescence onto a camera [29]. The sample is illuminated
with a sheet of light, with the imaging optic axis normal to its plane. Excitation is restricted to
the illuminated plane, creating an optically sectioned image. SPIM is significantly faster than
laser scanning methods; in confocal microscopy each pixel has an integration time of one to ten
µs, so a 1000 by 1000 pixel image will take one to ten seconds compared to a tenth of that for
SPIM [33]. Illumination is spread across a sheet, which reduces the peak intensity, and therefore
the phototoxicity. Furthermore, only parts of the volume that are currently being imaged are
ever illuminated – minimising phototoxicity, and allowing for extended time series studies [34].

2.2.3 Optical projection tomography

SPIM illuminates efficiently by only exciting single planes. Tomographic methods use conven-
tional widefield illumination, and gain efficiency from using all the signal integrated through
the sample. OPT reconstructs a three dimensional sample from a series of two dimensional
projections.

Unlike SPIM, OPT uses widefield illumination. Therefore, image quality is not limited by
the ability to propagate the light sheet through the sample, which can be degraded by optical
scattering and places constraints on system and sample geometry. This allows for the imaging of
larger samples, such as adult zebrafish [35]. Widefield illumination also reduces the requirements
on the excitation sources, and illumination optics. So three dimensional microscopy systems may
be implemented at lower cost using OPT, compared to laser scanning microscopy or SPIM [36].
It is also possible to implement OPT on conventional microscope stages adapted for OPT [37].
Developments in OPT will be discussed further in chapter 3.1.

2.3 Whole organism imaging

A number of model organisms have emerged as popular subjects for biological studies, including
imaging. Important qualities are optical accesibility, fecundity, development time, whether that
development is internal or external, cost of maintenance, physiology, and homology for disease
models. The general trend follows that the homology of a model to humans improves at the
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detriment to other qualities. The development of 3D microscopy techniques has stimulated
studies in (nearly) transparent organisms such as nematode worms and zebrafish, although
preclinical imaging is still dominated by mouse models of disease.

The nematode worm Caenorhabditis elegans (C. elegans) is a multicellular eukaryote with a
number of attractive features for optical imaging. They are microscopic, even into adulthood –
on the order of a mm long and 50 µm across [38] – and are transparent. The species is eutilic;
every wildtype C. elegans of the same sex has an identical cell lineage – the development of
which has been mapped from zygote to a final adult count of 1031 cells for males, and 959 for
hermaphrodites [39, 40]. The consistency of cell lineage makes C. elegans an attractive choice
for developmental studies. During its early stages, embryogenesis can be adequately imaged by
confocal microscopy [41,42]. Light sheet microscopy has been applied to late stage embryo and
larval development, for its impovements in imaging speed and reduced phototoxicity [43] and
potential for isotropic resolution [44].

The similarity between members of the species provides excellent statistical robustness for
high-throughput studies. Additionally, the rapid generation time of 3 days to adulthood allows
for vast populations to be produced for imaging. For example, a system has been built from
photograph scanners that is capable of monitoring 30000 organisms in 2D to track survival
curves under different conditions [45].

Eutely of C. elegans extends to their nervous system, which totals 302 neurons for herma-
phrodites [46] and 385 for males [47]. Their simple neural circuitry, and slow movement speed
makes them an attractive model for imaging while freely behaving [48,49]. In Nguyen et al. [48],
the sample is tracked with low magnification imaging, which is used to adjust the stage position
to keep the brain within the FOV of a spinning disk microscope. Alternatively, the sample can
be manipulated into a desirable imaging position using microfluidic devices [50,51].

C. elegans’ transparency, small size, eutely, and rapid generation time make it an ideal
candidate for certain studies. However, they lack a circulatory system, respiratory system,
liver, pancreas, or blood, which precludes them from many others. An alternative vertebrate
model organism is Danio rerio (zebrafish). Similarly to C. elegans, zebrafish develop externally
and rapidly – reaching larval stage in 3 days, and breeding age in 90 – and are transparent for
the first weeks of development [52]. They have the advantage of being vertebrates, with greater
homology to humans; they also possess a liver, pancreas, and circulatory system.

The transparancy and external development of the zebrafish embryo makes it a useful model
for vertebrate developmental biology. Embryogenesis has been imaged over the course of a day
using the first digital light sheet microscopy [34], which benefited from low phototoxicity and
high speed compared to confocal imaging. Light sheet microscopy has also been used to acquire
time lapse 3D images of the development of vasculature in the larvae [53], and videos of the
beating heart [54].

Slower processes, such as neural development, have been imaged using confocal microscopy
[55]. Conversely, neural activity imaging in freely behaving larvae requires fast imaging with a
mobile FOV to keep up with their 200 mm s−1 movement. This has been studied in 3D using
structured illumination [56].
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OPT can be applied to single time point or low temporal resolution time series measurements
to provide anatomical contrast from transmission images. For example, for imaging immune
system response [37, 57, 58], and organogenesis of the brain taken at 10 minute intervals from
16 to 38 hours post fertilisation [59]. The rapid generation time of zebrafish has been leveraged
by creating 3D imaging flow cytometry for high content screening, based on OPT [60] and
SPIM [61].

For some disease types the lack of mature immune system and vasculature make zebrafish
embryos a less suitable choice. For example, the immune system forms a critical component
of the tumour microenvironment interaction. Without it, immunotherapies and anti-cancer
drugs that act on the immune system cannot be studied. Mus musculus (mouse) models are
a common choice for cancer studies [62]. However, their large size and opacity limits in vivo
fluorescent imaging to localised intravital imaging [63,64], or low resolution diffuse tomography
[65]. Pre-clinical versions of clinical imaging modalities can be used for system wide 3D imaging,
but cannot use genetically expressed labels [66]. Photoacoustic tomography can produce high
resolution images deep in scattering tissue using fluorophores for contrast [67]. However, it
does not have the same degree of specificity as fluorescence imaging; it collects signal from all
absorption, the contrast of which is dominated by the chromophores discussed in section 2.1.1.

The difficulty of murine imaging has played a part in the development of zebrafish as a cancer
disease model – the greater part being their high fecundity and their rapid, transparent and
external development simplifying and accelerating compound screening [68]. Zebrafish are less
homologous with humans than mice – sharing 70% and 83% of protein coding genes respectively
– but still possess over 80% of disease related genes, indicating suitability for disease models
including cancer [69].

Zebrafish lose their transparancy as they develop into adulthood. Their eponymous pig-
mentation pattern, composed of black melanophores, reflective iridophores, and yellow xan-
thophores, starts to develop two weeks after fertilisation [70]. Several mutants have been de-
veloped to remove these chromatophores and enable in vivo imaging into adulthood. Casper
zebrafish, are double mutants that combine the roy orbinson mutation – which lacks iridophores
– and the nacre mutation – which lacks melanophores [71]. The TraNac mutant similarly com-
bines roy orbison with the transparent mutation, which leads to a lack of iridophores [72]. The
Casper mutant has been further combined with albino mutants to stop melanin production in
non-melanophore cells, such as the retinal pigment epithelium [73].

Imaging of non-pigmented adults has been mostly limited to 2D epifluorescence longitudinal
imaging [74–77], or localised confocal or multiphoton imaging [76, 78, 79]. The work in this
thesis focuses on the development of OPT for 3D imaging of these models in vivo and in toto.



Chapter 3

Optical projection tomography

OPT is the optical analogue of X-ray computed tomography [11]. 2D projections of a sample are
acquired at a number of angular positions, which are then used to reconstruct its 3D structure.

With the addition of a rotation stage, a widefield microscope can perform tomography
on transparent samples to measure 3D structure. A model system is shown in figure 3.1.
The sample is mounted on a rotation stage and illuminated with widefield illumination in
transmission or fluorescence geometry. The transmitted or emitted fluorescence photons are
imaged onto a camera. These minimal requirements make OPT relatively low-cost, simple to
implement, and readily scalable to a variety of sample sizes.

This chapter begins with a description of developments and applications of OPT in section
3.1. Next the theoretical basis of parallel computed tomography, and how it must be adapted
when working with optical wavelengths is described in sections 3.2 and 3.3, respectively. Section
3.4 describes two OPT implementations. The end of the chapter, section 3.5, explains how
compressive sensing can be used to accelerate OPT data acquisitions.

3.1 Developments and applications of optical projection tomog-
raphy

OPT can be used to reconstruct the 3D distribution of a number of different contrast mecha-
nisms in weakly scattering samples, from microscopic to over a cm in size. Optical wavelength
computed tomography developed originally as optical-CT [80], a technique applied to verify-
ing radiotherapy treatment plans in gel dosimetry phantoms. The original systems passed a
focused laser through the sample and measured the attenuation of the beam with a photode-
tector [80, 81]. The sample was mechanically scanned to build up a full projection. Pixelated
detectors were incorporated into these systems to remove the need for scanning and shorten
acquisition times [82–84]. OPT developed from optical-CT with the application to cleared, flu-
orescent samples; the technique was first applied to image the 3D fluorescence and absorption
distribution of a fixed and cleared mouse embryo [11]. It has since been applied to a wealth of
other fixed and cleared tissues, and developed for in vivo applications.

For ex vivo applications, OPT offers an alternative method to serial sectioning for pheno-

36
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Figure 3.1: Model OPT system. The sample can be illuminated in transmission for absorption
measurements, or with excitation light for fluorescence imaging. Illumination from source S
is focused onto diffuser D by lens L1, and collimated by condenser L2. The transmitted light
or emitted fluorescence is imaged onto a camera by lenses L3 and L4, via emission filter F .
An adjustable aperture stop, AP , is placed in the back Fourier plane of L3 to give telecentric
imaging. The size of AP is set such that the DOF covers half the depth of the sample. The
sample is mounted on a rotation stage, so that 2D projection images can be acquired at a
number of angular positions.

typing and histology in 3D. The sample can be imaged while being kept intact, avoiding serial
sectioning artifacts and sample destruction. OPT has been applied to imaging fixed and cleared
samples of human embryos [85] and tumours [86, 87], Drosophila [88], chicken embryos [89],
zebrafish embryos [90], mouse pancreas [91] and brain [92], various rat organs [93], and the
reptilian heart [94].

The developments in OPT from the standard method can be broadly grouped into com-
putational and optical innovations. These have the goals of removing reconstruction artifacts,
producing improved contrast, overcoming the resolution compromise (section 3.3), and neces-
sary improvements for in vivo applications. Common artifacts can be removed by accounting
for variable illumination, hot pixels, refractive index mismatch and rotation axis misallign-
ment [95–97]. Computational methods have also been developed to incoorporate the effects of
diffraction and absorption into the reconstruction algorithm, either as a deconvolution filter to
reduce blurring [98–100], to improve quantitativeness [101, 102], or to reject streak artifacts as
unphysical – accelerating the acquisition [100].

Imaging speed is one of the important innovations needed for in vivo imaging, where anaes-
thetic tolerance, phototoxicity, and photobleaching are all important. Iterative compressed
sensing [72] and ordered subsets expectation maximization reconstruction [103] algorithms have
been applied to reconstruct OPT data taken with fewer angular projections than needed by
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filtered back projection (FBP) (section 3.5).
Imaging speed and resolution have also been improved by increasing the light collection

efficiency with higher NA OPT methods; a good approximation to parallel projection can be
achieved with pseudo-projections produced by focal scanning [104–106] and angularly multi-
plexed imaging [107, 108]. Focal scanning OPT was originally applied to fixed cells [104], and
large scan ranges were achieved on zebrafish embryos using remote refocusing [105]. The fo-
cally swept modulation transfer function is dominated by low spatial frequencies, which can
be corrected for using a deconvolution filter [106]. Angular multiplexing [107] – creating
pseudo-projections from simultaneously acquired shorter DOF projections focused on shifted
focal planes – has been applied to even larger adult zebrafish. The technique also enables cell
tracking [109]. Higher collection efficiencies have also been achieved by using laser scanning
optical-CT with fluorescence imaging in scanning laser optical tomography (SLOT) [110].

Larger in vivo samples, such as adult zebrafish, also suffer from greater optical scattering
[111]. This can be mitigated for transmission measurements by time-gating ballistic photons
[112,113], and in general using slice-illuminated OPT [6]. Applications of in vivo OPT include
imaging of Drosophila [114,115], the developing mouse embryo [116], zebrafish embryos [57,117,
118] and adults [6, 103,107,108] and – by correcting for sample motion – C. elegans [119,120].

OPT has been combined with FLIM [57, 100, 117] and speckle analysis [121] for greater
functional contrast. Others have improved the dynamic range of OPT [122, 123]. Alternative
OPT configurations have been developed for high throughput, based on flow cytometry, using
phase [124] and transmission contrast [60]. A low-cost configuration has also been created as a
microscope frame insert, reducing the marginal cost of 3D imaging for biology labs [118].

3.2 Parallel projection and tomographic reconstruction

In OPT a 3D object is reconstructed from a set of 2D projections acquired at different angles.
This can be understood by examining the forward process of projection, and how that leads
to a method of backprojection. Before introducing optical effects it is instructive to explore an
idealised 2D system with perfect imaging [125]. Consider the parallel projection p(t, θ) of a 2D
object f(y, z) at an angle θ to the y axis, as shown in figure 3.2:

p(t, θ) =
∫ ∞
−∞

f (tcos (θ)− ssin (θ) , tsin (θ) + scos (θ)) ds, (3.1)

where (t, s) describe a coordinate system at an angle θ to (y, z):t
s

 =

 cos (θ) sin (θ)
−sin (θ) cos (θ)

y
z

 .
The transformation of the object to a set of angular projections is called the Radon transform,
and is inverted with a process called filtered back projection (FBP), or the inverse Radon
transform.

To see how the object can be recovered, consider the 1D Fourier transform of a projection:
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Figure 3.2: The central slice theorem. (a) A 2D object f(y, z). (b) A projection of f(y, z) along
direction s onto an axis t at an angle θ to y, p(t, θ). (c) The Fourier transform, P (kt, θ), of
p(t, θ) is equivalent to the central slice of (d), the object’s 2D Fourier transform, F (ky, kz), at
an angle θ to ky.

P (kt, θ) =
∫ ∞
−∞

p (t, θ) e−2πikttdt

=
∫ ∞
−∞

∫ ∞
−∞

f (t, s) e−2πikttdsdt. (3.2)

If we compare this to the 2D Fourier transform of the object,

F (ky, kz) =
∫ ∞
−∞

∫ ∞
−∞

f (y, z) e−2πikyye−2πikzzdzdy

=
∫ ∞
−∞

∫ ∞
−∞

f (tcos (θ)− ssin (θ) , tsin (θ) + scos (θ)) e−2πiksse−2πikttdsdt, (3.3)

it can be seen that equation 3.2 is equivalent to the ks = 0 slice through Fourier space:

F (ktcosθ, ktsinθ) = P (kt, θ) . (3.4)
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Equation 3.4 is a statement of the central slice theorem [126]; each projection samples a
rotated slice in the object’s 2D Fourier space, as shown in figure 3.2. F (ky, kz) can be fully
sampled by acquiring projections at sufficient slice angles. The object can then be reconstructed
with an inverse Fourier transform:

f (y, z) = 1
2π

∫ ∞
−∞

∫ ∞
−∞
P (kt, θ) e2πikyye2πikzzdydz (3.5)

= 1
2π

∫ π

0

∫ ∞
−∞
P (kt, θ) e2πiktcosθye2πiktsinθz |kt|dktdθ, (3.6)

To reconstruct the object, its Fourier space must be fully sampled. This is achieved when
the rotation between angular projections, θmin, is small enough that F(kmax, kmin) is covered
as shown in figure 3.3, where kmax = 1/ (2r) – where r is the resolution of the system – and
kmin = 1/Nr – where N is the number of resolution elements across the FOV. This sets the
minimum number of projections at

Nθmin = 2π
θmin

= 2πkmax
kmin

= πN. (3.7)

If the highest spatial frequencies are adequately sampled, all the lower spatial frequencies
will be over sampled. To fix this over-sampling, a ramp filter, w = |kt|, is applied to the
projections before back projection – which can be seen appearing in equation 3.6 after the
change in coordinates. However, this filter will also amplify high spatial frequency noise. Hann,
Hamming, and other windows can be applied to this filter to reduce this effect [127].

Figure 3.3: To adequately sample the object, the angular separation between projections must
be small enough that the slices through Fourier space cover all points.

For parallel projections, equations 3.1-3.4 are trivially extended to 3D objects, f(x, y, z),
with x as the axis of rotation:
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
x

t

s

 =


0 0 1

cos (θ) sin (θ) 0
−sin (θ) cos (θ) 0



x

y

z

 . (3.8)

Each plane of constant x can be treated as a separate 2D reconstruction problem.

3.3 Optical projection tomography

OPT is the implementation of computed tomography with optical wavelengths [11]. Compared
to X-ray computed tomography, OPT has the advantage of rich anatomic and functional spec-
troscopic contrast, both from absorption and fluorescence. OPT is also more readily applied
to microscopic and mesoscopic samples, due to the ubiquity of appropriate pixelated detectors
and focusing optics. However, radiation at optical wavelengths undergoes stronger diffraction
and optical scattering, which must be considered if the assumption of parallel projection is to
hold.

To approximate parallel projection, the DOF of the imaging system must extend through the
whole sample. This creates a trade-off between sample size and spatial resolution. According to
the Rayleigh criterion, two points can be resolved if the maximum of the point spread function
of the first coincides with the first minimum of the second. For an Airy disk point spread
function, at the focal plane this limiting distance is given by [128]:

rairy = 0.61λ
NA

, (3.9)

where λ is the wavelength of the imaged light, and NA is the numerical aperture of the imaging
system. The DOF is given by [129]

DOF = nbath

(
nλ

NA2 + n

MNAe
)
, (3.10)

where M is the lateral magnification of the imaging system, nbath is the refractive index of
the sample medium, and e is the pixel size of the CCD. These equations show the trade off
between resolution and sample size in OPT; imaging a larger sample requires a larger DOF,
which in turn requires a smaller NA, a result of which is reduced resolution. As a compromise,
an NA is chosen that produces a DOF to cover only the front half of the sample. With this
configuration a good approximation to parallel projection is achieved by combining projections
acquired at 180◦ to one another, which are projections in the same direction but with DOFs
covering different halves of the sample.

Achieving parallel projection puts further restraints on the optics and sample. Firstly, the
imaging optics must be telecentric so that the magnification is constant across the DOF. This
is achieved by placing the aperture in the back focal plane of the objective, which ensures that
the chief rays of objects within the depth of focus are approximately parallel to the optic axis.
Secondly, optical scattering should be negligible, so OPT is typically applied to samples that
are optically cleared or inherently transparent.
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3.4 Example optical projection tomography systems

Two fluorescence OPT systems were developed in the configuration shown in figure 3.1. One
of these used light emitting diode (LED) illumination, the other used a bank of laser diodes
coupled into a multimode fibre.

3.4.1 Light emitting diode based optical projection tomography system

An LED based OPT system was built to image three-dimensional samples in the mm to cm
range. LED radiation at 470 nm, 660 nm, and 730 nm (Multiline, Cairn) was spectrally filtered
(480/30x, 655/30m, and 720/60m, Chroma) and collimated with lenses L1 (G063208000, f =
40 mm, Linos) and directed to illuminate the sample. The sample was suspended into an in-
house built octagonal cuvette – with windows normal to the excitation and imaging axes – filled
with deionised water, for water based samples, or benzyl alchohol benzyl benzoate (BABB),
for cleared samples. The sample was attached to a stepper motor (NM08AS-T4, Zaber). The
motor was mounted on a 6-axis gantry for alignment. Fluorescence, selected using emission
filters (535/40m, 705/30m, and 810/90m, Chroma) placed in a sliding mount (CFS1ND/M,
Thorlabs), was imaged with a commercial 0.5x magnification telecentric lens (TL) with an
adjustable aperture (TECHSPEC SilverTL, Edmund Optics) onto a 1360x1024 6.45x6.45 µm
pixel charge-coupled device (CCD) camera (R1, Q-imaging). For most aperture settings the
system was pixel limited; the pixel size was too great to achieve Nyquist sampling of the image.
This sets the resolution to two times the pixel size at the sample; 25.8 µm.

3.4.2 Laser diode optical projection tomography system

A laser diode based OPT system was built to image three-dimensional samples in the mm to
cm range. Multimode fibre coupled laser radiation at 638 nm, 525 nm, 465 nm, and 555 nm
(MultiLine LaserBank, Cairn) was spectrally filtered (432/36, 631/36, 554/23, 510/20, 445/45),
focused onto a holographic diffuser (ED1-C50, Thorlabs), collimated by a fresnel lens (FRP251,
Thorlabs), and directed to the sample to produce widefield illumination. Laser speckle was
averaged out by vibrating the multimode fibre. The emitted fluorescence was spectrally filtered
(474/27, 535-50, 708/75, 609/54, 540/15, 500/24) and imaged with a 1x telecentric lens (58-430;
Edmund Optics) with a 5 mm DOF, onto a scientific complementary metal-oxide-semiconductor
(sCMOS) camera (Zyla 5.5, Andor Instruments).

3.4.3 Acquisition and reconstruction

Control of an OPT system requires two components; a process for alignment, and a process for
acquisition. From equation 3.8 the rotation axis is defined as parallel to the x axis, and runs
through the centre of the FOV. If this is not the case, the results of FBP will be incorrect; if
the error is small the reconstruction will be blurred, for larger shifts the reconstruction will be
corrupted by ring artifacts. To ensure this condition is met, a high contrast test object (such
as an Allen key or bent needle) is imaged, rotated 180◦, and imaged again. If the effects of
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a b

c d

Figure 3.4: Images produced by alignment script for different alignment states. The rotation
axis is horizontal. The image of the object rotated to 0◦ and the vertically flipped image of
the object rotated to 180◦ are shown in red and green, respectively. The colour variations of
the background are due to uneven illumination, which is not important for alignment of the
rotation axis. (a) System aligned. (b) Rotation axis shifted in the image plane, creating red
and green borders. (c) Tilt of the rotation axis in the image plane, causing a rotation between
the two channels. (d) Tilt of the rotation axis out of the image plane, visible as a translation
in the y axis for parts of the object away from the rotation axis (x, y) plane.

diffraction, noise, uneven illumination, object opacity are ignored, these two images should be
identical – mirrored in the x axis. Any mismatch in position or orientation of these images
shows that the axis of rotation and the pixelated detector are not aligned (figure 3.4).

For the OPT data acquisition, the sample is rotated to a set of angular positions and 2D
projection images are captured at each. Figure 3.5a shows an (x, t) 2D projection from an
(x, t, θ) ex vivo fluorescence OPT data set of a fixed and cleared mouse pancreas in which the
beta cells are labelled with a fluorescent dye, acquired with the LED based OPT system. As
described in section 3.2, each (t, θ) cross section or “sinogram” can be reconstructed separately.
An example sinogram is shown in figure 3.5b – so called because each point in the object projects
a sinusoidal trajectory when rotated. The sinogram is the Radon transform of the (y, z) slice
of the sample volume, which can be reconstructed using FBP (figure 3.5c).

This process is repeated for each (t, θ) sinogram to reconstruct the entire volume of the
sample. Figure 3.6a shows a 3D reconstruction of a cm sized mouse pancreas volume recon-
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a

b

c

Figure 3.5: Demonstration of reconstruction of a slice from a typical OPT data set – the mouse
pancreas, showing beta-cells labelled with guinea pig anti-swine insulin antibody and Alexa 594
goat anti-guinea pig antibody. (a) An (x, t) projection from an OPT data set. (b) The (t, θ)
sinogram from the column of pixels indicated in (a). (c) FBP reconstruction of that slice of the
sample. Scale bar 1 mm
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a

b

Figure 3.6: 3D reconstructions of cm sized samples acquired on different OPT systems. (a)
Mouse pancreas, showing beta-cells labelled with guinea pig anti-swine insulin antibody and
Alexa 594 goat anti-guinea pig antibody in red and autofluorescence in green. (b) Ovary
biopsy, showing vasculature labelled with anti-CD34 rabbit monoclonal antibody and Alexa
488 anti-rabbit antibody in green. Scale bar not shown because these visualisations are renders
incorporating perspective.
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structed from OPT acquired on the LED based system. The pancreas was prepared following
the protocol as described in [130]; the beta-cell mass of the whole fixed mouse pancreas was
labelled with guinea pig anti-swine insulin antibody and Alexa 594 goat anti-guinea pig anti-
body. It was mounted in 2% agarose, dehydrated in increasing concentrations of methanol up to
100% and subsequently chemically cleared in a 1:2 mixture of benzyl alcohol: benzyl benzoate.
Labelled fluorescence excitation was provided by the 660 nm LED, and the emitted fluorescence
was spectrally selected with the 705 ± 15 nm emission filter. Autofluorescence excitation was
provided by the 470 nm LED, and the emitted autofluorescence was spectrally selected with the
535± 25 nm emission filter. 400 equally spaced projections were acquired over a full rotation.

Figure 3.6b shows a 3D reconstruction of a cm sized ovary biopsy volume reconstructed
from OPT acquired on the laser diode based system. The sample was prepared as follows:
the vasculature of the fixed sample was labelled with anti-CD34 rabbit monoclonal antibody
and Alexa 488 anti-rabbit antibody. It was mounted in 2% agarose, dehydrated in increasing
concentrations of methanol up to 100% and subsequently chemically cleared in a 1:2 mixture of
benzyl alcohol: benzyl benzoate. Labelled fluorescence excitation was provided by the 470 nm
LED, and the emitted fluorescence was spectrally selected with the 535± 20 nm emission filter.
1280 equally spaced projections were acquired over a full rotation.

3.5 Compressive sensing

If fewer projections are acquired than required by equation 3.7, FBP of the undersampled
projection data set will produce reconstructions corrupted by streak artifacts (figure 3.7c, and
3.7e). If the angular separation between projections is too large, their corresponding slices in
Fourier space (figure 3.3) will have gaps between them, resulting in a star-like Radon sampling
pattern (figure 3.7d, and 3.7f).

In most circumstances, undersampling artifacts produce ambiguities in measurement; for
example undersampling in the spatial domain will cause high spatial frequency signals to be
aliased into low spatial frequencies, and undersampling in Fourier space will cause identical
copies of the true signal to be aliased to different locations. However, this is not what is seen
when undersampling the Radon transform; although the streak artifacts significantly degrade
image quality, they do not form ambiguous copies of the correct data.

The difference between archetypal aliasing and what is seen in the case of the Radon trans-
form is caused by the coherence of the undersampling. Figure 3.8 shows a sample slice recon-
structed from a quarter of its Fourier components, which are chosen using different sampling
strategies: in the first the spatial frenquencies are sampled at equal intervals, in the second they
are sampled randomly, and in the final example an approximation to the Radon star-shaped
sampling pattern is used. The slice reconstructed from equispaced components is corrupted
with archetypal coherent aliasing artifacts, whereas in the case of random sampling the aliasing
artifacts are incoherent and have the appearence of random noise, rather than ambigious copies.
This re-casts the ill-posed problem of guessing at missing information, to a de-noising problem.
Although more structured than the random sampling case, the Radon sampling pattern also
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Figure 3.7: Demonstration of streak artifacts on slices reconstructed from too few angular
projections. (a) Slice reconstructed from 400 projections. (b) An approximation to the Fourier
sampling pattern for 400 projections. (c) Slice reconstructed from 80 projections. (d) An
approximation to the Radon Fourier sampling pattern for 80 projections. (e) Slice reconstructed
from 40 projections. (f) An approximation to the Radon Fourier sampling pattern for 40
projections. Scale bar 1 mm
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Figure 3.8: Aliasing artifacts produced by different Fourier space sampling strategies. (a)
Equispaced sampling mask, magnified to reduce display artifacts. (b) Reconstructed image from
equispaced undersampling strategy, which produces ambigious coherent aliasing artifacts. (c)
Random sampling mask. (d) Reconstructed image from random undersampling. The aliasing
artifacts are incoherent – giving the appearance of random noise. Due to the object’s gradient
sparsity, the strongest gradients are visible above the noise floor, which will form the starting
point for denoising based recovery. (e) An approximation to a 92 projection Radon sampling
mask. (f) Reconstructed image from Radon sampling strategy. Although the noise does not
have a random appearance, the aliasing artifacts are not coherent and not ambigious. Scale bar
1 mm
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does not produce coherent aliasing artifacts and can be treated in the same way.
Compressive sensing (CS) is a signal processing technique that exploits this effect to recover

a sparse signal recorded with an undersampled measurement [131,132]. As long as the original
signal is sparse (compressible in some basis) the true signal can be distinguished from the
incoherent aliasing artifacts, and recovered with an iterative denoising algorithm.

The undersampled forward moded can be described by:

Y = RX + noise, (3.11)

where Y is the length M measurement corrupted by noise, R is the M ×N forward operator –
and X is the length N sparse signal to be estimated. For M < N the system of linear equations
is underdetermined, and there are infinite solutions. In CS a sparse solution is sought by solving
the optimisation problem

minimiseX
1
2 ‖Y −RX‖

2
2 + τΦ(X), (3.12)

where the first term is the l2 norm of the residual, τ is the regularisation parameter and Φ is the
regularisation functional, which measures the sparsity. If X itself is sparse, this will be the l1
norm. For image recovery, gradient sparsity can be used [132]. In that case the total variation
functional is

ΦTV (X) =
∑
i

√(
DH
i

)2 +
(
DV
i

)2
, (3.13)

where DH
i and DV

i are horizontal and vertical gradients of X at pixel index i.
Equation 3.12 can be solved using iterative shrinkage thresholding (IST) [133]:

Xt+1 = Ψτ (Xt +RT (Y −RXt)/w), (3.14)

where RT is the adjoint operator of R, and w is a relaxation parameter. RTY is the noisy
first estimate of X, from which the incoherent artifacts predicted for the current estimate are
subtracted; RTRXt. This reveals smaller peaks – and their incoherent patterns – previously
obscured by the artifacts of the larger peaks. These are then added to the current estimate, Xt,
before thresholding is performed by the sparsifying operator, Ψτ .

The choice of sparsifying operator depends on the particular application. For l1 regularisa-
tion problems Ψτ is the soft thresholding functional:

Ψτ (x) =


0, for |x| ≤ τ

x− τ, for x > τ

x+ τ, for x < −τ,

(3.15)

where x is an element of X. For image processing tasks using total variation regularised recon-
struction, Ψτ (X) is a total variation denoising iterative algorithm, which solves [134]:

minimiseX
1
2 ‖X −X0‖22 + τΦTV (X), (3.16)
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Figure 3.9: Demonstration of compressive sensing reconstruction. (a) Slice reconstructed from
80 angular projections using FBP. (b) Slice reconstructed from 80 projections using IST.

where X0 is the noisy input data.
For the specific case of CT: Y is the measured sinogram, R and RT are the Radon and

inverse Radon transforms, and X is the slice. Due to interpolation between cartesian and
polar coordinates, the Radon transform is non-unitary. As a result, w must be set to O(10)
to ensure convergence. Figure 3.9 shows an undersampled slice reconstructed with FBP and
with 200 IST iterations, with τ = 0.001. The iterative method is able to remove the streak
artifacts and significantly improve the reconstruction quality. Compressed sensing has many
other applications [135], and will be applied to reconstructing single-pixel camera data in chapter
8.



Chapter 4

Optimisation of angularly
multiplexed optical projection
tomography

4.1 Introduction

As discussed in chapter 2.3, adult zebrafish are a promising model for in vivo imaging cancer
studies; zebrafish embryos lack a mature vasculature network and immune system, and fluores-
cent imaging of mice requires the sacrifice of the animal – precluding longitudinal studies – or is
limited to localised intravital imaging [63,64], or low resolution diffuse tomography [65]. OPT is
an attractive choice for in vivo imaging of these cm sized samples, due to the low phototoxicity
associated with the widefield illumination, simplicity, relatively low cost of implementation and
ease of scaling the imaging system to larger samples.

However, the acquisition lengths for the conventional approach to OPT are too long for
survival of the anaesthetic procedure [136], due to the low NA required to approximate parallel
projection and the large number of projection images required for artifact free reconstruction
(see chapter 3). Angularly multiplexed compressed sensing OPT was developed to overcome
this limitation [72,107,108]. This chapter describes developments to the multiplexed OPT data
processing workflow, and the application of the system to a longitudinal study.

To achieve higher resolution and collection efficiency, angularly multiplexed OPT was de-
veloped [107, 108], in which a pseudo-projection is created by combining projections from two
separate imaging arms, whose DOFs cover different quarters of the sample depth. This shorter
DOF allows for a ∼

√
2 increase in NA, which improves the resolution by ≈ 20% and the

collection efficiency by a factor of two for the larger NA, and a further two by having two
cameras.

In combination with compressed sensing reconstruction (chapter 3.5), this system has been
demonstrated imaging tumour burdened adult zebrafish in two spectral channels within the
time window of anaesthetic tolerance, between 10 and 20 minutes [108, 136]. Therefore, the
zebrafish can be kept alive for repeated measurements of disease progression in a longitudinal

51
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study.
Previously, the ability to handle longitudinal and high-throughput studies was practically

limited by the requirements for manual selection of alignment and reconstruction parameters.
Furthermore, this manual parameter search produced inconsistent and sub-optimal results. To
address this, a number of processes have been automated, minimising human supervision and
improving reconstruction quality.

With the optimisations to data processing, the system has been applied to a longitudinal
study of liver tumour growth in adult zebrafish. Section 4.2 describes the optical set-up (section
4.2.1), longitudinal study design (section 4.2.2), and data processing (section 4.2.3). Section
4.3 shows the results of the longitudinal study. Section 4.4 concludes with a discussion of those
results and further work.

4.2 Methods

4.2.1 Experimental set up and acquisition

A schematic of the angularly multiplexed OPT set up is shown in figure 4.1. Laser radiation
(labelled as S in figure 4.1) at either 561 nm (Jive, Cobolt) or 488 nm (MLD, Cobolt) was
directed to a rotating diffuser D (ED1-C50, Thorlabs), collimated using lens L1 (FRP251,
Thorlabs), and directed to illuminate the sample. The emitted fluorescence was imaged using
two 0.49x telecentric imaging arms – comprising achromatic lenses, L2, L3 and L4, (AC504-200-
A, f = 200 mm, AC508-180-A, f = 180 mm, AC508-250-A, f = 250 mm) and meniscus lens,
L5 (LF1988-A, f = −500 mm, Thorlabs), with an adjustable aperture stop AP (SM2D25D,
Thorlabs) in the Fourier plane of the first achromat – onto sCMOS cameras (Zyla 5.5 sCMOS,
Andor Technology Ltd). The NA was set to 0.02, to give a DOF of 2.5 mm and a diffraction
limited resolution of 14 and 16 µm for 488 nm and 561 nm, respectively – so that the system
resolution was pixel limited to 26.3 µm. The two imaging arms were orientated 90◦ to one
another, and have their focal planes placed 1.25 mm and 3.75 mm from the rotation axis.

Samples were placed in FEP tubing (EW-06406-12, Cole Parmer), filled with water, sealed,
and suspended from a stepper motor (T-NM17A200, Zaber) attached to tip-tilt and translation
stages. The tube was suspended into a water filled custom octagonal imaging chamber, with
windows normal to the imaging and excitation paths.

The system was controlled with custom software written in LabVIEW (National Instru-
ments). Both cameras were aligned such that the rotation axis was parallel to the x axis
(coordinate system defined in chapter 3.2) and in the centre of their respective FOVs. This was
achieved by acquiring projections separated by 180◦ of a high contrast object, such as an Allen
key, and comparing the first projection to the second – mirrored in the x axis. The tip-tilt and
translation stages were adjusted until the pairs of projections matched on both cameras; when
this occured the rotation axis was aligned. OPT data sets were acquired simultaneously on the
two cameras. The sample was rotated to 64 equally spaced positions around 360◦, with a low
angular acceleration of 1.6◦ s−2, to minimise the sample slipping in the tube. Multi-spectral
imaging was achieved by acquiring sequential data sets with either the 561 nm or 488 nm laser
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Figure 4.1: Schematic of angularly multiplexed OPT system. The two imaging arms each image
a different quarter of the depth of the sample. The axis of rotation is indicated by a cross

unshuttered, for which 2 s and 1 s exposure times were respectively used. Fluorescence emission
was selected using emission filters (FF02-472/30-32 and FF01-562/40-25, Semrock), placed in
motorised filter wheels (FW102C, Thorlabs) close to the Fourier plane of the imaging optics.

4.2.2 Longitunial study of tumour development

The system was applied to longitudinal imaging of a zebrafish tumour model. The model
used, TraNac Tg (KDR:mCherry:Fabp10-rtTA:TREeGFPKRASV12), inducibly expresses the
eGFP-tagged oncogenic krasV12 transgene in hepatocytes when exposed to tetracycline, or a
tetracycline derivative such as doxycycline. This controllable expression of krasV12 means that
liver tumours can be induced with exposure to doxycycline, and reduced through withdrawal.
To overcome the issues with pigmentation in the adult zebrafish, the tumour model was bred
onto the background of the mutant TraNac line. This line is a double homozygous recessive
mutant for two genes, nacre and transposase, which are required for pigmentation. Other
non-pigmented lines include Caspar [71], and Crystal [73].

28 fish were treated with doxycycline and imaged with two channel angularly multiplexed
OPT every week for five weeks of treatment. During the study, the concentration of doxycycline
was adjusted as the protocol was optimised. Higher concentrations caused the water salinity
and acidity to become unhealthy for the fish, but the concentration was also found to fall within
the experimentally relevant time period of 24 hours. The water in which the fish were housed
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was dosed with a doxycycline concentration of 7.5 mg/L for the first nine days, then 5 mg/L
for five days, then 7.5 mg/L for the third week, and 10 mg/L for the remainder of the study.

For the first four weeks of imaging, the zebrafish were anaesthetised using water containing
175 ppm tricaine methanesulfonate, and 175 ppm isoflurane [136]. Once the zebrafish had
entered deep anaesthesia – determined by a lack of response to any stimuli – samples were
placed in FEP tubing and mounted in the system for imaging. A wedge of agarose was placed
in the FEP tubing to firmly hold the zebrafish in place and reduce the risk of sample movement
during the OPT acquisition. After imaging, the samples were recovered by returning them to
water.

4.2.3 Processing

4.2.3.1 Registration

Angularly multiplexed OPT achieves superior resolution compared to conventional OPT for the
same effective DOF by creating a pseudo-projection from two higher NA projections that image
two different quarters of the sample. In principle, creating this pseudo-projection should be
achievable by simply adding the corresponding projections together – as they have both been
aligned to the rotation axis and should have the same FOV. However, placement and removal
of samples in the system caused slight misalignments through the day. Therefore, each pair of
data sets required individual co-registration.

Previously, each data set was manually co-registered in software written in LabVIEW by
visual inspection; every corresponding pair of projections could be viewed, and the translation,
angle, and magnification adjusted until both sets of projections appeared to be aligned. The
transformation was then applied globally to every projection from camera 1 to camera 2. For
longitudinal or high-throughput studies this requires significant user input and it is challenging
to find a good solution in the large parameter space. Furthermore, using a single global trans-
formation is not tolerant to the required transformation changing from projection to projection,
which may occur due to small sample movements, or either data set being subtly misaligned
with the rotation axis. It was therefore desirable to automate this process.

The autoregistration software was written in Matlab. Each pair of projections from camera 1
(4.2a) and camera 2 (4.2b) were individually registered. The projection from camera 2 was first
demagnified by the known magnification between the two imaging systems, M = 0.998. Next,
filtered images were created from the projection pairs with different spatial scales, l, by applying
empirically chosen Gaussian bandpass filters of 10 < l < 25 pixels (4.2c), 20 < l < 50 pixels
(4.2d), and 30 < l < 75 pixels (4.2e), which removed both high spatial frequency noise, and low
spatial frequency differences in illumination. Registration between each pair of filtered images
was performed with the built in imregtform Matlab function – limited to rigid transformations
and using the Mattes mutual information as its target metric [137], which is suitable for images
acquired under different illumination conditions. The three estimated transformations were
then applied to the original projection pair, passed through a 10 pixel wide Gaussian high pass
filter, and the transformation that produced the final projection with the highest variance was
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retained.
The relative performance of manual and automatic registration for a single projection image

is shown in figure 4.2. The anatomy appears correctly aligned in the manual registration image.
However, in comparison to the automatic registration, it appears blurred. This is further
explored in figure 4.3, which quantifies alignment quality using variance as a sharpness metric;
the variance has been plotted for the 64 projections of an angularly multiplexed OPT data
set after registration using the manual and automatic method. In figure 4.3a the contrast
appears very similar. In figures 4.3b and 4.3c the variance has been calculated on projections
processed with Gaussian high pass filters of 100 and 10 pixel widths respectively. In these, the
improvements to alignment of higher spatial frequency content in the automatically registered
images are clear.

4.2.3.2 Alignment with rotation axis

During sample mounting and removal, the rotation axis is regularly misaligned from the centre
of the FOV, which needs to be corrected during processing. This can be achieved manually
using in-house software written in LabVIEW by visually inspecting opposite projections, which
should be mirror images of one another, and applying a y axis shift and a rotation that aligns the
projections. However, as with registration, this requires user intervention, and the exploration
of a large parameter space. Therefore, this process has also been automated using the method
described in [95], which seeks the y axis shift and the rotation that produces reconstructions
with the greatest variance – which is assumed to correspond to the highest spatial resolution.

Figure 4.4 shows a slice of ex vivo cleared mouse pancreas that was reconstructed with
different shifts applied to the x axis – producing varying degrees of rotation axis misalignment.
The misalignment caused blurring and ring artifacts, which reduced the variance in the image.
The sharpest reconstruction appears to be figure 4.4d, which had a rotation axis shift of 8 pixels
– corresponding to the peak seen in figure 4.4f. This measurement was repeated at various points
along the length of the sample, which is shown for the pancreas in figure 4.4g. If the rotation
axis is tilted in the FOV, this can be seen by the rotation axis correction changing with x. To
complete the correction, a linear fit was made between x position and rotation axis shift – and
the measured rotation and shift was applied to the raw projections. The angle measured in this
process is a shear correction, which only approximates the rotation correction, so the process
was repeated until the corrected projections showed a rotation axis through the centre of the
FOV.

In undersampled adult zebrafish data the peak is much less clear; the object has a greater
contribution from low spatial frequencies, which disguise the effects of misalignment, and the
undersampling introduces noise and streak artifacts. To mitigate the strong background from
low spatial frequencies, the slices are passed through a 30-pixel wide high pass Gaussian filter.
The equivalent of the histogram shown in figure 4.4g for a zebrafish data set is shown in figure
4.5. The result is significantly noisier than that measured for the ex vivo mouse pancreas,
but an average measurement can be taken for the data set. The alignment measured for the
mCherryFP channel was applied to the GFP channel, to enforce registration between the two



CHAPTER 4. OPTIMISATION OF ANGULARLY MULTIPLEXED OPTICAL
PROJECTION TOMOGRAPHY 56

a b

c d

e

f g

Figure 4.2: Automatic registration of angularly multiplexed OPT data. (a),(b) Camera 1 and
Camera 2 projections acquired with shifted focal planes and different illumination conditions.
The images were bandpass Gaussian filtered and the rigid transformation estimated. The regis-
tered camera 1 and camera 2 images are shown in green and purple respectively after applying
Gaussian bandpass filters (c) 10 < l < 25 pixels, (d) 20 < l < 50 pixels, (e) 30 < l < 75 pixels.
(f) Manually registered projections. (g) Automatically registered projection. The automatic
result which had the greatest variance, in features smaller than 10 pixels, was selected.
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Figure 4.3: Variation of contrast, measured using variance as a sharpness metric, across a
registered angularly multiplexed OPT data set filtered to show alignment at different length
scales, (a) unfiltered, (b) 100 pixel Gaussian high pass filtered, (c) 10 pixel Gaussian high pass
filtered.

channels.

4.2.3.3 Compressed sensing reconstruction

For the longitudinal study of vascular and tumour development in the TraNac-based cancer
model discussed above, the vasculature and tumour volumes were reconstructed from the aligned
projection image data sets using the two step weighted iterative shrinkage thresholding (TwIST)
compressive sensing algorithm [72,138]. This is a development of IST, described in chapter 3.5,
which converges faster by adding a contribution to the new estimate from both the current and
previous estimate:

X1 = Ψτ (X0 +RT (Y −RX0)/w), (4.1)

Xt+1 = (1− α)Xt−1 + (α− β)Xt + βΨτ (Xt +RT (Y −RXt)/w), for t > 1, (4.2)

where α and β are constant parameters determined by the eigenvalues of RTR. The regulari-
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Figure 4.4: Alignment of the rotation axis. Ex vivo pancreas slice reconstructed from a sinogram
translated (a) -16, (b) -8, (c) 0, (d) 8, and (e) 16 pixels in the y axis. (f) Variation of
reconstructed slice variance with rotation axis shift. (g) 2D histogram of the y axis shift that
produces the highest variance reconstruction, with position of slice along the x axis. Scale bar
1 mm
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Figure 4.5: 2D histogram of the y axis shift that produces the highest variance reconstruction,
with position of slice along the x axis for an undersampled adult zebrafish data set.

sation parameter, τ , sets the aggressiveness of the sparsifying operator. Figure 4.6 shows the
mean squared error (MSE) between an ex vivo mouse pancreas slice reconstructed from 400
projections and CS reconstructions produced from 80 projections using TwIST with a number
of different values of τ . If τ is too small, the algorithm is non-specific and does not fully reject
the streaks. If it is too large, the streaks are removed, but so is significant detail from the
reconstruction. Therefore, selection of an appropriate value for τ is necessary for successful
reconstruction.

The value for τ that produces reconstructions with the lowest error depends on a number
of factors, including degree of undersampling, and sparsity of the slice. Figure 4.7a shows
the variation of the final MSE for the mouse pancreas slice with τ for different numbers of
angular projections. As fewer projections are used in the reconstruction (i.e. the degree of
undersampling increases), the optimum reguralisation parameter increases. Figure 4.7b shows
the variation of final MSE for two mouse pancreas slices with τ , one of which is the signal from
a fluorescent label, while the other is only autofluorescence signal – the best values for τ are
separated by a factor of two. To address the challenge this presents, i.e. how to ensure each
volume is reconstructed with the best parameters, a method of selecting the best regularisation
parameter, in the absense of a ground truth, has been developed.

To select the best τ , it is necessary to find a metric which describes whether or not a
CS reconstruction has been successful. Figures 4.6e–g show the Fourier transforms of the
labelled pancreas slice reconstructed with different values of τ . In figure 4.6b, τ is too low; the
regularisation has not been aggressive enough, and the under-sampled Radon Fourier sampling
pattern (figure 3.7) can still be seen in figure 4.6e. As it is increased, more information is
inferred, and the gaps are filled in. After a certain point however, higher spatial frequencies are
suppressed, and the reconstruction quality is degraded (figure 4.6d). Therefore, a metric can
be made by maximising the energy in spatial frequencies outside the sampled region.

Figure 4.8 shows a mask, M(ky, kz) made from the transfer function of RTR, H(ky, kz) =
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Figure 4.6: Demonstration of the effect of the regularisation parameter on TwIST reconstruc-
tion quality. (a) Convergence of MSE between TwIST estimate of slice reconstructed from 80
projections and ground truth slice reconstructed from 400 projections. Final TwIST reconstruc-
tions (b) - (d) and their Fourier transforms (e) - (g) reconstructed with τ of (b),(e) 0.0004,
(c),(f) 0.004 (d),(g) 0.04. Scalebar 1 mm.
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Figure 4.7: The value for τ that produces reconstructions that are most similar to fully sampled
reconstructions depends on a number of factors. Variation of MSE with τ for (a) different
numbers of projections, and (b) 80 projection data sets with different spatial frequency content
(labelling described in section 3.4.3)

∣∣∣F (RTR (δ (x, y))
)∣∣∣, where F denotes the Fourier transform. The threshold of the mask was

chosen as the lowest value in the well sampled region, kmin < 1/∆θ. This is combined with a
low pass filter with cutoff kmax = 1/2, to suppress high spatial frequency noise. The metric, ρ,
is defined as the negative of the proportion of intensity inside this mask:

M (ky, kz) = (H (ky, kz) < min[H (|k| < kmin) ]) (|k| < kmax) (4.3)

ρ = −
∑
M (ky, kz)F (ky, kz)∑

F (ky, kz)
(4.4)

where F (ky, kz) is the Fourier transform of the reconstructed slice. Figure 4.9a shows the vari-
ation of ρ and the MSE for the fluorescently labelled and autofluorescence only pancreas slices.
ρ is minimised for a larger value of τ than the MSE in both cases. However, the reconstruc-
tions with the lowest ρ, shown in figures 4.9d and 4.9e, appear to be successful. Compared to
minimising MSE, minimising ρ selects a different compromise point between rejecting streaks
and blurring the reconstruction.

A value for τ was chosen for each OPT data set by minimising ρ with respect to τ for a
sample of 10 slices of the data set and then taking the median result.

4.2.3.4 Segmentation

To quantify the changes in vasculature and tumour, GFP and mCherryFP volumes were seg-
mented with manually selected global thresholds. Tumour size was measured by counting the
voxels within the segmented volume and multiplying by the voxel size. The vasculature was
enhanced using a multiscale Hessian-based method [139]. The likelihood of a voxel being part of
vessel – or its vesselness – was determined from local image structure by analysing the Hessian
matrix, H, of the volume, I:
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a b c

Figure 4.8: Creation of mask for determining successful reconstruction metric. (a) Transfer
function of RTR. (b) Mask of spectrum that is not well sampled. (c) Low pass filter applied
to reduce the influence of noise.

H =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 , (4.5)

where Iij is the partial second derivative of I with respect to directions i and j. The eigenvalues
of H, |λ1| ≤ |λ2| ≤ |λ3|, describe the local curvature at each voxel. For bright signal over a dark
background, voxels with λ1 approximately zero, and λ2 and λ3 large, negative, and similar in
value will more likely be part of a vessel-like structure. In this case the curvature is strong in
two directions, but there is little change in the third direction – the direction of the vessel [72].

The vesselness at each pixel is defined as:

V =


0, if λ2 > 0 or λ3 > 0(

1− exp
(
−R2

A
2a2

))
exp

(
−R2

B
2b2

)(
1− exp

(
− S2

2c2

))
, otherwise,

(4.6)

where a = 0.5, b = 0.5, and c = 500 are empirically selected sensitivity measures for each factor,
and

RA = |λ2|
|λ3|

, RB = |λ1|√
|λ2λ3|

, S =
√
λ2

1 + λ2
2 + λ2

3. (4.7)

The three terms in equation 4.6 reflect that for voxels that form part of a vessel, RA should
be approximately 1, RB should be small, and S should be large. These each indicate that the
structure is not a plane, not a sphere, and has strong curvature respectively. V is calculated on
Gaussian filtered volumes, with σ of one to five voxels. The final vesselness of each voxel is the
maximum of V from these five calculations.

4.3 Results

Figure 4.10 shows maximum intensity projections (MIP) of reconstructed volumes of an adult Tg
zebrafish imaged with two channel angularly multiplexed OPT at 1 to 5 weeks post induction.
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Figure 4.9: (a) Variation of ρ and MSE with τ for slices reconstructed with TwIST from 80
projection data sets. (b) Labelled pancreas slice reconstruction with lowest MSE. (c) Labelled
pancreas slice reconstruction with lowest ρ. (d) Autofluorescence pancreas slice reconstruction
with lowest MSE. (e) Autofluorescence pancreas slice reconstruction with lowest ρ. Scalebar 1
mm
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The images show the tumour in green and vesselness in red. Orthogonal slices through the 4
week post induction volume are shown in figure 4.11, with GFP (tumour) in green, mCherryFP
(vasculature) in red, and vesselness in blue.

The longituinal study tumour volumes are shown in figure 4.12a. The average tumour
volumes and standard errors are shown for each week, and the volumes for the individual fish.
24 fish were successfully imaged after one week, 10 after two, 9 after three, 9 after four, and
7 after five. To show the statistical benefits of zebrafish survival the statistical significance of
the weekly tumour volume variation was measured. In the first measurement the volumes were
treated as independent measurements from a cross-sectional study, and in the second they were
treated correctly as paired data. The independent test used was the Wilcoxon rank sum test, a
non-parametric test of whether the volume sizes are sampled from distributions with the same
median. The dependent test used was the Wilcoxon signed rank test, which tests whether the
changes in volume size come from a distribution with a median of zero. The changes between
the first four measurements were significant when treated dependently. However, if the same
data were taken in a longitudinal study the significance of weeks 1 to 2 and weeks 2 to 3 would
have been lost in the intersample variation.

4.4 Conclusion

Optically accessible transgenic adult zebrafish permit imaging of a disease state repeatedly
over the course of several weeks by acquiring angularly undersampled OPT data within the
anaesthetic recovery window and reconstructing with CS. A cohort of zebrafish had liver tumours
induced, and OPT imaging enabled the measurement of the variation in tumour volume on an
individual basis.

The variations do not in themselves answer any medical or biological question, due to the
lack of control or condition group. But, the improvements to significance show the benefits of
being able to perform measurements longitudinally; responses to treatment are less likely to be
lost in the noise of intersample variability – which is visible in the wide variety of tumour sizes
observed (figure 4.12a).

The vasculature measurements should be treated with greater scepticism. In the MIPs
shown in figure 4.10 the vesselness appears to have been reconstructed successfully. However,
in figure 4.11 the vessels only appear in a thin shell 500 µm into the sample. Thus it must
be concluded that despite being non-pigmented, the optical scattering within the sample is too
great to reconstruct high spatial frequency features.

Futhermore, the results of the vesselness operator must be treated with caution. In Cor-
reia et al. [72], the vesselness operator was applied to zebrafish embryos. In the raw embryo
reconstructions, the vasculature is qualititatively discernible. The vesselness operator is not
being used to find the vasculature – it is being used to isolate what is visible, for segmentation
and further quantification. However, no clear vasculature network is apparent in the raw adult
zebrafish reconstructions, so any network “discovered” by the vesselness operator should be
treated with caution. The results of the vesselness operator are self normalised; whatever noise
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a 1 week post induction

b 2 weeks post induction

c 3 weeks post induction

d 4 weeks post induction

e 5 weeks post induction

Figure 4.10: MIPs of an adult zebrafish imaged with two channel angularly multiplexed OPT
for 5 weeks after tumour liver induction showing eGFP (green) and vesselness of mCherryFP
(red). Different gamma corrections and normalisations are used for each image to maximise
contrast. Scalebar 1 mm.
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Figure 4.11: (a) x-y and (b) y-z slices through an adult zebrafish, 4 weeks post tumour induction,
imaged with two channel angularly multiplexed OPT showing eGFP (green), mCherryFP (red),
and mCherryFP vesselness (blue). Different gamma corrections and normalisations are used for
each image to maximise contrast. Scalebar 1 mm.

or structure in the volume that looks most like a vasculature network will be amplified by the
operator, and tautologically give a result that looks like a vasculature network. For example,
figure 4.13 shows the result of applying the vesselness operator to a noisy Gaussian shell:

I(r) = exp
(
− (r − r0)2

σ2

)
+ n, (4.8)

where I(r) is the intensity at radius r, r0 = 150 pixels is the radius of the shell, σ = 40 pixels
is the thickness of the shell, and n is Gaussian noise with a standard deviation of 0.03. Despite
having no vessel like structure, the vesselness opertor amplifies the most vessel-like noise to
give a result with the appearance of a tortuous vessel network. This network does not look
exactly like those seen in figure 4.10 – which are less tortuous and may retain characteristics of
the underlying vasculature. However, it does reduce confidence in results where the network is
not visible in the raw reconstructions. Therefore, the operator should be limited to segmenting
discernible networks, not for discovery.

To improve the utility of in vivo OPT of adult zebrafish, the impact of optical scattering
must be reduced. If this is achieved, the imaging depth will be increased and the reconstructions
improved.
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Figure 4.12: (a) Variation of tumour volumes over 5 weeks post induction. The black dashed
line shows average volumes, and the coloured dash-dot lines show individual tumours. (b)
Significance of tumour volume changes from week to week using an unpaired and paired test.
The significance axis has been limited to 0.1 to make the first three results clearer.
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Figure 4.13: Amplification of noise by the vesselness operator. (a) Slice and (b) MIP of a
spherical shell with Gaussian noise. (c) Slice and (d) MIP of the shell after application of the
vesselness operator. Despite having no vessel like structure, the vesselness operator produced a
result that looks like a tortuous vessel network.



Chapter 5

Convolutional neural networks for
reconstruction of undersampled
optical projection tomography data

In chapter 4, the drive to reduce acquisition times for in vivo OPT was discussed; it is highly
desirable to reduce the length of time an animal is anaesthetized, thereby minimizing side-effects
and possible confounding factors linked to anesthesia, and to reduce the likelihood of unwanted
movement during the OPT data acquisition [136]. The angularly multiplexed OPT system
reduced acquisition times with improvements to light collection efficiency, and by reducing
the number of projection images acquired and reconstructing with the iterative CS algorithm
TwIST [72,108].

Unfortunately, due to the iterative nature of this and similar reconstruction algorithms,
that require multiple rounds of regularization and both forward-projection and back-projection
per reconstructed slice, CS introduces a significant computational cost. In our laboratory,
for example, a typical OPT data set that would normally take a few minutes to reconstruct
using FBP implemented on a graphical processing unit (GPU) accelerated desktop computer
would require more than an hour to reconstruct using TwIST. This therefore introduces a data
processing bottleneck for highly sampled longitudinal or high throughput studies.

Convolutional neural networks (CNN) provide an alternative computational approach for
this and many other image data processing applications [140]. In X-ray CT, a U-net CNN
has been used to remove the streak artifacts from FBP reconstructions calculated from 7 and
20 times undersampled data [141]. This chapter describes the application of CNNs to provide
streak-artifact free reconstructions of undersampled OPT data that have been trained using
high quality 3D images of chemically cleared tissue volumes reconstructed using FBP of densely
sampled OPT data.

This CNN approach was found to enable undersampled OPT data to be reconstructed five
times faster compared to the iterative CS-OPT approach, and could provide equivalent image
quality to CS with 40% fewer projections, thereby further reducing the OPT data acquisition
time. For in vivo applications, a CNN trained on ex vivo immunostained mouse tissue OPT

69
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data could also be applied to reconstruct in vivo OPT data sets of zebrafish embryos expressing
fluorescent proteins. This demonstrated the ability of the method to work across different types
of biological sample and expands the scope of training data that can be used. The latter point
is a particular advantage with live imaging, where the acquisition of sufficient high quality and
fully sampled training data from live zebrafish would be technically challenging and undesirable
in terms of the number of animals required.

The work in this chapter is adapted from [5]. Section 5.1 will explain the theory of convolu-
tional neural network application and training, the specific architecture used, data preparation,
network training, and sample acquisition. Section 5.2 shows the output of the network, for dif-
ferent degrees of undersampling, applied to ex vivo mouse tissue and in vivo zebrafish embryo
data. Section 5.3 concludes with a discussion of the results and potential next steps.

5.1 Methods

5.1.1 Convolutional neural networks

5.1.1.1 Network

A neural network is a computing system that processes an input to an output by passing it
through a network of layers of nodes. An example node is shown in figure 5.1a. It is connected
by synapses to a selection of input nodes in the previous layer. The output, oj , of the node, j,
is computed by a non-linear activation function, φ, acting on the sum of its inputs, ok of nodes
k, weighted by the synapse strengths, wkj :

oj = φ

∑
k∈K

wkjxk + bj

 = φ (pj) , (5.1)

where bj is a bias for this node, and the sum is over the set of nodes K that feed into j. A neural
network is made up of many such neurons placed in layers, which can have their synapse weights
and biases optimised with training data to model, predict, and classify linear and non-linear
effects. The layers of a neural network can contain multiple channels or feature maps – which
can learn to identify different structures for further processing by deeper layers.

How the nodes of one layer are connected to the next depends on the type of layer. In a
fully connected layer each node, j, takes every node from the previous layer as its input, i.e.
the set K contains every node from the layer previous to the layer that contains j. An example
neural network with two fully connected layers, each with a single channel, is shown in figure
5.1b. To connect the two channels requires OM synapses, where O is the number of neurons
in the first layer, and M the number in the second. To connect a megapixel input image to a
layer with a similar number of nodes would require 1012 synapses, which is nearly 4 GB per
channel-to-channel map. This becomes unfeasible for even two or three feature maps. Instead,
image processing tasks can be addressed with convolutional neural networks.

If the input and output of the neural network have strong local correlations, as is the
case in image processing tasks, then layers that behave as convolutions – rather than matrix
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Figure 5.1: (a) A neural network node. The output of a node is a non-linear function applied
to the weighted sum of its inputs. (b) A simple fully connected neural network. The value of
each node is determined by its inputs, weighted by the trained strengths of the synapses that
connect them – which then feed into the values of nodes in deeper layers.

multiplications – can be used [142]. Instead of defining synapses connecting every node, K
contains the small number of nodes within the receptive field of a convolutional filter that uses
the same synapse weights across the entire image. An example 2D convolutional layer is shown
in figure 5.2a. These can be as small as 3x3 nodes, which only detect short range structure;
longer range patterns are then recognised by subsequent convolutions that create larger and
larger effective receptive fields (figure 5.2b).

After convolution, the value of each node is transformed by an activating function, which
adds non-linearity into the computing system. In this work the rectified linear unit (ReLU) is
used [143]:

φ(x) =

0 x ≤ 0,

x x > 0.
(5.2)

Convolutional neural networks also include other layer types, that aid with minimising memory
requirements and add more non-linearity. Figure 5.3a shows a max pooling layer, which is a
maximum filter with a stride of two – i.e. the filter window slides by two nodes rather than
one – so that the output size is halved in each dimension. In image denoising tasks, the desired
output is typically the same size as the input. To return the image to its full size, transpose
convolutional layers can be used, which can be viewed as convolutional layers acting in reverse
(figure 5.3b).
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Figure 5.2: (a) An example of a 3x3 convolutional layer, which has a stride of one and zero
padding. Instead of training synapses for the 256 node to node connections, a common set of 9
synapses is trained and applied as a convolution. (b) The small filter size means that nodes are
only affected by those nodes in the local vicinity on the previous layer. However, longer range
patterns will affect deeper layers after more convolutions.

5.1.1.2 Stochastic gradient descent and backpropagation

The neural network is trained by minimising the error, E, between the neural network output
and the labelled ground truth for the entire training data set, with respect to each weight and
bias. Consider the error after some small change, ∆wij , in wij ; if the change is small, a linear
approximation to the Taylor expansion can be made:

E (wij + ∆wij) ≈ E (wij) + ∂E

∂wij
∆wij (5.3)

∆E = E (wij + ∆wij)− E (wij) ≈
∂E

∂wij
∆wij . (5.4)

∆E can be made negative by setting
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Figure 5.3: Other layer types used in convolutional neural networks. (a) A 2x2 max pool layer
with a stride of two. (b) A 2x2 transpose convolutional layer with a stride of 2.

∆wij = −η ∂E
∂wij

, (5.5)

=⇒ ∆E ≈ −η
(
∂E

∂wij

)2

< 0, (5.6)

where η is the learning rate. By iteratively changing wij with this formula, the error will be
minimised. This algorithm is called gradient descent.

Evaluating ∂E/∂wij over the entire data set would be impractical. In stochastic gradient
descent (SGD), the data set is randomly divided into many mini-batches for practical gradient
evaluation and updating:

∆wij = −η 1
N

N∑
n=0

∂En
∂wij

, (5.7)

∆bj = −η 1
N

N∑
n=0

∂En
∂bj

, (5.8)

where En is the error or loss function between the neural network output, ŷ, and the label, y,
for the nth of N paired sets from a mini-batch of the training data set, and η is the learning
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rate. When every mini-batch has been processed, an epoch has passed. The data set is then
randomly divided into a new set of mini-batches, and the process is repeated.

The learning rate, η, must be small enough that the linear appoximation to the error is
valid. However, if it is too small, convergence will be slow and may potentially get stuck in
local minima. Adaptive moment estimation (Adam) [144] is a development of SGD where the
learning weight is adjusted based on a running average of the magnitude of recent gradients,
and the update is given momentum by adding a running average of previous updates:

∆wtij = −η 1
N

N∑
n=0

1√
vt + ε

∂En
∂wij

t

(5.9)

where t refers to the iteration number, ε is a small number to stop divergence, and

vt = 1
1− β1

β1v
t−1 + (1− β1)

(
∂Et−1

n

∂wt−1
ij

)2
 , (5.10)

∂En
∂wij

t

= 1
1− β2

(
β2
∂En
∂wij

t−1

+ (1− β2) ∂E
t−1
n

∂wt−1
ij

)
, (5.11)

where β1 and β2 are forgetting rates. This algorithm is robust to the choice of η.
To follow this algorithm, the gradients of the error with respect to each weight and bias

must be calculated. The partial derivative of E (where the subscript n has been made implicit)
with respect to wij is:

∂E

∂wij
= ∂E

∂oj

∂oj
∂pj

∂pj
∂wij

. (5.12)

From equation 5.1, ∂pj/∂wij = oj , and from equation 5.2,

∂oj
∂pj

=

0 x < 0,

1 x > 0.
(5.13)

For the output layer, oj = ŷ, so:

∂E

∂oj
= ∂E

∂y
, (5.14)

which can be derived for the particular error function. For other layers, the gradients can be
defined recursively:

∂E

∂oj
=
∑
l∈L

∂E

∂ol

∂ol
∂oj

=
∑
l∈L

∂E

∂ol

∂ol
∂pj

∂pj
∂oj

=
∑
l∈L

∂E

∂ol

∂ol
∂pl

wjl, (5.15)

where L is the set of nodes that take oj as an input. All the weights can then be updated
working backwards from the output layer. Expressions for the biases can be similarly derived.
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5.1.1.3 Batch normalisation

The activation functions applied to each node introduce non-linearities into the computation of
the network. This means that f(ax) 6= af(x), where f(x) is the output of the network on some
input x, and a is a constant. It is therefore necessary to normalise the inputs to the network to
get consistent behaviour for FOVs that contain the same structure, but different brightness.

The same requirement is true of inner layers of the network. During training, each inner
layer is adjusting its parameters to convert its input to the desired output distribution. However,
as the parameters of shallower layers are trained, the distribution of inputs to the inner layers
is also shifting, so that the inner layer is training towards a target that is constantly moving.
This problem is called internal covariate shift, and causes a significant slow down to network
training – particularly for deeper networks.

Batch normalisation is a method to address internal covariate shift that fixes the variance,
V ar[oj ], and mean, E[oj ], of a node’s output to learned values, γj and βj respectively [145]:

ôj = oj − E[oj ]
V ar[oj ] + ε

γj + βj , (5.16)

where V ar[oj ] and E[oj ] are measured over the current mini-batch. During training, running
estimates of V ar[oj ] and E[oj ] over the entire data set are calculated for use during evaluation.

5.1.2 Network architecture

To reconstruct undersampled OPT data (figure 5.4d), CNNs with a modified U-net architecture
[146] – implemented using the Python package PyTorch (https://pytorch.org/) – were trained
to output an estimate for the well-sampled reconstructed slice (figure 5.4c) from the streak-
corrupted FBP reconstruction of under-sampled OPT data (figure 5.4e). This particular neural
network was chosen because of the similarities between the requirements of streak removal,
and the original design application of image segmentation. The U-net architecture (figure 5.5)
combines a contracting and expanding network with skip paths at each length scale. The
skip layers connect local information from the contracting path with global context from the
expanding path. For this application, the true fluorescent signal must be locally preserved,
while the streak artifacts must be recognised by their long range extent across the field of view.
Therefore an architecture that combines multiple scales of information was chosen to address
this problem.

The implemented U-net consisted of a contracting path of four blocks, each composed of
two 3x3 convolutional layers followed by 2x2 max pooling layers. After each max pooling step,
the number of features was doubled, starting from 64. The expanding path was also composed
of four blocks, each up-scaling the features by a factor of two. Due to GPU memory limits, this
up-scaling was performed using bilinear interpolation rather than with transpose convolutional
layers. The expanded features were concatenated with those from the equivalent scale on the
contracting path. The concatenated features were passed through two 3x3 convolutional layers
and have their number quartered. Because transposed convolutional layers were not used, the
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layer
channels

kernel
parameters

in out weights bias batch norm total

1 1 64 3 576 64 128 768
2 64 64 3 36864 64 128 37056
3 64 128 3 73728 128 256 74112
4 128 128 3 147456 128 256 147840
5 128 256 3 294912 256 512 295680
6 256 256 3 589824 256 512 590592
7 256 512 3 1179648 512 1024 1181184
8 512 512 3 2359296 512 1024 2360832
9 512 512 3 2359296 512 1024 2360832
10 512 512 3 2359296 512 1024 2360832
11 1024 256 3 2359296 256 512 2360064
12 256 256 3 589824 256 512 590592
13 512 128 3 589824 128 256 590208
14 256 64 3 147456 64 128 147648
15 64 64 3 36864 64 128 37056
16 128 64 3 73728 64 128 73920
17 64 64 3 36864 64 128 37056
18 64 1 1 64 1 2 67

Table 5.1: Learnable parameters for the convolutional layers in the U-net architecture shown
in figure 5.5

number of features on the expanding path were half what they would be in a conventional U-
net. Zero padding was used in the convolutional layers to keep image sizes consistent between
contracting and expanding paths. For the same reason the input slices were padded to a multiple
of 16 pixels.

Each convolutional layer was followed by batch normalization and ReLU layers. The number
of learnable parameters is shown in table 5.1 – corresponding to 50 MB of memory.

5.1.3 Data and training

For the CNN to learn how to remove streak artifacts from different sample intensity distribu-
tions, a large set of diverse training data is required. For ex vivo samples, such data can be
readily obtained by acquiring the necessary large number of angular projections needed for a
well-sampled reconstruction, as there is no upper limit on acquisition time beyond potential
photobleaching of the fluorescent labels. Such well sampled data sets are already available from
many previous ex vivo OPT studies.

The CNNs were trained on 400 projection OPT data sets from previous studies of ex vivo
cleared mouse pancreas for which OPT was used to assay beta cell mass [147] and unpublished
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Figure 5.4: Convolutional neural networks for reconstructing undersampled OPT data sets: (a)
represents an OPT data set of a 4 days post fertilization zebrafish larva, consisting of a series
of 2D (x-t) projections acquired as the sample is rotated to a series of angles θ; Each (t-θ) cross
section through the data set forms a sinogram, (b),(d), which can be processed with FBP to
give a (y-z) reconstructed slice, (c),(e), of the sample volume. (b),(c) show the reconstruction
of a highly sampled, 800 projection sinogram and (d),(e) show the result of reconstructing from
an undersampled, 40 projection sinogram – resulting in a streak-corrupted slice. (f) shows the
reconstruction obtained using a U-net deep learning architecture – consisting of convolutional
layers, max-pooling, bilinear interpolation upscaling, and concatenated skip paths – to estimate
the well-sampled reconstruction from the undersampled FBP reconstruction (e). (g) The 2D
reconstructed slices are stacked together to give the 3D fluorescence distribution of the sample.
Adapted from [5].
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Figure 5.5: U-net architecture CNN which takes streak corrupted slices reconstructed from
angularly undersampled OPT data sets as inputs, and outputs estimates of streak-free slices
reconstructed from well sampled data sets. Adapted from [5].

OPT studies of mouse lung. 80% of the sinograms (14,416) were randomly assigned to train-
ing with the remaining 20% (3,342) reserved for testing. These were assigned in batches of
ten neighboring slices to reduce correlations between testing and training data from adjacent
sinograms.

Several CNNs were trained to remove streaks from slices reconstructed for a range of degrees
of undersampling: 12, 16, 20, 24, 28, 32, 40, 48, 64, and 80 projections were used. Ground truth
data (figure 5.4c), I, were calculated using FBP of the complete 400-projection sinogram data
set (fig 5.4b), with an additional Hanning window applied to the ramp filter, scaled to 0.4. The
input data, I0, consisted of FBP reconstructions from a reduced number of projections spaced
as equally as the subsampling allowed (for example, a 64 projection sinogram used the 1st, 7th,
14th, 20th, 26th, etc. within the 400 projections). To augment the training data, a random
angle in each sinogram was selected as the starting point (i.e. labelled 0◦) and random vertical
and/or horizontal flips were applied. Both ground truth and input FBP reconstructed slice
pairs were normalized such that the input had a mean of zero and unit variance, and during
training were randomly cropped to 128x128 pixels to enable a batch-size of 32 to be processed
by the GPU.

The CNN (fig 5.5) takes the streak-corrupted undersampled FBP reconstruction (fig 5.4e)
as its input and outputs an estimate for the streak-free slice, Î (fig 5.4f). The network was
trained using the error between Î and I using the l1-norm:
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l1 = 1
n

n∑
i=1

∣∣∣Îi − Ii∣∣∣ (5.17)

where i is the pixel index. Training was performed using Adam – using the default parameters
in PyTorch.

Early stopping was used during training; after each pass of the training data, the average
error on the test data was calculated and the training terminated when the error did not improve
for three epochs. The previous best network was kept. Training typically took 3 to 6 hours on
a desktop computer equipped with a Nvidia Tesla K40c, with 12 GB of memory. The training
and testing scripts can be found online [148].

The testing data was also reconstructed for the various degrees of undersampling with FBP
and using TwIST (CS). To keep the CS results consistent with previously published results [72],
τ was kept at the previously empirically selected value of 0.004.

5.1.4 Samples and optical projection tomography data acquisition

Cleared mouse tissue samples were imaged using a 0.5x telecentric lens (63-074, Edmund Optics
Ltd) with a depth of field of 5 mm, imaging onto a CCD camera (QImaging, Retiga R1) for
the pancreas samples and a 1x telecentric lens (58 430, Edmund Optics Ltd) with a 5 mm
depth of field, imaging onto a sCMOS camera (Zyla 5.5, Andor Instruments) for the lung
samples. Samples were suspended from a stepper motor (NM08AS-T4-MC04-HSM8 and X-
MCB1-KX11BG, Laser 2000 (UK) Ltd) in a cuvette filled with index matching fluid, a 1:2
mixture of benzyl alcohol: benzyl benzoate, and imaged at 400 equally spaced angular positions
over a full rotation.

Nine pancreas samples were prepared following the protocol as described in [130]; the beta-
cell mass of whole fixed mouse pancreata were labelled with Alexa647-conjugated antibodies.
They were mounted in 2% agarose, dehydrated in increasing concentrations of methanol up to
100% and subsequently chemically cleared in a 1:2 mixture of benzyl alcohol: benzyl benzoate.
Fluorescence excitation was provided by a 660 nm LED (Cairn Research Ltd) in combination
with a 705 ± 15 nm emission filter. Four lung samples were prepared as follows; KRASG12D

TP53frt/frt murine lung adenocarcinoma cells bearing yPET fluorescent protein were injected
into the tail vein of ROSA26 dTomato C57BL/6 mice (under authority of PPL70/8380). After
21-28 days, or at the clinically applicable humane endpoint, mice were sacrificed, and trachea
were perfused with 2% low melting point agarose. Following this, lungs were placed in 4%
paraformaldehyde then 30% sucrose to allow lung specimen to retain fluorescence. Lastly, 30%
sucrose was exchanged with clearing solution (Rapiclear RD: 1.52, SUNJin lab).

The fluorescence OPT data set of live zebrafish embryo was taken from Correia et al. [72].
The data acquisition was undertaken using a home-built x4 microscope (N4X PF objective
lens and ITL200 tube lens, Thorlabs Inc.) with an aperture positioned directly behind the
microscope objective lens to set the depth of field to 0.6 mm. The zebrafish embryo was
suspended in a water filled cuvette from a stepper motor (T-NM17A200, Zaber Technologies
Inc.) and images were recorded on an sCMOS camera (Zyla 5.5, Andor Instruments).
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The zebrafish embryos (detailed description in [72]) were derived from a mutant TraNac
background to suppress melanin production (a gift from Julian Lewis, Cancer Research UK,
London Research Institute) and were subsequently genetically modified to express mCherry
fluorescence protein (mCherryFP) in the vasculature. mCherryFP fluorescence was excited
using a 561 nm laser (Jive, Cobolt AB) and imaged through a 641± 37 nm emission filter. The
zebrafish embryos were imaged 4 days post fertilization, being anaesthetized and mounted in
fluorinated ethylene tubing with a refractive index that matched that of water.

5.2 Results

5.2.1 Application to ex vivo data from test data set

Figure 5.6 shows a representative mouse pancreas slice reconstructed with a decreasing fraction
of 400 acquired projections and processed using FBP, CS and CNN. As shown in chapter 3,
the quality of the reconstructions produced with FBP degrades significantly as the number of
projections is decreased. The images appear noisy from the streak aliasing artifacts.

The iterative CS approach produces a visually improved reconstruction with significantly
reduced streak artifacts and improved contrast. For the 64 projection reconstruction streak re-
jection has been successful. The TV regularisation results in piecewise-constant flatter contrast
compared to the well sampled reconstruction. For greater degrees of undersampling, the streaks
are only partially suppressed in the background.

The CNN approach is better able to reject the background streaks, even for greater degrees
of undersampling. The performance over the sample is comparable to CS – with no piecewise-
constant contrast but with an increase in medium spatial frequency noise.

The performance of the three methods was quantified by calculating the peak signal to noise
ratio (PSNR) between the fully sampled FBP reconstruction, and the reconstructions produced
by FBP, CS, and CNN from the undersampled OPT data sets. This measurement was averaged
over the 3, 342 pancreas and lung slices designated for testing.

The PSNR, in dB, is:

PSNR = 10log10
IMAX

1
N

∑
i

∣∣∣∣∣∣Îi − Ii∣∣∣∣∣∣2 (5.18)

where IMAX is the peak intensity in I, and the denominator term is the mean of the squared
error between the ith of n pixels of I and Î. Figure 5.7 shows the variation of PSNR with
number of projection angles, Nθ, for the three reconstruction methods. Both the CS and CNN
reconstructions have superior PSNR compared to the streak corrupted FBP reconstructions.
The quality of the reconstructions decreases when fewer angular projections are used. However,
CNN consistently outperforms the CS method. Therefore, employing CNN for the reconstruc-
tion should enable the OPT data acquisition times to be reduced compared to CS for equivalent
PSNR in the reconstructed images.
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Figure 5.6: Comparison of a representative pancreas slice reconstructed using FBP, CS, and
CNN, with decreasing numbers of projections, shown on a false colour intensity scale. Compared
to FBP, the CS and CNN methods are both able to provide significantly improved reconstruc-
tions with fewer projections. For 40 and 32 projections, the CNN reconstructions have better
rejection of background streaks compared to those produced with CS. Scalebar 2 mm. Adapted
from [5].

5.2.2 Application to in vivo data from zebrafish embryo data set

Acquiring well-sampled in vivo training data is challenging, since the total acquisition time
may be practically limited. As described in chapter 4, the total acquisition time was limited
to 15 minutes by the need to recover the fish after the anaesthetic procedure. Furthermore,
photobleaching of fluorescent proteins is significantly higher than for dyes [149]. This time was
sufficient to acquire a 64 projection data set of the vasculature and tumour channels. This data
was reconstructable with the CS approach, but for CNN training there is no in vivo labelled
ground truth available in sufficient quanitities.

Fortunately, it is not necessary to acquire in vivo training data. One possible approach
would be to acquire well-samped OPT data sets of a large number of terminally anaesthetised
zebrafish – making the necessary corrections for photobleaching that may occur [95]. However,
this would require sacrificing a significant number of zebrafish specifically to gather sufficient
training data for this investigation. Instead, it can be reasoned that, despite being different in
appearence to cleared mouse tissue, the fluorescent intensity of the reconstructed zebrafish slices
are comparably sparse and structurally similar; the fluorescence signal is localised to multiple
small regions, for example the islets in the mouse pancreas and vasculature in the zebrafish. In
this case, the streak artifacts produced by FBP should also be structurally similar. Therefore,
the CNNs trained to remove streaks from the undersampled ex vivo mouse sample data could
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Figure 5.7: Variation of PSNR between reconstructions of well-sampled ex vivo data, and those
produced using FBP, CS, and CNN methods from different numbers of projections. The graph
plots mean and standard error of measurements across the test data set of 3,342 slices. Adapted
from [5].

be directly applied to in vivo OPT data of a zebrafish embryo expressing mCherryFP in the
vasculature. This well-sampled in vivo zebrafish data set was available from the previous CS-
OPT study [72].

Figure 5.8 shows a representative in vivo zebrafish embryo slice reconstructed with a de-
creasing fraction of the 800 acquired projections and processed using FBP, CS and CNN. As
previously observed, the FBP reconstructions rapidly decrease in quality as the number of angu-
lar projections is reduced. The CS method produced a good reconstruction with 64 projections,
but streak artifacts are observed in the background of the 40 projection reconstruction. The
CNN approach was able to produce a good estimate of the well-sampled slice with only 40
projections, with fewer apparent streaks and better preservation of the localised vasculature.
With 32 projections the streak rejection is good but some of the vasculature has also been re-
jected; the specificity is good, but the accuracy has suffered. It is worth noting that the ground
truth fully sampled reconstruction shown in figure 5.8 is itself partially corrupted by streak
artifacts. These were caused by small sample movements during the in vivo acquisition. The
presence of these artifacts raises the issue of whether this is a valid ground truth to compare
the undersampled reconstructions to; the artifacts will introduce systematic errors to the PSNR
measurement. However, all reconstructions are imperfect representations of the real object. In
this instance, the degree of imperfection is greater than what might be desired, but there is no
obvious alternative, so it will continue to be used.

Figure 5.9a plots the variation with number of projection images of PSNR between the well-
sampled FBP reconstruction and those produced from undersampled OPT data with FBP, CS,
and CNN, averaged over the 2,218 slices of the zebrafish embryo. The results follow a similar
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Figure 5.8: Comparison of a representative zebrafish slice reconstructed using FBP, CS, and
CNN, with decreasing numbers of projections, shown on a false colour intensity scale. Compared
to FBP, the CS and CNN methods are both able to provide significantly improved reconstruc-
tions with fewer projections. The slice produced by CNN from 40 projections is of acceptable
quality. Scalebar 200 µm. Adapted from [5].

pattern to what was seen with the ex vivo mouse samples; the CS and CNN reconstructions are
of higher quality than the FBP reconstruction, and the CNN method outperforms CS for all
degrees of undersampling. The CNN reconstructions have an equivalent PSNR when using 40
projections, to the previously established limit of 64 projections when reconstructing with CS
– enabling a acquisition time reduction of 40%.

Reconstructing undersampled OPT data with the CNN method rather than CS removes
the use of iterative algorithms, which reduces the reconstruction time. Figure 5.9b, shows the
average reconstruction time per slice for the FBP, CS, and CNN methods implemented on the
same desktop computer with an Nvidia Tesla K40c GPU. FBP is orders of magnitude faster than
the CS and CNN methods, with an average slice reconstruction time of (8.75± 0.01) ∗ 10−3 s

for the 64 projection case, but does not produce satisfactory reconstruction quality. The CS
method, as described in chapter 4, involves repeated calls of forward and back projection,
and the iterative denoising algorithm – which increases the reconstruction time by a factor of
250 to 2.18± 0.01 s. The CS reconstruction time increases with number of projections, as the
computational cost of performing the FBP component increases. The CNN approach takes FBP
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Figure 5.9: (a) Variation of PSNR between reconstructions of well-sampled in vivo data, and
those produced using FBP, CS, and CNN methods from different numbers of projections. (b)
Variation of slice recontruction time, using FBP, CS, and CNN. Both plots show mean and
standard error of measurements across the zebrafish embryo data set of 2,218 slices. Adapted
from [5].
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reconstructions as input and performs one feedforward pass through the network, the speed of
which is independent of number of projections. For 64 projections, the CNN reconstruction
time is (3.40± 0.02) ∗ 10−1 s – 6x faster compared to CS.

The total time taken to reconstruct the 2,218 slice zebrafish embryo follows a similar trend;
The CS and CNN methods took 77 and 15 minutes respectively to reconstruct the 64 projection
data set. This time includes overheads such as time to load and save the data.

5.2.2.1 Sensitivity of iterative CS and CNN methods

In chapter 4, the importance of the regularisation parameter τ was discussed. When selecting
its value, a compromise is made between being specific, by rejecting streaks with a high value
for τ , and accurate, preserving genuine signal with a low value. By enforcing greater sparsity,
more streaks are removed, but at the cost of the less prominent features in the FOV being
removed as well. A similar effect occurs in the training of the neural network; less prominent
features will produce smaller errors, and therefore have a smaller affect on the adjustments of
the weights than getting the bright features correct or removing streak artifacts. The end result
of this is that the performance of both CS and CNN will be worse for dim features. These
features will also not make a strong contribution to the quantification of reconstruction quality
using the PSNR, shown in figure 5.9a.

Figure 5.10 shows regions of interest around features of differing intensity in a reconstructed
slice of a zebrafish embryo. In the well-sampled FBP reconstruction, the peak intensities of the
first, second, and third features are 53%, 25%, and 17% of the peak intensity of the brightest
feature in the FOV, respectively. The regions of interest are shown from slices reconstructed
with different numbers of projections with FBP, CS, and CNN.

All the features are visible in all the FBP reconstructions – which are accurate but not
specific. The first feature is clearly visible in the CS and CNN reconstructions for all the
degrees of undersampling shown. The second feature is resolvable in the CS reconstructions
down to 48 projections, and in the CNN reconstructions down to 40, while the third is only
resolved in the 80 projection CNN reconstruction. This illustrates a limitation of reconstructing
from undersampled OPT data; that dimmer objects will be lost. However, in both instances
the object is visible at greater degrees of compression in the CNN reconstructions than in those
produced with CS.

5.3 Conclusion

Chapter 4 showed that OPT data acquisitions can be accelerated by imaging at fewer angular
projections and reconstructing the sample volume with CS techniques. This is a necessary
requirement for in vivo imaging to minimise the risks associated with extended anaesthesia.
The work presented in this chapter builds on the previous iterative CS implementation to
demonstrate the use of CNNs for significantly faster reconstruction with improved image quality.

The neural networks were trained to remove the streak artifacts from ex vivo fixed and
cleared mouse tissue. Despite this limit in classes of sample type, the structural similarities of
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Figure 5.10: Sensitivity of iterative CS and CNN methods to dim features. (a) Slice of zebrafish
embryo reconstructed with FBP from a well-sampled data set. Three regions of interest are
highlighted. Scalebar 250 µm. (b) (c) (e) The indicated regions of interest (i, ii, iii) respectively,
from the FBP, CS and CNN reconstructions for different numbers of angular projections. The
feature in (i) is resolved in all cases shown. The feature in (ii) is resolved down to 48 and
40 projections for CS and CNN reconstructions respectively. (d) Line profiles through (ii) as
indicated in (c). The feature (iii) is not resolved in the CS reconstructions but can be seen in
the 80 projection CNN reconstruction. (f) Line profiles through feature (iii) as indicated in (e).
Adapted from [5].
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the streak artifacts created by sparse signals meant that the trained CNNs could be successfully
applied to in vivo zebrafish data. This means no additional animals were necessary to build an
appropriate training data set.

The reduction in processing time will improve the practicality of future high-throughput
longitudinal studies. Extrapolating the total reconstruction time improvement, the OPT recon-
struction time for the 24 zebrafish imaged in the baseline study would be improved from 62 to
12 hours – making the difference between the data being available the next morning and having
to wait half the working week.

The approach taken in this chapter was to treat each individual slice as a 2D denoising
problem. However, the samples, and their reconstructed volumes, are three dimensional. The
sample volume presents equally high spatial correlations and equally great sparsity in all di-
rections. Creating a full 3D convolutional network would require impractical GPU memory
requirements to implement for the entire volume. However, it would be trival to take some of
the neighbouring slices as additional input channels. This would have a negative impact on
speed, but could provide an improvement in quality.

The denoising of FBP-reconstructed images may be less effective than working directly with
the raw projections. Instead of acting to remove noise from the reconstructions, a network could
be designed to guess at the missing projections, before any transformation has occured. This
requires a different approach to how the data is treated – the projections are locally correlated
in t and x, but not in θ. Working in 2D, one approach would be to use 1D convolutional filters
in t and to treat each projection θ as a seperate input channel. This could then be extended
into 3D by using 2D convolutional filters in t and x.



Chapter 6

Conformal high dynamic range
optical projection tomography

One of benefits of imaging with OPT is the ability to image the 3D distribution of a variety of
contrast mechanisms, including absorption [11], which can provide complementary contrast to
fluorescence measurements [59, 118]. Depending on what is labelled, fluorescent structures can
appear out of context of the sample’s anatomy, and be challenging to interpret. While anatomy
can be visualised using autofluorescence, this signal is comparitively weak – leading to long
acquisition times, photobleaching and phototoxicity in live samples. In contrast, brightfield
images with absorption contrast can be acquired rapidly with low illumination power.

Due to their size and optical density, acquiring brightfield images of adult zebfrafish is
challenging. The extinction coefficient in soft tissue in the diagnostic window is O

(
10 cm−1)

(section 2.1). Assuming perfect coupling of light into the fish, the intensity of the light that
goes through the sample will be 50 dB lower than the light that goes around the fish to reach
the camera. This uses up most, if not all, of the dynamic range of a typical camera, so that the
structure within the fish will be hidden by noise and only its silhouette will be seen. Therefore,
a high dynamic range (HDR) imaging system is required to acquire useful projection image data
through such optically opaque samples.

Time sequential multi-exposure acquisition is an HDR method that can be implemented
without any additional hardware. The technique involves acquiring a number of images of the
sample with different exposure lengths. Any given pixel may be saturated or below the noise
floor in some of the images, but will be well exposed in others. Afterwards, an HDR image is
produced by combining the differently exposed images, using knowledge of the camera’s response
[150]. This technique has been applied to increasing the dynamic range of OPT for imaging
zebrafish embryos [122]. Theoretically, it allows for arbitrarily large dynamic range scenes to
be recorded. In reality, however, the technique is limited by the effects of saturation on existing
pixelated detector architectures. Excess carriers created in saturated pixels can diffuse away
into neighbouring areas, increasing the measured intensity above its true value [151]. This effect
is called blooming, and is particularly pronounced in CCD cameras, where it causes vertical
streaks of saturation. Blooming limits how greatly a bright region can be over-exposed before
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it affects the pixel values in the dim regions, and therefore the dynamic range of conventional
HDR imaging.

The dynamic range can also be increased with alternative sensors or additional hardware.
Sensors with alternative architectures have been designed to have a logarithmic intensity re-
sponse [152]. Alternatively, a conventional camera can be combined with a spatial light modula-
tor (SLM) to act as a mask, adapting its optical density for each pixel based on its intensity [153].
Here, this system is adapted for HDR OPT imaging. Instead of using a liquid crystal on silicon
SLM, a lower cost DMD is used; an array of microscopic mirrors that can be individually rotated
into “off” or “on” states to reflect light in one of two directions. Such a system was described
in [154], where the sample was imaged onto a DMD, which was imaged onto a camera. In this
configuration the NA of the imaging optics is constrained such that the DMD lies within the
DOF, which causes a loss of collection efficiency and resolution. In contrast, for this work the
DMD is used before the sample to provide spatially resolved control over how the sample is
illuminated – which is here described as conformal-HDR (C-HDR), because of its similarities to
conformal radiotherapy [155]. In C-HDR, as the exposure is increased, the previous recorded
image is used to display a mask on the DMD that will illuminate only the parts of the sample
that will not transmit sufficient light to saturate the camera.

This chapter is organised as follows: section 6.1 describes the optical set-up, its operation,
and HDR fusion; section 6.2 describes the application of the C-HDR-OPT system to a bead
phantom; and section 6.3 describes the application of the system to brightfield OPT imaging of
an adult zebrafish.

6.1 Hardware and operation

6.1.1 Hardware

A schematic of the C-HDR-OPT set-up is shown in Figure 6.1. LED radiation at 740 nm

(OptoLED, Cairn) was collimated by L1 (FRP232, Thorlabs, f = 32 mm) and directed to
uniformly illuminate a DMD with 1920×1080 7.56 µm pixels (DLP Lightcrafter 6500, TI). The
full field of the DMD was imaged onto the sample using a telecentric imaging relay comprising
achromatic lenses, L2 and L3 (AC508-200-A-ML, f = 200 mm and AC508-400-A-ML, f =
400 mm, Thorlabs) with an adjustable aperture stop AP (SM2D25D, Thorlabs) in the Fourier
plane. The transmitted light was imaged using a commercial 0.5x magnification telecentric lens
(TL) with an adjustable aperture (TECHSPEC SilverTL, Edmund Optics), onto a sCMOS
camera (Iris 9, Photometrics). The illumination and imaging systems were configured with
optical axes parallel at the sample and perpendicular to the axis of rotation. Their focal planes
were coincident and the excitation and emission DOFs set to 4 mm to cover at least the front half
of the sample – giving a diffraction-limited resolution of 26.3 µm. The samples were mounted
in FEP tubing (06406-72, Cole-Parmer) and suspended in a water-filled cuvette (704-003-50-10,
Hellma Analytics) from a stepper motor (NM11AS-T4, Laser 2000 UK) with tip-tilt adjustment
(M-TTN80, Newport Corp) and 3-axis linear translation (M-423 and M-UMR12.63).
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Figure 6.1: C-HDR-OPT setup. The addition of a DMD in the illumination path enables control
over which parts of the FOV are illuminated.

6.1.2 Data acquisition

The system was controlled using scripts written in MATLAB. The sample was rotated to a
number of equally spaced angles around 360◦. At each of these a C-HDR projetion data set was
acquired. Images were recorded on the camera with 2x2 binning using different exposure levels:
100 µs, 1 ms, 10 ms, and 200 ms. At each exposure level, a mask was displayed on the DMD
to only illuminate that part of the FOV that was not expected to saturate the detector. These
masks were calculated using (figure 6.2):

M c
n(x, y) =

1, for n = 0

M c
n−1 (x, y)

(
In−1 (x, y) < (Isat − Ioffset) tn−1

tn
a+ Ioffset

)
, for n > 0,

(6.1)

where In (x, y) is the recorded pixel value at coordinates (x, y) for the nth of N exposures, with
integration time tn, and M c

n (x, y) is the conformal mask used for the nth image. Isat and Ioffset
are respectively the saturation point and offset of the camera, and a is an additional factor
set to 1.2, to include some pixels over the predicted saturation boundary. The masks were
further processed with a 7 pixel morphological opening to remove small regions, and a 3 pixel
morphological erosion to create a margin for diffraction, scattering, and mis-calibration of the
DMD orientation.

To correctly display the masks, the position of the image of the DMD on the camera was
calibrated. A series of images were recorded of 5 pixel squares displayed at different posi-
tions on the DMD, and the M-estimator sample consensus algorithm was used to estimate the
affine transormation between the set of input coordinates and output maxima of the images
(estimateGeometricTransform, MATLAB, [156]). The masks were transformed from camera to
DMD space and displayed using the Psychtoolbox package.

The DMD can be used as a monitor to adapt what is displayed upon it. When used in this
way, the DMD mirrors are momentarily switched off by pixel reset pulses, and for 370 µs after
each frame due to hardware timing requirements when using the DMD as a display. Combined
with the rolling shutter of camera, this effect produces striping artifacts for exposures shorter
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a b

c d

e

Figure 6.2: C-HDR-OPT mask calculation. (a) A 1 ms exposure image of a fish in transmission.
The illumination has been masked so that only the sample body and fins, and the tubing are
illuminated. (b) Based on the image in (a) a mask is made of all pixels that are not expected
to be saturated at the next exposure. (c) This mask is multiplied by the previous mask, so that
previously masked regions do not turn back on and over-saturate the detector. (d) The mask is
cleaned with morphological processes. (e) A 10 ms image acquired with the mask in (d). (a)
and (e) Displayed with logarithmic scale.

than the frame rate of the camera (figure 6.3). To address this artifact, short exposure images
were acquired in bursts of 5, and the pixelwise maximum taken of the set of images. This
caused an overestimation of pixel values because of noise. A better choice would be to take the
pixelwise median.

To acquire more information about pixels near the mask boundaries (see section 6.1.3),
additional images were acquired after each n with a longer exposure 2tn, but with the same
Mn.

Conventional multiple exposure HDR-OPT data sets of the samples were also acquired. The
sample was rotated to a number of equally spaced angles around 360◦. Images were recorded on
the camera with 2x2 binning using different exposure levels: 100 µs, 1 ms, 10 ms, and 200 ms.
At every exposure level, the entire DMD was set to “on”.

6.1.3 Projection fusion

In conventional multiple exposure HDR imaging, the masks for selecting which pixels come
from which exposures are calculated a posteriori. Each pixel is taken from the longest exposure
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a b

Figure 6.3: Removal of striping artifact. (a) Striping artifact caused from DMD pixel resetting
and rolling camera shutter. (a) 100 µs exposure image of DMD with all pixels “on”, at maximum
pixel value in video mode. (b) Pixelwise maximum of 5 100 µs exposure images.

image in which it is not saturated, and subsequently transformed to a uniform intensity scale.
The pixel values for the nth exposure are:

In(x, y) = tnbI(x, y) + Ioffset + noise, (6.2)

where I(x, y) is the intensity at the detector at pixel coordinate (x, y), and b is a constant. The
pixel masks are calculated as

Mn(x, y) =

In (x, y) < Isat, for n = N

(1−Mn+1 (x, y)) (In (x, y) < Isat) , for n < N,
(6.3)

and a HDR image recovered using

Iout (x, y) =
∑
n

Mn (x, y) (In (x, y)− Ioffset) /tn. (6.4)

If this is trivially extended to the conformal illumination approach with

Icout (x, y) =
∑
n

M c
n (x, y)

(
1−M c

n+1 (x, y)
)

(Icn (x, y)− Ioffset) , (6.5)

where Icn are the intermediate HDR images calculated from each pair of tn and 2tn using
equation 6.4, sharp gradients are seen at the edges of the masks, and pixels taken from the
longer exposures are underestimated (figure 6.4a). The fusion has sharp boundaries because it
assumes that the mask is perfectly propogated through the system – as if it were applied on the
image itself, as in [153,154] rather than being diffracted and scattered through the system and
sample. Figure 6.5 shows an adult zebrafish illuminated by a particular mask with a 200 ms
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exposure. The illumination has been scattered out of the indicated mask shape. The scattering
of light away from the illuminating mask has not been balanced by scattering into the mask
from the portions of sample outside the mask – compared to what would be seen in an idealised
high dynamic range widefield image. Therefore it is not a simple binary relation between the
image recorded with and without the mask. Also of note is the background intensity across the
FOV – caused by light scattering in the beam delivery optics and cuvette. This sets the current
limit to the dynamic range that can be achieved with conformal HDR.

To remove the discontinuities at the mask boundaries, the dimmer regions must be amplified
to account for their reduced illumination. To achieve this, an approximately uniform gain map
was applied to the portions of Icout from the masked regions. The validity of this approach is
explored as follows. (I3 − Ioffset)/(I4 − Ioffset) over M c

4 is shown in figure 6.6a. In an ideal
case – i.e. no diffraction and no scattering – this ratio would be expected to be a noisy version
of the mask M c

4 , with a value of t3/t4. Instead, the ratio is smoothly varying across the centre
of the mask, and rises sharply at the boundaries of the illumination mask, making a smoothly
varying correction invalid in these areas. Therefore, the boundary regions were re-assigned
into the masks of the shorter exposures – where those pixels were less well exposed, but more
predictably illuminated. This was achieved using a six-pixel erosion applied to each of the
illumination masks; M c′

n = M c
n	B, where B is a six-pixel radius circle structural element. The

ratio map over M c′
4 is shown in figure 6.6b; although it is spatially varying, that variation is

smooth.
The gain map was created by interpolating the gain required for no discontinuities at the

eroded mask boundary:

gn (x, y) =



∑
i ui/

(
ri (x, y)2 + 1

)
∑
i 1/

(
ri (x, y)2 + 1

) , for n = 2

∑
i ui (∏n

m=1 gm (xi, yi)) /
(
ri (x, y)2 + 1

)
∑
i 1/

(
ri (x, y)2 + 1

) , for n > 2,

(6.6)

where the sum is over all pixels on the edge of mask Mn, and uni is the ratio at position (xi, yi),
and ri (x, y)2 = (x− xi)2 + (y − yi)2:

uni = (In (xi, yi)− Ioffset) / (In−1 (xi, yi)− Ioffset) .

The quadratic term was chosen empirically as it produced qualititatively acceptable results,
and the additional one stops the gain becoming undefined at the edge of the mask.

The discontinuity corrected C-HDR projection was then calculated using

Icout (x, y) =
∑
n

M c
n (x, y)

(
1−M c

n+1 (x, y)
)
gn (x, y) (In (x, y)− Ioffset) , (6.7)

which is shown in figure 6.4b. The logarithm of projections was taken, and the volume recon-
structed as described in section 3.2.

Equation 6.7 appears to produce results that overestimate the signal in the centre of the
sample. A more rigorous approach might recover the image using a minimisation approach,
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a

b

Figure 6.4: (a) Fusion of conformal HDR projection data using equation 6.4. (b) Fusion of
conformal HDR projection data using equation 6.7. Scalebar 1 mm.

Figure 6.5: Adult zebrafish illuminated in transmission by the mask indicated in red. Back-
ground light can be seen across the FOV, and the illumination has been scattered beyond its
boundaries.
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a

b

c

Figure 6.6: Calculation of correction gain map. (a) Ratio of intensity between I3 and I4 over
M4. The ratio is highest at the edges and quickly falls off. (b) The same ratio over the mask
created with a 6-pixel erosion. The ratio is much more slowly varying over this mask. (c) Gain
map calculated using equation 6.6.
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which seeks to find a discontinuity-free full dynamic range image X. The forward model for the
nth exposure can be described as:

Yn = AnGnX + noise, (6.8)

where Yn is the recorded image, Gn is the unknown modulation caused by the illumination
pattern, and An is the camera response function:

AnX = min (tnX + Ioffset, Isat) . (6.9)

X and Gn can then be recovered by solving the minimisation problem:

minimiseX,Gn

∑
n

(
‖Yn −AnGnX‖22 + a ‖Mn −Gn‖22 + τGΦ(G)

)
+ τxΦ(X), (6.10)

where a, τx, and τG are regularisation parameters, and Φ is the total variation functional. The
relationship between Mn and Gn could also be explored to measure scattering properties of the
sample.

6.2 Characterisation on bead phantom

The C-HDR-OPT system was tested on a phantom of beads (0.02µm, Crimson 625/645nm,
Invitrogen) suspended in a 3D scattering medium of 2% agarose, with scattering provided by a
0.4% by volume suspension of microspheres (Plain 1990nm, PL-Microspheres). The phantoms
were made in a 1.5 ml tube (11926955, Fisher Scientific), giving it an approximately conical
shape, 8 mm diameter and 2 cm in length.

The phantom was imaged with 400 projection HDR-OPT and C-HDR-OPT as described
in section 6.1.2. The acquisition times were 20 and 44 minutes for HDR-OPT and C-HDR-
OPT respectively. Transmission projections acquired conventionally, with HDR and C-HDR
are shown in figure 6.7. The conventional transmission image only shows a silhouette of the
phantom. The HDR image shows a less noisy silhouette, which has recorded some low spatial
frequency signal through the sample, but no small features are visible. However, the superior
signal to noise ratio enables several beads and imperfections in the agarose surface to be seen in
the image acquired using C-HDR, as shown in the line profile in figure 6.7d. Also visible in the
C-HDR line profile is the overestimate of signal in the centre, created by the fusion proposed in
equation 6.7.

The dynamic range of a camera is defined as:

DR = 10log10
Imax
Imin

, (6.11)

where Imax and Imin are the maximum and minimum detectable signal. The noise was measured
in the 100 pixel dark region of interest indicated by the blue square in figure 6.7c. From this
a dynamic range of 98 ± 1 dB was measured, which is likely an underestimate due to the
over-correction of the centre. The datasheet dynamic range of the Iris 9 camera is 39 dB.
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A slice of the phantom volume reconstructed from HDR and C-HDR projections is shown
in figure 6.8. The indicated feature is reconstructed from the C-HDR data, but is not visible in
the HDR reconstruction.

6.3 Application to in vivo imaging

To demonstrate C-HDR-OPT in vivo, the system was applied to imaging a terminally anaes-
thetised adult (fli:GFP) Casper zebrafish (6 months post fertilisation). The imaging parameters
used were the same as described in section 6.2. Transmission projection images that were ac-
quired conventionally, and with HDR and C-HDR imaging are shown in figure 6.9. Some
features are visible in the tail of the conventional transmission projection, but little otherwise
can be seen and the image is noisy. The HDR projection is less noisy, and more structure can
be seen along the tail and dorsal side. Superior contrast across the whole fish is apparent in the
C-HDR projection.

Figure 6.10 shows orthogonal slices through the adult zebrafish volumes reconstructed from
the HDR and C-HDR projections. The C-HDR reconstructions have signficantly more contrast
– of particular note is the visibility of the swim bladder (indicated by arrow).

6.4 Conclusion

C-HDR-OPT enables 3D brightfield contrast reconstructions of optically thick samples by adapt-
ing the illumination to the sample. This method increased the projection dynamic range from
39 dB to 98 ± 1 dB, and revealed features that are masked by blooming when imaged with
conventional HDR. This will enable dual fluorescence and brightfield OPT imaging of adult
zebrafish, to provide specific contrast and anatomical context.

The technique is not yet fully quantitative, due to the over-correction of longer exposures to
try and account for scattering of the illuminating mask in the sample. This problem could be
avoided by applying the mask after the sample. This would require using a non blazed SLM,
for example a LCOS SLM. Alteratively, an optimisation approach (suggested in section 6.1.3),
could be used to fuse the data with greater verisimilitude.

The contrast is still limited by optical scattering within the sample. Many bones and the
swim bladder can be seen in figure 6.10, but other organs in the abdomen are not visible.
However, this technique is applicable to imaging with short-wave infrared (SWIR) illumination
(chapter 8), which should improve the imaging depth.
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Figure 6.7: Transmission projections of a scattering bead phantom. (a) Conventional image.
The phantom appears as a noisy silhouette (b) HDR image. The phantom appears as a silhou-
ette without internal structure. (c) C-HDR image. Beads and surface features are visible. The
blue box shows the 100 pixels over which the noise was measured. (d) Line profiles as indicated
by red dashed line on (a)-(c). Scalebar 1 mm
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Figure 6.8: Slice from reconstruction of scattering agarose phantom. (a) Reconstruction pro-
duced with HDR-OPT data. (b) Reconstruction produced with C-HDR-OPT. (d) Line profiles
as indicated in (a) and (b) Scalebar 1 mm
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Figure 6.9: Transmission projections of an adult zebrafish. (a) Conventional image. (b) HDR
image. (c) C-HDR image. (d) Line profiles as indicated on (a)-(c). Scalebar 1 mm
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Figure 6.10: Orthogonal slices through in vivo adult zebrafish volumes reconstructed from (a),
(c), (e) HDR and (b), (d), (f) C-HDR projections. (a), (b) xy plane, (c), (d) xz plane, and
(e), (f) yz plane. The arrows indicate the swim bladder, which is visible in the C-HDR-OPT
reconstruction. (g) Line profiles as indicated in (a), (b). Scalebar 1 mm



Chapter 7

Slice illuminated optical projection
tomography

Chapter 4 described the application of angularly-multiplexed compressed-sensing OPT to longi-
tudinal imaging of adult zebrafish. This combination of techniques enabled quantification of tu-
mor development with repeated imaging under anesthesia and subsequent recovery [72,108,136].
However, although these non-pigmented fish are significantly more transparent than wild-type
fish, they do present discernible optical scattering. This chapter describes the development of a
system to improve the image quality by rejecting scattered light with semi-confocal illumination
and detection [157], described as slice illuminated OPT (slice-OPT) [6].

In OPT the recorded projection images are formed of ballistic photons, which report the
structure of the sample, and scattered photons, which degrade resolution and contrast. The
impact of scattering has been reduced for absorption OPT by discriminating in favour of ballistic
photons with an ultrafast optical Kerr gate [112], and structured illumination to discriminate
against scattered light [113]. However, ballistic fluorescence photons cannot be time-gated – the
lifetime of the fluorescent excited state is orders of magnitude longer than increases to photon
arrival time caused by optical scattering – and the arithmetic operations involved in structured
illumination reduce the available dynamic range [158].

Slice-OPT is intended to reduce the impact of optical scattering on fluorescence OPT pro-
jections, without reducing dynamic range. In slice-OPT the sample is illuminated with a series
of parallel lines, to excite fluorescence from individual slices through the sample, as illustrated
in figure 7.1. Detected fluorescence photons will originate from the excited slice, but also from
neighbouring slices due to scattering. These scattered photons are rejected with a digital mask
applied to the camera. A full slice-OPT projection is produced by scanning the illumination
and mask.

Section 7.1.1 expands on 3.2 to describe the effects of Gaussian blurring on transfer function
support in widefield and slice-OPT reconstructions. Section 7.2 describes the optical set-up,
calibration, and operation of the slice-OPT system. Sections 7.3 and 7.4 describe the applica-
tion of slice-OPT to a scattering bead phantom and to juvenile zebrafish. Finally, section 7.5
discusses the results and future outlook.

102
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Figure 7.1: Diagram showing principle of Slice-OPT, the imaging and illumination systems
are coaligned with the z axis (figure 7.3): (a) Separated slices of the sample are individually
illuminated. (b) Fluorescence is detected from the illuminated slices, but also from neighbouring
ones. (c) The spurious signal can be removed using a digital mask. A complete projection is
built up by scanning the illumination and digital mask and repeating the process.
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7.1 Theory

7.1.1 Optical projection tomography transfer function

Figure 7.2: The transformation between object space (x, y, z) and camera space (x, t, s) is a
rotation θ around the x axis, which goes into the page. A point object is placed at (0, y0, z0) in
object space.

In chapter 3.2 the process of projection and reconstruction was described for a perfect
parallel projection system. However, the projections produced in OPT are only approximations
to parallel projection, and are affected by diffraction and scattering. To describe the effect
of slice-illumination, it is informative to explore the effect of a depth dependent point spread
function on sampling.

Equation 3.1 can be extended to include a depth dependent intensity point spread function,
|h(x, t, s)|2:

p(x, t, θ) =
∫ ∞
−∞

f (tcos (θ)− ssin (θ) , tsin (θ) + scos (θ)) ∗ |h(x, t, s)|2ds (7.1)

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f (tcos (θ)− ssin (θ) , tsin (θ) + scos (θ)) |h(x− x′, t− t′, s)|2dx′dt′ds.

(7.2)

Following the work of van der Horst et al. [99], a point object placed at (0, y0, z0) is considered
(figure 7.2),
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f (x, t, s) = δ (x, t− rcos (θ0 − θ) , s− rsin (θ0 − θ))

r =
√
y2

0 + z2
0 , θ0 = atan (z0/y0) ,

(7.3)

A Gaussian approximation to the point spread function is used, which has been previously
shown to match experimental data – and produces tractable expressions [99].

|h (x, t, s)|2 = 2
πw2 (s)exp

(
−2

(
x2 + t2

)
w2(s)

)
, (7.4)

where w(s) is the depth dependent beam waist,

w(s) =

√√√√w2
0 + λ2 (s− sf )2

π2w2
0

+ w2
scatter(s), (7.5)

λ is the imaged wavelength, and w0 the beam waist at the focal plane, sf is the distance between
the focal plane and rotation axis, and wscatter(s) an additional depth dependent Gaussian blur
due to optical scattering. This expression assumes negligible absorption. For the point object
this becomes

w(θ) =

√√√√w2
0 + λ2 (rsin (θ0 − θ)− sf )2

π2w2
0

+ w2
scatter(rsin (θ0 − θ)). (7.6)

Substituting into equations 7.2, taking the Fourier transform, and transforming to (x, ky, kz)
gives

p(x, t, θ) = 2
πw2 (θ)exp

−2
(
x2 + (t− t (θ))2

)
w2(θ)

 ,
P (x, kt, θ) =

√
2

πw2 (θ)exp
(
− 2x2

w2(θ)

)
exp

(
−π

2k2
tw

2(θ)
2

)
exp (−2πit(θ)kt) ,

P (x, ky, kz) =
√

2
πw2 (θ)exp

(
− 2x2

w2(θ)

)
exp

−π2
(
k2
y + k2

z

)
w2(θ)

2

 exp (−2πi (y0ky + z0kz)) .

(7.7)
This expression can be reduced by transforming to a shifted and rotated coordinate system,


x

u

v

 =


1 0 0
0 cos (−θ0) −sin (−θ0)
0 sin (−θ0) cos (−θ0)




x

y − y0

z − z0

 ,
centering the emitter at the origin, with the point spread function aligned with (u, v) axes:

P (x, ku, kv) =
√

2
πw2 (θ + θ0)exp

(
− 2x2

w2(θ + θ0)

)
exp

(
−π

2 (k2
u + k2

v

)
w2(θ + θ0)

2

)
. (7.8)

The last term in 7.8 shows how the support of the transfer function is limited and angularly
varying - due to the Gaussian point spread function changing width as the point object is
rotated.
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7.1.2 Slice-illuminated optical projection tomography transfer function

7.1.2.1 Slice Illumination

In slice-OPT, parallel lines are imaged onto the sample, forming sheets of illumination. Consider
a single line of illumination, normal to the rotation axis. If, for simplicity, the illumination and
detection point spread functions are assumed to be equivalent (this assumption is invalid due
to the Stokes shift), the illumination at the sample is

I (x, xl, t, s) = δ (x− xl) ∗ |h (x, t, s)|2

=
∫ ∞
−∞

∫ ∞
−∞

δ
(
x− x′ − xl

) ∣∣h (x′, t′, s)∣∣2 dx′dt′

=
∫ ∞
−∞

∣∣h (x− xl, t′, s)∣∣2 dt′

=
√

2
πw2 (s)exp

−2
(
(x− xl)2

)
w2(s)

 ,
(7.9)

where xl is the distance of the sheet from the origin. The striped projection formed is

ps(x, xl, t, θ) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ
(
x− x′, t− t′ − t (θ) , s′ − s (θ)

)
√

2
πw2 (s′)exp

−2
(
(x− x′ − xl)2

)
w2(s′)
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√
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)
|h (x, t− t (θ) , s (θ))|2

=
√

2
πw2 (θ)exp

(
− 2x2

l

w2(θ)

)
p (x, t, θ) .

(7.10)

An x-normal slice-illuminated projection, px, is then recovered by scanning the illumination and
using a synthetic aperture to select the illuminated plane

px(x, t, θ) =
∫ ∞
−∞

dxlps (x, xl, t, θ) δ (x− xl)

=
√

2
πw2 (θ)exp

(
− 2x2

w2(θ)

)
p (x, t, θ)

=
( 2
πw2 (θ)

)3/2
exp

−2
(
2x2 + (t− t (θ))2

)
w2(θ)

 .
(7.11)

Comparing equation 7.11 to equation 7.7 it can be seen that the synthetic projection is changed
in two ways. Firstly, the intensity has been reduced by a factor w(θ), due to rejection of light.
Secondly, the resolution is improved by

√
2 in the direction normal to the illumination line. A

similar expression can be found for lines normal to the transverse axis:

pt(x, t, θ) =
( 2
πw2 (θ)

)3/2
exp

−2
(
x2 + 2 (t− t (θ))2

)
w2(θ)

 . (7.12)
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These projections lead to reconstruction modulation transfer functions, Px and Pt;

Px (x, ku, kv) = 2
πw2 (θ + θ0)exp

(
− 4x2

w2(θ + θ0)

)
exp

(
−π

2 (k2
u + k2

v

)
w2(θ + θ0)

2

)
,

Pt (x, ku, kv) = 2
πw2 (θ + θ0)exp

(
− 2x2

w2(θ + θ0)

)
exp

(
−π

2 (k2
u + k2

v

)
w2(θ + θ0)

4

)
.

(7.13)

This derivation is identical to that used for confocal illumination and detection, and therefore
makes the same unreasonable assumption of infinitely narrow slits. The digital mask used in
slice-OPT has a finite size, and discrete scan step. The benefits observed cannot be as strong
as suggested here without pixel reassignment [159], but these derivations indicate the principle
of operation of slice illumination and detection.

7.1.3 Structured illumination and confocal line detection

Conventional OPT is successful with larger samples because it can optically section with wide-
field illumination; optical scattering only degrades the imaging, not the illumination. Using
structured illumination patterns can remove this advantage, and care must be taken in choos-
ing what method to recover an improved projection.

At a certain depth, the structure applied to the illumination will be fully demodulated over
the illumination’s path into and the emission’s path out of the sample. If structured illumination
detection is used, all signal from this depth will be discarded. However, with confocal detection,
this signal is retained – reduced in intensity by a factor equal to the number of scan positions,
compared to widefield imaging. Therefore, confocal detection allows a compromise between
improved reconstruction quality where the illumination is still modulated, and widefield signal
from regions where the illumination is no longer modulated.

7.2 Hardware and operation

7.2.1 Hardware

A schematic of the slice-OPT set-up is shown in Figure 7.3. Laser radiation at 561 nm (Jive,
Cobolt) was coupled into a multimode optical fiber (MMF) by lens L1 (M43L02, Thorlabs,
f = 30 mm), collimated using lens L2 (AC f 100, Linos, f = 100 mm) and directed to uni-
formly illuminate a digital micromirror device (DMD) with 1920 ∗ 1080 7.56 µm pixels (DLP
Lightcrafter 6500, TI) with laser speckle being averaged out by vibrating the MMF. The full
field of the DMD was imaged onto the sample, via a dichroic filter D (Di03-R488/561, Semrock),
using a telecentric imaging relay comprising achromatic lenses, L3 and L4 (AC508-300-A-ML,
f = 300 mm and AC508-500-A-ML, f = 500 mm, Thorlabs) with an adjustable aperture stop
AP (SM2D25D, Thorlabs) in the Fourier plane. The excited fluorescence was imaged using a
commercial 0.5x magnification telecentric lens (TL) with an adjustable aperture (TECHSPEC
SilverTL, Edmund Optics), onto a CCD camera (Clara, Andor) via an emission filter to block
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Figure 7.3: Slice-OPT set-up. Gratings were displayed on the DMD, which is imaged onto the
sample to illuminate multiple individual slices.

reflected excitation light (BA610IF, Olympus). The excitation and imaging systems were con-
figured with optical axes parallel at the sample and perpendicular to the axis of rotation. Their
focal planes were coincident and the excitation and emission DOFs set to 5 mm to cover at
least the front half of the sample – giving a diffraction-limited resolution of 25.8 µm. The
samples were mounted in FEP tubing (06406-72, Cole-Parmer) and suspended in a water-filled
cuvette (704-003-50-10, Hellma Analytics) from a stepper motor (NM11AS-T4, Laser 2000 UK)
with tip-tilt adjustment (M-TTN80, Newport Corp) and 3-axis linear translation (M-423 and
M-UMR12.63).

7.2.2 Alignment and calibration

The optical axis of the illumination and imaging optics had to be aligned, so that for any
given sheet, emission from different depths in the sample was imaged onto the same line on
the image plane. To ensure this was the case, a 2 ∗ 2 mirror spot was displayed on the DMD,
which was imaged to form a 25.3 µm spot on a red fluorescent slide (92001, Chroma) – chosen
to be approximately equal to the diffraction limit of the imaging optics. As the slide was
scanned through the DOF of the imaging optics, any discrepancy between optic axes was seen
as movement of the spot on the camera image. The alignment of the illumination optical axis
was adjusted using the mounting of the dichroic beamsplitter.

For convenience of data fusion, though not strictly required, the x and y axes of the DMD
and CCD were aligned at the sample. The alignment was assessed by displaying a grating on
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the DMD, which was again imaged onto the red fluorescent slide. The emitted fluorescence
was imaged onto the CCD. Taking the Fourier transform of this image, the angle of the DMD
relative to the CCD was determined from the positions of the Fourier peaks. The angle of these
was minimised by adjusting the DMD mount with pieces of shim.

7.2.3 Acquisition and reconstruction software

To illuminate individual slices, binary gratings were displayed on the DMD. These were formed
of columns of “on” DMD pixels that were two micromirrors wide – 25.3 µm at the sample –
separated by a number of pixels depending on the scattering properties of the sample; the slices
must be separated enough such that there is no cross-talk between them, but larger separation
increases the acquisition time unnecessarily. Figure 7.1 (a) shows a schematic of a sample with
a few slices simultaneously illuminated. The fluorescence imaged onto the camera carried signal
from the illuminated slices, but unwanted cross-talk from neighbouring slices was also present
(figure 7.1 (b)). This spurious signal was rejected with a digital mask on the CCD (figure 7.1
(b)), which only accepted fluorescence emanating from the expected slices. A complete slice
illuminated projection was built up by repeating the process with a set of L grating patterns
that scan the illumination across the sample – each translated by one DMD pixel (12.65µm at
the sample) for Nyquist sampling.

The system was controlled using scripts written for MicroManager. The sample was rotated
to a number of equally spaced angles around 360◦. At each of these, a slice-illuminated projection
image data set was acquired by displaying each of the set of grating patterns on the DMD and
recording an image on the camera. By discretising equation 7.10, the set of striped projections is
expressed as ps(l, nθ) – where l is the pattern index in L total patterns, s is the slice separation,
and nθ is the angle index in Nθ angles.

To convert the raw slice-illuminated images into projections for reconstruction, the locations
of the slices in the CCD recordings needed to be determined. This required a mapping between
the DMD axes {xDMD, yDMD} and CCD axes {xDMD, yDMD}, which could be determined a
priori using a calibration measurement on a test object, or by using the raw data to calibrate
itself. For the pre-acquisition calibration, a fluorescent dye filled FEP tube was used as a
phantom. Individual 2 micromirror wide slices were displayed on the DMD and the resulting
fluorescence recorded on the camera (figure 7.4a). The range of slices displayed on the DMD
started at the 100th pixel and extended to the 1000th in 20 pixel increments – this covered the
range that was within the FOV of the CCD. The calibration images were processed in MATLAB.
After loading, each column of the images was summed to give a 1D intensity measurement for
each slice position (figure 7.4b). To remove background, the median of the 1D measurements
was subtracted (figure 7.4c). Then the location of the maximum of those 1D measurements was
found. Finally, a linear fit was applied between the known DMD slice positions and measured
CCD positions (figure 7.4d).

Self-calibration of a data set was suitable if the fluorescence extends through the sample –
for example the vasculature in an adult zebrafish. For each l, the MIP of ps(l, nθ) was taken
over ntheta (figure 7.5a). Then this signal was averaged along yCCD, which gave an intensity
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a b

c d

Figure 7.4: Calibration of mapping between DMD and CCD pixel positions using a test object
calibration data set. (a) Raw camera image of fluorescent target illuminated with a two pixel
wide slice. The fluorescence from the slice was imaged onto approximately the 1170th pixel
column of the camera, the bright feature further along xCCD was caused by reflection off the
housing of the DMD. (b) The raw images for each slice position are averaged along yCCD. (c)
The median of the intensity map in the xDMD direction was subtracted from each column to
remove constant background features. (d) The location of the maximum of each column was
used to fit the mapping between DMD and CCD pixel positions.
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a b

Figure 7.5: Self calibration of mapping between DMD and CCD pixel positions. (a) MIP
of images of a zebrafish OPT taken with a particular illumination pattern. (b) The MIP
is averaged along yCCD, the fundamental of the grating is subsequently identified using the
Fourier transform, and used to create the transmission mask. To avoid stripe artifacts, some
lines of the mask are two pixels wide

profile in xCCD (figure 7.5b). To recover the illuminating grating, the Fourier transform of the
intensity profile was taken, and the fundamental of the grating identified.

For both methods, masks M(l) were created by including columns that were within 0.75
pixels of the predicted slice locations – which were either from the direct mapping of the a priori
calibration or the peaks of the fundamental for self calibration. This synthetic slit width was
the smallest that did not produce aliasing artifacts.

For each angle, slice-illuminated projections were calculated by averaging over the masks:

p(nθ) =
∑L
l=1 ps(l, nθ)M(l)∑L

l=1M(l)
. (7.14)

Pseudo-widefield projections were calculated by summing the raw projections together without
masking:

pw(nθ) =
L∑
l=1

ps(l, nθ). (7.15)

Volumes were reconstructed from well-sampled projection data sets using FBP, as described in
chapter 3.4.3, and from undersampled data sets using TwIST, as described in chapter 4.2.3.3.

7.3 Characterisation on fluorescent beads in a scattering aga-
rose phantom

The slice-OPT system was tested on a phantom of fluorescent beads (0.02 µm, Crimson 625/645
nm, Invitrogen) suspended in a 3D scattering medium of 2% agarose, with scattering provided
by a 0.15% by volume suspension of microspheres (Plain 1990nm, PL-Microspheres). The
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phantoms were made in a 1.5 ml tube (11926955, Fisher Scientific), giving it an approximately
cylindrical shape, 8 mm diameter and 2 cm in length.

The phantom was imaged with 64 projection OPT, acquired with widefield and slice-
illumination with slice separations of 50 µm, 75 µm, 100 µm, 125 µm, and 150 µm – cor-
responding to 4, 6, 8, 10, and 12 pixels on the DMD, which is also equal to the number of
scan positions necessary to achieve Nyquist sampling. The integration time for each image was
500 ms, resulting in slice-OPT imaging times of 128 s, 192 s, 256 s, 320 s, and 384 s. It is
important to keep in mind that the improvement to reconstruction quality comes at the cost
of imaging speed; the need to scan the illumination pattern to acquire the full projection im-
age increases the acquisition time with slice separation. The slice-illuminated projections were
demodulated using the a priori method described in section 7.2.3.

Figure 7.6 shows MIPs through a three-pixel, 40 µm thick section of scattering bead phantom
volume, reconstructed from widefield and 150 µm slice-separation slice-OPT. The contrast of
the widefield reconstruction is reduced by spurious low spatial frequency intensity caused by
optical scattering. The slice-OPT reconstruction does not have this additional background, the
only signal visable is from the beads. The MIP through multiple slices is to ensure the same
beads are visible in both images. The axial extent of objects is reduced by the slice illumination
and detection, as shown in figure 7.7.

a b

Figure 7.6: 40 µm thick zy slice of scattering bead phantom reconstructed from (a) widefield
OPT and (b) 150 µm slice-separation slice-OPT projections. A logarithmic intensity scale has
been used to highlight background features. Scalebar 1 mm

Figures 7.6 and 7.7 show how slice-OPT improves reconstructions in a scattering sample.
The diffuse background of low spatial frequency signal is reduced, providing better contrast, and
the local blurring from weakly scattered photons is reduced in the axial direction. To quantify
this improvement across the volume, the average radial spatial frequency power spectra were
calculated:
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Figure 7.7: Line profile through the MIP of a single bead within the volume of a scattering
bead phanton, along the x axis, reconstructed with widefield OPT and slice-OPT with different
slice separations. The confocal line illumination and detection reduces the degradation to the
PSF caused by optical scattering. Adapted from [6].

ρ(kr) = 1
4π

∫ 2π

0

∫ π

0
(1− exp(−(σkr)2))2FT [I]sinkθdkθdkφ, (7.16)

where I is the 3D intensity distribution of the sample, FT is the 3D Fourier transform, and
kr, kθ, and kφ are the 3D spatial frequencies in spherical coordinates. The first term is a high
pass filter (σ = 0.54 mm−1) to remove any DC offset in the reconstruction. Figure 7.8 shows
ρ(kr) for the different slice separations investigated. The reduction in degradation caused by
scattering can be seen by the increased power at higher spatial frequencies with increasing
slice separation up to 125 µm. Included in figures 7.7 and 7.8 is the volume reconstructed from
pseudo-widefield projections, using equation 7.15. The results for widefield and pseudo-widefield
OPT reconstructions are similar. Therefore, during in vivo experiments, widefield data was not
acquired so that acquisition time and photobleaching was minimised.

To choose the optimal slice separation, a metric is derived based on ρ(kr), which measures
the enhancement of the spatial frequencies in the top half of the support of the NA:

enhancement =
∫ knyquist/2
knyquist/4 ρ(kr)dkr∫ knyquist/2
knyquist/4 ρ0(kr)dkr

, (7.17)

where knyquist is the Nyquist sampling frequency, and ρ0 is the radial spatial frequency power
spectrum of the widefield reconstructed volume. Figure 7.9 shows how the enhancement of the
contribution of high spatial frequencies increases with slice separation, up to 125 µm.
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Figure 7.8: Radial spatial frequency power spectrum of scattering bead phantom volumes re-
constructed with widefield OPT and slice-OPT with different slice separations. As the slice
separation is increased spurious low spatial frequency information, caused by inter-pixel cross-
talk, will be rejected – increasing the proportion of high spatial frequency information in the
reconstruction. Adapted from [6].

7.4 Application to in vivo imaging

To demonstrate the reduction in image degradation due to scattering, a slice-OPT accquisition
was performed on a terminally anaesthetised juvenile zebrafish (line described in chapter 4.2.2),
56 days post fertilisation. This model expresses mCherryFP in its vasculature, which was
imaged in this study.

Acquisitions were performed with slice separations of 75 µm, 100 µm, and 125 µm, cor-
responding to 6, 8, and 10 pixels on the DMD. To minimise imaging time, pseudo-widefield
projections – described in section 7.2.3 – were calculated using equation 7.15 on the 75 µm

data. Also, 32 µm, and 50 µm acquisitions were calculated from 75 µm and 100 µm separated
slice-OPT projections using

for l ∈ [L/2], ps/2(l, nθ) = ps(l, nθ) + ps(l + L/2, nθ). (7.18)

Figure 7.10 shows a comparison between pseudo-widefield and 100µm-separated slice illu-
minated projections. Details are clearer in the slice illuminated projection – for example in the
brain – due to the rejection of some lower spatial frequency scattered light. These more detailed
projections produce better reconstructions, as can be seen in the MIPs shown in figure 7.11 and
orthogonal slices in figure 7.12.

To quantify this performance, we again make use of equations 7.16 and 7.17 – the results of
which are plotted in figure 7.13. Compared to the scattering phantom results shown in figure
7.9, the maximum enhancement is similar within errors but occurs for a smaller slice separation
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Figure 7.9: Enhancement of high spatial frequencies (equation 7.17) with increasing slice sep-
aration and acquisition time for slice-illuminated OPT applied to a scattering phantom. The
rejection of spurious low spatial frequency signal increases with slice separation at the cost of
imaging speed. Above ten times slower there is no additional benefit. Adapted from [6].

of 100 µm.

7.5 Conclusion

The reconstruction quality of in vivo OPT is limited by the blurring effects of optical scattering.
Slice-OPT was developed to address this degradation in resolution. In the 2D projections (figure
7.10) and reconstructed volume MIPs (figure 7.11), the improvement to contrast is apparent,
which has been quantified using equations 7.16 and 7.17 (figure 7.13b).

However, the cross-sectional images through the reconstructed volumes, e.g. figures 7.12e
and 7.12f, show that this enhancement is occuring near the surface of the scattering sample.
The camera used in the slice-OPT system inevitably has a finite dynamic range, a proportion
of which is used up by scattered photons. As the imaging depth increases, the proportion of
ballistic photons will fall beneath the noise floor. At that point, digital rejection of scattered
photons cannot produce an improved image.

The slice-OPT and pseudo-widefield reconstructions, shown in figures 7.11 and 7.12, present
complimentary contrast. In this chapter the spurious signal was rejected. However, this struc-
ture might be used to model the scattering properties of the sample.

As with C-HDR-OPT, Slice-OPT is equally applicable to imaging with longer wavelengths,
where the improvements to image quality and imaging depth could be combined. The technique
could also be applied to ex vivo cleared tissue; chemical clearing removes a large portion of
refractive index inhomogeneities, but some remain. Slice-OPT could be applied to larger cleared
samples, where the residual optical scattering impacts the reconstruction quality. Slice-OPT is
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a

b

Figure 7.10: Projections used for OPT reconstructions: (a) pseudo-widefield projection (b)
slice-illuminated projection. Scalebar 1 mm

unlikely to be compatible with C-HDR-OPT in adult zebrafish; some modulation is maintained
in a back-scattering geometry, but in transmission it will be completely lost – adding a time
cost without any benefit to contrast.
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Figure 7.11: MIPs of in vivo juvenile zebrafish volumes reconstructed from (a), (c), (e) pseudo-
widefield and (b), (d), (f) slice-illuminated projections, along the (a), (b) z axis, (c), (d) y
axis, and (e), (f) x axis. Inset on (c) and (d) shows a region of interest around the brain. A
logarithmic intensity scale is used. Scalebar 1 mm
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Figure 7.12: Orthogonal slices through in vivo juvenile zebrafish volumes reconstructed from
(a), (c), (e) pseudo-widefield and (b), (d), (f) slice-illuminated projections. (a), (b) xy plane,
(c), (d) xz plane, and (e), (f) yz plane. A logarithmic intensity scale is used. Scalebar 1 mm
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Figure 7.13: (a) Radial spatial frequency power spectrum of juvenile zebrafish volumes recon-
structed with widefield OPT and slice-OPT with different slice separations. (b) Enhancement
of high spatial frequencies (equation 7.17) with increasing slice separation and acquisition time.
The rejection of spurious low spatial frequency signal increases with slice separation at the cost
of imaging speed. Above 8 times slower there is no additional benefit. Adapted from [6].



Chapter 8

Single pixel optical projection
tomography

This chapter describes work in progress developing single pixel camera based OPT, with the
motivation to develop OPT systems that can work with radiation at wavelengths beyond the
spectral response of silicon-based detectors.

Slice-OPT (chapter 7) was able to reject scattered light and gave improved contrast in
regions near the surface of the sample. However, it did not significantly improve the imaging
depth over conventional OPT. Measurement systems have finite dynamic range, an increasing
proportion of which is used up by scattered photons when imaging thicker samples. Even if all
scattered photons are successfully rejected, no ballistic signal will be seen if it has been reduced
below the noise floor by optical scattering.

As discussed in chapter 2, the scattering coefficient of tissue decreases monotonically with
wavelength from ultraviolet, through the visible, and into the infrared. As longer wavelengths
are used, the proportion of ballistic signal at the detector will increase. Above 1350 nm the
absorption coefficient of water sharply increases, which defines the edge of the exploitable low-
scattering NIR window – where the scattering will be lowest, and absorption isn’t impractically
high. The region between 1000 nm and 1350 nm, referred to as near infrared II or short-wave
infrared (SWIR) light, has been used for multiphoton excitation [160, 161], and imaging with
epifluorescence [162–164] and light sheet [165] to achieve greater imaging depths.

Unfortunately, the responsivity of conventional silicon based cameras falls away rapidly
above 1000 nm. Pixelated detectors based on SWIR responsive InGaAs and Ge are rapidly
falling in price, but remain prohibitively expensive for widespread adoption. Single pixel cameras
offer a lower cost alternative [166–168]. The object is imaged onto a spatial light modulator
such as a digital micromirror device (DMD), which reflects light from its “on” pixels onto
a photodetector. As the test function (a random binary image ) displayed on the DMD is
changed, the variation of the intensity on the photodetector forms a set of linear equations that
can be solved to recover the image.

Single pixel cameras can be equivalently implemented by projecting the test functions onto
the object; the DMD is placed in the illumination optics and a “bucket” detector collects

120
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light from the sample [169]. With an illumination single pixel camera, the measurement is
only affected by optical scattering on the illumination path. With an imaging single pixel
camera, the measurement is only affected by optical scattering on the imaging path. The choice
of implementation depends on where the greater degree of optical scattering is expected to
occur. Examples of systems that can exploit lower scattering on the illumination path are
temporally focused multi-photon microscopes [170] and opthalmascopes [171]. Illumination
single pixel cameras also benefit from rejection of scattered light on the illumination path – in
a similar manner to structured illumination [172]; the demodulated component of the image is
rejected [173].

This chapter describes progress in the development of a single-pixel OPT (SP-OPT) system
for low cost 3D SWIR imaging. Section 8.1 describes the function of a single pixel camera.
Section 8.2 explains the theory of SP-OPT. Section 8.3 desribes the experimental set-up, ac-
quisition, and reconstruction. Section 8.4 describes the imaging of a bead phantom. Potential
methods to reduce acquisition time and increase dynamic range are discussed in section 8.5
Finally, section 8.6 discusses the system, and the necessary changes for in vivo application.

8.1 Single Pixel Camera

Instead of directly recording the spatial distribution of intensity at the image plane, a single
pixel camera measures M inner products, zm = φmnyn, between an N pixel image, yn, and a
set of test functions, φmn – where m and n are the test function and pixel indices respectively.
These test functions are implemented with a DMD, the mirrors of which are mapped to the
pixels, n, of yn and φmn. All pixels that are on – corresponding to φmn = 1 – reflect light from
the object to be collected onto a photodetector. As the patterns displayed on the DMD are
changed, the intensity measured on the photodetector will vary – providing information about
the spatial distribution of the intensity at the DMD.

Test functions often require values of ±1, which are implemented by first displaying a binary
pattern for positive pixels, φmn+, then switching to a binary pattern for the negative values,
φmn−:

φmn+ =

1, if φmn = 1

0, if φmn = −1
, φm,n,− =

0, if φmn = 1

1, if φmn = −1
. (8.1)

This produces an unsigned measurement, zunsigned(s,m), of size 2M (M positive test functions
and M negative), with sign subscript s. Then,

z(m, θ) = zunsigned(+,m)− zunsigned(−,m). (8.2)

Combining the image pixels into a N × 1 vector Y , the measurements into a M × 1 vector
Z, and the test functions into a M ×N matrix Φ, Z can be recovered by solving

Z = ΦY. (8.3)
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a b

c d

Figure 8.1: Demonstration of compressed sensing single pixel reconstruction on a (a),(b) 4x
undersampled and (c),(d) 16x undersampled simulated measurement of a test chart: (a),(c) Low
resolution images of the object can be acquired analytically with a complete set of low resolution
Hadamard test functions, (b),(d) or the object can be reconstructed using an incomplete set of
higher resolution test functions.
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If M < N the system of linear equations are underdetermined, and there are infinite solutions
for Y . However, a close approximation can be found using compressive sensing (chapter 3.5).
Figure 8.1 shows a simulated N = 512 × 512 pixel object measured with M = 256 × 256 and
128 × 128, reconstructed analytically at the lower resolution set by M , and at full resolution
with IST (chapter 3.5) by solving

minimiseY
1
2 ‖Z − ΦY ‖22 + τΦ(Y ), (8.4)

using TV regularisation, with a regularisation parameter of τ = 0.005. The simulated single
pixel measurement was given a signal to noise ratio of 4 ∗ 10−5 to match the specifications of
the amplified photodiode used (section 8.3.1).

The choice of test function basis, Φ, has a significant effect on the reconstruction speed and
quality [174]. Using a Gaussian or Bernoulli distributed random matrix for Φ can achieve good
results. However, these quickly become impractical for higher resolution measurements – as the
requirements on memory and computation scale as N2. Deterministic bases, such as Fourier
or Hadamard, are far more practical – as they do not have to be stored in memory, and their
transforms can be performed with efficient Cooley-Tukey type algorithms, that scale as N logN .

The Fourier basis performs well, and is convenient in magnetic resonance imaging, where it
is the natural basis of the measurement [175]. However, implementing Fourier measurements
with a DMD requires temporal or spatial dithering [176, 177]. The binary Hadamard basis is
a more natural choice for a DMD based system. Some care has to be taken when mapping
between pixel index n and the position in the image; if the mapping is direct, the coherence
between the Hadamard basis and the sparse domain – either TV or wavelet – will be particularly
strong, and lead to reconstruction artifacts (figure 8.2a). However the order of pixels can be
randomly permuted before applying the Hadamard transform to reduce this effect (figure 8.2b).

In chapter 4.2.3.3, TV regularisation was used with compressed sensing OPT. But there are
other choices to consider; the performance of using TV or wavelet regularisation with single
pixel imaging is shown in figure 8.3. TV regularisation out-performs wavelet compression for
all cases, so shall continue to be used.

8.2 Mathematical representation of single pixel optical projec-
tion tomography

Single pixel imaging can be extended to 3D with time of flight measurements [178]. However,
depth resolution was limited to 3 mm by the speed of the detector in this work. Instead, a 3D
single pixel system can be created by replacing the camera in an OPT system with a DMD
and bucket detection – creating a SP-OPT system. The measurement model then combines
projection of a 3D volume to a set of 2D angular projections, and sampling of those angular
projections onto a set of single pixel measurements. This can be expressed as



CHAPTER 8. SINGLE PIXEL OPTICAL PROJECTION TOMOGRAPHY 124

a b

Figure 8.2: Sampling considerations for single pixel reconstruction of a 4x undersampled acqui-
sition: (a) If the positions of pixels are not randomly permuted before sampling with Hadamard
test functions, the reconstruction is corrupted by artifacts. (b) Randomly permuting the po-
sitions of each pixel before Hadamard transforming, and re-ordering after inverse Hadamard
transforming removes this artifact.

Z = ΦY

= ΦRX

= AX
(8.5)

where: Z is the set of single pixel measurements, Y is the set of 2D angular projections, R is
the Radon transform, A is the combined forward transform, and X is the set of voxel values.

For well sampled data, equation 8.5 can be solved by first solving equation 8.3 for each
projection then using the inverse Radon transform, RT , on each slice of the projection data set.
For undersampled data, Z can be found by solving the optimisation problem

minimiseX
1
2 ‖Z −AX‖

2
2 + τΦTV (X), (8.6)

where the first term is the l2 norm of the residual, τ is the regularisation parameter, and ΦTV

is the total variation regularisation functional:

ΦTV (X) =
∑
i

√(
D0
i

)2 +
(
D1
i

)2 +
(
D2
i

)2 (8.7)

where Dj
i is the gradient of X at i in the jth direction.

Equation 8.6 can be solved using the compressive sensing algorithm iterative shrinkage
thresholding (IST):
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Figure 8.3: Single Pixel regularisation: Reconstruction quality, calculated using the PSNR
metric introduced in chapter 5, produced using TV and wavelet regularisation with varying
degrees of compression, (1−M/N).

X0 = Ψτ (ATY ),

Xt+1 = Ψτ (Xt +AT (Y −AXt)),
(8.8)

for t > 0, where AT is the combined inverse operator and Ψτ is the total variation denoising
operator. AT is implemented by first calculating the least squares solution to equation 8.3 for
each angle, and taking the inverse Radon transform of each sinogram of the resulting set of
angular projections.

CS assumes that the measurement model is linear. This is not the case for brightfield
OPT; the volume of absorption coefficients is linear with the logarithm of the intensity in the
projections:

ln (Y ) = RX. (8.9)

CS can still be applied to processing undersampled absorption SP-OPT data, but the problem
must be broken into two seperate optimisation problems: first equation 8.4 is solved using IST,
then the logarithms of the resulting projections are used to solve 3.12 using TwIST, as described
in chapter 4.2.3.3.
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Figure 8.4: Variation of PSNR with degree of compression, 1−M/N ∗Nθ/π, between a simulated
phantom and the IST reconstruction (equation 8.8) produced from SP-OPT measurements.
Each line is of constant Nθ and varying M .

8.2.1 Undersampling in the 2D case

Before generalising to 3D samples it’s worth exploring the compressibility of a SP-OPT acqui-
sition of an N ×N 2D slice. The PSNR for simulated single slice reconstructed using equation
8.8 with different numbers of projections and numbers of test functions is shown in figure 8.4.

For a given compression level, given by 1−M/N ∗Nθ/π where Nθ is the number of angular
projections, the best choice of undersampling of angles and patterns is variable.

8.3 Hardware and operation

8.3.1 Single-pixel optical projection tomography experimental set up

The SP-OPT system consisted of illumination, sample mounting, imaging optics, and DMD and
bucket detection – shown in figure 8.5. Excitation light was produced by a supercontinuum laser
(WL-SC400-6, NKT Photonics) between 400 nm and 2500 nm. Light longer than 1400 nm was
filtered out using longpass filters F1 and F2 (FELH1500 and FELH1400, Thorlabs) in reflection.
SWIR light was then spectrally selected by a 1250 nm longpass filter F3 (FELH1250, Thorlabs).
The beam was directed to holographic diffuser, H (ED1-C50, Thorlabs), placed in the back focal
plane of a fresnel lens, L1 (FRP251, f = 50 mm, Thorlabs). A further ground glass diffuser, G,
was placed between the diffuser and the fresnel lens to control spatial coherence; the DMD is
a blazed diffraction grating, so spatially coherent illumination would be diffracted in different
directions for different test functions.
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Figure 8.5: SP-OPT system set-up. Instead of a camera, the sample is imaged onto a DMD,
the reflections from which are collected by two bucket detectors.

The samples were suspended in a water-filled cuvette (704-003-50-10, Hellma Analytics) from
a stepper motor (NM11AS-T4, Laser 2000 UK) with tip-tilt adjustment (M-TTN80, Newport
Corp) and three-axis linear translation (M-423 and M-UMR12.63).

The sample was imaged onto the DMD (DLP LightCrafter 6500, Texas Instruments), with
7.56 µm pixels, using a 0.5× telecentric imaging relay comprising achromatic lenses, L2 and
L3 (AC508-400-C-ML, f = 400 mm and AC508-200-C-ML, f = 200 mm, Thorlabs), with an
adjustable aperture stop AP (SM2D25D, Thorlabs) in the Fourier plane. Light reflected off
the “on” and “off” pixels of the DMD was collected by two condenser lenses, L4 (ACL50832U,
f = 32mm, Thorlabs) onto two photodiodes, PD (PDA50B2, Thorlabs). The triggering signals
of the DMD and output voltage of the photodiode were recorded using an analogue to digital
converter (NI USB 6363,Texas instruments).

The aperture stop diameter was set to an NA of 0.023, which at 1250 nm gives a DOF of
4mm and diffraction limited resolution of 33.1 µm – which is adequately sampled by the DMD
when using full 1024 × 1024 resolution. If lower resolutions are used the resolution is pixel
limited.

8.3.2 Single-pixel optical projection tomography data acquisition

8.3.2.1 Test function videos

The number of test functions, M , scales with the number of pixels in the image, N . For
resolutions up to 64× 64 = 4096 pixels – with sufficient undersampling – M can be as small as
a few hundred. At this size the binary test functions can be directly loaded onto the memory
on the DMD module and displayed at the maximum frame rate – 9,523 Hz. However, for
desirable resolutions of 512× 512 = 262144 pixels, this is not possible. Instead, the DMD must
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be controlled with a video stream.
When the DMD is attached to a computer as a monitor it displays 24 bit colour images

using temporal dithering; the image is composed of 24 binary images – one for each bit plane –
displayed for different lengths of time. When displaying conventionally, the display time doubles
for each bit plane within a colour; the second bit plane is displayed for twice as long as the
first. In that way, integrated over the frame length, a frame appears like a 24 bit colour image.
However, the DMD module can be programmed to display each bit plane for an equal length
of time, giving a test function rate of 24 × 60 Hz = 1440 Hz, which corresponds to a fully
sampled acquisition time of 6 minutes for a 512× 512 image.

Test function videos were created in Matlab. In any give frame, the colour of each pixel
encodes which of the 24 test functions it will be “off” or “on” for. For example, if a pixel is
going to be on, off, on, off, off, on, on, off for the first 8 test functions of a frame, that pixel’s
red channel will be set to 1 ∗ 20 + 0 ∗ 21 + 1 ∗ 22 + 0 ∗ 23 + 0 ∗ 23 + 1 ∗ 25 + 1 ∗ 26 + 0 ∗ 27 = 101.
The effect for the first frame of a set of hadamard test functions is shown in figure 8.6.

Figure 8.6: Frame encoding: Binary test functions are sent to the DMD, packaged in 24 bit
color images. (a) The intensity of each set of eight test functions is set to occupy a bit plane of
an 8 bit monochromatic image. (b) Three of these monochromatic images form the red, green,
and blue channels of a (c) 24 bit RGB frame

8.3.2.2 Diagonal mounting

The axis of rotation of each micromirror is at 45◦ to the axes of the micromirror array. For laser
safety and alignment considerations it is desirable to have this axis vertical in lab-space, so that
reflections off “on” and “off” mirrors stay in the plane of the optical bench. This results in the
axes of the DMD being aligned 45◦ to lab-space. To avoid spending time in the acquisition on
pixels that will subsequently be cropped off to create lab-space projections for reconstruction,
the pixels of the single pixel measurement are defined as rectangles arranged in such a way to
make a square array at 45◦ to the DMD array (figure 8.7).

8.3.2.3 Frame synchronisation

Using the DMD as a monitor allows for arbitrarily long sets of test functions. Unfortunately,
this not only comes at the cost of reduced display speed, but also display reliability. The
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Figure 8.7: A 4x4 pixel arrangement, defined on an 8x8 mirror array, aligned at 45◦, where
colours indicate different pixels.

process of loading a video frame into memory, and sending for display by the GPU does not
consistently occur within the 16 ms window given by the 60 Hz refresh rate. When this happens,
the frame displayed on the DMD will not change – leading to a loss of synchronisation. This
is, in principle, detectable by measuring the times between GPU buffer flips. However, how the
system recovers from this loss of synchronisation is inconsistent. If the nth frame is not sent
to be displayed, and the (n − 1)th frame is displayed twice, two things may occur. In some
instances the system will recover by entering a new, delayed synchronisation by displaying the
nth frame and continuing, but in others the nth frame will be skipped entirely and the system
will catch up to the old timing (figure 8.8).

To ensure that a frame’s location in the sequence can be identified during processing, a bit
plane per frame is dedicated to synchronisation, which has all the pixels “on”. For any given
test function, approximately half the pixels will be turned on. Signals measured will be very
close to half the total intensity in the image, with a small change around this value depending
on the precise structure of the image. If all 24 bit planes are dedicated to test functions, the
signal for the frame will look like random noise around this average value. For synchronisation,
one of the bit planes has all its pixels turned on – producing a significantly larger signal. This
synchronisation bit plane’s position within the 24 bit image is increased by one each frame, so
that the location of the frame can be easily identified – modulo 24. This creates a 4% drop in
imaging speed, as only 23 of the 24 bit planes are displaying new test functions.
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Figure 8.8: Frame desynchronisation: After displaying the first two frames correctly, the third
is not sent in time and the second continues to display instead. After recovering, the system
may catch up, by skipping the third frame, or it will display the third frame and enter a new
delayed timeline. This creates an ambiguity about which frame is currently being displayed
after these events.

8.3.2.4 Acquisition Software

The system was controlled using software written in Python. Single pixel acquisitions were
taken at a number of equally spaced angles over a full rotation. The DMD was set to display
each bit plane for 680 µs – the maximum length that enables a 60 Hz frame rate. At each angle
the test function video is played and the voltages from the amplified photodiode and DMD
triggers are recorded at 67500 samples per second – corresponding to 46 measurements per test
function.

8.3.3 Reconstruction software

Volume reconstruction was performed using MATLAB. The voltages from the two photodiodes
were differenced, and divided by the sum to account for power fluctuations. Using the DMD
trigger pulses (figure 8.9), photodiode voltage data were grouped by frame, and binned by bit
plane. At high enough detection bandwidths, the pixel reset pulse can be seen as a spike of high
and low voltage – these values were removed before averaging over the bin. Padding frames,
acquired before and after the video, were identified by the lack of signal, and removed. The
synchronisation bit planes were identified as the maximum signal in the frame, and used to
determine the correct frame number. Once the true position was identified for each frame,
the data were assigned indices s and m. Repeat measurements, either from display problems
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Figure 8.9: Extracting Y from raw data: (a) voltages recorded from the photodiode and DMD
hardware transistor–transistor logic output triggers. The DMD bit change and frame change
triggers are used to bin the data. (b) Data binned by frame and bit plane. The synchronisation
bit can be seen as the brightest bin in each frame
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or videos with repeating frames, were averaged over. If a missing frame caused a positive or
negative measurement to lose its complement, it was set to zero. Z was then calculated using
equation 8.2.

X was reconstructed using equation 8.8. The regularisation parameter τ was empirically
selected for each data set.

8.4 System application to a bead phantom

The SP-OPT system was tested on a phantom of absorbing beads (0.02 µm, Crimson 625/645
nm, Invitrogen) suspended in a medium of 2% agarose. The phantoms were made in a 1.5 ml
tube (11926955, Fisher Scientific), giving it an approximately cylindrical shape, 8 mm diameter
and 2 cm in length.

The sample was imaged with fully sampled transmission single pixel data acquisitions at 50
evenly spaced angular positions around 360◦. The test functions had a resolution of 256x256, the
pixels of which were made up of 4x2 DMD mirrors, giving the system a pixel limited resolution
of 86 µm. Each test function video was 189 s long, giving a total acquisition time of 2.65 hours.
Each frame was displayed twice, to ensure all measurements would be available for analytic
reconstruction.

Figure 8.10a shows a projection of the phantom reconstructed from a single pixel acquisition.
The image quality is limited by laser speckle, which is challenging to remove using despeckling
techniques, such as using a vibrating multimode fibre or a rotating diffusor, due to the short
exposure time of each test function. Instead a single pixel image of the laser speckle in the
absence of an object was acquired (figure 8.10b) for use in a flat-field correction: yfnθ = ynθ/fn,
where fn is the intensity of the nth pixel of the speckle image, and yfnθ is the corrected pixel
value. The flatfield corrected transmission projection of the phantom is shown in figure 8.10c.
Figure 8.10d shows line profiles through the corrected and uncorrected projection images. The
correction removes some of the noise in the background. However, the speckle pattern is affected
by the refractive index distribution of the object, making the correction less effective.

The measurement model (equation 8.3) can be extended to Z = ΦY � F , where � is
Hadamard division, and equation 8.4 to:

minimiseY
1
2 ‖Z − ΦY � F‖22 + τΦ(Y ), (8.10)

where F is the N × 1 vector of fn. Projection images of the phantom reconstructed using IST,
with τ = 0.0125, using a decreasing number of test functions are shown in figure 8.11. The
tolerance of reconstruction quality to undersampling is significantly lower than what is seen for
the simulated measurements shown in figure 8.2. The residual speckle over the phantom reduces
the gradient sparsity, and therefore compressibility of Y .

Figures 8.12 and 8.13 show MIPs and slices of phantom volumes reconstructed from 50
projections, reconstructed from decreasing numbers of test functions. The reconstruction quality
degrades quickly as the number of test functions decreases, with pronounced artifacts near the
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Figure 8.10: (a) Analytic reconstruction of a fully sampled bead phantom projection. (b)
Analytic reconstruction of a fully sampled laser speckle background projection. (c) The analytic
reconstruction shown in (a), after flatfield correction. (d) Line profiles, as indicated in (a) and
(c). Scalebar 1 mm.
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Figure 8.11: IST reconstructions of a bead phantom projection, with (a) no undersampling, (b)
2x undersampling, (c) 5x undersampling, and (d) 10x undersampling.
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Figure 8.12: MIPs of bead phantom volumes reconstructed using TwIST from projections re-
constructed using IST from single pixel data, with (a) no test function undersampling, (b)
2x test function undersampling, (c) 5x test function undersampling, and (d) 10x test function
undersampling.
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Figure 8.13: Slices of bead phantom volumes reconstructed using TwIST from projections re-
constructed using IST from single pixel data, with (a) no test function undersampling, (b)
2x test function undersampling, (c) 5x test function undersampling, and (d) 10x test function
undersampling.
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Figure 8.14: (a) Simulated sinogram of a point object with fixed pattern noise. (b) Recon-
structed slice produced from (a). (c) Variation of ring artifact peak intensity with radius of a
single point of fixed pattern noise. Fixed pattern noise near the rotation axis causes brighter
artifacts. (d) Projection of slice shown in (c). The fixed pattern noise does not produce a self
consistent result when back projected and projected. (e) Variation of 1

2

∥∥∥Y −RRTY ∥∥∥2

2
with

ring artifact radius. Fixed pattern noise near the axis of rotation is the most self consistent, so
will produce stronger artifacts when iteratively reconstructed.
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rotation axis. Beads visible in the figure 8.13b are obscured by artifacts even when using 50 %
of test functions, shown in figure 8.13b.

In FBP fixed pattern noise leads to ring artifacts [95]. Figure 8.14b shows a slice, RTY ,
reconstructed from a simulated sinogram of three point objects, Y (figure 8.14a), two of which
are fixed while the other rotates correctly with angle of projection. The fixed objects lead to
ring artifacts in the reconstructed slice, which have a radius equal to the distance of the fixed
object from the rotation axis. They have lower peak intensities than the correctly reconstructed
point, which reduce with greater radius (figure 8.14c).

Iterative reconstruction techniques are more robust to these artifacts than FBP; the ring
artifacts produce inconsistent structures in RRTY , shown in figure 8.14d, and are therefore
suppressed by the l2-norm of the residual term in equation 3.12. However, near the rotation
axis, a fixed object has greater verisimilitude and produces smaller errors (figure 8.14e) and
strong reconstruction artifacts.

8.5 Future work: Region of interest and high dynamic range
single pixel imaging

The SP-OPT system was able to produce a 3D reconstruction of a bead phantom, but it took
2.65 hours to acquire the required 50 fully sampled 256x256 angular projection images, which
is too long for in vivo applications. If the speckle problem is addressed the acquisitions could
be shortened by taking undersampled measurements. However, it is desirable to first minimise
the fully sampled measurement time, so that compression requirements are reduced. In single
pixel imaging, the acquisition time is directly proportional to the number of pixels, so using
fewer would speed up the process.

In region of interest (ROI) single pixel imaging (ROI-SP), an initial low resolution image
is used to segment the object, so that the high resolution acquisition can be adapted to only
measure those pixels that make up the ROI. By doing this, minimal time is spent measuring
background pixels, and the data acquisition time is reduced.

Restricting the measurement to pixels that make up the sample could also be used to im-
plement C-HDR with a single pixel camera. As discussed in chapter 6, when acquiring a visible
transmission image of an adult zebrafish, if the power or exposure is set such that the signal that
does not pass through the sample does not saturate the detector, the signal through the sample
will be below the noise floor. ROI single pixel imaging could be adapted for HDR imaging
(ROI-HDR-SP) by acquiring the low resolution image at low power or low photodetector gain,
and the high resolution image at high power or high photodetector gain. A similar approach
has been described [179], but this acquires both the low power and high power image at full
resolution, limiting speed.

The extinction coefficients of water and tissue are more similar for SWIR than for visi-
ble wavelengths (chapter 2.1), reducing the need for such large dynamic range in detection.
However, even moderate oversaturation leads to reconstruction failure in single pixel imaging
(section 8.5.2.1), so HDR-ROI single pixel imaging will likely be required for in vivo transmission
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imaging of biological samples as large as adult zebrafish. ROI-SP and ROI-HDR-SP imaging
are described here to combine with OPT, however they are general techniques, applicable to
other SP implementations.

8.5.1 Region of interest single pixel camera

The acquistion speed of a single pixel camera scales with the number of pixels in the image,
N . This creates a trade off between resolution and imaging speed; on the system described
in chapter 8, acquiring a 8 mm FOV image at 242 µm resolution takes 1.5 s, and at 15 µm

resolution it takes 380 s. These acquisition times assume that the resolution is constant across
the FOV – as is the case for a pixelated detector. However, for a single pixel camera there
is no requirement for the pixels in the single pixel camera to be of equal size – they can be
defined as any arbitrary groupings of DMD mirrors – so the resolution can be varied to match
the requirements for that region.

In Phillips et al. [180], a foveated pixel map was used, like that shown in figure 8.15c.
This pixel map contains the same number of pixels – and therefore takes the same time to
acquire – as the regular 64 ∗ 64 = 4096 pixel grid shown in figure 8.15a. Figures 8.15b and
8.15d show simulated reconstructions, produced from those pixel maps, of a 128 ∗ 128 = 16384
pixel phantom, which does not occupy the entire FOV. The foveated pixel map gives improved
resolution in the fovea, and worse resolution outside.

The design goal of this map was to track a small object in a larger FOV in real time. Motion
could be identified in the low resolution areas and the fovea moved to the required location to
follow the object from frame to frame. This design is well suited to that task. However, when
measuring an object that is larger than the fovea, artifacts caused by the irregular pixel sizes
can be seen. For our application, there is no need to look for activity away from the object’s
position. Instead, it is desirable to have full resolution over the sample, and not look elsewhere.
To this end, an adaptive region of interest approach could be implemented.

To minimise acquisition time, while maintaining homogeneous resolution over the sample, a
two step acquisition could be used. In ROI single pixel imaging, a fully sampled low resolution
32∗32 = 1024 image of the FOV is first acquired. This image is thresholded to create a mask of
the sample, and a second full resolution data set is acquired of the region of interest. An example
mask pixel map is shown in figure 8.15e. The threshold here has been set to limit the number
of pixels in the mask to be 4096 − 1024 = 3072, so that the fully-sampled acquisition takes
the same amount of time as the other two examples. However, the number of pixels included
in the mask can be increased and decreased to fit the size of the object, as shown in figure
8.16a. Since there is no need for real time reconstruction, this application is also compatible
with compressive sensing.

8.5.2 High dynamic range single-pixel camera

A single pixel camera has finite dynamic range. Figure 8.17a shows a simulated projection of
a phantom, where the light through the sample is on average 5000 times dimmer than around



CHAPTER 8. SINGLE PIXEL OPTICAL PROJECTION TOMOGRAPHY 140

a b

c d

e f

Figure 8.15: Simulated 4096 pixel maps a,c,e (different colours correspond to different super-
pixels) and least squares reconstructions b,d,f of a 16384 pixel image: a,b Using 4096 test
functions, a half resolution image can be acquired. c,d By using variable super-pixel sizes,
4096 test functions give full resolution in the fovea and worse resolution in the peripheries.
e,f By using low resolution (32 ∗ 32) test functions to identify gross morphology, the brightest
4096 − 32 ∗ 32 = 3072 pixels can be segmented and high resolution acquired only over that
region.
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a b

Figure 8.16: Simulated least squares reconstructions using 5428 test functions. (a) ROI single
pixel detection: the number of pixels included in the ROI can be adapted to suit the object. (b)
Foveated single pixel detection: the size of the fovea can also be increased, but it is naturally
circularly symmetric and includes pixels in the peripheries.

the outside. Using the noise characteristics of a commercial amplified photodiode (PDA50B2,
thorlabs), a single pixel measurement of this projection was simulated that used all of the
detector’s dynamic range. The resulting reconstruction is shown in figure 8.17b.

8.5.2.1 Effects of saturation of single pixel detector

If the total light incident at the detector is too great, the output of the photodiode will saturate.
In a conventional camera this would cause pixel values at the site of the saturation to be clipped
and blooming into neighbouring pixels. With a single pixel camera, however, the saturated
intensity affects the entire image – as equation 8.3 will no longer be correct.

The intensity at the photodiode is proportional to the correlation between the displayed
test function and the image. For randomly ordered Hadamard patterns, half the pixels are on
and half are off – with the appearence of random noise. Most images contain intensity in lower
spatial frequencies, so the correlation between the image and any given test function is close to
half the total intensity of the image.

The effect of the saturation on a simulated single pixel acquisition and reconstruction is
shown in figure 8.18. Defining the degree of saturation as ymax/ysat, where ymax is the maximum
intensity incident on the photodiode during the measurement and ysat is the intensity at which
the detector saturates, it can be seen in figure 8.18b that degrees of saturation up to 200% are
well tolerated. However, even slight increases in saturation (figures 8.18d and 8.18f) cause the
image to be corrupted and lost.

The distributed nature of the single pixel measurement means that even moderate levels
of saturation cause full loss of the image, even regions with low levels of light. Therefore,
conventional HDR (described in chapter 6) is not possible.
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a b

Figure 8.17: Simulated transmission projection of a 3D phantom. Intensity is displayed on a
logarithmic scale. (a) Ground truth: the signal through the centre is on average 5000 times less
intense than outside the sample. (b) Reconstructed from single pixel measurement: the desired
absorption structure has fallen beneath the noise floor.

8.5.2.2 Region-of-interest high-dynamic-range single pixel camera

To address the issues raised in section 8.5.2.1, Abolbashari et al [179] implemented an HDR
single pixel camera using a variable gain photodiode. First a low gain acquisition was performed.
Then additional single pixel acquisitions were performed at higher gain settings, with the pixels
that would saturate the detector being attenuated by the DMD.

This method increases the acquisition time by a factor equal to the number of gain levels.
This is undesirable for high resolution in vivo imaging; to stay within the anaesthetic window,
the number of test functions will have to be lowered – reducing the reconstruction quality.

Instead ROI single pixel imaging could be used to acquire an HDR image without signifi-
cantly increasing acquisition speed. First, a low power or low gain acquisition is performed at
low resolution. Using this map, the image is masked into regions of different intensities. Then
high resolution images are performed separately over the different masks, with the illumina-
tion power or detector gain adjusted so as to maximise the signal at the photodiode, without
saturating it.

Figure 8.19 shows a simulated acquisition of the same absorbing phantom shown in figure
8.17. First a 64 ∗ 64 pixel was acquired at low power 8.19a. The pixels were then divided
into bright background, those in the noise floor, and three intermediate masks (figure 8.19b).
ROI single pixel acquisitions were then performed over each intensity mask – with the power
varying so as to maximise the signal without saturation of the photodiode. The different
measurements were then combined into a HDR composite (figure 8.19c). By acquiring different
regions separately, the only additional time penalty is the time necessary to acquire the low
resolution image.
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Figure 8.18: Simulated saturated single pixel signals a,c,e and reconstructions b,d,f : a,b With
a degree of saturation of 200%, the image looks the same as in figure 8.17b. As the degree of
saturation is increased, dim features do not become visible. In fact, even small further increases
of saturation to 200.8% c,d and 208% e,f cause the image to be completely lost.
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a b c

Figure 8.19: Simulation of an HDR single pixel acquisition. First a low resolution image was
taken (a) (shown with linear intensity scale), which was used to mask out regions of different
intensities (b), shown here with different colours. ROI single pixel acquisitions were performed
over all or some of the masks to produce a HDR composite (c), here shown with a logarithmic
intensity scale.

8.6 Conclusion

The reconstruction quality of in vivo OPT of adult zebrafish is limited by optical scattering.
Chapter 7 described the development of slice-OPT to reduce the impact of scattering. However,
the improvements were limited to regions within the transport mean free path of the surface
(chapter 2.1.2). The transport mean free path increases with wavelength, so it is desirable to
image at the long end of the biological optical window. However, cameras that are responsive
at these wavelengths are currently prohibitively expensive for widespread adoption. To enable
low-cost 3D imaging of SWIR wavelengths, a SP-OPT system has been developed and used to
image a bead phantom in transmission.

A 3D SWIR absorption distribution was reconstructed from the SP-OPT bead phantom data
acquisition. However, this acquisition took 2.65 hours to display all the test functions necessary
for fully sampled 256x256 pixel images at 50 projection angles. This data acquisition should be
highly compressible (figures 8.2 and 8.4), but laser speckle presented a sparsity challenge that
produced strong reconstruction artifacts – particularly around the rotation axis of the system.
The use of an incoherent SWIR illumination source could remove this problem, and enable the
compression necessary for practical acquisition times for in vivo imaging at full resolution.

The acquisition time could be reduced without additional compression with the use of ROI-
SP imaging, which could also be combined with HDR imaging for transmission imaging of adult
zebrafish in the future.

The gain on the amplified photodetectors was too low for fluorescence emission to be de-
tected. If the system were reconfigured as an illumination single pixel camera, the collection
efficieny would be greatly improved – but there would no longer be the scattering benefit of
SWIR imaging. Alternatively a higher gain detector may enable fluorescence SWIR SP-OPT.

Despite it’s slow speed, the SP-OPT system enables 3D imaging of structures using SWIR
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light, without requiring high cost Ge or InGaAs pixelated detectors.



Chapter 9

Conclusions and outlook

This chapter summarises the conclusions concerning the different developments and applications
of OPT explored in this thesis and outlines proposed future development to extend the work
reported here.

Optimisation of angularly multiplexed optical projection tomography

Acquiring undersampled angularly multiplexed OPT data and performing reconstructions with
compressive sensing enables imaging of adult zebrafish with sample survival. In chapter 4, the
capability of this system was demonstrated by applying it to a longitudinal study of tumour
burdened adult zebrafish.

To better manage the amount of data generated in this study, several data processing tasks
were automated, reducing the need for human intervention and improving consistency. This
included automation of image registration between the two imaging arms, alignment of the
rotation axis, and selection of the regularisation parameter for each sample.

The statistical power of longitudinal data, in comparison to cross-sectional data, was demon-
strated. Statistical significance was observable in one out of four tests when the data was treated
cross-sectionally. However, when the data was treated longitudinally, statistical significance was
seen in three out of four of the tests.

Convolutional neural networks for reconstuction of undersampled optical projection
tomography data

The CS reconstruction described in chapter 4 introduced a significant computational cost, re-
quiring more than an hour per channel to reconstruct a typical data set using TwIST. This
represented a data processing bottleneck for the longitudinal study. Chapter 5 described an
alterative method of reconstructing undersampled OPT data sets, based on convolutional neu-
ral networks. The method reduced the reconstruction time by a factor of five, and achieved
superior reconstruction quality for the same number of projections.

The neural network training was performed with ex vivo fixed and cleared mouse tissue
data sets. Despite this limit in classes of sample type, the structural similarities of the streak
artifacts created by sparse signals meant that the trained CNNs could be successfully applied to

146
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in vivo zebrafish data. This means no additional animals were necessary to build an appropriate
training data set.

The reduction in processing time will improve the practicality of future high-throughput
longitudinal studies. Extrapolating the total reconstruction time improvement, the OPT recon-
struction time for the 24 zebrafish imaged in the baseline study would be improved from 62 to
12 hours – making the difference between the data being available the next morning and having
to wait half the working week.

Future development of this technique could improve the quality of reconstructions produced
with fewer projections. The approach taken in this work was to treat each individual slice
as a 2D denoising problem. However, the samples and their reconstructed volumes are three
dimensional. The sample volume presents equally high spatial correlations and equally great
sparsity in all directions. Therefore, improved reconstruction quality could be expected if the
network took neighbouring slices as additional input channels.

The denoising of FBP-reconstructed images may be less effective than working directly with
the raw projections. Instead of acting to remove noise from the reconstructions, a network could
be designed to guess at the missing projections, before any transformation has occured. This
requires a different approach to how the data is treated – the projections are locally correlated
in t and x, but not in θ. Working in 2D, one approach would be to use 1D convolutional filters
in t and to treat each projection θ as a seperate input channel. This could then be extended
into 3D by using 2D convolutional filters in t and x.

Conformal high dynamic range optical projection tomography

Due to their size and optical density, the dynamic range required to capture brightfield images
of adult zebfrafish is higher than what can be achieved with time sequential multi-exposure
acquisition HDR. Chapter 6 demonstrated how control of the illumination onto the sample
could improve the dynamic range further, with the development C-HDR-OPT.

C-HDR-OPT enables 3D brightfield contrast reconstructions of optically thick samples, in-
cluding adult zebrafish. This method increased the projection dynamic range from 39 dB to
98±1 dB, and revealed features that were masked by blooming when imaged with conventional
HDR. This will enable dual fluorescence and brightfield OPT imaging of adult zebrafish, to
provide specific contrast and anatomical context.

Future development could focus on improving the data fusion technique, using the optimi-
sation approach suggested in section 6.1.3. Currently the centre of the sample appears bright,
due to the over-correction of longer exposures when accounting for scattering. Alternatively,
the technique could be reimplemented with a LCOS-SLM in the imaging path.

Although additional physiology was visbile in the C-HDR-OPT reconstructions, organs in
the abdomen were not visible. The system could be adapted for NIR or SWIR illumination
(chapter 8), which could improve the imaging depth.
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Slice illuminated optical projection tomography

The reconstruction quality of OPT applied to cm sized samples, in vivo, is limited by optical
scattering. Chapter 7 described the development of a system to improve the image quality
by rejecting scattered light with semi-confocal illumination and detection. In slice-OPT the
sample was illuminated with a series of parallel lines, to excite fluorescence from individual
slices through the sample. Scattered fluorescence detected emitting from neighbouring slices
were rejected with a digital mask applied to the camera, reducing the effects of inter-pixel
cross-talk.

Slice-OPT projections and reconstructions had improved contrast over widefield OPT. This
was measured by comparing their Fourier spectra. However, this enhancement was localised
to near the surface of the scattering sample. As with C-HDR-OPT, Slice-OPT is equally
applicable to longer wavelengths, where the improvements to image quality could be combined.
The technique could also be applied to ex vivo cleared tissue; chemical clearing removes a large
portion of refractive index inhomogeneities, but some remain. Slice-OPT could be applied to
larger cleared samples, where the residual optical scattering impacts the reconstruction quality.

Single pixel optical projection tomography

The impact of optical scattering can be reduced by imaging SWIR light, which has the lowest
scattering coefficient of wavelengths in the NIR biological optical window. Unfortunately, cam-
eras that are sensitive to these wavelengths are currently prohibitively expensive for widespread
adoption. Chapter 8 describes the ongoing development of a SP-OPT system, for lower-cost 3D
SWIR imaging.

The SP-OPT system was designed and implemented, and applied to imaging of a bead
phantom, demonstrating 3D SWIR absorption imaging. However, the compressibility of the
acquisition was limited by laser speckle, which reduced the sparsity of the data. Therefore, the
system was not applicable to in vivo imaging. Replacing the laser with an incoherent source
would remove this problem, and could improve the compressibility to what was observed in
simulated measurements.

The acquisition time could be further improved with ROI-SP imaging, which limits the mea-
surement to the sample, and spends minimal time on measuring the background. If combined
with a method to modulate illumination power or photodetector gain, ROI-SP imaging would
also enable HDR imaging.
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fens, M. Richter, M. Hübener, et al., “Three-dimensional imaging of the unsectioned adult
spinal cord to assess axon regeneration and glial responses after injury,” Nature medicine,
vol. 18, no. 1, p. 166, 2012.

[18] M. K. Schwarz, A. Scherbarth, R. Sprengel, J. Engelhardt, P. Theer, and G. Giese,
“Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse
brains,” PloS one, vol. 10, no. 5, p. e0124650, 2015.
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Appendix A

Convolutional neural networks for
undersampled optical projection
tomography: source code

A.1 Neural network architecture

# U−Net model. Adapted from https://github.com/milesial/Pytorch−UNet

import torch
import torch.nn as nn
import torch.nn.functional as F

class double conv(nn.Module):
’’’(conv => BN => ReLU) ∗ 2’’’
def init (self, in ch, out ch):

super(double conv, self). init ()
self.conv = nn.Sequential(

nn.Conv2d(in ch, out ch, 3, padding=1),
nn.BatchNorm2d(out ch),
nn.ReLU(inplace=True),
#nn.Dropout2d(),
nn.Conv2d(out ch, out ch, 3, padding=1),
nn.BatchNorm2d(out ch),
nn.ReLU(inplace=True),
#nn.Dropout2d()

)

def forward(self, x):
x = self.conv(x)
return x

class inconv(nn.Module):

165
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def init (self, in ch, out ch):
super(inconv, self). init ()
self.conv = double conv(in ch, out ch)
#self.conv = nn.Sequential(
# nn.BatchNorm2d(in ch),
# double conv(in ch, out ch)
#)

def forward(self, x):
x = self.conv(x)
return x

class down(nn.Module):
def init (self, in ch, out ch):

super(down, self). init ()
self.mpconv = nn.Sequential(

nn.MaxPool2d(2),
double conv(in ch, out ch)

)

def forward(self, x):
x = self.mpconv(x)
return x

class up(nn.Module):
def init (self, in ch, out ch, bilinear=True):

super(up, self). init ()

# would be a nice idea if the upsampling could be learned too,
# but my machine do not have enough memory to handle all those weights
if bilinear:

self.up = nn.Upsample(scale factor=2, mode=’bilinear’, align corners=True)
else:

self.up = nn.ConvTranspose2d(in ch//2, in ch//2, 2, stride=2)

self.conv = double conv(in ch, out ch)

def forward(self, x1, x2):
x1 = self.up(x1)
diffX = x1.size()[2] − x2.size()[2]
diffY = x1.size()[3] − x2.size()[3]
x2 = F.pad(x2, (diffX // 2, int(diffX / 2),

diffY // 2, int(diffY / 2)))
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x

class outconv(nn.Module):
def init (self, in ch, out ch):
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super(outconv, self). init ()
self.conv = nn.Conv2d(in ch, out ch, 1)

def forward(self, x):
x = self.conv(x)
return x

class UNet(nn.Module):
def init (self, n channels, n classes):

super(UNet, self). init ()
self.inc = inconv(n channels, 64)
self.down1 = down(64, 128)
self.down2 = down(128, 256)
self.down3 = down(256, 512)
self.down4 = down(512, 512)
self.up1 = up(1024, 256)
self.up2 = up(512, 128)
self.up3 = up(256, 64)
self.up4 = up(128, 64)
self.outc = outconv(64, n classes)

def forward(self, x0):
x1 = self.inc(x0)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.outc(x)
return x#F.sigmoid(x)

A.2 Optical projection tomography data set

”””
Dataset class for loading sinograms and transforming them to well−sampled and
undersampled slices for neural network training.

input folder: path to folder of sinogram tifs

crop size: [Lx Ly] size of random crop to apply to slices − if you want the
whole slice, use a −ve value

augment: If True, sinograms will permuted to start at a different angle, and
randomly flipped

number angles: How many angles you want to use in your sub−sampling
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”””

import torch
from torch.utils.data.dataset import Dataset
from os import listdir
from skimage import io
import os
import numpy as np
import astra

class OPT dataset(Dataset):
def init (self, input folder, crop size, augment, number angles):

self.input folder = input folder
self.input files = [f for f in listdir(input folder) if f.endswith(”.tif”)]
self.crop size = crop size
self.augment = augment

# This assumes your fully sampled data−set has 400 equally spaced
# projections
N = 400

# Create arrays of angles for well−sampled and under−sampled
self.angles = np.linspace(0,2∗np.pi,N,False)
self.under angle indices = np.round(np.linspace(0,400,number angles,False)).astype(int)
self.under angles = self.angles[self.under angle indices]

def len (self):
return len(self.input files)

def getitem (self, idx):

# Get file path to tif and load sinogram
input name = os.path.join(self.input folder,self.input files[idx])
sino = np.transpose(io.imread(input name)).astype(np.float64)

# make sure it has 400 projections
if sino.shape[0] == 800:

sino = sino[0:800:2,:]

# apply random starting projection and random flips
if self.augment:

start position = np.random.randint(sino.shape[0])
sino = np.concatenate((sino[start position:,:],sino[:start position,:]))
if np.random.randint(2):

sino = np.flipud(sino)
if np.random.randint(2):

sino = np.fliplr(sino)

# set up bits for ASTRA reconstruction
vol geom = astra.create vol geom(752, 752)
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rec id = astra.data2d.create(’−vol’, vol geom)

proj geom = astra.create proj geom(’parallel’, 1.0, sino.shape[1], self.angles)
sinogram id = astra.data2d.create(’−sino’, proj geom, sino)

under geom = astra.create proj geom(’parallel’, 1.0, sino.shape[1], self.under angles)
undersino id = astra.data2d.create(’−sino’, under geom, sino[self.under angle indices,:])

# configure reconstruction settings
cfg = astra.astra dict(’FBP CUDA’)
cfg[’FilterType’] = ’Hann’
cfg[’FilterD’] = 0.4
cfg[’ReconstructionDataId’] = rec id

# configure for full sinogram
cfg[’ProjectionDataId’] = sinogram id

# reconstruct full sinogram
alg id = astra.algorithm.create(cfg)
astra.algorithm.run(alg id)

# grab reconstruction
label image = astra.data2d.get(rec id)

# stop GPU memory leak
astra.algorithm.delete(alg id)

# configure for undersampled sinogram and reconstruct
cfg[’ProjectionDataId’] = undersino id
alg id = astra.algorithm.create(cfg)
astra.algorithm.run(alg id)
input image = astra.data2d.get(rec id)

# stop GPU memory leak
astra.algorithm.delete(alg id)
astra.data2d.delete(rec id)
astra.data2d.delete(sinogram id)
astra.data2d.delete(undersino id)

# zero mean unit variance input
input max = np.amax(input image)
input min = np.amin(input image)
input image = (input image−input min)/(input max−input min)
label image = (label image−input min)/(input max−input min)

input mean = np.mean(input image)

input image = input image − input mean
label image = label image − input mean

# apply random crop to slice
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h, w = input image.shape[:2]
if self.crop size[0] > 0:

new h,new w = self.crop size
top = np.random.randint(0,h−new h)
left = np.random.randint(0,w−new w)

input image = input image[top:top+new h, left: left+new w]
label image = label image[top:top+new h, left: left+new w]

# reshape images to Pytorch style [C X Y]
input image = input image.reshape((1,input image.shape[0],input image.shape[0]))
label image = label image.reshape((1,label image.shape[0],label image.shape[0]))

return(torch.from numpy(input image).float(), torch.from numpy(label image).float(), input max,
input min, input mean)

A.3 Optical projection tomography data set without labels

”””
Dataset class for loading sinograms and reconstructing
undersampled slices for neural network speed test.

input folder: path to folder of sinogram tifs

number angles: How many angles you want to use in your sub−sampling
”””

import torch
from torch.utils.data.dataset import Dataset
from os import listdir
from skimage import io
import os
import numpy as np
import astra

class OPT dataset(Dataset):
def init (self, input folder, number angles):

self.input folder = input folder
self.input files = [f for f in listdir(input folder) if f.endswith(”.tif”)]

# This assumes your fully sampled data−set has 400 equally spaced
# projections

N = 400
self.angles = np.linspace(0,2∗np.pi,N,False)
self.under angle indices = np.round(np.linspace(0,400,number angles,False)).astype(int)
self.under angles = self.angles[self.under angle indices]

def len (self):
return len(self.input files)
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def getitem (self, idx):

# Get file path to tif and load sinogram
input name = os.path.join(self.input folder,self.input files[idx])
sino = np.transpose(io.imread(input name)).astype(np.float64)

# make sure it has 400 projections
if sino.shape[0] == 800:

sino = sino[0:800:2,:]

# set up bits for ASTRA reconstruction
vol geom = astra.create vol geom(702, 702)
under geom = astra.create proj geom(’parallel’, 1.0, sino.shape[1], self.under angles)
rec id = astra.data2d.create(’−vol’, vol geom)

# configure reconstruction settings
cfg = astra.astra dict(’FBP CUDA’)
cfg[’FilterType’] = ’Hann’
cfg[’FilterD’] = 0.4
cfg[’ReconstructionDataId’] = rec id

undersino id = astra.data2d.create(’−sino’, under geom, sino[self.under angle indices,:])
cfg[’ProjectionDataId’] = undersino id
alg id = astra.algorithm.create(cfg)

# do filtered back projection
astra.algorithm.run(alg id)

# grab reconstruction
input image = astra.data2d.get(rec id)

# stop memory leak
astra.algorithm.delete(alg id)
astra.data2d.delete(rec id)
astra.data2d.delete(undersino id)

# normalise
I max = np.amax(input image)
I min = np.amin(input image)
input image = (input image−I min)/(I max−I min)

I mean = np.mean(input image)

input image = input image − I mean

# reshape for Pytorch
input image = input image.reshape((1,input image.shape[0],input image.shape[0]))

return(torch.from numpy(input image).float(), I max, I min, I mean)
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A.4 Training

”””
Function for training Unet to remove streaks from undersampled OPT reconstructions

train input: path to folder with sinograms for training

test input: path to folder with sinograms for testing

savename: file name for network to save to

number angles: number of angles to be used for undersampled sinogram
”””
import torch
import torch.nn as nn
from OPT dataset import OPT dataset
import numpy as np
from unet model original import UNet
import copy
import matplotlib.pyplot as plt
import os

def train unet OPT(train input,test input,savename,number angles):
# Device configuration
device = torch.device(’cuda’ if torch.cuda.is available() else ’cpu’)

# OPT dataset
train dataset = OPT dataset(input folder = train input, crop size = [128,128], augment = True,

number angles = number angles)
test dataset = OPT dataset(input folder = test input, crop size = [512,512], augment = True,

number angles = number angles)

# Data loader
train loader = torch.utils.data.DataLoader(dataset=train dataset,

batch size=32,
shuffle=True)

test loader = torch.utils.data.DataLoader(dataset=test dataset,
batch size=8,
shuffle=False)

# create network
model = UNet(1,1).to(device)

# Hyper−parameters
num epochs = 60
learning rate = 0.001

# Loss and optimizer
criterion = nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)

# For updating learning rate
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def update lr(optimizer, lr):
for param group in optimizer.param groups:

param group[’lr’] = lr

# Train the model
total step = len(train loader)
curr lr = learning rate

# track train error
epoch steps = total step∗num epochs
train error = np.zeros(epoch steps)
ii = 0

# track validation error
validate steps = len(test loader)∗num epochs
validate error = np.zeros(validate steps)
iii = 0

# set starting point for early stopping
last error = 0.5
fail count = 0

# training loop
model.train()
for epoch in range(num epochs):

# loop over all sinograms
for i, (images, labels, I max, I min, I mean) in enumerate(train loader):

# Move images to GPU
images = images.to(device)
labels = labels.to(device)

# Forward pass
optimizer.zero grad()
outputs = model(images)
loss = criterion(outputs, labels)

# Backward and optimize
loss.backward()
optimizer.step()
train error[ii] = loss.item()
ii = ii + 1

if (i) % 10 == 0:
print (”Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}”

.format(epoch+1, num epochs, i+1, total step, loss.item()))

# plot training error
plt.plot(train error[:ii])
plt.xlabel(’steps’)
plt.ylabel(’training l1 error’)
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plt.show()

# evaluate current network on validation set for early stopping
model.eval()
with torch.no grad():

error = 0
count = 0
for images, labels, I max, I min, I mean in test loader:

count = count + 1
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
error = error + loss.item()
validate error[iii] = loss.item()
iii = iii + 1

error = error/count
print(’Current error: {}, Last error: {}’.format(error, last error))

# plot validation error
plt.plot(validate error[:iii])
plt.xlabel(’steps’)
plt.ylabel(’validation l1 error’)
plt.show()

# check if network hasn’t been getting better
if epoch > 0 and error > last error:

fail count = fail count + 1
if fail count == 3:

break
else:

# reset early stopping clock and save current network
fail count = 0
last error = copy.copy(error)
torch.save(model.state dict(), savename)

model.train()

# Decay learning rate
if (epoch+1) % 10 == 0:

curr lr /= 3
update lr(optimizer, curr lr)

if name == ” main ”:

dirname = os.path.dirname( file )
train input = os.path.join(dirname, ’trainingData/train’)
test input = os.path.join(dirname, ’trainingData/validate’)
save name = os.path.join(dirname, ’trainedNetworks/Unet OPT 40 angles’)
number angles = 40
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train unet OPT(train input, test input, save name, number angles)

A.5 Testing

”””
Function for testing Unet trained to remove streaks from undersampled OPT reconstructions

net: file name of trained network

test input: path to folder with sinograms for testing

savename: folder path to save results to

number angles: number of angles to be used for undersampled sinogram
”””

import torch
from skimage import io
from OPT dataset import OPT dataset
from unet model original import UNet
import os
import numpy as np

def test network(net,test input,savename,number angles):
# set up GPU
device = torch.device(’cuda’ if torch.cuda.is available() else ’cpu’)

# load network
model = UNet(1,1).to(device)
model.load state dict(torch.load(net))
model.eval()

# set up data set and data loader
test dataset = OPT dataset(input folder = test input, crop size = [−1,−1], augment = False,

number angles = number angles)
test loader = torch.utils.data.DataLoader(dataset=test dataset,

batch size=1,
shuffle=False)

# make save folders
save folder = savename
save folder1 = save folder +’/output’
save folder2 = save folder +’/label’
save folder3 = save folder +’/input’

if not os.path.isdir(save folder):
os.mkdir(save folder)

if not os.path.isdir(save folder1):
os.mkdir(save folder1)

if not os.path.isdir(save folder2):



APPENDIX A. CONVOLUTIONAL NEURAL NETWORKS FOR UNDERSAMPLED
OPTICAL PROJECTION TOMOGRAPHY: SOURCE CODE 176

os.mkdir(save folder2)
if not os.path.isdir(save folder3):

os.mkdir(save folder3)

count = 0
with torch.no grad():

# loop over sinograms
for images, labels, Imax, Imin, Imean in test loader:

images = images.to(device)
labels = labels.to(device)
outputs = model(images)

out image = outputs[0,0,:,:].cpu().numpy()
label image = labels[0,0,:,:].cpu().numpy()
in image = images[0,0,:,:].cpu().numpy()

Imax = np.amax((np.amax(out image), np.amax(label image), np.amax(in image)))
Imin = np.amin((np.amin(out image), np.amin(label image), np.amin(in image)))

out image = (65536∗(out image−Imin)/(Imax−Imin)).astype(np.uint16)
label image = (65536∗(label image−Imin)/(Imax−Imin)).astype(np.uint16)
in image = (65536∗(in image−Imin)/(Imax−Imin)).astype(np.uint16)

io.imsave(os.path.join(save folder1,str(count)+’.tif’), out image)
io.imsave(os.path.join(save folder2,str(count)+’.tif’), label image)
io.imsave(os.path.join(save folder3,str(count)+’.tif’), in image)

count = count + 1

if name == ” main ”:

dirname = os.path.dirname( file )
net = os.path.join(dirname, ’trainedNetworks/Unet OPT 40 angles’)
test input = os.path.join(dirname, ’fishData/sinograms’)
savename = os.path.join(dirname, ’fishData/40 projections’)
number angles = 40

test network(net,test input,savename,number angles)

A.6 Speed test

”””
Function for testing speed of Unet trained to remove streaks from undersampled
OPT reconstructions

net: file name of trained network

test input: path to folder with sinograms for testing

savename: folder path to save results to
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number angles: number of angles to be used for undersampled sinogram
”””

import torch
from OPT dataset no labels import OPT dataset
from unet model original import UNet
import os
import time
import numpy as np
from skimage import io
def speed test(net,test input,savename,number angles):

# start clock for total reconstruction time
full start = time.time()

# check if GPU available
device = torch.device(’cuda’ if torch.cuda.is available() else ’cpu’)

# prepare network
model = UNet(1,1).to(device)
model.load state dict(torch.load(net))
model.eval()

# prepare data loading
batch = 5
test dataset = OPT dataset(input folder = test input, number angles = number angles)
test loader = torch.utils.data.DataLoader(dataset=test dataset,

batch size=batch,
shuffle=False)

# prepare savefolder
save folder = savename
if not os.path.isdir(save folder):

os.mkdir(save folder)

# prepare volume
number slices = 2118
slice size = 702
volume = np.zeros((number slices,1,slice size,slice size))

chunks = np.arange(0,number slices,batch)
chunks = np.append(chunks,number slices)

# prepare speed measurement
speed = np.zeros(chunks.size)

count = 0
with torch.no grad():

# make sure GPU is being honest about what it has done
torch.cuda.synchronize()
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# time how long it takes to get streak corrupted slices
load data time = time.time()
for images, Imax, Imin, Imean in test loader:

torch.cuda.synchronize()
print(’loading data time’)
print(time.time()−load data time)

# time how long it takes to put streak corrupted slices on GPU
to gpu start = time.time()
images = images.to(device)
torch.cuda.synchronize()
print(’gpu mount time’)
print(time.time()−to gpu start)

# time how long it takes to apply network to slices
start = time.time()
outputs = model(images)
torch.cuda.synchronize()
speed[count] = time.time()−start
print(’model time’)
print(time.time()−start)

# time how long it takes to prep re−normalisation
prepare normalisation time = time.time()
Imaxs, c, x, y = np.meshgrid(Imax,1,np.arange(slice size),np.arange(slice size))
Imins, c, x, y = np.meshgrid(Imin,1,np.arange(slice size),np.arange(slice size))
Imeans, c, x, y = np.meshgrid(Imean,1,np.arange(slice size),np.arange(slice size))
print(’NormPrep’)
print(time.time()−prepare normalisation time)

# time how long it takes gather results from GPU
move data time = time.time()
numpy outputs = np.multiply(outputs.cpu().numpy()+Imeans,Imaxs−Imins)+Imins
#numpyOutputs = outputs.cpu().numpy()
torch.cuda.synchronize()
print(’move data time’)
print(time.time()−move data time)

put in volume = time.time()
volume[chunks[count]:chunks[count+1],0,:,:] = numpy outputs[0:(chunks[count+1]−chunks[count

]),0,:,:]
print(’intoVolumeTime’)
print(time.time()−put in volume)
count = count + 1
load data time = time.time()

# save volume
volume = (65536∗(volume−np.amin(volume))/(np.amax(volume)−np.amin(volume))).astype(np.uint16)
for count in range(number slices):

io.imsave(os.path.join(save folder,str(count)+’.tif’), np.squeeze(volume[count,0,:,:]))



APPENDIX A. CONVOLUTIONAL NEURAL NETWORKS FOR UNDERSAMPLED
OPTICAL PROJECTION TOMOGRAPHY: SOURCE CODE 179

print(’reconstruction time’)
print(np.mean(speed))
print(’standard error’)
print(np.std(speed)/np.sqrt(speed.size))
print(’Total time’)
print(time.time()−full start)

return (np.mean(speed), np.std(speed), time.time()−full start)

if name == ” main ”:

dirname = os.path.dirname( file )
net = os.path.join(dirname, ’trainedNetworks/UnetSinoFinal64’)
test input = os.path.join(dirname, ’fishData/sinograms’)
savename = os.path.join(dirname, ’fishData/speedtest’)
number angles = 64

speed test(net,test input,savename,number angles)
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