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Abstract

The neurons in the mammalian brain can be classified into two broad categories:

excitatory and inhibitory neurons. The former has been historically associated to

information processing whereas the latter has been linked to network homeostasis.

More recently, inhibitory neurons have been related to several computational roles

such as the gating of signal propagation, mediation of network competition, or learn-

ing. However, the ways by which excitation and inhibition can regulate learning have

not been exhaustively explored. Here we explore several model systems to investigate

the role of excitation and inhibition in learning and memory formation. Additionally,

we investigate the e�ect that third factors such as neuromodulators and network

state exert over this process. Firstly, we explore the e�ect of neuromodulators onto

excitatory neurons and excitatory plasticity. Next, we investigate the plasticity rules

governing excitatory connections while the neural network oscillates in a sleep-like

cycle, shifting between Up and Down states. We observe that this plasticity rule de-

pends on the state of the network. To study the role of inhibitory neurons in learning,

we then investigate the mechanisms underlying place field emergence and consolida-

tion. Our simulations suggest that dendrite-targeting interneurons play an important

role in both promoting the emergence of new place fields and in ensuring place field
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stabilization. Soma-targeting interneurons, on the other hand, are suggested to be

related to quick, context-specific changes in the assignment of place and silent cells.

We next investigate the mechanisms underlying the plasticity of synaptic connections

from specific types of interneurons. Our experiments suggest that di�erent types

of interneurons undergo di�erent synaptic plasticity rules. Using a computational

model, we implement these plasticity rules in a simplified network. Our simulations

indicate that the interaction between the di�erent forms of plasticity account for the

development of stable place fields across multiple environments. Moreover, these

plasticity rules seems to be gated by the postsynaptic membrane voltage. Inspired by

these findings, we propose a voltage-based inhibitory synaptic plasticity rule. As a

consequence of this rule, the network activity is kept controlled by the imposition

of a maximum pyramidal cell firing rate. Remarkably, this rule does not constrain

the postsynaptic firing rate to a narrow range. Overall, through multiple stages of

interactions between experiments and computational simulations, we investigate the

e�ect of excitation and inhibition in learning. We propose mechanistic explanations

for experimental data, and suggest possible functional implications of experimental

findings. Finally, we proposed a voltage-based inhibitory synaptic plasticity model

as a mechanism for flexible network homeostasis.
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Chapter 1

Introduction

From learning to walk and to escape from predators to developing language and

hunting strategies, animals have the remarkable capacity to learn and remember

previous experiences. This ability to learn complex skills is intimately associated

with the brains ability to adapt and change when exposed to di�erent conditions.

During the process of learning new skills, the connections between the neurons—the

synapses—are thought to change in a process called synaptic plasticity. The final

configuration of neurons and connections is thought to store the memory associated

with the newly learned skill.

1.1 Receptive field formation and plasticity in young

and adults

The same stimulus can trigger di�erent responses for each neuron in the cortex.

Indeed, each neuron can be associated to an area of the sensory space to which

its response is more pronounced. In primary auditory cortex (A1), for example, a
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neuron can be responsive to one sound frequency (pure tone) so that when this sound

is presented to the animal, that neuron becomes active. In primary visual cortex

(V1) a neuron can be associated with the direction of a bar presented to the animal.

However, the activity of each neuron is not triggered by only one particular sound

frequency or bar direction, instead its firing rate can be a�ected by a relatively large

area of the sensory space. This area is called the receptive field of the neuron. A

similar concept can also be applied to neurons in non-cortical regions. This concept

is particularly important in the hippocampus, a brain region commonly associated

with learning, memory formation, and spatial navigation. A subset of hippocampal

pyramidal cells—named place cells—fire action potentials when the animal is in a

specific location within the environment, the place fields [O’Keefe, 1976; O’Keefe

and Dostrovsky, 1971; O’keefe and Nadel, 1978; Wilson and McNaughton, 1993].

Brain circuits are shaped by experience. These modifications can lead to the formation

and refinement of receptive fields in cortical neurons and place fields in hippocampal

neurons. In young animals, these receptive fields are extremely malleable [Dorrn

et al., 2010], a characteristic that is associated to the extraordinary ability that young

animals have to learn new skills. For young animals, the exposure to sensory stimu-

lation by itself is enough to induce learning. Conversely, exposing adult animals to

sensory stimulation is not su�cient to induce a change in receptive fields. At this

stage, animals need something to communicate the importance of specific stimuli

in order for any change in connectivity to be induced [Bakin and Weinberger, 1996;

Bear and Singer, 1985; Chun et al., 2013; Drever, 2011; Froemke et al., 2007; Gu,

2002; Kilgard and Merzenich, 1998; Ma and Suga, 2005; Martins and Froemke,

2015; Shulz et al., 2000]. Neuromodulators are thought to be responsible for commu-
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CHAPTER 1. INTRODUCTION 1.2. MODELLING NEURONS

nicating the relevance of the behavioral context of sensory stimuli being presented

to other brain regions [Gu, 2002; Shulz et al., 2000]. Nucleus Basalis and Locus

Coeruleus, for example, are the main sources of acetylcholine and noradrenaline into

the brain, respectively. These are two important neuromodulators for, amongst other

things, cortical plasticity. They both have a disinhibitory e�ect on cortical networks,

promoting the increase in cortical activity and later leading to learning.

1.2 Modelling neurons

In computational neuroscience, neurons are usually modelled as a set of di�erential

equations and the complexity of these equations will depend on the level of detail

required. In simulations in which the neuron spiking times are important but the

details of the time course of action potentials is not necessary, integrate-and-fire

neuron models [Gerstner and Kistler, 2002] are commonly used. In these models,

the neuron’s membrane voltage is described by one di�erential equation in which the

neuron accumulates (integrates) the currents being injected into the neuron while

a relaxation term pushes the membrane voltage back to its resting value. Once the

membrane voltage reaches a fixed threshold, the neuron spikes an action potential

and the membrane voltage is instantly reset to a lower value. In other words, the

membrane voltage is determined by the equation

c

m

dV

dt

= �g

L

(V � E

L

) +

I

A

,

where c

m

is the neuron’s specific membrane capacitance, g

L

is the leak conductance,

E

L

is the neuron’s resting potential, I is the external current injected onto the neuron,

and A is the total surface area of the neuron. This equation can be rewritten by
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multiplying both sides by the neuron’s specific membrane resistance r

m

= 1/g

L

,

resulting in

⌧

m

dV

dt

= �(V � E

L

) + R

m

I , (1.1)

where ⌧

m

= r

m

c

m

is the membrane time constant of the neuron and R

m

= r

m

/A is

the total membrane resistance. To simulate action potentials, the membrane voltage

is reset to V

reset

when the voltage crosses the threshold value V

th

.

Neurons are connected to other neurons via synapses. These connections can be

included in simulations of neural networks by introducing an extra term to equation 1.1

⌧

m

dV

dt

= �(V � E

L

) � r

m

g

s

(V � E

s

) + R

m

I ,

where g

s

is the synaptic conductance and E

s

is the synapse reversal potential. We

can also include extra terms for di�erent types of synapses, such as excitatory and

inhibitory synapses. The synaptic conductance is increased every time the neuron

receives a presynaptic action potential from neuron j such that g

s

! g

s

+ �g

s

, and

decays exponentially otherwise with time constant ⌧

s

. The increment in synaptic

conductance is given by �g

s

= ḡ

s

w

j

, where ḡ

s

is a constant and w

j

is the synaptic

weight from presynaptic neuron j.

In simulation in which the evolution of the membrane voltage close to an action

potential is important, the integrate-and-fire model described above is not adequate.

In these cases, this model can be extended to a better approximation of real neurons.

One example of such model is the adaptive-exponential integrate-and-fire neuron

[Brette and Gerstner, 2005]. On the other hand, if the exact spike timing is not

required but only the rate at which the neuron is spiking, the model described above
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can be simplified to a rate-based model [Gerstner and Kistler, 2002]. Both of these

models will be described in the following chapters.

1.3 Synaptic plasticity

The connections between neurons are not fixed. In fact, the change in receptive fields

observed in both young and adult animals is due to a change in the strength of synaptic

connections onto those neurons. The idea that changes in synaptic connections can

be induced by targeted activation of individual neurons was first formulated by

Hebb [Hebb, 1949]. In his now classic postulate, Hebb stated that when a neuron

A repeatedly takes part in firing neuron B, the e�ciency with which A fires B is

increased [Hebb, 1949]. This postulate is usually summarized in the short version

”neurons that fire together, wire together”.

Several years later, the first spike-timing-dependent plasticity (STDP) model was

proposed [Gerstner et al., 1996] and shortly after confirmed experimentally [Bi and

Poo, 1998; Markram et al., 1997]. Synaptic connections following this STDP model

are updated depending on the time window between pre- and postsynaptic spikes.

More specifically, this rule states that presynaptic spikes preceding postsynaptic

action potentials lead to potentiation, whereas depression is caused if the presynaptic

neuron fires after the postsynaptic neuron (figure 1.1):

�w

E

=

+ pre before post

� post before pre
,

which in a rate-based version can be written as �w

E

= pre ⇥ post and thus recover

Hebb’s postulate. In a mathematical notation, the synaptic weight from presynaptic
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neuron j to postsynaptic neuron i is updated following

�w

ij

(t) =

8
>><

>>:

A+ exp(�t/⌧+) if t < 0

A� exp(�t/⌧�) if t > 0

, (1.2)

where t = t

(f)
j

� t

(f)
i

is the di�erence between the postsynaptic and the presynaptic

firing times, A+ > 0 is the potentiation amplitude and A� < 0 is the depression

amplitude (see Methods for more detail). According to this rule, if the presynaptic

action potential precedes the postsynaptic firing (t < 0) the synapse is potentiated,

whereas the opposite (t > 0) leads to depression. This excitatory plasticity rule is

known to be unstable as once a neuron induces another neuron to fire, the synaptic

weight is increased and the neuron becomes more likely to induce the firing again,

producing a positive feedback loop. Therefore, in order to prevent runaway activity,

we need to impose other homeostatic mechanisms such as weight normalization or

bounds.

This STDP rule — which we will name conventional STDP rule — can be modified

by the action of neuromodulators. In chapter 2, we will explore the e�ect of several

neuromodulators in cortical plasticity and will investigate the consequences of these

e�ects on receptive field development. To do so, we will use 4 variations of this STDP

rule in which the parameters A+ and A� will be determined by the presence of one

or a few types of neuromodulators. Under these conditions, these parameters are not

restricted to being positive or negative. Instead, their value and sign are determined

by the influence of neuromodulators. This conventional STDP rule, although vastly

used, does not capture the dependence of synaptic weight change on the frequency of

stimulation during the plasticity induction protocol. To incorporate this dependency,

22
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Figure 1. Excitatory STDP learning window. Relative change in excitatory
synaptic weight as a function of the time window between pre- and postsynaptic
spikes. Synaptic weights are potentiated for negative time windows (pre before post)
and depressed in the opposite case (post before pre). This figure has been adapted
from Sjöström et al. [2010].

we can implement a synaptic plasticity rule that depends on the interaction between

triplets instead of pairs of spikes. The so-called triplet rule [Pfister and Gerstner,

2006] can be implemented by first defining two detectors for presynaptic events, r1

and r2, and two detectors for postsynaptic events, o1 and o2. These detectors are

defined by the following set of equations:

dr1(t)
dt

= � r1(t)
⌧+

and if t = t

pre then r1 ! r1 + 1,
dr2(t)

dt

= � r2(t)
⌧

x

and if t = t

pre then r2 ! r2 + 1,
do1(t)

dt

= �o1(t)
⌧�

and if t = t

post then o1 ! o1 + 1,
do2(t)

dt

= �o2(t)
⌧

y

and if t = t

post then o2 ! o2 + 1,

(1.3)
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where ⌧+ and ⌧

x

are time constants for presynaptic events and ⌧+ and ⌧

y

are time

constants for postsynaptic events. The change in the synaptic weight is then given by

w(t) ! w(t) + o1(t)
⇥
A

�
2 + A

�
3 r2(t � ✏)

⇤
if t = t

pre,

w(t) ! w(t) + r1(t)
⇥
A

+
2 + A

+
3 o2(t � ✏)

⇤
if t = t

post,
(1.4)

where A

�
2 and A

+
2 are the amplitudes of synaptic weight change for post-pre and

pre-post events, respectively, and A

�
3 and A

+
3 are the amplitudes of depression and

potentiation, respectively.

Recent experimental observations have been inspiring new models of synaptic plastic-

ity [González-Rueda et al., 2018]. In chapter 3, we propose a novel, phenomenological

synaptic plasticity model. Based on observations from in vivo recordings of corti-

cal neurons, we propose a synaptic plasticity model in which synaptic connections

are depressed if presynaptic neurons fire alone but are unchanged if presynaptic

action potentials are closely followed by postsynaptic spikes. We then investigate the

functional implications of this new model of synaptic plasticity.

Finally, when using rate-based neuron models, we implement a synaptic plasticity

rule that depends on the activity rate of pre- and postsynaptic neurons. In this form,

the conventional STDP rule is rewritten as

�w

ij

(t) = ⌘r

j

r

i

,

where ⌘ is the learning rate, w

ij

is the synaptic weight from presynaptic neuron j to

postsynaptic neuron i, r

j

is the presynaptic activity rate, and r

i

is the postsynaptic

activity rate. Similarly to the spiking case, this synaptic plasticity rule is unstable
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and requires further homeostatic mechanisms to control network activity. In our

simulations, we include an extra homeostatic term that depends on the sum of all the

incoming weights to a postsynaptic neuron such that the equation becomes

�w

ij

(t) = ⌘r

j

r

i

� ⇠

 
X

j

w

ij

� ✓

!
,

where xi is the homeostatic learning rate and ✓ is a target value for the sum of the

weights. This plasticity rule can also be extended for multi-compartment models. In

chapter 4, we consider only the postsynaptic dendritic activity to calculate the rate

of change in synaptic weights. In chapter 5, we propose a novel form of excitatory

plasticity in which the change in synaptic weight depends on the product of the

dendritic and the somatic activity. this plasticity rule is inspired in recent experimental

evidence suggesting that coincident dendritic regenerative events and somatic action

potential can lead to a strong form of plasticity [Bittner et al., 2015, 2017].

1.4 Inhibitory synaptic plasticity

While excitatory plasticity has been widely studied over the past decades [Bienenstock

et al., 1982; Clopath et al., 2010; Gerstner et al., 1996; Gjorgjieva et al., 2011],

inhibitory plasticity is still lacking investigation. The most commonly used inhibitory

synaptic plasticity model was introduced by Vogels et al. [Vogels et al., 2011].

Similarly to the standard excitatory synaptic plasticity model, this rule modulates

inhibitory connections depending on the timing of pre- and postsynaptic spikes

[Vogels et al., 2011]. Under this rule, inhibitory synaptic weights are potentiated

for near-coincident pre- and postsynaptic spikes, independent of the order, and are
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depressed for every presynaptic spike (figure 1.2):

�w

I

=

+ pre-post or post-pre

� pre
,

which in a rate-based version takes the form �w

I

= pre⇥(post�target). Therefore,

the inhibitory weights will be modified unless either there is no presynaptic activity

or the postsynaptic neuron is firing at the target firing rate (or both). In order to

implement this rule, we define an inhibitory synaptic trace for every neuron x

i

that is

increased every time neuron i fires and decays exponentially otherwise, such that

x

i

! x

i

+ 1 if neuron i fires and

⌧

inh

dx

i

dt

= �x

i

otherwise,
(1.5)

where ⌧

inh

is the inhibitory plasticity time constant. The synaptic weight is then

updated for every pre- or postsynaptic spike according to
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where ⌘

I

is the inhibitory learning rate, ↵ = 2 ⇥ ⇢0 ⇥ ⌧

inh

is a depression factor and

⇢0 is the target firing rate of the postsynaptic neuron. This learning rule results in a

learning window defined by

�W

ij

= ⌘

I

"
exp

 
�|t(f)

i

� t

(f)
j

|
⌧

inh

!
� ↵

#
, (1.8)
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where t

(f)
i

denotes the postsynaptic firing time and t

(f)
j

denotes the presynaptic firing

time.

Figure 2. Inhibitory STDP learning window. Relative change in inhibitory
synaptic weight as a function of the time window between pre- and postsynaptic
spikes. Synaptic weights are potentiated for near-coincident pre- and postsynaptic
spikes and depressed otherwise. This figure has been adapted from Vogels et al.
[2011].

In chapter 6, we propose a new form of inhibitory synaptic plasticity which updates

inhibitory synaptic weights as a function of presynaptic spiking time and postsynaptic

membrane voltage. This plasticity rule acts as a homeostatic mechanism by forcing

the postsynaptic membrane voltage to remain around a target value over a long time

scale.

1.5 Aims

This thesis aims to investigate the role that excitation and inhibition play in learning.

Furthermore, we explore how third factors such as neuromodulators can influence

excitation and inhibition and thus shape learning.

In chapter 2, we review the e�ects of neuromodulators in neural networks and explore

how those di�erent e�ects can a�ect cortical plasticity. In particular, we explore

the fact that neuromodulators can a�ect excitatory synaptic plasticity directly by
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reshaping the excitatory learning window. Next, we explore another e�ect of neuro-

modulators in modulating neuronal activity. We then compare the neuromodulatory

e�ects of upregulating the plasticity learning rate versus the e�ects of upregulating

neuronal activity. We find that these seemingly similar mechanisms yield di�erent

outcomes: upregulating neuronal activity can lead to either a broadening or a sharp-

ening of receptive field tuning, whereas upregulating learning rate only intensifies

the sharpening of receptive field tuning.

In chapter 3, we present experimental data on a novel type of STDP observed in vivo

and computational simulations investigating its functional implications. We observe

that connections from L4 to L2/3 neurons in barrel cortex follow a network-state

dependent plasticity. The network alternates between an Up and Down state, similarly

to the cycles observed in mice during sleep. On Up states, presynaptic spikes lead to

synaptic depression whereas pre- followed shortly by postsynaptic spikes prevents

depression. We simulate a network imposing an excitatory plasticity rule based on

our experimental findings. From our simulations, we conclude that this plasticity

rule is a potential mechanism to refine representations.

In chapter 4, we investigate the role that di�erent types of interneurons play in place

field development and stabilization. Our simulations suggest that dendrite-targeting

interneurons play a crucial role to place field development and consolidation whereas

soma-targeting interneurons can quickly and transiently turn place cells into silent

cells or the other way around.

In chapter 5, we present experimental data on interneuron-type-specific inhibitory

plasticity and explore its functional consequences using computational simulations.

We observe that connections from somatostatin-expressing interneurons exhibit pre-
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dominantly long-term potentiation whereas connections from parvalbumin-expressing

interneurons exhibit predominantly long-term depression. Using computational sim-

ulations, we suggest that this combination of plasticity rules leads to stable place

field consolidation.

In chapter 6, inspired by the interneuron-type-specific inhibitory plasticity we pre-

sented in the previous chapter, we propose a voltage-based inhibitory synaptic plas-

ticity model. We show that this model regulates network activity by setting a target

value for the ratio between excitatory and inhibitory inputs onto the postsynaptic cell.

Additionally, our voltage-based rule imposes a maximum postsynaptic firing rate

without constricting it to a narrow range.

Overall, our goal is to combine experimental observations with computational mod-

elling to understand how low scale observations a�ect network functionally. Ulti-

mately, predictions from computational simulations can be fed back onto the design

of new experiments to help to elucidate how the brain works.
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Chapter 2

The role of neuromodulators in

cortical plasticity. A computational

perspective.

Neuromoculators are responsible for communicating behavioral context to other

brain regions. In adult animals, they are essential for learning and adaptation. Neu-

romodulators are thought to regulate learning by gating synaptic plasticity, or by

upregulating neuronal activity. Using a computational model, we investigate how

these two mechanisms a�ect cortical plasticity. Firstly, we implement four di�erent

learning rules and demonstrate their e�ects on receptive field plasticity. Next, we

compare the e�ects of increasing the plasticity learning rate versus the e�ects of

upregulating neuronal activity. Although both mechanisms are similar, they lead to

di�erent outcomes. The increase in neuronal activity can lead to either the broadening

or sharpening of the receptive field, depending on the neuron’s initial excitatory input.
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Contrastingly, the increase in learning rate leads to the sharpening of the neuron’s

place field independently of the level of excitatory inputs.

The layout of the work will be presented in an article format as it has been published

on Frontiers in Synaptic Neuroscience. We would like to thank Claudia Clopath for

supervising and guiding the work.
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The role of neuromodulators in

cortical plasticity. A computational

perspective.

Abstract

Neuromodulators play a ubiquitous role across the brain in regulating plasticity.

With recent advances in experimental techniques, it is possible to study the e�ects

of diverse neuromodulatory states in specific brain regions. Neuromodulators are

thought to impact plasticity through predominantly two mechanisms: the gating of

plasticity, or the upregulation of neuronal activity. However, the consequences of

these mechanisms are poorly understood and there is a need for both experimental and

theoretical exploration. Here we illustrate how neuromodulatory state a�ects cortical

plasticity through these two mechanisms. First, we explore the ability of neuromodu-

lators to gate plasticity by reshaping the learning window for spike-timing-dependent

plasticity. Using a simple computational model, we implement four di�erent learning

rules and demonstrate their e�ects on receptive field plasticity. We then compare the

neuromodulatory e�ects of upregulating learning rate versus the e�ects of upregulat-

ing neuronal activity. We find that these seemingly similar mechanisms do not yield
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the same outcome: upregulating neuronal activity can lead to either a broadening

or a sharpening of receptive field tuning, whereas upregulating learning rate only

intensifies the sharpening of receptive field tuning. This simple model demonstrates

the need for further exploration of the rich landscape of neuromodulator-mediated

plasticity. Future experiments, coupled with biologically detailed computational

models, will elucidate the diversity of mechanisms by which neuromodulatory state

regulates cortical plasticity.

Keywords:

neuromodulators; noradrenaline; acetylcholine; dopamine; synaptic plasticity; com-

putational modeling;

2.1 Introduction

Cortical circuits are modified by experience. It is widely thought that such modifica-

tions enhance the representations of behaviorally important sensory stimuli, such as

natural scenes for the visual cortex, or speech for the auditory cortex. These modifica-

tions can lead to the development or refinement of receptive fields in cortical neurons

through synaptic plasticity. Across many species, the amount of cortical plasticity

has been shown to depend on age. In juvenile mice, for example, tuning curves can

shift from responding maximally to a preferred stimuli to responding maximally to a

training stimulus (Dorrn et al. [2010]). This is not thought to require neuromodulation

and, interestingly, is associated with a state of unbalanced excitation and inhibition.

Conversely, experimental data from adults suggest that sensory stimulation is not

su�cient to induce a change in receptive fields. Experiments in adult mice suggest

that activation of neuromodulatory systems is also necessary for this change (Bakin

and Weinberger [1996]; Bear and Singer [1985]; Chun et al. [2013]; Drever [2011];

Froemke et al. [2007]; Gu [2002]; Kilgard and Merzenich [1998]; Ma and Suga
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[2005]; Martins and Froemke [2015]; Shulz et al. [2000]). In primary auditory

cortex, Froemke et al. (Froemke et al. [2007]) observed that repeated exposure to a

training sound frequency is not su�cient to evoke experience-dependent plasticity in

adult rats. However, the tuning curve shifts to the training frequency if the stimulus is

paired with cholinergic stimulation (from Nucleus Basalis). Interestingly, the stability

of receptive fields is thought to be associated with the balance between excitation

and inhibition, which is observed across many regions in the adult brain (Destexhe

and Sejnowski [2003]; Froemke et al. [2013, 2007]; Graupner and Reyes [2013];

Haider et al. [2006]; Jia Xue [2014]; Okun and Lampl [2008]; Shu et al. [2003]; Wehr

and Zador [2003]). Experiments indicate that some neuromodulators act to disrupt

this balance (Froemke et al. [2013, 2007]; Letzkus et al. [2011]), enabling cortical

plasticity. These neuromodulatory systems may be responsible for communicating

the behavioral context of sensory stimuli to other brain regions (Gu [2002]; Shulz

et al. [2000]).

Neuromodulators are observed to induce di�erent e�ects in neural circuits. One

main neuromodulatory e�ect is to gate plasticity by modifying the spike-timing-

dependent plasticity (STDP) learning window (Bissière et al. [2003]; Caporale and

Dan [2008]; Couey et al. [2007]; Lin et al. [2008]; Pawlak and Kerr [2008]; Pawlak

et al. [2010]; Seol et al. [2007]; Shen et al. [2008]; Zhang et al. [2009]). For example,

in lateral amygdala, activation of D2 dopamine receptors was shown to be necessary

to induce long-term potentiation (LTP) (Bissière et al. [2003]). While in dorsal

striatum, dopamine signaling via D1/D5 receptors is required for both long-term

potentiation and long-term depression (LTD) (Pawlak and Kerr [2008]). In prefrontal

cortex layer 5 pyramidal neurons, nicotine was shown to be able to reverse LTP into

LTD (Couey et al. [2007]). In visual cortex, the combined action of acetylcholine and

noradrenaline is necessary for standard STDP, whereas the action of noradrenaline

alone was shown to reverse LTD into LTP, and acetylcholine alone allows only
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LTD (Seol et al. [2007]). Therefore, depending on the brain region and, possibly,

the stimulation protocol, neuromodulatory signaling can completely reshape STDP

learning windows. Additionally, Dopamine has been shown to be important for

reinforcement learning (Schultz [2002]). Unlike previous work on dopamine and

reinforcement learning, we focus this perspective article on other less explored

neuromodulatory e�ects in an unsupervised learning scheme.

Neuromodulators have also been shown to upregulate neuronal activity. For example,

cholinergic stimulation is known to lower feedforward inhibition (Froemke et al.

[2013, 2007]; Metherate et al. [1992]; Woody and Gruen [1987]; Xiang [1998]).

Similarly, noradrenaline is known to trigger a disinhibitory e�ect (Kuo and Trussell

[2011]). It has been shown that stimulation of Locus Coeruleus, the main source

of noradrenaline, reduces tonic inhibition in auditory cortex (Martins and Froemke

[2015]). These disinhibitory mechanisms are thought to be essential for adult cortical

plasticity (Hensch [2005]; Kuhlman et al. [2013]; Letzkus et al. [2011]). Indeed, a

computational study by Clopath et al. (Clopath et al. [2016]) demonstrated that a

disinhibitory gate is required for adult cortical plasticity. These findings indicate that

a disinhibited system promotes learning, consistent with recent experimental work

(Kuhlman et al. [2013]; Letzkus et al. [2011]).

In this perspective article, we review the possible e�ects of neuromodulators by using

a simple computational model of a plastic feedforward network. First, we hypothe-

size four di�erent learning windows that would result from the action of di�erent

neuromodulators. Then we show the consequences of these rules on receptive field

plasticity. We verify that an antisymmetric STDP rule allows for receptive field

development, whereas a rule with more potentiation allows for a greater modification

of sensory representation. This demonstrates the role of di�erent neuromodulators

in these situations. Finally, we compare the e�ect of upregulating the learning rate to

the e�ect of upregulating activity and show that they are not necessarily equivalent.
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Upregulating activity can lead to either a sharpening or a broadening of receptive

field tuning. Upregulating the learning rate, however, only amplifies the existing

structure.

2.2 Results

To illustrate the e�ect of neuromodulation on cortical plasticity, we use four possible

STDP learning rules for excitatory synapses (fig 1A). Each one of the STDP rules

can be thought of as the action of a specific neuromodulatory state. The first rule

is the standard antisymmetric STDP rule, in which a presynaptic spike preceding a

postsynaptic action potential leads to potentiation of synaptic connections, whereas

the reverse leads to depression. We refer to this rule as the Depression-Potentiation

(DP) rule (fig 1A, blue curve). Although widely observed in neocortical neurons

of juvenile animals (Feldman [2000]; Markram et al. [1997]; Nevian and Sakmann

[2006]; Sjöström et al. [2001]), the DP rule seems to be neuromodulator dependent

in adults. This rule has been observed in visual cortex when both noradrenaline and

acetylcholine are present (Seol et al. [2007]), whereas in dorsal striatum it can be

observed under activation of D1/D5 (dopamine-specific) receptors (Pawlak and Kerr

[2008]). The second rule is a symmetrical STDP rule, in which all pairs of pre- and

postsynaptic spikes lead to potentiation, regardless of their order. As such, we refer

to this as the Potentiation-Potentiation (PP) rule (fig 1A, red curve). This rule can be

observed in adult visual cortex under the activation of �-adrenergic (noradrenaline-

specific) receptors (Seol et al. [2007]), and in hippocampal neurons under the e�ect of

dopamine (Zhang et al. [2009]). For the third rule, only presynaptic spikes followed by

postsynaptic action potentials elicit synaptic weight changes, leading to potentiation.

Thus, we refer to this as the Unchanged-Potentiation (UP) rule (fig 1A, green curve).

This rule can be associated with dopaminergic action via D2 receptors in Lateral

amygdala (Bissière et al. [2003]). Lastly, the fourth rule states that synaptic weights
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are weakened every time a postsynaptic spike precedes presynaptic action potentials,

and is unchanged otherwise and hence we refer to this as the Depression-Unchanged

(DU) rule (fig 1A, pink curve). This rule has been reported in prefrontal cortex under

nicotinergic modulation (Couey et al. [2007]).

We simulate a feedforward network, in which a set of presynaptic input neurons project

onto one postsynaptic neuron (fig 1B). Input neurons fire with a time-varying firing

rate with Poisson statistics. Neighboring input neurons have correlated activity, as

for example neurons with similar frequency/orientation (sensory feature) preference

in auditory/visual cortex (for more details, see methods and supplementary figure 1).

Using this network, we illustrate the receptive field formation and adaptation under

di�erent learning rules, which are shaped by di�erent neuromodulatory states.

Standard STDP leads to symmetry breaking

Hebbian learning rules, when associated with a competitive mechanism, are known

to induce symmetry breaking of synaptic weights, i.e. some weights become strong

and some weights become weak. However, it is well known that even without explicit

competition, it is possible to induce symmetry breaking. This happens when the

STDP rule is such that the depression component of the STDP learning window is

larger than the potentiation component (i.e. the integral of the learning window is

negative) (Song et al. [2000]). To illustrate the behavior of synaptic weights for the

four di�erent learning rules, we first simulate a network composed of 100 presynaptic

neurons with all synaptic weights initially set at the same value. The DP rule can be

modified to ensure that the amount of depression is slightly higher than the amount

of potentiation (by increasing the amplitude of depression by 2%, as observed in

several experiments (Bi and Poo [1998]; Feldman [2000])). We observe that, after

some time, some of the weights get completely depressed whereas the remaining

get completely potentiated, i.e. the weights go to their upper and lower bounds
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(fig 1C and D). This happens because inputs with strong connections can more easily

induce a postsynaptic action potential. As a consequence, the spiking activities of

strongly connected inputs are more correlated with the activity of the postsynaptic

neuron, resulting in a further strengthening of weights. For those inputs with weak

connections, there is almost no correlation between their activity and that of the

postsynaptic neuron. These low correlations ensure the learning window is equally

sampled so that the asymmetry of potentiation and depression results in depression

of these weak synaptic weights. This e�ect was formally derived in several studies,

e.g. Babadi and Abbott [2016]; Gilson et al. [2009]; Kempter et al. [1999]; Song et al.

[2000]. For the remaining learning rules, synaptic weights are either all potentiated

or all depressed (fig 1E).

Taken together, the DP rule is the only one which allows for the emergence of receptive

fields in this simple model. This rule can be associated with the combined action

of noradrenaline and acetylcholine in visual cortex (Seol et al. [2007]). This model

suggests that development of receptive fields in this region can be facilitated through

the action of these neuromodulators. The first section of this perspective considered

the neuromodulatory state for receptive field formation. Next, we will show that the

neuromodulatory state for receptive field adaptation might be di�erent.

The stronger the potentiation, the faster the receptive field plasticity

In order to demonstrate the e�ect of di�erent neuromodulatory states on the stability

of receptive fields, we first consider the case where all inputs have on average the

same firing rate. We assume a network with 10 inputs in which the postsynaptic

neuron is already tuned to a preferred stimulus, i.e. it has a stronger weight for input 7

than for other inputs. For the DP rule (standard STDP) we observe a small increase in

all synaptic weights, even though the amounts of potentiation and depression are the

same. Synaptic changes are larger for synapses that were initially stronger in these
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simulations (fig 1F, blue curve). The activity of presynaptic neurons increases the

probability of postsynaptic action potentials. Therefore, events in which presynaptic

neurons fire before the postsynaptic neuron (while close in time) are more likely to

occur than the opposite, as shown previously (Gilson et al. [2009]; Kempter et al.

[1999]; Song et al. [2000]). The PP rule, with the largest amount of potentiation,

results in the largest change of receptive field (fig 1F, red curve), whereas the UP

rule generates an intermediate increase (fig 1F, green curve). For the DU rule, we

observe a small decrease of all synaptic weights (fig 1F, pink curve). Therefore, we

observe that the final receptive field remains tuned to the initial tuning frequency for

all learning rules (fig 1F).

It has been demonstrated that neuromodulation can facilitate plasticity in di�erent

systems (Bakin and Weinberger [1996]; Bear and Singer [1985]; Chun et al. [2013];

Froemke et al. [2007]; Gu [2002]; Martins and Froemke [2015]; Shulz et al. [2000]).

In this section, we want to illustrate how di�erent learning rules, mediated by di�erent

neuromodulatory states, a�ect receptive field plasticity. To do this, we over-represent

one input (input 4), called the training input, by increasing the firing rate of one

input neuron and its neighbors. This corresponds to stimulating one sensory feature

excessively—e.g. by the repeated presentation of one tone (for auditory stimulus) or

one orientation (for visual stimulus). We observe a shift in the receptive field towards

the training input for learning the PP and UP rules (fig 1G, red and green curves),

which are potentiation-only rules. For the DP rule, we observe a small increase in the

connection from the training input. After 40 s, the peak of the receptive field is still

at the initially preferred input. As such, the receptive field did not shift to the training

input (fig 1G, blue curve). When applying the DU rule, the stronger activation of the

training input leads to a stronger depression of the corresponding synapse (fig 1G,

pink curve). When we compare the strength of the synapse from the training input

with the one from input 7 (the initially preferred input), we observe that the rules
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with only potentiation lead to fast receptive field plasticity towards the new preferred

stimulus. Since the weights are bounded, this shift in the preferred input is transient

and the postsynaptic neuron is untuned at the end of the simulation (fig 1H). The

antisymmetric DP rule leads to a slower shift yet achieving, on average, the same

value of input specificity as the PP and UP rules (figure 1H). The DU rule forces all the

weights to decrease until they reach the lower bound value. Therefore, the di�erence

between the neuron’s response to the training input and the initially preferred input

slowly converges to zero (fig 1H, pink curve). Not surprisingly, only rules with

potentiation lead to a receptive field shift towards the training input. Additionally,

rules with a larger amount of potentiation result in a faster receptive field shift.

In the model so far, there was no explicit competition mechanism between weights

for any of the learning rules implemented until now. We now want to illustrate

whether such a mechanism would facilitate or obstruct receptive field plasticity. To

address this question, we use a normalization rule together with the STDP learning

rules. Again, we first consider the case where all the inputs have on average the

same firing rate. For rules DP, PP and UP, we observe a narrowing of the receptive

field tuning, whereas rule DU leads to a flattening (fig 1I). When one stimulus is

stronger, the receptive field is shifted towards the strongest stimulus for rules DP, PP

and UP, whereas rule DU results in a weakening of the connection associated with

this stimulus until it reaches the lower bound (fig 1J). This receptive field shift is

slower than for the case without normalization but can lead to a strong receptive field

tuned to the new stimulus (fig 1K).

In summary, the learning rule with the largest amount of potentiation is more e�cient

for receptive field plasticity, both with and without normalization. This learning rule,

rule PP, can be associated with the action of noradrenaline on visual cortex (Seol

et al. [2007]). Therefore, our results suggest that noradrenaline is a good candidate

for facilitating receptive field plasticity in this brain region.

CHAPTER 2. THE ROLE OF NEUROMODULATORS IN CORTICAL
PLASTICITY. A COMPUTATIONAL PERSPECTIVE.

41



Figure 1: Receptive field plasticity under the e�ect of neuromodulation. (A) Dia-
gram showing the four learning windows. Each learning window shows the change in
synaptic strength (�W )) as a function of the di�erence between the post- and presynap-
tic spike times (�t = t

post

� t

pre

). Blue: rule DP (Depression-Potentiation); red: rule
PP (Potentiation-Potentiation); green: rule UP (Unchanged-Potentiation); pink: rule DU
(Depression-Unchanged). (B) Network diagram. Firing probabilities (signals, colored traces)
are independently generated and each neuron’s firing probability is determined by a weighted
sum of these signals. Each signal can be understood as one specific sensory feature, such as
one particular tone for auditory stimulation or one particular orientation for visual stimula-
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tion. The input neurons project to one common postsynaptic neuron (gray circle). (C)-(E)

Evolution of synaptic weights for the di�erent learning rules. (C) Evolution of weights
for a simulation with 100 presynaptic neurons projecting to one postsynaptic neuron. The
excitatory weights follow the DP rule with the amplitude for depression slightly greater than
the amplitude for potentiation. The small di�erence in amplitude is enough to generate
bimodal distribution of weights. (D) Final distribution of weights in C. The synaptic weights
are in the vertical axis and the counts of synaptic weights in each interval are in the horizontal
axis. (E) First 10 seconds of the evolution of weights for plasticity rules PP, UP and DU
(red, green and pink, respectively;). The weights quickly achieve the upper or lower bounds.
(F)-(K) Simulation of a network with 10 presynaptic neurons. The excitatory connections
follow the four STDP rules in A. (F) Final synaptic weights for each input neuron. All the
inputs had the same intensity. (G) Final synaptic weights for each input neuron when stimulus
4 is 100% stronger than the other stimuli. (H) Di�erence between the synaptic weight from
input neuron 4 (training input) and the weight from input neuron 7 (initial preferred input) as
a function of time. We call this di�erence ’input specificity’. (I)-(K) Same as F-H but for
a system in which the excitatory weights are also constrained by a normalization rule. In
figures F-K, curves show the mean averaged over 100 trials and shaded areas represent one
standard deviation from the mean.

Modulation of neuronal activity and learning rates have di�erent e�ects

in receptive field plasticity

Neuromodulation has been shown to a�ect many processes. Primarily, it has been

shown to upregulate activity (e.g. by disinhibition—Froemke et al. [2007]; Martins

and Froemke [2015]) or to gate plasticity (e.g. by changing the learning rule—

Bissière et al. [2003]; Couey et al. [2007]; Pawlak and Kerr [2008]; Seol et al. [2007]).

Intuitively, these two e�ects seem to be equivalent, since synaptic weight changes

from Hebbian learning can be modeled as a product of the learning rate and neuronal

activity. But is this really the case? Here we demonstrate in our simple computational

model that upregulating either the learning rate or neuronal activity leads to di�erent

synaptic weight changes. To this end, we model a feedforward network with only

one presynaptic and one postsynaptic neuron. The synaptic weights are updated

according to learning rule DP (fig 1A) with a learning rate amplitude ↵, and the

presynaptic neuron fires with firing rate �. We add an extra noise current to the
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postsynaptic neuron in order to ensure postsynaptic firing at 10 Hz when the input

neuron is kept silent.

First, we ask how plasticity depends on the synaptic weight, and whether the modula-

tion of learning amplitude can alter this dependence (figures 2A-C). We calculate

the ratio between the synaptic weight change, �w, and the synaptic weight, w, as

a function of the weight. If the change is proportional to the weight, the ratio is

constant. However, for small values of presynaptic activity, �, strong weights increase

relatively faster compared with weak weights, regardless of the value of the learning

amplitude, ↵ (fig 2A). We observe that �w/w is proportional to the learning ampli-

tude (�w/w = k↵) and the proportionality constant, k, is higher for strong weights

(fig 2B). As such, strong weights change relatively faster than weak weights and the

modulation of learning can only amplify or reduce this di�erence, but not reverse it.

Having shown how plasticity depends on the learning rate, we now ask if there is

a similar dependence on neural activity (figures 2D-F). We observe that, for large

values of �, the relative weight increase (�w/w) does not increase with weight.

Instead, small weights can grow faster than large weights for large enough values of

� (fig 2C). For large weights, the modulation of neuronal activity has a similar e�ect

to the modulation of learning rate. However, for weak weights, the modulation of

neuronal activity can have a stronger e�ect (fig 2D). Therefore, by controlling the

activity of the presynaptic neuron, it is possible to shift from a scenario where strong

weights learn faster to a scenario in which weak weights learn faster.

In summary, regulation of activity can lead to a scenario where weak weights learn

relatively faster than strong weights. In other words, the regulation of activity can

control whether the receptive field of a neuron is either sharpened of broadened. To

demonstrate this, we simulate a feedforward network with 10 presynaptic neurons

for two levels of presynaptic activity. For low activity, we observe a sharpening,

PhD Thesis - Victor Pedrosa

44



whereas high activity leads to a broadening of the receptive field (figure 2F, supple-

mentary figure 2). The upregulation of learning rate, on the other hand, can only

amplify receptive field changes in our model. Therefore, for low firing rates, the

regulation of learning rate will always lead to a sharpening of the receptive field

tuning, regardless of the learning rate amplitude (figure 2C, supplementary figure

2). These two modulation mechanisms act independently and do not disturb each

other in our model (supplementary figure 2). The same behavior is observed when

we use a more realistic, non-linear STDP model such as the triplet model (Pfister and

Gerstner [2006]) (supplementary figure 3). Due to this large qualitative di�erence,

more experiments are needed in order to identify how much, in which proportion,

and when neuromodulation a�ects either learning, neural activity, or a combination

of both.

Figure 2: Modulation of activity vs modulation of learning rate. A network with one
pre- and one postsynaptic neuron was simulated (in A, B, D and E). The synaptic weight
changed following a standard STDP rule with amplitude � and the presynaptic neuron fired
with firing rate �. For synaptic weight w = 0, the postsynaptic neuron fired with firing rate
�10 Hz. (A) Ratio between the synaptic change and the synaptic weight as a function of the
weight for di�erent values of �, with �0 = 0.0005 and presynaptic firing rate � = 10 Hz.
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(B) Ratio between the synaptic change and the synaptic weight as a function of the amplitude
of learning for w = 3.0 (red) and w = 7.0. In both cases, the presynaptic firing rate was set
to � = 10 Hz. (C) Synaptic weights for a feedforward network with 10 presynaptic neurons
and one postsynaptic neuron. The final synaptic weights were calculated for low presynaptic
neuronal activity (� = 1 Hz) and two values of learning rate: � = 0.01 (small �, red curve)
and � = 0.02 (large �, blue curve). The initial and final tuning curves were re-scaled by
dividing all the tuning curves by their respective maximum weights. The increase in � always
sharpens the receptive field tuning (for low presynaptic activity). (D) Ratio between the
synaptic change and the synaptic weight as a function of the weight for di�erent values of
�, with �0 = 10 Hz and the amplitude of learning � = 0.0005. (E) Ratio between the
synaptic change and the synaptic weight as a function of the presynaptic neuronal firing
rate for w = 3.0 (red) and w = 7.0. In both cases, the amplitude of learning was set to
� = 0.0005. In figures A, B, D and E, the curves are averages over 200 trials. In figures C
and F, the curves are averages over 50 trials. (F) Synaptic weights for a feedforward network
with 10 presynaptic neurons and one postsynaptic neuron. The final synaptic weights were
calculated for learning rate � = 0.02 and two values of presynaptic activity: � = 1 Hz
(small �, red curve) and � = 10 Hz (large �, blue curve). The initial and final receptive fields
were re-scaled by dividing all the tuning curves by their respective maximum weights. The
modulation of neuronal activity, �, can lead to either a sharpening or a flattening of receptive
field tuning, depending on the value of �.

2.3 Discussion

In this perspective article, we used four di�erent learning rules, each associated with

one or more neuromodulatory states, to illustrate how neuromodulation can a�ect

receptive field plasticity. In order to explore the e�ects of di�erent neuromodulatory

states, we implemented these four learning rules in a feedforward network. As

expected (Song et al. [2000]), we observed that receptive field development was

only possible for one of these rules. This learning rule (DP) can be associated

with the combined action of noradrenaline and acetylcholine in visual cortex, or the

action of dopamine via D1/D5 receptors in dorsal striatum. It suggests that these

neuromodulators can be important to the development of receptive fields in these

brain regions, under the assumption that STDP is the dominant player in cortical

plasticity. In our analysis, we also asked what would be the best rule to change a

receptive field once it is formed. To this end, we combined each learning rule with
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trained input. This simulates the association of a neuromodulatory state paired with

a stimulus (e.g. a tone frequency, or an oriented bar). We observed that the rule

with the largest amount of potentiation leads to faster receptive field plasticity. This

rule can be associated with the action of noradrenaline on visual cortex, for example.

This provides a mechanistic understanding of why noradrenaline can be important to

receptive field plasticity in cortical areas, as seen in Martins and Froemke (Martins

and Froemke [2015]).

Finally, we asked whether the modulation of presynaptic activity is equivalent to the

modulation of plasticity. Our analysis suggests that the upregulation of learning rates

can lead to faster learning. However, for low presynaptic activity, strong synaptic

weights learn relatively faster than weak weights, regardless of the learning rate

amplitude. Since strong weights become stronger, we see a sharpening of receptive

field tuning. Upregulating activity, on the other hand, can lead to a scenario in

which weak weights learn relatively faster than strong weights. This indicates that

modulation of presynaptic activity could lead to a weakening of receptive fields by

broadening their tuning.

In this perspective article, we illustrate some of the potential e�ects that neuromodu-

lators can have in cortical plasticity. By assuming simple neuromodulator-meditated

modifications of learning rules, we see interesting di�erences in the outcomes of

receptive field development and adaptation. In all our simulations, we have only used

pair-based spike-timing dependent plasticity rules (Abbott and Blum [1996]; Abbott

and Nelson [2000]; Bi and Poo [1998]; Caporale and Dan [2008]; Gerstner et al.

[1996, 1993]; Mehta et al. [2000]; Roberts [1999]; Sjöström et al. [2001]; Song et al.

[2000]; Zhang et al. [1998]). This allowed us to explore a wide range of di�erent

possibilities within a frequently explored and well described framework. Some of

the behaviors shown in this perspective article can also be explored analytically,

using established techniques of plasticity in feedforward network (Babadi and Abbott
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[2016]; Burkitt et al. [2007]; Câteau and Fukai [2003]; Gabriel Koch Ocker [2015];

Gilson et al. [2010, 2009]; Gjorgjieva et al. [2011]; Izhikevich and Desai [2003];

Kempter et al. [1999, 2001]; Rubin et al. [2001]; Song et al. [2000]; van Rossum

et al. [2000]; Zhu et al. [2006]).

Experimental exploration of the e�ects of neuromodulation in cortical plasticity is a

rapidly growing topic of interest. However, the precise e�ects of neuromodulators

in neuronal networks remain unclear, and further experimental data is required.

More biologically detailed rules can be explored as descriptions of the e�ect of

neuromodulation on cortical plasticity come to light. Previous voltage-dependent

or calcium-dependent models of synaptic plasticity may be modified in this regard

(Clopath et al. [2010]; Graupner and Brunel [2012]; Pfister and Gerstner [2006];

Senn et al. [2001]; Shouval et al. [2002]). The e�ects of neuromodulators under these

complex learning rules could be even vaster than for those studied in this perspective

article. Moreover, we limited our perspective to a qualitative analysis. With more

experimental data and more detailed models, it would be possible to extend this study

to a quantitative description.

Synaptic connections in young animals are thought to be highly plastic and are

associated with a state of unbalanced excitation and inhibition. In this case, neu-

romodulation might not be needed for plasticity. However, in adults, experiments

indicate that neuromodulation is necessary to open a window of plasticity. We il-

lustrate here that this can be done either by modulating the learning rule (by gating

learning) or by modulating neuronal activity (e.g. by disinhibition—Clopath et al.

[2016]). However, these two scenarios do not yield similar plasticity outcomes in our

computational model. In the future, it would be interesting to have more experimental

data on how behavior - mediated by neuromodulation - a�ects both the learning rule

and neuronal activity. These insights can then be fed back to computational models

to further understand their functional implications.
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2.5 Methods

Neuron model

For all our simulations we use the leaky integrate-and-fire neuron model (Gerstner

and Kistler [2002]; Stein [1967]). In this model, the membrane potential of a neuron

is described by

⌧

m

du

dt

= �(u � u

rest

) + RI(t) , (2.1)

where u

rest

denotes the membrane voltage at rest, R denotes the membrane resistance,

I(t) denotes the external current and ⌧

m

denotes the membrane time constant. If

the membrane potential reaches a threshold u

th

at time t

(f), the membrane potential

is reset to u

reset

and we call t

(f) the firing time. After being reset, the membrane

potential follows equation 2.1 again.

The term I(t) takes into account all of the current being injected into a neuron; these

can be from an external source (e.g. an electrode) or from other neurons. When a

neuron fires, it propagates a current to all other connected neurons. In order to model

this current, we assume that the conductance between a presynaptic neuron j and a

postsynaptic neuron i increases instantaneously every time the presynaptic neuron

fires, and decays exponentially otherwise:

g

j

! g

j

+ ḡ

E

if j fires and (2.2)
dg

j

dt

= �g

j

/⌧

syn

otherwise, (2.3)

where ⌧

syn

is the synaptic time constant and ḡ

E

is a constant. The synaptic current is

then calculated through

I

syn

(t) = �w

ij

g

j

(u � E

syn

) , (2.4)
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where w

ij

is the synaptic weight from neuron j to neuron i and E

syn is the synaptic

reversal potential.

Input signals

Each stimulus is represented by a filtered gaussian noise, with a time constant of

⌧

filt

= 50 ms, from which we subtract a constant c, then rectify all negative values to

zero and multiply by a constant �

j

(to control the mean), resulting in a function s

j

(t)

(a signal, or stimulus). In summary,

s

j

(t) = �

j

[f

j

(t) � c]+ , (2.5)

⌧

filt

df

j

(t)

dt

= f

j

(t) � ⇠

j

(t) , (2.6)

where ⇠

j

(t) is a Gaussian white noise. The constant c controls the lifetime sparseness

of the signals (Franco et al. [2007]), controlling how well the postsynaptic neuron

can di�erentiate between two presynaptic neurons. When all the stimuli are equally

represented, �

j

= m for all j. When one of the stimuli is over-represented, the

corresponding value of �

j

is increased.

We assume that all input neurons received contributions from all stimuli with di�erent

intensities. For each neuron, we associated a weighted sum of the stimuli, p

i

(t) =

P
j

T

ij

s

j

(t), where T

ij

is a tuning strength defined from a Gaussian distribution:

T

ij

� exp (�(i � j)

2
/2�

2
) and it is normalized such that

P
j

T

ij

= 1. The parameter

� = 1 is the tuning width. The function p

i

(t) is then defined as the firing probability

of input neuron i.

See diagram in supplementary figure 2.1.
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Synaptic plasticity model (pair-based)

According to the STDP rule we use, the synaptic weight between a presynaptic neuron

j and a postsynaptic neuron i evolves following (Gerstner and Kistler [2002]; Kistler

and van Hemmen [2000])

d

dt

w

ij

(t) = A�S

j

(t)

� �

0

e

�s/⌧�
S

i

(t � s)ds + A+S

i

(t)

� �

0

e

�s/⌧+
S

j

(t � s)ds ,

(2.7)

where S

j

=

P
f

�

�
t � t

(f)
j

�
and S

i

=

P
f

�

�
t � t

(f)
i

�
are pre- and postsynaptic

spike trains, respectively, A� is the depression amplitude, A+ is the potentiation

amplitude, ⌧� is the depression time constant and ⌧+ is the potentiation time constant.

This rule takes into account only pairs of pre-post or post-pre activity and therefore

can be summarized by the e�ect of only one pair (known as a learning window),

�w

ij

(t) =

8
><

>:

A+ exp(�t/⌧+) if t < 0

A� exp(�t/⌧�) if t > 0

, (2.8)

where t = t

(f)
j

� t

(f)
i

is the di�erence between the postsynaptic and the presynaptic

firing times. In order to implement this rule, we define a presynaptic trace x̄

j

and

a postsynaptic trace ȳ

i

that is incremented by 1 for each pre or postsynaptic spike,

respectively, and decay otherwise following

x̄

j

! x̄

j

+ 1 if presynaptic neuron j fires and

⌧+
dx̄

j

dt

= �x̄

j

otherwise,
(2.9)

and
ȳ

i

! ȳ

i

+ 1 if postsynaptic neuron i fires and

⌧�
dȳ

i

dt

= �ȳ

i

otherwise.
(2.10)
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The synaptic weight w

ij

is then updated by the following:

w

ij

(t) ! w

ij

(t) + A�ȳ(t) if t = t

pre,

w

ij

(t) ! w

ij

(t) + A+x̄(t) if t = t

post.
(2.11)

Synaptic weights were also bounded between 0 and 2: 0 < w < 2.

Synaptic plasticity model (triplet)

In supplementary figure 3, we use the triplet model (Pfister and Gerstner [2006]) to

update the synaptic weights. We first consider two detectors of presynaptic events, r1

and r2, and two detectors of postsynaptic events, o1 and o2. These variables evolve

according to the following:

dr1(t)
dt

= � r1(t)
⌧+

and if t = t

pre then r1 ! r1 + 1,
dr2(t)

dt

= � r2(t)
⌧

x

and if t = t

pre then r2 ! r2 + 1,
do1(t)

dt

= �o1(t)
⌧�

and if t = t

post then o1 ! o1 + 1,
do2(t)

dt

= �o2(t)
⌧

y

and if t = t

post then o2 ! o2 + 1,

(2.12)

where ⌧+ and ⌧

x

are time constants for presynaptic events and ⌧+ and ⌧

y

are time

constants for postsynaptic events. The change in the synaptic weight w

ij

is then

calculated through

w

ij

(t) ! w

ij

(t) + o1(t)
⇥
A

�
2 + A

�
3 r2(t � ✏)

⇤
if t = t

pre,

w

ij

(t) ! w

ij

(t) + r1(t)
⇥
A

+
2 + A

+
3 o2(t � ✏)

⇤
if t = t

post,
(2.13)

where A

�
2 and A

+
2 denote the amplitude of synaptic weight change for post-pre and

pre-post events, respectively. A

�
3 and A

+
3 denote the amplitude of depression and

potentiation, respectively, for the triplet term.
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Parameters and simulations

Figures 1C - 1E

Our feedforward network consisted of 100 presynaptic neurons and one postsynaptic

neuron. All the weights were initialized to 0.2 and the network was run for 1000 s

with a time step of 1 ms. All the numerical parameters can be seen in supplementary

table 1. In figure 1C, rule 1 was modified by increasing the amplitude for depression

by 2%.

Figures 1F - 1K

The feedforward network consisted of 10 presynaptic neurons and one postsynaptic

neuron. The weights were initialized by assuming an initial receptive field tuned to

input 7. All the curves are calculated from an average over 200 trials. The shading

areas represent one standard deviation from the mean. For figures 1F and 1G, the

network runs for 20 s. For figures 1I and 1J, the network runs for 80 s. All other

numerical parameters can be found in supplementary table 1.

Figures 2A, 2B, 2D and 2E

The feedforward network consisted of one presynaptic neuron and one postsynaptic

neuron. All the parameters used in these simulations can be found in supplementary

table 2. Note that some of the values for the neuron model are di�erent from the values

used for figure 1. In particular, the membrane time constant and the increment in

synaptic conductance for each presynaptic spike are lower. The faster membrane time

constant leads to a faster relaxation and increased e�ect of presynaptic spikes whereas

the lower increment in synaptic conductance decreases the e�ect of presynaptic spikes.

Taken together, both modifications lead to a faster membrane voltage dynamics and a

lower e�ect of presynaptic spikes. Whilst this aids with computational simulation

time, it has no influence on the qualitative results discussed throughout this text. The
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network was simulated for 100 s. For each value of the synaptic weight, w, the total

change in synaptic weight was calculated as the sum of synaptic weight changes

in each time step (1 ms). However, the changes were not applied to the weights to

ensure that the calculated synaptic change was specific to each value of w. Therefore,

the calculated value of �w is the e�ective change in synaptic weight. The curves

show an average over 200 trials.

Figure 2C

The feedforward network consisted of 10 presynaptic neurons and one postsynaptic

neuron. All the parameters used in these simulations can be found in supplementary

table 2. Weights were initialized assuming an initial receptive field tuned to inputs 5

and 6. The final receptive field was calculated for � = 1 Hz and two values of the

learning rate: ↵ = 0.02 (large) and ↵ = 0.01 (small). The initial and final receptive

fields were re-scaled by dividing all the tuning curves by their respective maximum

weights. Curves show an average over 50 trials.

Figure 2F

The feedforward network consisted of 10 presynaptic neurons and one postsynaptic

neuron. All the parameters used in these simulations can be found in supplementary

table 2. Weights were initialized assuming an initial receptive field tuned to inputs 5

and 6. The final receptive field was calculated for ↵ = 0.02 Hz and two values of

presynaptic activity: � = 10 Hz (large) and � = 1 Hz (small). The initial and final

receptive fields were re-scaled by dividing all the tuning curves by their respective

maximum weights. Curves show an average over 50 trials.

Supplementary figure 2

The feedforward network consisted of 10 presynaptic neurons and one postsynaptic

neuron. All the parameters used in these simulations can be found in supplementary

table 2. Weights were initialized assuming an initial receptive field tuned to inputs 5
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and 6. The final receptive field was calculated for the following values of learning

rate (↵) and presynaptic activity (�): ↵ �= 0.01, ↵ �= 0.02, � �= 1 Hz, � �= 10

Hz. The initial and final receptive fields were re-scaled by dividing all the tuning

curves by their respective maximum weights. Curves show an average over 50 trials.

Supplementary figure 3A

The synaptic weights were updated following a triplet rule. The feedforward network

consisted of 10 presynaptic neurons and one postsynaptic neuron. All the parameters

used in these simulations can be found in supplementary table 2. Weights were

initialized assuming an initial receptive field tuned to inputs 5 and 6. The final

receptive field was calculated for � = 1 Hz and two values of the learning rate:

↵ = 0.02 (large) and ↵ = 0.01 (small). The initial and final receptive fields were

re-scaled by dividing all the tuning curves by their respective maximum weights.

Curves show an average over 50 trials.

Supplementary figure 3B

The synaptic weights were updated following a triplet rule. The feedforward network

consisted of 10 presynaptic neurons and one postsynaptic neuron. All the parameters

used in these simulations can be found in supplementary table 2. Weights were

initialized assuming an initial receptive field tuned to inputs 5 and 6. The final

receptive field was calculated for ↵ = 0.02 Hz and two values of presynaptic activity:

� = 5 Hz (large) and � = 1 Hz (small). The initial and final receptive fields were

re-scaled by dividing all the tuning curves by their respective maximum weights.

Curves show an average over 50 trials.

2.6 Supplementary Tables and Figures
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Supplementary Figure 1. Generation of presynaptic spike trains. The procedure
used to generate the firing probability of each input neuron can be split into two steps:
(i) generation of N independent rectified time-filtered Gaussian white noise (left
box); (ii) weighted sum of the N signals generated in the first step (right box). The
set of tuning strengths for each neuron is defined such that input neuron i is tuned to
signal i.
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Supplementary Figure 2. Receptive field plasticity under neuronal activity

and/or learning rate modulation. Synaptic weights for a feedforward network
with 10 presynaptic neurons and one postsynaptic neuron. The final synaptic weights
were calculated for the following values of learning rate (↵) and presynaptic activity
(�): ↵ �= 0.01 (dashed lines), ↵ �= 0.02 (solid lines), � �= 1 Hz (red curves),
� �= 10 Hz (blue curves). The initial and final receptive fields were rescaled by
dividing all the tuning curves by their respective maximum weights. The e�ects of
both types of modulations are independent.

PhD Thesis - Victor Pedrosa

66



Supplementary Figure 3. Modulation of activity vs modulation of learning rate,

using the triplet model (Pfister and Gerstner [2006]). Synaptic weights for a
feedforward network with 10 presynaptic neurons and one postsynaptic neuron. The
final synaptic weights were simulated for the following values of learning rate (↵)
and presynaptic activity (�): A � = 1 Hz, small ↵ = 0.01 (red curve), large ↵ = 0.02

(blue curve); B ↵ = 0.01, small � = 1 Hz (red curve), large � = 5 Hz (blue curve).
In all the figures, the initial and final receptive fields were rescaled by dividing all
the tuning curves by their respective maximum weights. The results observed with
the triplet model are qualitatively identical to the results observed with the standard
pair-based STDP model.
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Supplementary Table 1. Parameter summary for simulations in figure 1.
Neuron Model

Name Value Description

⌧

m

50 ms Membrane time constant
u

th

10 mV Spiking threshold
u

rest

0 mV Resting potential
E

syn 30 mV Synaptic reversal potential
u

reset

0 mV Value at which the potential is reset after a spike

Network and Synapse Model

Name Value Description

N

E

(C-E) 100 Size of presynaptic population for figure 1C-E
N

E

(F-K) 10 Size of presynaptic population for figure 1F-K
⌧

E

15 ms Decay constant of excitatory conductance
ḡ

E

1 nS Maximum increment in synaptic conductance

Plasticity Model

Name Value Description

⌧

STDP

8 ms Decay constant of pre- and post synaptic traces
A+ �+3 ⇥ 10

�4 Amplitude of learning rate for pre-post events
A� ��3 ⇥ 10

�4 Amplitude of learning rate for post-pre events
�+ 1, 1, 1, 0 For rules 1, 2, 3 and 4, respectively
�� -1, 1, 0, -1 For rules 1, 2, 3 and 4, respectively
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Supplementary Table 2. Parameter summary for simulations in figure 2.
Neuron Model

Name Value Description

⌧

m

10 ms Membrane time constant
u

th

10 mV Spiking threshold
u

rest

0 mV Resting potential
E

syn 30 mV Synaptic reversal potential
u

reset

0 mV Value at which the potential is reset after a spike

Network and Synapse Model

Name Value Description

N

E

1 Size of presynaptic population for figure 2
N

E

10 Size of presynaptic population for figure 2
⌧

E

10 ms Decay constant of excitatory conductance
ḡ

E

0.1 nS Maximum increment in synaptic conductance
� � Presynaptic firing rate (�0 = 10 Hz)

Plasticity Model (pair-based)

Name Value Description

⌧

STDP

8 ms Decay constant of pre- and post synaptic traces
A+ +↵ Amplitude of learning rate for pre-post events (↵0 = 5 ⇥ 10

�4)
A� �↵ Amplitude of learning rate for post-pre events (↵0 = 5 ⇥ 10

�4)

Plasticity Model (triplet)

Name Value Description

⌧+/� 8 ms Decay constant of pre- and post synaptic traces (r1 and o1)
⌧

x/y

10 ms Decay constant of pre- and post synaptic traces (r2 and o2)
A

+
2 +↵ Amplitude of learning rate for pre-post events

A

�
2 �↵ Amplitude of learning rate for post-pre events

A

+
3 +↵ Amplitude of the triplet term for potentiation

A

�
3 �↵ Amplitude of the triplet term for depression
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Chapter 3

Activity-dependent downscaling of

subthreshold synaptic inputs during

slow wave sleep-like activity in vivo

Besides being regulated by neuromodulators, excitatory synaptic plasticity may also

be regulated by network state. Here, we investigate the synaptic plasticity rules

governing connections from L4 to L2/3 neurons in barrel cortex in vivo. We observed

that those synapses follow a network-state dependent plasticity rule. In anaesthetised

mice, the brain network alternates between Up and Down states, similarly to the cycles

observed in mice during sleep. During Up states, isolated presynaptic spikes lead to

synaptic depression whereas pre- followed shortly by postsynaptic spikes conserves

synaptic weights. During Down states, synaptic weights follow the conventional spike-

timing-dependent plasticity rule. Using computational modelling, we then simulate

a network following a plasticity rule inspired by our experimental observations. Our
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simulations suggest that this plasticity rule provides a potential mechanism for the

refinement of sensory representations.

The layout of the work will be presented in an article format as it has been published

on Neuron. We would like to thank Ana Gonzalez-Rueda, Rachael Feord and Ole

Paulsen for the experimental results and insightful discussions and idea, and Claudia

Clopath for supervising and guiding the project.
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Activity-dependent downscaling of 

subthreshold synaptic inputs during slow wave 

sleep-like activity in vivo 

 

SUMMARY  

Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The 

synaptic homeostasis hypothesis suggests that synaptic connections are 

strengthened during wake and downscaled during sleep; however, it is not obvious 

how the same plasticity rules could explain both outcomes. Using whole-cell 

recordings and optogenetic stimulation of presynaptic input in urethane-

anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show 

that synaptic plasticity rules are gated by cortical dynamics in vivo. Whilst Down 

states support conventional spike timing-dependent plasticity, Up states are biased 

towards depression such that presynaptic stimulation alone leads to synaptic 

depression, while connections contributing to postsynaptic spiking are protected 

against this synaptic weakening. We find that this novel activity-dependent and 

input-specific downscaling mechanism has two important computational 

advantages: 1) improved signal-to-noise ratio, and 2) preservation of stored 

information. Thus, these synaptic plasticity rules provide an attractive mechanism 

for SWS-related synaptic downscaling and circuit refinement.  
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INTRODUCTION 

During development synaptic connections are formed, pruned and refined 

following synaptic plasticity rules, the most prominent candidate of which is 

Hebbian plasticity. Hebb postulated that synapse modifications occur when 

presynaptic activity leads to, or correlates with, postsynaptic action potentials 

(spikes; Hebb, 1949). Hebbian forms of plasticity, including spike-timing-

dependent plasticity (STDP), have since been extensively studied in vitro (Bi and 

Poo, 1998; Feldman, 2000) and incorporated in many computational models of 

circuit refinement during development (Song and Abbott, 2001; Clopath et al., 

2010a,b; van Ooyen, 2011). However, to what extent these rules apply in the intact 

mammalian brain is not known. 

The synaptic homeostasis hypothesis (Tononi and Cirelli, 2003) proposes that, 

whereas sensory experience at wake leads to strengthening of the associated 

neocortical synapses, slow-wave sleep (SWS) leads to a net depression of synaptic 

weights (Vyazovskiy et al., 2008; Liu et al., 2010). While Hebbian plasticity, such 

as STDP, could explain the sensory-dependent strengthening of synapses and 

underlie the emergence of neuronal assemblies during wake, it is not obvious how 

the same synaptic plasticity rules could also explain synaptic weakening during 

sleep. Indeed, it is not known whether the SWS-related downscaling of synaptic 

weights is due to synapse-specific mechanisms or more global, neuron-wide 

downscaling of synaptic weights (Turrigiano et al., 1998). 

During SWS cortical networks fluctuate at low frequency (<1 Hz) between periods 

of high activity, known as Up states, and more quiescent periods, known as Down 

states (Steriade et al., 1993). Up and Down states (UDS) are observed in single cells 

as subthreshold oscillations of up to 20 mV leading to occasional firing exclusively 

during Up states. In contrast, during awake attention and rapid eye movement 
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(REM) sleep the cortex is characterized by asynchronous and irregular activity. 

Thus, it is possible that one role of UDS during SWS is to modulate synaptic 

plasticity rules in order to promote the appropriate downscaling of synapses during 

sleep. 

Here we compared synaptic plasticity rules during Up and Down states in the 

developing barrel cortex of urethane-anesthetized mice showing SWS-like 

dynamics (Contreras and Steriade, 1997). We studied layer (L)4-L2/3 connections 

at postnatal day (P)16-P21 corresponding to the end of the critical period of 

development of this synapse, when maximal circuit refinement and sparsification 

of inputs are seen (Stern et al., 2001; Itami and Kimura, 2012; van der Bourg et al., 

2017). We discovered that plasticity rules are modulated by Up states: spike-timing-

dependent potentiation (t-LTP) is absent and active synapses failing to contribute 

to postsynaptic spiking are selectively depressed. We show in a computational 

model that this synaptic downscaling mechanism promotes the elimination of weak 

and preservation of strong synapses, thus enhancing signal-to-noise ratio (S/N). 

 

RESULTS 

 

Study of synaptic plasticity in vivo 

STDP-like synaptic changes in vivo have been previously described using sensory-

evoked postsynaptic responses (Meliza and Dan, 2006; Jacob et al., 2007; Gambino 

and Holtmaat, 2012; Pawlak et al., 2013). While such studies are important to 

understand sensory coding, the specific inputs involved in each trial are unknown. 

To study synapse-specific plasticity in vivo, we used an LED for optogenetic 

activation of presynaptic afferents during whole-cell recording of L2/3 regular 
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spiking neurons (Figure 1A and S1) in the barrel cortex of Six3-cre/Ai32 urethane-

anesthetized mice expressing channelrhodopsin-2 (ChR2) selectively in L4 neurons 

(Figure 1B). The resting membrane potential of every L2/3 neuron recorded 

presented low frequency (0.7 ± 0.06 Hz, n = 92) fluctuations between Up and Down 

states (-55 mV vs. -69 mV, Figure 1C). Occasional REM-like activity was 

observed, characterized as long-lasting activated states (>5 seconds) (Figure S2). 

Firing of L2/3 neurons was sparse (0.25 Hz vs 1.06 Hz in L4, Figure S2) and 

restricted to activated states, with only few highly active neurons (7 out of 92; 

Figure 1C; de Kock and Sakmann, 2009). Excitatory postsynaptic potentials 

(EPSPs) were recorded in postsynaptic L2/3 neurons following light-stimulation of 

L4 fibers. To monitor EPSPs, we stimulated L4 at 0.1 Hz only during Down states 

using a closed-loop circuit to prevent stimulation during activated states (Figure 

1C, 1D and 1E). To assess synaptic plasticity, a pairing protocol (100 repetitions 

at <0.2 Hz) was applied following a 10-minute stable baseline. At the end of the 

plasticity protocol, the Down state stimulation was resumed for a further 20 to 30 

minutes (Figure 1F). Continued low-frequency light-stimulation of L4 input during 

Down states over 50 minutes did not produce any significant change in synaptic 

weight (98 ± 6%, n = 13, one sample Student’s t-test p = 0.77, Figure 2A-D), 

allowing us to use this method to study synaptic plasticity in vivo. 
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Figure 1: Monitoring L4 to L2/3 synaptic strength in vivo. (A) Schematic of the 
technical approach. L2/3 neurons of urethane-anesthetized Six3-cre/Ai32 mice were 
recorded in whole-cell mode and ChR2-expressing L4 afferent fibers were activated using 
a fiber-coupled LED. (B) Pattern of expression of ChR2 in the barrel cortex (scale bars: 
left, 500 µm, right, 200 µm). (C) (i) Example trace of highly active L2/3 neuron (top) and 
sparsely spiking L2/3 neuron (bottom). (ii) Bimodal distribution of membrane potential 
(MP). (iii) Thresholds for stimulation during Up states and Down states were 0.5 mV 
negative to the mean Up state MP (red dotted line) and 0.5 mV positive to the mean Down 
state MP (blue dotted line), respectively. (iv) Mean MP at Up states and Down states for 
all cells recorded (n = 92 neurons in N = 81 mice). Box-and-whisker plots represent 
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maximum, upper quartile, mean (cross), median, lower quartile and minimum values. (D) 
Example trace of light-evoked EPSP during Down state. A closed-loop was used to elicit 
EPSPs only at MP negative to Down-state-threshold. Spikes are truncated for clarity. See 
also Figures S1 and S2. (E) Ten overlaid traces of light-evoked EPSPs during Down states 
(gray) and their mean (black). (F) Diagram of the experimental design. EPSPs were 
monitored for 10 minutes using a 2-ms light-pulse only during Down states (<0.1 Hz). 
Subsequently, one of eight protocols was applied (100 repetitions at <0.2 Hz): light-
stimulation at Down states only (control); light-stimulation at Down states followed (1) or 
preceded (2) by postsynaptic spike; light-pulse during Up states only (3); light-pulse during 
Down states paired with postsynaptic depolarization (4); light-pulse during Up states paired 
with postsynaptic hyperpolarization (5); and presynaptic light-stimulation during Up states 
followed (6) or preceded (7) by a postsynaptic spike. Following the plasticity protocol, 
EPSP was monitored by light-stimulation during Down states (<0.1 Hz) for 20 to 30 
minutes. 

 

Conventional STDP during Down states 

We first asked whether STDP can be induced during Down states in vivo by 

protocols similar to those described ex vivo in the absence of network activity 

(Feldman, 2000; Rodríguez-Moreno and Paulsen, 2008). When L4 light-

stimulation was followed within 10 ms by a single postsynaptic spike during Down 

states, t-LTP was induced (129 ± 15%, n = 8, vs. 98 ± 6% interleaved controls, n = 

13; two sample Student’s t-test p = 0.038; Figure 2A-D). Conversely, when light-

stimulation was preceded within 10 ms by a single postsynaptic spike, significant 

timing-dependent long-term depression (t-LTD) was induced (48 ± 11%, n = 5 vs. 

98 ± 6%, n = 13; two-sample Student’s t-test p = 0.0012; Figure 2A-D). Thus, spike 

pairing during Down states induces conventional STDP in vivo, validating previous 

ex vivo results. However, neurons rarely spike during Down states (Figure 1C) 

implying that pairings of single pre- and postsynaptic spikes would not naturally 

occur during these periods. Thus, we next asked whether the same plasticity rules 

apply during Up states. 
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Figure 2: Synapse-
specific STDP induced 
using light-
stimulation during 
Down states in vivo. 
(A) Diagram of the 
protocols applied: top, 
control; middle, 
protocol 1 (pre-post); 
bottom, protocol 2 
(post-pre). (B) 
Examples of each of the 
three experiments in A. 
Symbols show one-
minute means of the 
EPSP slopes 
normalized to the 10-
minute base-line. (C) 
Representative mean 
traces from the 10th (1, 3 
and 5) and 50th minute 
(2, 4 and 6) of 
recording. (D) Evoked 
EPSPs were stable over 

50 minutes (<0.1 Hz, control; n = 13 cells in N = 10 mice, mean ± SEM). A pre-post pairing 
protocol applied during Down states led to t-LTP (n = 8 neurons in N = 8 mice, mean ± 
SEM), while a post-pre pairing protocol led to t-LTD (n = 5 neurons in N = 5 mice, mean 
± SEM). (E) Summary of the results in D. Number of recordings indicated in parentheses. 
Mean EPSP slope from last five minutes of recording was normalized to mean EPSP slope 
of the last five minutes of the baseline. The box and whisker plots represent maximum, 
upper quartile, mean (cross), median, lower quartile and minimum values. One way 
ANOVA and Dunnett’s post-hoc test, * p < 0.05, ** p < 0.01. 
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Synaptic depression during Up states 

In order to investigate how Up states influence synaptic plasticity, we first modified 

the closed-loop procedure to stimulate L4 afferents only during Up states in the 

plasticity protocol (100 repetitions at <0.2 Hz, protocol 3 in Figure 1F; fewer than 

10% of stimulations occurred during activated states lasting >5 seconds, which 

might correspond to REM-like episodes, Figure S2). Surprisingly, we observed 

significant synaptic depression (63 ± 6%, n = 10, one sample Student’s t-test p  = 

0.0002; Figure 3A), which was confirmed in Scnn1a-cre/Ai32 mice expressing 

ChR2 only in excitatory L4 neurons (51 ± 8 %, n = 6, one sample Student’s t-test p 

= 0.001; Figure S3). 

Both experiments and computational models suggest that the membrane potential 

of the postsynaptic neuron can modify STDP induction (Sjöström et al., 2004; 

Clopath et al., 2010a,b). To test whether pairing of presynaptic spiking and 

subthreshold depolarization of L2/3 neurons was sufficient to induce synaptic 

plasticity, we paired presynaptic stimulation during Down state with a 500 ms 

positive current step, starting 250 ms before L4 stimulation (protocol 4 in Figure 

1F), yielding a somatic depolarization equivalent to the mean potential during Up 

states for that neuron. This protocol did not induce plasticity (103 ± 13%, n = 6, 

one sample Student’s t-test p  = 0.83; Figure 3B). Conversely, pairing L4 

stimulation during Up states with hyperpolarization to Down state level (protocol 5 

in Figure 1F) did not prevent the induction of LTD (48 ± 8%, n = 6, one sample 

Student’s t-test p  = 0. 0011; Figure 3B), suggesting that postsynaptic membrane 

voltage does not control Up state-associated synaptic depression. 
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Figure 3: Up 
states modulate 
the indu-ction of 

synaptic 
plasticity. (A) Pre-

synaptic 
stimulation during 
Up states led to 
significant LTD (n 
= 10 cells in N = 10 
mice, mean ± 
SEM). Schematic 
of the stimulation 
protocol (protocol 
3, top left), 
representative tra-
ces of the plasticity 
protocol (black 
trace, top middle) 
and mean traces 
from the 10th (1) 
and 50th minute (2) 
of exam-ple 
experiment are 
shown (see also Fi-
gure S3). (B) 
Pairing of 
presynaptic stimu-
lation during 
Down state and 

postsy-naptic 
depolarization to 
Up state level (-53 
mV in the 

example, protocol 4, top left and middle) failed to induce LTD (n = 6 neurons in N = 5 
mice); while LTD was still induced when presynaptic stimulation during Up states was 
paired with postsynaptic hyperpolarization to Down state level (-70 mV in the example, 
protocol 5, n = 6 cells in N = 6 mice). Mean traces before (3 and 5) and after (4 and 6) 
plasticity protocol are shown. (C) Up state-mediated LTD was prevented by AP5 (n = 7 
cells in N = 7 mice) and MK801 (n = 7 neurons in N = 6 mice). Postsynaptic loading of 
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MK801 failed to prevent LTD (n = 6 cells in N = 6 mice). Schematic of the stimulation 
protocol (protocol 3, top left), representative traces of the plasticity protocol (black trace, 
top middle) and the average traces from the 10th (7) and 50th minute (8) of one of the 
experiments after MK801 application and with MK801 in the recording pipette (9 and 10 
respectively) are shown. (D) Summary of the results in A, B and C. Number of cells are 
indicated in parentheses. Mean EPSP slope from the last five minutes of recording was 
normalized to mean EPSP slope of the last five minutes of the baseline. Box-and-whisker 
plots represent maximum, upper quartile, mean (cross), median, lower quartile and 
minimum values. One way ANOVA and Dunnett’s post-hoc test * p < 0.05, ** p < 0.01. 
(E) LTD was prevented by postsynaptic spikes when preceding presynaptic stimulation 
within 10 ms (Up state pre-post pairing, ∆t = +10, gray squares, n = 7 neurons in N = 7 
mice), while LTD was still present if the pre-post time-window was widened to 50 ms (Up 
state pre-post pairing, ∆t = +50, gray triangles, n = 5 cells in N = 5 mice) or reversed (Up 
state post-pre pairing, ∆t = -10, black triangles, n = 7 neurons in N = 7 mice). (F) Summary 
of results in E represented as in D. 

  

Presynaptic N-methyl-D-aspartate receptor (NMDAR) activation is required for the 

induction of t-LTD at L4-L2/3 synapses of the barrel cortex (Bender et al., 2006; 

Rodríguez-Moreno and Paulsen, 2008). To investigate whether NMDARs are 

necessary also for in vivo Up state-associated LTD, we applied the NMDAR 

antagonist 2-amino-5-phosphonopentanoate (AP5; 0.2 mM) to the surface of the 

cortex. AP5 blocked depression (92 ± 5%, n = 7, one sample Student’s t-test p = 

0.17; Figure 3C). Equivalent results were obtained with extracellular application 

of the NMDAR channel blocker MK801 (30 µM) (91 ± 4%, n = 7, one sample 

Student’s t-test p = 0.09; Figure 3C). However, MK801 loaded in the postsynaptic 

cell did not prevent Up state-mediated depression (44 ± 11%, n = 6, one sample 

Student’s t-test p = 0.0033; Figure 3C).  These results demonstrate that non-

postsynaptic ionotropic NMDARs are required for Up state-associated LTD and 

that plasticity rules distinct from conventional STDP operate during Up states. 

 

To test whether postsynaptic spikes following presynaptic activity during Up states 
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(protocol 6 in Figure 1F) induces potentiation, as seen during Down states, we 

elicited a single spike in the postsynaptic L2/3 neuron 10 ms after presynaptic L4 

light-stimulation during Up states. While no significant potentiation was observed, 

synapses were protected from depression (100 ± 9%, n = 7, one sample Student’s 

t-test p = 0. 87; Figure 3E). This protection was not effective when a postsynaptic 

spike was evoked 50 ms following presynaptic stimulation (53 ± 8%, n = 5, one 

sample Student’s t-test p = 0.0038; Figure 3E) or 10 ms prior to L4 stimulation 

during Up states (66 ± 7%, n = 7, one sample Student’s t-test p = 0.0041; Figure 

3E), indicating a relatively narrow time-window for protection against depression 

(Figure 3F).  

 

Up state-mediated depression could explain input-specific downscaling during 

SWS 

The Up state-specific synaptic plasticity rule uncovered here would be consistent 

with the synaptic homeostasis hypothesis, which implies that synapses are 

selectively downscaled during SWS. However, in contrast to a global rescaling 

mechanism (Turrigiano et al., 1998), the rule uncovered here requires presynaptic 

activity during Up states. To test the implications of this plasticity rule, we 

developed a network model of 100 independently driven leaky integrate-and-fire 

presynaptic L4 neurons, projecting onto a single postsynaptic L2/3 neuron (Figure 

4A). Synaptic weights were initially set at comparable values (0.2 ± 0.02, Figure 

4B and C). To model synaptic weight changes during wake and successive sleep, 

the simulation was divided into two phases: ‘wake’ and ‘sleep’. To create a wake 

representation in L4-L2/3 connections (‘sensory experience’), during the first half 

of the simulation, 5 of the L4 neurons received a 50% stronger external drive, and 

synaptic weights were updated according a conventional STDP rule (Figure 4B). 
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This resulted in an overall potentiation of synaptic weights with stronger 

potentiation of connections from L4 neurons that received stronger input, due to the 

boosted coincidence of pre-postsynaptic pairings (Figure 4C), and to an increase 

in S/N (from 1.1 to 2.5, Figure 4D). To mimic synaptic weight changes during 

SWS in the subsequent sleep simulation all L4 neurons received a comparable input 

drive and synaptic weights were updated with the Up state-specific synaptic 

plasticity rule uncovered here, such that L4 spikes alone led to depression unless 

followed within 10 ms by a L2/3 spike (Figure 4B). This SWS-like period resulted 

in the preservation of the highest synaptic weights, corresponding to the 

representation created during ‘wake’, the depression of all other synaptic weights 

(Figure 4C), and a further increase in S/N (to 11.2, Figure 4D). The depression or 

maintenance of synaptic weights was independent of the synaptic plasticity rules 

during ‘wake’ and only depended on the synaptic weights before ‘sleep’ and the 

consequential probability of L4-L2/3 coincidence, which correlated to their firing 

rates (Figure S4). 

To test the impact of the initial synaptic weight on the amount of synaptic 

weakening endured during SWS in our model, the initial synaptic weights were first 

set between 0.1 and 1 and the ‘sleep’ simulation was run. Weak synapses were 

strongly depressed while stronger synapses remained unchanged (Figure 4E), 

consistent with theoretical predictions (Hashmi et al., 2013; Nere et al., 2013) and 

ultrastructural data (de Vivo et al., 2017). 

Intuitively, the requirement of input activity for synaptic depression, combined with 

the protection against depression by postsynaptic spikes, would preserve previously 

stored synaptic representations despite presentation of new input patterns. Thus, we 

tested whether the new learning rule would retain previously stored input patterns 

while increasing the S/N for a new set of inputs by repeating the ‘wake’ and ‘sleep’ 
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phases over five days. A first set of inputs was strengthened at day 0 (pattern 1, 

Figure 4F). During the following ‘sleep’ phase all weights were updated either 

according the Up state-specific plasticity rule or an homogeneous global 

downscaling rule. As expected, the S/N increased and the amplitude of the pattern 

was conserved only following Up state-specific plasticity (Figure 4F). At day 1, a 

different set of inputs was strengthened (pattern 2). We observed that both patterns 

were preserved with increased S/N even after several subsequent wake/sleep cycles. 

In contrast, both S/N and pattern amplitude gradually decayed when a global 

scaling rule was used (Figure 4F). Thus, compared to global downscaling, this new 

plasticity rule promotes an increase in S/N and the retention of previously stored 

input patterns. 

 

Figure 4: Up state-
mediated 

depression leads to 
circuit refinement 
in model network 
following simulated 
wake and sleep. (A) 
Model of a 
feedforward network 
with 100 presynaptic 
neurons L4 neurons 
projecting onto one 
single postsynaptic 
L2/3 neuron. (B) 
Simulation protocol. 
Synaptic weights 
from all connections 

were initiated with compara-ble amplitude (black star). For the first half of the simulation 
(‘wake’, sun symbol, 800 seconds), synaptic weights were updated according a 
conventional STDP rule. All presynaptic neurons received an external input to promote 
spiking and five of them received a 50% stronger input. During the second half (‘sleep’, 
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moon symbol, 800 seconds), synaptic weights were updated with the Up state-mediated 
synaptic plasticity rule.  (C) Synaptic weights for three stages of the simulation. Top, black: 
start (black star in B). Middle, orange: after ‘wake’ (orange star in B). Bottom, purple: end 
(purple star in B). (D) Signal to noise ratio (S/N) for the three stages in C. (E) Relative 
weight change, ∆w/w0, plotted as a function of the initial synaptic weight, w0, after Up state-
mediated (sleep) plasticity. 200 simulations were averaged and the shaded area represents 
the SD. (F) Simulated Up state-mediated plasticity preserves and enhances previously 
stored patterns. At day 0, five presynaptic neurons received 50% stronger input (pattern 1). 
At day 1, neurons from pattern 1 did not receive any extra external input, but another set 
of five neurons did (pattern 2). All presynaptic neurons received comparable external input 
and fired at the same rate from day 2. Left: evolution of S/N for both patterns (1, black; 2, 
red). Right: evolution of both pattern amplitudes.  During ‘wake’ (yellow), synaptic 
weights were updated according STDP. During ‘sleep’ (purple), synaptic weights were 
updated according either Up state-modulated plasticity (solid lines) or homogeneous 
synaptic scaling rule (dotted lines). Curves show a mean over 50 trials. See also Figure S4. 

 

DISCUSSION 

 

Our study shows that cortical network activity influences synaptic plasticity rules. 

Specifically, conventional STDP applies during slow wave sleep-like activity in 

vivo only during Down states. Synaptic stimulation during Up states invariably led 

to NMDAR-dependent synaptic depression unless the postsynaptic neuron spiked 

within a narrow time-window following presynaptic stimulation, which protected 

against synaptic weakening. Incorporated into a computational network model, two 

important advantages of this new plasticity rule compared to conventional global 

rescaling were demonstrated: 1) improved S/N, 2) preservation of previously stored 

input patterns. 

 

The induction of STDP during Down states is consistent with a huge body of 

experimental work in brain slices (e.g. Feldman, 2000; Rodríguez-Moreno and 
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Paulsen, 2008). However, the physiological relevance of such STDP could be 

questioned, since cortical networks are relatively quiescent during Down states. 

Fewer and divergent studies have investigated synaptic plasticity following the 

pairing of presynaptic inputs and spontaneous or electrically evoked persistent 

activity in acute brain slices (Kruskal et al., 2013; Bartram et al., 2017), highlighting 

the importance of studying synaptic plasticity during activated states in vivo. During 

in vivo Up states, when spikes are more likely to occur, presynaptic-postsynaptic 

spike correlations were not required for synaptic plasticity, as subthreshold synaptic 

input was sufficient to induce NMDAR-dependent LTD. This may be a prominent 

form of plasticity in vivo owing to the low firing rate in L2/3 (Figure S2). LTD 

independent of postsynaptic spikes has previously been reported in slice 

preparations from neocortex, when presynaptic stimulation was paired with 

subthreshold postsynaptic depolarization (Sjöström et al., 2004), and even without 

any postsynaptic activity (Rodríguez-Moreno et al., 2013). Although our evidence 

suggests that postsynaptic depolarization is not required for Up state-associated 

LTD in vivo, we cannot exclude the possibility that local dendritic depolarization 

during Up states might be involved. Alternatively, the conditions for activation of 

presynaptic NMDARs might be met during Up state activity without the need for 

postsynaptic activity (Rodríguez-Moreno et al., 2013). 

 

Our results highlight the importance of network activity in gating synaptic plasticity 

and indicate a bias towards synaptic depression during cortical slow oscillations. 

The plasticity rule uncovered here provides a mechanism by which connections that 

are strengthened during wake would be protected from depression, rather than 

further strengthened. This could be especially important during development as 

studied here, when neuronal connections are expected to depress (Feldman et al., 
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2000; Itami and Kimura, 2012; Banerjee et al., 2014). Interestingly, however, Up-

state-associated synaptic depression was also seen in adult mice (P30-P50, 71 ± 

9%, n = 8 vs. control 99 ± 9%, n = 6; Figure S3), suggesting this form of plasticity 

could also contribute to circuit reshaping in mature cortex. 

 

Network activity under urethane anesthesia resembles that during natural sleep 

(Contreras and Steriade, 1997; Clement et al., 2008). To what extent changes in 

neuromodulators are preserved during urethane anesthesia is not well studied; 

however, it has been reported that cholinergic modulation is comparable between 

urethane anesthesia sleep-like transitions and natural sleep (Steriade 1993; Manns 

et al., 2000). Nevertheless, we cannot exclude the possibility that neuromodulatory 

systems are differentially regulated and it will be important to confirm our findings 

during natural sleep in future experiments. Although the vast majority of 

stimulations in the Up state plasticity protocols happened during SWS-associated 

Up states of short duration, a few stimulations occurred during REM-sleep-like 

episodes, and, although we find it unlikely, we cannot rule out that stimulations 

during REM-like episodes could have a disproportionate effect on synaptic weights. 

Still, our results offer a possible mechanism for the finding that sleep favors 

synaptic depression. 

 

The Up-state-associated plasticity studied here only takes account of pre- and 

postsynaptic spikes. Intuitively, if spiking activity was the only determinant of 

plasticity, the higher firing rate of L4 neurons compared to that of L2/3 neurons 

(Figure S2) would promote depression on its own. However, other mechanisms, 

such as subthreshold input cooperation within dendritic segments (Golding et al., 
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2002; Losonczy et al., 2008; Lee et al., 2016) could also promote the protection of 

synaptic connections even in the absence of postsynaptic spikes. Similarly, 

mechanisms other than those uncovered here could allow for the depression of 

highly efficacious synapses that would otherwise be permanently protected. 

 

In our computational model the Up state-associated synaptic plasticity rule 

effectively refined a previously acquired representation via the selective 

downscaling of synapses with lower synaptic weights which is attractive as a 

mechanism for activity-dependent synaptic downscaling during sleep. Our data 

could explain how the occurrence of UDS during SWS induces selective 

downscaling of synaptic weights in an NMDAR-dependent manner without the 

need for any additional external input. The protection against depression by 

postsynaptic spikes suggests a mechanism by which spiking Hebbian assemblies 

maintain their synaptic weights (‘neurons that fire together wire together’), whilst 

non-participating connections are depressed. This would also result in the 

sparsification of neuronal activity, which is seen during critical periods of 

development (van der Bourg et al., 2017). This mechanism also allows 

consolidation of new neuronal representations while conserving previously stored 

ones. In conclusion, we suggest that Up state-associated synaptic depression is a 

strong candidate for a mechanism to contribute to activity-dependent synaptic 

downscaling during SWS. 
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STAR METHODS 

 

Contact for reagent and resource sharing 

For further information contact Prof. Ole Paulsen (op210@cam.ac.uk) or Dr. Ana 

González-Rueda (arueda@mrc-lmb.cam.ac.uk). Any requests for resources should 

be directed to and will be fulfilled by Prof. Ole Paulsen. 

 

Experimental model and subject details 

Tg(Six3-Cre)69Frty/GcoJ (Six3-cre) mice were crossed with B6;129S-

Gt(ROSA)26Sortm32(CAG−COP4*H134R/eYFP)Hze/J mice (Ai32; Jackson 

Laboratory, Maine, USA) in order to express ChR2(H134R)-YFP in L4 neurons of 

the somatosensory cortex (Furuta et al., 2000). For a subset of experiments Ai32 

mice were crossed with B6;C3-Tg(Scnn1a-cre)3Aibs/J (Scnn1a-Cre; Jackson 

Laboratory, Maine, USA). Unless otherwise stated, only Six3-cre/Ai32 mice 

ranging from P15 to P21 were used for experiments. Animals were housed on a 12-

hour light/dark cycle and the mother was fed ad libitum. The research was 

performed under the Animals (Scientific Procedures) Act 1986 Amendment 

Regulations 2012 following ethical review by the University of Cambridge Animal 

Welfare and Ethical Review Body (AWERB). 

 

Method details 

 

Surgery. Mice were anesthetized with an intraperitoneal injection of urethane (1 g 

per kg of body weight). Upon cessation of reflexes, the top of the head of the animal 
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was shaved and the skin covering the right hemisphere was removed. A blue LED 

light was used to identify and mark over the skull the YFP-fluorescent barrel field. 

A head-restraining platform was cemented (Super-Bond C & B; Prestige Dental 

Ltd., Bradford, UK) to the skull around the mark indicating the barrel cortex 

location. The animal was placed on the recording frame over a low-noise heating 

pad (FHC inc., Termobit Prod. srl., Bucharest, Romania) to aid body temperature 

maintenance. A 200-500 μm craniotomy was performed at the marked spot and the 

dura mater was carefully removed from a small area of the craniotomy (20-100 

μm).  Care was taken to avoid bleeding or drying of the meninges and brain tissue. 

Saline (0.9 % NaCl) was superfused constantly with a 2 mL/minute laminar flow 

using a peristaltic pump. 

 

Electrophysiology. Whole-cell current-clamp recordings were obtained from L2/3 

neurons of the primary somatosensory cortex of urethane-anesthetized mice using 

6-9 MΩ pipettes pulled from borosilicate glass capillaries (1B120F-4, World 

Precision Instruments, Stevenage, UK). Pipettes were filled with artificial 

intracellular solution containing (in mM): K-gluconate 150, HEPES 10, NaCl 4, 

ATP-Mg 4, GTP-Na 0.3 and EGTA 0.2; adjusted to pH 7.2 and osmolarity 270-290 

mOsm/L. Data were recorded using an Axon Multiclamp 700B amplifier 

(Molecular Devices, Union City, CA, USA). Signals were low-pass filtered at 2 kH 

and acquired at 5 kHz using a data interface ITC-18 AD board (Instrutech, Port 

Washington, NY, USA) on a PC running Igor Pro (Wavemetrics, Lake Oswego, 

OR, USA). A reference silver pellet electrode (A-M Systems, Carlsborg, WA, 

USA) was placed in the saline bath covering the craniotomy. The recording pipette 

was controlled using a micromanipulator at a 50° inclination. High positive pressure 

(>500 mbar) was applied and the pipette was lowered to the surface of the brain. A 
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5-ms-long square pulse of voltage of 4 to 8 mV at 100 Hz was delivered via the 

recording electrode. The pipette was quickly advanced 100 μm to L2 of the barrel 

cortex. The pressure was lowered to 60 mbar and the pipette was advanced in 2 μm 

steps. Cell contact produced a small reduction (around 10%) in resistance of the 

pipette, which could be seen as a proportional decrease in the size of the step of 

current in the oscilloscope. Cell contact also produced a pulsation artefact or 

flickering in the positive values of the current recorded. If no cell contact was 

detected after 250 steps of 2 μm, the pipette was retracted and a new pipette was 

used to record a new cell. Recordings were discarded if the access resistance was 

>25 MΩ or changed >10% along the recording. For a subset of experiments, single 

unit recordings of L2/3 and L4 neurons were done using 3-4 MΩ tungsten 

electrodes (Microelectrodes Ltd., Cambridge, UK) paired with 1 MΩ tungsten 

electrodes for L2/3 LFP recording. 

 

Thalamocortical slices. Thalamocortical slices of 350 µm thickness containing the 

barrel subfield of somatosensory cortex were prepared as previously described 

(Rodríguez-Moreno et al., 2013; Banerjee et al., 2014) Briefly, mice were 

decapitated under isoflurane anesthesia and the brain was rapidly removed and 

placed in ice-cold artificial cerebrospinal fluid (aCSF) with the following 

composition (in mM): NaCl 126, KCl 3, NaH2PO4 1.25, MgSO4 2, CaCl2 2, 

NaHCO3 26, glucose 10, pH 7.2-7.4; bubbled with carbogen gas (95% O2 / 5% 

CO2) and with an osmolarity adjusted to 280-300 mOsm/L. The brain was placed 

on a 10° ramp rostral side down and a vertical cut was made through the tissue at 

an angle of 55° to the anteroposterior axis of the brain. Slices from the right 

somatosensory cortex were cut using a vibratome (VT 1200S, Leica, Wetzlar, 

CHAPTER 3. ACTIVITY-DEPENDENT DOWNSCALING OF SUBTHRESHOLD
SYNAPTIC INPUTS DURING SLOW WAVE SLEEP-LIKE ACTIVITY IN VIVO

97



Germany) and maintained in a submerged-style chamber at room temperature until 

used. The flow rate of aCSF in the recording chamber was 2 ml/min. 

 

Optogenetics and plasticity experiments. L4 neurons were excited using a 470 

nm fibre-coupled LED system (150 µm, Thorlabs LTD, Ely, UK). The LED fibre 

was positioned centrally above the recorded cell on top of the dura mater. Light 

intensity was adjusted to produce 3-6 mV EPSPs at Down states. The average 

membrane potential during Down states and Up states was measured over 10 

seconds prior to the start of the plasticity protocol. The average membrane potential 

at Down states plus 0.5 mV was used as the Down state threshold, whereas the 

average membrane potential at Up states minus 0.5 mV was used as threshold for 

Up states. In order to trigger a light-pulse only at Down states and at <0.1 Hz, the 

membrane potential was scanned in 10-ms time bins using a closed-loop. When the 

membrane potential crossed the threshold for Down states a 10 seconds recording 

was triggered and a 2-ms light-pulse was delivered 10 ms into the recording. At the 

end of the 10-second-recording the closed-loop scanning was resumed in order to 

detect the next Down state. Each light stimulus was time stamped in order to obtain 

minute-averages of the EPSP slope. Following a 10-minute baseline recording, a 

plasticity protocol was applied at <0.2 Hz for 100 repeats. Following the plasticity 

protocol, the stimulus during Down states were resumed in order to assess changes 

in the EPSP slope. 

For the experiments performed in acute brain slices, a monopolar stainless steel 

stimulation electrode was used to elicit EPSPs in L2/3 as control. Electrical 

stimulation was delivered with 2 seconds delay from the light-pulse. 
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Pharmacology. In a subset of experiments, NMDA receptors were blocked by 

epidural administration of 0.2 mM AP5 or 30 µM MK801 (Tocris Bioscience, 

Bristol, UK) via the superfusate, as previously described (Rema et al., 1998). In 

order to determine the reversal potential of the inhibitory component of ChR2 

stimulation, 0.2 mM AP5 and 20 µM DNQX (Tocris Bioscience, Bristol, UK) were 

added to the superfusate. 

 

Immunohistochemistry. Images from the barrel cortex of Six3-Cre/Ai32 mice and 

Scnn1a-Cre/Ai32 were taken to assess the level and location of ChR2 expression. 

Moreover, post-hoc reconstruction of a subset of the neurons recorded in vivo was 

possible after biocytin (Sigma-Aldrich, Dorset, UK) staining. Biocytin was diluted 

at 5 mg/ml in the internal solution used for whole-cell recordings. At the end of the 

recordings, the brain was cut in 200 μm thalamocortical slices as previously 

described. Slices containing the barrel cortex were washed once in PBS and were 

left overnight in fixing solution containing 4% (w/v) PFA in PBS at 4 °C. Slices 

were incubated in Alexa 633 Fluor-conjugated streptavidin (1:1000; Molecular 

Probes, Eugene, OR) in PBS and 0.3% Triton X-100 (Sigma-Aldrich, Dorset, UK) 

overnight at 4 °C. Before mounting, slices were incubated for 2 minutes in DAPI 

in PBS. Images were taken with a confocal microscope (SP8, Leica, Wetzlar, 

Germany) and a 25X and a 40X objective and color intensity was adjusted using 

Image J. 

 

Analysis of synaptic plasticity. To assess plasticity, EPSP slopes were used as a 

measure of synaptic strength. Slope measurements were made on the rising phase 

of the EPSP as a linear fit between time points corresponding to 25-30% and 70-
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75% of peak amplitude of the EPSP, or of the first slope in the case of polysynaptic 

EPSPs. EPSP slopes were averaged over 1-minute time bins. The change in EPSP 

slope after the plasticity protocol was expressed relative to EPSP slopes during the 

baseline recording. EPSP slopes were averaged over the last 5 minutes of the initial 

baseline and the last 5 minutes of recording, generally corresponding to minutes 

25-30 after the plasticity induction protocol. For off-line UDS analysis, the 

membrane potential noise level was used as previously described (Craig et al., 

2013). 

 

Computational model. We simulated a feedforward network composed of 100 

presynaptic neurons projecting onto one postsynaptic neuron. We used the leaky 

integrate-and-fire neuron model. In this model, the membrane potential of a neuron 

is described by 

τm
du
dt

= −(u − urest) + RI(t) , 

where urest  denotes the membrane voltage at rest, R  denotes the membrane 

resistance, I(t) denotes the external current and τm  denotes the membrane time 

constant. If the membrane potential reaches a threshold uth  at time t(f) , the 

membrane potential is reset to ureset and we call t(f) the firing time. After being 

reset, the membrane potential follows the same equation again. 

The term I(t) takes into account all of the current being injected into a neuron; these 

can be from an external source or from other neurons. When a neuron fires it 

propagates a current to all other connected neurons. In order to model this current, 

we assumed that the conductance between a presynaptic neuron j and a postsynaptic 
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neuron i increases instantaneously every time the presynaptic neuron fires, and 

decays exponentially otherwise: 

gj → gj + 1    if j fires and
dgj

dt
= −gj/τsyn    otherwise,

 

where τsyn is the synaptic time constant. The synaptic current was then calculated 

through 

Isyn(t) = −wijgj(u − Esyn) , 

where wij is the synaptic weight from neuron j to neuron i and Esyn is the synaptic 

reversal potential. 

Each presynaptic neuron received an independent external current whose amplitude 

varied in time and was determined by a filtered gaussian noise, with filtering time 

constant 20 ms. The postsynaptic neuron also received a constant external current. 

For the wake phases of the simulations, the synaptic weights were updated by the 

conventional STDP rule, in which pre-post events lead to potentiation and post-pre 

events lead to depression. In order to implement this rule, we defined a presynaptic 

trace xj  (for each presynaptic neuron j ) and a postsynaptic trace y  that was 

incremented by 1 for each pre or postsynaptic spike, respectively, and decayed 

otherwise: 

xj → xj + 1    if presynaptic neuron j fires and

τ+
dxj

dt
= −xj    otherwise,

 

and 
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y → y + 1    if the postsynaptic neuron fires and

τ−
dy
dt

= −yi    otherwise,
 

where τ− is the depression time constant and τ+ the potentiation time constant. 

The synaptic weight wj was then updated by the following: 

wj(t) → wj(t) − A−y(t)    if t = tpre,
wj(t) → wj(t) + A+xj(t)    if t = tpost.

 

where A−  is the depression amplitude and A+  is the potentiation amplitude. 

Synaptic weights were also bounded between 0 and 1: 0 < w < 1. 

During the sleep phases of our simulations, the synaptic weights were updated 

following either an Up state-mediated plasticity or an homogeneous synaptic 

scaling. For the Up state-mediated plasticity, synaptic weights were updated such 

that presynaptic spikes alone led to depression whereas presynaptic spikes followed 

within 10 ms by a postsynaptic action potential led to no change. In order to 

implement this rule, we defined a presynaptic trace xj  (for each presynaptic 

neuron j) that was reset to 10 for every presynaptic spike and decayed linearly 

otherwise obeying 

xj → 10    if presynaptic neuron j fires and

τ
dxj

dt
= −1    otherwise,

 

where τ = 1 ms. The synaptic weight wj was then updated by the following: 

wj(t) → wj(t) − A    if t = tpre,
wj(t) → wj(t) + AH(xj(t))    if t = tpost.

 

where 𝐴  is the depression amplitude and 𝐻(𝑥)  is the Heaviside step function 

defined by 𝐻(𝑥) = 1 if 𝑥 > 0 and 𝐻(𝑥) = 0 if 𝑥 < 0. Therefore, a presynaptic 
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spike leads to depression with amplitude 𝐴 and a postsynaptic spike within 10 ms 

of the presynaptic spike protects against this depression (increases the synaptic 

weight be the same amount 𝐴). Synaptic weights were also bounded between 0 and 

1: 0 < 𝑤 < 1. 

The homogeneous synaptic scaling was implemented by downscaling all synaptic 

weights by the same amount. The weights were downscaled such that they would 

be reduced by 33% at the end of each sleep phase. 

Signal-noise analysis. The S/N was measured as the mean amplitude of the 

synaptic weights from the neurons relative to a specific pattern divided by the 

average of all synaptic weights. 

Quantification and statistical analysis 

A two-tailed one sample Student’s t-test was used to assess long-term plasticity. In 

order to compare the magnitude of plasticity to a control condition a two-tailed two 

sample Student’s t-test was used. For multiple comparisons to a single group, a one 

way ANOVA followed by a Dunnett’s test was performed. 

  

CHAPTER 3. ACTIVITY-DEPENDENT DOWNSCALING OF SUBTHRESHOLD
SYNAPTIC INPUTS DURING SLOW WAVE SLEEP-LIKE ACTIVITY IN VIVO

103



Table 1. Parameter summary for simulations in figure 4. 
Neuron Model 

Name Value Description 

𝜏𝑚 10 ms Membrane time constant 

𝑢𝑡ℎ 10 mV Spiking threshold 

𝑢𝑟𝑒𝑠𝑡  0 mV Resting potential 

𝐸𝑠𝑦𝑛  30 mV Synaptic reversal potential 

𝑢𝑟𝑒𝑠𝑒𝑡 0 mV Value at which the potential is reset after a spike 

𝑇𝑟𝑒𝑓  3 ms Refractory time 

Network and Synapse Model 

Name Value Description 

𝑁𝐸  100 Size of presynaptic population 

𝜏𝐸  10 ms Decay constant of excitatory conductance 

𝑔𝐸 1 nS Peak synaptic conductance 

Plasticity Model 

Name Value Description 

𝜏𝑆𝑇𝐷𝑃 20 ms Decay constant of pre- and postsynaptic traces 

𝐴+ (C-D) 1
× 10−3 

Amplitude of learning rate for pre-post events (conventional 
STDP) - fig 4C-D. 

𝐴− (C-D) 1
× 10−3 

Amplitude of learning rate for post-pre events (conventional 
STDP) - fig 4C-D. 

𝐴 (C-D and 
F) 

1
× 10−3 

Amplitude of learning rate for presynaptic events (sleep 
plasticity) - fig 4C-D and F. 

𝐴 (e) 2
× 10−4 

Amplitude of learning rate for presynaptic events (sleep 
plasticity) - fig 4E. 

𝐴+ (F) 2
× 10−5 

Amplitude of learning rate for pre-post events (conventional 
STDP) - fig 4F. 

𝐴− (F) 2
× 10−5 

Amplitude of learning rate for post-pre events (conventional 
STDP) - fig 4F. 

𝐴 (S4 C-D) 5
× 10−3 

Amplitude of learning rate for presynaptic events (sleep 
plasticity) - fig S4C-D. 
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Key resources table 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides, and Recombinant Proteins 

AP5 Tocris Bioscience Cat.#  0106 

MK801 Tocris Bioscience Cat.#  0924 

DNQX Tocris Bioscience Cat.#  0189 

Biocytin Sigma-Aldrich Cat.#  B4261 

Streptavidin, Alexa 633 Fluor-conjugated Thermo Fisher 

Scientific, Molecular 

Probes 

Cat.#  S21375 

Experimental Models: Organisms/Strains 

Mouse: B6;129S-

Gt(ROSA)26Sortm32(CAG−COP4*H134R/eYFP)H

ze/J mice (Ai32) 

The Jackson Laboratory JAX: 012569 

Mouse: Tg(Six3-Cre)69Frty/GcoJ (Six3-cre) Furuta et al., 2000 N/A 

Mouse: B6;C3-Tg(Scnn1a-cre)3Aibs/J The Jackson Laboratory JAX: 009613 

Software and Algorithms 

Igor Pro Wavemetrics https://www.wavemetr

ics.com/products/igorp

ro/igorpro.htm 

Python  The code for all the 

simulations will be 

submitted to ModelDB 

after publication 
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Figure S1 (related to Figure 1): Whole-cell patch clamp of L2/3 neurons in 

Six3-cre/Ai32 mice. 

(A) Example L2/3 neuron recorded in vivo and filled with biocytin. 

(B) Example response of the membrane potential of a regular spiking neuron 

recorded in vivo (top) to different steps of current (bottom). 
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(C) Light-evoked EPSPs recorded in L2/3 are completely eliminated when 

tetrodotoxin (TTX) is added to the superfusate. The average EPSP latency of all 

recordings is shown (n = 92, mean ± SD). 

(D) Subthreshold depolarization by direct activation of ChR2 in L4 neurons is 

unaffected by TTX. 

(E) Light-evoked EPSC current-voltage curve before (red) and after (blue) DNQX 

and AP5 application in acute brain slices. Light intensity was previously adjusted 

to produce a 4 mV EPSP at resting potential in current clamp. The reversal 

potential of the ChR2-mediated EPSC could be extrapolated at -47 mV and the 

inhibitory component at -66 mV. n = 7 cells in N = 3 mice. 

(F) Example light-evoked EPSP before (black top) and after (black bottom) 

DNQX and AP5 application in acute brain slices. The subtracted trace (before 

minus after) is shown in red. n = 7 cells in N = 3 mice. The box-and-whisker plots 

represent the maximum, upper quartile, mean (cross), median, lower quartile and 

minimum values and the values for individual neurons are overlaid. The GABA-

mediated component of the EPSP could only account for 4% of the measured 

slope. 

 

 

  

CHAPTER 3. ACTIVITY-DEPENDENT DOWNSCALING OF SUBTHRESHOLD
SYNAPTIC INPUTS DURING SLOW WAVE SLEEP-LIKE ACTIVITY IN VIVO

107



 

PhD Thesis - Victor Pedrosa

108



Figure S2 (related to Figure 1): Spontaneous activity in P16-P21 Six3-

Cre/Ai32 mice under urethane anaesthesia.  

(A) Example of slow-wave-sleep (SWS)-like to rapid eye movement (REM)-like 

activity transition (i). The Up and Down state transitions are overlaid in orange 

and a close up of a SWS-like period (ii) and REM-like period (iii) are shown. 

Spikes were cut for display. 

(B) Example of REM-like to SWS-like transition. 

(C) Cumulative distribution of the number of activated states (Up states and 

REM-like states) of different durations. The majority of activated events (84.5%) 

correspond to Up states lasting < 2 seconds and only 2.2% of the events 

corresponded to putative REM-like states lasting > 5 seconds. Data obtained from 

30 minute recordings in n = 5 neurons in N = 4 mice. 

(D) Time representation of Up states, putative REM-like states (lasting > 5 

seconds) and Down states (as analysed for C). Neurons spent 10.1% of the total 

time in REM-like states. 

(E) Time to next Down state following Up state stimulation during Up state 

stimulation protocols (protocols 3, 5, 6 and 7). Only 9% of stimulations were done 

during putative REM-like states. 

(F) Example traces of Layer (L)2/3 and L4 single unit recordings paired with LFP 

recordings in L2/3. n = 6 L2/3 and n = 5 L4 neurons recorded in N = 4 mice. 

(G) Firing frequency (in Hz) of L2/3 and L4 neurons. 

(H) Percentage of Up states in which L2/3 and L4 were active. 

(I) Number of spikes per Up state in which L2/3 or L4 were active (respectively). 
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(J) Percentage of Up states in which neurons spiked and produced more than 1 

action potential. 

(K) Inter-burst frequency when neurons were activated more than once in an Up 

state. 
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Figure S3 (related to Figure 3): Up state stimulation leads to L4 to L2/3 

depression in a different mouse line and at a different age.  

(A) ChR2 expression pattern in Scnn1a-cre/Ai32 mice. 

(B) L4 light-stimulation during Up states leads to LTD in Scnn1a-cre/Ai32 mice. 

Schematic of the stimulation protocol (protocol 3, gray rectangle, top left), 

representative traces of the plasticity protocol (black trace, top middle) and the 
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average traces from the 10th and 50th minute of an example experiment (1 and 2 

respectively) are shown. 

(C) Summary of result in B. The box-and-whisker plots represent the maximum, 

upper quartile, mean (cross), median, lower quartile and minimum values (n = 6 

cells in N = 6 mice). 

(D) Example of spontaneous Up and Down state (UDS) activity in P30-P50 Six3-

cre/Ai32 mice under urethane anaesthesia. The UDS frequency for all neurons 

recorded at this age is shown (n = 13 neurons in N = 10 mice). 

(E) L4 light-stimulation during Up states leads to depression (black triangles, n = 

8 neurons in N = 8 mice) while no changes in synaptic weight are observed when 

presynaptic stimulation is performed during Down states (control, circles, n = 6 

neurons in N = 5 mice). 

(F) Summary of results in E. Two-tailed Student’s t test. * p < 0.05. 
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Figure S4 (related to Figure 4): Circuit refinement is independent of specific 

awake learning rule and synaptic depression can be prevented by 

postsynaptic activity. 

(A-B) Simulation of a feedforward network composed of 100 presynaptic neurons 

(representing L4 neurons) projecting onto one single postsynaptic neuron 

(representing a L2/3 neuron), analogous to simulations in Figure 4. One ‘wake’ 

phase of learning was simulated. During this phase, 5 presynaptic neurons 

received 50% stronger inputs. The synaptic weights at the end of this simulation 

were used as the initial weight for the sleep phase. These simulations are 

analogous to the simulations performed in Figure 4F, but with different awake 

learning rules. 

CHAPTER 3. ACTIVITY-DEPENDENT DOWNSCALING OF SUBTHRESHOLD
SYNAPTIC INPUTS DURING SLOW WAVE SLEEP-LIKE ACTIVITY IN VIVO

113



(A) Simulated Up state-mediated plasticity preserves and enhances previously 

stored patterns without learning between sleep cycles. During sleep cycles, all 

presynaptic neurons received comparable external input and fired at the same rate, 

on average. Left: evolution of S/N ratio over three sleep cycles. Right: evolution 

of pattern amplitudes. During sleep cycles, synaptic weights were updated 

following either the Up state-modulated plasticity (solid lines) or a homogeneous 

synaptic scaling rule (dashed lines). Between sleep cycles, synaptic weights were 

kept fixed. Curves show an average over 50 trials. 

(B) Simulated Up state-mediated plasticity preserves and enhances previously 

stored patterns when a second pattern is strengthened between sleep cycles. The 

simulation was performed in the same way as in A but a second pattern was 

strengthened between sleep cycles. During sleep cycles, all presynaptic neurons 

received comparable external input and fired at the same rate, on average. Left: 

evolution of S/N ratio over three sleep cycles. Right: evolution of pattern 

amplitudes. During sleep cycles, synaptic weights were updated following either 

the Up state-modulated plasticity (solid lines) or a homogeneous synaptic scaling 

rule (dashed lines). Between sleep cycles, the synaptic weights of a second set of 

presynaptic neurons (pattern 2) were reset to their maximum values. Curves show 

an average over 50 trials. Our simulations indicate that the Up state-mediated 

depression leads to circuit refinement independent of the specific rule underlying 

awake learning. 

(C-D) We simulated a very simple feedforward network, with only one pre- and 

one postsynaptic neuron. The presynaptic neuron fired at 10 Hz and we assumed 
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that the connection between the neurons was weak enough such that, at this rate, 

presynaptic spikes would not elicit postsynaptic action potentials. 

(C) Ratio between final synaptic weight and initial synaptic weight as a function 

of p, where p is the probability of the postsynaptic neuron to fire within 10 ms 

after a presynaptic spike (and then prevent synaptic depression). The synapse was 

updated following the Up state-mediated plasticity.  Curves show an average over 

50 trials. Shaded areas represent one standard deviation from average. 

(D) Ratio between final synaptic weight and initial synaptic weight as a function 

of the postsynaptic firing rate. Both neurons fired independently following a 

Poisson process. The synapse was updated following the Up state-mediated 

plasticity. Curves show an average over 50 trials. Shaded areas represent one 

standard deviation from average. 
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Chapter 4

The interplay between somatic and

dendritic inhibition promotes the

emergence and stabilization of place

fields

In the previous chapters, we explored the role of excitation and excitatory plasticity in

the development and refinement of sensory representations. We next wonder whether

inhibitory neurons play a role in the development excitatory receptive fields. To

further explore this question, we focus on the hippocampal CA1 region as a model

network. We analyse the emergence and stabilization of place fields in hippocampal

CA1 pyramidal cells. When an animal enters a novel environments, the interneuron

activity is modulated. More specifically, parvalbumin-expressing (PV) interneuron

activity is upregulated whereas somatostatin-expressing (SST) interneuron activity
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is suppressed. We investigate how this modulation of interneuron activity in novel

environments promotes the emergence of new receptive fields. Our simulations

suggest that dendrite-targeting interneurons—thought of as SST interneurons—play

a crucial role in place field development and stabilization, whereas soma-targeting

interneurons—thought of as PV interneurons—can quickly and reversibly turn silent

cells into place cells.

The layout of the work will be presented in an article format as it has been submitted

for publication. We would like to thank Claudia Clopath for supervising and guiding

the project.
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The interplay between somatic and

dendritic inhibition promotes the

emergence and stabilization of place

fields

Abstract

During the exploration of novel environments, place fields are rapidly formed in

hippocampal CA1 neurons. Place cell firing rate increases in early stages of explo-

ration of novel environments but returns to baseline levels in familiar environments.

Although similar in amplitude and width, place fields in familiar environments are

more stable than in novel environments. We propose a computational model of the

hippocampal CA1 network, which describes the formation, dynamics and stabiliza-

tion of place fields. We show that although somatic disinhibition is su�cient to form

place cells, dendritic inhibition along with synaptic plasticity is necessary for place

field stabilization. Our model suggests that place cell stability can be attributed to

large excitatory synaptic weights and large dendritic inhibition. We show that the

interplay between somatic and dendritic inhibition balances the increased excitatory
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weights, so that place cells return to their baseline firing rate after exploration. Our

model suggests that di�erent types of interneurons are essential to unravel the mech-

anisms underlying place field plasticity. Finally, we predict that artificially induced

dendritic events can shift place fields even after place field stabilization.

Keywords: hippocampus, CA1, synaptic plasticity, computational model, place cells,

place fields.

4.1 Introduction

The hippocampus encodes spatial information through a subset of pyramidal cells—

the place cells—that fires action potentials when the animal is in a specific location

within the environment—the place fields [O’Keefe, 1976; O’Keefe and Dostrovsky,

1971; O’Keefe and Nadel, 1978; Wilson and McNaughton, 1993]. These neurons

are thought to encode and store new memories by taking part in activity-dependent

synaptic plasticity [Bliss and Collingridge, 1993; Golding et al., 2002; Magee and

Johnston, 1997; Schiller et al., 1998; She�eld and Dombeck, 2019]. How these place

fields are formed is not clear and recent experimental data, while unravelling specific

parts of the mechanisms underlying place cell dynamics, have also opened up some

puzzling questions, especially when put together [Bittner et al., 2017; Cohen et al.,

2017; Epsztein et al., 2011; Frank et al., 2004; Grienberger et al., 2017; Lee et al.,

2012; She�eld et al., 2017; She�eld and Dombeck, 2019]. Although here we focus

on the role of hippocampal cells in spatial memory development, the hippocampus is

also associated with other types of memories [Fanselow, 2000; Mayford, 2013], and

the principles governing place field dynamics are likely to be common across several

types of hippocampal memory formation.

Subthreshold responses of silent cells, when recorded at the soma, are not place-

tuned [Epsztein et al., 2011]. If a spatially uniform current is applied to a silent
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cell, however, this cell starts to produce place-tuned activity [Lee et al., 2012]. This

transition from silent to place cell is abrupt and once the silent cell is turned into a

place cell, the amplitude of the place field is fairly independent of the amplitude of

the applied current [Lee et al., 2012]. These results suggest that silent cells receive

place-tuned inputs even though there is no signature of those inputs at the soma.

Therefore, inputs from dendrites are thought to be nonlinearly propagated to the soma

with the somatic depolarization acting as a gate for this propagation [Lee et al., 2012].

The functional consequences of this gating for the hippocampal network have not

been fully explored. For instance, it is not clear which elements of the network are

responsible for modulating this dendrite-to-soma propagation.

There is increasing evidence suggesting that place fields are not formed from scratch

[Cacucci et al., 2007; Cohen et al., 2017; Dragoi and Tonegawa, 2011, 2013, 2014;

Epsztein et al., 2011; Frank et al., 2004; Fyhn et al., 2007; Hill, 1978; Kentros et al.,

1998; Leutgeb et al., 2005, 2004; McHugh et al., 1996; She�eld et al., 2017]. Instead,

spatial representation might be built from the selection of already strong connections,

without the need for synaptic plasticity [Dragoi and Tonegawa, 2011, 2013, 2014;

Lee et al., 2012]. For instance, many place fields, although not stable, are present

from the animal’s first traversal of a novel environment [Epsztein et al., 2011; Frank

et al., 2004; Hill, 1978; She�eld et al., 2017]. Furthermore, additional place cells

are formed mainly during the first few laps of exploration [She�eld et al., 2017].

This poses a question for the role of synaptic plasticity in place field development.

During exploration of a novel linear track, new place fields are formed over several

laps [She�eld et al., 2017]. The development of these new place fields has been

shown to be preceded by dendritic regenerative events—back propagating action

potentials or dendritically generated spikes [She�eld et al., 2017; She�eld and

Dombeck, 2015]—which are promoted by a reduction in dendritic inhibition through

the suppression of somatostatin-expressing (SST) interneuron activity [She�eld
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et al., 2017]. These dendritic events can be associated with a myriad of factors such

as dendritic disinhibition [Doron et al., 2017; Grienberger et al., 2017; Müller et al.,

2012], back-propagating action potentials [Hill et al., 2013; Magee and Johnston,

1997; Spruston et al., 1995; Zhou et al., 2008], NMDA spikes [Brandalise et al., 2016;

Gasparini et al., 2004; Palmer et al., 2014], or plateau potentials [Bittner et al., 2015;

Grienberger et al., 2014; Takahashi and Magee, 2009]. More recently, the conjunctive

activation of presynaptic inputs and postsynaptic calcium plateau potentials have been

applied to artificially induce new place fields [Bittner et al., 2015, 2017]. Additionally,

place fields have also been induced following juxtacellular stimulation of CA1 silent

cells [Diamantaki et al., 2018]. Although dendritic disinhibition has been implicated

in place field development [She�eld et al., 2017], it is still not clear which role the

di�erent types of interneuron play in place field formation and stabilization.

Overall CA1 pyramidal cell depolarization is initially low but rapidly increases during

exploration of novel environments [Cohen et al., 2017], which might be linked to

a quick increase in place cell firing rate in early stages of exploration [Cohen et al.,

2017; Frank et al., 2004]. Surprisingly, in familiar environments, subthreshold hill of

depolarization associated with place field firing returns to a lower level, comparable

to the level observed during initial exploration of novel environments [Cohen et al.,

2017]. Remarkably, although the level of CA1 pyramidal cell depolarization is similar

in the first stages of exploration of novel environments and in familiar environments,

place fields in familiar environments have been shown to be considerably more

stable [Cacucci et al., 2007; Cohen et al., 2017; Leutgeb et al., 2004; Wilson and

McNaughton, 1993]. Synaptic plasticity has been suggested to be involved in this

stabilization [Cohen et al., 2017]. Moreover, the blockage of NMDA receptors in

CA1 neurons has been shown to significantly decrease the number of new place fields

being formed across the network [She�eld et al., 2017]. These results suggest that

synaptic plasticity is not required for the formation of place fields but is involved
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in the development of new place cells and stabilization of spatial representations.

Therefore, these results lead to the question of what role synaptic plasticity plays in

place field stabilization.

Several computational models have been proposed to account for place field develop-

ment [Barry et al., 2006; Battaglia and Treves, 1998; Blair et al., 2008; Burgess and

O’Keefe, 2011; Conklin and Eliasmith, 2005; Franzius et al., 2007; Grienberger et al.,

2017; Hartley et al., 2000; Knierim and Zhang, 2012; Levy, 1996; Samsonovich and

McNaughton, 1997; Soman et al., 2018; Treves and Rolls, 1994; Tsodyks, 1999; We-

ber and Sprekeler, 2018]. The interaction between excitatory and inhibitory plasticity

has been shown to lead to the development of place fields in initially untuned pyrami-

dal cells [Weber and Sprekeler, 2018]. Alternatively, attractor network models have

been proposed as more abstract models of hippocampal circuit dynamics [Battaglia

and Treves, 1998; Conklin and Eliasmith, 2005; Knierim and Zhang, 2012; Levy,

1996; Samsonovich and McNaughton, 1997; Treves and Rolls, 1994; Tsodyks, 1999]

and some models have even been extended to more than two dimensions [Soman et al.,

2018]. All these models, however, do not take into account individual interneuron

types and their modulation during exploration of novel environments.

All these questions call for a simplified computational model that can account for place

field formation and stabilization in order to understand the mechanisms underlying

these processes. We therefore develop a data-driven model of the hippocampal

CA1 network. We show that somatic disinhibition is su�cient to form place cells.

However, dendritic inhibition and synaptic plasticity allows for silent cells to turn

into stable place cells. We show that the combined action of somatic and dendritic

inhibition balances an increase in excitatory weights due to synaptic plasticity, so that

place cells after exploration return to their baseline firing rate. Our model suggests

that place cell stability is due to large excitatory synaptic weights and large dendritic

inhibition. Therefore, our model suggests that di�erent types of interneurons are
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essential to unravel the mechanisms underlying place field plasticity. Finally, we use

our model to predict how to perturb place fields. Artificially induced dendritic events

in place cells can shift place field location even after place field stabilization. Our

model reproduces a wide range of observations from the hippocampal CA1 network,

provides a circuit level understanding, and finally makes predictions that can be tested

in future experiments. Importantly, our model suggests that interneuron diversity is

crucial for the emergence of place fields and their consolidation.

4.2 Results

In all simulations, we model CA1 pyramidal neurons as two-compartment, rate-based

neurons (figure 1A). The neurons are composed of a non-linear dendritic unit, that

accounts for dendritic spikes, and a perisomatic unit (figure 1A). Place cells can be

observed even during the first stages of exploration of novel environments [Cacucci

et al., 2007; Cohen et al., 2017; Dragoi and Tonegawa, 2011, 2013, 2014; Epsztein

et al., 2011; Frank et al., 2004; Fyhn et al., 2007; Hill, 1978; Kentros et al., 1998;

Leutgeb et al., 2005, 2004; McHugh et al., 1996; She�eld et al., 2017] and silent

cells can be quickly turned into place cells upon the injection of a spatially uniform

current [Lee et al., 2012]. Therefore, we assume that all CA1 cells—both active

and silent cells—receive place-tuned inputs which are projected onto their dendrites

when the animal enters a new environment. Additionally, the propagation of dendritic

activity to the soma is not uniform and, in particular, can be modulated by somatic

depolarization [Jarsky et al., 2005; Lee et al., 2012]. In our model, the propagation of

inputs from dendrites to soma is gated by the somatic "potential" which is determined

by the total input projected directly onto the perisomatic unit (figure 1A, see methods).

To account for changes in synaptic connections, we implement an activity-dependent

synaptic plasticity rule. Synaptic potentiation has been shown to be dependent on

the activation of presynaptic terminals paired with strong postsynaptic dendritic
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depolarization [Bittner et al., 2017; Brandalise et al., 2016; Magee and Johnston,

1997; She�eld and Dombeck, 2019; Spruston et al., 1995; Takahashi and Magee,

2009]. For the sake of simplicity, we assume that synaptic plasticity depends on

presynaptic activity and the postsynaptic dendritic activation only (figure 1A, see

methods for details). Moreover, the simulated CA1 pyramidal cells receive inhibitory

inputs from two types of interneurons: dendrite-targeting interneurons (thought of

as a subset of SST cells) and soma-targeting interneurons (thought of as a subset of

parvalbumin-expressing cells) (figure 1A). The interneuron activity is assumed to

be spatially uniform [Grienberger et al., 2017]. Finally, She�eld et al. [She�eld

et al., 2017] have shown that the exploration of novel environments modulates CA1

interneuron activity in an interneuron-type-specific manner [She�eld et al., 2017].

They observed a decrease in SST interneuron activity accompanied by an increase

in parvalbumin-expressing (PV) interneuron activity that lasts for tens of seconds

when the animal enters a novel environment [She�eld et al., 2017]. In our model, we

hypothesize the existence of a novelty signal responsible for modulating interneuron

activity once the animal enters a new environment (figure 2A, see methods). This

novelty signal increases instantly once the animal enters the environment and decays

exponentially with a time constant of 100 s (see methods). This novelty signal leads

to the suppression of dendrite-targeting inhibition and the amplification of soma-

targeting inhibition (figure 2A). Both interneuron activities slowly return to baseline

levels as the novelty signal fades away.

Somatic disinhibition is su�cient to turn silent cells into place cells

We first investigate how silent cells can be transiently turned into place cells through

the injection of a spatially uniform current [Lee et al., 2012]. We simulate 10 input

neurons, which could be thought of as part of CA3, projecting onto one postsynaptic

CA1 neuron. Here, we assume that the animal is running through a familiar envi-
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Figure 1: Somatic disinhibition is su�cient to turn silents cells into place cells. (A)

Network diagram. Pyramidal neurons receive place-tuned, excitatory input and inputs from
two types of interneurons: dendrite-targeting (DT), representing somatostatin-expressing
interneurons, and soma-targeting (ST), representing parvalbumin-expressing interneurons.
The propagation of inputs from dendrites to soma is gated by the somatic "potential" (see
methods). The CA1 pyramidal cell is modelled as a two-compartment neuron model with a
nonlinear dendritic unit and a perisomatic unit. (B) Diagram of a silent cell being turned into
a place cell following spatially uniform somatic depolarization. (C) Pyramidal cell firing rate
as a function of the animal position for three di�erent amplitudes of external injected current:
zero, 1.0 and 1.5. (D) Di�erence between peak and baseline firing rate as a function of the
external somatic input. Because of the gated propagation of inputs from dendrites to soma,
there is an abrupt transition from silent to place cell.

ronment and, therefore, there is no novelty signal and the interneuron activity is

constant throughout these simulations. For simplicity, all presynaptic neurons are

assumed to have time-invariant, uniformly distributed place fields, spanning over the

entire track. These presynaptic neurons project onto one postsynaptic CA1 neuron

through non-uniform connections. Although not uniform, the initial synaptic weights
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are such that the postsynaptic CA1 cell is silent during the first lap of exploration.

During the second lap of exploration, an external depolarizing current is applied to

the somatic compartment. Since plasticity is slow, synaptic weights are not signifi-

cantly changed from the first to the second lap. However, because the propagation

of inputs from dendrites to soma is gated by somatic depolarization, silent cells are

rapidly turned into place cells in an all-or-nothing manner (figure 1B-D). For weak

external currents, silent cells remain silent (figure 1C, I

ext

= 0). For su�ciently

strong external currents, however, silent cells are turned into place cells (figure 1C,

I

ext

= 1.0 and I

ext

= 1.5). Furthermore, the transition from silent to place cell is

abrupt. Given that the amplitude of the injected current is above a certain threshold,

the neuron is turned into a place cell and the amplitude of the place field does not

depend on the amplitude of the injected current (figure 1D). If the external current

is removed, the neuron becomes silent again. Therefore, our model indicates that

silent cells can be transiently turned into place cells due to a combination of two

features: silent cells receive place-tuned input and the propagation of these inputs

from dendrites to soma is gated by somatic depolarization. Since the somatic input

is also controlled by soma-targeting inhibitory neurons, these cells could also act as

a gate for the propagation of inputs from dendrites to soma.

Dendritic disinhibition and synaptic plasticity promote the development

of place cells

Using our model, we next investigate whether there is an alternative mechanism

underlying place field formation from originally silent cells (figure 2A-B). As before,

we simulate 10 input neurons projecting onto one postsynaptic CA1 neuron. Synaptic

connections from input neurons to the postsynaptic neuron are plastic and their

change depends on the activity of the postsynaptic dendritic compartment. Here, the

animal explores a novel environment for several laps. Inspired by the experiments
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from She�eld et al. [She�eld et al., 2017], we simulate a "novelty signal", so that

the activity of dendrite-targeting interneurons is initially low in novel environments

and increases gradually while the environment is becoming familiar, whereas the

activity of soma-targeting interneurons is initially high and gradually decreases (figure

2A). Simulating our model reveals that the reduction in dendrite-targeting inhibition

increases dendritic activity in the pyramidal cells, regardless of the somatic activity

(figure 2C). This dendritic activation leads to a quick strengthening in synaptic

weights (figure 2E-G). The combination of stronger synaptic weights and a later

decrease in soma-targeting inhibition finally leads to the development of place-tuned

somatic activity (figure 2C-D). Therefore, our model suggests that the combination of

dendritic-activity-dependent synaptic plasticity and novelty-modulated interneuron

activity can turn silent cells into place cells. Interestingly, dendritic activity in

simulated CA1 neurons precedes and predicts place field development in silent cells

in our model, consistent with the experimental findings from She�eld et al. [She�eld

et al., 2017].

PhD Thesis - Victor Pedrosa

128



A

E

Novelty
signal

0 25 50
Position

Soma

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50
Position

0

25

50

75

100

La
p

Dendrite

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B

C Novel environment exploration

0 5 10
Input neuron

0 5 10
Input neuron

0

500

Ti
m

e
(s

)

Place cellSilent cell

Novelty signal
+

Synaptic plasticity

0.0

0.5

1.0

1.5

2.0

2.5

3.0
50

50 100
Lap

1.5

2.0

2.5

A
ve

ra
ge

sy
na

pt
ic

in
pu

t

0

F G

0 50
Position

0

5

10
S

yn
ap

tic
in

pu
t Initial

Final

Synaptic weights

Novel 
environment

Novelty signal

Several
laps

Vsoma

DT

ST

Animal PositionInput
place fields

0 20 40 60 80

Lap

0

0.2

0.4

0.6

M
ea

n 
ac

tiv
ity Soma

Dendrite

D

Figure 2: Dendritic disinhibition and synaptic plasticity promote the development of

place cells. (A) Network diagram similar to figure 1A. The activity of interneurons is mod-
ulated during the exploration of novel environments. DT interneuron activity (top black
curve) decreases, whereas ST interneuron activity (bottom black curve) increases in novel
environments. Both interneuron activities gradually return to baseline levels with a timescale
defined by the hypothesized novelty signal (red curve, see methods and main text for details).
Synaptic connections from input neurons to CA1 pyramidal cells are updated following a
Hebbian-type learning rule dependent on presynaptic activity and postsynaptic dendritic
activation. (B) Diagram of a silent cell being turned into a place cell after several laps of ex-
ploration of a novel environment (see methods). (C) Silent cell turns into place cell following
exploration of a novel environment. Evolution of dendritic (left) and somatic (middle) activity
during exploration of a novel environment for an initially silent cell. Amplitude of novelty
signal over laps (right, red). Dendritic activity precedes somatic activation, in agreement
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with experiments [She�eld et al., 2017]. Somatic activity increases abruptly due to the gated
propagation of dendritic inputs (see methods). (D) Evolution of mean dendritic and somatic
activity for one example neuron. The neuron is initially silent (no somatic activity) and is
turned into a place cell after several laps of exploration. (E) Evolution of synaptic weights
for the same example cell shown in C. Inset: first 10% (50 s) of exploration. (F) Evolution of
average synaptic input over laps for the same example cell as in C. (G) Initial (dashed) and
final (solid) synaptic inputs as a function of the animal position for the same example cell
as in C. The synaptic input was measured as the convolution between initial/final synaptic
weights and the input neuron activities.

The interplay between somatic and dendritic inhibition balances in-

creased excitatory synaptic weights so that place cell firing returns to

baseline

Next, we use our model to study neurons that are initially active when the animal

enters a new environment (figure 3A). We aim to understand the mechanisms that

could lead to place field stabilization and that underlie place field dynamics. As

before, our model consists of a CA1 cell receiving place-tuned inputs. But here, the

synaptic weights are such that the neuron is active since the first lap of exploration

(figure 3B-E, blue traces). The initial low dendritic inhibition in our model leads

to the activation of dendritic compartments and thus the strengthening of synaptic

weights. Stronger synaptic weights produce a stronger neuronal response (figure 3B-

E, purple traces). However, as the animal explores the environment, the novelty

signal gradually dissipates, resulting in the increase in dendritic inhibition and thus in

a lower activation of the dendritic compartment (figure 3C, orange trace). The lower

level of somatic inhibition in familiar environments allows the neuron to exhibit the

same level of activity as is exhibited during the first stages of exploration, even under

reduced dendritic activation (figure 3E, orange trace, and figure 3F). Our model is

therefore consistent with the experimental data showing that overall CA1 pyramidal

cell depolarization increases in early stages of novel environment exploration and later
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returns to initial levels in familiar environments [Cohen et al., 2017]. Importantly,

although the neuronal firing on the first and last laps are indistinguishable, the

network states are completely di�erent. During the first lap, the neuron receives

weak excitatory input, weak dendritic inhibition, and strong somatic inhibition (figure

3G). Synaptic plasticity then leads to the strengthening of synaptic weights, forming

strongly-tuned connections (figure 3F-G). Finally, the decay of the novelty signal

leads to a slow shift in soma- and dendrite-targeting inhibition. During the last

lap—when the environment is familiar—the neuron receives strong excitatory input,

strong dendritic inhibition, and weak somatic inhibition (figure 3G). Therefore, the

intricate interplay between excitatory plasticity and somatic and dendritic inhibition

leads to the development of a new network structure. Although this new state presents

the same network output, it might have di�erent stability properties.
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Figure 3: The interplay between somatic and dendritic inhibition balances increased

excitatory synaptic weights so that place cell firing returns to baseline. (A) Diagram of
an unstable place cell becoming stable after several laps of exploration of a novel environment
(see methods). Place cells are assumed to be unstable due to their sensitivity to noise. (B)

Evolution of dendritic activity for an example place cell. Inset: first 10 laps of exploration.
(C) Dendritic activity as a function of the animal’s position for three stages of the simulation:
lap 1 (top, blue; blue dashed line in (B)), lap 5 (middle, purple; purple dashed line in (B)),
and lap 100 (bottom, orange; orange dashed line in (B)). (D) Evolution of somatic activity for
the same cell as in (B). Inset: first 10 laps of exploration. (E) Somatic activity as a function
of the animal’s position for three stages of the simulation: lap 1 (top, blue; blue dashed line in
(D)), lap 5 (middle, purple; purple dashed line in (D)), and lap 100 (bottom, orange; orange
dashed line in (D)). (F) Evolution of mean dendritic (dashed line) and somatic (solid line)
activity for the same example cell as in (B) and (D). Stars indicate laps 1 (blue), 5 (purple)
and 100 (orange). Both somatic and dendritic activities increase sharply during the first laps
of exploration due to synaptic plasticity. Inset: first 10 laps of exploration. (F) Diagram
showing the changes in the network from the first to the last lap of exploration. Initially (left,
blue), input synaptic weights are weak, dendritic inhibition is low and somatic inhibition is
high. Next, synaptic weights are quickly strengthened through activity-dependent synaptic
plasticity (middle, purple). During the final lap (right, orange), some input synaptic weights
are strong, dendritic inhibition is high and somatic inhibition is low. Therefore, although
place field amplitude and width are the same in the first and last lap (D blue and orange), the
network is in a di�erent state.

Large excitatory synaptic weights and large dendritic inhibition provide

place cell stability

We next investigate whether place fields in familiar environments are more stable

than at the beginning of the exploration phase in novel environments—despite being

similar in amplitude and width. Place fields have been shown to be unreliable and

to change abruptly from lap to lap in novel environments [Cohen et al., 2017]. We

speculate that this variability is caused by the place field’s sensitivity to noise rather

than synaptic plasticity processes. We assume that the place field can be a�ected by

three sources of noise: (i) noise on the place fields of presynaptic neurons, (ii) noise on

the firing rates of presynaptic neurons, or (iii) noise on synaptic weights, accounting,

for example, for synaptic turnover or synaptic failure (figure 4). In all three cases, we
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compare the e�ect of noise on place fields at the beginning of exploration (figure 4,

blue curves) to its e�ect on place fields at the end of exploration (figure 4, orange

curves; see methods). In case (i), we assume that the amplitudes of presynaptic place

fields are not all the same. Instead, we multiply each place field by a random number

whose variance increases with the noise amplitude (see methods). As expected, the

more noise we impose, the less stable place cells are (figure 4A). However, the noise

on presynaptic place fields is more e�ective at destabilizing place cells in the first

lap of exploration than at the end of exploration (figure 4A), suggesting that place

cells become more stable. In case (ii), we assume that all presynaptic place fields

have the same amplitude but input neurons can also fire at any time with probability

p. This probability increases linearly with noise amplitude. Again, place fields at

the final lap are more stable than initial place fields (figure 4B). In case (iii), we

change synaptic weights by random amounts drawn from a normal distribution whose

variance is proportional to the noise amplitude. This source of noise also a�ects

initial place fields more than it does to final place fields (figure 4C). In all three cases,

the stabilization of place fields results from increased synaptic weights and higher

dendritic inhibition (figure 3G). Therefore, place fields in familiar environments

are more stable to noise than place fields at the beginning of exploration of novel

environments, consistent with experimental observations [Cohen et al., 2017].

In order to investigate the role of each component of the network in stabilizing place

fields, we artificially modify the final state of the network while keeping the neuron’s

place field unchanged. We first reduce the amplitude of both excitatory weights

and dendritic inhibition (figure S1A). The reduced synaptic weights decrease place

field stability when noise is added on the synaptic weights (figure S1B). Next, we

reduce dendritic inhibition and increase somatic inhibitory input (figure S1C). Since

synaptic weights are strong and dendritic inhibition is low, the postsynaptic neuron

is more susceptible to presynaptic inputs. Thus, noise on presynaptic neurons is
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Figure 4: Large excitatory synaptic weights and large dendritic inhibition provide place

cell stability. (A-C) E�ect of noise on place fields for the first (blue) and last (orange) laps
of exploration. (A) Destabilization of place fields by noise on presynaptic place fields. We
measure the change on postsynaptic place field following changes on presynaptic place field
amplitudes (see methods). (B) Destabilization of place fields by noise on presynaptic firing
rates. We measure the change on postsynaptic place field following the addition of a noisy
input to presynaptic neurons (see methods). (C) Destabilization of place fields by noise on
synaptic weights. We measure the change in postsynaptic place field following changes on
synaptic weights (see methods). For all three sources of noise (A-C), the e�ect of the noise
over place fields is higher in the first lap than in the last lap.

carried on to postsynaptic place fields, destabilizing them (figure S1D). In summary,

strong synaptic connections are relatively less a�ected by noise on synaptic weights,

whereas higher dendritic inhibition cancels out-of-field fluctuations being transmitted

from presynaptic neurons.

We next investigate whether dendritic nonlinearity can contribute to stable place field

development. While our model has indicated that dendritic disinhibition opens a

window for synaptic plasticity and promotes place cell development, we hypothesize

that dendritic nonlinearities might promote place cell stability by ensuring that the

location of a place field does not change once the place field is developed. In our

model, when inputs are strong enough, they can induce dendritic spikes, which in
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turn lead to strong potentiation. Because of competition mechanisms such as synaptic

normalization, the remaining inputs are depressed, pushing them further away from

the threshold for dendritic events. Without dendritic nonlinearities, the noise could be

enough to counter-balance this competition, leading to unstable place fields. As such,

dendritic spikes—or dendritic nonlinearities—might form a mechanism for reliably

selecting presynaptic inputs. To test this hypothesis, we simulate our model with

initially uniform synaptic weights and no novelty signal. We then compare it with an

alternative model where dendrites do not have an amplifying nonlinearity but can

reach the same maximum level of activity (linear dendrites, figure S2A-B). Neurons

with a dendritic nonlinearity develop place fields faster and, importantly, more reliably

(figure S2C). In several cases, neurons with linear dendrites do not develop place

fields and their activities vary from lap to lap (figure S2D). Contrarily, neurons with a

dendritic nonlinearity consistently develop stable place fields. Therefore, our model

suggests that dendritic nonlinearities might contribute to place field development and

stability by promoting a reliable selection of inputs.

Artificially induced dendritic events induce place field plasticity

Using our model, we next explore whether it is possible to perturb or change single

CA1 place fields [Bittner et al., 2015, 2017; Diamantaki et al., 2018; Takahashi and

Magee, 2009]. We simulate a single neuron receiving place-tuned input such that

one of its input synapses is stronger than the remaining connections. We assume

that the animal is exploring a novel environment. As such, interneuron activity is

modulated by a novelty signal that decays over time. The stronger synaptic weight

leads to the activation of the postsynaptic neuron, which leads to the strengthening of

that synaptic weight (figure 5A-B, see methods). This positive feedback loop leads

to the development of a strong place field when the environment becomes familiar

(figure 5B).
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We then test whether we can shift the tuning of the place field towards a new location

by artificially activating CA1 neurons. In order to do that, we simulate the network

until the novelty signal is negligible—the environment is hence considered familiar—

and the postsynaptic place field is stable. At this stage, we inject an extra current

in the dendritic compartment of the simulated neuron to induce a strong dendritic

activity. The current is injected in the dendritic compartment because, in our model,

the synaptic plasticity is assumed to depend on dendritic activation only. This current

is induced only in a small region within the track, far from the peak of the postsynaptic

place field (figure 5, see methods). The induction of extra dendritic activity over one

lap does not alter the postsynaptic place field (figure 5B). We next induce the extra

dendritic activity over several (15) laps. In this case, the position of the place field is

shifted towards the new location (figure 5D). For an intermediate number of induction

laps, the initial place field is removed without the formation of a new place field, thus

turning the place cell into a silent cell (figure 5C, figure S3C). Note that this newly

formed silent cell can potentially redevelop a place field in case there is remaining

dendritic activity. This dendritic activity allows for plasticity, and therefore for the

re-emergence of a place field (figure S3B). Altogether, our model predicts that, if

induced over enough laps, artificial dendritic activity can shift place field location.

The size of the induction region might a�ect the e�cacy to shift place field location.

We hypothesized that shifting place fields would be easier with a larger induction

region. To investigate this, we increase the induction area to three times its original

size. In this case, the induction over one lap is enough to remove the initial place

field, but not enough to induce the formation of a new one (figure 5E). In contrary

to what we hypothesized, the induction over 15 laps—which is enough to induce

the development of a new place field for a small induction area—is not enough to

promote the development of a new place field (figure 5F). The larger the induction

area, the easier it is to remove the initial place tuning (figure 5G). Nevertheless, a
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large induction area leads to a competition between inputs within that area. Because

of that, our model predicts that, surprisingly, the larger the induction region, the

more induction laps are needed to induce the development of new receptive fields

(figure 5H).
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Figure 5: Artificially induced dendritic events induce place field plasticity. (A) Single-
cell diagram. (B-D) Evolution of place fields for the case in which an extra current is applied
to the postsynaptic neuron while the animal traverses a small section (15%) of the track.
Yellow bar indicates the induction region in which the extra current is applied. Dashed
line indicates the position of the peak of the initial place field. Blue arrow indicates the
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first induction lap (lap 100). Red curve shows the evolution of the novelty signal over laps.
(B) Place field evolution for 1 induction lap. Place fields are not disturbed following the
application of extra current. (C) Place field evolution for 5 induction laps. Place fields are
removed by the application of extra current. (D) Place field evolution for 15 induction laps.
Place fields are shifted towards a new position determined by the region of extra current
application. (E-F) Evolution of place fields for the case in which an extra current is applied to
the postsynaptic neuron while the animal traverses a large section (45%) of the track. Yellow
bar indicates the induction region in which the extra current is applied. Dashed line indicates
the position of the peak of the initial place field. Blue arrow indicates the first induction
lap (lap 100). Red curve shows the evolution of the novelty signal over laps. (E) Place field
evolution for 1 induction laps. Place fields are removed by the application of extra current.
(F) Place field evolution for 15 induction laps. Place fields are removed by the application of
extra current. (G) Number of induction laps required to remove stable place field for small
and large induction areas. (H) Number of induction laps required to shift place field location
for small and large induction areas. (I) Evolution of place fields for the case in which an
extra current is applied during exploration of a novel environment (lap 5). The extra current
is applied to the postsynaptic neuron while the animal traverses a large section (45%) of
the track. Yellow bar indicates the induction region in which the extra current is applied.
Dashed line indicates the position of the peak of the initial place field. Blue arrow indicates
the first induction lap (lap 5). Red curve shows the evolution of the novelty signal over laps.
(J) Number of induction laps required to shift place field location for novel and familiar
environments. (K) Evolution of place fields for the case in which the application of an extra
current is paired with the resetting of the novelty signal. The extra current is applied to the
postsynaptic neuron while the animal traverses a small section (15%) of the track. Yellow
bar indicates the induction region in which the extra current is applied. Dashed line indicates
the position of the peak of the initial place field. Blue arrow indicates the first induction
lap (lap 100). Red curve shows the evolution of the novelty signal over laps. Re-setting the
novelty signal leads to a reduction in dendritic inhibition across the whole track. Therefore,
the in-field activity increases, leading to the reinforcement of the initial place field.

We next compare the induction of place field shift in novel and familiar environments.

We hypothesize that in novel environments, place fields should be more plastic and,

therefore, it should be easier to induce a shift in place field location. In order to

test this, we induce dendritic activity on lap 5 instead of 100. As shown above, the

induction protocol in familiar environments has to be applied over several laps to

successfully induce place field shift. In novel environments, conversely, applying

the induction protocol over a few laps is enough to induce the development of a new

place field. Indeed, the induction of dendritic activity over 4 laps is su�cient to shift
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place field location (figure 5I-J). As initially hypothesized, our model indicates that

we need fewer induction laps to induce place field shift in novel environments than

in familiar ones. This extra plasticity of place fields in novel environments is due

to two factors: synaptic weights are not yet strongly tuned in the first laps, and the

novelty signal induces an increase in postsynaptic dendritic activity.

Finally, we investigate whether we can artificially manipulate the interneuron activity

in familiar environments so that the model returns to the state it is found in novel

environments. In particular, place fields could become more plastic following the

manipulation of interneuron activity. To test that, we run the simulations for 100

laps—until the environment becomes familiar. At lap 100, we decrease dendrite-

targeting inhibition and increase soma-targeting inhibition, resetting them to the level

of novel environment exploration. Simultaneously, at lap 100, we induce dendritic

activity within a region far from the peak of the neuron’s place field. Since the

modulation of inhibition is applied over the entire environment, there is an increase

in both within-field and out-of-field firing rate. Accordingly, the shift in place field

location is harder than in the case without manipulation of inhibition (figure 5K). We

conclude that, surprisingly, re-setting inhibition to novel environment levels is not

enough to make place fields plastic again. Indeed, overall manipulation of inhibition

reinforces stable place fields by increasing within-field activity.

In summary, our model suggests that single-cell place fields can be shifted under

the induction of dendritic activity. Our model predicts that small induction areas

are more e�ective at inducing the development of new place fields. Induction in

novel environments is also more e�cient than in familiar ones. Counter-intuitively,

resetting novel environment level of inhibition represses place field plasticity.
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4.3 Discussion

We propose a model of hippocampal CA1 place cells in which interneuron activity is

modulated by novelty in an interneuron-type-dependent manner. Using our simula-

tions, we identify the potential mechanisms underlying the evolution of place fields

and the transition from silent to place cells in novel environments. During the initial

stages of exploration of novel environments, dendrite-targeting inhibition is reduced

whereas soma-targeting inhibition is increased. The reduction in dendritic inhibition

opens a window for plasticity, leading to the formation and stabilization of receptive

fields. We then show that place fields are more stable in familiar environments than in

novel environments. Our simulations suggest that this extra stability is due to stronger

synaptic weights and increased dendritic inhibition. Our model makes predictions on

how to perturb place fields by dendritic activation. In our model, dendritic activation

can shift place field location. We predict that this shift is easier if the dendritic activity

is induced only within a small region of the environment, in the order of the size of

presynaptic place field widths. We also predict that it is easier to induce place field

shift in novel than in familiar environments. Our model, albeit simple, provides a

mechanism for several features of the CA1 network and provides testable predictions.

The modulation of interneuron activity during exploration of novel environments

is thought to be important for place field development and stabilization. Dendritic

events, such as NMDA spikes and Ca2+ plateau potentials [Bittner et al., 2017;

She�eld et al., 2017; She�eld and Dombeck, 2015], have been implicated in the

development of new place fields. Thus, the reduction in dendritic inhibition—due

to a reduction in SST interneuron activity, for example—might be responsible for

opening a window for plasticity by promoting these dendritic events. Reduced

inhibition could unmask small input inhomogeneities, leading to the rapid emergence

of place cells during the first stages of exploration of novel environments. These
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small inhomogeneities would then be amplified through synaptic plasticity. The role

of increased somatic inhibition in novel environments, however, is less clear. Since

soma-targeting interneurons receive inputs from local pyramidal cells, the increase

in soma-targeting interneuron activity could be reflecting the increase in pyramidal

cell activity. Somatic inhibition can also be responsible for regulating pyramidal cell

activity to ensure that the overall level of excitatory activity is kept within a certain

regime. In our simulations, we induced a quick switch between silent and place cells

by injecting an excitatory current onto the perisomatic section of the CA1 pyramidal

cell. Endogenously, this change in somatic input might be mediated by soma-targeting

interneurons such as a subset of PV expressing cells. These cells would act as a gate

and could quickly reassign which cells become active and therefore choose which

cells encode the relevant spatial information. This control by PV interneurons might

be important to ensure the development of sparse and robust representations. Overall,

this dendrite- and soma-specific regulation could be a mechanism to separate the

learning process into two stages such that spatial representations are first developed

within the hippocampus before being communicated back to cortex. Furthermore, the

increase in soma-targeting interneuron activity can also be responsible for controlling

plasticity at CA1 pyramidal neurons.

Aside from direct dendritic disinhibition, place cells might be formed by alternative

— probably complementary — mechanisms such as via neuromodulation. Several

neuromodulators such as acetylcholine, noradrenaline, dopamine and serotonin, have

been implicated in long-term synaptic plasticity [Froemke et al., 2007; Frémaux

and Gerstner, 2016; Martins and Froemke, 2015; Palacios-Filardo and Mellor, 2019;

Pedrosa and Clopath, 2017; Ruivo and Mellor, 2013]. These neuromodulators are

responsible for changing the functional state of the hippocampal CA1 network and

they might be responsible for modulating interneuron activity when the animal faces

novel experiences [Hasselmo and McGaughy, 2004; Kentros et al., 2004; Ruivo et al.,
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2017]. The action of neuromodulators, however, may have further implications such

as an increase in pyramidal cell excitability or change in the plasticity rules governing

glutamatergic synapses. The inclusion of these factors in future versions of our model

could help unravelling further details of the mechanisms associated with place field

development.

CA1 pyramidal cell depolarization has been shown to increase rapidly following

exposure to novel environments [Cohen et al., 2017; Frank et al., 2004]. As suggested

by Cohen et al. [Cohen et al., 2017], this increase is associated with increased

excitatory inputs onto CA1 pyramidal cells in our model. Through exploration,

pyramidal cell firing rate returns to baseline levels in familiar environments. This

later reduction in place cell firing rate has been suggested to be associated with a

reduction in excitatory input [Cohen et al., 2017]. Conversely, inspired by data from

She�eld et al. [She�eld et al., 2017], our model suggests that the return to baseline

firing rate might be associated with the combined increase in dendritic inhibition and

decrease in somatic inhibition, while excitatory inputs remain strong. This strong

dendritic inhibition and strong dendritic excitation might lead to a local balanced

state, giving rise to experimentally observed dynamics [Vreeswijk and Sompolinsky,

1996].

In our model, we considered synaptic plasticity to be dependent on presynaptic

activity and postsynaptic dendritic activation only. Additionally, we considered only

direct dendrite to soma propagation. Although dendritic activation is necessary for

NMDA-dependent synaptic potentiation, this activation can indeed be induced by

local NMDA spikes [Brandalise et al., 2016; Gasparini et al., 2004; Major et al., 2008;

Palmer et al., 2014; Schiller et al., 2000] and plateau potentials [Bittner et al., 2015;

Grienberger et al., 2014; Takahashi and Magee, 2009], but also by back-propagating

action potentials [Hill et al., 2013; Magee and Johnston, 1997; Spruston et al., 1995;

Zhou et al., 2008]. Therefore, whereas somatic activation does not seem to be
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necessary for place field formation, it might also promote synaptic plasticity. It would

be interesting to include soma-to-dendrite propagation in future extensions of our

model and investigate the consequences of somatic activation to place field formation

and stability.

In all of our simulations, we assume that CA1 pyramidal cells inherit spacial tuning

from input neurons which are likely to correspond to CA3 place cells. Furthermore,

we assume that each of these input neurons might be strong enough to drive CA1

pyramidal cell activity. Since we are using rate-based models, these simulated neurons

should actually be interpreted as a population of highly correlated neurons. These

would then correspond to a group of CA3 neurons with similar spacial tuning. This

assumption would not require that all the neurons in this CA3 population fire together

but, instead, that the total input from this population to the CA1 neuron is spatially

modulated. Therefore, our model does not assume that the spiking times of a large

group of CA3 neurons are highly correlated, but that their place fields — a smoothed,

multi-lap averaged version of their spiking rates — overlap.

Our model indicates that the balance between strong excitatory input and the interplay

between dendritic and somatic inhibition leads to place field stabilization in familiar

environments. Synaptic plasticity, in our model, leads to the strengthening of within-

field inputs and weakening of out-of-field inputs. The importance of plasticity for

place field stabilization is corroborated by experiments in which NMDA receptors

have been shown to be important for place field stabilization [Cacucci et al., 2007;

Kentros et al., 1998; McHugh et al., 1996]. The increase in dendritic inhibition in

familiar environments in our model induces a reduction in dendritic events and, thus, a

reduction in plasticity-induced changes in place fields. Additionally, the combination

of weak out-of-field inputs and strong dendritic inhibition leads to higher robustness to

noise. Overall, place fields stabilize following the exploration of novel environments,

in agreement with experiments [Cohen et al., 2017]. Besides changes in excitatory
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and inhibitory inputs, dendritic nonlinearities might also contribute to place field

development and stabilization. In presence of noise, our model indicates that dendritic

nonlinearities are crucial for reliable place field development. Therefore, our model

o�ers a possible mechanism for place field stabilization and highlights the importance

of interneuron diversity and the balance between strong excitatory and inhibitory

inputs for this stabilization.

Our model provides a mechanistic understanding of the CA1 network. It reproduces

a variety of observations, such as the dynamics of place fields during the exploration

of novel and familiar environments. Furthermore, we demonstrate that place fields

can be manipulated by artificial depolarization of CA1 pyramidal cells in our model.

4.4 Methods

Neuron model

We use two-compartment, rate-based neuron models. Each neuron is modeled as two

compartments: one representing the perisomatic region and another representing the

apical dendrites. The dendritic compartment’s activity, r

dend

, is determined by

⌧0
dr

dend

dt

= �r

dend

+ g

dend

(p

dend

) ,

where ⌧0 is a time constant, and p

dend

is the dendritic "potential" variable given by

p

dend

=

X

i

w

i

R

i

� I

dend

+ I

ext

dend

,

where R

i

is the firing rate of neuron i in the presynaptic layer, w
i

is the synaptic weight

from a neuron in the presynaptic layer, I

dend

is the input from dendrite-targeting

interneurons—simulating SOM+ interneuron inputs, and I

ext

dend

is an external current

applied to the dendritic compartment. The function g

dend

is a non-linear function of
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the input to the dendritic compartment given by

g

dend

(I) = ↵1 [tanh(I/I0)]+ + ↵2

✓
1

2

(tanh(2(I � I0)) + 1)

◆
,

where [·]+ denotes a rectification that sets negative values to zero, ↵1 controls the

linear gain of the dendritic compartment, ↵2 controls the amplitude of the non-linear

term associated with dendritic spikes, and I0 is proportional to the minimum input

current necessary for the induction of a dendritic spike (figure S5A-B).

Inputs from dendrites are propagated to the soma following a non-linear propagation

function that depends on the somatic "potential" V

soma

= I

dep

soma

� I

soma

, where

I

dep

soma

= I

exc

soma

+ I

ext

soma

is sum of the excitatory input onto the perisomatic compart-

ment, I

exc

soma

, and the external current applied to the soma, I

ext

soma

, and I

soma

is the

input from soma-targeting interneurons—simulating PV+ interneuron inputs. The

activity of the somatic compartment, r

soma

, is given by

⌧0
dr

soma

dt

= �r

soma

+

⇥
g

prop

(V

soma

) r

dend

+ I

dep

soma

� I

soma

� N

th

⇤
+

,

where N

th

is the threshold for somatic activation, and the non-linear dendrite-to-soma

propagation function g

prop

is given by

g

prop

(V

soma

) =

8
><

>:

0 if V

soma

� ✓

prop

1 if V

soma

> ✓

prop

,

where ✓

prop

is a threshold for dendrite-to-soma propagation.

Synaptic plasticity model

The synaptic weights from input neurons onto CA1 neurons are plastic and depends

on the activity of the presynaptic neuron, r

j

, and the activity of the dendritic com-
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partment of the postsynaptic neuron, r

dend

, as a standard Hebbian term. We include

a homeostatic term that takes into account the sum of all synaptic weights onto the

postsynaptic neuron. The synaptic weight from input neuron j to the postsynaptic

neuron i, w

ij

is updated following

dw

ij

dt

= ⌘

ex

r

i

dend

r

j

� ⌘

homeo

 
X

j

w

ij

� ✓

homeo

!
,

where ⌘

ex

is the learning rate of excitatory connections, ⌘

homeo

is the learning rate of

the homeostatic term, and ✓

homeo

is a target homeostatic constant.

Position-modulated inputs

The simulated CA1 neurons receive feedforward input from N

pre

neurons. These

input neurons are tuned to specific locations and their firing rates span over the entire

environment. All the place fields of input neurons have the same tuning width, �

pre

,

and the same amplitude, A

pre

. We assume that the animal explores an annular track

of length L with speed v. The firing rate of an input neuron with place field centered

at p0 is

r

input

(p) = A

pre

exp

✓
� d

2

2�

2
pre

◆
, (4.1)

where p is the animal’s position, and d is the distance, along the track, between the

animal’s position and the center of the place field.

Novelty signal

When simulating the exploration of a novel environment, we assume that the interneu-

ron activity changes over time and is interneuron-type specific. We define a quantity,

named novelty signal, that modulates the interneuron activity

n(t) = exp(�t/⌧

n

) ,
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where t is the time measured from the start of exploration, and ⌧

n

is a time constant.

The dendritic and somatic inhibition are then given by

I

dend/soma

(t) = I

�
dend/soma

�
�
I

�
dend/soma

� I

0
dend/soma

�
n(t) ,

where I

�
dend/soma

is the inhibitory activity in the dendrite/soma in familiar environ-

ments, and I

0
dend/soma

is the initial inhibitory activity in the dendrite/soma in novel

environments. The initial level of dendritic inhibition is assumed to be lower than its

level in familiar environments, I

0
dend

< I

�
dend

. The initial level of somatic inhibition

is assumed to be higher than its level in familiar environments, I

0
soma

> I

�
soma

.

Measuring place field stability

In figure 4, we analyze the stability of place fields in the first and last lap of novel en-

vironment exploration. In order to measure the e�ect of noise in novel environments,

we go through the following steps: (1) we take the network in the state it was at the

beginning of lap 1; (2) we simulate one lap of exploration, without plasticity; (3) we

measure the place field of the postsynaptic neuron; (4) we rescale this place field such

that its peak is set to 1; (5) we change the state of the network by adding noise to it

(see below); (6) we repeat (2)-(4); (7) we calculate the absolute distance between the

two rescaled receptive fields; (8) we repeat (6)-(7) N

noise

times and take an average

over all samples (figure S5). To measure the e�ect of noise in familiar environments,

we follow the same steps but using the state of the network at the beginning of the

last lap (lap 100) in step (1).

We assume that place fields can be a�ected by three sources of noise: (i) noise at

presynaptic place fields, (ii) noise at presynaptic firing rates, and (iii) noise at synaptic

weights. In case (i), we multiply each presynaptic receptive field (equation 4.1) by a

random variable taken from a normal distribution with mean 1 and variance N

2. In
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case (ii), we assume that each presynaptic neuron receives an extra input, independent

of its receptive field, and not tuned to the animal’s position. This extra input is taken

from a normal distribution with mean 0 and variance N

2 and then rectified to admit

only positive values. In case (iii), we add a random number to each synaptic weight.

This random number is taken from a normal distribution with mean 0 and variance

N

2. In all three cases, we define N as the noise amplitude.

Parameters and simulations

All simulations were implemented in python and will be made available at ModelDB.

The parameters used in our simulations can be found in table 4.1.

4.5 Data availability

All data and software supporting the findings of this study are available from the

corresponding authors upon reasonable request. The code used to generate the results

that are reported in this study will be made available at ModelDB.
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Table 4.1: Parameters summary

Neuron Model

Name Value Description

⌧0 5.0 ms Firing rate time constant
↵1 4/3 Linear gain of dendritic compartment
↵2 2/3 Related to the amplitude of dendritic spikes
I0 2.5 Minimum current to induce dendritic spikes
N

th

1.0 Threshold for somatic activation
✓

prop

- 0.2 Threshold for dendrite-to-soma propagation
Plasticity Model

Name Value Description

⌘

ex

2 ⇥ 10

�4 ms�1 Excitatory plasticity learning rate
⌘

homeo

2 ⇥ 10

�4 ms�1 Homeostatic plasticity learning rate
✓

homeo

3.0 (Fig 5: 2.0) Homeostatic target value
Place-tuned input

Name Value Description

A

pre

2.2 Presynaptic place field amplitude
�

pre

5.0 Presynaptic place field width
Novelty signal

Name Value Description

⌧

n

100 s Time constant for novelty signal decay
I

0
dend

0.8 Initial dendritic inhibition
I

�
dend

7.5 (fig2); 8.5 (fig3 & 5) Target dendritic inhibition
I

0
soma

1.2 Initial somatic inhibition
I

�
soma

0.0 Target somatic inhibition
Simulation parameters

Name Value Description

N

pre

10 Number of presynaptic neurons
I

exc

soma

0.5 (fig2); 1.0 (fig3 & 5) Excitatory current onto perisomatic compartment
T

length

50 a.u. Track length (arbitrary units)
v 1 ⇥ 10

�2 ms�1 Animal speed
dt 1 ms Integration time step
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Supplementary Figures

Noise on presynaptic
firing rates

Noise on synaptic
weights

A B

C

Final lap Reduced syn. weights
Reduced Dend inhib

Final lap Reduced dendritc inhib
Increased somatic inhib

D

Figure S1 (related to figure 4). Strong synaptic weights and stronger dendritic

inhibition ensures place field stability. (A-B) Strong synaptic weights provide
stability to noise on synaptic connections. (A) Left: Network diagram for the network
state at the last lap of exploration in figure 4. Right: Modified network with reduced
synaptic weights and reduced dendritic inhibition. Importantly, the changes are
determined such that the neuron’s place field is kept unchanged. (B) Destabilization
of place fields by noise on synaptic weights for final lap of exploration (orange) and
modified network as in (B) (black). (C) Left: Network diagram for the network
state at the last lap of exploration in figure 4. Right: Modified network with reduced
dendritic inhibition and increased somatic inhibition. Importantly, the changes are
determined such that the neuron’s place field is kept unchanged. (D) Destabilization
of place fields by noise on presynaptic firing rates for final lap of exploration (orange)
and modified network as in (C) (black).
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Figure S2. Dendritic non-linearity leads to reliable place field development. (A)

Single-cell diagram. A pyramidal neuron receives input I and integrates it through

a function g

dend

. (B) Dendritic transformation function g

dend

as a function of the

input I for linear dendrite (left, red) and nonlinear dendrites (right, green). (C)

Spatial correlation between laps for blocks of 10 laps on simulations with nonlinear

dendrites (green) and linear dendrites (red). Thick lines show averages over 200 cells

for each group. Thin lines are individual cells. Note that the spatial correlation for

several cells with linear dendrites does not increase over lap blocks. (D) Examples

of individual pyramidal cells with linear dendrites. Top, evolution of neuron firing

rate over laps as a function of the animal position. Middle, average neuron firing

rate over the last 10 laps of exploration as a function of the animal position. Spatial

correlation between laps for blocks of 10 laps. (E) Examples of individual pyramidal

cells with nonlinear dendrites. Top, evolution of neuron firing rate over laps as a

function of the animal position. Middle, average neuron firing rate over the last 10

laps of exploration as a function of the animal position. Spatial correlation between

laps for blocks of 10 laps.
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Figure S3 (related to figure 5). Artificially induced CA1 single cell activity can

shift place field location. (A-D) Evolution of place fields for the case in which an
extra current is applied to the postsynaptic neuron while the animal traverses a section
of the track. Yellow bar indicates the induction region in which the extra current is
applied. Dashed line indicates the position of the peak of the initial place field. Blue
arrow indicates the first induction lap. Red curve shows the evolution of the novelty
signal over laps. (A) Place field evolution for 10 induction laps and small induction
region (15% of the track). Place fields are shifted towards new position determined by
the region of extra current application. (B) Place field evolution for 2 induction laps
and small induction region (15% of the track). Place fields are transiently removed
by the application of extra current and reemerge at the initial location. (C) Place field
evolution for 3 induction lap and small induction region (15% of the track). Place
fields are removed following the application of extra current. (D) Same as figure
5I for a larger number of laps. Place field evolution for 5 induction laps and large
induction region (45% of the track). The induction protocol is applied on lap 5, while
the novelty signal is still strong. Place fields are shifted to new location.
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Figure S4. Dendritic non-linearity and stability analysis procedure. (A) Single-
cell diagram. A pyramidal neuron receives input I and integrates it through a function
g

dend

. (B) Diagram of g

dend

as a function of the input I (see methods). ↵1 controls the
linear gain of the dendritic compartment; ↵2 controls the amplitude of the non-linear
term related to dendritic spikes; and I0 controls the minimum input to elicit dendritic
spikes. (C) Place field stability analysis. For each measurement of place field stability
(see methods) we perform the following steps: (i) we simulate one lap of exploration,
without plasticity; (ii) we measure the place field of the postsynaptic neuron; (iii)
we rescale this place field such that its peak is set to 1; (iv) we change the state of
the network by adding noise to it; (v-vi) we repeat (ii)-(iii); (vii) we calculate the
absolute distance between the two rescaled receptive fields.
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Chapter 5

Interneuron-specific plasticity at

parvalbumin and somatostatin

inhibitory synapses onto CA1

pyramidal neurons shapes

hippocampal output

Following our investigation into the role that excitation, excitatory plasticity, and

inhibition play in learning, we next investigate the mechanisms regulating inhibitory

plasticity onto CA1 pyramidal neurons. We present experimental data supporting the

idea that di�erent types of interneurons undergo undergo di�erent synaptic plasticity

rules. This result adds evidence to support the view that each interneuron type might

fulfill a specific function. We then use computational modelling to predict the e�ect
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of these interneuron-specific plasticity rules on pyramidal cell output. Upon further

investigation, we confirm these prediction in hippocampal brain slices. Finally, our

simulations suggest that the combination of plasticity rules leads to stable place field

consolidation across environments.

The layout of the work will be presented in an article format as it has been submitted

for publication. We would like to thank Matt Udakis, Sophie Chamberlain, and Jack

Mellor for the experimental results and insightful discussions and idea, and Claudia

Clopath for supervising and guiding the project.
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Interneuron-specific plasticity at parvalbumin and somatostatin 

inhibitory synapses onto CA1 pyramidal neurons shapes 

hippocampal output 

 

Summary 

The formation and maintenance of spatial representations within hippocampal cell 

assemblies is strongly dictated by patterns of inhibition from diverse interneuron 

populations. Although it is known that inhibitory synaptic strength is malleable, 

induction of long-term plasticity at distinct inhibitory synapses and its regulation of 

hippocampal network activity is not well understood. Here, we show that inhibitory 

synapses from parvalbumin and somatostatin expressing interneurons undergo 

long-term depression and potentiation respectively (PV-iLTD and SST-iLTP) 

during physiological activity patterns. Both forms of plasticity rely on T-type 

calcium channel activation to confer synapse specificity but otherwise employ 

distinct mechanisms. Since parvalbumin and somatostatin interneurons 

preferentially target perisomatic and distal dendritic regions respectively of CA1 

pyramidal cells, PV-iLTD and SST-iLTP coordinate a reprioritisation of excitatory 

inputs from entorhinal cortex and CA3. Furthermore, circuit-level modelling 

reveals that PV-iLTD and SST-iLTP cooperate to stabilise place cells while 

facilitating representation of multiple unique environments within the hippocampal 

network.  

 

Keywords 

Hippocampus, inhibition, plasticity, parvalbumin, somatostatin, LTD, LTP, STDP 

T-type calcium channel.  
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Introduction 

GABAergic inhibitory interneurons form a diverse array of specialised cell types 

critical for the regulation of complex network functions within the brain. A defining 

feature of inhibitory interneurons is their precise axonal aborisations whereby 

inhibitory synapses target specific subdomains of pyramidal neurons and other 

inhibitory interneurons 1, 2. Within the hippocampus and neocortex, parvalbumin 

(PV) and somatostatin (SST) expressing interneurons form two broad and 

occasionally overlapping subtypes of interneurons that preferentially target 

perisomatic and distal dendritic regions of pyramidal neurons respectively and are 

active on different phases of the theta cycle 2-6. This endows them with unique roles 

in sculpting pyramidal neuron responses to excitatory inputs 7, 8. Perisomatic 

inhibition by PV interneurons regulates pyramidal neuron spiking and network 

oscillations through feedforward and feedback inhibition 9-12. In contrast, dendritic 

inhibition by SST interneurons regulates local synaptic and dendritic conductances, 

Ca2+ signal generation and excitatory synaptic plasticity principally through 

feedback inhibition 9, 13-15. 

A defining feature of the hippocampus is the encoding of spatially relevant 

information via the formation of place cells 16. Synaptic plasticity at glutamatergic 

synapses in the hippocampus accounts for the formation of location specific firing 

of individual place cells but it also plays a major role in the formation of place cell 

assemblies during exploration and offline replay of place cell activity 17-21. 

Interestingly, individual CA1 pyramidal neurons can encode distinct place fields in  

different environments 22 presumably driven by ongoing excitatory synaptic 

plasticity. This feature of place cells and the persistent plasticity of their synaptic 

connections presents fundamental problems for hippocampal networks balancing 

flexibility versus stability of representations 23. It is not clear how place cell 
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assemblies in the hippocampus can encode multiple different locations in separate 

environments without interference. 

Inhibitory interneurons play an integral role within the hippocampus controlling 

place cell activity 8, 24-26, where short-term changes in SST and PV interneuron 

activity differentially regulate the emergence and firing patterns of place cells 8, 25 

by controlling glutamatergic synaptic plasticity 13, 15. But the consequences of long-

term plasticity at inhibitory synapses on place cell activity has not been 

investigated. 

Long-term inhibitory synaptic plasticity is a potentially important mechanism for 

learning within cortical networks 27-31 and GABAergic synapses in the 

hippocampus exhibit structural and functional plasticity 32-34. Reductions in 

inhibitory strength via retrograde endocannabinoid signalling is well established 35-

37 but multiple other mechanisms to regulate long-term inhibitory synaptic strength 

have also been proposed including GABAB receptors and BDNF 38, spike timing-

dependent plasticity of chloride transporters 39, retrograde nitric oxide signalling 40 

and NMDA receptors 41. In the neocortex, synapses from PV and SST interneurons 

can undergo unique forms of plasticity 38, 41, whilst in the hippocampus, recent 

evidence suggests interneuron subtype specific inhibitory synapses are regulated in 

distinct ways 15, 42. However, it is not clear whether long-term plasticity of 

inhibitory synapses is differentially engaged between interneuron subtypes during 

physiologically relevant activity and, furthermore, what the consequences of such 

plasticity would be for hippocampal network activity and place cell representations.  

To address these questions, we utilised an optogenetic approach in hippocampal 

slices to selectively activate perisomatic and dendritically targeting inhibition onto 

CA1 pyramidal neurons by expression of channelrhodopsin in PV or SST 

interneurons. We found that synapses from PV and SST interneurons undergo 

interneuron-specific forms of inhibitory synaptic plasticity driven by the relative 
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timing of inhibitory and excitatory neuronal spiking and employing distinct 

signalling mechanisms. We go on to show these forms of cell-specific long-term 

inhibitory plasticity have profound effects on the output of CA1 pyramidal neurons 

and use computational modelling to demonstrate that these plasticity rules can 

provide a mechanism by which hippocampal place fields can remain stable over 

time whilst flexibly encoding location in multiple environments. 

Results 

Divergent inhibitory plasticity at PV and SST synapses 

To achieve subtype specific control of inhibitory interneurons, we selectively 

activated either PV or SST interneurons by expressing the light-activated cation 

channel channelrhodopsin-2 (ChR2) in a cre-dependent manner using mice that 

expressed cre recombinase under control of the promoter for either the parvalbumin 

gene (PV-cre) or somatostatin gene (SST-cre) crossed with mice expressing cre-

dependent ChR2 (PV-ChR2 and SST-ChR2 mice; methods). Immunohistochemisty 

confirmed that ChR2 expression was highest in the Stratum Pyramidal (SP) and 

Stratum Oriens (SO) layers for PV-ChR2 mice with cell bodies principally located 

in SP (Fig. 1a). Conversely, ChR2 expression was highest in the SO and Stratum 

Lacunosum Moleculare (SLM) layers for SST-ChR2 mice with cell bodies 

principally located in SO (Fig. 1b). These expression profiles are consistent with 

the established roles of PV and SST interneurons providing perisomatic and 

dendritic inhibition respectively 1, 2, 43.  To further confirm the spatially distinct 

inhibitory targets, we recorded interneuron subtype-specific inhibitory currents 

onto CA1 pyramidal neurons by activating ChR2 with 470nm blue light (Fig. 1c). 

The rise and decay kinetics of the resulting light evoked PV IPSCs were 

significantly faster compared to SST derived IPSCs (Fig. 1d,e) (Rise time: 3.8 ± 0.3 

ms PV verses 6.1 ± 0.8 ms SST, n = 8, p < 0.05; Decay time: 16 ± 1.3 ms PV verses 

28 ± 2.6 SST, n = 8, p < 0.01) supporting a more proximal location for PV synapses 
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compared to SST synapses. Light evoked PV IPSC kinetics were almost identical 

to IPSC kinetics recorded from paired whole-cell recordings made from PV 

expressing fast-spiking basket cells to CA1 pyramidal cells (Supplementary Fig. 

1a) and similarly, selective activation of Oriens Lacunosum Moleculare (OLM) 

cells using Chrna2-cre mice 44, 45 revealed IPSC kinetics indistinguishable from 

SST-ChR mice (Supplementary Fig. 1e). Furthermore, measurement of synaptic 

response amplitudes as light was targeted to different regions of the slice confirmed 

the immunohistochemical characterisation of ChR2 expression supporting the 

selective stimulation of perisomatic vs dendritic targeted inhibition (Supplementary 

Fig. 1b,c,f,g). Therefore, whilst we cannot exclude the activation of other 

interneuron subtypes expressing PV or SST, these data suggest the majority of our 

synaptic inputs most likely arise from activation of PV basket cells and SST OLM 

cells that selectively target synapses to perisomatic and distal dendritic regions of 

CA1 pyramidal cells respectively. 

Having established two populations of inhibitory synapses we investigated whether 

PV or SST synapses undergo long-term inhibitory synaptic plasticity and if so, 

whether induction and expression is similar at each synapse. IPSCs were recorded 

from CA1 pyramidal neurons held at 0 mv with glutamatergic transmission 

pharmacologically blocked. Interneuron subtype-specific IPSCs mediated by 

GABAA receptors were evoked by 5 ms light pulses and, importantly, an 

independent IPSC control pathway was evoked by electrical stimulation in the 

pyramidal layer (PV IPSCs) or Stratum Radiatum (SST IPSCs) (Fig. 1f and 

Supplementary Fig. 1d,h). Both PV and SST interneurons are entrained to theta 

frequency rhythms in the hippocampus 3 so we first tested whether bursts of IPSCs 

delivered at theta frequency could induce long-term inhibitory synaptic plasticity. 

Theta burst stimulation (TBS) of the light evoked pathway led to a prolonged 

pathway-specific reduction of PV-IPSC amplitude indicating a synapse specific 

long-term depression of PV synapses (PV-iLTD, 115% ± 14% control verses 61% 
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± 8% test pathway, n = 6, p < 0.05) (Fig. 1g). In contrast an identical light induced 

TBS led to a pronounced pathway-specific long-term potentiation of SST-IPSC 

amplitude (SST-iLTP, 87% ± 6% control verses 139% ± 8% test pathway, n = 6, p 

< 0.01) (Fig. 1h). These findings indicate that high frequency inhibitory synaptic 

stimulation can induce inhibitory synaptic plasticity at PV and SST synapses, but 

the direction of plasticity is diametrically opposite for the two different synapses. 

A common feature of plasticity at inhibitory synapses is the requirement for 

postsynaptic depolarisation in conjunction with synaptic stimulation, despite the 

synaptic stimulation itself causing hyperpolarisation 15, 32-39, 41, 42. To test the 

requirement for depolarisation in PV-iLTD and SST-iLTP we delivered TBS whilst 

voltage clamping neurons at -60mV during the TBS protocol. Under these 

conditions neither PV-iLTD nor SST-iLTP were induced (Supplementary Fig. 2a,b; 

PV: 84% ± 8% control verses 91% ± 4% test pathway, n = 5, p > 0.05; SST: 96% 

± 6% control verses 106% ± 4% test pathway, n = 5, p > 0.05), indicating that both 

forms of inhibitory plasticity require coincident pyramidal neuron depolarisation 

and inhibitory input. 
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Figure 1: Somatically targeting PV and dendritically targeting SST inhibitory 
synapses undergo long-term synaptic plasticity.  

(a) Immunohistochemistry showing expression of PV (red) and ChR2 (green) in PV-ChR2 
mice. Histogram displaying mean ChR2 fluorescence expression levels in different 
hippocampal layers: Stratum Oriens (SO), Stratum Pyramidal (SP) Stratum Radiatum (SR) 
and Stratum Lacunosum Moleculare (SLM) (right top), ChR2 expression as a function of 
distance across hippocampal layers (right bottom). (b) Same as A but for SST-ChR2 mice. 
(c) Schematic and example IPSC traces highlighting the somatic and distal targeting of PV 
and SST synapses. (d) Summary of IPSC decay times for PV and SST IPSCs. (e) Summary 
of IPSC rise times for PV and SST IPSCs. (f) Schematic displaying the recording set up 
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for inhibitory plasticity experiments and the light induced theta burst (TBS) induction 
protocol. (g) TBS induced iLTD at PV synapses (left) average plasticity at control and test 
pathways (middle) and example traces before and after plasticity (right). (h) TBS induced 
iLTP at SST synapses (left) average plasticity at control and test pathways (middle) and 
example traces before and after plasticity (right). Data represent mean ± S.E.M statistical 
comparison via unpaired (d,e) and paired (g,h) t-tests where significance difference is 
indicated ( *p < 0.05 and **p<0.01). See also Supplementary Fig. 1 and Supplementary 
Fig. 2. 

 
PV and SST synapses undergo spike timing-dependent inhibitory plasticity 

During exploratory behaviour, neurons in the hippocampus are entrained to the 

theta rhythm 46 with defined populations of neurons, including different 

subpopulations of interneurons, firing action potentials at specific phases of the 

theta cycle 2-4. Having established a requirement for coincident synaptic activity 

and postsynaptic depolarisation for the induction of PV-iLTD and SST-iLTP we 

next sought to determine whether this was a Hebbian form of plasticity that could 

be induced by coincident pre- and post-synaptic action potentials and if so, what 

the precise spike timing requirements might be with respect to the preferred 

interneuron and pyramidal spiking phases of the theta cycle. The major subclasses 

of PV interneurons, basket cells and axo-axonic cells, fire on the descending phase 

of theta cycle roughly 60ms before pyramidal neurons, whilst both bistratified and 

OLM SST interneurons fire near coincident with pyramidal neurons at the trough 

of the cycle (Fig. 2a) 2-4, 6. We therefore tested the induction of inhibitory spike 

timing-dependent plasticity (iSTDP) using spike timings of -60 ms, 0 ms and +60 

ms to replicate spike patterns during exploratory behaviour and span the full width 

of a theta cycle (Fig. 2a). 
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Figure 2. PV and SST inhibitory synapses undergo spike timing-dependent plasticity. 

(a) Schematic highlighting the relative spike timing of PV and SST expressing interneurons 
during theta oscillations in relation to pyramidal neuron spiking (left). The three pairing 
protocols used for iSTDP experiments representing presynaptic stimulation and 
postsynaptic action potentials -60 ms pre before post, 0 ms pre and post together and +60 
ms post before pre (right). (b) -60 ms pre before post pairing induced iLTD at PV synapses 
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(left) average plasticity at control and test pathways (middle) and example traces for before 
and after plasticity (right). (c) 0 ms pre and post pairing induced iLTD at PV synapses (left) 
average plasticity at control and test pathways (middle) and example traces for before and 
after plasticity (right). (d) +60 ms post before pre pairing failed to induce plasticity at PV 
synapses (left) average plasticity at control and test pathways (middle) and example traces 
for before and after plasticity (right). (e) Summary of the inhibitory STDP window at PV 
synapses. (f-i) Same as b-e but for SST synapses. Data represent mean ± S.E.M statistical 
comparison via paired t-tests where significance difference is indicated ( *p < 0.05 and 
***p<0.001). Scale bars b-d: 200ms, 100pA f-h 200ms, 50pA.  
 

To test iSTDP, CA1 pyramidal neurons were voltage clamped at -50mV in the 

presence of AMPA and NMDA receptor blockers and light and electrically evoked 

IPSCs recorded as test and control synaptic pathways respectively. During the 

iSTDP protocol, recordings were switched to current clamp with the membrane 

potential maintained at -50 mV and single light evoked IPSCs were paired with a 

burst of 4 action potentials repeated 100 times at theta frequency (5 Hz). Stimulation 

of PV synapses with the theta-relevant -60 ms spike timing protocol resulted in 

pathway specific PV-iLTD (Fig. 2b, 95% ± 7% control verses 73% ± 7% test 

pathway, n = 7, p < 0.05). PV-iLTD was also observed when PV synapses were 

paired at 0 ms (Fig. 2c, 106% ± 3% control verses 72% ± 6% test pathway, n = 13, 

p < 0.001) but not at +60 ms (Fig. 2d, 105% ± 6% control verses 95% ± 8% test 

pathway, n = 8, p > 0.05) resulting in a pan-theta cycle iSTDP relationship 

incorporating iLTD but no iLTP (Fig. 2e). Surprisingly, SST synapses also 

displayed iLTD at -60 ms spike timings (Fig. 2f, 101% ± 7% control verses 70% ± 

5% test pathway, n = 6, p < 0.01) but contrastingly underwent iLTP when paired at 

0 ms (Fig. 2g, 104% ± 4% control verses 130% ± 13% test pathway, n = 11, p < 

0.05). At pairings of +60 ms SST synapses also exhibited no plasticity similar to 

PV synapses (Fig. 2h, 92% ± 8% control verses 90% ± 8% test pathway, n = 7, p > 

0.05). Therefore, SST synapses can undergo both iLTD and iLTP depending on the 

precise spike timing of pre- and post-synaptic action potentials in contrast to PV 
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synapses that only undergo iLTD. These results demonstrate that spike timings 

observed during theta rhythm entrainment lead to distinct rules for iSTDP at PV 

and SST synapses. Interestingly, we observed at both PV and SST synapses that 

pairing inhibitory inputs 60 ms after a burst of action potentials was insufficient to 

induce inhibitory plasticity, highlighting the importance of spike timing and the 

need for inhibitory synaptic input prior to pyramidal neuron activity.  

  

PV-iLTD requires postsynaptic activation of T-type Ca2+ channels and 

calcineurin. 

We next investigated the molecular mechanisms of spike timing-dependent PV-

iLTD. First, we found that presynaptic input or postsynaptic spikes alone were 

insufficient to induce iLTD at PV synapses. (Presynaptic input only: 100% ± 12% 

control verses 94% ± 6% test pathway, n = 6, p > 0.05; Postsynaptic spikes only: 

103% ± 10% control verses 94% ± 5% test pathway, n = 6, p > 0.05) (Fig. 3a,b). 

Consistent with PV-iSTDP and TBS induced PV-iLTD, these results show that 

coincident activity between PV interneurons and pyramidal neurons is required for 

PV-iLTD. Many forms of synaptic plasticity also depend on elevations in 

postsynaptic Ca2+ and we tested if this was the case for PV-iLTD by including the 

Ca2+ chelator BAPTA in the intracellular recording solution.  BAPTA prevented 

PV-iLTD demonstrating a dependence on postsynaptic Ca2+ (100% ± 10% control 

verses 95% ± 8% test pathway, n = 6, p > 0.05) (Fig. 3c).  
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 Figure 3. PV-iLTD 
requires activation 
of T-type VGCCs 
and calcineurin. 

(a) Presynaptic sti-
mulation of PV 
inputs alone induced 
no plasticity. (b) 
Postsynaptic spikes 
alone failed to indu-
ce plasticity at PV 
synapses. (c) Inclu-
sion of BAPTA in 
the internal recor-
ding solution occlu-
des PV iLTD upon 0 
ms pre and post 
pairing. (d) L-type 
calcium channel 
antagonist Nimodo-
pine doesn’t block 
PV iLTD upon 0 ms 
pre and post pairing. 
(e) T-type calcium 
channel antagonist 
Mibefradil occludes 
PV iLTD upon 0 ms 
pre and post pairing.  
(f) Calcineurin inhi-
bitor, FK506 occlu-

des PV iLTD upon 0 ms pre and post pairing. In panels a-f, average plasticity in control 
and test pathways is shown on the right. (g) Summary histogram displaying the level of 
plasticity under each experimental condition. Data represent mean ± S.E.M statistical 
comparison via paired t-tests (a-f) and one sample t-tests (g). Significant difference is 
indicated ( *p < 0.05, **p<0.01 and ***p<0.001). See also Supplementary Fig. 3. 
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Important sources of postsynaptic Ca2+ for the induction of excitatory and inhibitory 

synaptic plasticity are NMDA receptors and voltage-gated Ca2+ channels (VGCCs) 

41, 47-49. Since NMDA receptors are blocked in our experiments, we investigated the 

role of VGCCs in PV-iLTD. L-type VGCCs are the most prominent postsynaptic 

VGCCs, however, the L-type VGCC inhibitor nimodipine (20 µM) failed to block 

PV-iLTD (97% ± 4% control verses 82% ± 3% test pathway, n = 10, p < 0.01 (Fig. 

3d). We next tested the role of T-type VGCCs using the inhibitor mibefradil (5 µM) 

which blocked PV-iLTD (92% ± 5% control verses 92% ± 3% test pathway, n = 6, 

p > 0.05 (Fig. 3e) and this was confirmed with the use of another T-type VGCC 

inhibitor ML218 (3 µM) 50 (99.4% ±5.3% control verses 93.8 ± 7.2% test pathway, 

n = 8, p > 0.05) (Supplementary Fig. 3e). Interestingly, T-type VGCCs have a low 

voltage threshold for activation and predominantly reside in an inactivated state at 

resting membrane potentials 51. They therefore require hyperpolarisation to relieve 

voltage inactivation (de-inactivation), which corresponds precisely with the 

requirement for inhibitory synaptic input prior to postsynaptic depolarisation 

resulting in synapse specificity of PV-iLTD. These findings highlight a mechanism 

by which inhibitory synapses can provide a synapse-specific source of Ca2+ to 

induce inhibitory plasticity. 

The downstream effects of Ca2+ can lead to release of retrograde signalling 

molecules which regulate presynaptic release of GABA 36, 40 or it can signal 

postsynaptically to reduce GABAA receptor function 32. We therefore tested 

whether previously described retrograde signalling molecules nitrous oxide 40 and 

endocannabinoids 36 are involved in PV-iLTD. The nitrous oxide pathway 

antagonist ODQ (5 µM) and the CB1 receptor antagonist AM251 (1 µM) both failed 

to prevent PV-iLTD (Supplementary Fig. 3c,d and Fig. 3g, ODQ: 100% ± 8% 

control verses 78% ± 7% test pathway, n = 6, p < 0.05; AM251: 98% ± 8% control 

verses 73% ± 10% test pathway, n = 5, p < 0.05). An additional candidate 

mechanism could be the activation of the G-protein coupled GABAB receptor since 
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this has been shown to mediate a form of iLTD 38, however the GABAB receptor 

antagonist CGP 55845 (1 µM) also failed to prevent PV-iLTD (Supplementary Fig. 

3b and Fig. 3g, 101% ± 10% control verses 71% ± 7% test pathway, n = 7, p < 

0.05). One postsynaptic signalling pathway that has been implicated in iLTD is 

activation of the phosphatase calcineurin 32, 52, 53. Application of the calcineurin 

inhibitor FK506 (10 µM) prevented PV-iLTD (110% ± 7% control verses 105% ± 

3% test pathway, n = 7, p > 0.05) (Fig. 3f) indicating a postsynaptic target for Ca2+ 

signalling. In summary, PV-iLTD requires coincident pre- and post-synaptic 

activity, opening T-type VGCC to provide a postsynaptic Ca2+ signal that leads to 

activation of calcineurin to induce LTD at PV inhibitory synapses (Fig. 3g, 5a). 

 

SST-iLTP requires postsynaptic activation of L- and T-type Ca2+ channels and 

CAMKII. 

The molecular mechanisms of spike timing-dependent SST-iLTP were next 

investigated. Similar to PV-iLTD, and consistent with SST-iSTDP and TBS 

induced SST-iLTP, we found that SST-iLTP requires coincident pre- and post-

synaptic activation as neither SST inputs nor postsynaptic action potentials alone 

were able to induce SST-iLTP (Presynaptic input only: 107% ± 6% control verses 

91% ± 11% test pathway, n = 6, p > 0.05; Postsynaptic spikes only: 94% ± 5% 

control verses 100% ± 10% test pathway, n = 7, p > 0.05) (Fig. 4a,b). The inclusion 

of the Ca2+ chelator BAPTA also prevented the induction of iLTP at SST synapses 

(97.44% ± 10% control verses 92% ± 6% test pathway, n = 6, p > 0.05) (Fig. 4c), 

indicating SST-iLTP requires postsynaptic Ca2+. Again, we assessed if L- and/or T-

type VGCCs could provide the source of postsynaptic Ca2+ required for SST-iLTP. 

Interestingly, L-Type VGCC antagonist nimodipine and T-type VGCC antagonists 

mibefradil and ML218 both blocked SST-iLTP (nimodipine: 93% ± 7% control 

verses 101% ± 7% test pathway, n = 5, p > 0.05; mibefradil: 99% ± 9% control 
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verses 101% ± 10% test pathway, n = 7, p > 0.05; ML218: 113% ± 8% control 

verses 100% ± 6% test pathway, n = 7, p > 0.05) (Fig. 4d,e,h, Supplementary Fig. 

4b) showing SST-iLTP requires activation of L-type and T-type VGCCs with the 

latter providing a synapse specific source of Ca2+ similar to PV-iLTD.   

Figure 4. SST-iLTP 

requires activation 

of L-type and T-type 

VGCCs and 

CAMKII. 

(a) Presynaptic sti-
mulation of SST 
inputs alone failed to 
induce plasticity. (b) 
Post synaptic spikes 
alone failed to induce 
plasticity at SST 
synapses. (c) Inclu-
sion of BAPTA in the 
internal recording so-
lution occludes SST 
iLTP upon 0 ms pre 
and post pairing. (d) 
L-type calcium chan-
nel antagonist Nimo-
dopine occludes SST 
iLTP upon 0 ms pre 
and post pairing. (e) 
T-type calcium chan-
nel antagonist Mibe-
fradil occludes SST 
iLTP upon 0 ms pre 
and post pairing. (f) 

Calcineurin inhibitor, FK506 fails to block SST iLTP upon 0 ms pre and post pairing. (g) 
CAMKII inhibitor KN-62 occludes SST iLTP upon 0 ms pre and post pairing. In panels a-
g, average plasticity in control and test pathways is shown on the right. (h) Summary 
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histogram displaying the level of plasticity under each experimental condition. Data 
represent mean ± S.E.M statistical comparison via paired t-tests (a-g) and one sample t-
tests (h). Significant difference is indicated ( *p < 0.05). See also Supplementary Fig. 4. 

 

Since calcineurin is required for PV-iLTD, we next tested the possible involvement 

of calcineurin in SST-iLTP. However, inhibition of calcineurin failed to block SST-

iLTP (108% ± 5% control verses 123% ± 8% test pathway, n = 7, p < 0.05) (Fig. 

4f,h). As SST-iLTP requires both L-type and T-type VGCCs we hypothesised that 

SST-iLTP might be mediated by a molecular pathway engaged by high levels of 

postsynaptic Ca2+. CAMKII is one such candidate and has been shown to mediate 

potentiation of inhibitory synapses including SST synapses within the cortex 41 and 

other inhibitory synapses within the hippocampus 54, 55 resulting in postsynaptic 

changes in GABAA receptors. We therefore tested the involvement of CAMKII 

activation on hippocampal SST-iLTP and found that the CAMKII inhibitor KN-62 

(3 µM) prevented SST-iLTP (115% ± 3% control verses 102% ± 6% test pathway, 

n = 7, p > 0.05) (Fig. 4g,h), consistent with its role in mediating iLTP. In summary, 

SST-iLTP requires the coincident activation of SST synapses and pyramidal 

neurons, which activates L-type and T-type VGCCs providing a Ca2+ source able 

to activate CAMKII to induce SST-iLTP (Fig. 5b). 

SST and PV plasticity shape pyramidal neuron responses to excitatory input 

pathways. 

To understand the potential implications of PV-iLTD and SST-iLTP on network 

integration of inputs to a pyramidal neuron, we implemented a multi-compartment 

model of a CA1 pyramidal neuron in the presence of proximal (PV) and distal (SST) 

inhibition (Fig. 6a). The simulated CA1 pyramidal neuron receives distal excitatory 

input from entorhinal inputs via the temporoammonic (TA) pathway and proximal 

excitatory input from CA3 inputs via the Schaffer collateral (SC) pathway. We also 
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implemented rate-based inhibitory plasticity rules derived from our experiments 

under the most physiologically-relevant conditions (SST-iLTP and PV-

iLTD).Inhibitory synaptic weights onto pyramidal cells were therefore updated 

following a Hebbian plasticity rule in which coincident pre- and postsynaptic 

activity leads to iLTD for PV synapses and iLTP for SST synapses. We then 

simulated activity within the network before and after the induction of inhibitory 

plasticity and compared the correlation between Schaffer collateral or 

temporoammonic inputs and pyramidal cell activity at these two stages. As 

expected, the correlation between Schaffer collateral inputs and CA1 pyramidal cell 

activity increased and the correlation between temporoammonic inputs and CA1 

pyramidal cell activity decreased following the induction of interneuron plasticity 

(Fig. 6b). Therefore, if we assume that SST-iLTP occurs primarily at distal dendritic 

locations, interneuron-specific plasticity is a potential mechanism to change CA1 

network state from being driven by both temporoammonic and Schaffer collateral 

inputs to being primarily driven by Schaffer collateral inputs.  

 Figure 5. PV-iLTD and 
SST-iLTP mechanisms. 

(a) Illustration of PV-iLTD 
mechanism. Hyperpolarisa-
tion by GABAA receptor 
currents relieves T-type 
VGCCs from voltage 
dependent inactivation (de-
inactivation). Back-
propagating action potentials 
then activate T-type VGCCs 
providing an inhibitory 
synapse specific source of 

Ca2+ to activate calcineurin resulting in LTD at PV synapses. (b) Illustration of SST-iLTP 
mechanism. Similar to PV-iLTD but requiring activation of T-type and L-type VGCCs that 
activates CAMKII resulting in LTP at SST synapses.  
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We next incorporated functionally-relevant feedforward and feedback connectivity 

for PV and SST interneurons within the CA1 network. PV interneurons receive 

strong feedforward innervation from the Schaffer collateral pathway but relatively 

limited input from the temporoammonic pathway and some feedback input from 

CA1 pyramidal neurons 7, 9, 43, 56. In contrast, distally targeting SST interneurons 

receive almost no feedforward input and are driven by feedback input from CA1 

pyramidal neurons 9, 43, 57, 58. There is also evidence that bistratified interneurons 

that target inhibition to proximal dendrites in Stratum Radiatum and express both 

PV and SST can be feedforward in the Schaffer collateral pathway and also 

feedback within CA1 9, 43.  

Using these various functional connectivity arrangements, we first investigated the 

consequences of PV-iLTD on CA1 pyramidal cell output. For Schaffer collateral 

inputs with feedforward PV interneurons, PV-iLTD led to an increase in CA1 

pyramidal cell activity due to a reduction in feedforward inhibition (Fig. 6c). The 

same result was achieved if we included feedback inhibition from PV interneurons 

(Supplementary Fig. 5a). When we considered the temporoammonic pathway 

without feedforward PV interneurons, PV-iLTD did not change pyramidal cell 

output (Fig. 6d). However, if we incorporated PV interneurons as feedforward and 

feedback inhibition, PV-iLTD led to an increase in pyramidal cell activity in 

response to temporoammonic stimulation (Supplementary Fig. 5b). Therefore, our 

model predicts that CA1 pyramidal cell activity in response to Schaffer collateral 

stimulation should increase following PV-iLTD whereas it is likely to remain 

unchanged in response to stimulation of the temporoammonic pathway unless PV 

interneurons participating in feedforward inhibition of the temporoammonic 

pathway or feedback inhibition are significantly activated and undergo PV-iLTD.  
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Figure 6. PV and SST plasticity differentially regulate Schaffer collateral and 
temporoammonic excitation of CA1 pyramidal neurons. 

(a) Diagram of a simulated, rate-based CA1 pyramidal cell before and after the induction 
of inhibitory plasticity (iPlas). A single two-compartment neuron receives inputs from four 
sources: distally-targeting temporoammonic, proximally-targeting Schaffer collaterals, 
distally-targeting inhibition from SST interneurons, and proximally-targeting inhibition 
from PV interneurons. iPlas leads to PV-iLTD and SST-iLTP. (b) Correlation between 
Schaffer collateral activity and CA1 somatic activity (left) and temporoammonic activity 
and CA1 somatic activity (right) before and after iPlas at PV and SST synapses (PV-iLTD 
and SST-iLTP). (c-f) CA1 somatic activity before and after iPlas (either PV-iLTD or SST-
iLTP) under the individual stimulation of either Schaffer collaterals or temporoammonic 
inputs. (c) Schaffer collateral-driven CA1 somatic activity is enhanced upon PV-iLTD. (d) 
CA1 somatic activity driven by temporoammonic input after PV-iLTD, is unchanged. (e) 
CA1 somatic activity driven via Schaffer collateral input after SST-iLTD is unchanged. (f) 
SST-iLTP leads to a reduction in CA1 somatic activity in response to temporoammonic 
input. Data represent mean ± S.E.M statistical comparison via unpaired t-tests. Significant 
difference is indicated ( *p < 0.05). See also Supplementary Fig. 5. 
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We next investigated the implications of SST-iLTP on CA1 pyramidal cell output. 

Pyramidal cell activity in response to Schaffer collateral stimulation was not 

affected by SST-iLTP if SST synapses are located at the pyramidal cell’s distal 

dendritic compartment (Fig. 6e) and this was true regardless of whether SST 

interneurons were activated in feedforward or feedback fashion (Supplementary 

Fig. 5c). Contrary to Schaffer collateral stimulation, temporoammonic-induced 

CA1 pyramidal cell activity was reduced after SST-iLTP (Fig. 6f) and this effect 

was stronger if SST interneurons were considered to be feedforward as well as 

feedback (Supplementary Fig. 5d). In summary, our model predicts that SST-iLTP 

does not affect Schaffer collateral-induced CA1 pyramidal cell activity whereas 

SST-iLTP decreases activity induced by temporoammonic stimulation.  

If we assume the functional connectivity shown in Figures 6c-f, our model 

simulations therefore predict that PV-iLTD will increase CA1 pyramidal neuron 

responses to Schaffer collateral but not temporoammonic inputs and that SST-iLTP 

will decrease CA1 pyramidal neuron responses to temporoammonic but not 

Schaffer collateral inputs.   

To test these predictions, we experimentally investigated the impact of PV-iLTD 

and SST-iLTP on the probability of spike generation in CA1 pyramidal neurons. 

By stimulating either the Schaffer collateral or temporoammonic pathways, action 

potential probability was recorded in response to 10 consecutive EPSPs where the 

stimulation intensity was set such that the baseline action potential probability for 

each EPSP was ~50%. Upon Schaffer collateral stimulation, PV-iLTD (0 ms 

timing) led to an increase in the spike probability (0.4 ± 0.07 baseline verses 0.78 

± 0.05 post plas, n = 6, p < 0.05) (Fig. 7a) that mirrored the timecourse of PV-iLTD, 

but for temporoammonic pathway stimulation spike probability was unaltered (0.44 
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± 0.04 baseline verses 0.47 ± 0.03 post plas, n = 6, p > 0.05) (Fig. 7b). Taken 

together these results confirm the predictions from the model and suggest that in 

our experiments the majority of PV interneurons recruited by Schaffer collateral 

stimulation are feedforward and undergo PV-iLTD whereas few PV interneurons 

are recruited by temporoammonic stimulation or via feedback excitation from CA1 

pyramidal neurons. We next conducted experiments to examine the impact of SST-

iLTP on spike generation. We found that the increase in SST inhibition with SST-

iLTP had little effect on action potential generation from Schaffer collateral 

stimulation (0.53 ± 0.04 baseline verses 0.5 ± 0.08 post plas, n = 8, p > 0.05) (Fig. 

7c) but led to a robust reduction in spike generation from the temporoammonic 

pathway (0.52 ± 0.03 baseline verses 0.27 ± 0.09 post plas, n = 6, p < 0.05 (Fig. 

7d). Again, these results confirm the predictions from the model and suggest that in 

our experiments SST interneurons are primarily feedback and target distal dendritic 

regions of pyramidal neurons.  

Taken together, these results demonstrate that long-term inhibitory plasticity 

changes the responses of CA1 pyramidal neurons prioritising inputs from the 

Schaffer collateral pathway over those from the temporoammonic pathway. 

Increased distal dendritic inhibition driven by SST-iLTP will also inhibit the 

induction of excitatory synaptic plasticity 44, 59 with important functional 

implications for the formation and stability of place cells. 
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Figure 7. CA1 output driven by Schaffer collateral or temporoammonic inputs is 
differentially regulated by PV-iLTD and SST-iLTP. 

(a) Diagram showing the experimental design where electrically stimulated Schaffer 
collaterals evoke action potentials in CA1 pyramidal neurons with example current-clamp 
traces before and after induction of PV iLTD (0 ms pre and post pairing) (top). Spike 
probability timecourse (left) and average spike probability during baseline (BL) and 20-25 
minutes after induction of PV iLTD (Plas) (right). (b) Same as A but for the stimulation of 
the temporoammonic pathway. (c) Diagram showing electrical stimulation of Schaffer 
collaterals with example traces before and after induction of SST iLTP (0 ms pre and post 
pairing) (top). Spike probability timecourse (left) and average spike probability during 
baseline (BL) and after SST iLTP (Plas) (right). (d) same as C but for stimulation of the 
temporoammonic pathway. Data represent mean ± S.E.M statistical comparison via paired 
t-tests between baseline and post plasticity where significance difference is indicated ( *p 
< 0.05). Scale bars: 100ms, 20mV. 
 

Inhibitory plasticity at PV and SST synapses provides a mechanism for place 

cell stability across multiple environments. 

We next explored the implications of long-term inhibitory plasticity on place cell 

physiology within hippocampal networks. The long-term nature of inhibitory 

plasticity suggests that its impact on place cell physiology will be evident as an 

animal traverses different environments. Key features of place cells are: (i) that in 

multiple different environments each place cell may represent distinct locations or 

switch to be silent, and (ii) that within any single environment place cell 

representations are broadly stable upon repeated exposures to that environment 22, 

60. However, these two features are somewhat contradictory since they require place 

cells to respond to different inputs without interference 23.  

To investigate the functional implications of interneuron subtype-dependent long-

term plasticity for place cell physiology in multiple different environments, we 

simulated a CA1 network receiving place-tuned input while an animal explored first 

an annular track (environment A) and then a different track (environment B) before 

finally returning to the original familiar environment A’ (Fig. 8a). In our 
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simulations, CA1 pyramidal neurons receive inputs from Schaffer collaterals, 

temporoammonic pathway, SST interneurons and PV interneurons (Fig. 8b). 

Schaffer collateral inputs are spatially tuned while the other inputs are considered 

spatially uniform for simplicity. Schaffer collateral inputs are plastic and follow a 

Hebbian-type plasticity rule which depends on coincident pre- and post-synaptic 

activation. Following recent evidence that place fields are formed by synaptic 

plasticity at Schaffer collateral synapses following closely-timed temporoammonic 

and Schaffer collateral inputs 19, 61, we implemented the postsynaptic term of the 

Hebbian plasticity rule to be the product of the activities of the distal and proximal 

compartments of our two-compartment neuron model (see Methods). SST and PV 

inhibitory synapses onto pyramidal cells also follow a rate-based Hebbian-type 

plasticity rule inspired by the physiologically-relevant scenarios from our 

experimental data (as for Figure 6). Coincident pre- and post-synaptic activity leads 

to iLTP in the case of SST synapses, whereas pre- and post-synaptic coactivation 

leads to iLTD in the case of PV synapses.  

For any trial simulation of the network, the simulated CA1 pyramidal neuron 

rapidly developed a place field at a random location within environment A that 

remained stable for subsequent laps of the track (Fig. 8b). These place fields were 

driven by rapidly evolving synaptic weight changes (Supplementary Fig. 6). When 

the track was switched to environment B, the indexes of Shaffer collateral inputs 

were shuffled. In this environment, the CA1 pyramidal neuron occasionally formed 

a new place field but was more often silent due to an inability to align and adapt 

synaptic weight increases after the inputs were shuffled (Fig. 8b and Supplementary 

Fig. 6a). On returning to the familiar environment A’, the initial place field location 

was reinstated immediately (Fig. 8b,d,e). These results are qualitatively in line with 

the experimentally observed physiology of place cell activity in different 

environments 22. 
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To determine the role of inhibitory plasticity, we first removed PV-iLTD and SST-

iLTP from the model. Simulations of this model lacking inhibitory plasticity 

showed similar place cell activity in environment A. In contrast, when the track was 

switched to environment B without inhibitory plasticity engaged, synaptic weight 

changes drove the generation of new place fields in every trial and the overall 

spiking rates were not reduced (Fig. 8c and Supplementary Fig. 6b). Furthermore, 

on returning to environment A, the place fields were no longer reinstated but instead 

new representations evolved (Fig. 8c,d,f). Thus, without inhibitory plasticity novel 

environments generate interference and the network is no longer capable of creating 

stable place field representations. 

We next sought to distinguish the roles of PV-iLTD and SST-iLTP within this 

network. Simulations of a model with only PV-iLTD (SST-iLTP OFF) showed 

similar lack of place cell stability across environments A-B-A’ to simulations with 

no inhibitory plasticity and overall spiking rates were unchanged in environments 

B and A’ due to prior spiking rate saturation (Fig. 8g,i,j). With implementation of 

only SST-iLTP (PV-iLTD OFF), place cell stability across environments A-B-A’ 

was reinstated but overall spiking rates were reduced compared to simulations with 

full inhibitory plasticity (Fig. 8i,i,k).  

These circuit-level modelling data show how long-term inhibitory plasticity can 

provide a mechanism for the experimentally observed phenomenon that newly 

formed place cells are stable with repeated exposure to an environment and don’t 

undergo interference from experiencing other environments. This stability is 

principally due to SST-iLTP which also reduces the efficiency of forming new 

place fields in different environments. The overall spike output of place cells is 

maintained by PV-iLTD which counteracts the reduction in spike output caused by 

SST-iLTP. 
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Figure 8. PV and SST plasticity ensure place cell stability and fidelity across multiple 
environments.  
(a) Simulation protocol. An animal explores environment A for 10 laps. It is then moved 
to environment B and explores it for 15 laps. Finally, the animal is moved back to the first 
environment (A’) and is allowed to run for another 10 laps. Throughout this protocol, two-
compartment CA1 pyramidal cells are simulated receiving spatially-tuned Schaffer 
collateral inputs, temporoammonic input, and PV and SST inhibitory inputs. Schaffer 
collateral synapses follow a Hebbian-type excitatory plasticity dependent on the co-
activation of dendritic and somatic compartments (see methods). PV and SST synapses 
undergo rate-based iPlas (PV-iLTD and SST-iLTP). We simulate the switch from 
environment A to environment B by randomly shuffling the identity of the SC inputs to the 
CA1 pyramidal neuron. Schematic depictions of environments A and B indicate their 
cyclical nature. (b) Diagram of simulated CA1 pyramidal cell and examples of somatic 
activity during exploration for iPlas ON. With iPlas (PV-iLTD and SST-iLTP) ON, place 
field location formed in environment A (top & bottom panel) remains stable after exposure 
to novel environment B (middle panel). (c) Diagram of simulated CA1 pyramidal cell and 
examples of somatic activity during exploration for iPlas OFF. Location of place fields 
formed in environment A are not maintained after exposure to a novel environment. (d) 
Spatial correlation between environment A before and after exposure to novel environment 
is maintained when iPlas is present but is reduced without iPlas. (e) When iPlas is ON, 
average somatic activity of recently formed place cell is significantly reduced in new 
environment B but returns to higher levels when the animal returns to environment A’. (f) 
When iPlas is OFF, average somatic activity remains high in both environments. (g) When 
SST-iLTP is turned off, leaving just PV-iLTD, place cell locations are not retained after 
exposure to a new environment. (h)  When PV-iLTD is turned off, leaving just SST-iLTP, 
place cell locations are maintained across multiple environments. (i)  Spatial correlation 
between environment A before and after exposure to novel environment is maintained 
when only PV-iLTD is turned off but is reduced when only SST-iLTP is turned off. (j) 
SST-iLTP is turned off, leaving just PV-iLTD, average somatic activity remains high in 
both environments. (k) When PV-iLTD is turned off, leaving just SST-iLTP, average 
somatic activity is lower and thus less robust. Data represent mean ± S.E.M statistical 
comparison via unpaired t-tests. Significant difference is indicated ( *p < 0.05). See also 
Supplementary Fig. 6. 
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Discussion 

Inhibitory GABAergic synapses are known to undergo long-term plasticity but very 

few studies have defined which subpopulations of inhibitory interneurons are 

engaged and whether plasticity is induced by physiological firing patterns. This is 

important since distinct interneuron subtypes play highly specific roles within 

neuronal networks 1 and therefore plasticity at one inhibitory synapse may have 

very different effects to another. In this study we address this complexity and show 

that proximal and distal dendritically targeting interneuron synapses on CA1 

pyramidal neurons have distinct plasticity rules within the hippocampus. These 

inhibitory synapses undergo homosynaptic plasticity in a Hebbian manner relying 

on the coincident activation of interneurons and pyramidal neurons (Fig. 1,2). This 

coincident activity enables recruitment of VGCCs to provide local sources of Ca2+ 

able to alter inhibitory synapse strength (Fig. 3,4,5).  

By computationally modelling the effects of inhibitory plasticity at a single neuron 

level, we predicted that altered inhibition at distinct dendritic compartments 

dramatically alters pyramidal neuron output (Fig. 6). We confirmed this 

experimentally showing action potential generation from proximally and 

dendritically targeting excitatory inputs is modulated by inhibitory plasticity in 

corresponding dendritic compartments (Fig. 7). 

By expanding our computational model, we show how plasticity at these distinct 

inhibitory synapses can play roles in the stabilisation of place cell activity within 

the hippocampus (Fig. 8). This inhibitory plasticity stabilisation ensures place cell 

fidelity and resilience to interference from activity in multiple different 

environments. 

  

Inhibitory plasticity at distinct inhibitory synapses 
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The mechanisms and network implications of long-term plasticity at glutamatergic 

synapses have been extensively characterised. However, less attention has been 

paid to long-term plasticity at inhibitory synapses which are known to undergo 

dynamic changes in efficacy 1, 27, 28. An array of unique mechanisms discovered for 

inhibitory plasticity suggests a lack of uniformity across the multiple subtype-

specific inhibitory synapses.  

Within the hippocampus, synapses from CCK expressing proximally targeting 

basket cells onto CA1 pyramidal neurons undergo an endocannabinoid mediated 

iLTD 36. Here, mobilisation of retrograde endocannabinoid signalling results in 

long term suppression of GABA release 36, 62. We demonstrate that a similar 

morphological subtype of interneuron, the proximally targeting PV interneurons 

can also undergo iLTD but in an endocannabinoid independent mechanism (Fig. 3), 

highlighting the diversity of plasticity mechanisms even among interneurons with 

similar morphology 63.  

Other long-term inhibitory plasticity mechanisms include a persistent shift in the 

chloride reversal potential caused by coincident activity-dependent modulation of 

the KCC2 chloride transporter 39, 64, 65. Interestingly, in the hippocampus this iLTD 

is reported in the feedforward inhibitory pathway for Schaffer collateral innervation 

of CA1, commensurate with PV basket cell innervation, and is dependent on L-type 

VGCC and NMDA receptor activation. An alternative set of mechanisms for PV 

synapse plasticity is reported in the auditory cortex where PV synapses undergo 

bidirectional iSTDP via BDNF and GABAB dependent mechanisms 38. However, 

these mechanisms do not appear to apply to PV-iLTD in the hippocampus and 

moreover, we found no evidence for PV-iLTP. The lack of PV-iLTP is also reported 

in the prefrontal cortex where SST but not PV synapses undergo iLTP 41. This 

suggests that inhibitory plasticity rules may not be conserved across brain regions 

or that PV synapses undergo multiple forms of inhibitory plasticity. In contrast, the 
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mechanism for iLTP at SST synapses may be broadly conserved, at least between 

prefrontal cortex and hippocampus, where activation of CAMKII via Ca2+ influx to 

dendrites is found to induce iLTP 41. The mechanistic differences here relate to the 

source of Ca2+ influx, arising from NMDA receptors in prefrontal cortex and L- and 

T-type VGCCs in hippocampus. We further show that hippocampal SST synapses 

can be depressed by non-coincident pre- and post-synaptic spike timing and it will 

be interesting to find out if this is also the case for synapses in prefrontal cortex.  

 

Inhibitory plasticity relies on recruitment of T-type VGCC. 

We show that plasticity at both PV and SST synapses exhibits several key 

properties: (i) it depends on the coincident activity of inhibitory synapses and 

postsynaptic action potentials, (ii) it is synapse specific, and (iii) it relies on 

postsynaptic Ca2+ signalling. These properties are apparently contradictory since 

synapse-specific inhibition is hyperpolarising which usually inhibits Ca2+ influx 

and signalling. We show that this apparent contradiction is resolved by recruitment 

of T-type VGCCs. At resting membrane potentials, T-type VGCCs are in an 

inactivated state, which can be de-inactivated by a hyperpolarising membrane 

potential 51, 66, this activation profile lends itself perfectly to recruitment by 

GABAergic synapse activity. Importantly, we show that pairing action potentials 

before inhibitory input or inhibitory input alone is insufficient to induce inhibitory 

plasticity. These observations suggest GABA synapse dependent de-inactivation of 

T-type VGCC is required prior to action potential activation of T-type VGCC, 

leading to a local synapse specific source of Ca2+ to drive inhibitory plasticity. 

Indeed, there is considerable evidence linking GABA signalling and T-type VGCC 

activation. In the cerebellum and thalamus where T-type VGCCs are widely 

expressed, T-type VGCCs regulate inhibitory synapse strength 64, 67-69. In the 

thalamus GABAergic synapses onto thalamocortical neurons de-inactivate T-type 
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VGCCs and reduce inhibitory synaptic strength 68. This thalamocortical inhibitory 

plasticity is also dependent on the interaction of calcineurin with GABAA receptors, 

similar to findings in the hippocampus 32, 52 and those we present here.  

A striking finding in our results shows that identical induction protocols PV and 

SST synapses induce opposing forms of plasticity via the differential recruitment 

of calcineurin and CaMKII. Since CaMKII requires higher [Ca2+] to activate, the 

differential recruitment of calcineurin and CaMKII could be explained if 

postsynaptic [Ca2+] is higher at SST vs PV inhibitory synapses. In support of this 

hypothesis, we show that SST-iLTP relies on L-type as well as T-type VGCCs 

suggesting a higher level of Ca2+ entry. Alternatively, expression levels of VGCCs 

may increase at more distal dendritic locations and there is evidence that T-type 

VGCC expression is higher in dendritic regions of pyramidal neurons causing 

differential regulation of glutamatergic plasticity along the proximal-distal axis of 

pyramidal neurons 70.  

 

The consequences of inhibitory synaptic plasticity on hippocampal network 

function. 

Our data support two separate functions of interneuron subtype-specific inhibitory 

plasticity on hippocampal network function. Firstly, increasing inhibitory inputs to 

distal dendritic locations on CA1 pyramidal neurons whilst reducing inhibition at 

proximal locations prioritises response to inputs from CA3 pyramidal neurons via 

the Schaffer collateral pathway over those from entorhinal neurons via the 

temporoammonic pathway. Secondly, in our computational model, increasing 

inhibition at distal dendritic locations inhibits the induction of synaptic plasticity at 

excitatory synapses 44, 59 thereby reducing adaptability of hippocampal 

representations.  
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Interneuron-specific inhibitory plasticity at proximal and distal dendritic locations 

coupled with the anatomical arrangement of Schaffer collateral inputs to proximal 

dendrites and temporoammonic inputs to distal dendrites intuitively predicts that 

inhibitory plasticity will rebalance the weighting of excitatory inputs in favour of 

Schaffer collaterals. We formalised these predictions using computational 

modelling of the CA1 network and then tested them experimentally. We confirmed 

that PV-iLTD increases CA1 pyramidal neuron responses to Schaffer collateral 

stimulation whereas SST-iLTP decreases responses to temporoammonic 

stimulation. Our combination of computational modelling and experimental 

approaches also showed that the majority of PV interneurons activated by our 

optogenetic approach are feedforward in the Schaffer collateral pathway but not the 

temporoammonic. Furthermore, our data indicate a limited feedback role for the PV 

interneurons we activate since PV-iLTD did not impact CA1 pyramidal neuron 

spike output in response to temporoammonic input. This broadly corresponds to 

anatomical and functional data for PV interneurons in the hippocampus 7, 9, 43, 56. In 

contrast, the SST interneurons we stimulate are distally targeting, receive almost no 

feedforward input and are driven by feedback input from CA1 pyramidal neurons 

and therefore have all the hallmarks of OLM cells 9, 43, 57, 58. 

The implications of reprioritising CA3 input over entorhinal input to CA1 are not 

straightforward but parallels can be drawn with the short-term reprioritisation 

caused by neuromodulator or thalamocortical inputs in cortical circuits 59, 71-73. 

Often these mechanisms also involve reconfiguration of inhibitory interneuron 

circuits which are proposed to prioritise input of new sensory information over 

internal representation on short timescales including theta cycle timescales 74, 75. 

The long-term inhibitory plasticity described here is predicted to achieve the reverse 

outcome prioritising previously learnt associations and making the network less 

receptive to new information.  
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Such a scenario would fit with the second role of inhibitory plasticity inhibiting 

excitatory plasticity and therefore the formation of new representations. SST 

inhibitory input regulates dendritic excitability and therefore NMDA receptor 

activation and excitatory synaptic plasticity 15. Long-term plasticity of SST 

synapses will change the ability for CA1 pyramidal neurons to undergo induction 

of excitatory LTP 44, 59. We show that this has major implications for the stability 

and flexibility of place cells since their formation and remapping depends on 

excitatory synaptic plasticity driven by dendritic spikes generated by coincident 

Schaffer collateral and temporoammonic inputs 19, 61, 76. SST-iLTP prevents place 

cell representations in environment A being disrupted by different representations 

in environment B and indeed reduces the ability for place cells to be active in 

multiple environments. Interestingly, short-term changes in PV and SST 

interneuron firing rates in response to novel environments may provide a 

countermechanism to enable new place fields to be formed in novel environments 

25. Our data and modelling therefore provide a mechanism to reconcile the observed 

stability of place cells across time and their ability to remap in distinct environments 

22. 

In summary, our data reveal a novel form of inhibitory plasticity in the 

hippocampus induced by physiological patterns of firing. It has major implications 

for hippocampal function controlling input-output relationships in CA1 and 

providing a mechanism to explain a long-standing conundrum regarding place cell 

stability versus flexibility.  
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Methods 

Animal strains and breeding 

All procedures and techniques were conducted in accordance to the UK animals 

scientific procedures act, 1986 with approval of the University of Bristol ethics 

committee. To express ChR2 within either PV,SST or Chrna2 expressing 

interneurons C57/Bl6 homozygous Ai32 mice (Gt(ROSA)26Sortm32(CAG-

COP4*H134R/EYFP)Hze Jax Stock number: 024109) were bred with either homozygous 

PV-Cre (Pvalbtm1(cre)Arbr/J Jax stock number: 017320), SST-Cre (Ssttm2.1(cre)Zjh/J Jax 

stock number: 013044) or Chrna2-cre 44 mice creating heterozygous offspring with 

interneuron specific expression of ChR2. For brain slice electrophysiology both 

male and female mice were used.  

Brain slice preparation 

Brain slices were prepared from 4-9 week old mice following cervical dislocation 

and decapitation and brains removed and dissected in ice cold cutting solution 

containing in mM: 205 Sucrose, 10 Glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 

0.5 CaCl2, 5 MgCl2, constantly bubbled with 95% O2 and 5% CO2. Horizontal brain 

slices, 400 µM thick containing the hippocampus were prepared via a vibratome 

(Leica LS1200). Brain slices were transferred to ACSF containing in mM: 124 

NaCl, 3 KCl, 24 NaHCO3, 1.25 NaH2PO4 10 Glucose, 2.5 CaCl2, 1.3 MgCl2, 

constantly bubbled with 95% O2 and 5% CO2. and incubated at 35 °C for 30 min 

before being stored at room temperature for at least 30 min before experimentation. 

Whole cell patch clamp recordings. 

Brain slices were transferred to a submerged slice recording chamber with a 

constant 2.5 ml/min flow of ACSF (see above), held at 32 °C. Inhibitory plasticity 

experiments were recorded in the presence of DAP5 (50 µM) and NBQX (20 µM) 

to isolate GABAergic events. Slices were visualised using infrared DIC optics using 
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a Scientifica SliceScope microscope. Patch electrodes with a resistance of 3-6 MΩ 

were pulled from borosilicate glass capillaries using a horizontal puller (P-97, 

Sutter-instruments) and filled with internal solution. For whole cell voltage clamp 

recordings where neurons were held at 0 mV internal solution consisted of in mM: 

130 Cs-MeSO4, 4 NaCl, 10 HEPES, 0.5 EGTA, 10 TEA-Cl, 2 Mg-ATP, 0.5 Na2-

GTP, 1 QX-314.Cl, adjusted to pH 7.3 with CsOH and ~ 290 mOsm, Cl- reversal 

potential -57 mV. For iSTDP experiments an intracellular solution consisting of in 

mM: 140 K-gluconate, 5 NaCl, 1 MgCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na2-GTP, 0.2 

EGTA adjusted to pH 7.3 with KOH and ~ 290 mOsm, Cl- reversal potential -77 

mV. For current clamp recordings the intracellular solution consisted of in mM: 

130 K-gluconate, 8 NaCl, 1 MgCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na2-GTP, 0.2 

EGTA adjusted to pH 7.3 with KOH and ~290 mOsm, Cl- reversal -67 mV. In all 

experiments a junction potential of ~ -15 mV was not compensated. 

Recordings of CA1 pyramidal neurons were conducted via a Multiclamp 700A 

amplifier (Molecular devices) filtered at 6 kHz and digitised at a sampling 

frequency of 20 kHz using a Micro 1401 data acquisition board (CED). Data was 

acquired using Signal5 software (CED) and data analysed using custom MATLAB 

Scripts.   

Synaptic stimulation and plasticity protocols. 

For inhibitory plasticity experiments subtype specific IPSCs were evoked via 

optical stimulation of ChR2 via a 470 nm LED (Thorlabs) through a 40x objective 

lens using 2-5 ms square pulses of light. Control pathway IPSCs were evoked via 

100 µs square pulse electrical stimulation delivered via a monopolar stimulating 

electrode placed in the pyramidal layer or Stratum Radiatum. For plasticity 

experiments each pathway was stimulated every 15 sec in an interleaved fashion 

and synapses from each pathway were checked for independence by a paired pulse 

protocol (Supplementary Fig. 1).  
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For light evoked TBS plasticity, neurons were voltage clamped at 0 mV for the 

duration of the experiment, light evoked TBS was applied in voltage clamp and 

consisted of 5 bursts delivered at 5 hz, each burst containing 4 light pulses at 100 

hz with the protocol repeated 5 times at 0.033 hz. For inhibitory spike time 

dependent plasticity experiments, neurons were voltage clamped at -50 mV. Pairing 

protocol consisted of 100 pairings at 5 hz in current clamp (neurons maintained at 

-50 mV), each consisting of presynaptic light stimulation with a burst of action 

potentials initiated via somatic current injections (2 ms duration, 1 nA amplitude). 

For all plasticity experiments the series resistance was monitored and cells that 

showed a >20% change were excluded from analysis.   

Spike probability experiments were conducted in current clamp where 10 EPSPs 

were evoked at 10 hz via a bipolar stimulating electrode placed in either the SR or 

SLM layer to stimulate the Schaffer collateral or temporoammonic pathway. 

Stimulation intensity was adjusted to evoked action potentials in roughly half of the 

EPSP stimulations.  

Immunohistochemistry 

Brains were fixed via cardiac perfusion of Phosphate buffered saline (PBS) 

followed by 4% Formaldehyde in PBS. Brains were removed and stored in PFA for 

24hrs and then transferred to 30% sucrose PBS solution for 2 days. 50 µm thick 

slices were then obtained via cryostat sectioning. Slices were incubated in a 

blocking solution containing 5% donkey serum and 0.2% Triton X-100 for 90 min 

at room temperature. Slices were then incubated in room temperature overnight in 

PBS containing 1% donkey serum and either anti-PV (1:10000, Sigma P3088) anti-

SST (1:10000 Santa Cruz SC-7819) or anti-GFP (1:1000 LifeTech A11122) 

antibodies for PV, SST and ChR2 visualisation respectively. Slices were then 

washed with PBS and incubated with secondary antibodies, Alexa-594 (1:1000, 

LifeTech) or Alexa-488 (1:1000, LifeTech) for 2hrs at room temperature, before 
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washing with PBS and mounting on microscope slides with 1:1000 DAPI staining. 

Slices were then visualised, and images acquired using a widefield fluorescence 

microscope. Hippocampal layer regions within the CA1 were defined based on 

DAPI staining and ChR2 mean fluorescence intensity was quantified using ImageJ 

software.  

In vitro data analysis 

Experimental unit was defined as cell with only one cell recorded per slice. Up to 3 

cells were recorded from each animal with an average of 1.6 cells per animal. 

Measurements were taken as an average of 4 responses to obtain a data point per 

min, averages represent mean ± S.E.M. Time series data was normalised to the last 

5 min of baseline and plasticity was assessed by comparing the average IPSC 

amplitude 20-30 min after plasticity induction between the control and test 

pathway. Owing to the within cell control, data were analysed using a paired two-

tailed Student’s t-test between the two pathways. For histograms comparing the 

average test pathway plasticity, statistical significance was assigned as a one-

sample t-test compared to 100. In all cases significance assigned if p < 0.05. 

 

Computational modelling 

Neuron Model and network structure 

We investigate a feedforward network consisted of a single postsynaptic neuron 

receiving inputs from the temporoammonic pathway, Schaffer collaterals, and SST 

and PV interneurons. The postsynaptic neuron is modelled using a two-

compartment, rate-based neuron model. The first compartment represents the distal 

dendrites of CA1 pyramidal cells, receiving excitatory inputs from the 

temporoammonic pathway and inhibitory inputs from SST interneurons. The 

second compartment represents the perisomatic region of CA1 pyramidal cells, 

CHAPTER 5. INTERNEURON-SPECIFIC PLASTICITY AT PARVALBUMIN AND
SOMATOSTATIN INHIBITORY SYNAPSES

201



receiving excitatory inputs from Schaffer Collaterals and inhibitory inputs from PV 

interneurons.  

The dendritic compartment’s activity, 𝑟𝑑𝑒𝑛𝑑, is given by 

𝜏0
𝑑𝑟𝑑𝑒𝑛𝑑

𝑑𝑡 = −𝑟𝑑𝑒𝑛𝑑 + [𝑇𝐴𝑖𝑛𝑝𝑢𝑡 − 𝑤𝑆𝑆𝑇𝑟𝑆𝑆𝑇]
+

  , 

where [⋅]+ denotes a rectification that sets negative values to zero,  𝜏0 is a time 

constant, 𝑇𝐴𝑖𝑛𝑝𝑢𝑡 is the temporoammonic pathway input, 𝑤𝑆𝑆𝑇 is the synaptic 

weight from SST interneurons to the CA1 pyramidal cell, and 𝑟𝑆𝑆𝑇 = 1 is the SST 

interneuron activity.  

The somatic compartment’s activity, 𝑟𝑠𝑜𝑚𝑎, is given by 

𝜏0
𝑑𝑟𝑠𝑜𝑚𝑎

𝑑𝑡 = −𝑟𝑠𝑜𝑚𝑎 + 𝑔(𝑟𝑑𝑒𝑛𝑑 + 𝑤𝑆𝐶𝑆𝐶𝑖𝑛𝑝𝑢𝑡 − 𝑤𝑃𝑉𝑟𝑃𝑉) 

where 𝑆𝐶𝑖𝑛𝑝𝑢𝑡 is the activity of Schaffer Collateral input neurons, 𝑤𝑆𝐶 are the 

synaptic weights from SC inputs, 𝑤𝑃𝑉  is the synaptic weight from PV interneurons 

to the CA1 pyramidal cell, 𝑟𝑃𝑉 = 1 is the PV interneuron activity, and 𝑔 is a non-

linear function given by 

𝑔(𝑥) =
4
3 [tanh (

2𝑥
5 )]

+
. 

TA and SC inputs 

The simulated CA1 pyramidal cells receive excitatory inputs from the 

temporoammonic pathway and Schaffer Collaterals (SC). The input from the 

temporoammonic pathway is simulated as 𝑇𝐴𝑖𝑛𝑝𝑢𝑡 = 𝜇𝑇𝐴 + 𝜉𝑇𝐴, where 𝜇𝑇𝐴 is a 

constant and 𝜉𝑇𝐴 is generated from an Ornstein-Uhlenbeck process with a time 

constant of 50 ms, mean 0 and variance 0.5. The SC inputs are generated from 𝑁𝑆𝐶 

input neurons and each input neuron is tuned to a specific location such that their 
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firing rates span over the entire environment. All place fields of SC input neurons 

have the same tuning width 𝜎𝑆𝐶 and amplitude 𝐴𝑆𝐶.  

For the simulations involving exploration, the simulated animal explores an annular 

track of length 𝐿 with speed 𝑣. The activity of a SC input neuron with place field 

centered at position 𝑝0 is  

𝑆𝐶𝑖𝑛𝑝𝑢𝑡(𝑝) = 𝐴𝑆𝐶𝑒𝑥𝑝 (−
𝑑2

2𝜎𝑆𝐶
2 ) + 𝐴𝑛𝑜𝑖𝑠𝑒 𝜉𝑆𝐶  , 

where 𝑝 is the animal’s position, 𝑑 is the distance between the 𝑝 and 𝑝0 along the 

track, 𝐴𝑛𝑜𝑖𝑠𝑒 is a constant, and 𝜉𝑆𝐶 is generated from an Ornstein-Uhlenbeck 

process with a time constant of 50 ms, mean 0 and variance 0.5. 

In Fig. 6, we simulate an artificial stimulation of TA and SC. Therefore, for these 

simulations, SC inputs are not spatially tuned. Instead, they are simulated as 

𝑆𝐶𝑖𝑛𝑝𝑢𝑡 = 𝜇𝑆𝐶 + 𝜉𝑆𝐶, where 𝜇𝑆𝐶 is a constant. 

Excitatory plasticity model 

In Fig. 8, synaptic weights from SC input neurons to CA1 pyramidal neurons are 

plastic. These connections follow a Hebbian-type plasticity rule in which changes 

in synaptic weights depend on coincident pre- and postsynaptic activity. The 

postsynaptic term is given by the product of dendritic and somatic activity. This is 

motivated by recent findings suggesting that place fields are modified and formed 

following coincident TA and SC inputs 19, 61. The excitatory synaptic weight 𝑤𝑖𝑗  

from input neuron 𝑗 to postsynaptic neuron 𝑖 is updated following 

𝑑𝑤𝑖𝑗

𝑑𝑡 = 𝜂𝑆𝐶 (𝑟𝑑𝑒𝑛𝑑
𝑖 𝑟𝑠𝑜𝑚𝑎

𝑖 − 0.1)+𝑟𝑗  , 

where 𝜂𝑆𝐶 is the learning rate for SC connections, 𝑟𝑗 is the presynaptic neuron 

activity, 𝑟𝑠𝑜𝑚𝑎
𝑖  is the somatic activity of the postsynaptic neuron, and 𝑟𝑑𝑒𝑛𝑑

𝑖  is the 
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dendritic activity of the postsynaptic neuron. Because this rule is inherently 

unstable, synaptic weights are also normalized as commonly done 77. After every 

weight update, we subtract the average synaptic weight ∑ 𝑤𝑖𝑗/𝑁𝑆𝐶𝑗  from all weights 

and add a constant term (here 2). Negative weights are then rectified to zero.  

Inhibitory plasticity model 

We implement an inhibitory plasticity rule inspired by our experimental findings. 

Under a rate-based framework, these plasticity rules are assumed to mirror those 

found during theta oscillations. Synaptic weights from PV interneurons onto CA1 

pyramidal cells follow a rate-based Hebbian plasticity rule in which the coactivation 

of pre- and postsynaptic neurons leads to LTD: 

𝑑𝑤𝑃𝑉
𝑑𝑡 = −𝜂𝑃𝑉𝑟𝑃𝑉𝑟𝑠𝑜𝑚𝑎  , 

where 𝜂𝑃𝑉 is the learning rate for PV connections, and 𝑟𝑠𝑜𝑚𝑎 is pyramidal cell 

somatic activity. Synaptic weights from SST interneurons onto CA1 pyramidal cells 

follow a Hebbian plasticity rule in which the coactivation of pre- and postsynaptic 

neurons leads to LTP: 

𝑑𝑤𝑆𝑆𝑇
𝑑𝑡 = 𝜂𝑆𝑆𝑇𝑟𝑆𝑆𝑇𝑟𝑠𝑜𝑚𝑎  , 

where 𝜂𝑆𝑆𝑇 is the learning rate for SST connections. Both PV and SST synaptic 

weights are bounded between 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥. 

Environment switch 

In Fig. 8, we simulate a feedforward network while an animal runs through an 

annular track. When the animal starts exploring environment A for the first time, 

the initial synaptic weights for the SC inputs are drawn from a lognormal 

distribution with underlying normal distribution with mean zero and standard 

deviation 0.1. The synaptic weights are then multiplied by 0.1 and two neighbouring 
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inputs are randomly chosen and their synaptic weights are set to 0.6. This imposes 

a small structure in the synaptic weights and ensures that input neurons are able to 

induce postsynaptic activity. The animal then explores environment A for 10 laps. 

Next, the animal is moved to a novel environment (environment B). We simulate 

the switch to a novel environment by randomly shuffling the identity of the SC 

inputs to the CA1 pyramidal neuron. The animal then explores environment B for 

15 laps. Subsequently, the animal is moved back to environment A (environment 

A’), which is implemented by returning the SC inputs to the original identity. 

Finally, the animal explores environment A’ for another 10 laps.  
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Parameters and simulations 

All simulations were implemented in python and can be made available upon request. The 

parameters used in our simulations can be found in table 1. 

Neuron Model 

Name Value Description  

𝜏0 1.25 ms Time constant for the dynamics  

Network parameters 

Name Value Description  

𝑁𝑆𝐶 40 Number of SC input neurons 

𝑁𝑆𝑆𝑇 1 Number of SST interneurons  

𝑁𝑃𝑉 1 Number of PV interneurons 

Plasticity Model 

Name Value Description  

𝜂𝑆𝑆𝑇 2.0 × 10−4 ms −1 SST plasticity learning rate 

𝜂𝑃𝑉 2.0 × 10−4 ms −1 PV plasticity learning rate 

𝜂𝑆𝐶 2.5 × 10−5 ms −1 Learning rate for Schaffer Collaterals  

Place-tuned input 

Name Value Description  

𝐴𝑆𝐶 6.0 Presynaptic place field amplitude 

𝜎𝑆𝐶 2.0 Presynaptic place field width 

Simulation parameters 

Name Value Description  

𝐿 50 Track length 

𝑣 2.5 × 10−3 ms −1 Animal speed 
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Supplementary Figure 1 (related to Fig. 1). Characterisation of PV and SST 

optogenetic responses.  

(a) Comparison of optogenetically evoked PV IPSCs and IPSCs recorded via PV fast-

spiking basket cell and CA1 pyramidal neuron paired recordings. Both rise and decay 

times were indistinguishable.  

(b) PV IPSCs evoked via light stimulation through the objective lens positioned over 

different layers of the hippocampus. PV IPSC amplitude was highest in the pyramidal 

layer consistent with PV basket cell activation.  

© PV IPSCs were completely blocked by 1µM tetrodotoxin and 50µM picrotoxin 

showing optogenetic IPSCs are action potential and GABAA receptor dependent.  

(d) Check of pathway independence between PV-optogenetic light-evoked pathway 

and electrically-evoked IPSC control pathway in SP. Electrical stimulation failed to 

depress light responses whilst light responses failed to depress electrical responses 

indicating separate discrete inhibitory synapse activation.  
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(e) Comparison of optogenetically evoked IPSCs SST and Chrna2 expressing OLM 

interneurons. Both rise and decay times were indistinguishable.  

(f) SST and Chrna2 IPSCs evoked via light stimulation of different layers of the 

hippocampus. Both SST and Chrna2 IPSC amplitudes were maintained across all 

layers and highest in stratum lacunosum moleculare layer consistent with SST OLM 

interneuron activation.  

(g) SST IPSCs were completely blocked by 1µM tetrodotoxin and 50µM picrotoxin 

showing optogenetic IPSCs are action potential and GABAA receptor dependent.  

(h) Check of pathway independence between SST-optogenetic light-evoked pathway 

and electrically-evoked IPSC control pathway in the SR. Electrical stimulation failed 

to depress light responses whilst light responses failed to depress electrical responses 

indicating separate discrete inhibitory synapse activation. Data represent mean ± 

S.E.M statistical comparison via unpaired t-tests (d,h) ( *p < 0.05, **p < 0.01, ***p < 

0.001 ). 
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Supplementary Figure 2 (related to Fig. 1). TBS induced PV-iLTD and SST-

iLTP are dependent on postsynaptic depolarisation  

CA1 pyramidal neurons were recorded at 0 mV for the duration of the experiment 

except for during the light induced TBS protocol in which the neuron was held at -60 

mV.  

(a) PV-iLTD was not induced if CA1 pyramidal neurons were held at -60 mV during 

the induction protocol.  

(b) SST-iLTP failed to be induced when CA1 pyramidal neurons were held at -60 mV 

during the induction protocol. Data represent mean ± S.E.M statistical comparison via 

paired t-tests. 
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Supplementary Figure 3 (related to Fig. 3). PV-iLTD is not dependent on 

endocannabinoid, GABAB receptors or nitrous oxide signalling.  

(a) PV-iLTD induced by 0 ms 1pre 4post timing (data from Fig. 2c).  

(b) GABAB antagonist CGP55845 (1 µM) failed to block PV-iLTD.  

(c) CB1 receptor antagonist AM251 (1 µM) failed to block PV-iLTD.  

(d) Inhibiting the Nitrous oxide pathway via inhibition of guanylyl cyclase with ODQ 

(5 µM) failed to block PV-iLTD.  

(e) The selective T-type VGCC inhibitor ML218 (3 µM) blocked PV-iLTD (f) 

Summary histogram displaying the level of plasticity under each experimental 
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condition. Data represent mean ± S.E.M statistical comparison via paired t-tests (a-e) 

and one sample t-tests  

(f). Significant difference is indicated ( *p < 0.05). 
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Supplementary Figure 4 (related to Fig. 4). SST-iLTP requires T-type VGCC 

activation. 

(a) SST-iLTP induced by 0 ms 1pre 4post timing (data from Fig. 2g).  

(b) The selective T-type VGCC inhibitor ML218 (3 µM) blocked SST-iLTP.  

(c) Summary histogram displaying the level of plasticity under each experimental 

condition. Data represent mean ± S.E.M statistical comparison via paired t-tests (a,b) 

and one sample t-tests (c). Significant difference is indicated ( *p < 0.05). 
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Supplementary Figure 5 (related to Fig. 6). PV and SST plasticity regulate CA1 

pyramidal neuron excitability via feedback and feedforward inhibition. 

(a) PV-iLTD increased CA1 pyramidal neuron activity in responses to Schaffer 

collateral input if PV interneurons are engaged via feedforward inhibition or 

feedforward and feedback inhibition.  

(b) PV-iLTD had no effect on temporoammonic excitation of CA1 pyramidal neurons 

due to lack of feedforward or feedback inhibition. If the temporoammonic pathway 

recruits PV interneurons via feedforward or partake in feedback inhibition PV-iLTD 

increased temporoammonic pathway driven CA1 activity.  

(c) SST-iLTP had no effect on the Schaffer collateral induced CA1 pyramidal neuron 

excitability if it is engaged via feedback or feedback and feedforward inhibition.  

(d) SST-iLTP reduced the temporoammonic pathway driven excitability of CA1 

pyramidal neurons when engaged via feedback or feedforward and feedback 

inhibition. Data represent mean ± S.E.M statistical comparison via unpaired t-tests. 

Significant difference is indicated ( *p < 0.05). 
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Supplementary Figure 6 (related to Fig. 8). Simulated synaptic weight evolution 

during exploration in different environments. 

(a) Evolution of synaptic weights over time for the example cells shown in Fig. 8b. 

During these simulations, iPlas is active.  

(b)  Evolution of synaptic weights over time for the example cells shown in Fig. 8c. 

During these simulations, iPlas is turned off.  
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Chapter 6

Voltage-based inhibitory plasticity as

a flexible model for network

homeostasis

Our experiments involving inhibitory plasticity onto CA1 pyramidal cells suggested

that this form of plasticity might be intimately related the the postsynaptic membrane

voltage. More specifically, inhibitory synaptic plasticity could only be induced by

presynaptic theta burst stimulation when the postsynaptic membrane voltage was

clamped at a high voltage. Inspired by these findings, we propose a voltage-based

inhibitory synaptic plasticity model. This model regulates network activity by setting

a target value for the postsynaptic membrane potential over a long timescale. As a

consequence of this rule, the network activity is regulated by the imposition of a

natural maximum firing rate. Importantly, unlike previous spike-based models, our

voltage-based inhibitory synaptic plasticity model does not restrict the postsynaptic
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firing rate to a narrow range.

The layout of the work will be presented in an article format as it is soon to be

submitted for publication. We would like to thank Claudia Clopath for supervising

and guiding the project.
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Voltage-based inhibitory plasticity as

a flexible model for network

homeostasis

Abstract

The balance between excitatory and inhibitory inputs (E/I balance) can ensure network

stability. Moreover, inhibitory neurons are directly involved in neural computations

and can shape sensory representations. Therefore, in face of excitatory synaptic

plasticity, inhibitory connections are likely to adapt to maintain network stability.

A widely used inhibitory synaptic plasticity rule regulates network dynamics by

imposing a target firing rate. This results in a network in which all neurons fire, on

average, at the same firing rate. Here, we propose a model of inhibitory synaptic

plasticity in which synaptic updates depend on presynaptic spike arrival and post-

synaptic membrane voltage. Our plasticity rule regulates the network activity by

setting a target value for a low-pass-filtered version of the postsynaptic membrane

potential. We then simulate a feedforward network composed of excitatory and

inhibitory neurons receiving uncorrelated input. Similarly to what has been shown in

a theoretical work using a non-spike-based plasticity model, our inhibitory plasticity
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model regulates E/I ratio while allowing for a broad range of postsynaptic firing rates

and thus network diversity. The change in inhibitory synaptic weight increases with

the initial E/I ratio. In a feedforward network in which excitatory and inhibitory

neurons receive correlated input, our plasticity rule allows for the development of

co-tuned excitation and inhibition, in agreement with recordings in rat auditory cortex.

Therefore, our voltage-dependent inhibitory plasticity model accounts for network

homeostasis while allowing for diverse neuronal dynamics observed in vivo.

Keywords: synaptic plasticity, inhibitory plasticity, spike-timing-dependent plastic-

ity, voltage-based plasticity.

6.1 Introduction

Cortical neurons receive balanced excitatory and inhibitory inputs [D’amour and

Froemke, 2015; Froemke et al., 2007; Monier et al., 2008; Wehr and Zador, 2003].

This balance between excitation and inhibition is thought to be important for network

stability and signal processing [Carvalho and Buonomano, 2009; Ecker et al., 2010;

Renart et al., 2010; Rocha et al., 2008; Van Vreeswijk and Sompolinsky, 1996; Vogels

and Abbott, 2009; Vogels et al., 2011]. Additionally, cortical neurons have been

shown to receive co-tuned excitatory and inhibitory inputs in a stimulus-specific

manner [Anderson et al., 2000; Froemke et al., 2007; Monier et al., 2008; Wehr

and Zador, 2003]. The mechanisms that support and promote this balanced state in

biological conditions, however, are still under intense debate. Inhibitory synaptic

plasticity has been proposed as a potential candidate to fulfill this role [Hennequin

et al., 2017; Luz and Shamir, 2012; Vogels et al., 2011]. By modulating inhibitory

connections, the network can recover to a balanced state even in face of continuously-

changing excitatory connections [Clopath et al., 2016; Vogels et al., 2013, 2011].

The most widely used inhibitory synaptic plasticity model modulates inhibitory
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connections depending on the timing of pre- and postsynaptic spikes [Vogels et al.,

2011]. This spike-based inhibitory synaptic plasticity (sISP) rule regulates the

balance between excitatory and inhibitory inputs while imposing a target firing rate

for the postsynaptic neuron [Vogels et al., 2011]. When combined with correlated

excitatory and inhibitory inputs, this plasticity model produces co-tuned excitatory

and inhibitory receptive fields [Clopath et al., 2016; Vogels et al., 2011]. Because of

the restrictions that this model imposes onto postsynaptic firing rates, however, once

the balanced state is achieved, responses to stimuli can only be perceived transiently

[Vogels et al., 2011]. The timescales at which these responses can be observed are

determined by the timescales at which inhibitory synapses are updated. Moreover,

in a recurrent network, the average firing rate of all excitatory cells converge to the

same value, independently of their feedforward inputs.

Excitatory synaptic plasticity has been vastly explored and several plasticity models

have been proposed, including spike-timing-dependent plasticity (STDP) [Gerstner

et al., 1996] and voltage-based models [Clopath et al., 2010a; Clopath and Gerstner,

2010]. Contrastingly, inhibitory synaptic plasticity models have only recently started

being investigated and the range of proposed plasticity models and applications is still

limited. Recent experimental data has suggested that the rules governing the change

in inhibitory connections might depend on concurrent excitatory inputs [D’amour

and Froemke, 2015]. Theoretical studies have shown that co-dependent excitatory

and inhibitory synaptic plasticity rules can regulate network activity without setting a

target firing rate for postsynaptic excitatory cells [Agnes and Vogels, 2018]. Moreover,

accumulating evidence indicates that inhibitory plasticity rules are interneuron-type

specific [Chiu et al., 2018; Udakis et al., 2019; Vickers et al., 2018], a characteristic

that has been suggested to be important for controlling place field formation and

consolidation in CA1 pyramidal cells [Udakis et al., 2019]. Additionally, inhibitory

synaptic plasticity in hippocampal CA1 interneuron synapses could only be induced

CHAPTER 6. VOLTAGE-BASED INHIBITORY PLASTICITY AS A FLEXIBLE
MODEL FOR NETWORK HOMEOSTASIS

227



by presynaptic theta burst stimulation if the postsynaptic membrane voltage was

clamped at a hyperpolarized potential [Udakis et al., 2019]. Under spike-timing-

dependent protocols, inhibitory synaptic changes could not be observed using single

postsynaptic spikes. Instead, inhibitory plasticity required postsynaptic bursts [Udakis

et al., 2019].

We propose a voltage-based inhibitory synaptic plasticity (vISP) model in which the

updates in inhibitory synaptic weights depend on the postsynaptic membrane voltage

and presynaptic spikes. According to our plasticity model, inhibitory synaptic weights

are updated to regulate the postsynaptic membrane voltage over a long timescale.

We next explore the e�ects of this plasticity model using a feedforward network of

excitatory and inhibitory inputs. We show that our model can modulate pyramidal

cell activity by imposing a natural maximum firing rate. Contrary to previous models

of sISP, however, our model does not impose a unique target postsynaptic firing rate.

Therefore, our voltage-based model regulates network activity while allowing for a

diversity in pyramidal cell firing rates.

6.2 Results

Voltage-based inhibitory synaptic plasticity model

We propose an inhibitory plasticity model in which the update in synaptic connections

from inhibitory neurons onto pyramidal cells depends on the postsynaptic membrane

voltage. In our voltage-based inhibitory synaptic plasticity model, the update in

inhibitory weights aims to maintain the average postsynaptic membrane voltage at

a target value over a long timescale. Moreover, this update is only applied if the

postsynaptic membrane voltage is depolarized and the presynaptic cell spikes within a

short time window (figure 1A, see methods). Additionally, to ensure a minimum level

of neuronal activity, inhibitory presynaptic spikes lead to a depression in synaptic
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Figure 1: Illustration of the voltage-dependent inhibitory synaptic plasticity model. (A)

Illustration of the main variables used in the model. The inhibitory synaptic plasticity rule
modulates the strength of connections from inhibitory neurons (blue) to excitatory neurons
(red). The presynaptic trace x̄

pre

(purple) increases for every presynaptic inhibitory spike
and decays exponentially otherwise. The gating variable g (green) is a low-pass-filtered
version of the di�erence between the membrane voltage (u, black) and the resting potential
(E

L

dashed line) with a fast time constant. The variable ũ (yellow) is a low-pass-filtered
version of the postsynaptic membrane potential with a slow time constant. (B) Illustration
of the model. Every presynaptic spike leads to the depressed of the respective inhibitory
synaptic weights (left, iLTD). Further synaptic changes occur if the presynaptic inhibitory
trace is non-zero—i.e a presynaptic spike occurred recently—and the gating variable is above
a threshold g

th

(dotted line). In this case, inhibitory synaptic weights are depressed (middle)
if ũ is below a target value ✓

V

(dashed line) or strengthened (right) if ũ is above ✓

V

. See
methods for more details.

vISP regulates pyramidal cell firing rate without setting a unique

target value

We first investigate whether our inhibitory plasticity model can regulate pyramidal

cell firing rate. We simulate a feedforward network composed of 20 excitatory and

20 inhibitory neurons projecting onto one postsynaptic neuron (figure 2A). The

input neurons fire, on average, with the same firing rate and the synaptic weights

from excitatory input neurons are all fixed at the same value. The weights for in-

hibitory synapses are initialized at a small value and are updated following the vISP
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model. We then run these simulations for several levels of excitatory input firing

rate. Independently of the initial conditions, the vISP model regulates the inhibitory

connections such that the ratio between excitatory and inhibitory inputs onto the

postsynaptic cell (E/I ratio) converges to the same level (figure 2B). Interestingly,

our inhibitory plasticity rule sets a natural maximum firing rate for the postsynaptic

neuron (figure 2B). Importantly, this model does not restrict the postsynaptic activity

to a narrow range. Instead, the postsynaptic firing rate can assume any value from

zero to the maximum firing rate imposed by the inhibitory plasticity rule (figure 2B).

Therefore, the vISP model regulates pyramidal cell activity by setting a target E/I

ratio and a maximum firing rate without overconstricting the postsynaptic activity.

To compare the e�ects of our model with previous models, we run the same simula-

tions replacing our inhibitory plasticity model with a spike-based inhibitory plasticity

rule [Vogels et al., 2011]. Under this rule, near-coincident pre- and postsynaptic

spikes lead to synaptic potentiation whereas each presynaptic spike leads to synaptic

depression (see methods). This synaptic plasticity rule has been shown to set a target

firing rate for the postsynaptic neuron [Vogels et al., 2011]. Indeed, in our simula-

tions, the sISP model sets a target value for both the E/I ratio and the postsynaptic

firing rate (figure 2C). Therefore, the sISP model regulates pyramidal cell activity by

constraining the postsynaptic firing rate to a narrow range around the target firing

rate.

vISP and correlated excitatory and inhibitory inputs lead to co-

tuned E/I receptive fields

We next investigate the e�ect of the vISP model on inhibitory receptive field formation.

In particular, we wonder whether this inhibitory plasticity model can account for the

co-tuning of excitatory and inhibitory currents observed in cortical neurons [Anderson

et al., 2000; Froemke et al., 2007; Monier et al., 2008; Rocha et al., 2008; Wehr
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Figure 2: vISP regulates pyramidal cell firing rate without setting a unique target value.

(A) Network diagram. We simulate a feedforward network composed of N

E

presynaptic
excitatory neurons (red) and N

I

presynaptic inhibitory neurons (blue) projecting onto one
postsynaptic cell (gray). Presynaptic cells are activated independently with the same average
firing rate. Inhibitory connections are initialized at the same value and are updated following
either vISP or sISP models (see methods). Excitatory connections are fixed throughout the
simulations. Simulations are run for several levels of average excitatory input firing rate. (B)

Simulations in which inhibitory synapses are updated following vISP. Top: evolution of the
ratio between excitatory and inhibitory inputs (E/I ratio) into the postsynaptic cell over time.
Middle: evolution of the postsynaptic firing rate over time. These firing rates were measured
as a rolling average over a time window of 25 seconds. Bottom: final postsynaptic firing rate
measured at the end of the simulation (150 s) as a function of the excitatory input firing rate.
The di�erent colors represent simulations under di�erent levels of excitatory input firing rate.
Each curve is an average over 50 simulations under the same initial conditions. The final
postsynaptic firing rates are naturally bounded by the voltage-dependent inhibitory plasticity
rule. They can, however, take any values from zero to this upper bound, depending on the
overall excitatory input to the postsynaptic cell. Contrarily, the E/I ratio converges to the
same value for all levels of input firing rates. (C) Analogous to B for simulations in which
inhibitory synaptic weights are updated following sISP model. This inhibitory plasticity
model sets a target firing rate for the postsynaptic cell, regardless of the total excitatory input.

and Zador, 2003]. To test that, we simulate a feedforward network of excitatory and

inhibitory neurons projecting onto one postsynaptic neuron. Those two populations

of neurons are organized in pairs such that each pair of excitatory and inhibitory

neurons fire with the same time-varying firing rate (figure 3A). The excitatory synaptic

weights are initialized such that the excitatory receptive field is Gaussian shaped

with a peak at input neuron 10. Those synaptic weights are kept fixed throughout

the simulations. The inhibitory synaptic weights are initialized at a low value and
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evolve following the vISP model. Similarly to the case with homogeneous excitatory

connections, the change in inhibitory connections regulates the E/I ratio, forcing it

towards a target value close to 1 (figure 3B). Interestingly, although the vISP model

allows for a wide range of postsynaptic firing rates, the re-scaled inhibitory synaptic

weights converge to the same values of their corresponding excitatory counterparts

(figure 3B). Therefore, the vISP model supports the emergence of a co-tuning between

excitation and inhibition.
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Figure 3: vISP and correlated excitatory and inhibitory inputs lead to co-tuned E/I

receptive fields. (A) Network diagram. We simulate a feedforward network composed of N

E

presynaptic excitatory neurons (red) and N

I

presynaptic inhibitory neurons (blue) projecting
onto one postsynaptic cell (gray). The di�erent colour—yellow, blue, and green—represent
di�erent inputs. Each excitatory cell is modelled as a Poisson neuron with a cell-specific,
time-varying firing rate which is shared with a corresponding inhibitory cell (same input
color). Inhibitory connections are initialized at the same value and are updated following
either vISP or sISP models (see methods). Excitatory connections are fixed throughout
the simulations. (B) Simulations in which inhibitory connections follow vISP model. Top:
evolution of E/I ratio over time. Middle: Evolution of E-I correlation over time. The E-I
correlation is measured as the correlation between excitatory and inhibitory synaptic weights,
i.e. the correlation between excitatory and inhibitory receptive fields. Bottom: excitatory
(red) and inhibitory (blues) synaptic weights for each input. Each blue curve represents the
inhibitory synaptic weights for one specific time of the simulation. (C) Same as B for the
simulations in which inhibitory connections follow sISP model.
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The co-tuning between excitatory and inhibitory receptive fields has also been ob-

served using a spike-timing dependent inhibitory plasticity rule [Vogels et al., 2011]

or its rate-based version [Clopath et al., 2016]. To test this under the same conditions

as the ones used with the vISP model, we run the same simulations as before while

replacing the inhibitory plasticity rule with a spike-based model. As expected, the in-

hibitory synaptic inputs converge to the same levels as their corresponding excitatory

input (figure 3C). In summary, both voltage- and spike-based inhibitory plasticity rule

account for the development of co-tuned excitatory and inhibitory receptive fields

when E and I inputs are correlated.

Inhibitory connections adapt to changes in excitatory input while

allowing for diversity in pyramidal cell firing rate

In biological neural networks, excitatory connections are constantly changing and

the network should be provided with mechanisms to adjust to these changes. To test

whether a network governed by the vISP model can adapt to changes in excitatory

inputs, we simulate a feedforward network analogous to the one we simulated before

but with an excitatory receptive field centered around input 7 (figure 4A). The ac-

tivities of excitatory and inhibitory neurons associated to the same input index are

correlated in time. The excitatory synaptic weights are kept fixed while the inhibitory

synaptic weights evolve following the vISP model. Similarly to what we observed

in the previous case, the inhibitory receptive field converges to match the excitatory

inputs (figure 4A). Consequently, the E/I ratio is modulated and converges to a value

close to 1 (figure 4C) whereas the postsynaptic firing rate decays to an almost-silent

stage (figure 4D). After 450 s, the excitatory synaptic weights are shifted instantly

such that the peak of the excitatory receptive field is centered around input 15 and its

amplitude is twice the original amplitude (figure 4B). The excitatory synaptic weights

are then kept constant for another 450 s while the inhibitory synaptic weights are
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allowed to change. The inhibitory receptive field adapts to the changes in excitatory

inputs moves towards the new excitatory receptive field (figure 4B), forcing the E/I

ratio to return to the same level as in the first half of the simulation (figure 4C).

Remarkably, the postsynaptic firing rate does not return to the same level. Instead, it

decays to a higher level when compared to the first 450 seconds of simulation (figure

4D). Therefore, the vISP model provides a mechanism with which a network can

adapt to changes in excitatory inputs and still allow for diversity in neuronal activity.

6.3 Discussion

We propose a voltage-based inhibitory synaptic plasticity model as a mechanism to

regulate network activity. Our model imposes a target value for a low-passed-filtered

version of the postsynaptic membrane potential. This allows for short-term fluctu-

ations while imposing a long-term regulation of the neuron’s membrane potential.

We analyse the e�ect of our inhibitory plasticity model on a feedforward network

composed of excitatory and inhibitory neurons projecting onto one single neuron.

The vISP model regulates the postsynaptic activity by imposing a natural maximum

firing rate and a unique target value for the ration between excitatory and inhibitory

inputs. Surprisingly, the vISP model does not restrict the postsynaptic firing rate

to a narrow range. Instead, the postsynaptic neuron firing rate is only bounded by

a maximum firing rate. This result contrasts with previous results observed under

spike-based inhibitory synaptic plasticity rules [Hennequin et al., 2017; Luz and

Shamir, 2012; Vogels et al., 2013, 2011].

This wider range of possible postsynaptic firing rates gives support for a more flexible

network. While the E/I ratio and the maximum firing rates are imposed, the di�erent

levels of postsynaptic firing rate allow for a more stable rate-based code. Since spike-

based inhibitory plasticity models impose a fixed target firing rate, di�erences in

firing rate can only be encoded in the transient network dynamics. Following our vISP
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Figure 4: Inhibitory connections adapt to changes in excitatory input while allowing for

diversity in pyramidal cell firing rate. (A) Excitatory (red) and inhibitory (blues) synaptic
weights for each input. The simulations run for 450 seconds. Excitatory synaptic connections
are fixed throughout the simulations whereas inhibitory synaptic weights are initialized at
a low level and evolve following the vISP model. Red arrow indicated the preferred input
(input 6) for excitatory connections. Blue curves represent the inhibitory synaptic weights for
specific times of the simulation. (B) Excitatory (red) and inhibitory (blues) synaptic weights
for each input. The simulations run for 450 seconds. The peak of the excitatory tuning curve
is instantly shifted to input 15 and its amplitude is twice the amplitude of the simulations in
A. The excitatory weights are then kept fixed throughout the simulations. Inhibitory synaptic
weights are initialized at the final state of the simulations in A and evolve following the vISP
model. Red arrow indicated the preferred input (input 15) for excitatory connections. Blue
curves represent the inhibitory synaptic weights for specific times of the simulation. (C)

Evolution of E/I ratio over time for the entire simulation (900 seconds). (D) Evolution of the
postsynaptic firing rate over time for the entire simulation (900 seconds). Although the E/I
ratio returns to the same value after the excitatory synaptic weights are disturbed, the firing
rate converges to a higher level.

model, the network can converge to di�erent states depending on the feedforward

inputs. The neuronal response to sensory stimulation, for example, would abruptly

increase at the stimulus onset but would decay to di�erent levels depending on the

amplitude of the stimulus. Therefore, the vISP model supports long-term, rate-based

encoding. More importantly, our voltage-based model supports quick changes in
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rate-based codes caused, for example, by changes in context. Although a spike-based

model could be combined with diversity in firing rates by assigning di�erent target

firing rates to each neuron, the entire network would still be limited in terms of

possible steady states.

The interaction between excitatory and inhibitory synaptic plasticity has been shown

to lead to complex dynamics [Clopath et al., 2016]. Under the right conditions, this

interaction leads to the development of receptive fields and co-tuning between excita-

tion and inhibition [Clopath et al., 2016]. Importantly, the details of the excitatory

plasticity rule—more specifically, the choice of synaptic normalization—determine

whether or not receptive fields are developed [Clopath et al., 2016]. In all of our

simulations, excitatory synaptic connections were fixed. It would be interesting to

test whether the interaction between a spike-based excitatory synaptic plasticity rule

and our vISP model could lead to a more robust receptive field development. Since

our inhibitory plasticity model supports di�erent levels of postsynaptic firing rate,

small di�erences in excitatory input would lead to small di�erences in firing rate

that would not be compensated by a change in inhibitory weights. Therefore, this

di�erence in excitatory synaptic weight would lead to a positive feedback loop and

finally to receptive field development.

In all of our simulations, the parameters for our neuron model were extracted from

previous studies [Brette and Gerstner, 2005; Clopath et al., 2010a] (see methods).

Although we used exactly the same parameters used in these previous studies, the

results from our simulations should be robust to variations in these parameters. Since

our conclusions from our simulations not not depend on exact values, parameters

in the same range should be enough to ensure the neuronal dynamics are within

the experimentally observed regime and should lead to the same conclusions in our

simulations.
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The dynamics of the membrane voltage vary drastically depending on the location

within the neuron. At the soma, action potentials follow a stereotypical shape spanning

over a few of milliseconds [Antic et al., 2010]. At dendrites, however, NMDA spikes

can last for dozens of milliseconds [Antic et al., 2010]. Therefore, our voltage-based

inhibitory plasticity rule might have di�erent e�ects depending on the targeting site of

the inhibitory synapse. Since di�erent types of interneurons generally target di�erent

layers of pyramidal cells, our vISP model could possibly explain the di�erent learning

rules observed for di�erent types of interneurons [Chiu et al., 2018; Udakis et al.,

2019; Vickers et al., 2018].

Inhibitory synaptic plasticity has been shown to be an ideal candidate to regulate net-

work activity while supporting the existence of multiple cell assemblies [Vogels et al.,

2011]. When the connections between clusters of neurons—the cell assembly—are

strengthened to store a memory, the sISP model leads to the potentiation of inhibitory

connection onto the cell assembly. This strengthening of inhibitory connections

ultimately pushes the cell assembly activity back to baseline level [Vogels et al.,

2011]. At this stage, the memory is stored in the synaptic weights but the activity of

the cell assembly is indi�erentiable from the activity of the rest of the network. The

memory can be transiently recovered by the application of an external input onto the

assembly [Vogels et al., 2011]. It would be interesting to extend our analysis of the

vISP model to recurrent networks and investigate whether this model would support

the storage of quiescent memories within the network.

Our voltage-based inhibitory plasticity model provides a mechanism to regulate

network activity while supporting network diversity and flexibility. Our model poses

interesting questions for further theoretical exploration when moving towards either

large, recurrent networks or more biologically detailed neuron models. Several

of the results observed in our analysis could be tested experimentally and further

experiments could help constraining the model.
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6.4 Methods

Neuron model

In our simulations, neurons are modelled by an adaptive exponential integrate-and-

fire (AdEx) model [Brette and Gerstner, 2005]. As such, the neuronal membrane

voltage u follows

C

du

dt

= �g

L

(u � E

L

) + g

L

�

T

exp

✓
u � V

T

�

T

◆
� w

ad

+ I ,

where C is the membrane capacitance, g

L

is the leak conductance, E

L

is the resting

potential, �

T

is the slope factor, V

T

is the threshold potential, and I is the total input

current. The adaptation current w

ad

is described by

⌧

ad

dw

ad

dt

= a (u � E

L

) � w

ad

,

where ⌧

ad

is the adaptation time constant and a is a parameter. The neuron spikes when

its membrane voltage reaches a spiking threshold V

th

. At this point, the membrane

voltage is reset to V

reset

and w

ad

is increased by an amount b. After spiking, the

neuron’s membrane voltage is kept at V

reset

for a refractory time ⌧

ref

.

Additionally, we implement a conductance-based model for synaptic connections.

Therefore, the total input current is described by

I = g

E

�
V

E � u

�
+ g

I

�
V

I � u

�
+ I

ext ,

where g

E is the excitatory synaptic conductance, gI is the inhibitory synaptic conduc-

tance, V

E is the excitatory reversal potential, V

I is the inhibitory synaptic conduc-

tance, and I

ext is the external current. When the neuron receives an action potential
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from presynaptic neuron j, the postsynaptic conductance is increased by an amount

�g

E

j

= ḡ

E

w

E

j

, for excitatory synapses, and �g

I

j

= ḡ

I

w

I

j

, for inhibitory synapses.

Both g

E

j

and g

I

j

are parameters. The postsynaptic conductance decay otherwise with

time constant ⌧

E

, for excitatory synapses, and ⌧

I

, for inhibitory synapses. The exci-

tatory synaptic weights w

E

j

are fixed throughout the simulations and the inhibitory

synaptic weights w

I

j

are updated following an inhibitory synaptic plasticity rule (see

below).

This neuron model has been previously used in voltage-dependent excitatory plasticity

models [Clopath et al., 2010b] and has been shown to be important when used to fit

experimental data [Badel et al., 2008]. All the parameters for the neuron model were

extracted from previous studies [Brette and Gerstner, 2005; Clopath et al., 2010a].

Synaptic plasticity model (vISP)

We propose a voltage-dependent inhibitory synaptic plasticity rule (vISP). Our synap-

tic plasticity model acts as a homeostatic mechanism to regulate the average postsy-

naptic membrane voltage. The weight of the synaptic connection from presynaptic

inhibitory neuron j follows

dw

I

j

dt

= ⌘

I

(g � g

th

)+ (ũ � ✓

V

) x̄

j

� ↵S

j

,

where ⌘

I

is the inhibitory plasticity learning rate, g

th

is a fixed threshold, ✓

V

is a

target membrane voltage, ↵ is a parameter, and S

j

=

P
�(t � t

f

j

) is the presynaptic

spike train—where t

f

j

are the presynaptic spiking times. The presynaptic trace x̄

j

is increased by 1 whenever there is a presynaptic spike and decays exponentially

otherwise with time constant ⌧
trace

. The gating variable g is used to determine whether

the postsynaptic neuron has been recently depolarized and it evolves following

⌧

f

dg

dt

= �
⇥
g � (u � E

L

)+

⇤
,
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where ⌧

f

is a fast time constant. The variable ũ is an exponential low-pass-filtered

version of the postsynaptic membrane potential

⌧

s

dũ

dt

= � (ũ � u) ,

where ⌧

s

is a slow time constant.

Synaptic plasticity model (sISP)

To compare the e�ect of our voltage-based inhibitory plasticity model with previous

models, we run some of the simulations under the same conditions but replacing the

plasticity rule with an spike-timing-dependent inhibitory synaptic plasticity model

(sISP) [Vogels et al., 2011]. Under this model, the weight of the synaptic connection

from presynaptic inhibitory neuron j to postsynaptic neuron i is updated such that

w

I

ij

�! w

ij

+ ⌘

sISP

�
x

sISP

i

� ↵

sISP

�
,

for every presynaptic spike, and

w

I

ij

�! w

ij

+ ⌘

sISP

x

sISP

j

,

for every postsynaptic spike, where ⌘

sISP

is the sISP learning rate, ↵

sISP is the

depression factor, and x

sISP is the synaptic trace which is increased by 1 whenever

the neuron spikes and decays exponentially otherwise with time constant ⌧

sISP

.

Parameters and simulations

All data and software supporting the findings of this study are available from the

corresponding authors upon reasonable request. The parameters for all the simulations

can be found in tables 1-2.
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Table 6.1: Parameters summary 1.

Neuron Model

Name Value Description

EL -60 mV Resting potential

g

L

10 nS Leak conductance
�

T

4 mV Slope factor
V

T

-50.4 mV Threshold potential
⌧

ad

144 ms Adaptation time constant
a 2 nS Subthreshold adaptation
b 1 nS Spike-triggered adaptation

V

th

-30 mV Spiking threshold
V

reset

-60 mV Reset membrane potential
⌧

ref

5 ms Refractory time
C 281 pF Membrane capacitance

Network parameters

Name Value Description

N

E

20 Number of excitatory input neurons
N

I

20 Number of inhibitory input neurons
Synapse Model

Name Value Description

⌧

E

5 ms Decay constant for excitatory conductance
⌧

I

10 ms Decay constant for inhibitory conductance
ḡ

E

2 nS Excitatory conductance amplitude
ḡ

I

2 nS Inhibitory conductance amplitude
V

E -10 mV Excitatory reversal potential
V

I -100 mV Inhibitory reversal potential
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Table 6.2: Parameters summary 2.

Plasticity model (vISP)

Name Value Description

⌘

I

4 ⇥ 10

�6 Inhibitory plasticity learning rate
g

th

0.1 mV Threshold for gating variable
✓

V

-60 mV Target membrane voltage
↵ 0.08 Depression parameter

⌧

trace

2 ms Decay time constant for presynaptic trace
⌧

f

20 ms Fast decaying time constant
⌧

s

200 ms Slow decaying time constant
Plasticity model (sISP)

Name Value Description

⌘

sISP

5 ⇥ 10

�3 Inhibitory plasticity learning rate (sISP model)
↵

sISP 0.08 Presynaptic o�set
⌧

sISP

20 ms Decay constant for synaptic trace
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Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010a). Connectivity reflects

coding: a model of voltage-based stdp with homeostasis. Nature neuroscience,

13(3):344–352.

CHAPTER 6. VOLTAGE-BASED INHIBITORY PLASTICITY AS A FLEXIBLE
MODEL FOR NETWORK HOMEOSTASIS

243
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Chapter 7

Conclusion and future work

In this thesis, we investigated the ways by which excitation and inhibition are involved

in learning and memory formation. We explored how neuromodulators a�ect learning

by directly altering the excitatory STDP window or by modulating neuronal activity.

Furthermore, we investigate the e�ect of upregulating neuronal activity on receptive

fields. We show that the increase in neuronal activity can lead to either the broadening

or sharpening of the receptive field, depending on the neuron’s initial excitatory input.

Additionally, we investigate whether the upregulation of the excitatory plasticity

learning rate would lead to the same outcome. Surprisingly, the increase in learning

rate leads to the sharpening of the neuron’s place field independently of the level of

excitatory inputs.

We then presented a novel type of STDP observed in our experiments in vivo. We

observed that connections from L4 to L2/3 neurons in barrel cortex follow a network-

state dependent plasticity rule. In anaesthetised mice, the brain network alternates

between Up and Down states, similarly to the cycles observed in mice during sleep.
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During Up states, we found that presynaptic spikes lead to synaptic depression

whereas pre- followed shortly by postsynaptic spikes prevents this depression but

does not lead to potentiation. Since neurons are unlike to fire during Down states,

synaptic connections are unlike to go through activity-dependent plasticity. Therefore,

we simulated a network and implemented an excitatory plasticity rule based on our

observations during Up states. Our simulations indicated that this plasticity rule

provides a potential mechanism for the refinement of sensory representations.

In order to understand how interneurons interact with and guide excitatory plasticity,

we analysed the emergence and stabilization of place fields in the hippocampal CA1

region. In particular, we investigated how the modulation of interneuron activity in

novel environments promotes the emergence of new receptive fields. This modu-

lation of interneuron activity happens in an interneuron-type-specific manner and

is likely to be related to the release of neuronmodulators associated with novelty.

Our simulations suggest that dendrite-targeting interneurons play a crucial role in

place field development and consolidation whereas soma-targeting interneurons can

quickly and reversibly turn silent cells into place cells.

Next, we delved deeper into the mechanisms regulating inhibitory plasticity onto CA1

pyramidal neurons. We presented experimental data suggesting that di�erent types

of interneurons undergo di�erent forms of plasticity. We then used computational

simulations to predict the e�ect of these plasticity rules on pyramidal cell output and

confirmed those predictions with further experiments. Finally, our simulations sug-

gested that the combination of plasticity rules leads to stable place field consolidation

across environments.

Our experiments involving inhibitory plasticity onto CA1 pyramidal cells indicated
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that the postsynaptic membrane voltage plays an important role in gating synaptic

plasticity. Inspired by these findings, we proposed a voltage-based inhibitory synaptic

plasticity model. This model regulates network activity by setting a target value

for the E/I ratio and by imposing a maximum postsynaptic firing rate. Importantly,

unlike previous spike-based models, our voltage-based inhibitory synaptic plasticity

model does not restrict the postsynaptic firing rate to a narrow range.

7.1 Future Work

This project opened a wide range of possible future explorations. On a theoretical

and simulation point of view, we would like to extend the analysis of the e�ect of

neuromodulation on receptive fields to recurrent networks. A similar extension of the

Up-state-modulated excitatory plasticity rule towards recurrent networks could o�er

interesting insights into the processes involving memory refinement. We restricted

our simulations to feedforward networks due to the supporting experimental evidence

being restricted to connections from cortical L4 to L2/3 neurons. However, since

the extension of network-wide activity is widespread throughout multiple brain

regions, the same learning rules may be governing connections in non-cortical areas.

Therefore, it would be interesting to investigate the e�ect of those learning rules on

recurrent networks and on refinement of cell assemblies.

We investigated the e�ect of the modulation of interneuron activity induced by novelty

in an interneuron-type-specific manner. We also investigated the specific plasticity

rules regulating connections from those interneurons. The natural next step is to

combine both. When an animal explores a novel environment, neuromodulators are

released, and concurrently, synaptic connections are reshaped. Therefore, it would
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be interesting to explore how these two e�ects combine and interact in our model.

In terms of the voltage-based inhibitory synaptic plasticity we proposed, there are

multiple routes to be explored. Firstly, moving towards larger, recurrent networks,

there is an open question of whether memories can be stored in the form of cell

assemblies under this plasticity rule. At this stage, we will also probe the network

and test whether it can perform di�erent tasks, such as encode a rate-based code.

On a di�erent direction, we will move towards a more biologically detailed neuron

model. Using such models, we will test whether the vISP model behaves di�erently

depending on the site of the inhibitory connection along the neuron. That could

lead to a generalization of the model for di�erent types of interneurons. This could

then account for the diversity in inhibitory plasticity rules observed for di�erent

interneuron types.

On an experimental point of view, there are several directions worth pursuing. The

Up-state-modulated plasticity was observed in barrel cortex on anesthetized mice.

Whether the same or a similar plasticity rule modulates excitatory connections in

other brains regions is an open question. In our investigation of the e�ects of somatic

and dendritic inhibition on place field stabilization, we made several predictions

regarding the artificial induction of place field plasticity. These predictions are yet to

be probed. Finally, regarding our voltage-based inhibitory plasticity rule, there are

several experiments that could be performed to constrain the model. Although the

postsynaptic membrane voltage seems to be relevant for the induction of inhibitory

plasticity onto hippocampal CA1 pyramidal cells, the exact relationship between

them has not been explored yet.
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7.2 Conclusion

In summary, we investigated the e�ect of excitation and inhibition in learning. To

that end, we investigated how third factors such as neuromodulators and network state

a�ect excitation and inhibition, ultimately exerting an e�ect on learning. Through

multiple stages of interactions between experiments and computational simulations,

we explored several systems, proposed mechanistic explanations for experimental

data, and suggested possible functional implications of experimental findings. Finally,

we proposed a novel, voltage-based inhibitory plasticity model as a mechanism for

network homeostasis.

In the appendix, we present some additional work investigating the mechanisms

underlying the stabilization of CA1 spatial maps. This work is an extension of part

of chapter 4 to recurrently connected networks.
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Additional work - Mechanism

underlying homeostasis of CA1

spatial representation
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Mechanism underlying homeostasis of CA1 spatial

representation

Results

Data-driven model of the CA1 network

In our network model, we divide the population of pyramidal cells into groups such

that all neurons in each group receive place-tuned input with the same tuning—

although with di�erent amplitudes (figure 1A). Pyramidal cells are not recurrently

connected, as shown by anatomical studies Deuchars and Thomson [1996]; Thomson

and Radpour [1991], but are connected to inhibitory neurons which feed back the

excitatory population. Taken together, all the elements described above form a simple

yet e�ective model of the hippocampal CA1 network.

We then test whether this model can reproduce—or postdict—the following exper-

imental findings: During exploration of a familiar environment, if all place cells

encoding this environment are silenced, another set of cells (the so-called alternative

cells) emerges and their activity spans over the whole environment Trouche et al.

[2016]. Additionally, the repeated suppression of the initial place cells leads to the

consolidation of the alternative map Trouche et al. [2016].

Lateral inhibition as a mechanism for fast remapping

Trouche et al. Trouche et al. [2016] have shown that optogenetically silencing all

place cells active in a familiar environment leads to the emergence of a new set

of cells, the so-called alternative cells. This emergence of alternative cells is fast

and reversible once the initial (called tagged) cells are allowed to fire again. After

several repetitions of this protocol, the alternative set of cells stays active even without
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optogenetic manipulation (figure 1B). Therefore, silencing place cells leads to a fast

remapping and later consolidation of this alternative map.

We wondered whether our model would be able to account for this fast remapping.

To that end, we simulate a network of CA1 neurons composed of 100 excitatory

cells randomly connected to 40 inhibitory cells. We split the excitatory cells into

groups and each group receives inputs with the same tuning but di�erent amplitudes

(figure 1A, see methods). Due to lateral inhibition and input heterogeneity, the

network forms a set of active cells and another set of silent cells (figure 1C). As it was

done in Trouche et al. Trouche et al. [2016], we tag all the cells that are active during

exploration and force those cells to be silent. The silencing of pyramidal cells lowers

the input to inhibitory neurons, leading to the release of a set of initially silent cells,

named alternative cells (figure 1D-E). Because silent cells receive place-tuned input

that overlaps with place field input, the activity of the alternative cells covered the

entire track (figure 1D-E). After a few laps, we release the tagged neurons, allowing

them to fire again. Since there was not enough time for plasticity to act, the initial

map dominates. The initial pyramidal cells drive the lateral inhibition, which in

turn suppresses the activity of the alternative cells (figure 1F). Therefore, our model

suggests that the fast and reversible remapping is a result of disinhibition of pyramidal

cells induced by the decrease in lateral inhibition.

Inhibitory plasticity and network heterogeneity avoids rebound during

fast remapping

Trouche et al. Trouche et al. [2016] have shown that optogenetic silencing CA1 place

cells in an environment leads to a fast emergence of a new set of alternative place cells.

Following place cell silencing, they observed an abrupt increase in alternative neuron

activity followed by a slower, seconds-long change towards a stable level Trouche

et al. [2016]. We hypothesize that this slower change is due to plasticity in order to
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ensure that the overall activity is kept within a target range. Since CA1 interneurons

are broadly tuned, local inhibitory plasticity rules might be able to regulate network-

wide activity. We therefore test whether an input-dependent inhibitory plasticity

rule is responsible for the experimentally observed dynamics. The plasticity rule

is such that high inputs onto inhibitory neurons lead to an increase in inhibitory

excitability. Conversely, low inputs onto inhibitory neurons lead to a decrease in

inhibitory excitability (see methods for details). Importantly, there is no individual

target firing rate for excitatory neurons, which is essential for the development of

active and silent cells. Therefore, this local, input-dependent inhibitory plasticity

rule is consistent with the formation of place and silent cells, and is able to control

network-wide activity.

We next investigate whether the implementation of this plasticity rule would lead to a

slower increase in alternative neuron firing rate following place cell silencing (light-

ON). In order to do that, we implement the inhibitory plasticity rule in a network of

interneurons randomly connected to CA1 pyramidal neurons (figure 2A). We run the

silencing protocol by silencing all active pyramidal cells. The instantaneous decrease

in input to interneurons leads to an abrupt increase in alternative neuron firing rate.

This increase is not su�cient to compensate for the reduction in place cell activity.

The low network firing rate results in a decrease in interneuron excitability and a

further, slower increase in alternative neuron activity (figure 2B). The combination

of input-dependent inhibitory plasticity and heterogeneous connections leads to a

slow ramp in network activity in light-ON epochs, and a quick return to baseline

level in light-OFF epochs, in agreement with experiments. If inhibitory plasticity

is not taken into account, the firing rate of alternative neurons increases abruptly

and quickly reaches a stable, lower level (figure 2G-H). Furthermore, this inhibitory

plasticity acts as a homeostatic mechanism to maintain overall activity when the

neuronal network is disturbed (figure 2C).
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We then compare a homogeneously connected network with a heterogeneously con-

nected one. In a homogeneously connected network, the input-dependent inhibitory

plasticity regulates network-wide connectivity (supplementary figure 2). In a het-

erogeneously connected network, however, the functional consequences of this rule

are not straightforward. In order to investigate this, we simulate a simple network

of two pyramidal cells and two interneurons. The interneurons are connected to

pyramidal cells such that each interneuron receives inputs from one pyramidal cell

and inhibits the other one (supplementary figure 2A). Even for small divergences in

feedforward input to pyramidal cells, the inhibitory plasticity amplifies this di�erence

and ensures the development of an active and a silent cell (supplementary figure

2B). Equivalently, in a sparse, randomly connected network, the inhibitory plasticity

amplifies the network structure, ensuring the development of place and silent cells.

Conversely, in heterogeneously connected networks, tagged cell activity returns to the

original level following tagged cell release (when tagged cells stop receiving silencing

current), in agreement with experiments. For homogeneously connected networks,

however, there is a rebound in the activity of original place cells (supplementary

figure 2D-E).

Excitatory plasticity as a mechanism for map consolidation

We next investigate the mechanism underlying the consolidation of the alternative

map. In order to do that, we silence the tagged cells for several laps (light-ON).

We release the tagged neurons every 10 laps—on testing sessions—to measure the

network activity without manipulations (light-OFF, figure3B). As a result of activity-

dependent synaptic plasticity, the connections onto alternative cells are strengthened

whereas the connections onto tagged cells are weakened. Over testing sessions, the

set of active cells gradually shifts from tagged cells to alternative cells (figure 3C), in

agreement with Trouche et al. Trouche et al. [2016].
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Functional implication: Map-homeostasis

In order to investigate the functional consequences of this plasticity, we quantify

the network’s decoding e�ciency—by measuring the error in position estimation

from neuronal activity—in di�erent stages of the simulation (see methods). During

the first lap of the silencing protocol (light-ON), the network’s decoding e�ciency

decreases. After several laps of the silencing protocol, however, synaptic plasticity

recovers the network decoding e�ciency (figure 4). We next apply the place cell

suppression protocol on a network with homogeneous excitatory-to-inhibitory (E-I)

connections. In heterogeneously connected networks, the suppression of tagged cell

activity leads to a decrease in the activity of some interneurons (supplementary figure

1A-B), in agreement with experiments Trouche et al. [2016]. In homogeneously

connected networks, however, silencing place cells inevitably leads to a decrease

in the activity of every inhibitory neuron. Again, repeated suppression leads to

remapping (supplementary figure 1C-G). Therefore, our model suggests that synaptic

plasticity of feedforward inputs onto CA1 pyramidal cells, i.e. plasticity of Scha�er

collaterals, is a good candidate for the mechanism underlying place map consolidation.

Moreover, pyramidal neurons might be heterogeneously connected to interneurons.

In summary, our model indicates that the fast remapping after silencing place cells

is due to the release of lateral inhibition. Additionally, the consolidation of the

alternative map in our model is promoted by synaptic plasticity of feedforward inputs

onto CA1 pyramidal cells. This plasticity recovers the network’s decoding e�ciency.
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Methods

Neuron model

We use a rate-based neuron model where the rate r is determined by

⌧0
dr

dt

= �r +

"
X

i

w

i

R

i

#

+

.

where [·]+ denotes a rectification that sets negative values to zero, ⌧0 is a time constant,

R

i

is the firing rate of neuron i in the presynaptic layer, w

i

is the synaptic weight

from a neuron in the presynaptic layer.

Network structure

In our network simulations, we simulate a network of N

E

excitatory neurons and

N

I

inhibitory neurons. Excitatory neurons are not recurrently connected but are all

connected to inhibitory neurons. All excitatory neurons are connected to all inhibitory

neurons with the same synaptic strength. The excitatory neurons are divided in N

G

groups and each group receives, initially, inputs with the same spatial tuning.

Synaptic plasticity model

The synaptic weights from input neurons onto CA1 neurons are plastic and depends

on the activity of the presynaptic neuron r

j

and the activity of the postsynaptic neuron

as a standard Hebbian term. We include a homeostatic term that takes into account

the sum of all synaptic weights onto the postsynaptic neuron. The synaptic weight

from input neuron j to the postsynaptic neuron i, w

ij

, is updated following

dw

ij

dt

= ⌘

ex

r

i

r

j

� ⌘

homeo

 
X

j

w

ij

� ✓

homeo

!
,
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where ⌘

ex

is the learning rate of excitatory connections, ⌘

homeo

is the learning rate of

the homeostatic term, and ✓

homeo

is a target homeostatic constant.

Inhibitory plasticity model

In section , we implement a form of inhibitory plasticity which dependents on the

total input current received by each inhibitory neuron. In our implementation, the

intrinsic excitability of inhibitory neurons is plastic. However, this implementation is

equivalent, in our model, to changing all synaptic connections from each inhibition

neuron. The firing rate of each inhibitory neuron, r

inh

i

, is given by

⌧0
dr

inh

i

dt

= �r

inh

i

+

"
X

j

w

IE

ij

r

ex

j

� ✓

inhib

#

+

,

where w

EI

ij

is the synaptic weight from excitatory neuron j to inhibitory neuron i,

and ✓

inhib

is a threshold that controls the excitability of the inhibitory neuron. This

excitability is modulated by the input received by the inhibitory neuron as follows

d✓

inhib

dt

= �⌘

in

(✓

inhib

� ✓

target

) ,

and

✓

target

= A

inhib

(I

ex

0 � I

ex

) ,

where ⌘

th

is the inhibitory learning rate, A

inhib

is the inhibitory plasticity strength,

I

ex

0 is a constant, and I

ex

=

P
j

w

IE

ij

r

ex

j

is the total excitatory input received by the

inhibitory neuron.

Position-modulated inputs

The simulated CA1 neurons receive feedforward input from N

pre

neurons. These

input neurons are tuned to specific locations and their firing rates span over the entire
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environment. All the place fields of input neurons have the same tuning width, �

pre

,

and the same amplitude, A

pre

. We assume that the animal explores an annular track

of length L with speed v. The firing rate of an input neuron with place field centered

at p0 is

r

input

(p) = A

pre

exp

✓
� d

2

2�

2
pre

◆
, (1)

where p is the animal’s position, and d is the distance, along the track, between the

animal’s position and the center of the place field.

Position decoding from network activity

The animal’s position was decoded from the network activity using a population

vector method. For each neuron i, we assigned a preferred location p

0
i

, determined

by the neuron’s place field peak location. The position of the animal at time t was

then estimated as the weighted sum of all neuron’s preferred location

p

est

(t) =

P
i

r

i

(t)p

0
iP

r

i

(t)

, (2)

where r

i

(t) is the firing rate of neuron i. The position estimate error was measured

as the integral of the distance between the estimated position and the animal’s real

position.

Parameters and simulations

All simulations were implemented in python and are available at ModelDB. The

parameters used in our simulations can be found in table 1
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Table 1: Parameters summary

Name Value Description

N
e
u

r
o
n

M
o
d

e
l

⌧0 2.0 ms Firing rate time constant

N

th

1.0 Threshold for somatic activation

N
e
t
w

o
r
k

M
o
d

e
l

N

E

100 Number of excitatory neurons in the network

N

I

20 Number of inhibitory neurons in the network

N

G

10 Number of groups of excitatory neurons

P
l
a
s
t
i
c
i
t
y

M
o
d

e
l

⌘

ex

5 ⇥ 10

�4 ms�1 Excitatory plasticity learning rate

⌘

homeo

5 ⇥ 10

�5 ms�1 Homeostatic plasticity learning rate

✓

homeo

2.0 Homeostatic target value

⌘

in

1 ⇥ 10

�4 ms�1 Inhibitory plasticity learning rate

I

ex

0 8.0 Target excitatory input (for inhibitory plasticity)

A

inhib

1.0 Strength of inhibitory plasticity

A

inhib

(S3H) 10.0 Strength of inhibitory plasticity for supp fig 3H

I
n

p
u

t

A

pre

2.0 Presynaptic place field amplitude

�

pre

5.0 Presynaptic place field width
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Figure 1. Lateral inhibition as a mechanism for fast remapping (A) Network
diagram. Pyramidal neurons (triangles) are split into groups such that neurons
in each group receive place-tuned input with the same spatial tuning but di�erent
amplitudes. Pyramidal neurons receive feedback inhibition from inhibitory point
neurons (circles). Each pyramidal neuron can be active (green triangles) or silent
(gray triangles). (B) Protocol mimicking Trouche et al. experimental design Trouche
et al. [2016]. The animal is allowed to explore a familiar environment and all CA1
pyramidal cells active in that particular environment are tagged. The tagged cells are
silenced (light-ON) and an alternative set of cells becomes active. After a few laps,
tagged cells are allowed to fire again (light-OFF) and the initial place map is recovered.
After many repetitions of this protocol, the alternative set of cells is stabilized and
remain active even without optogenetic manipulation. In our simulations, the tagging-
and-silencing protocol is implemented by injecting an extra (negative) current onto
initial place cells to ensure they are kept silent. (C) Neuronal activity as a function
of the animal’s position for all pyramidal neurons during the first lap of exploration.
(D) Neuronal activity as a function of the animal’s position for all pyramidal neurons
following tagged cell silencing. Pyramidal cell activity is weaker and noisier, but
covers the whole environment. Note that the neural index is sorted with respect to its
field. (E) Di�erence between pyramidal cell activity in (D) and (C).
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Figure 2. Inhibitory plasticity and inhibitory homogeneity avoids rebound

during fast remapping (A-C) Inhibitory plasticity in heterogeneously connected
networks. (A) Network diagram. Pyramidal cells (triangles) are randomly connected
to inhibitory cells (circles) and those are randomly connected back to pyramidal cells.
Some pyramidal cells (green triangles, named tagged cells) are active in the first
stage of the simulations. When those cells are silenced, an alternative set of cells
(purple triangles) becomes active. The remaining pyramidal cells (gray triangles)
are silent over the entire simulation. (B) Evolution of tagged (green) and alternative
(magenta) cell activity over one silencing protocol under inhibitory plasticity. Lateral
inhibition leads to an instantaneous increase in alternative cell activity following
tagged cell silencing, whereas inhibitory plasticity leads to a seconds-long adaptation
of alternative cell activity. Yellow bar indicates time window in which tagged cells
are silenced. (C) Average firing rate for all active cells in light-OFF (no external
current) and light-ON (tagged cells silencing) epochs. Gray circles indicate individual
trials. Black circles indicate average over all 50 trials. (D-F) Inhibitory plasticity in
uniformly connected networks. (D) Network diagram. Pyramidal cells (triangles)
are uniformly, bidirectionally connected to inhibitory cells (circles). Some pyramidal
cells (green triangles, named tagged cells) are active in the first stage of the simulations.
When those cells are silenced, an alternative set of cells (purple triangles) becomes
active. The remaining pyramidal cells (gray triangles) are silent over the entire
simulation. (E-F) Same as in (B)-(C) for a homogeneously connected network. (G-I)

Network dynamics in a homogeneously connected network without plasticity. (G)

Network diagram. Pyramidal cells (triangles) are uniformly, bidirectionally connected
to inhibitory cells (circles). All connections and neuron excitability are fixed. (H-I)

Same as in (B)-(C) for a homogeneously connected network without plasticity.
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Figure 3. Excitatory plasticity leads to map consolidation (A) Simulation time-
line. Initially, the animal explores the environment for 70 laps. During lap 70, all
active cells are tagged. Following the exploration phase, the following protocol is
applied 8 times: 1) tagged cells are silenced for 9 laps through the application of
a strong inhibitory current onto tagged cells, 2) tagged cells are released (no extra
current) for 1 lap (testing session) and we record the activity of all neurons. (B)

Tagged cell and alternative cell activity on testing sessions. Total firing rate of tagged
(green) and alternative (magenta) cells over testing sessions divided by the initial
firing rate of tagged cells. (C) Neuronal activity as a function of the animal’s position
for all pyramidal neurons during the first lap of exploration. (G) Neuronal activity
as a function of the animal’s position for all pyramidal neurons during the final lap
of exploration (after plasticity). Pyramidal cell activity covers the whole environ-
ment and is stronger after synaptic plasticity. (E) Di�erence between pyramidal cell
activity in (F) and (D).
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Figure 4. Functional implication: Map homeostasis Position decoding error dur-
ing initial light-OFF, light-ON and after plasticity. The animal’s position was decoded
from the network activity using a population vector algorithm (see methods). We
used the network activity from the first lap of exploration (light-OFF), the first lap of
exploration following tagged cell silencing (light-ON), and the last lap of exploration
(after plasticity). *p < 10

�185, **p < 10

�150, and ***p < 10

�34 by Student’s t test.
Error bars indicate SD.
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Supplementary Figures

Supplementary Figure 1 (related to figure 3).
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Supplementary Figure 1 (related to figure 3). Place cell silencing in uniformly

connected networks leads to remapping. (A) Network diagram. Pyramidal neu-
rons (triangles) are split into groups such that neurons in each group receive place-
tuned input with the same spatial tuning but di�erent amplitudes. Pyramidal neurons
receive feedback inhibition from inhibitory point neurons (circles). Each pyramidal
neuron can be active (green triangles) or silent (gray triangles). Pyramidal neurons
are randomly connected to interneurons. (B) Interneuron activity. Left: interneuron
firing rate in light-ON (tagged cell silencing) versus initial interneuron firing rate in
light-OFF (no silencing). Right: final interneuron firing rate after plasticity versus
initial interneuron firing rate in light-OFF. Because of the random E-I connections,
some interneuron firing rates increase whereas others decrease, as observed experi-
mentally [Trouche et al., 2016]. (C) Network diagram as in A. Pyramidal neurons
are uniformly connected to interneurons. (D) Tagged cell and alternative cell activity
on testing sessions. Total firing rate of tagged (green) and alternative (purple) cells
over testing sessions divided by the initial firing rate of tagged cells. (E) Neuronal
activity as a function of the animal’s position for all pyramidal neurons during the
first lap of exploration. (F) Neuronal activity as a function of the animal’s position
for all pyramidal neurons following tagged cell silencing. Pyramidal cell activity
is weaker and noisier, but cover the whole environment. (G) Neuronal activity as a
function of the animal’s position for all pyramidal neurons during the final lap of
exploration (after plasticity). Pyramidal cell activity cover the whole environment
and is stronger after synaptic plasticity.
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Supplementary Figure 2. Inhibitory plasticity amplifies input heterogeneity in

randomly connected networks. (A) Network diagram, two pyramidal cells (trian-
gles) and two interneurons (circles) are simulated. One of the pyramidal cells (red)
receives a slightly (1%) stronger feedforward input. One interneuron (orange) receives
input from the pyramidal neuron that is more active and projects onto the remaining
pyramidal cell. The second interneuron (green) receives input from the less active
pyramidal cell and projects onto the more active pyramidal cell. (B) Evolution of
neuronal firing rates for pyramidal cells (left) and interneurons (right). Interneuron in-
trinsic excitability is modulated by an input-dependent plasticity rule. The small (1%)
di�erence in feedforward input is amplified by the inhibitory plasticity. (C) Evolution
of neuronal firing rates for pyramidal cells (left) and interneurons (right). Interneuron
intrinsic excitability is fixed (no plasticity). (D) Network diagram, two pyramidal cells
(triangles) and one interneuron (orange circle) are simulated. One of the pyramidal
cells (red) receives 50% stronger feedforward input. The interneuron receives input
from both pyramidal neurons and projects back onto both pyramidal neurons. (E-F)

Same as (B)-(C) for a network as described in (D). The input-dependent inhibitory
plasticity regulates the overall network activity. (G) Network diagram, two pyramidal
cells (triangles) and two interneurons (circles) are simulated. One of the pyramidal
cells (red) receives 75% stronger feedforward input. One interneuron (orange) re-
ceives input from the pyramidal neuron that is more active and projects back onto
the same pyramidal cell. The second interneuron (green) receives input from the less
active pyramidal cell and projects back onto the same pyramidal cell. (H-I) Same as
(B)-(C) for a network as described in (G). The input-dependent inhibitory plasticity
regulates the activity locally.

APPENDIX A. ADDITIONAL WORK - MECHANISM UNDERLYING
HOMEOSTASIS OF CA1 SPATIAL REPRESENTATION
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