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ABSTRACT

ON COUPLING RESOLVED AND UNRESOLVED PHYSICAL PROCESSES IN FINITE

ELEMENT DISCRETISATIONS OF GEOPHYSICAL FLUIDS

At the heart of modern numerical weather forecasting and climate modelling lie sim-
ulations of two geophysical fluids: the atmosphere and the ocean. These endeavours
rely on numerically solving the equations that describe these fluids. A key challenge is
that the fluids contain motions spanning a range of scales. As the small-scale processes
(unresolved by the numerical model) affect the resolved motions, they need to be de-
scribed in the model, which is known as parametrisation. One major class of methods
for numerically solving such partial differential equations is the finite element method.
This thesis focuses on the coupling of such parametrised processes to the resolved flow
within finite element discretisations. Four sets of research are presented, falling under
two main categories.

The first is the development of a compatible finite element discretisation for use in
numerical weather prediction models, so as to avoid the bottleneck in computational
scalability associated with the convergence at the poles of latitude-longitude grids. We
present a transport scheme for use with the lowest-order function spaces in such a com-
patible finite element method, which is motivated by the coupling of the resolved and
unresolved processes within the model. This then facilitates the use of the lower-order
spaces within Gusto, a toolkit for studying such compatible finite element discretisa-
tions. Then, we present a compatible finite element discretisation of the moist compress-
ible Euler equations, parametrising the unresolved moist processes. This is a major step
in the development of Gusto, extending it to describe its first unresolved processes.

The second category with which this thesis is concerned is the stochastic variational
framework presented by Holm [Variational principles for stochastic fluid dynamics, P.
Roy. Soc. A-Math. Phy. 471 (2176), (2015)]. In this framework, the effect of the unre-
solved processes and their uncertainty is expressed through a stochastic component to
the advecting velocity. This framework ensures the circulation theorem is preserved by
the stochastic equations. We consider the application of this formulation to two simple
geophysical fluid models. First, we discuss the statistical properties of an enstrophy-
preserving finite element discretisation of the stochastic quasi-geostrophic equation. We
find that the choice of discretisation and the properties that it preserves affects the statis-
tics of the solution. The final research presented is a finite element discretisation of the
stochastic Camassa-Holm equation, which is used to numerically investigate the forma-
tion of ‘peakons’ within this set-up, finding that they do still always form despite the
noise’s presence.
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1 INTRODUCTION

The key ingredient underpinning modern weather forecasting and climate modelling
is a mathematical understanding of the atmosphere and the ocean. These are the prin-
cipal focus of the branch of mathematics known as geophysical fluid dynamics, which
studies the evolution of natural fluids occurring on Earth and other planets. Other exam-
ples of geophysical fluids include lava flows, glaciers and the Earth’s mantle, although
sometimes these are considered to be the subject of other areas of science, rather than of
geophysical fluid dynamics. The key features of geophysical fluids are the planet’s grav-
itational field, which can cause the fluid to become stratified with denser fluid at the
bottom; and the rotation of the planet, which gives rise to centrifugal and Coriolis forces
when describing the fluid in a reference frame rotating with the planet. An overview
and motivation for the study of geophysical fluids can be found in [1].

Although there are many ways to mathematically describe the evolution of a fluid, com-
mon variable choices are the velocity v of the fluid and the mass density ρ, which are
fields dependent on spatial location x and time t. Assumptions about mass conserva-
tion and the application of Newton’s Second Law lead to partial differential equations
for v and ρ. The system of equations may be closed by additional equations, often a
thermodynamic equation providing conservation of energy and an equation of state. A
property common to these fluids models is the presence of non-linearity in the momen-
tum equation, for instance many formulations contain a (v · ∇)v term. The significance
of this non-linear term is that fluid motions on different length and time scales interact
with one another. For the atmosphere and ocean, processes span many spatial and tem-
poral scales, presenting a key challenge in solving the equations describing them. Figure
1.1, taken from [2], shows the characteristic length and time scales of many atmospheric
processes. [2] also contains temporal and spatial spectra of atmospheric motions (which
originally come from [3] and [4]), which also show the vast span of scales spread by at-
mospheric processes. This goes from turbulence, which can have scales of a few metres
in space and seconds in time, to planetary waves stretching thousands of kilometres and
lasting for days.

One approach to dealing with this non-linearity is to linearise the equations so that the
scales do not interact. However for many applications this will simply not produce
results that are accurate enough. In the absence of analytic solutions to these fluid equa-
tions, we seek to approximate the solutions numerically. This involves making the con-
tinuous equations discrete in some way. Typically the continuous time derivative is dealt
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Figure 1.1: A diagram taken from [2] illustrating the characteristic length and time scales of the motion
of the atmosphere. Processes span a vast range of both temporal and spatial scales, meaning that in the
discretisations used for numerical weather prediction or climate modelling, some motions are inevitably not
resolved. The feedback of these unresolved motions upon those resolved by the discretisation necessitate a
description of the effects of the unresolved motions within the model.

with by setting the model to take discrete time steps. However, several methods of dis-
cretisation in space are common in geophysical fluid applications. In finite difference
schemes, fields are stored as a grid of points and spatial derivatives are approximated
by differences between the field values. Finite volume schemes divide the domain into
cells and write the fluid equations in flux form. Particle methods divide the fluid up into
a series of discrete parcels. For finite element methods, the focus of this thesis, space is
split into a number of elements, in which the fields are approximated as the sum of a
finite series of functions. The equations are typically written in weak form – the differ-
ential equations are multiplied by a test function before they are integrated. Such finite
element methods will be described in Chapter 2.

In all of these discretisations, there are spatial and temporal scales below which motions
cannot be resolved by the numerical model. Limits on the amount of available compu-
tational resources inevitably mean that there will be motions below the resolved scales
of atmospheric and oceanic models. In global ocean models, this may mean that eddies
are unresolved, whilst convection is below the scales resolved by global atmospheric
models that are used for numerical weather prediction. Since these unresolved motions
interact with those that are resolved, models will not accurately describe the evolution
of the resolved flow if the unresolved processes are simply omitted. As described by [2],
it is common therefore to attempt to parametrise the effect of the unresolved processes
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on the resolved ones.

To demonstrate this concept, let us consider an example of the advection of some tracer
q by a velocity v, so that the evolution of q is given by

∂q

∂t
+ v · ∇q = 0. (1.1)

If q and v can be decomposed into resolved, mean parts q and v, and unresolved, fluc-
tuating parts q ′ and v ′, then we can construct an equation for the evolution of q:

∂q

∂t
+ v · ∇q = −v ′ · ∇q ′, (1.2)

where the bar · denotes taking some spatial and temporal mean such that q ′ = 0 and
v ′ = 0. The scientific question is then how to parametrise v ′ · ∇q ′ in terms of the mean
quantities. Similar terms appear in the equation describing the evolution of velocity v.
Typically this would be v ′iv

′
j, known as the Reynolds stress, with the subscripts i and j

denoting the components of the velocity. When parametrising these terms, a common
approach is to write them as a diffusion term, such as K∇2q, with diffusivity K, although
there are many more elaborate schemes for parametrising this term. Examples include
the Gent and McWilliams parametrisation of [5] and the K-profile parametrisation of [6].
A detailed discussion of this example can be found in [7].

Although such unresolved motions are important, they are not the only physical pro-
cesses to be parametrised in geophysical models. In models of the atmosphere for nu-
merical weather prediction, other parametrisations include describing transitions be-
tween different phases of moisture, radiation and drag due to the Earth’s surface. Some
of these are illustrated in Figure 1.2. The weather forecasting community often refers
to this collection of parametrisations as ‘physics’, in contrast to the description of the
resolved flow which is called ‘dynamics’. These parts have typically been separated in
operational weather and climate models, and historically there was not much research
into how the two parts were coupled together. However, over recent years interest has
risen in ‘physics-dynamics coupling’, which provides the motivation for the research
in Part I of this thesis. Another topic of recent interest within this field is stochastic
parametrisations, in which the unresolved processes are given a random component to
try to capture the uncertainty in these unresolved motions. This is the focus of Part II.

At the same time, the use of finite element methods for modelling geophysical fluids
has been growing. In particular, the work of [8] showed that a compatible finite element
discretisation (explained in Chapter 2) can possess many properties that are desirable for
horizontal discretisations of dynamical cores – the component of the weather or climate
model that solves the equations for the resolved flow. Such properties are presented in
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Figure 1.2: Some of the parametrised processes used in numerical weather prediction models. This illustrates
atmospheric processes that are not resolved or described by the adiabatic equations solved by the dynamical
core, that still need describing to accurately simulate the weather. Image courtesy of ECMWF, the European
Centre for Mid-Range Weather Forecasting.

[9]. That these compatible finite element discretisations possess these properties was a
critical factor in the choice of the UK Meteorological Office to adopt a compatible finite
element discretisation for its next-generation dynamical core [10]. This will be discussed
in Chapter 3, which motivates the research of Part I.

1.1 SUMMARY OF THE THESIS

This thesis is a collection of works under the umbrella theme of coupling resolved and
unresolved processes within the context of finite element discretisations of geophysical
fluids. In the next chapter we provide an introduction to finite element methods which
will be relevant for the rest of the work. The thesis is then split into two parts, with Part
I focusing on a compatible finite element discretisation of the atmosphere for numerical
weather prediction. Part II concerns a new class of stochastic fluid equations derived in
[11] from a variational framework. In this framework, advection has a stochastic com-
ponent such that circulation is still preserved.

The new research presented as part of this thesis is divided into four chapters, which
can be summarised as follows:

• Chapter 4 – a new transport scheme is presented which has second-order accuracy
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for the lowest-order compatible finite element;

• Chapter 5 – a compatible finite element discretisation of the moist compressible
Euler equations is presented;

• Chapter 7 – the statistical properties of a finite element discretisation of the stochas-
tic quasi-geostrophic equation are investigated;

• Chapter 8 – a finite element discretisation of the stochastic Camassa-Holm equation
is presented and the formation of peakons within this equation is explored.

1.2 DISSEMINATION

The research presented within this thesis has also been disseminated as journal publi-
cations, conference presentations and through open-source software. The publications
also presenting this work are:

• Bendall and Cotter (2018), Statistical properties of an enstrophy conserving finite element
discretisation for the stochastic quasi-geostrophic equation [12], published in Geophysi-
cal and Astrophysical Fluid Dynamics;

• Bendall, Cotter and Shipton (2019), The ‘recovered space’ advection scheme for lowest-
order compatible finite element methods [13], published in the Journal of Computa-
tional Physics;

• Bendall, Gibson, Cotter, Shipton and Shipway (2019), A compatible finite element dis-
cretisation for the moist compressible Euler equations [14], which appears on the arXiv,
and as of writing has been submitted to the Quarterly Journal of the Royal Meteo-
rological Society for review;

• Bendall, Cotter and Holm (2019), Perspectives on the formation of peakons in the stochas-
tic Camassa-Holm equation [15], which appears on the arXiv, and as of writing has
been submitted to Proceedings of Royal Society A for review.

Conferences and meetings at which this research has been presented include:

• University of Reading SIAM Chapter annual conference, June 2017, A crash course
in wet thermodynamics (talk);

• Imperial College London Fluids CDT symposium, July 2017, Discretising the stochas-
tic quasi-geostrophic equations (poster);

• GungHo network meeting, Exeter, June 2017, Introducing water to the atmosphere: a
‘condensed’ summary (talk);
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• UK Fluids Network Meeting, March 2018, Compatible finite element methods: a new
discretisation for weather models (talk);

• MPE CDT Jamboree, March 2018, Adding moisture to a finite element model of the
atmosphere (poster);

• Firedrake ’18, Imperial College London, June 2018, Coupling physics to finite element
dynamics: the ‘recovered’ advection scheme (talk);

• SIAM MPE, Philadelphia, September 2018, A new discretisation for the stochastic
quasi-geostrophic equations (talk);

• PDEs on the sphere 2019, Montréal, May 2019, Moisture-dynamics coupling for a com-
patible finite element dynamical core (talk).
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2 FINITE ELEMENT METHODS

This chapter provides some preliminary material for this thesis, starting with an overview
of finite element methods in Section 2.1, which readers already familiar with finite ele-
ment methods may wish to skip. Two common finite element transport schemes are
described in Section 2.2. Section 2.3 provides some background to finite element exterior
calculus, which is used to explain compatible finite element methods, which are intro-
duced in Section 2.4. This chapter finishes in Section 2.5 with a brief discussion of our
implementation of finite element methods using the Firedrake software.

2.1 AN INTRODUCTION TO THE FINITE ELEMENT

As described by [16], the finite element method evolved from two separate branches of
science: the description of stresses and stiffness in structural engineering, and mathemat-
ical studies of approximations to partial differential equations. The name ‘finite element
method’ was coined by R. W. Clough, who was an early pioneer in the field [17]. Al-
though we give only outline of finite element methods here, thorough treatments can be
found in [18] and [19].

Finite element methods form a major class of Galerkin methods, which, in contrast to
finite difference or finite volume discretisations, involve the explicit approximation of
fields in finite-dimensional function spaces (rather than simply at a finite number of
points or in a finite number of cells). A crucial feature of finite element methods is that
equations are written in weak form, which involves multiplying by some test function
before integrating, and often manipulating using integration by parts. This has histori-
cally often been known as a variational formulation, as in many early problems the solu-
tion minimised an error under some energy norm. Fields are then expanded as the sum
of a finite number of basis functions. The approximate solution to the partial differential
equation is then found by solving a matrix-vector system for the basis coefficients. What
distinguishes finite element methods from other Galerkin methods is that the domain
Ω is divided into cells, with the basis functions restricted to only their own elements
or neighbourhood of elements. An illustration of the division into cells can be found
in Figure 2.1. Formally, a finite element, as defined by Ciarlet [20], is the triple (K, P,N ),
where

1. K ⊂ Rn is the element domain;
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Figure 2.1: A division of a domain into elements. Finite element methods can be easily used on non-uniform
meshes.

2. P is a finite dimensional space of functions that are continuous on K, usually poly-
nomial functions;

3. N = (n1, . . . , ndimP) is a basis for the dual space P ′. The elements of N are called
degrees of freedom (DOFs) or nodes.

The basis (ψ1, . . . , ψdimP) for P is often chosen so that each function vanishes at all but
one node, so that ni(ψj) = δij. A finite element space is given by the choice of finite el-
ement (K, P,N ), along with a division of the domain Ω into cells. The finite element
space can be typically characterised by how the function is expanded within a cell and
the continuity of its functions between adjacent elements. The properties of the partic-
ular finite element method come from the choices of weak formulation and the finite
element spaces used.

Part of the popularity of finite element methods is because they provide an applica-
tion of rigorous functional analysis, as the finite element spaces are finite-dimensional
subspaces of Sobolev spaces. In functional analysis, these Sobolev spaces are used to
classify the solutions of partial differential equations and their smoothness. Thus the so-
lution to a finite element method may lie in a finite-dimensional subspace of the Sobolev
space in which the exact solution to the continuous differential equation lies. In this case
the method is called conforming. Another significant advantage of these methods is the
flexibility with which they can be applied to arbitrary meshes, which can be extremely
complicated to use with, for instance, finite difference methods. This advantage has long
been exploited by structural and mechanical engineering communities, whose domains
such as buildings or cars can be very complex. The compatibility of finite element meth-
ods with general grids makes them an obvious choice for adaptive mesh refinement,
which is a promising area of interest within discretisation of geophysical fluids.

Some of the most frequently used finite element spaces use the Lagrange polynomials
as basis functions. The continuous Galerkin spaces use the Lagrange polynomials, and
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Figure 2.2: Many finite elements are not simply expansions with Lagrange polynomials. (Left) the Brezzi-
Douglas-Fortin-Marini space BDFM1 on a triangular element, which describes a vector with continuous normal
and tangential components between cells. (Right) the Raviart-Thomas element RTcf

0 on a quadrilateral cell. It
describes vector fields with continuous normal components between elements.

are continuous between cells. When the polynomials are r-th order, we will denote this
space by CGr, although Pr and Qr are common names for this space on triangular and
quadrilateral elements respectively. In contrast, the discontinuous Galerkin spaces, writ-
ten as DGr, use r-th order polynomials but have no continuity between cells. These are
often written for triangular and quadrilateral elements as dPr and dQr. Spaces with
mixed polynomial order or continuity requirements are also possible by combining ele-
ments through a tensor product structure, which is described in [21] and [22]. We will
denote the tensor product of two spaces U and V by U ⊗ V . Examples of other finite
element spaces are the Raviart-Thomas (RT) spaces [23] and the Brezzi-Douglas-Fortin-
Marini (BDFM) spaces [24], which are illustrated in Figure 2.2.

2.1.1 AN EXAMPLE FOR THE HELMHOLTZ EQUATION

As an example demonstrating these concepts, we consider a conforming finite element
discretisation of the Helmholtz equation, which often appears in geophysical fluid mod-
els as an equation for the pressure. Let the domain Ω be the unit square, divided into a
uniform grid of quadrilateral elements. The equation that we will attempt to solve for
variable q is (

k2 −∇2
)
q = F(x, y), (2.1)

subject to the boundary condition that n̂ · ∇q = 0 on the boundary of the domain ∂Ω,
where n̂ is the unit normal to the edge of the domain. We take the constant k = 100 and
the forcing F as

F = cos(2πx) cos(2πy). (2.2)

This can be cast in weak form by multiplying by a test functionψ and integrating. Under
assumptions of continuity of q between cells, we integrate the Laplacian term by parts
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Figure 2.3: The solution q of the Helmholtz equation (2.1), which often appears in models of geophysical
fluids. This solution was obtained using the finite element formulation (2.3) with quadrilateral elements of size
∆x = ∆y = 0.01. This is used as a benchmark for the solution shown in Figure 2.4, which used the compatible
finite element formulation outlined in Section 2.4.

and use the boundary condition n̂ · ∇q = 0 on ∂Ω to obtain∫
Ω

k2ψq dx+
∫
Ω

∇ψ · ∇q dx =
∫
Ω

ψF dx. (2.3)

The Galerkin approximation that we make is that the function q and the test function
ψ are in Q1, the space of piecewise, continuous linear functions. The second derivative
of q is zero everywhere in this finite element space, which motivates our integration by
parts of the Laplacian term. The solution to the problem is the q that satisfies (2.3) for
all ψ ∈ Q1. The test function ψ and the function q are then expanded using the basis
functions of Q1, turning this into a matrix-vector problem to solve for the coefficients of
q in this expansion. The solution is shown in Figure 2.3.

2.2 TWO COMMON FINITE ELEMENT TRANSPORT SCHEMES

This section serves as a summary of two common finite element methods for describing
the transport of a tracer q by a known velocity v, obeying the “advective” form of the
transport equation

∂q

∂t
+ v · ∇q = 0, (2.4)

where n̂ · v = 0 on the boundary ∂Ω of the domain Ω, so that there is no inflow or
outflow. The velocity will lie in the vector Q1 space. Both schemes described here will
be relevant later in the thesis, and begin with multiplying by some test function ψwhich
will be in the same space as q to obtain a square system to solve. The approaches differ
in the assumptions about the continuity of q, but we also use a different time stepping
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scheme with each to illustrate two different choices of time discretisation.

2.2.1 CONFORMING IMPLICIT MIDPOINT TRANSPORT

First, we will assume continuous q and ψ. Integrating and manipulating using integra-
tion by parts gives ∫

Ω

ψ
∂q

∂t
dx−

∫
Ω

q∇ · (ψv) dx = 0. (2.5)

For the time discretisation, we are attempting to solve for q(n+1) at the (n + 1)-th time
step given q(n), with time step ∆t. In this example we use an implicit midpoint scheme,
which involves replacing every q with q(n+1/2) = 1

2

(
q(n) + q(n+1)

)
, except for the

time derivative which is simply
(
q(n+1) − q(n)

)
/∆t. Advantages of this time stepping

scheme are that it is unconditionally stable [25] and it preserves quadratic integral quan-
tities that are invariant in the continuous equations [26]. In our case this means that∫
Ω q

2 dx is preserved when∇ · v = 0. Although choosing a conforming spatial discreti-
sation prevents the need for discretising terms on interior facets (unlike the method we
will see in Section 2.2.2), a major disadvantage to conforming discretisations in general is
that they require the solution of problems globally over the domain, with basis functions
overlapping from one element to another. This can make it difficult to solve efficiently.

The final equation can be written as∫
Ω

ψq(n+1) dx =
∫
Ω

ψq(n) dx+ ∆t
∫
Ω

q(n+1/2)∇ · (ψv) dx = 0. (2.6)

2.2.2 DISCONTINUOUS GALERKIN UPWINDING

In this discretisation, the assumptions about continuity of q and test function ψ are re-
laxed. The weak form obtained is then∫

Ω

ψ
∂q

∂t
dx+

∫
Ω

∇ · (ψqv) dx−
∫
Ω

q∇ · (ψv) dx = 0. (2.7)

The divergence theorem gives∫
Ω

ψ
∂q

∂t
dx+

∑
K

∫
ΓK

ψqv · n̂ dS+
∫
∂Ω

ψqv · n̂ ds−
∫
Ω

q∇ · (ψv) dx = 0, (2.8)

where ΓK represents the interior facets of the element K. The surface measure on inte-
rior facets is written dS, with ds representing the surface measure on exterior facets. On
facets, n̂ is always the outward pointing normal vector and interior facets are summed
over twice, with n̂ pointing in the opposite direction in each case. The third integral in
equation (2.8) will vanish due to to our boundary conditions.
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We will choose q and ψ to be in the discontinuous space dQ1. In this case, the inte-
rior facet integral in (2.8) does not vanish, and the challenge is how to discretise it. A
discussion of some of the ways of discretising these fluxes in this context can be found
in [27]. Our choice is the upwind flux, in which the equation becomes∫

Ω

ψ
∂q

∂t
dx+

∫
Γ

JψK+ q
† (v · n̂+

)
dS−

∫
Ω

q∇ · (ψv) dx = 0, (2.9)

where Γ = ∪KΓK. Each side of an interior facet is labelled arbitrarily with + or −, and
the double square brackets represent the jump in values on either side of the facet

JψK+ = ψ+ −ψ−. (2.10)

The upwind value of q is represented by q†, which assumes the value

q† =

{
q+ if v · n̂+ > 0,

q− if v · n̂+ 6 0.
(2.11)

For the time discretisation, such an upwinding scheme is commonly used with a Runge-
Kutta scheme, such as is the subject of [27]. The scheme that we will use later in this
work is a third-order strong stability-preserving Runge-Kutta scheme (SSPRK-3), see for
instance [28] or [27]. In this scheme, we first introduce a simple forward Euler time step,
to find the difference in q, which we denote by Lq(n), such that∫

Ω

ψLq(n) dx = −∆t

∫
Γ

JψK+ q
(n)†(v · n̂+) dS+ ∆t

∫
Ω

q(n)∇ · (ψv) dx. (2.12)

The solution at the (n+ 1)-th time step is then found by taking the three steps

q(1) := q(n) + Lq(n), (2.13a)

q(2) :=
3

4
q(n) +

1

4
q(1) +

1

4
Lq(1), (2.13b)

q(n+1) :=
1

3
q(n) +

2

3
q(2) +

2

3
Lq(2). (2.13c)

Some of the main appeals of discontinuous solutions are that they can better represent
shocks and steep gradients in solutions (such as weather fronts) and they do not require
the solution of a global matrix-vector equation as the system is block-diagonal, making
the problem simpler to solve efficiently on parallel computers. However one of the major
drawbacks of this method is that it is only conditionally stable. The instability is deter-
mined by the Courant number c = |v|∆t/∆x, for cell width ∆x. This instability occurs
when c breaches some critical value, given by the Courant-Friedrichs-Lewy condition
(CFL). For instance, [27] quotes the CFL limit for the scheme described in this section as
0.409.
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Although we could have used an implicit midpoint scheme to integrate in time, such
Runge-Kutta schemes allow easy application of slope-limiters. These are used as the dis-
cretisation does not preserve the property of the continuous equation that the solution
remains bounded by its initial maximum and minimum values. Limiters can prevent
overshoots and undershoots generating unphysical values, such as negative concentra-
tions of moisture.

2.3 FINITE ELEMENT EXTERIOR CALCULUS

The goal of this section is to explain the discrete de Rham complex, which is the math-
ematical structure underlying the compatible finite element methods which will be de-
scribed in Section 2.4. First, some concepts from exterior calculus must be introduced.

2.3.1 EXTERIOR CALCULUS

Differential k-forms are the basic building block of exterior calculus, and are mathemat-
ical objects that take k vector fields and return a real number. They are examples of
algebraic k-forms, which are alternating linear maps from k vectors to the real numbers.
In the case of differential k-forms, the mapping is from the tangent spaces of a smooth
manifold. Differential k-forms are the integrands of line, surface and volume integrals,
or of those integrals over higher-dimensional manifolds. Circulation is an example of a
1-form in fluid dynamics, whilst a mass flux through a surface is a 2-form.

More formally, a differential k-form can be described given an n-dimensional smooth
manifold Ω, with tangent space at point x given by TxΩ. For vector fields v1, . . . , vk ∈
TxΩ, a differential form is an alternating linear map ω(v1, . . . , vk) assigning an element
ωx to each x ∈ Ω. Let the space of differential k-forms on Ω be Λk(Ω). Note that there
are no differential k-forms for k > n. For a visual introduction to differential forms, see
[29], or for complete explanation in the context of finite element methods see [30].

Differential k-forms are equipped with an exterior derivative, denoted by d, which maps
from Λk(Ω) to Λk+1(Ω). Following [30], for vector fields v1, . . . , vk+1 ∈ TxΩ, the exte-
rior derivative ofω ∈ Λk(Ω) at x can be defined by

dωx(v1, . . . , vk+1) =

k+1∑
j=1

(−1)j+1∂vjωx(v1, . . . , v̂j, . . . vk+1), (2.14)

with the hat ·̂ denoting a suppressed argument. An important property of the exterior
derivative is that the second derivative d2 = 0.
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A second operation on differential k-forms that we will briefly mention is the interior
product, denoted by ¬, which takes a vector field v andω ∈ Λk and returns a differential
(k− 1)-form. As described in [29], this can be written

v ¬ω(v1, . . . , vk) = ω(v, v1, . . . vk−1). (2.15)

Relevant to us are the two- or three-dimensional physical spaces R2 and R3. In these
situations the exterior derivative can correspond to well-known vector calculus deriva-
tives, grad, div and curl. The exterior derivative of the coordinate function xi is the
1-form dxi. The basic 1-form is the integrandω · dx to line integrals.

The de Rham complex is the sequence of spaces and mappings

0→ Λ0(Ω)
d−→ Λ1(Ω)

d−→ . . .
d−→ Λn(Ω)→ 0, (2.16)

where the spaces are the spaces of differential k-forms and the mappings are given by
the exterior derivative. This is an exact complex, with no space being mapped to Λ0(Ω)

and nothing being mapped from Λk(Ω) by d.

There are also subspaces of Λk(Ω) containing differential k-forms with particular prop-
erties, which may also form their own complexes. Important to us are spaces of differen-
tial k-forms that also lie within particular Sobolev spaces, that categorise their smooth-
ness.∗ The two complexes that we will consider are L2 de Rham complexes when the
domains are R2 and R3. These complexes are

0→ H1(R2)
∇⊥−−→ H(div;R2) ∇·−−→ L2(R2)→ 0, (2.17)

0→ H1(R3)
∇−→ H(curl;R3) ∇×−−→ H(div;R3) ∇·−−→ L2(R3)→ 0. (2.18)

Here, L2 is the space of all square-integrable functions and the Sobolev space H1 is the
space of all functions which are square-integrable and have a weak derivative that is
square-integrable. Similarly, H(div) is the space of all functions which are both square-
integrable and have a weak divergence that is square-integrable, whilst H(curl) is the
space of all functions that are square-integrable and also have a square-integrable weak
curl. The ∇⊥ operator is perpendicular to the gradient ∇, and is defined in Cartesian
coordinates in R2 to be

∇⊥ =

(
−∂y

∂x

)
. (2.19)

∗Although we avoid defining Sobolev spaces here, they are defined in [30]. For a rigorous guide to
functional analysis and Sobolev spaces, the reader could see [31], for example.
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2.3.2 FINITE ELEMENT EXTERIOR CALCULUS

Finite-dimensional spaces of differential k-forms are applicable to finite element discreti-
sations. These can also be combined to form complexes connected by analogues of the
exterior derivative. For instance, let us consider PrΛk(Rn), the space of polynomial
differential k-forms of degree r, upon Rn. This space forms the polynomial complex

0→ PrΛ0(Rn)
d−→ Pr−1Λ1(Rn)

d−→ . . .
d−→ Pr−nΛn(Rn)→ 0. (2.20)

For n = 3, an example 1-form with r = 2might look like

yz dx+ xz dy+ xy dz. (2.21)

The final step in using such differential k-forms for finite element methods is to consider
these forms restricted to the shape of cell that composes the mesh. The most well-known
of these cases are documented in the periodic table of finite elements [32].

A de Rham complex used for finite element methods is then a family of finite element
differential forms equipped with exterior derivatives. The main family that will be used
in this thesis is Q−

r Λ
k(Ω), which describes polynomial forms on quadrilateral or cubic

cells, which forms a column in the periodic table [32]. The complexes that are relevant
to us are

0→ Qr+1(R1)
d/dx−−−→ dQr(R

1)→ 0, (2.22a)

0→ Qr+1(R2)
∇⊥−−→ RTcf

r(R
2)
∇·−−→ dQr(R

2)→ 0, (2.22b)

0→ Qr+1(R3)
∇−→ Nce

r(R
3)
∇×−−→ Ncf

r(R
3)
∇·−−→ dQr(R

3)→ 0, (2.22c)

where r denotes the degree of the element, which typically gives its approximation
order†. As previously mentioned, Qr and dQr represent elements of scalar fields ex-
panded in polynomials of degree r on quadrilateral cells that are respectively continu-
ous and discontinuous between cells. The Raviart-Thomas element RTcf

r describes vector
fields with continuous normal components, and corresponds to a discrete H(div) space.
The Nédélec elements Nce

r and Ncf
r, sometimes also called Raviart-Thomas-Nédélec el-

ements, are H(curl) and H(div) spaces in three-dimensions. They respectively describe
vector fields with continuous tangential and normal components, with e and f indicating
nodes associated with edges or facets. For illustration of the spaces used in this thesis
for the discretisation of the equations describing the atmosphere, see Table 3.1.

†There are two numbering conventions frequently used in the literature. The first (used here) gives the
order of the approximation of the element. The other, used for instance in the periodic table of the finite
elements [32], gives the degree of the highest order polynomial of the element. Often these are the same,
but as an example the Raviart-Thomas elements will differ under this convention.
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2.4 COMPATIBLE FINITE ELEMENT METHODS

A mixed finite element method solves coupled partial differential equations with more
than one variable, where the variables may or may not lie in different finite element
spaces. For instance, the Helmholtz example from Section 2.1.1 can be recast as

∇q = u, (2.23)

k2q−∇ · u = F, (2.24)

giving two equations to solve simultaneously for q and u. These methods are known
as compatible or mimetic when the finite element function spaces are taken from a finite
element de Rham complex, such that the spaces of the variables correspond to those
from the de Rham complex of the continuous partial differential equations that are at-
tempted to be solved. A consequence of this is that the discrete differential operators
are analogues of the differential operators relating the respective continuous spaces. The
discrete differential operators then satisfy familiar identities from vector calculus, such
as

∇ ·∇× f = 0, ∇×∇q = 0, (2.25)

for any scalar field q or vector field f.

Crucially, the motivation for using compatible finite element methods is that they can
create stable discretisations, when general mixed formulations may not. As described
by [33], the discrete and continuous spaces can be related via diagrams such as the fol-
lowing example in two dimensions:

H1(R2) H(div;R2) L2(R2)

Qr+1(R2) RTcf
r(R

2) dQr(R
2)

∇⊥

ΠQ

∇·

ΠRT ΠdQ

∇⊥ ∇·

(2.26)

where ΠQ, ΠRT and ΠdQ are the projections to the respective finite element spaces. The
commutativity of the operations shown in such diagrams is used to show the stability of
the corresponding mixed finite element formulations, such as in [8].

2.4.1 ANOTHER EXAMPLE WITH THE HELMHOLTZ EQUATION

We now return to our Helmholtz example from Section (2.1.1), cast as two coupled first-
order PDEs:

∇q = u, (2.27a)

k2q−∇ · u = F, (2.27b)
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Figure 2.4: The solution q of the Helmholtz equation (2.1) using the compatible finite element formulation
(2.28) with quadrilateral elements of size ∆x = ∆y = 0.01. Using the compatible finite element approach can
deliver stable results comparable with that shown in Figure 2.3. This may not be the case for another mixed
formulation if the function spaces are not chosen to be compatible.

with the boundary condition n̂ · u = 0 on ∂Ω. To obtain the mixed weak formula-
tion, we multiply by test functions φ and ψ, which are in the same spaces as u and
q respectively. Following integration by parts, application of divergence theorem and
assumptions about the continuity of the fields, we obtain∫

∂Ω

qφ · n̂ ds−
∫
Ω

q∇ ·φ dx =
∫
Ω

φ · u dx, (2.28a)∫
Ω

k2ψq dx−
∫
Ω

ψ∇ · u dx =
∫
Ω

ψF dx. (2.28b)

To take a compatible finite element approach, u and q are chosen to lie in spaces from an
appropriate complex, with u ∈ Vu ⊂ H(Ω; div) and q ∈ Vq ⊂ L2(Ω). The solution is
the pair (u, q) that solves (2.28) for all φ ∈ Vu and for all ψ ∈ Vq. As before, we use a
uniform quadrilateral mesh of the unit square. A natural family of finite element spaces
to choose is Q−Λk from the periodic table of finite elements. We will take the lowest
order spaces, so that Vu = RTcf

0 and Vq = dQ0. The solution to this is shown in Figure
2.4.

2.5 FIREDRAKE

We have outlined finite element methods in this section, giving a taste of their math-
ematical elegance and also their flexibility. However, a major challenge in using finite
element methods can be their numerical implementation. There are many components
that require programming: triangulations of the domain into elements; schemes for turn-
ing the weak formulation into discrete equations; mappings between physical elements
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and a reference element; quadrature rules for numerical integration; strategies for solv-
ing matrix-vector problems. The code should also be efficient, and ideally able to exploit
parallel computational architectures.

Fortunately this thesis was completed without the author needing to write the code to
explicitly perform these tasks. The Firedrake software [34], which was used for all the
numerical results in this thesis, is developed by a team centred at Imperial College Lon-
don, and automates all of the procedures listed above (and many more). Firedrake origi-
nally grew from the FEniCS project [35], another software package providing an abstrac-
tion for solving partial differential equations using finite element methods. Both soft-
ware packages auto-generate low-level code to solve the weak formulations provided
by the user in UFL, the unified form language [36]. Firedrake and FEniCS then convert
the Python-based UFL into low-level code; in the case of Firedrake this is done by the
two-stage form compiler TSFC [37] and FInAT [38, 39], which create c code that assembles
the finite element forms into kernels to be run for each cell in the mesh. A significant dif-
ference between Firedrake and FEniCS is the way that these kernels are organised and
executed, which in Firedrake is performed by PyOP2 [34]. In the case of Firedrake, the
Python language is used for levels of code down to the executed kernels, allowing infor-
mation to be more easily passed to the low-level code generation. The third party PETSc
software package provides preconditioners and numerical solvers for the large linear
systems produced by PyOP2. Another component of Firedrake is Slate, which allows
use of more advanced solver techniques for solving discontinuous and mixed Galerkin
problems known as hybridisation techniques [40]. An overview of the components of
Firedrake and how they interact with one another is shown in Figure 2.5. Important
features of Firedrake used in this thesis are quadrilateral elements on extruded meshes
[41, 42], with tensor product elements [22].
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Figure 2.5: Schematics of the components of the Firedrake software, which automates code generation for
the solution of partial differential equations using finite element methods. These help to illustrate both how
complex finite element software can be and how the different components of this software can be abstracted.
(Top) a newer graphic, courtesy of David Ham, illustrating how the current components of Firedrake are
expressed abstractly and their interaction with one another. (Bottom) an older graphic from [43] that shows
how different scientists might interact with different aspects of the software. The work of presented in this
thesis was predominantly completed with interaction through the Firedrake interface.
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3 GUNGHO AND GUSTO

For a convergent numerical discretisation of a differential equation, increasing its reso-
lution leads to more accurate solutions. In the context of dynamical cores of atmospheric
models, this means using more degrees of freedom (DOFs) or reducing the time step.
This, however, relies on more computational resources, which typically now means per-
forming calculations in parallel over increasing numbers of processors. The communi-
cation between the processors is then important for determining the efficiency of the
numerical method.

At the UK Met Office, the dynamical core for global simulations uses a latitude-longitude
grid as a mesh over the sphere. This choice of grid grants many properties important for
the accuracy and stability of the discretisation, which are discussed in [9]. However, the
convergence of meridians at the poles is leading to a bottleneck in the rate of commu-
nication between the processors dealing with this part of the model – and thus also a
bottleneck in the scalability of the method [10]. As part of a search for a new horizontal
grid, [8] investigated the use of compatible finite element discretisations with the rotat-
ing shallow-water equations. The use of this discretisation would facilitate the use of
meshes over the sphere that are much more general than just the latitude-longitude grid.
Crucially, many of the desirable properties presented in [9] can still be attained by using
compatible finite element discretisation.

The GungHo project’s aim is to develop a new compatible finite element dynamical core
for use in the operational model of the UK Met Office [44]. Within this project sits Gusto:
a dynamical core toolkit using the Firedrake finite element software described in Sec-
tion 2.5. It provides a library for discretising a hierarchy of geophysical fluid equations:
the compressible Euler equations, Boussinesq equations and shallow-water equations.
These can be simulated with different meshes, different degrees of spaces and with dif-
ferent transport schemes, providing a sandpit for the investigation of the choices in-
volved with building the next-generation dynamical core. Some of these choices involve
how the dynamical core will be coupled to the physical parametrisations once the dy-
namical core is different. Chapter 5 presents research contributing to this area.

In this chapter, we start by giving more detail on the motivation for developing a dy-
namical core using a compatible finite element method. We then describe the model
details of Gusto, which provides the background for the main results of this part of the
thesis: the presentation of a new transport scheme in Chapter 4 and the development
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of a discretisation of the moist compressible Euler equations in Chapter 5. Much of this
chapter is adapted from [14].

3.1 THE GUNGHO PROJECT

3.1.1 EQUATIONS FOR A DRY DYNAMICAL CORE

The full compressible Euler equations used in a dynamical core to describe the behaviour
of a dry atmosphere on a rotating sphere, such as those given in [45] or [46], can be
written as

∂v

∂t
+ (v · ∇)v+ f× v+ 1

ρ
∇p+∇Φ =∇ · (K∇v) + Fv, (3.1a)

∂θd
∂t

+ (v · ∇)θd =∇ · (K∇θd) + Fθ, (3.1b)

∂ρd
∂t

+∇ · (ρdv) = 0, (3.1c)

where v is the air velocity, f = fk̂ represents the Coriolis parameter multiplied by the
vertical unit vector, ρd is the dry air density, p is the air pressure and Φ is the gravita-
tional potential, such that∇Φ = k̂g, with g the acceleration due to gravity. The density
and pressure are related via the ideal gas law for dry air,

p = ρdRdT, (3.2)

for temperature T and specific gas constant for dry air, Rd. These variables also define
the dry potential temperature θd via

θd := T

(
pR
p

) Rd
cpd

, (3.3)

where pR is a reference pressure (usually 1 × 105 Pa) and cpd is the specific heat ca-
pacity of dry air at constant pressure. Fv and Fθ describe sources and sinks of velocity
and potential temperature respectively. These terms describe the ‘physics’: the non-
adiabatic, dissipative or unresolved processes. We explicitly also include two such terms,
describing an artificial diffusion in the equations for v and θd, where K is the diffusiv-
ity. These artificial diffusion terms will be treated like physics parametrisations in our
model which motivates the use of the name compressible Euler equations as opposed to the
Navier-Stokes equations. In many test-cases these terms will be zero. All variables are
expressed in a frame of motion that rotates with the sphere so that the Earth’s surface
appears stationary, which leads to the appearance of the Coriolis force in (3.1a).

Another common form of (3.1a) involves rewriting the pressure gradient force to give
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∂v

∂t
+ (v · ∇)v+ f× v+ cpdθd∇Π+∇Φ =∇ · (K∇v) + Fv. (3.4)

Here Π is the Exner pressure, defined to be

Π :=

(
p

pR

) Rd
cpd

, (3.5)

which gives θd = T/Π. The advective derivative of (3.4) can also be rewritten to cast the
momentum equation in vector-invariant form

∂v

∂t
+ (∇× v)× v+ f× v+ 1

2
∇v2 + cpdθd∇Π =∇ · (K∇v) + Fv. (3.6)

These equations describe a dry atmosphere; the presence of moisture leads to a different
equation of state, while the latent heat release associated with condensation changes the
thermodynamic equation. The equations describing a wet atmosphere can be found in
Section 5.1.

3.1.2 DESIRED PROPERTIES OF A DYNAMICAL CORE

When building a numerical model for weather or climate simulation, there is a trade-
off between the accuracy of the solution and the time taken to run, constrained by the
amount of available computational resources. The goal is therefore to design a model
that is as accurate as possible, given an acceptable run time. However, these models
are made up of several large components, of which the physics and dynamics are just
two. Examples of other components might include data assimilation, an ocean model or
a chemistry simulation. It is therefore difficult to design an individual component to be
as accurate as possible, when its accuracy is interlinked with the other components.
In [9], 10 properties are listed that are argued to be essential or highly desirable in making
the dynamical core as accurate as possible, given restrictions on time and computational
resources. Alongside this, the models should possess a certain amount of scalability on
massively parallel computers: as the number of processes is increased the model run
time should decrease. The properties proposed by [9] are:

1. mass conservation;

2. accurate representation of balanced flow and adjustment;

3. computational modes should be absent or well controlled;

4. the geopotential gradient and pressure gradient should produce no unphysical source
of vorticity;

5. terms involving the pressure should be energy conserving;
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6. Coriolis terms should be energy conserving;

7. there should be no spurious fast propagation of Rossby modes; geostrophic balance
should not spontaneously break down;

8. axial angular momentum should be conserved;

9. numerical accuracy should approach second order;

10. minimal grid imprinting.

One of the most crucial of these properties is the second. Large scale atmospheric flow is
close to geostrophic and hydrostatic balance. The numerical discretisation should there-
fore preserve a discrete version of these balances. The mechanism by which the atmo-
sphere returns to geostrophic balance after a perturbation is known as adjustment, and
takes place through the radiation and dispersion of the fast acoustic and inertial-gravity
waves. The continuous shallow-water equations possess three sets of wave modes that
should therefore be properly represented in order to accurately capture the balance flow
and adjustment: these are a set each of eastward- and westward-propagating fast inertial-
gravity waves, and the westward-propagating slow Rossby waves.

3.1.3 REVIEW OF HORIZONTAL GRIDS

A latitude-longitude grid is used by many operational weather and climate models as its
properties (logically rectangular structure, symmetry and orthogonality) can be manip-
ulated to obtain the 10 properties above [9]. One of the vital aspects of a choice of grid is
the choice of DOFs – the points at which the variables such as velocity and pressure are
evaluated. There are two sides to this: the number of DOFs for each variable, and their
staggering relative to one another. The choice in arrangement of DOFs turns out to be
critical in governing the properties that the grid will have. When choosing a horizontal
grid, one of the key aspects to consider is the arrangement of the DOFs. Five of the obvi-
ous choices of staggering for a rectangular grid were originally investigated by [47], [48]
and [49]. These papers define the labelling for the staggerings that has since been used
in the literature. This labelling can be seen in Figure 3.1.

The early work of [47], [48] and [49] analysed some of the properties of these discretisa-
tions applied to the shallow-water equations. The dispersion properties of these grids
were evaluated by [50], which looked at the phase and group velocities of perturbations
to the shallow-water equations in the f-plane (the regime in which the Coriolis parameter
is kept constant). This work was extended by [51] to include an unstaggered vorticity-
divergence formulation known as Z-grid. However, on the f-plane, Rossby wave modes
are degenerate and stationary, and as a result it is not possible to identify spurious com-
putational Rossby modes [9]. Investigations were done on the β-plane by [52], while [53]
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A B C D E

Figure 3.1: A key aspect of the horizontal discretisation used for the atmosphere is the placement of the
degrees of freedom for the velocity and pressure fields. The most simple arrangements, which are shown
here, are known as the Arakawa grids, with each designated by its own letter. Horizontal arrows represent
the placement of the zonal wind degrees of freedom, whilst the vertical arrows represent the meridional wind
degrees of freedom. The circles show the placement of the pressure degrees of freedom.

and [54] investigate dispersion on the spherical C-grid.

This research has all contributed to the argument that the C-grid and Z-grid are the
best staggerings for representing the dispersion properties of inertia-gravity waves and
Rossby waves, and hence also the best for representing balanced flow and adjustment
on a quadrilateral grid. These grids also do not allow spurious pressure modes which
are oscillatory and yet have a vanishing discrete gradient. As the Z-grid uses vorticity
and velocity-divergence as its variables, each time step requires the solution of Poisson
equations on each model level to find the wind field [9]. The feasibility of the Z-grid
depends upon a fast and scalable Poisson solver. In the absence of this, a C-grid dis-
cretisation is therefore the best option for quadrilateral grids, and has been the best grid
at providing the desired properties described above, and so is widely used operationally.

In [9], the authors also review the properties of non-quadrilateral grids. One key issue
that is discussed by [9] and [8] is the effect of the ratio of mass (or density or pressure)
degrees of freedom to those of velocity (or momentum). Grids made up of cells with a
different number of edges will have different ratios of DOFs. It was observed by [55] that
the amount of noise in a representation of geostrophic balance in different finite element
discretisations depended upon this ratio. [8] explains that the DOF ratio defines the ratio
of inertia-gravity modes to Rossby modes that the discretisation will support. Hence, if
the ratio of velocity to pressure DOFs is not correct, the grid will support spurious com-
putational modes. The C-grid on quadrilaterals has two velocity DOFs for every pres-
sure DOF, which is considered the ideal ratio. In contrast, attempts to replicate C-grid
staggering on triangular cells gives three velocity DOFs for every two pressure DOFs,
whilst C-grid hexagonal cells have a ratio of 3:1 velocity-to-pressure DOFs.

The constraint provided by the requirement of a 2:1 velocity-to-pressure DOF ratio heav-
ily restricts the choices of grid. Although quadrilaterals can be easily formed by sub-
dividing other polygons, such as triangles, pentagons and hexagons, the resulting quadri-
laterals will not preserve the orthogonality attribute of the latitude-longitude grid thought
to be very important in deriving some of the desired properties listed in Section 3.1.2,
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such as the ability to design a mass-conserving transport scheme [9]. For these reasons,
a latitude-longitude grid with C-grid staggering has been the preferred choice of grid for
many dynamical cores.

3.1.4 THE POLE PROBLEM

As described by [9], the latitude-longitude grid also has drawbacks. The convergence of
meridians at the poles means that cell sizes near the pole will be much smaller than those
at the equator. This is particularly true as the model resolution is increased, as it must be
in order to improve the model’s accuracy. However, explicit time stepping schemes with
Eulerian advection place restrictions upon the size of the time step: this is known as the
Courant-Friedrichs-Lewy (CFL) condition. Hence, as the cell size shrinks at the poles,
the time step used in the model must also shrink, which heavily restricts the resolution
that can be used given a certain amount of computational resources.

Although this problem was bypassed by the advent of implicit time stepping and semi-
Lagrangian advection, the ‘pole problem’ is beginning to re-emerge, as described by
[9]. This time it is related to parallel scalability – the improvement in performance that is
achieved with an increase in available computational resources. There are two conven-
tional ways of measuring this parallel performance: strong scalability, which measures
how the computation time varies with the number of processors for a computational
problem of a fixed total size; and weak scalability, which measures how the computation
time varies with the number of processors for a problem of a fixed size per processor.∗

Whereas in the past, computing power has improved through advances in processor
speed, it is expected to improve in the future by the development of even more massively-
parallel machines, which use processors that are similar speed to current ones [56]. A key
concept in adapting a model to parallel computing is to simultaneously solve the equa-
tions for different parts of the grid on different parts of the computer. However as the
resolution of a latitude-longitude grid is increased, this will require increasing amounts
of data communication between the processors dealing with the points around the poles.
It had been previously anticipated that eventually the speed of this data communication
will provide a bottleneck on the performance of the model, and improvements in parallel
computing would not allow models of increased resolution to become feasible. Indeed,
limitations in scalability have already been observed in the UK Met Office model [57].
More information about the development of algorithms for future computational archi-
tectures can be found in [58].

∗Neither of these types of scalability exactly describes what is necessary for operational weather fore-
casters, who have a fixed wallclock time and want to know how the size of the computational problem can
be varied with the number of available processors.
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Thus, there is an increasing interest in different quasi-uniform grids that would not suf-
fer from the ‘pole problem’. Recent research into mixed finite element methods by [8]
has shown that these can provide many of the desired properties listed in Section 3.1.2.
These methods provide a way to control the number of DOFs per element, and hence
to avoid spurious inertia-gravity or Rossby modes and to replicate many of the positive
attributes of the C-grid staggering.

3.1.5 THE GUNGHO PROJECT

In [8], Cotter and Shipton show that compatible finite element methods can be used to
discretise the linear rotating shallow-water equations while preserving some of the most
important properties listed in Section 3.1.2. In particular, they showed that mass and
energy can be conserved, and that following the work of [33], the commutativity of di-
agram (2.26) can be used to ensure the accurate representation of balanced geostrophic
modes and the absence of spurious pressure modes. They showed that if the function
space choices for the velocity u and the height† field η have a DOF-ratio of 2:1, the dis-
cretisation will not generate spurious branches of Rossby wave modes or inertia-gravity
wave modes. [8] then gave the example of the spaces from the de Rham complex (2.22b)
which satisfy these conditions.

Crucially, compatible finite element methods can provide these properties without rely-
ing on the orthogonality of the mesh, and can more easily facilitate other meshes that are
quasi-uniform over the sphere. For instance, a cubed-sphere mesh can be used, which
is illustrated in Figure 3.2. For these reasons, the next-generation dynamical core of the
UK Met Office will use a compatible finite element discretisation. The larger project of
developing such a dynamical core is called GungHo.

Other research into the use of compatible finite elements methods for numerical weather
prediction includes [59, 60, 61, 62, 63, 64, 65, 10].

3.2 GUSTO

Gusto is a dynamical core library that harnesses the Firedrake software to provide com-
patible finite element discretisations for atmospheric flow. It intends to provide an ab-
straction of the dynamical core, with the user able to choose which equation set to
solve, as well as other aspects of the discretisation: time integration schemes, transport
schemes, finite element spaces, among others. In this section we give an overview of
these options for solving the compressible Euler equations (3.1). These options are used
in the following two chapters, which revolve around the implementation of new fea-

†In the shallow-water equations, the height field η also corresponds to the pressure field.
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Figure 3.2: (Left) a latitude-longitude grid, whose meridians converge at the poles, causing very small cell
sizes. This provides constraints on the rate of data communication in massively parallel supercomputers – the
so-called ‘pole problem’. (Right) a cubed-sphere mesh, which is an alternative quasi-uniform mesh over the
sphere.

tures within Gusto. Chapter 4 presents a new transport scheme facilitating the use of the
lowest-degree sets of finite element spaces, while Chapter 5 describes the development
of moisture within Gusto.

3.2.1 OVERVIEW

Here we present an outline of our model structure, which is based on the UK Met Office
ENDGame model [66]. We illustrate this with some pseudocode that describes how we
evolve our prognostic variables, which we denote by the single vector χ = (v, ρd, θd).
Overall the model could be loosely described as a semi-implicit predictor-corrector. The
operators evolving the prognostic variables are split into explicit steps, in which the
model state at the next time step is ‘predicted’ by advection from a mean flow. This is
then ‘corrected’ by an implicit step, which iteratively solves linearised equations. Within
a time step these stages form an outer predictor loop and an inner corrector loop to in-
crease stability whilst describing the fast gravity waves.

In the code below, we use F(χ) to describe the forcing operation which is detailed in
Section 3.2.4. The explicit application of the forcing operator is performed at the start of
the time step. The ‘predicting’ advection step uses the advecting velocity u to evolve the
model, an operation we denote by a Aū. The ‘correcting’ step first applies the forcing
operator to the latest best-guess of the state, trying to solve the implicit part of the model.
The difference between the implicit forcing term and the other terms gives the residual
∆χ. Reducing the residual to zero then ensures the implicit part of the model is solved.
This is done by approximating the system as a linear problem S(χ ′) for a perturbation
χ ′. Then the residual is reduced by iteratively solving for χ ′ and uses this to increment
the best guess of χ at the next time level. At the end of the time step, we have the option
to apply an artificial diffusion scheme, which we represent with D(χ). In Chapter 5, we
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will add physical parametrisations in a similar way to this. The parameter α can be var-
ied to off-center the time stepping, although we will take α = 1/2.

The pseudocode summarising the algorithm is:

1. FORCING: χ∗ = χn + (1− α)∆tF(χn)

2. SET: χn+1p = χn

3. OUTER:

(a) UPDATE: u = αvn+1p + (1− α)vn

(b) ADVECT: χp = Aū(χ
∗)

(c) INNER:

i. FIND RESIDUAL: ∆χ = χp + α∆tF(χn+1p ) − χn+1p

ii. SOLVE: S(χ ′) = ∆χ for χ ′

iii. INCREMENT: χn+1p = χn+1p + χ ′

4. DIFFUSION: χn+1p = D(χn+1p )

5. ADVANCE TIME STEP: χn = χn+1p

3.2.2 SPACES

One of the main results of [8] was the proposal of combinations of function spaces for the
velocity v and the (dry) air density ρd within this compatible finite element framework
that will satisfy the 2:1 DOF ratio condition. In this section we will expand on this to
describe the function spaces (Vv, Vρ, Vθ) that we use in our model for velocity, density
and potential temperature respectively, for both the two-dimensional vertical slice and
the three-dimensional configurations that we use. Other papers describing these spaces
include [62, 63, 65, 10].

A challenge associated with geophysical fluid dynamics is the high aspect ratio of the
fluid, which motivates us to discretise our domain Ω using a mesh with regular vertical
layers. Such a mesh is formed by extruding some base horizontal mesh over horizontal
domain ΩH with a one-dimensional vertical domain ΩV ⊂ R1. On such a mesh, finite
elements can be formed from simpler finite elements by taking their tensor product, as
described in [22]. In this language, the domain Ω = ΩH ⊗ ΩV . This is the approach
that we will use, following the implementation described in [22]. Another advantage of
using tensor product spaces is that it facilitates using spaces of different degree in the
vertical direction to the horizontal, which may be of interest in the future.
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One final ingredient that it is necessary to introduce is the HDiv operation, which forms
a vector-valued H(div) element from a tensor product element, as described in [22].

For now we wish to run our model both with two-dimensional vertical slices and in
three-dimensions with a structured quadrilateral mesh. To form the tensor product
spaces on these domains, we must first list the underlying compatible finite element
spaces. We repeat here the one- and two-dimensional complexes from equation (2.22) in
Section 2.3.2:

0→ Qk+1(R1)
d/dx−−−→ dQk(R

1)→ 0, (3.7a)

0→ Qk+1(R2)
∇⊥−−→ RTcf

k(R
2)
∇·−−→ dQk(R

2)→ 0. (3.7b)

The compatible spaces used for two-dimensional vertical slices are formed by taking the
tensor product of spaces in the one-dimensional complex (3.7a). For Vθ, we mimic the
Charney-Philips grid by co-locating temperature DOFs with those of vertical velocity
(and thus staggering them with the density DOFs). This is the same approach as de-
scribed and motivated in [62] and [65].

To form spaces we use with horizontal degree k and vertical degree l are thus

Vv = HDiv {Qk+1(ΩH)⊗ dQl(ΩV)}⊕ HDiv {dQk(ΩH)⊗Ql+1(ΩV)} , (3.8a)

Vρ = dQk(ΩH)⊗ dQl(ΩV), (3.8b)

Vθ = dQk(ΩH)⊗Ql+1(ΩV). (3.8c)

In the case that k = l, these tensor product spaces become equivalent to just the two-
dimensional complex (3.7b) with no tensor product, if we take temperature to be in the
same space as the vertical component of velocity.

The spaces used for three-dimensional simulations are the tensor product of the two-
dimensional complex (3.7b) used for the horizontal discretisation with the one-dimensional
complex (3.7a). These are

Vv = HDiv
{

RTcfk(ΩH)⊗ dQl(ΩV)
}
⊕ HDiv {dQk(ΩH)⊗Ql+1(ΩV)} , (3.9a)

Vρ = dQk(ΩH)⊗ dQl(ΩV), (3.9b)

Vθ = dQk(ΩH)⊗Ql+1(ΩV). (3.9c)

Again, if k = l these spaces are equivalent to those in the three-dimensional complex in
the finite element family Q−

r Λ
k listed in equation (2.22c).

For the remainder of this thesis, we use equal horizontal and vertical degrees. We use
two cases, k = l = 0 and k = l = 1, which are sometimes respectively referred to as
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the ‘lowest-order’ spaces and the ‘next-to-lowest-order’ spaces. For these two cases, we
use slightly different model configurations, which will be listed in the coming sections.
Chapter 4 focuses on the implementation of the transport scheme for the k = 0 case. The
spaces used in these cases are illustrated in Table 3.1.

Space k = 0, d = 2 k = 1, d = 2 k = 0, d = 3 k = 1, d = 3

Vρ

Vv

Vθ

Table 3.1: An illustration of the function spaces that we use for density, velocity and potential temperature
variables in vertical slice (d = 2) and three-dimensional (d = 3) simulations. We have have two configurations
for each case: with vertical and horizontal degree of k = 0 and k = 1. These spaces are tensor product elements
listed in (3.8a) and (3.9a).

3.2.3 DIFFERENCES BETWEEN k = 0 AND k = 1 CONFIGURATIONS

Our model is designed for use with both the k = 0 and k = 1 sets of function spaces. The
formulation is slightly different between these two cases, and here we give a summary
of those differences, which is also displayed in Table 3.2.

The main area of difference is in the advection part of the model. In the k = 0 case,
we use the recovered space transport schemes that were presented in [13] and are the
focus of Chapter 4. However when using the k = 1 spaces, a discontinuous Galerkin up-
wind scheme is used for the transport of ρd, whilst the advection of θd is performed by
the embedded scheme introduced by [67]. The velocity v advection equation is written
in vector invariant form, and uses the theta time stepping method. All other advection
schemes use a three-step Runge-Kutta time stepping procedure.
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Component k = 0 configuration k = 1 configuration
Forcing Non-advective dynamics terms

Transport of v
Recovered DG

upwinding, SSPRK-3
time stepping

Vector invariant
form, theta method

time stepping

Transport of ρd
Recovered DG

upwinding, SSPRK-3
time stepping

DG upwinding,
SSPRK-3

time stepping

Transport of θd
Recovered DG

upwinding, SSPRK-3
time stepping

Embedded DG
upwinding, SSPRK-3

time stepping
Linear solve Hybridised linear solver

Diffusion Recovered diffusion Interior penalty

Table 3.2: A summary of the components of the different model configurations when using Gusto with the
lowest order k = 0 spaces, and the next-to-lowest order k = 1 spaces. The advection schemes are a major
source of difference between the two configurations.

3.2.4 FORCING

The ‘forcing’ operation involves finding the level of balance between the non-advective
terms in (3.1a) when it is written in weak form. This imbalance is written as F(v).

For both k = 0 and k = 1 configurations, the forcing that we apply to v is the solution
vtrial ∈ Vv, for all ψ ∈ Vv, to∫

Ω

ψ · vtrial dx =
∫
Ω

[
cpd∇ · (θdψ)Π−ψ · (f× v) − g(ψ · k̂)

]
dx

−

∫
Γ

cpd JθdψKn 〈Π〉 dS,
(3.10)

whereΩ is the domain, Γ is the set of all interior facets and the angled brackets 〈·〉 denote
the average value on either side of a facet. The double square brackets with respect to n̂,
denoted by J·Kn, represents the jump of vector ψ given by‡

JψKn = ψ+ · n̂+ +ψ− · n̂−. (3.11)

The forcing term F(v) is then taken to be the solution vtrial to this.

3.2.5 ADVECTION

In the advection stage, each of the variables is translated by the velocity u. We represent
the action of this by the operator Aū.

‡We attempt to distinguish this from the jump with subscript +, which for vector ψ is given by JψK+ =
ψ+ −ψ−.
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EMBEDDED DG ADVECTION

Here we briefly outline the embedded DG transport scheme introduced in [67]. First, we
remind ourselves of the single forward-Euler step of discontinuous Galerkin upwinding.
This was presented in equation (2.12) of Section (2.2.2), and here we describe it as the
operation Lū upon a quantity q, which may be scalar or vector. For the advective form
of the transport equation this involves finding the solution qtrial, for all ψ ∈ Vq of∫

Ω

ψ · qtrial dx−
∫
Ω

ψ · q dx− ∆t
∫
Ω

q · [∇ · (ψ⊗ u)] dx

+ ∆t

∫
Γ

(
u · n̂+

)
q† · JψK+ dS = 0.

(3.12)

The difference between equation (3.12) and (2.12) is the possibility that ψ and q can be
vector quantities, which requires the introduction of the outer product ⊗. Otherwise, q†

denotes the upwind value of q from equation (2.11). As before in (2.10), the jump J·K+ is
taken with respect to the positively labelled side of the facet.

We also need to solve the advection equation in continuity form, as in the transport
of ρd. The single-step forward-Euler equation for the continuity form of the transport
equation is ∫

Ω

ψ · qtrial dx−
∫
Ω

ψ · q dx− ∆t
∫
Ω

(u⊗ q) : (∇⊗ψ) dx

+ ∆t

∫
Γ

(
u · n̂+

)
q† · JψK+ dS = 0,

(3.13)

where A : B represents the Frobenius inner product between A and B.

Both equations (3.12) and (3.13) describe a single step which is unstable for discontin-
uous linear polynomials as the cell size ∆x → 0. Stability and increased accuracy with
respect to ∆t is achieved by composing these steps using the three-step Runge-Kutta
scheme from Section 2.2.2 (which we call SSPRK-3).

This DG upwinding scheme can be used directly for discontinuous spaces, such as that
used for ρd. The embedded DG scheme presented in [67] was motivated for advect-
ing functions in Vθ where k = 1. This space is quadratic in the vertical and continu-
ous between elements, whilst it is discontinuous linear in the horizontal. This space is
embedded within the space with the same horizontal structure that is quadratic in the
vertical but discontinuous between elements. The advection scheme of [67] performs
a single time step of advection by injecting the field into this embedding space, where
transport byAū takes place. The field is then returned to its original space via a Galerkin
projection. A representation of this scheme is given in Figure 3.3.
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qn Iqn AIqn PAIqn = qn+1

Inject
−−−→ Advect−−−−→ Project

−−−−→

Figure 3.3: A diagram illustrating the steps in the embedded DG upwinding scheme presented in [67], which
is designed for advecting the potential temperature θd. In the k = 1 configuration, this is in a space which
is discontinuous and linear in the horizontal but quadratic and continuous in the vertical. The steps of the
scheme, transforming a variable q(n) at the n-th time step, are to a) inject the variable into the broken space;
b) to advect the field in the broken space, using a DG upwinding scheme; c) to project the field back into the
original space.

ADVECTION WITH THE k = 1 SPACES

For the k = 1 case, ρd is advected by using the simple DG upwinding scheme (3.13) for
the continuity form of the advection equation, within the SSPRK-3 time stepping scheme
of equation (2.13) presented in [28].

The θd field is transported using the embedded DG scheme of [67] that was outlined
in Section 3.2.5, using the DG upwinding scheme (3.12) again with the SSPRK-3 time
stepping scheme. The embedding space is quadratic in the vertical and linear in the hor-
izontal.

The most notable difference in the advection stage of the model between using the k = 0

and k = 1 spaces is the transport of the velocity. For the k = 1 configuration, we write
the advection equation in vector-invariant form, which in three dimensions involves dis-
cretising

∂v

∂t
+ (∇× v)× u+

1

2
∇ (v · u) = 0. (3.14)

The right hand side of this equation appears in the forcing part stage of the model. The
action of advection operator Lū gives the solution vtrial ∈ Vv for all ψ ∈ Vv to∫

Ω

ψ · (vtrial − v) dx−
∫
Γ

v† ·
[
n̂+ × Ju×ψK+

]
dS

+

∫
Ω

v · [∇× (u×ψ)]dx−
1

2

∫
Ω

(v · u) (∇ ·ψ)dx = 0,
(3.15)

with v† as the upwind value of v and J·K+ taking the same definition as in Section 3.2.5.
In two dimensions, this becomes∫

Ω

ψ · (vtrial − v) dx−
∫
Γ

(
v
†
⊥ · n̂

+
)

Ju⊥ ·ψK+ dS

−

∫
Ω

v · ∇⊥ (ψ · u⊥)dx−
1

2

∫
Ω

(v · u) (∇ ·ψ)dx = 0,
(3.16)
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where the perpendicular of vector f = (fx, fy) is given by

f⊥ = (−fy, fx). (3.17)

The theta time stepping scheme is used, so that the velocity at the (n+ 1)-th time step is
found by solving

v(n+1) = v(n) + ∆t
[
ϑLūv(n) + (1− ϑ)Lūv(n+1)

]
(3.18)

We take ϑ = 1/2, making this a Crank-Nicolson scheme [68].

ADVECTION WITH THE k = 0 SPACES

The DG upwinding schemes used for the k = 1 configuration do not have second-order
accuracy for the lowest-order spaces. Instead, we use the recovered transport schemes
introduced in [13] and detailed in Chapter 4.

3.2.6 LINEAR SOLVE

We now present the strategy for the implicit stage of the model. When initialising the
model, we set mean ρd and θd states which we denote respectively as ρd and θd. The
residual∆χ between the predicted explicit χp and the latest guess χn+1p of the prognostic
variables is computed first. Reducing this residual to zero solves the implicit part of the
model. This is done by solving a linear set of equations, with the residual on the right
hand side, to calculate increments that are added to χn+1p , updating it.

The linearised problem that we are attempting to solve is

v ′ + α∆tcpd
(
θ ′d∇Π+ θd∇Π ′

)
= ∆v (3.19a)

ρ ′d + α∆t∇ ·
(
ρdv

′) = ∆ρd (3.19b)

θ ′d + α∆t
(
k̂ · ∇θd

)(
k̂ · v ′

)
= ∆θd, (3.19c)

where the primes represent perturbations. This comes from linearising the dry equa-
tions.

These equations will be solved in weak form. However, we simplify them first by elim-
inating θ ′d using the strong form equation. This allows us to create a hybridised mixed
system to be solved for v ′trial and ρ ′trial. Taking k̂ as the unit upward normal and ∆θd as
the residual of θd, we introduce

Θ ′ = ∆θd − α∆t
(
k̂ · ∇θd

)(
k̂ · v ′trial

)
, (3.20)
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where α is the time stepping parameter. The Exner pressure perturbation is then approx-
imated as

Π ′ =
κ

1− κ
Π

(
Θ ′

θd
+
ρ ′trial
ρd

)
, (3.21)

where

Π =

(
ρdθdRd
pR

) κ
1−κ

. (3.22)

The hybridised mixed system involves breaking the continuity of normal components of
v between elements, introducing the broken space V̂v. In conjunction, a trace field `trial

is introduced, approximating the average values of Π perturbations on the trace space
Vtrace, which is the discontinuous space of functions that live on the boundary of Vv.
This variable acts as Lagrange multipliers to provide the continuity constraint of the pre-
hybridised system. The resulting mixed system for

(
v ′trial, ρ

′
trial, `

′
trial

)
∈
(
V̂v, Vρ, Vtrace

)
,

which holds for all (ψ, φ, λ) ∈
(
V̂v, Vρ, Vtrace

)
, can be written as

∫
Ω

ψ ·
(
v ′trial − ∆v

)
dx

− α∆tcpd

(∫
Ω

∇ ·
[
Θ ′wk̂

]
Π dx−

∫
Γ

r
Θ ′k̂

z

n

〈
Π
〉

dS
)

+ α∆tcpd

(∫
∂Ω

Θ ′wk̂ · n̂
〈
Π
〉

ds−
∫
Ω

∇ ·
[
θdψ

]
Π ′ dx

)
+ α∆tcpd

(∫
Γ

q
θdψ

y
n
` ′trial dS+

∫
∂Ω

θd (ψ · n̂) ` ′trial ds
)

+

∫
Ω

φ
(
ρ ′trial − ∆ρd

)
dx− α∆t

∫
Ω

(
∇φ · v ′trial

)
ρd dx

+ α∆t

(∫
Γ

q
φv ′trial

y
n
〈ρd〉 dS+

∫
∂Ω

φv ′trial · n̂ 〈ρd〉 ds
)

+

∫
Γ

λ
q
v ′trial

y
n

dS+
∫
∂Ω

λ
(
v ′trial · n̂

)
ds = 0,

(3.23)

where w is the vertical component of ψ and ∂Ω is the external boundary of the domain.
This mixed system can be statically condensed into a single system for the Lagrange
multipliers, giving a single system to be solved. Once this system has been solved, the
calculated value of ` ′ is used to find ρ ′d and then the broken v ′. The recovery operator
described in Chapter 4 is then used to restore the continuous velocity v ′. Finally, the
value of θ ′d is found as the θ ′trial that solves for all γ ∈ Vθ∫

Ω

γ
[
θ ′trial − ∆θd + α∆t

(
k̂ · v ′

)(
k̂ · ∇θd

)]
= 0. (3.24)

The approach of assuming only vertical variation of θd in (3.19c) introduces a small error.
Another error will occur near topography, as the use of the strong equation to eliminate
θd neglects the Jacobian terms necessary for the Piola transform used for computations
over non-regular elements.
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3.2.7 DIFFUSION

The artificial diffusion terms are discretised with an interior penalty method, presented
in [69]. They are treated in the model like physics parametrisations, and the only test
case that we will use them in is described in Section 4.6.3.

Let the action of the diffusion step upon a (scalar or vector) quantity q be given byD(q).
Then D(q) is found to be the solution p ∈ Vq, for all ψ ∈ Vq, to∫

Ω

ψ · p dx =
∫
Ω

ψ · q dx+ ∆t
∫
Γ

2 〈p⊗ n̂〉 : 〈K∇⊗ψ〉 dS

+ ∆t

∫
Γ

2 〈K∇⊗ p〉 : 〈ψ⊗ n̂〉 dS− µ∆t
∫
Γ

4 〈p⊗ n̂〉 : 〈Kψ⊗ n̂〉 dS

− ∆t

∫
Ω

2 (∇⊗ψ) : (K∇⊗ p) dx,

(3.25)

where ⊗ represents the outer product of two vectors, 〈·〉 is the average value on either
side of a facet and : is the Frobenius inner product. The penalty parameter µ is typically
taken to be proportional to 1/∆x. The inherent boundary conditions in this formulation
are n̂ · ∇ ⊗ q = 0 on the boundary ∂Ω. Other boundary conditions can be explicitly
applied, such as q · n̂ = 0 on the boundary ∂Ω, which ensures no outflow when the
diffused quantity is the wind velocity v. This is done by restricting p and ψ to lie in the
subset of Vq with q · n̂ = 0.

The interior penalty approach has second-order numerical accuracy for the k = 1 spaces.
However for the lowest-order k = 0 spaces, this is not the case. As with the transport
schemes, we use a recovery scheme to augment equation (3.25) to obtain second order
accuracy. This is presented in Chapter 4.

3.2.8 HYDROSTATIC BALANCE

An important step in setting up many test cases is to initialise hydrostatic balance, which
must hold at the discrete level. This typically involves finding the ρd, given a θd profile,
which gives rise to no vertical motions. The approach for obtaining a discrete hydro-
static balance in our model was presented in Section 7.3 of [62].

Introducing Vvert
v , the density that gives hydrostatic balance is found from the (w, ρd) ∈
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(
Vvert
v , Vρ

)
that solves, for all (ψ, λ) ∈

(
Vvert
v , Vρ

)
,∫

Ω

ψ ·w dx−
∫
Ω

cpdΠ(ρd, θd)∇ · (θdψ) =

−

∫
∂Ωi

cpdΠRθdψ · n̂ ds−
∫
Ω

gψ · k̂ dx,
(3.26a)

∫
Ω

λ∇ ·w dx = 0, (3.26b)

subject to the boundary condition that w · n̂ = 0 on the boundary ∂Ω, which ensures
that w is zero. ΠR is a prescribed value of Π on the top or bottom boundary, ∂Ωi. The
equation forw is introduced to produce a square system of equations

As a mixed discontinuous and continuous method, this can also be hybridised in the
same way as the linear solver in Section 3.2.6. More information on the hybridization of
mixed methods and its implementation can be found in [70, 40].
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4 THE RECOVERED SPACE ADVECTION

SCHEME

Having motivated a dynamical core using a compatible finite element discretisation in
Chapter 3, in Section 3.2 we presented the model details of Gusto, a dynamical core
library currently being actively developed. In Section 3.2.2 we presented the compatible
finite element spaces that are used in Gusto, focusing on two sets of spaces: the lowest-
order k = 0 spaces and the ‘next-to-lowest-order’ k = 1 spaces. This chapter concerns
the development of the advection schemes for the k = 0 spaces, which centres on the
concept of recovering a higher-order representation of the field, before advecting in the
higher-order space. The main implication of the results of this chapter is that different
stages of discretisations can be performed with elements of different order, by using the
recovery approach. The following results are presented in this chapter:

• the presentation of a new transport scheme, which facilitates the use of the lowest-
order elements within Gusto;

• a proof of its stability, demonstrating that the concept of the scheme is valid;

• a description of the specific recovery operator that we use;

• a discussion of the stability properties of the transport scheme for three cases in
one dimension, which represent three cases that we specifically use;

• numerical results showing the convergence properties of the transport scheme,
demonstrating that the scheme has second-order numerical accuracy;

• demonstration of the advection scheme within Gusto, which represents the first
results of Gusto solving the dry compressible Euler equations using the lowest-
order elements;

• application of the recovery concept to a diffusion scheme, showing that this ap-
proach can be extended to more problems than advection alone;

This chapter is largely adapted from our paper [13], where we first presented these re-
sults.

4.1 MOTIVATION

As was explained in Chapter 3, there has been recent interest in developing a dynamical
core for numerical weather prediction using a compatible finite element discretisation.
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This was shown by [8] to satisfy many of the important properties presented in [9] that
we listed in Section 3.1.2. Crucially, these properties can be provided without requiring
a latitude-longitude grid, so a quasi-uniform grid over the sphere can be facilitated and
the scalability bottleneck associated with the poles on the latitude-longitude grid can be
avoided.

In Section 3.2 we discussed Gusto – a library currently being developed of compati-
ble finite element methods built upon the Firedrake software that can solve atmospheric
equations. In particular, Section 3.2.2 presented two configurations that depended upon
the degree of function space used. With the lowest-order k = 0 spaces, density is con-
stant in each element (and discontinuous between them), while for the k = 1 spaces it
is discontinuous and linear between elements. The spaces for all the variables are illus-
trated in Table 3.1.

One of the key motivations for using the k = 0 spaces is physics-dynamics coupling.
The effects of the unresolved processes upon the resolved flow are usually calculated
pointwise at the degrees of freedom. For fields that are piecewise constant or linear, the
pointwise values of the field can be interpreted as the mean of the field within that el-
ement. As was demonstrated in Chapter 1, unresolved processes can be described by
decomposing fields into fluctuating and mean parts, and thus there is a correspondence
with this decomposition for constant or linear spatial discretisations of fields. For the
k = 1 elements, the temperature field is piecewise quadratic in the vertical dimension
and so the physical interpretation of the values of the degrees of freedom becomes less
clear. Another advantage of the k = 0 spaces comes with the decreased overlap between
basis functions when solving the linearised problem of the model (as described in Sec-
tion 3.2.6), which can make the resulting linear system more sparse and hence easier to
solve. Using the k = 0 spaces also provides a better direct comparison with other mod-
els, such as the one presented in [10].

The transport schemes that were described in Section 3.2.5 have second-order numer-
ical accuracy when applied to the k = 1 spaces. In other words, the error between the
discretised solution and a smooth true solution falls with (∆x)2 as ∆x→ 0 for cell length
∆x. Numerical accuracy of second-order is one of the properties listed in 3.1.2 that were
argued for by [9]. However, the schemes presented in 3.2.5 are not second-order accurate
for the k = 0 spaces. Finite volume transport schemes can be used to attain second-order
accuracy, with larger stencils used to better approximate numerical fluxes. Although this
is similar to the approach used by [10], which uses a method of lines advection scheme,
such procedures are currently not supported by Firedrake. Therefore a new transport
scheme is necessary for the k = 0 spaces to be used within Gusto. Inspired by the recov-
ery operator of [71], this chapter presents a new advection scheme for these lowest-order
spaces.
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After describing the scheme in Section 4.2, we discuss several of its properties in Sec-
tion 4.3, including a general argument of its stability and von Neumann analysis of
the scheme in three particular cases. Section 4.4 presents the results of numerical tests
demonstrating the second-order numerical accuracy of the scheme, the stability calcu-
lations of Section 4.3.2 and the use of a limiter within the advection scheme. Finally,
the use of the advection scheme within a model of the compressible Euler equations is
presented in Section 4.6.

4.2 THE ‘RECOVERED SPACE’ SCHEME

The key ideas upon which this scheme is based are the embedded DG upwinding scheme
of [67] and the family of recovered finite element methods introduced by [71]. These re-
covered methods combine features of discontinuous Galerkin approaches with conform-
ing finite element methods. They are similar to other recovery methods, such as those
in [72, 73], in that they reconstruct higher-order polynomials from lower order data in
a patch of cells. They differ in that they do not attempt to reproduce polynomials of
a certain degree exactly. Instead, they involve mapping discontinuous finite element
spaces to continuous ones, via recovery operators, relying on analysis estimates of sta-
bility and accuracy. The scheme that we will introduce involves the use of one of these
operators to recover a function in a discontinuous first-order space from one in a discon-
tinuous zeroth-order space. To do this, we first recover a first-order continuous function
from the zeroth-order discontinuous function using an averaging operator described in
[71] and [74]. This operator finds the values for any degree of freedom shared between
elements in a continuous function space, by averaging between the values of the sur-
rounding degrees of freedom from the discontinuous space.

Once this operator has been applied, existing transport schemes can be used to perform
the advection upon the recovered field. This approach is compatible when the transport
equation is in advective form

∂q

∂t
+ v · ∇q = 0, (4.1)

or conservative form
∂q

∂t
+∇ · (qv) = 0, (4.2)

where q is the quantity to be transported by velocity v. However most of our analysis
will focus on the application of this scheme to the advective form of the equation, under
which the mass

∫
Ω q dx over the whole domain Ω will only be necessarily conserved

when the flow is incompressible,∇ · v = 0.
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4.2.1 THE SCHEME

First we will define a set of spaces that our functions will lie in. Let V0(Ω) be the lowest-
order finite element space in which the initial field lies, where Ω is our spatial domain∗.
V1(Ω) is then the space of next degree, which will be fully discontinuous. We also have
that V0 ⊂ V1. Ṽ1(Ω) is the fully continuous space of same degree as V1(Ω), whilst V̂0(Ω)

is a broken (i.e. fully discontinuous) version of V0(Ω). In many cases, V̂0(Ω) and V0(Ω)

will coincide.

We now define a series of operators to map between these spaces.

Definition 1. The recovery operator R acts upon a function in the initial space to make a func-
tion in the continuous space of higher degree, so thatR : V0 → Ṽ1. The operator has second-order
numerical accuracy.

Assumption 1. The recovery operator R has the property that for all q ∈ V0, there is some
C > 0 such that ||Rq||L2 6 C||q||L2 .

Definition 2. The injection operator I : V → V1 identifies a function in V0, V̂0 or Ṽ1 as a mem-
ber of V1. This must be numerically implemented, although it does nothing else mathematically.

Definition 3. The projection operator P̂ : Ṽ1 → V̂0 is defined to give û = P̂ ṽ, from ṽ ∈ Ṽ1, by
finding the solution û ∈ V̂0 to∫

Ω

ψ̂û dx =
∫
Ω

ψ̂ṽ dx, ∀ψ̂ ∈ V̂0. (4.3)

Definition 4. The advection operatorA : V1 → V1 represents the action of performing one time
step of a stable discretisation of the advection equation (in either advective or conservative form)
and has second-order numerical accuracy in space.

Definition 5. The projection operator P : V1 → V0 will have two forms. The first, PA, is
defined to give u = PAv from v ∈ V1, by finding the solution u ∈ V0 to∫

Ω

ψu dx =
∫
Ω

ψv dx, ∀ψ ∈ V0, (4.4)

where u ∈ V0 and v ∈ V1.

The second form, PB, is composed of two operations: PI : V1 → V̂0, interpolation into the
broken space by pointwise evaluation at degrees of freedom, and PR : V̂0 → V0, recovery from

∗This spatial domain can be arbitrary, but with geophysical applications in mind we anticipate the
scheme being used upon rectangular or cuboid domains (with or without periodicity) or spherical shells.
However the recovery operator that we consider in Section 4.2.3 is intended for use in flat spaces or with
only scalar fields in curved spaces and we do not yet consider the application to transport of vector fields in
curved spaces. Therefore in this work we will predominantly consider rectangular domains with a vertical
coordinate, with rigid walls at the top and bottom edges.
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qn R ′qn IR ′qn AIR ′qn PAIR ′qn = qn+1

Recover−−−−→ Inject
−−−→ Advect−−−−→ Project

−−−−→

Figure 4.1: A diagram illustrating the steps in the ‘recovered space’ transport scheme, using the spaces
presented in Table 4.1 for density ρd. The operator R ′ represents the corrected recovery operation R−P̂R+1,
where R is the recovery operator itself and the correction is done to ensure mass is conserved locally. After
recovering q(n) and injecting it to V1, it is advected by A within V1. The value of q at the (n + 1)-th time
level is then the projection back into V0.

the broken space to the original space, restoring continuity via the reconstruction operator from
[71]. PB can thus be written as PB = PRPI.

In the case that V0 is fully discontinuous, PA and PB will be identical operations. How-
ever, for fully or partially continuous V0, PB prevents the formation of any new maxima
and minima, whereas PA does not. We may thus use PB as the projection operator when
trying to bound the transport, such as for a moisture species. Further discussion can be
found in Section 4.2.4. The drawback is that whilst PA preserves the mass (setting ψ = 1

gives
∫
Ω u dx =

∫
Ω v dx), PB does not necessarily do so.

Definition 6. The ‘recovered space’ scheme then takes the function qn ∈ V0 at the n-th time
step and returns the function qn+1 ∈ V0 at the (n+ 1)-th time step by performing the following
series of operations:

qn+1 = PAI(R− P̂R+ 1)qn, (4.5)

where P could be either PA or PB.

An important property of this scheme is that in the absence of flow, the field being ad-
vected must remain unchanged. In this case A will be the identity, and since PIR ≡
PIP̂R, then qn+1 = PIqn = qn. In practice, mass will be only be conserved up to the
precision used by the numerical solver for P .

A diagram representing the scheme is shown in Figure 4.1.

4.2.2 EXAMPLE SPACES

In this section we give an example set of spaces {V0, V1, Ṽ1, V̂0} on quadrilateral elements
that can be used for this scheme, in the context of 2D vertical slice problems for the com-
pressible Euler equations given in Section 3.1.1.

Since we are motivated by using the lowest-order family of compatible finite element
spaces on extruded meshes of quadrilateral elements, that is what we describe here,
along with the corresponding vertical slice spaces. For domains ΩH and ΩV , when tak-
ing the tensor product of two finite element spaces U(ΩH) and V(ΩV), the resulting
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ρd v θd

V0 dQ0(Ω) RTcf
0(Ω) dW0(ΩH)⊗Q1(ΩV)

V1 dQ1(Ω) dQd1 (Ω) dQ1(Ω)

Ṽ1 Q1(Ω) Qd1 (Ω) Q1(Ω)

V̂0 dQ0(Ω) Broken RTcf
0(Ω) dQ0(ΩH)⊗ dQ1(ΩV)

Table 4.1: The spaces {V0, V1, Ṽ1, V̂0} to be used with the recovered advection scheme in this chapter. The
domain Ω = ΩH ⊗ΩV has an extruded structure and can be in either dimension d = 2 or d = 3. This figure
illustrates the d = 2 spaces used for the density ρd, velocity v and potential temperature θd. V0 represents
the original space of the function, whilst V1 is the space in which the advection takes place. Ṽ1 the fully-
continuous space of same degree as V1 and V̂0 is the fully-discontinuous version of V0. The diagrams represent
the locations of the degrees of freedom (DOFs) for each of these spaces, with scalar DOFs represented by
circles and vector DOFs represented by diamonds. Although all spaces are tensor products (denoted by ⊗)
of a space over ΩH with a space over ΩV , since the horizontal and vertical degrees are the same for most
spaces they are equivalent to another space over Ω. The space RTcf

k is the k-th Raviart-Thomas space. The
superscript d represents a space of d-dimensional vector fields.

finite element space can sometimes be equivalent to some other well-known space W
on Ω = ΩH ⊗ΩV . For example dQ0(R) ⊗ dQ0(R) ≡ dQ0(R2). We will use this latter
notation for brevity where possible, also omitting the domains.

For each variable the space V0 is the usual space in which the variable lies. These are
the k = 0 spaces given in Section 3.2.2 and listed in Table 3.1.

For the advection operator A to have second-order numerical accuracy, the advection
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should take place in spaces that are at least linear in each direction. We therefore choose
V1 to be the smallest entirely discontinuous space that is linear in both directions. For
ρd and θd, this is dQ1, whilst for v this is the vector dQ1 space, (and so is dQ1 for each
component).

The space Ṽ1 is then formed by taking the completely continuous form of V1, whilst
V̂0 is formed from the completely broken or discontinuous version of V0. The full set of
spaces is listed in Table 4.1, which also shows the spaces diagrammatically, representing
scalar DOFs by circles and vector DOFs by diamonds.

4.2.3 THE RECOVERY OPERATOR

In this section we discuss the details of the recovery operator that we will use, which is
based upon the weighted averaging operator used in [71]. Our recovery operator recon-
structs q ∈ V0 into Ṽ1 using the following procedure. Let i be a degree of freedom in
the space Ṽ1. The value of the field in Ṽ1 at i is determined to be the value of q at the
location of i. However as Ṽ1 is continuous, i may be shared between a set of multiple
elements {ei}. In this case the value in Ṽ1 is the average of the values over {ei}.

This operator is described in [71], which implies that it possesses second-order conver-
gence in the L2-norm when V0 is the discontinuous constant space dQ0 and Ṽ1 is Q1, the
space of continuous linear functions over cells. These spaces correspond to those listed
in Section 4.2.2 which we will use for our advection schemes. This operator is intended
only for use with fields on flat meshes, and must be extended for transport of vector
fields on curved meshes.

ERROR IN RECOVERY OPERATOR

We now briefly demonstrate, for a uniform mesh of orthogonal rectangular elements on
an unbounded domain, that this recovery operator does indeed have second-order con-
vergence for V0 = dQ0 and Ṽ1 = Q1.

Let ∆x be a representative scale of the grid, which is uniform (so that elements are of
the same size) and orthogonal at vertices, upon a domain with no boundary. On this
mesh we consider the spaces dQ0, which has DOFs

{
xj
}

in the centre of elements, and
Q1 which has DOFs {xi} at the vertices of elements. We consider a smooth function F(x)
that can be expanded in a Taylor series at every point y ∈ Ω, such that

F(x) = F(y) + (x− y) · ∇F(y) +O(∆x2), (4.6)
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i.e. ∆x is much smaller than the radius of curvature of F. If F is projected into g ∈ Q1
via a Galerkin projection, then as g is locally linear it will represent F at the vertices {xi}

to O(∆x)2. Similarly, if F is projected into f ∈ dQ0 via a Galerkin projection, then at the
centres of elements

{
xj
}

, f will represent F to O(∆x)2 (as taking the Galerkin projection
of F into dQ0 is equivalent to averaging F over the element ej).

Then f is recovered to Rf = f̃ ∈ Q1 via our averaging operator. At a vertex xi, the
value of f̃ is given by

f̃(xi) =
1

Ni

∑
j

f(xj,i), (4.7)

where the
{
xj,i
}

are the DOFs in
{
xj
}

of the Ni elements adjacent to xi. Substituting in
the values for F and expanding as a Taylor series around xi,

f̃(xi) =
1

Ni

Ni∑
j

[
F(xi) + (xj − xi) · ∇F(xi)

]
+O(∆x2). (4.8)

Since g is accurate to O(∆x2), then comparing f̃with g gives

f̃(xi) = g(xi) +
1

Ni

Ni∑
j

(xj − xi) · ∇F(xi) +O(∆x2). (4.9)

As the mesh is uniform and rectangular,

Ni∑
j

(xj − xi) = 0, (4.10)

and so the O(∆x) term will vanish, which demonstrates that the recovery operator is
second-order accurate in this case. Under some mild mesh regularity assumptions, the
reconstruction operator is second-order accurate for non-uniform meshes. Otherwise, a
weighted average may be necessary to ensure second-order convergence.

BOUNDARIES

However, this operation for dQ0 to Q1 does not have second-order convergence when
representing fields with non-zero gradient at the boundaries of the domain. Whilst the
second-order convergence holds for the interior of the domain, at the boundaries DOFs
are shared by fewer elements and may not necessarily accurately represent the gradient.
If the averaging operator is not to be altered, then another step is required to correct
the values of the recovered field at the boundaries. This could involve minimising the
curvature within a boundary element subject to the constraints of conservation of mass
(from the original field). Alternatively, the inaccurate values at the boundary can be
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Figure 4.2: The value recovered at the boundary (thick line at the bottom of the figure), when recovering a
field in Q1 from dQ0, will not accurately represent the true field if it has a gradient at the boundary. This is
because it is the average of two values from the interior of cells (shown with crosses), whose average point
(shown with a grey square) is not in the same location as the point on the boundary (denoted by a grey circle).
The inaccurate value at the grey circle is actually the accurate value the field should have at the square.

exploited through use of a Taylor expansion. This is the premise of the operation that we
use, described below.

PROCEDURE FOR BOUNDARY RECOVERY

The procedure that we explain here is valid for the recovery of all the spaces laid out in
Section 4.2.2 and Table 4.1 for two and three dimensions on flat domains, as well as one-
dimensional elements. The values originally recovered at the boundary are inaccurate
because the average position of the points being averaged is not the same as the position
of the DOF upon the boundary. However, it would be the accurate value of field at the
average position of those averaged points. This is illustrated in Figure 4.2. We call this
position the effective position. The field is expanded via a Taylor approximation, with
unknown coefficients. For instance in two dimensions we obtain the approximation, for
each element that

q(x, y) = a0 + a1x+ a2y+ a3xy. (4.11)

Using the accurate interior values and the inaccurate values at their effective positions
makes a square linear system of equations that can be solved for the coefficients. These
equations are solved element-by-element via Gaussian elimination, and once the coef-
ficients are found, the accurate values on the boundary are obtained by substituting in
the coordinates of the values on the boundary. This creates a field in dQ1, but the final
recovered field in Q1 is restored with another averaging step at each vertex.

The main implementation challenges are to identify which boundary vertices may be in-
accurate and to find the corresponding effective positions, which both depend upon the
mesh and the original space V0. Not all boundary vertices will be inaccurate: as shown
in Figure 4.3, the original spaces used for θd and v can accurately represent gradients
in the boundary elements for specific orientations. Rather than dealing which each case
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Figure 4.3: The location of effective coordinates for the (left) vertical component of velocity and the (right)
horizontal component of velocity for quadrilateral elements along the bottom boundary of a two-dimensional
domain. The initial coordinates in the RTcf

0 space are shown with grey circles, effective coordinates are
illustrated with grey squares, whilst original coordinates in Q1 are shown with crosses. The original coordinates
for the boundary vertices of vertical velocity component are the same as the effective coordinates, whilst they
are different for the horizontal velocity.

individually†we require a general procedure. In all cases, the effective coordinates corre-
sponding to a boundary vertex are halfway between the position of the boundary vertex
and its nearest interior vertex. Given a field f in space V0 that is recovered into Ṽ1, in or-
der to identify which boundary vertices need effective coordinates, we enquire whether
vertices are topologically associated with the boundary of the domain.

The whole process encompassed by the recovery operator R used in Gusto can be sum-
marised as follows:

1. recover from V0 to Ṽ1 via the averaging operation. Values at boundaries may not
be accurate;

2. expand the field as a Taylor series, using the values on the interior and the effective
coordinates;

3. solve the resulting linear problem for each cell using Gaussian elimination to ob-
tain the coefficients in the expansion;

4. substitute in the positions of the boundary vertices to obtain accurate values at the
boundaries for a field in V1;

5. perform a final averaging step to obtain the field in Ṽ1.

BOUNDEDNESS OF RECOVERY OPERATOR

We will now show that the specific recovery operator that we have defined in this section
satisfies Assumption 1, i.e. for all q ∈ V0 there is some C > 0 such that ||Rq|| 6 C||q||,

†As well as identifying the effective coordinates for the ρd and θd fields, this procedure is also necessary
for each of the components of v. This would be necessary in both two and three dimensions, for cases with
different boundary conditions (for instance the domain may or not be periodic in one or two horizontal
directions). It is desirable for this implementation to also work for set-ups for the shallow-water equations,
as well as for vertical slice problems.
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where we take V0 = dQ0 and Ṽ1 = Q1. This property is used in Section 4.3.1.

Theorem 1. Consider the action of the specific recovery operator R : V0 → Ṽ1 defined in
Section 4.2.3 upon a field q ∈ V0 for V0 = dQ0 and Ṽ1 = Q1. There is some C > 0 such that
||Rq|| 6 C||q|| for all q ∈ V0, where || · || denotes the L2 norm.

Proof. We begin by defining qR := Rq. We consider the L2 norm of qR over an individ-
ual element ei, ||qR||2ei . The element ei and cells that it shares DOFs with form a patch
Pi, and we introduce a coordinate scaling x → x/h under which ei becomes e ′i, which
has unit area. If

{
φj(x)

}
are the M basis functions spanning Ṽ1, then qR can be written

as

qR =

M∑
j

qR,jφj(x), (4.12)

where qR,j is the value of qR at the j-th DOF. We now consider ||qR||2e ′i

||qR||
2
e ′i

=

∫
e ′i

M∑
j

M∑
k

qR,jqR,kφj(hx)φk(hx) dx ≡ ||qR||
2
Φ ′,e ′i

, (4.13)

where qR is the vector of values of qR at DOFs and || · ||Φ ′ ≡ ||yTΦ ′y|| denotes the norm
with the mass matrixΦ ′ :=

∫
φj(hx)φk(hx) dx acting upon someM-dimensional vector

y. From norm equivalence, we know that for some C > 0, qR evaluated in the Φ ′ norm
can be bounded from above by evaluation with the vector norm, and we can write this
as the sum of components

||qR||
2
e ′i

6 Ci

M∑
j∈e ′i

(
qR,j

)2
, (4.14)

where Ci is a constant that depends upon the size of the element. If the j-th DOF in Ṽ1
is shared between Nj cells, then qR,j is the average values of q in those cells, and hence
qR,j =

1
Nj

∑Nj
k qk, giving

||qR||
2
e ′i

6 Ci

M∑
j∈e ′i

 1

Nj

Nj∑
k

qk

2 6 Ci M∑
j∈e ′i

Nj∑
k

qk

2

6 Ci

M∑
j∈e ′i

Nj∑
k

(qk)
2 6 Ci||q||

2
P ′i
,

(4.15)

where the equalities follow asNj is a positive integer, from the Cauchy-Schwarz inequal-
ity and from the definition of the L2 norm in V0. The constant Ci has absorbed the effect
of double-counting of cells over the patch. Under some regularity assumptions about
the shape of the mesh,

||qR||
2
ei

6 C∗||q||2Pi (4.16)
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where C∗ is the maximum of Ci over the mesh. Now, considering the L2 norm over the
whole domain,

||qR||
2 6
∑
i

||qR||
2
ei

6
∑
i

Ci||q||
2
Pi 6 C||q||

2, (4.17)

where the constant again takes double-counting into account. This also holds for the
procedure at the boundaries, where the values of the reconstructed field are a linear
function of the interior and original field values. Thus we arrive at the conclusion that
for some C > 0,

||qR|| 6 C||q||. (4.18)

4.2.4 LIMITING

In numerical weather or climate models, there may be many additional prognostic vari-
ables representing moisture or chemical species. These variables will typically lie in
either the same space as the density ρd or the potential temperature θd. In this thesis
we will consider only moisture variables, which are the focus of Chapter 5. These will
lie in the space of θd, which can simplify the thermodynamics associated with phase
changes. However, it may come at the cost of sacrificing conservation of the mass of
water, although this could be remedied by solving the transport equation in conservative
form (4.2) for rρd rather than in advective form for tracer r.

The continuous equations describing the advection of these tracer variables have mono-
tonicity and shape-preserving properties; however the discrete representation may not
replicate these properties, which may lead to unphysical solutions such as negative con-
centrations. This can be avoided by the application of slope limiters.

In the recovered scheme, both the advection operator A and final projection operator
P may produce spurious overshoots and undershoots, and so need limiting. In the case
of the projection operator, we do this by using the second projection operator PB. This
prevents the formation of new maxima and minima as it is composed of two bounded
operations: the projection into the broken lower-order space and then the recovery of
continuity. For the set of spaces proposed in Section 4.2.2, to limit the advection operator
A, we use the vertex-based limiter outlined in [75]. This limiter divides the field in each
element into a constant mean part and a linear perturbation. Considering the values of
neighbouring elements at shared vertices gives upper and lower bounds. The limited
field is then the mean part plus a constant times the perturbation, so that the field re-
mains bounded. This limiter is applied to the field before the advection operator begins,
and after each stage of A.
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4.3 PROPERTIES OF THE NUMERICAL SCHEME

4.3.1 STABILITY

Here we will show the stability of the ‘recovered space’ scheme, following a similar
argument to that used in [67]. First, we will need the following Lemma.

Lemma 1. Let the operator J : V0 → V1 be defined by

J := I(R− P̂R+ 1), (4.19)

so that the ‘recovered space’ scheme can be written as

qn+1 = PAJ qn. (4.20)

Denote by || · || the L2 norm. Then ||J q|| 6 κ||q|| for some κ > 0 for all q ∈ V0.

Proof. From the definition of J ,

||J q|| = ||q+Rq− P̂Rq||. (4.21)

By applying the triangle inequality,

||J q|| 6 ||q||+ ||Rq||+ ||P̂Rq||. (4.22)

We will now inspect the ||P̂Rq|| term. The definition of P̂ is that
∫
Ω ψ̂q̃ dx =

∫
Ω ψ̂P̂q̃ dx

for all ψ̂ ∈ V̂0, where q̃ ∈ Ṽ . Since P̂q̃ ∈ V̂0, then it follows that∫
Ω

(P̂q̃)2 dx =
∫
Ω

(P̂q̃)q̃ dx. (4.23)

Now we consider the integral
∫
Ω(P̂q̃ − q̃)2 dx, which cannot be negative. Expanding

this integral and using the result (4.23) gives
∫
Ω q̃

2 dx >
∫
Ω(P̂q̃)2 dx, in other words

that ||P̂Rq|| 6 ||Rq||. Hence, returning to ||J q||, we obtain

||J q|| 6 ||q||+ 2||Rq||. (4.24)

Finally, we use the property of R that ||Rq|| 6 C||q|| for some C > 0, and so letting
κ = 1+ 2C we arrive at

||J q|| 6 κ||q||. (4.25)

This completes the proof.
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Theorem 2. Let the advection operator A have a stability constant α, such that

||A|| := sup
p∈V1,||p||>0

||Ap||
||p||

6 α. (4.26)

Then the stability constant α∗ of the ‘recovered space’ scheme on V0 satisfies α∗ = κα for some
constant κ.

Proof. Since from Lemma 1, ||J q|| 6 κ||q|| for some κ > 1,

sup
q∈V0,||q||>0

||PAJ q||
||q||

6 sup
q∈V0,||q||>0

κ
||PAJ q||
||J q||

. (4.27)

As V0 ⊂ V1, the supremum over elements in V1 cannot be smaller than the supremum
over elements in V0. Recognising that J q ∈ V1,

sup
q∈V0,||q||>0

||PAJ q||
||J q||

6 sup
p∈V1,||p||>0

||PAp||
||p||

. (4.28)

For the final step, we must consider both cases PA and PB for the projection operator.
In the case of PA, we can use a similar argument to that of the projection operator in
Lemma 1 to obtain that ||PAp|| 6 ||Ap||. For PB = PRPI, each step maps a function into
a space that is smaller; i.e. V̂0 ⊂ V1 and V0 ⊂ V̂0, so that the supremum of ||PAp|| must
be smaller than the supremum of ||Ap||. In both cases we obtain that

sup
p∈V1,||p||>0

||PAp||
||p||

6 sup
p∈V1,||p||>0

||Ap||
||p||

6 α, (4.29)

where the final inequality defines the stability of A. Combining these arguments to-
gether gives

sup
q∈V0,||q||>0

||PAJ q||
||q||

6 κα, (4.30)

and so the stability constant of the ‘recovered space’ scheme is α∗ = κα.

4.3.2 VON NEUMANN ANALYSIS

Now we will attempt to identify the stability constant for three one-dimensional exam-
ples, by performing Von Neumann stability analysis. This can also be used with the
Courant-Friedrich-Lewy (CFL) condition to give upper limits to stable Courant num-
bers.

The three cases that will be considered are that of V0 = dQ0 (which might represent
the advection of ρd), and the two cases of V0 = Q1 with PA and PB as the projection
operators (for advection of velocity and moisture respectively). The same advection op-
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Figure 4.4: The degrees of freedom and basis functions for each of the spaces used in the Von Neumann
analysis.

erator discretising the advective form (4.1) of the transport equation will be used for all
three cases, with the advection taking place in V1 = dQ1.

In each case we consider a periodic domain of length L, divided into N cells, each of
length ∆x. We will make the assumption that our function qn(x) at the n-th time step
can be written as a sum of Fourier modes,

qn(x) =
∑
k

Anke
ikx. (4.31)

Then for the k-th mode qnk (x+ ∆x) = q
n
k (x)e

ik∆x.

The basis functions of the three spaces relevant to this analysis, dQ0, Q1 and dQ1, are
shown in Figure 4.4.

ADVECTION OPERATOR

First we described the advection operatorAk acting upon the k-th mode of a function in
dQ1. In each cell, the function can be described by two components: evaluation of the
field at each of the two cell boundaries. For the advection, we use the simple upwinding
scheme with a forward Euler time discretisation, within the framework of a three-step
Runge-Kutta scheme, as outlined in Section 2.2.2. We describe the action of a single
forward Euler step with the operator Lk. This is determined by discretising the one-
dimensional advection equation with constant v > 0,

∂q

∂t
+ v

∂q

∂x
= 0, (4.32)
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for q ∈ V1 by integrating with the test function ψ ∈ V1. Taking equation (2.12) from
Section 2.2.2 in one dimension, with constant velocity v > 0, we obtain∫

Ω

ψLqn dx = −v∆t

∫
Γ

JψK+ q
† dS+ v∆t

∫
Ω

qn
∂ψ

∂x
dx. (4.33)

Making the assumption that q(x) = q(x + ∆x)e−ik∆x, and using that q is piecewise
linear, we can write down a representation of Lk for the DOFs on either side of a given
cell:

Lk =

(
−3c 4ce−ik∆x − c

3c −c− 2ce−ik∆x

)
. (4.34)

We then obtain the full advection operator by using the three-step Runge-Kutta scheme
of (2.13) outlined in [28], so that the overall operator is

Ak = 1+ Lk +
1

2
L2k +

1

6
L3k, (4.35)

where 1 is the identity operator. We omit the matrix representation ofAk here for brevity.

CASE A: dQ0

This represents the advection of density ρd, or the velocity v perpendicular to its direc-
tion. The set of spaces {V0, V1, Ṽ1, V̂0} is {dQ0,dQ1,Q1,dQ0}.

Then, for a given cell and Fourier mode, the operators can be represented in the fol-
lowing matrix forms:

P̂ = P =
1

2

(
1 1

)
, Rk =

1

2

(
1+ e−ik∆x

eik∆x + 1

)
, I =

(
1

1

)
. (4.36)

Combining these operators, the advection scheme for the k-th mode of qn(x) is then
expressed as

qn+1k =
1

4

(
1 1

)
Ak

(
2− i sin(k∆x)
2+ i sin(k∆x)

)
qnk . (4.37)

Following the analysis through and writing φ = k∆x and c = v∆t/∆x gives a stability
constant

|Ak|
2 = c2

[
c3
(
13

4
cosφ−

5

3
cos 2φ+

1

12
cos 3φ+

1

6
cos 4φ−

11

6

)
+c2

(
29

12
sinφ−

5

3
sin 2φ+

1

12
sin 3φ+

1

6
sin 4φ−

7

4
cosφ+

3

4
cos 2φ−

1

4
cos 3φ+

5

4

)
+c

(
−
3

4
sinφ+

3

4
sin 2φ−

1

4
sin 3φ− cosφ+

1

4
cos 2φ+

3

4

)
−
3

2
sinφ+

1

4
sin2 2φ− 1

]2
.

(4.38)
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CASE B: Q1 WITH P = PA

In this case, the set of spaces {V0, V1, Ṽ1, V̂0} is {Q1,dQ1,Q1,dQ1}. This describes advec-
tion of velocity parallel to its direction, or of potential temperature without bounding
the final projection step. The operators can be represented by

PA =
1

4+ 2 cosk∆x

(
2+ e−ik∆x 1+ 2e−ik∆x

)
,

P̂ = I =

(
1

eik∆x

)
,

(4.39)

where the projection operator PA has been determined by solving equation (4.4). The re-
covery operator is the identity, and since the injection I and the projection P̂ are equiv-
alent in this case the scheme acting upon qn becomes qn+1 = PAAIqn. Following
through the analysis gives

|Ak|
2 =

(
c

cosφ+ 2

)2 [ (
c2 cosφ− c2 + 3

)2
sin2φ

1

2

+

(
−2c3 cosφ+

1

2
c3 cos 2φ+

3

2
c3
1

4
+ 3c2 cosφ− 3c2 + cosφ+ 2

)2]
.

(4.40)

CASE C: Q1 WITH P = PB

For this case, the set of spaces are the same as in the second case. The only difference is
that the projection operator P is now PB = PRPI. As V1 = V̂0 = dQ1, the interpolation
PI is the identity, and PB = PR. The operators are

PB =
1

2

(
1 e−ik∆x

)
, P̂ = I =

(
1

eik∆x

)
, (4.41)

which gives leads to the amplification factor

|Ak|
2 =

(
2

3
c3 sinφ+

1

6
c3 sin 2φ−

1

3
c3 sin 3φ− c2 sinφ+

1

2
c2 sin 2φ− c sinφ

)2
+

(
−
7

3
c3 cosφ−

1

6
c3 cos 2φ+

1

3
c3 cos 3φ+

13

6
c3 + 3c2 cosφ−

1

2
c2 cos 2φ−

5

2
c2 + 1

)2
.

(4.42)
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4.3.3 CRITICAL COURANT NUMBERS

The Courant-Friedrich-Lewy (CFL) criterion says that an advection scheme with ampli-
fication factor |Ak| > 1 may not be stable. The critical Courant number c∗ is the lowest
Courant number c = v∆t/∆x such that the amplification factor is greater than unity. We
numerically measured the critical Courant numbers for the three cases laid out in Sec-
tion 4.3.2, and these are displayed in Table 4.2. Although case C has a significantly lower
critical Courant number, the intention is to run this scheme with a limiter or with a sub-
cycling time discretisation, allowing it to be used at higher Courant numbers. Instances
of work using these kind of limiters are [67] and [75].

Examples of critical Courant numbers for other upwinding schemes can be found in
Table 2.2 of [27]. The most relevant comparison that can be made from this is to that
of polynomials of degree 1 with a Runge-Kutta method of order 3, which has a critical
Courant number of 0.409. A space of discontinuous linear polynomials has the same
number of degrees of freedom as a space of discontinuous constants but with half the
grid size, and thus improvements are made if the critical Courant number is more than
twice that of the transport scheme for the linear functions. We do therefore observe that
the critical Courant numbers for cases A and B are improvements on the discontinuous
upwinding scheme applied just to discontinuous linear functions.

Case A B C
c∗ 0.8506 0.9930 0.3625

Table 4.2: The critical Courant numbers for the three cases of the advection scheme outlined in Section 4.3.2.

4.4 NUMERICAL TESTS

4.4.1 NUMERICAL ACCURACY

To verify the numerical accuracy of the scheme, we performed a series of convergence
tests. The aim is to find how the error due to advection changes with the grid spacing∆x.
We used tests that have an analytic solution in the limit that ∆x → 0, and compare the
final advected profile qwith the ‘true’ profile qh, which is the analytic solution projected
into the relevant function space. This gives an error ||q − qh|| (where || · || denotes the L2

norm) which is calculated for the same problem at different resolutions, and the errors
are plotted as a function of the grid spacing ∆x. The order of the numerical accuracy is
the number n such that ||q−qh|| ∼ O(∆xn), which can measured from the slope of a plot
of ln(||q − qh||) against ln(∆x). For simplicity, the tests we used are designed so that the
‘true’ profile is the same as the initial condition.

The initial conditions were obtained by pointwise evaluation of the expressions into
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higher order fields (we used Q3). These were then projected into the correct fields. The
advecting velocity used lay in the RT1 space. To mimic how the scheme might be used
in a numerical weather model, we performed some of the tests on the different sets of
spaces laid out in Section 4.2.2 and the configurations described in Section 4.3.2. Each
set of spaces is labelled by the variable name in Table 4.1, with

{
V0, V1, Ṽ1, V̂0

}
for the

fields ρd, v, θd and r given by

ρd ∈ {dQ0, dQ1, Q1, dQ0} , (4.43)

v ∈
{

RT0, dQd1 , Qd1 , broken RT0
}
, (4.44)

θd ∈ {dQ0 ⊗Q1, dQ1, Q1, dQ0 ⊗ dQ1} , (4.45)

r ∈ {dQ0 ⊗Q1, dQ1, Q1, dQ0 ⊗ dQ1} , (4.46)

where the superscript d recognises that the space has vector valued nodes. While the
scheme labelled θd uses the projection operator PA, the scheme labelled r represents a
moisture variable, so uses the same spaces as θd but the projection operator PB and the
vertex-based limiter of [75]. All tests solve the transport equation in the advective form.

The first three tests involve advection around a 2D domain representing a vertical slice
that is periodic along its side edges but has rigid walls at the top and bottom. The final
test is performed over the surface of a sphere. All the vertical slice tests use a domain of
height and width 1 m and advect the profile with time steps of ∆t = 10−4 s for a total
time of T = 1 s.

ROTATIONAL CONVERGENCE TEST

The first test involves a rigid body rotation of a Gaussian profile around the centre of
the domain. Using x and z as the horizontal and vertical coordinates, defining r2 =

(x − x0)
2 + (z − z0)

2 for x0 = 0.375 m, z0 = 0.5 m and using r0 = 1/8 m, the initial
condition used for all fields was

q = e−(r/r0)
2

. (4.47)

For the velocity variable, this initial profile was used for each component of the field. The
advecting velocity is generated from a stream function ψ via v = (−∂zψ, ∂xψ). Defining
r2v = (x− xv)

2+(z− zv)
2 with xv = 0.5m and zv = 0.5m, the stream function used was:

ψ(x) =


π(r2v − 0.5), rv < r1,

Ar2v + Brv + C, r1 6 rv < r2,

Ar22 + Br2 + C, rv > r2.

(4.48)

This is designed to be a rigid body rotation for rv < r1, with no velocity for rv > r2

to prevent spurious noise being generated from the edge of the domain. The stream
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function and its derivative vary smoothly for r1 6 rv < r2. We use r1 = 0.48 m and
r2 = 0.5m, with A = πr1/(r1− r2), B = −2Ar2 and C = π(r21− 0.5)−Ar

2
1−Br1. Results

showing second order numerical accuracy can be found in Figure 4.7 (left). Initial and
final fields for the density in the lowest resolution run (∆x = 0.01 m) are displayed in
Figure 4.5.

Figure 4.5: The initial (left) and final (right) fields in the dQ0 space from the rotational convergence test
of Section 4.4.1, showing the field labelled ρd in Figure 4.7 (left) at the lowest resolution (∆x = 0.01 m).
The field is contoured every 0.1 kg m−3 and the contour at 0 kg m−3 has been removed for clarity. This
convergence test is the simplest that we used to investigate the recovered advection scheme, performing a solid
body rotation around the centre of the domain. Almost no difference is visible in the main profile.

DEFORMATIONAL CONVERGENCE TEST

The second test is a more challenging convergence test, based on the deformational flow
experiment described in [67]. The initial profiles were the same as used in the rotational
advection test, but with x0 = 0.5m. The advecting velocity was that of [67]:

v(x, t) =

(
1− 5(0.5− t) sin(2π(x− t)) cos(πz)
5(0.5− t) cos(2π(x− t)) sin(πz)

)
. (4.49)

Figure 4.7 (right) plots the results of this test, with each variable measuring second order
numerical accuracy. Initial and final fields for the density in the lowest resolution run
(∆x = 0.01m) are displayed in Figure 4.6.

BOUNDARY CONVERGENCE TEST

The third test was intended to investigate the integrity of the advection scheme at the
boundaries of the domain. We use the following reversible flow, which squashes the

59



Figure 4.6: The initial (left) and final (right) fields in the dQ0 space from the deformational convergence
test of Section 4.4.1, showing the field labelled ρd in Figure 4.7 (right) at the lowest resolution (∆x = 0.01

m). The field is contoured every 0.1 kg m−3 and the contour at 0 kg m−3 has been removed for clarity. This
convergence test is more challenging, as it involves a time-varying flow which deforms the advected profile.

Figure 4.7: Results from convergence tests for the recovered space scheme, plotting, as a function of grid
spacing ∆x, the error in an advected solution q against the true solution qh. The different lines labelled ρd, v
and θd represent performing the test in each of the different sets of spaces laid out in Section 4.2.2 and using
the projection operator PA, whilst the line labelled r represents advection with the same spaces as θd, but with
the projection operator PB. The dotted line represents an error proportional to ∆x2. (Left) The test describes
a rigid body rotation. In all cases, the slopes are around 2, indicating second order numerical accuracy. (Right)
A more difficult convergence test featuring deformational flow. Accuracy is approaching second order for each
case.

advected material into the boundary before recovering it:

v(x, t) =

{
(1,− sin(2πz)) t < 0.5

(1, sin(2πz)) t > 0.5
. (4.50)
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Figure 4.8: Initial (left) and final (right) fields in the dQ0 space of the boundary convergence test of Section
4.4.1, showing the field labelled ρ in Figure 4.10 (left) at the lowest resolution (∆x = 0.01 m). The field is
contoured every 0.005 kg m−3. This test involves flow that compresses the advected profile into the domain
boundary, before reversing it. The test is designed to investigate the efficacy of the extra step that recovers
the advected field at boundary. The advection scheme can then be compared with and without this extra step.

The initial condition was

q = 1+
1

10

(
z−

1

2

)2
cos(2πx). (4.51)

To see the effect of the extra recovery performed at the boundary described in Section
4.2.3, this extra recovery was turned off for the variables labelled with an asterisk. The
results in Figure 4.10 (left) demonstrate that without doing extra recovery at the bound-
aries, the whole recovery process does not have second order numerical accuracy. Initial
and final fields for the density in the lowest resolution run (∆x = 0.01 m) are displayed
in Figure 4.8.

SPHERICAL CONVERGENCE TEST

The final convergence test was performed on the surface of a sphere, investigating how
this transport scheme might perform in a global atmospheric or oceanic model. In this
case we used a cubed sphere mesh of a sphere of radius 100 m. The advecting velocity
field used was v = U sin λ, for latitude λ and U = π/10 m s−1, which gave a constant
zonal rotation rate about the sphere. We took time steps of ∆t = 0.5 s up to a total time
of 2000 s so that the initial profile should be equal to the ‘true’ profile. The initial profile
that we used was very similar to that used in the first test case of [76]:

q =

{
1
2

[
1+ cos

(
πr
R

)]
, r < R,

0, otherwise,
(4.52)
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where R = 100/3 m and for latitude λ and longitude ϕ with λ0 = 0 and ϕ0 = −π/2, and
where r is now given by

r = 100m× cos−1 [sin λ0 sin λ+ cos λ0 cos λ cos(ϕ−ϕ0)] . (4.53)

The errors of this test as a function of resolution are plotted in Figure 4.10 (right). This
also appears to show second order accuracy. We found that at lower resolutions, the
errors due to the advective scheme were obscured by those from the imperfect discreti-
sation of the surface of the sphere. The initial and final fields of this test are plotted for
the coarsest resolution in Figure 4.9.

Figure 4.9: The initial (left) and final (right) fields in the dQ0 space from the spherical convergence test of
Section 4.4.1, showing the field labelled ρ in Figure 4.10 (right) at the lowest resolution (the sixth refinement
level of the cubed sphere, with ∆x ≈ 1.6 m). The axes are longitude ϕ and latitude λ. The field is contoured
every 0.1 kg m−3 and the contour at 0 kg m−3 has been removed for clarity. This tests the advection over
the sphere of a scalar profile, but the scheme needs extending to accurately describe transport of vector-valued
fields. We found this test to be difficult to configure and needed the mesh to use a high-order (3 or more)
approximation to the sphere in order to obtain reasonable results. The pixellation visible in these images relates
to the mapping from the spherical surface to a Cartesian one.

4.4.2 STABILITY

We tested the formulae (4.38), (4.40) and (4.42) by advecting sine and cosine waves for
each of the cases defined. The domain used was a square vertical slice of length 120 m
with grid spacing ∆x = 1 m. The amplification factor for a given wavenumber k and
Courant number c was measured by advecting a sine and cosine wave of wavenumber
k by a constant horizontal velocity c for a single time step of ∆t = 1 s. As before, the
domain had periodic boundary conditions on the vertical walls. The amplification factor
was then found by measuring the amplitude of the sine and cosine components after the
first time step. This was done for several values of c.
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Figure 4.10: More results from convergence tests for the recovered space scheme, plotting, as a function of
grid spacing ∆x, the error in an advected solution q against the true solution qh. The dotted line represents
an error falling with ∆x2. (Left) A test demonstrating the need for the extra recovery at the boundaries, by
comparing the scheme with and without this extra recovery process. The schemes without extra recovery at
the boundaries are denoted with an asterisk. They not only display a larger error, but also show lower accuracy.
As θd and r are linear in the vertical, they are accurately represented at the boundary by the recovery scheme
without performing any additional recovery at the boundary. However if rigid walls were present on the side of
the domain, these fields would require additional recovery at these boundaries. (Right) The test performed on
a cubed sphere mesh. The slope here is very close to 2, again supporting the claim that the advection scheme
has second order numerical accuracy.

The measured values are compared with those from the formula in Figure 4.11, which
shows agreement for each of the cases considered in Section 4.3.2.

4.4.3 LIMITING

The efficacy of the limiting scheme was tested by using the slotted-cylinder, hump, cone
set-up originally defined in [77] and used in both [75] and [67]. The advected field was
initialised with this condition, lying in the dQ0 ⊗Q1 space to mimic moisture variables,
before a solid-body rotation was completed. This was performed for the bounded case
of the scheme defined in Section 4.2.1, using the projection operator PB and the vertex-
based limiter of [75] for the advection. The resulting field is shown in Figure 4.12 where
it is also compared to the rotation of a field in the Q1 space, using the same limited
advection scheme, but without the ‘recovered’ parts of the scheme. The field does indeed
remain bounded, suggesting that the limiter has worked well.

4.5 RECOVERED DIFFUSION

One simple technique for parametrising turbulent flows or for ensuring stability in atmo-
spheric models is to add artificial diffusion. We will consider it added to the temperature
and velocity equations, as shown in equations (3.1). The diffusion equation that we will
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Figure 4.11: The results from testing the validity of the expressions (4.38), (4.40) and (4.42) for the ampli-
fication factors in the 1D advection cases presented in Section 4.3.2. The markers denote measurements of
the amplification factor by advecting sine and cosine wave profiles, whilst the lines plot the expressions derived
in Section 4.3.2. All plots show agreement between the expressions and the measured amplification factors.
These results also agree with the critical Courant numbers found in Table 4.2, including for c = 0.4 in which
the values are all below unity for the Q1 case with PA, but with some values above unity for the PB case.

attempt to solve is given by
∂q

∂t
=∇ · (K∇q), (4.54)

where K is the diffusivity and q is the diffused quantity, and may be scalar or vector.
When q is the potential temperature θd, we take n̂ · ∇θd at the boundary ∂Ω, while
with v the boundary condition is v · n̂ = 0 on ∂Ω. In Chapter 3, we described the interior
penalty method of [69] to discretise this equation, for use with the k = 1 spaces. The
formulation in equation (3.25) naturally includes the boundary condition for θd, but it
must be dealt with explicitly in the solving procedure for v. Just as with the DG up-
winding scheme for discretising the transport equation, the interior penalty method is
not second-order accurate when used with the k = 0 spaces. However, the concept of
recovering from the k = 0 spaces to higher order spaces can be used again to create a
second-order diffusion scheme.

Repeating the language of Section 4.2.1, the scheme can be written as the following se-
quence of operations:

qn+1 = PDI(R− P̂R+ 1)qn. (4.55)
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Figure 4.12: The resulting fields from one revolution of the solid-body rotation case of [77]. (Top left)
A hypothetical moisture field in the dQ0 ⊗ Q1 space, advected using the limited ‘recovered’ space scheme,
compared with (top right) the same field advected using the non-limited scheme. Although overshoots and
undershoots are prevented, conservation of mass is compromised. (Bottom left) A density field in the dQ1
space, using the same advection operator A as in the ‘recovered’ scheme and limited by the vertex-based limiter
of [75], with (bottom right) the same solution but without a limiter applied. Overshoots and undershoots are
highlighted in yellow, and these are absent from the limited cases, showing the limiter’s effectiveness.

The operators R, I, P and P̂ are equivalent to those described in Section 4.2.1, and in
our model take on (almost) the same form as those described for our transport schemes.
The exception is that the projection operator P must also take into account the boundary
condition on v so as not to return velocities that cause outflow or inflow. The spaces used
in our model are also equivalent to the spaces laid out in Section 4.2.2 and Table 4.1.

4.6 TEST CASES FROM COMPRESSIBLE EULER MODEL

To demonstrate the recovered advection scheme, we present results from some common
test cases solving the dry compressible Euler equations (3.1). We use the k = 0 configu-
ration of Gusto, described thoroughly in Section 3.2, with the recovered scheme used for
the advection step.
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4.6.1 RISING THERMAL

Figure 4.13: Fields at t = 1000 s from a run at resolution ∆x = 100 m of the dry thermal case from [78],
representing a rising thermal. This is a standard benchmark test in the development of dry dynamical cores.
We used the lowest-order family of spaces with the ‘recovered’ space scheme as the advection method. (Left)
the θd field, perturbed from a background constant state of 300 K. The field’s contour spacing is 0.25 K, and
the 300 K contour has been removed for clarity. (Right) The vertical velocity field, contoured every 1 m s−1.
These results compare well with those reported in [78].

Here we show some results in the context of a vertical slice model. The example test
case that we use is the dry thermal test of [78]. The initial state is θ = 300 K and zero
velocity everywhere, while ρd is determined via solving for hydrostatic balance using
the procedure of [62] that was described in Section 3.2.8. The following perturbation to
θd was then applied:

θ ′ =

{
2 cos2 (πr/(2rc)) K, r < rc,

0, r > rc,
(4.56)

so that θd = θ+ θ ′, with
r =

√
(x− xc)2 + (z− zc)2, (4.57)

where xc = 10 km, zc = rc = 2 km. In the model used in [78], the Exner pressure is
a prognostic variable, rather than the density ρd. To ensure that our initial pressure is
unchanged by the perturbation, we found the initial density state by solving for ρtrial:∫

Ω

φρtrial dx =
∫
Ω

φρθ/θd dx, ∀φ ∈ Vρ. (4.58)

where Vρ is the function space that ρd lives in, and θ and ρ are the hydrostatically bal-
anced background states. The domain used had a width of 20 km and a height of 10
km. All boundaries had rigid wall boundary conditions (v · n̂ = 0). The Coriolis force is
neglected in this simulation and no artificial diffusion is added. The perturbed potential
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temperature field at the final time t = 1000 s is shown in Figure 4.13 for a simulation with
grid spacing ∆x = 100 m and time steps of ∆t = 1 s. There is good agreement between
the fields shown in Figure 4.13 and those presented in [78].

4.6.2 BAROCLINIC WAVE

Now we show the use of the recovered space transport scheme in our model in three-
dimensions with the baroclinic wave test presented by [79]. This test occurs in a chan-
nel of length L = 40000 km in the x-direction (in which the domain is periodic), width
W = 6000 km in the y-direction and height H = 30 km in the z-direction. The walls at
the y and z boundaries of the domain are rigid, with no flow through them. Artificial
diffusion is again neglected for both the momentum and thermodynamic equations.

In [79], the analytical initial conditions were provided, describing an atmosphere in ther-
mal wind balance. These are used to define the temperature T , the zonal wind u and the
geopotential Φ = gz in terms of the spatial coordinates (x, y, η), where η = p/pR is a
pressure coordinate, with pR = 105 Pa. Taking the Coriolis force to be f = f0k̂, these
expressions are

u = −u0 sin2
(πy
W

)
lnη exp

[
−

(
lnη
b

)2]
, (4.59a)

Φ =
T0g

Γ

(
1− η

RdΓ

g

)
+
f0u0
2

[
y−

W

2

(
1−

1

π
sin
(
2πy

W

))]
lnη exp

[
−

(
lnη
b

)2]
,

(4.59b)

T = T0η
RdΓ

g

+
f0u0
2Rd

[
y−

W

2

(
1−

1

π
sin
(
2πy

W

))][
2

b2
(lnη)2 − 1

]
exp

[
−

(
lnη
b

)2]
.

(4.59c)

The constants take the values Γ = 0.005 K m−1, f0 = 2.00× 10−6 s−1, a = 6.37× 106 m,
T0 = 288 K, u0 = 35m s−1 and b = 2. The initial meridional and vertical winds are zero.

To use these expressions to find the fields as functions of z rather than η, we use the
Newton iteration procedure suggested in [79] to find the initial η field. Using the re-
quirement thatΦ = gz and taking η ∈ Vθ, the (n+ 1)-th estimate of η is given by

η(n+1) = η(n) −
Φ
(
η(n)

)
− gz

T
(
η(n)

)
− Rd/η(n)

, (4.60)

where T
(
η(n)

)
and Φ

(
η(n)

)
are the expressions from (4.59). Once this has converged,

η can be used with (4.59) to find T and u. The prognostic variable θd is obtained by
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combining T with p = pRη, which is then used with the hydrostatic balance procedure
of Section 3.2.8 to acquire the initial ρd.

The perturbation is added to the x-component of the background velocity, which we
denote with u, so that u = u + u ′. With xc = 2 × 106 m, y = 2.5 × 106 m, Lp = 6 × 105

and up = 1m s−1, we use

r =
√

(x− xc)2 + (y− yc)2, (4.61)

to get

u ′ = up exp

[
−

(
r

Lp

)2]
. (4.62)

Figure 4.14 shows fields at t = 12 days from a simulation using the k = 0 configuration
of Gusto with ∆x = ∆y = 200 km, ∆z = 1 km and ∆t = 300 s. Although the comparable
figures from [79] were performed by a model at higher resolution, our results show a
good resemblance, suggesting our model is describing the baroclinic wave well.

4.6.3 NON-LINEAR DENSITY CURRENT

As a demonstration of the recovered diffusion scheme, we present results using Gusto in
the k = 0 configuration of the non-linear density current test of [80]. This is a vertical slice
test, with a domain of length 25.6 km and height 6.4 km. The side walls are now rigid
boundaries, so only velocities with v · n̂ = 0 are accepted solutions. The initial condition
is found by setting θd = 300 K everywhere, and using this to find the hydrostatically
balanced ρd using the procedure outlined in Section 3.2.8, subject to Π = 1 on the bottom
boundary. A perturbation is then applied, so that the initial θd at the beginning of the
model is

θd =

{
300 K, r > 1,[

300− 15
2Π(1+ cos(πr))

]
K, r 6 1,

(4.63)

where r is given by

r2 =

(
x− xc
xr

)2
+

(
z− zc
zr

)2
, (4.64)

where xc = 0 km, zc = 4 km, xr = 4 km and zr = 2 km. The initial velocity is zero
everywhere and again the Coriolis force is neglected. The diffusion terms were added to
the equations for v and θd, using K = 75 m2 s−1 for both equations. Using the interior
penalty scheme described in Section 3.2.7, we took µ = 10/∆x for both v and θd equa-
tions.

Results shown in Figure 4.15 are taken at t = 900 s for a simulation with ∆x = ∆z = 100

and ∆t = 1 s. These results compare favourably with other documented cases, such as
those described in [10], with some separation between the vortices being resolved.
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Figure 4.14: Fields from the dry baroclinic wave simulation at t = 12 days, computed with ∆x = ∆y = 200

km, ∆z = 1 km and ∆t = 300 from the k = 0 configuration of Gusto. (Top left) the pressure field at z = 500 m
contoured every 2 hPa, (top right) the temperature field at z = 500 m contoured every 2 K, (bottom left) the
perturbed meridional wind u ′ at y = 3000 km, with contour spacing 5 m s−1 and (bottom right) the perturbed
temperature field at y = 3000 km with contours every 2 K. Since both of the fields shown on the y = 3000

km plane are discontinuous there, the values shown are computed from the lower side of the plane. This test
case demonstrates the use of the lowest-order elements in three-dimensions and in describing the Coriolis force.
With cells with a high aspect (large horizontal length but small vertical depth), this test mimics the equations
solved in a numerical weather prediction model, save on a Cartesian domain.
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Figure 4.15: The θd field at t = 900 s from the density current test case of [80]. This simulation was performed
with ∆x = ∆z = 100 m. The contour spacing is 1 K, and the 300 K contour has been removed for clarity.
This density current test case is another standard test in the development of dynamical cores, and is used to
illustrate our implementation of the artifical diffusion terms for the lowest-order spaces.

4.7 SUMMARY AND OUTLOOK

In this chapter we have presented a new ‘recovered’ advection scheme in the context
of atmospheric simulations. This scheme is a form of the embedded DG advection de-
scribed in [67], but in which higher-degree spaces are recovered via averaging operators,
as described in [71]. We presented this scheme in the context of the compatible finite
element set-up laid out in [8], and in particular so that it can be used with the zeroth-
degree set of spaces. With these spaces, the scheme has second-order numerical accuracy.
We have also presented a bounded version of this scheme, which can be used for mois-
ture variables to preserve monotonicity or to prevent negative values, and also applied
the same principle to a diffusion scheme. Stability properties of the scheme have also
been provided and demonstrated with numerical results, and examples of the transport
scheme within Gusto have been shown through three test cases.

The main strength of the scheme is that it facilitates the use of the k = 0 lowest-order
spaces in Gusto, which offer advantages for coupling the model to the physics parametri-
sations which often involve decomposing the fields into mean and fluctuating parts. It
also gives a means of direct comparison to other models such as [10] that use the lowest-
order spaces. There is no degradation in the stability relative to the DG upwinding
scheme on linear discontinuous spaces, and as we will see in the following chapter, in
some test cases the k = 0 spaces compare more favourably to the literature results than
the k = 1 spaces.

However, as the scheme involves various recovery and projection steps and because the
advection itself occurs at higher resolution than the rest of the model, the scheme can be
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computationally expensive. Indeed in three-dimensions dQ1 has eight times more DOFs
than dQ0. Although this may result in increased accuracy relative to other second-order
transport schemes, semi-Lagrangian or second-order finite volume schemes can be much
cheaper to use. The lowest-order spaces also may not necessarily provide increases in
efficiency in the linear-solve part of the model compared with the hybridised approach
discussed in Section 3.2.6. An alternative approach could be to perform all of the dynam-
ics stage of the model using the k = 1 spaces before projecting the fields into the k = 0

spaces to compute the physics parametrisations. The recovery operators can then be
used to restore the field to the k = 1 spaces. This approach might be supported by [81],
which advocates calculating the parametrisations on a lower resolution grid. Indeed,
one of the main consequences of the work presented in this chapter is the demonstra-
tion that performing different stages of the model with different function spaces may be
a viable option, whilst using the recovery operators allows this to be done with higher
accuracy.

For the use of this transport scheme in the future, within Gusto or elsewhere, several aug-
mentations are necessary. Firstly, the scheme needs to be extended for the transport of
vector fields over curved manifolds, which will require careful averaging of vectors that
lie in different tangent spaces. To provide for non-regular meshes, the scheme should
use weighted averaging, with the weights provided by the distances to the respective
DOFs corresponding the values used in the recovery. The procedure for additional re-
covery at the boundaries is currently only supported on quadrilateral meshes where the
topography is shallow, whilst more sophisticated limiting techniques could be explored
that are less liable to degrade the solution.
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5 A COMPATIBLE FINITE ELEMENT

METHOD FOR A MOIST ATMOSPHERE

In this chapter, we present a discretisation of the moist compressible Euler equations
within Gusto. The broader goal is to investigate the consequences upon physics-dynamics
coupling of using a dynamical core with a compatible finite element discretisation. A
natural first parametrisation to include concerns moisture, which is tightly coupled with
the dry dynamics and obeys well-known physical laws. In this chapter, building upon
the discretisation presented in Chapter 3, we describe the new features added to Gusto
whilst implementing the discretisation. Results from test cases then showcase the dis-
cretisation. This chapter thus represents one of the first implementations of physics
within the compatible finite element framework.

The main results of this chapter are:

• presentation of the details of the discretisation of the moist compressible Euler
equations within Gusto, representing a major milestone in Gusto’s development;

• routines for establishing hydrostatic balance in moist conditions, which is impor-
tant for establishing the initial conditions for many test cases;

• discussion of strategies for combining functions from different finite element spaces
for physics parametrisations;

• presentation of a limiter for moisture variables in the k = 1 configuration, which
prevents the formation of undershoots and overshoots;

• presentation of a new moist variant of the dry gravity wave test case of [82], which
can be used to show the convergence properties of the model;

• presentation of results of a new 3D saturated atmosphere test, which extends the
benchmark test of [78] and contributes to addressing the gap in common test cases
between simple dry tests and those using a full suite of physics parametrisations;

• comparison of the k = 0 and k = 1 configurations of Gusto through some mois-
ture test cases, which shows some significant differences between using each set of
elements.

This chapter is adapted from our paper [14], where many of these results are also pre-
sented.
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5.1 GOVERNING EQUATIONS

We solve the compressible Euler equations featuring three species of moisture: water
vapour, cloud water and rain. The ice phase is neglected. Motivated by the UK Met Of-
fice’s most recent dynamical core, ENDGame, [66], our prognostic variables still include
wind velocity v and the density of dry air ρd, but now also the dry virtual potential tem-
perature θvd and the mixing ratios rv, rc and rr. Here the subscripts respectively denote
water vapour, cloud water and rain, whilst the mixing ratio ri is the ratio of the density
by volume of the i-th substance to that of dry air, i.e. ri := ρi/ρd. The total mixing ratio
of water species is rt := rv+rc+rr. The dry virtual potential temperature θvd is defined
for rv, temperature T and air pressure p by

θvd := T

(
pR
p

) Rd
cpd

(1+ rv/ε) = θd(1+ rv/ε), (5.1)

where ε := Rd/Rv is the ratio of specific gas constants of dry air and water vapour. Thus
in the absence of water vapour, θvd reduces to θd. The choice of θvd is motivated in [66],
which notes that it is the more natural choice of variable to complement ρd, and claims
that it may be smoother than the dry potential temperature θd.

The full equation set that we use is

Dv
Dt

+ f× v+
cpdθvd

1+ rt
∇Π+∇Φ =∇ · (K∇v), (5.2a)

Dθvd
Dt

+ θvd

(
Rm

cvml
−
Rdcpml

cpdcvml

)
∇ · v =∇ · (K∇θvd)

−θvd

[
cvdLv(T)

cvmlcpdT
−

Rv

cvml

(
1−

Rdcvml
Rmcpd

)
−
Rv

Rm

]
Drv
Dt

,

(5.2b)

Dρd
Dt

+ ρd∇ · v = 0, (5.2c)

Drv
Dt

=− ṙccond + ṙrevap, (5.2d)

Drc
Dt

= ṙccond − ṙaccr − ṙaccu, (5.2e)

Drr
Dt

= ṙaccr − ṙaccu − ṙrevap − S. (5.2f)

The notation is as before in equations (3.1), though the forcing terms on the right hand
side have now been omitted. The advection terms have been absorbed in the advective
derivative, which is given by

D
Dt

=
∂

∂t
+ v · ∇. (5.3)

For the specific heat capacities cpd, cvd, cvml and cpml, the specific gas constant Rm
and also the latent heat of vaporization Lv(T), we follow closely the values used in [78],
which are also listed in the appendix. The diffusion terms are retained in this equation,

73



although they will not be used in this chapter.

The equation of state is now given by

Π =

(
p

pR

)κ
≡
(
ρdRdθvd
pR

) κ
1−κ

, (5.4)

with κ := Rd/cpd, as before.

The terms on the left hand sides of (5.2) represent the dynamics, whilst the right hand
sides are considered to be the physics. The processes ṙccond, ṙaccr, ṙrevap, ṙaccu and S are the
microphysics parametrisations and are described in Section 5.4.

The final thing to note is the extra term proportional to∇ · v appearing on the left hand
side of (5.2b). This term is neglected in many models but mentioned in [83] and [78] to
be important in fully capturing convection, particularly in a saturated atmosphere. In
our model it appears in the forcing step of the dynamical core.

5.2 DYNAMICS DISCRETISATION

In this section we will illustrate the differences to the dynamical core part of the model
following the addition of moisture. The prognostic variables are now expanded, so that
χ = (v, ρd, θvd, rv, rc, rr). The dry virtual potential temperature θvd essentially assumes
the same role as the potential temperature θd, and will lie in the same space Vθ. The
moisture variables rv, rc and rr are all co-located with θvd in Vθ, as dynamically they can
be considered as an adjustment to θvd in the momentum equation, and so as to facilitate
latent heat transfer as water condenses or evaporates. The physics parametrisations,
involving the microphysics processes, are added at the end of the time step. These are
described in Section 5.4. To represent finding the tendencies from these parametrisations
we use the operator P(χ). The pseudocode from Section 3.2.1 now becomes

1. FORCING: χ∗ = χn + (1− α)∆tF(χn)

2. SET: χn+1p = χn

3. OUTER:

(a) UPDATE: u = αvn+1p + (1− α)vn

(b) ADVECT: χp = Aū(χ
∗)

(c) INNER:

i. FIND RESIDUAL: ∆χ = χp + α∆tF(χn+1p ) − χn+1p

ii. SOLVE: S(χ ′) = ∆χ for χ ′
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iii. INCREMENT: χn+1p = χn+1p + χ ′

4. DIFFUSION: χn+1p = D(χn+1p )

5. PHYSICS: χn+1p = P(χn+1p )

6. ADVANCE TIME STEP: χn = χn+1p

Changes to the forcing and linear solve steps are described in the rest of the section.

5.2.1 FORCING

The ‘forcing’ step, described in Section 3.2.4, must now take into account the presence of
moisture. This simply involves modifying equation (3.10). For both the k = 0 and k = 1

cases, F(v) is the vtrial that solves, for all ψ ∈ Vv,∫
Ω

ψ · vtrial dx =
∫
Ω

[
cpd∇ ·

(
θvdψ

1+ rt

)
Π−ψ · (f× v)

]
dx

−

∫
Ω

g(ψ · k̂) dx−
∫
Γ

cpd

s
θvdψ

1+ rt

{

n

〈Π〉 dS.
(5.5)

The more significant difference between the dry and moist cases is that equation (5.2b)
contains non-advective terms, which are included in the ‘forcing’ step. This means find-
ing F(θvd), which is the solution θtrial, for all γ ∈ Vθ to∫

Ω

γθtrial dx = −

∫
Ω

γθvd

(
Rm

cvml
−
Rdcpml

cpdcvml

)
(∇ · v) dx. (5.6)

This is the same for both the k = 0 and k = 1 configurations.

5.2.2 LINEAR SOLVE

With the introduction of moisture, the linear solve step for the implicit stage of the model
slightly changes from that described in Section 3.2.6. The linearised equations, that are
solved given a residual, become

v ′ +
α∆tcpd

1+ rt

(
θ ′vd∇Π+ θvd∇Π ′

)
= ∆v, (5.7a)

ρ ′d + α∆t∇ ·
(
ρdv

′) = ∆ρd, (5.7b)

θ ′vd + α∆t
(
k̂ · ∇θvd

)(
k̂ · v ′

)
= ∆θvd. (5.7c)

Two new approximations have been made in (5.7): perturbations in moisture fields have
been neglected, as is the non-advective forcing term featuring in (5.6). Now θ ′vd takes
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the role of θ ′d, being eliminated by the definition of Θ ′:

Θ ′ = ∆θvd − α∆t
(
k̂ · ∇θvd

)(
k̂ · v ′trial

)
. (5.8)

It also appears in the approximation of Π’:

Π ′ =
κ

1− κ
Π

(
Θ ′

θvd
+
ρ ′trial
ρd

)
. (5.9)

The moisture species also appear in the mixed system, which is then solved to find(
v ′trial, ρ

′
trial, `

′
trial

)
∈
(
V̂v, Vρ, Vtrace

)
, for all (ψ, φ, λ) ∈

(
V̂v, Vρ, Vtrace

)
. Then, equation

(3.23) becomes∫
Ω

ψ ·
(
v ′trial − ∆v

)
dx

− α∆tcpd

(∫
Ω

∇ ·
[
Θ ′w

1+ rt
k̂

]
Π dx−

∫
Γ

s
Θ ′w

1+ rt
k̂

{

n

〈
Π
〉

dS
)

+ α∆tcpd

(∫
∂Ω

Θ ′w

1+ rt
k̂ · n̂

〈
Π
〉

ds−
∫
Ω

∇ ·
[
θvd
1+ rt

ψ

]
Π ′ dx

)
+ α∆tcpd

(∫
Γ

s
θvd
1+ rt

ψ

{

n

` ′trial dS+
∫
∂Ω

θvd
1+ rt

(ψ · n̂) ` ′trial ds
)

+

∫
Ω

φ
(
ρ ′trial − ∆ρd

)
dx− α∆t

∫
Ω

(
∇φ · v ′trial

)
ρd dx

+ α∆t

(∫
Γ

q
φv ′trial

y
n
〈ρd〉 dS+

∫
∂Ω

φv ′trial · n̂ 〈ρd〉 ds
)

+

∫
Γ

λ
q
v ′trial

y
n

dS+
∫
∂Ω

λ
(
v ′trial · n̂

)
ds = 0.

(5.10)

The dry virtual potential temperature θvd is restored by finding θ ′trial that solves, for all
γ ∈ Vθ, ∫

Ω

γ
[
θ ′trial − ∆θvd + α∆t

(
k̂ · v

)(
k̂ · ∇θvd

])
= 0. (5.11)

5.2.3 LIMITING

As discussed in Section 4.2.4, the advection schemes that we use do not preserve the
monotonicity property of the continuous transport equation. This can result in unphys-
ical negative values when advecting moisture variables. The way we prevent this is
through the application of a slope-limiter, and the limiting strategies that we use are
based upon the vertex-based limiter of [75] that we described in Section 4.2.4.

In Chapter 4, we described that, in the k = 0 configuration, the approach to limiting
the advection of moisture variables was to apply the vertex-based limiter of [75]. This is
applied to each step of the transport in the dQ1 space. This is augmented by a different
projection operator (which we called PB) for the projection back to the k = 0 spaces once
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the advection was complete.

With the k = 1 spaces, the vertex-based limiter of [75] is again used. However moisture
fields in Vθ are quadratic in the vertical and the values of the field at vertical midpoint
of the cell are unchanged by the vertex-based limiter. We bound these values by restrict-
ing them to the average of the values at the adjacent vertices if the midpoint values fall
outside of the range spanned by the vertex values. In other words, if ri+1/2 is the value
of the field at a degree of freedom halfway up the i-th cell, then the new value is

ri+1/2 =

{
ri+1/2 if min (ri, ri+1) 6 ri+1/2 6 max (ri, ri+1) ,

1
2
(ri + ri+1) , otherwise.

(5.12)

The advection of fields in Vθ for the k = 1 configuration uses the embedded advection
scheme of [67]. As described in Section 3.2.5, the final stage of this scheme is to convert
it from the embedded space back into the original space via a Galerkin projection. This
can result in overshoots and undershoots, so when the advection is to be limited, this
step is performed using a recovery operator.

To illustrate the effectiveness of this limiter, we performed the rotation of the slotted-
cylinder, hump, cone of [77] as in Section 4.4.3. Figure 5.1 shows the fields in the Vθ
space for the k = 1 configuration, rotated once around the domain by a velocity defined
by the stream function

ψ = π(z(z− 1) + x(x− 1)). (5.13)

The domain used was the unit square, with ∆x = ∆z = 0.01, whilst the time step was
∆t = 10−4. The final fields were recorded at t = 1. This limiter shows good performance,
avoiding the degradation of mass observed with the limiter for the k = 0 spaces seen in
Section 4.4.3. If improvements were required, a more sophisticated limiter for transport
in the k = 1 Vθ space is described in [67].

5.3 PHYSICS-DYNAMICS COUPLING

5.3.1 COMBINING FIELDS FROM DIFFERENT FUNCTION SPACES

Many diagnostic fields, such as temperature T or the saturation mixing ratio of wa-
ter vapour rsat must be determined from prognostic fields in different function spaces,
usually ρd, θvd and rv. Such diagnostic fields are important in the equations used for
the physics parametrisations and can also be important in setting the initial state of the
model.

As ρd and θvd lie in different function spaces, when determining some diagnostic vari-
able q there are a number of different choices that can be taken. With our emphasis on
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Figure 5.1: The final fields, following one rotation around the domain, of functions in the two-dimensional
dQ1 ⊗ Q2 space that were initialised with the slotted-cylinder, hump, cone initial condition of [77]. (Left)
with the limiter applied, and (right) without the limiter. Overshoots and undershoots are highlighted in yellow,
showing that the limiter does indeed prevent overshoots and undershoots from forming. The limiter also does
not appear to impact heavily upon the magnitude of the profile.

parametrisations of moist processes, we take only the case of q ∈ Vθ, so that it is also in
the same function space as the moisture variables. We considered three approaches to
determining q from the prognostic variables:

1. Recovering density: the density field ρd is ‘recovered’ into Vθ using the recovery
operator outlined in Section 4.2.3 to give ρ̃d. Then q can be calculated algebraically
within Vθ. For the k = 0 spaces, the recovery operator requires the extra recovery
at the boundaries that was described in Section 4.2.3.

2. Projecting density: the density field is approximated in Vθ via a Galerkin projection.
This gives the ρ̃d ∈ Vθ that solves for all ψ ∈ Vθ∫

Ω

ψρ̃d dx =
∫
Ω

ψρd dx, (5.14)

whereΩ is the domain. The projected field ρ̃d is then used to algebraically find q.

3. Weak evaluation: q is projected directly from its expression into Vθ. This involves
finding q ∈ Vθ that solves for all ψ ∈ Vθ∫

Ω

ψq dx =
∫
Ω

ψq(θvd, ρd, rv) dx. (5.15)
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To compare these approaches, we considered smooth analytical forms for T , p and rv
fields in a two-dimensional vertical slice domain, with height and width L = 10 km.

T = 280− 5 cos
(
2πz

L

)
+ 5

(x
L

)
, (5.16a)

p = 105e−z/2000
[
1+

1

100
cos
(
2πx

L

)]
, (5.16b)

rv =
1

200
+

1

1000
cos
(
2πz

L

)
sin
(
2πz

L

)
. (5.16c)

These can then be used to compute analytical expressions for q and also the prognostic
variables, via

θvd = T

(
pR
p

)κ
(1+ rv/ε) , ρd =

p

RdT(1+ rv/ε)
. (5.17)

These analytical expressions are interpolated into spaces of high polynomial degree, be-
fore projecting them to get q, θvd ∈ Vθ and ρd ∈ Vρ. The three approaches above are
then used for both the k = 0 and k = 1 sets of spaces to estimate q from the discrete
θvd and ρd fields. These estimations of q are compared with the q that was determined
directly from the analytic expressions. For qwe chose the wet-equivalent potential tem-
perature outlined in equation (5.37).

The error between the estimated θe fields with the analytic θe are measured at differ-
ent resolutions and plotted in Figure 5.2. In the k = 1 setup there is little difference
between any of the methods, but in the k = 0 case the recovering density approach creates
solutions which converge better and with smaller errors. The other approaches cannot
represent the field at the boundary so accurately and thus are worse. We therefore use
this approach to recover the density into Vθ, where it is used to calculate other diagnostic
fields.

5.3.2 TEMPORAL COUPLING OF PHYSICS TO DYNAMICS

One of the most important aspects of physics-dynamics coupling within an atmospheric
model is where the physics routines are run in the model relative to the dynamics. Cur-
rently in our model, the physics routines are called once per time step, after the dynam-
ics time step has been completed. Another important choice is the order in which the
physics routines are run. In our model the processes are split sequentially, so that the
final state of one physics routine becomes the initial state of the next physics routine.
These are performed in the following order:

1. sedimentation of rain;

2. accretion of cloud water and auto-accumulation of rain water;

3. evaporation of rain water;
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Figure 5.2: Numerical results showing the error and its convergence for three different methods of combining
functions from different function spaces to determine a parametrisation. The three methods are: recovering
ρd into Vθ, projecting ρd into Vθ or calculating θe directly through a weak formulation. Results are shown
measuring the error between an analytic θe field and one calculated from ρd, θvd and rv using these methods.
The results are in both the k = 0 and k = 1 spaces. For the k = 1 spaces, there is very little difference, but
for the k = 0 spaces only the recovery operator can accurately represent the fields at the boundaries of the
domain. These results lead us to use recovery to convert ρd into Vθ for use in physical parametrisations.

4. evaporation of cloud water/condensation of water vapour.

We choose to do the evaporation/condensation step last, so as to prevent any supersat-
uration at the end of the time step.

5.4 PHYSICS PARAMETRISATIONS

In this section we consider the discretisation of the ‘physics’ terms in equation set (5.2).
Each term is evaluated individually in a separate ‘physics’ routine. The term labelled
ṙccond represents the condensation of water vapour into cloud water and the evaporation
of cloud water into water vapour. The similar term ṙrevap describes the evaporation of
rain water into water vapour, whilst ṙaccr and ṙaccu are known as the accretion and auto-
accumulation processes which convert cloud water into rain. The sedimentation of rain
is given by S. The details of each of these terms are presented in the following section.

5.4.1 COMBINING FUNCTIONS FROM DIFFERENT SPACES

Many of the parametrisations depend upon the fields T and pwhich are prognostic vari-
ables. We currently attempt to avoid direct evaluation of these fields and write them as
functions of our prognostic variables:

T =
θvdΠ̃

1+ rv/ε
, p̃ = pRΠ̃

1
κ , (5.18)
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where

Π̃ =

(
ρ̃dRdθvd
pR

) κ
1−κ

. (5.19)

Here we denote fields with the tilde to emphasise that they are considered to lie in the
temperature space.∗ The method used to obtain ρ̃d is described further in Section 5.3.1.
As was mentioned in that section, the conversion of ρd to ρ̃d could be avoided by writing
the parametrisations in weak form (multiplying by a test function before integrating).
Following the results of Section 5.3.1, now we do not take this approach.

5.4.2 CONDENSATION/EVAPORATION

The condensation/evaporation rate between water vapour and cloud water is that used
in [84], and [78]:

ṙ0cond :=
rv − rsat(p̃, T)

∆t

(
1+

L2v(T)rsat(p̃, T)

cpdRvT2

) , (5.20)

where ∆t is the time step and rsat(p̃, T) is the saturation value of rv to be defined below.
We use the following restrictions to prevent generation of negative values of rv or rc:

ṙccond =


max(ṙ0cond,−rc/∆t) ṙ0cond < 0,

min(ṙ0cond, rv/∆t), ṙ0cond > 0.

(5.21)

The saturation value of rv that we use stems from Tetens’ empirical formula [85], and
is fully described in [86]. The formula given for the saturation water vapour pressure
esat(T) is:

esat(T) = C
sat
0 exp

[
Csat
1 (T − TR)

T − Csat
2

]
, (5.22)

where Csat
0 , Csat

1 and Csat
2 are constants whose values are given in the appendix. This can

be used to find rsat(p̃, T):

rsat(p̃, T) =
εCsat
0

p̃ exp

[
−
Csat
1 (T − TR)

T − Csat
2

]
− Csat

0

. (5.23)

As rv and rc are updated by ṙccond, we also update θvd using the right hand side of (5.2b).

∗In other formulations using p or Π as prognostic variables, the C-grid staggering behaviour is obtained
by having p and Π in the same space as the density. The temperature T would be in the same space as θvd
or any other temperature-like variable and so we do not need to denote it with a tilde here.
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5.4.3 COALESCENCE OF CLOUD WATER INTO RAIN

This process consists of two parts: accretion of cloud water and the auto-accumulation
of rain water. Following [87], we parametrise these processes with:

ṙ0accr = k1(rc − a) (5.24)

and
ṙ0accu = k2rcr

b
r (5.25)

where k1 = 0.001 s−1, k2 = 2.2 s−1, a = 0.001 kg kg−1 and b = 0.875, which are the
parameters used by [88]. As with the condensation/evaporation process for cloud water
described in Section 5.4.2, this process is limited to prevent negative cloud water values
forming.

5.4.4 EVAPORATION OF RAIN

The parametrisation we use for the evaporation of rain again comes from [87]. Having
recovered ρd into the temperature space as ρ̃d, the evaporation rate that we use is

ṙrevap =
1

ρ̃d

(1− rv/rsat(p̃, T))C(ρ̃drr)
0.525

5.4× 105 + 2.55× 106/(p̃rsat(p̃, T))
, (5.26)

where rsat(p̃, T) is taken from (5.23) and C is known as the ventilation factor:

C = 1.6+ 124.9(ρ̃drr)
0.2046. (5.27)

As with the previous schemes, we limit the evaporation rate to prevent negative rain
concentrations occurring. As with the condensation/evaporation scheme for cloud wa-
ter, θvd is updated from (5.2b).

5.4.5 SEDIMENTATION OF RAIN

Our approach to parametrising the fallout of rain is similar to the single moment scheme
described in [89]. We assume that the number nr(D) of raindrops of diameterD forms a
spectrum described by a Gamma distribution:

nr(D) =
Nrλ

1+µ

Γ(1+ µ)
Dµe−λD, (5.28)

where Nr, µ and λ are parameters characterising the shape of the spectrum. Nr repre-
sents the total number density of particles, whilst µ and λ are known as the shape and
inverse scale parameters. The Gamma function Γ(1 + µ) appears here to normalise the

82



distribution. Assuming spherical raindrops, the mass of a raindrop of diameter D is

mr(D) =
π

6
ρwD

3, (5.29)

where ρw = 1000 kg m−3 is the density of liquid water. As the mass of a raindrop is
proportional to the cube ofD, the third moment of nr(D) represents the mass density of
rain. We will also parametrise the terminal velocity of a falling raindrop of diameter D
with another Gamma distribution, using a, b, f, ρ0 and g as parameters.

V(D) = aDbe−fD
(
ρ0
ρd

)g
. (5.30)

The term in the brackets represents a density correction.

Now we will link this distribution to our rainfall mixing ratio rr. The mass density
of rain in some area is given by ρdrr, but we can find an equivalent expression from the
diameter distribution. Equating these gives

ρdrr =

∫∞
0

mr(D)nr(D) dD =
πρwNrΓ(4+ µ)

6λ3Γ(1+ µ)
, (5.31)

having performed the integral using properties of the Gamma function. This can be
rearranged to obtain λ as a function of ρd and rr:

λ =

(
πρwNrΓ(4+ µ)

6ρdrrΓ(1+ µ)

) 1
3

. (5.32)

The velocity of the rain mass density is given by

vr =
1

ρdrr

∫∞
0

V(D)mr(D)nr(D) dD =
Γ(4+ µ+ b)aλ4+µ

Γ(4+ µ)(λ+ f)4+µ+b

(
ρ0
ρd

)g
, (5.33)

having performed the integral again using properties of the Gamma distribution. This
value of vr is then used to advect rr vertically downwards in order to simulate rainfall.

The strategy that we use in our model is to first find λ from ρd and rr. At this stage,
no special care is taken with ρd. We then find vr, projecting it into the velocity space Vv.
The rain field is then advected by −vrk̂ using the same advection scheme used for rr in
the dynamics part of the model. In the k = 0 configuration, this is the recovered advec-
tion scheme presented in Chapter 4, whilst the k = 1 configuration uses the embedded
DG scheme of [67]. To allow for fallout of the rain through the bottom of the domain, the
upwind DG equation is modified from equation (3.12) to finding the rtrial, for all ψ ∈ Vθ
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that satifies ∫
Ω

ψrtrial dx−
∫
Ω

ψrr dx + ∆t
∫
Ω

rr

[
∇ ·

(
ψvrk̂

)]
dx

−∆t

∫
∂Ω

(
vrk̂ · n̂

)
r†rψ ds − ∆t

∫
Γ

(
vrk̂ · n̂+

)
r†rJψK+ dS = 0,

(5.34)

with −vrk̂ taking the role of u from equation (3.12). This advection can also be limited.

For the parameters we use the following values: Nr = 105, µ = 0, a = 362, b = 0.65,
f = 0, g = 0.5, ρ0 = 1.22 kg m−3. There is a singularity in the expression for λ at rr = 0

(which could be the case for much of the domain). We therefore only call the scheme for
rr > 10

−10.

5.4.6 TIME DISCRETISATION

The time integration currently used for the parametrisations is a simple first-order ex-
plicit scheme. In other words, for a process ṙ affecting a variable r, the new value rnew

will be related to the old rold by

rnew = rold + ∆t ṙ(rold). (5.35)

The exception here is the treatment of the sedimentation of rainfall, which was described
in the previous section. The value of ṙ comes from the state of the model just before this
physics routine is called. This is the state of the model after either the dynamics or the
preceding physics routine has been completed.

5.5 SETTING UP HYDROSTATIC BALANCE

For many test cases the background or initial state of the model will be in hydrostatic
balance. In Section 3.2.8 we presented the strategy for finding the ρd corresponding to
a θd profile that yields a discrete hydrostatic balance. As the model is extended to in-
clude moisture, we extend this procedure to facilitate model initial conditions that are
not given in terms of our prognostic variables, as for the test cases in Section 5.6.

We will consider cases in which thermodynamic and moist variables are provided and
the prognostic variables including the density ρd need to be found. These will involve
splitting the process into two steps which are iterated until the state has converged to
within some specified tolerance. The first step is to use the best guesses of the thermo-
dynamic prognostic variables θvd, rv and rc to calculate the density ρd that provides
hydrostatic balance given those values of θvd, rv and rc. This uses the routine described
in Section 3.2.8, finding the (w, ρd) ∈

(
Vvert
v , Vρ

)
that solve, for all (ψ, λ) ∈

(
Vvert
v , Vρ

)
,
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the coupled equations∫
Ω

ψ ·w dx−
∫
Ω

cpdΠ(ρd, θvd)∇ ·
(
θdψ

1+ rt

)
=

−

∫
∂Ωi

cpdθvd

1+ rt
ΠRψ · n̂ ds−

∫
Ω

gψ · k̂ dx,
(5.36a)

∫
Ω

λ∇ ·w dx = 0, (5.36b)

provided a prescribed ΠR on either the top or bottom boundary ∂Ωi. This differs from
equation (3.26) only by the inclusion of the moisture species.

The second step is to use the best guess of ρd and the specified initial conditions to
find θvd, rv and rc, where we shall assume that there is no initial rain. The second step
is considerably simpler when the variables specified in the initial conditions are one of
our prognostic variables. We will consider two cases of initial conditions, with saturated
and unsaturated atmospheres.

5.5.1 SATURATED CONDITIONS

This set-up involves initial conditions like those in the moist benchmark of [78]. The
problem is to find ρd, θvd and rv given θe, rt and a boundary condition on the pressure.
Assuming the absence of rain, rv = rsat, and rc = rt − rv. The wet-equivalent poten-
tial temperature, θe, is a conserved quantity in reversible, moist adiabatic processes, i.e.
Dθe/Dt = 0. Following [90], for our equation set (5.2), θe can be written as

θe := T

(
p0
p

) Rd
cpd+cplrt

(H)
−rvRv

cpd+cplrt exp
[

Lv(T)rv
(cpd + cplrt)T

]
, (5.37)

which with H = 1 for a saturated atmosphere is the same as that used by [78] and that
derived in the appendix of [91] from the second law of thermodynamics.

The challenge is to obtain the θvd and ρd fields that satisfy the specified θe field whilst
ensuring that rv = rsat. We use an initial guess for θvd and feed it to equation (5.36), to
generate a guess for ρd. This density is then converted into Vθ, before a nested fixed-
point iteration-style procedure is used to invert θe(θvd, ρ̃d, rv) and rsat(θvd, ρ̃d, rv), to
obtain θvd and rv.

Let l, m and n count the number of iterations to find ρd, θvd and rv respectively. These
form nested loops, such that the outer loop uses the latest approximations of θvd and
rv with equation (5.36) to obtain ρ(l+1/2)d . We then update the approximation to ρd,
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combining this with the previous value to provide stability, doing

ρ
(l+1)
d = (1− δ)ρ

(l)
d + δρ

(l+1/2)
d , (5.38)

where we chose δ = 0.8. The next loop finds θvd using

θ
(m+1/2)
vd =

θ
(m)
vd θe

θe

(
θ
(m)
vd , ρ̃

(l)
d , r

(n)
v

) , θ
(m+1)
vd = (1− δ)θ

(m)
vd + δθ

(m+1/2)
vd , (5.39)

whilst the inner loop computes

r
(n+1/2)
v = rsat

(
θ
(m)
vd , ρ̃

(l)
d , r

(n)
v

)
, r

(n+1)
v = (1− δ)r

(m)
v + δr

(m+1/2)
v , (5.40)

where θe without arguments denotes the specified value. These loops are iterated until
θe(θvd, ρ̃d, rv) converges to the specified value to some tolerance.

5.5.2 UNSATURATED CONDITIONS

We now discuss how to find the prognostic thermodynamic variables given θd and the
relative humidity H, such as the case in Section 5.6.3 or [92]. The relative humidity is
related to rv by

H =
rv

rsat

(
1+ rsat/ε

1+ rv/ε

)
. (5.41)

As in Section 5.5.1, we use what can be thought of as a nested iterative procedure. Count-
ing the latest approximations of ρd, θvd and rv with l,m and n, the outer loop uses θ(m)

vd

and r(n)v in the hydrostatic balance equation (5.36) to determine ρ(l+1/2)d . Again, the next
value of ρd is given by

ρ
(l+1)
d = (1− δ)ρ

(l)
d + δρ

(l+1/2)
d . (5.42)

There is only one inner loop in this case, so thatm = n. The new value of rv is found by
rearranging (5.41) so that

r
(m+1/2)
v =

Hrsat

(
θ
(m)
vd , ρ̃

(l)
d , r

(m)
v

)
1+ (1−H)rsat

(
θ
(m)
vd , ρ̃

(l)
d , r

(m)
v

)
/ε
, (5.43a)

r
(m+1)
v = (1− δ)r

(m)
v + δr

(m+1/2)
v , (5.43b)

whereH is the specified value of the relative humidity. The final step is to use the speci-
fied value of θd to get

θ
(m)
vd = θd

(
1+ r

(m)
v /ε

)
. (5.44)

86



This iterative process continues until H
(
θ
(m)
vd , ρ

(l)
d , r

(m)
v

)
has converged to its specified

value to some tolerance.

5.6 TEST CASES

In this section we demonstrate the discretisation detailed in previous sections through
a series of test cases, with some comparison of the k = 0 and k = 1 configurations of
the model. Two new test cases are presented, featuring a gravity wave in a saturated
atmosphere and a three-dimensional rising thermal in a saturated atmosphere. These
new tests are introduced in part to showcase the capability of our model, but also to
help address the lack of commonly used test cases between simple dry test cases and
full-physics simulations of the atmosphere. No artificial diffusion is included in any of
these tests.

5.6.1 BRYAN AND FRITSCH MOIST BENCHMARK

The first demonstration of our discretisation is through the moist benchmark test case of
[78], which simulates a rising thermal through a cloudy atmosphere. This test captures
the effects of latent heat in a relatively simple high-resolution two-dimensional model.
Since the atmosphere is entirely cloudy, the motion is smooth, allowing different models
to be easily compared. The domain is a vertical slice of width L = 20 km and height
H = 10 km. Periodic boundary conditions are applied at the vertical boundaries, but the
top and bottom boundaries are rigid, so that v · n̂ = 0 along them. As in [78], we include
no rain microphysics and no Coriolis force.

The initial conditions defined in [78] specify a background state with constant rt = 0.02
kg kg−1 and constant wet-equivalent potential temperature θe = 320 K, which is de-
fined in (5.37). Along with these, the background state is given by the requirements of
hydrostatic balance, rv = rsat and p = 105 Pa at the bottom boundary. The procedure
described in Section 5.5.1 allows us to obtain the prognostic variables θvd, ρd, rv and rc
that approximately satisfy these conditions.

A perturbation is then applied to θvd. With (x, z) as the horizontal and vertical coor-
dinates, the perturbed field is

θ ′vd =

{
∆Θ cos2

(
πr
2rc

)
, r < rc,

0, otherwise,
(5.45)

where ∆Θ = 2 K, rc = 2 km and with xc = L/2 and zc = 2 km we define

r =

√
(x− xc)

2 + (z− zc)
2. (5.46)
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The initial θvd field is given in terms of the background field θvd:

θvd = θvd

(
1+

θ ′vd
300 K

)
. (5.47)

In the test case of [78], the pressure field is unchanged by the perturbation. As in Section
4.6.1, we replicate this by finding ρd such that for all ζ ∈ Vρ,∫

Ω

ζρdθvd dx =
∫
Ω

ζρdθvd dx, (5.48)

where ρd and θvd are the background states for ρd and θvd. The system is returned to
saturation by finding the rv that solves, for all φ ∈ Vθ,∫

Ω

φrv dx =
∫
Ω

φrsat(ρ̃d, θvd, rv) dx, (5.49)

where rsat(ρ̃d, θvd, rv) is the expression for saturation mixing ratio in terms of the initial
ρd recovered into Vθ and the initial θvd field that have already been found, and also the
unknown rv to be solved for. Finally, rc is found from applying rc = rt − rv. The initial
velocity field is zero in each component.

Figures 5.3 and 5.4 show the θe and vertical velocity w fields at t = 1000 s. Figure
5.3 shows these fields for the configuration using the k = 0 lowest-order spaces, with
the k = 1 spaces shown in Figure 5.4. Both simulations used ∆x = ∆z = 100 m and
∆t = 1 s. These final states are visibly different: whilst the k = 0 solutions resemble
those of [78], the k = 1 solution displays an extra plume forming at the top of the rising
thermal. We believe this to be a manifestation of a physical instability that is damped
by numerical diffusion in the k = 0 case. The k = 1 solution appears highly sensitive
to the choice of mesh, as at higher resolution the θe field does not appear to converge
to a single solution. Indeed if the domain is spanned horizontally by an odd number of
cells, rather than a secondary plume emerging, the top of the primary plume appears to
collapse. This behaviour is also observed in the absence of moisture.

5.6.2 INERTIA-GRAVITY WAVES IN SATURATED ATMOSPHERE

We present here a new test case, a moist version of the non-hydrostatic gravity wave test
of [82], but in a saturated atmosphere like that of the moist benchmark in [78]. Without
strong vertical motions, this test should avoid the issues with the rising plume of the
test from Section 5.6.1. The final state of this test is spatially smooth, making this test
appropriate for convergence tests. No rain physics is used in this test case, and there is
also no Coriolis force.

The problem is set up in a two-dimensional vertical slice of length L = 300 km and
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Figure 5.3: The (left) θe field contoured every 0.25 K and (right) vertical velocity w field contoured every 2
m s−1, with both fields plotted at t = 1000 s for a simulation of the moist benchmark case [78] representing a
thermal rising through a saturated atmosphere. The 320 K contour has been omitted for clarity in the θe field.
This simulation is with the lowest-order k = 0 set of spaces, with grid spacing ∆x = ∆z = 100 m and a time
step of ∆t = 1 s. This test is a common milestone in the development of moist atmospheric models because
its solution is comparable to the dry case and because the cloudy atmosphere is neutrally stable, unlike many
other moist rising thermal tests. It also demonstrates the performance at relatively high resolution compared
with numerical weather prediction models. However setting up the initial conditions can be challenging, as
they are prescribed in terms of θe which is not usually a prognostic variable. These solutions are visibly similar
to those presented in [78].

Figure 5.4: Outputted fields from the k = 1 next-to-lowest order space simulation at t = 1000 s of the moist
benchmark from [78]. (Left) θe with contours spaced by 0.25 K and (right) vertical velocity w contoured
every 2 m s−1. The simulation used grid spacing ∆x = ∆z = 100 m and a time step of ∆t = 1 s. The 320
K contour has been omitted for clarity in the θe field. A second plume can be seen forming at the top of the
primary plume, in contrast to the results in Figure 5.3 with the k = 0 spaces. Although the secondary plume
is not typically reported in the literature, we believe that rising thermal test cases like this do admit multiple
solutions, and that this secondary plume is then triggered by dynamic instabilities as the leading edge of the
bubble involves a very steep temperature gradient. However in many models, including the one we present
with the lowest-order spaces, the advection schemes can damp this instability causing the smooth results seen
in Figure 5.3.
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height H = 10 km. The dry gravity wave setup used in [82] applies a perturbation to θd,
which has a stratified background profile and is in hydrostatic balance. Our variation on
this is to apply the perturbation to the stratified background profile of θe in hydrostatic
balance. Using (x, z) as the horizontal and vertical coordinates, the specified θe profile is

θe = Θ0e
N2z/g, (5.50)

where Θ0 = 300 K and N2 = 10−4 s−2. With rt = 0.02 kg kg−1 everywhere and the
boundary condition of p = 105 Pa at z = 0, we use the hydrostatic balance procedure
laid out in Section 5.5.1 to find the θvd, ρd, rv and rc fields that correspond to these initial
conditions with the requirements of hydrostatic balance and that rv = rsat everywhere.
The initial velocity applied is v = (U, 0) with U = 20 m s−1 describing uniform flow in
the x-direction. This defines each of the mean fields.

A perturbation is then added, which is specified as

θ ′e =
∆Θ

1+ a−2(x− L/2)2
sin
(πz
H

)
, (5.51)

with a = 5 × 103 m and ∆Θ = 0.01 K. The perturbed initial condition is then given by
θe = θe+ θ

′
e. Setting the new requirements that both rt and the pressure are unchanged

by the addition of the perturbation, and that we still have rv = rsat, defines the problem
necessary to solve to find the initial prognostic fields. We do this via a nested iterative
process related to that described in Section 5.5.1. In the outer loop we find ρhd such that
for all ζ ∈ Vρ ∫

Ω

ζρhdθ
n
vd dx =

∫
Ω

ζρdθvd dx, (5.52)

which is combined with the previous best estimate of ρnd to give ρn+1d = (1−δ)ρnd +δρ
h
d,

where δ = 0.8. Nested inside this process are more damped iterations to find θvd and rv,
exactly as in Section 5.5.1.

Figure 5.5 shows the perturbation to the final diagnostic θe field at t = 3600 s for sim-
ulations with the k = 0 lowest-order spaces with ∆x = ∆z = 500 m and the k = 1 set
of spaces, where ∆x = ∆z = 1000 m, both with ∆t = 1.2 s. These different cases are
not visibly different from one another, and closely resemble the final state of the dry case
from [82].

CONVERGENCE

As the solution and evolution of this example is spatially smooth, we can use it to form
a convergence test upon our model. Although the final state (at t = 3600 s) does not
have an analytic solution, we use the fields from a high resolution simulation as the true
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Figure 5.5: The perturbations to the θe fields at t = 3600 s for the moist gravity wave test case. (Left) the
k = 0 lowest-order spaces set-up using ∆x = 500 m and (right) the k = 1 spaces with ∆x = 1000 m. Both
cases used ∆t = 1.2 s. Contours are spaced every 5× 10−4 K. This test case represents a cloudy-atmosphere
variant of the dry gravity wave test of [82] and is more gentle than the rising thermal test of Section 5.6.1. Its
solution is spatially smooth, allowing this test to be used to investigate the spatial convergence properties of
the model.

solution.

To measure the spatial accuracy of our model, we ran this test case at different reso-
lutions, with each using a time step of ∆t = 1.2 s, which is small enough to avoid the
Courant number breaching its critical value in the highest resolution cases. The error is
measured looking at the θe diagnostic in Vθ at t = 3600 s. The θe fields are interpolated
onto the finest mesh, which has ∆x = 100 m for the k = 0 case but ∆x = 200 m for the
k = 1 case. The error between the high resolution solution for θe and those run at coarser
resolutions is measured in the L2 norm. Results for our model are plotted in Figure 5.6,
which indicates that in both the k = 0 and k = 1 cases the model has second-order spatial
accuracy, with the error proportional to (∆x)2.

5.6.3 RISING THERMAL WITH RAIN

This test case is based upon one described in [92]. This involves a thermal rising in an
unsaturated atmosphere, forming a cloud which rains out, thus demonstrating the de-
scription of rain within our model. This is another two dimensional vertical slice test,
this time with domain of height H = 2.4 km and length L = 3.6 km, again with periodic
conditions at the vertical sides. The Coriolis force is neglected.

In contrast to the saturated atmosphere initial conditions of Sections 5.6.1, the initial
state is defined by the dry potential temperature θd and a relative humidity fieldH. The
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Figure 5.6: A convergence plot showing the error as a function of resolution in the final state from the moist
gravity wave test of Section 5.6.2. The true solution was taken from a high resolution simulation. Both the
k = 0 and k = 1 configurations of the model appear to have second-order or better accuracy, which is one of
the properties targeted by [9].

background fields areH = 0.2 and

θd = ΘeSz, (5.53)

whereΘ is the dry potential temperature corresponding to Tsurf = 283K and p = 8.5×104

Pa, which also provides the pressure condition at the boundary. The stratification is
given by S = 1.3×10−5 m−1. We then use the procedure outlined in Section 5.5.2 to find
the background θvd, ρd and rv fields that satisfy hydrostatic balance. The initial rc and
rr fields are zero.

The perturbation is then applied to the relative humidity field H, with a circular bubble
that is just saturated, with an outer disk smoothing the perturbation into the background
state. This initial relative humidity field is given by

H =


H, r > r1,

H + (1−H) cos2
(
π(r−r2)
2(r1−r2)

)
, r2 6 r < r1,

1, r < r2,

(5.54)

whereH = 0.2 and
r =

√
(x− xc)2 + (z− zc)2, (5.55)

with xc = L/2, zc = 800 m, r1 = 300 m and r2 = 200 m. The rv and θvd that correspond
to thisH are found via a fixed point iterative method.

Fields are displayed in Figures 5.7 and 5.8 for θ ′vd and rr at t = 300 and 600 s. Both simu-
lations use the k = 0 lowest-order space set-up, with ∆x = 20m and ∆t = 1 s. Figure 5.7
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Figure 5.7: The field output at (top row) t = 300 s and (bottom row) t = 600 s from the rising thermal test
with rain. Fields shown are in the k = 0 spaces with ∆x = ∆z = 20 m and a time step of ∆t = 1 s. (Left) the
perturbation to θvd, contoured every 0.25 K. (Right) the rain field rr, with contours every 5 × 10−6 kg kg−1

and omitting the zero contour. This test case is initially unsaturated, but as the thermal rises, water vapour
condenses to form a cloud which then rains out, demonstrating the use of rain within our model.
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Figure 5.8: The same results as in Figure 5.7, but with a limiter applied to the moisture species. The θvd
solution is notably smoother and lower cloud concentrations form, leading to less rain which also begins later.
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shows the results with no limiter applied to the advected moisture fields, whilst Figure
5.8 shows the same set-up but with a limiter applied to all the moisture variables.

The length scales of the simulation are small enough for it to be highly turbulent, with the
final state dependent on the resolution in the absence of a turbulence parametrisation.
Indeed, the lack of turbulence parametrisation in our model explains why these results
look significantly different to those of [92]. Comparing Figures 5.7 and 5.8 demonstrates
the effect of limiting the transport of moisture species. In the absence of the limiter, the
mass of water vapour depreciates less and so more cloud is formed, associated with a
greater release of latent heat and a stronger updraught. We see that rain forms earlier
in the absence of a limiter. However, some negative moisture values do form, which are
absent from the limited case.

5.6.4 THREE-DIMENSIONAL THERMAL IN A SATURATED ATMOSPHERE

We now demonstrate the use of our discretisation upon small-scale dynamics in three
dimensions. This test case is a three-dimensional version of the moist benchmark of [78]
that was described in Section 5.6.1. Rain and the effects of planetary rotation are not
included.

The domain is now periodic in the horizontal directions, with length, width and height
10 km. The background state set-up is the same as that in Section 5.6.1, with θe = 320

K, rt = 0.02 kg kg−1 and the pressure as p = 105 Pa on the bottom surface. Using
the initialisation procedure that was outlined in Section 5.5.1 generates the values of the
prognostic variables such that the model is in hydrostatic balance and saturated with
respect to water vapour.

Using xc = yc = 5 km and zc = 2 km, and defining

r =
√

(x− xc)2 + (y− yc)2 + (z− zc)2, (5.56)

we apply the perturbation

θ ′vd =

{
∆Θ cos2

(
πr
2rc

)
, r < rc,

0, otherwise,
(5.57)

with ∆Θ = 1 K and rc = 2 km. As in Section 5.6.1, the perturbation is applied using the
background field θvd

θvd = θvd

(
1+

θ ′vd
300 K

)
. (5.58)

The same routine as used in Section 5.6.1 is then applied to obtain the initial ρd, rv and
rc fields, ensuring that the atmosphere is exactly saturated and that the initial pressure
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Figure 5.9: The (left) θe and (right) vertical velocity w fields at t = 1000 s for the three-dimensional simulation
of a thermal rising through a saturated atmosphere. The θe field is contoured every 0.25 K with the 320 K
contour omitted, whilst the contour spacing for the w field is 1 m s−1. Cross-sections are shown at y = 5 km,
with values plotted on the lower side of the plane. This simulation is with the k = 0 lowest-order set of spaces,
with grid spacing ∆x = 100 m and a time step of ∆t = 1 s. This test is introduced to demonstrate the model
at high spatial resolutions in three dimensions. As a three-dimensional version of the test case in Section 5.6.1,
it can also exploit the same initialisation code described in Section 5.5.1.

field is equal to the background pressure field.

Cross-sections of the θe and vertical velocity w fields at t = 1000 s and y = 5 km are
shown in Figures 5.9 and 5.10, for both the set-ups using k = 0 lowest-order spaces
(which had ∆x = ∆y = ∆z = 100 m) and the k = 1 spaces (which had ∆x = ∆y = ∆z =

200 m). Both simulations had ∆t = 1 s. As in Section 5.6.1, we see a secondary plume
beginning to form at the top of the rising thermal in the k = 1 case.

5.6.5 MOIST BAROCLINIC WAVE

The final test case that we present is the moist baroclinic wave outlined in the appendix
of [79]. This is the only test featuring the Coriolis force, although rain is again neglected.
It is a large-scale test, resembling conditions used in numerical weather prediction more
than the other tests described in this Section, but as such it is more challenging. The
set-up is very similar to that described in Section 4.6.2, in the same domain and using
the same expressions for zonal wind u and geopotential Φ in terms of the (x, y, η) co-
ordinates. The key differences are that the expression for temperature is replaced by
an expression for virtual temperature Tv and the addition of an expression for specific
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Figure 5.10: The outputted fields along y = 5 km from the k = 1 next-to-lowest order space simulation at
t = 1000 s of the three-dimensional simulation of a rising thermal in a saturated atmosphere. (Left) θe and
(right) vertical velocity w fields for a simulation using grid spacing ∆x = 200 m and a time step of ∆t = 1 s.
The θe field is contoured every 0.25 K with the 320 K contour omitted, whilst the contour spacing for the w
field is 1 m s−1. Cross-sections are shown at y = 5 km, with values plotted on the lower side of the plane.
As with the two-dimensional case, a second plume can be seen forming at the top of the primary plume. As
was described in Figure 5.4, this is still believed to be a valid solution and may be appearing with the k = 1

elements if these advection schemes are less damping than those for the lowest-order elements.

humidity† q. These expressions are:

Tv = T0η
RdΓ

g

+
f0u0
2Rd

[
y−

W

2

(
1+

1

π
sin
(
2πy

W

))][
2

b2
(lnη)2 − 1

]
exp

[
−

(
lnη
b

)2]
,

(5.59a)

q =
q0
2

exp

[
−

(
y

∆yw

)4]{1+ cos
[
π(1−η)
1−ηw

]
, η > ηw,

0, otherwise.
(5.59b)

The new constants are ∆yw = 3.2 × 106 m and ηw = 0.3, while all other constants take
the same values as in Section 4.6.2. We use the slightly lower value of q0 = 0.016 than
[79] to prevent our model being initially too close to saturation. The virtual temperature
Tv now replaces T in the Newton iteration procedure to find η, which becomes

η(n+1) = η(n) −
Φ
(
η(n)

)
− gz

Tv
(
η(n)

)
− Rd/η(n)

. (5.60)

In order to convert Tv and q into θvd and rv, we use the definitions of θvd, η = p/pR and
the relations

T =
Tv

1+ q(Rv/Rd − 1)
(5.61)

†Note that neither of these thermodynamic variables are our prognostic variables.
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and
rv =

q

1− q
. (5.62)

As before, these θvd and rv fields are used to compute the ρd field that provides hy-
drostatic balance for the background state using the procedure outlined in Section 3.2.8,
with Π = 1 on the bottom boundary. The same perturbation is added to the zonal veloc-
ity.

Figures 5.11 and 5.12 show fields from this test case at t = 12 days for the k = 0 and
k = 1 spaces respectively. For the k = 0 configuration, ∆x = ∆y = 200 km and ∆z = 1

km, whilst for k = 1 these were ∆x = ∆y = 250 km and ∆z = 1.5 km. For both simula-
tions, ∆t = 300 s. In the k = 1 simulation, the baroclinic wave becomes much stronger
than in the k = 0 simulation. As the wave develops, the maxima and minima in the
temperatures in the k = 1 case are higher than for the k = 0 lowest-order spaces. When
these minima coincide with regions close to water vapour saturation, more condensa-
tion occurs. This releases latent heat and strengthens the baroclinic wave, reinforcing
the behaviour.

5.7 SUMMARY AND OUTLOOK

In this chapter, we have presented a discretisation of the moist compressible Euler equa-
tions that uses a compatible finite element framework. As such, this chapter documents
the first implementation of physics parametrisations within the compatible finite ele-
ment framework of Gusto. Building upon the model described in Chapters 3 and 4, we
first identified the dynamical parts of the model which required change for the inclu-
sion of moisture, which involved amending the limiter of [75] for the Vθ space which is
quadratic in the vertical direction. The coupling of the dynamical part of the model to the
parametrisations was then discussed, addressing the problem of how to combine fields
from different function spaces for use in parametrisations. The chosen method was to
use the recovery operator outlined in Chapter 4 to obtain ρd within Vθ, as this possessed
second-order accuracy due to its accurate representation of the field at the boundaries
of the domain. After describing the microphysics parametrisations used in the model,
strategies were presented for obtaining hydrostatic balance when provided initial con-
ditions in terms of diagnostic (rather than prognostic) variables, which is important for
setting up many test cases. The use of the discretisation was demonstrated through a se-
ries of test cases, and two new test cases were presented, which help to bridge the divide
between simple dry test cases and models with fully-coupled sets of physical parametri-
sations. This included a three-dimensional rising thermal and a moist gravity-wave test
which was used to measure the spatial convergence properties of the model, which we
found to be at least second-order in both the k = 0 and k = 1 configurations.
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Figure 5.11: Cross-sections of fields at t = 12 days from the moist baroclinic wave test case using the k = 0
spaces. The grid sizes used were ∆x = ∆y = 200 km and ∆z = 1 km, with ∆t = 300 s. Shown are (top
left) the T field on z = 500 m contoured every 2 K, (top right) the rc field on y = 3000 km contoured every
5 × 10−4 kg kg−1 with the zero contour omitted, (bottom left) the perturbed temperature field on y = 3000

km with contours every 2 K and (bottom right) the perturbed zonal wind u ′, with contours spaced by 5 m
s−1. Values shown on the y = 3000 km plane are computed from the lower side of the plane. Taking place
in a large-scale three-dimensional channel, this is a more challenging test for the discretisation than the others
in Section 5.6. This test more closely simulates those conditions in a real dynamical core used for numerical
weather prediction, and in contrast to the test from Section 5.6.4 takes place at much lower resolution. The
results do show the formation of the baroclinic wave, with stronger warm and cold fronts than those in the dry
case of Figure 4.14.
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Figure 5.12: Cross-sections of fields at t = 12 days from the moist baroclinic wave test case using the k = 1
spaces. The grid sizes used were ∆x = ∆y = 250 km and ∆z = 1.5 km, with ∆t = 300 s. Plots shown are the
same as in Figure 5.11, but note the different scale in the zonal wind perturbation plot (bottom right). These
results do appear visually different from those presented in Figure 5.11 that used the lowest-order elements.
We can see that part of the baroclinic wave has broken, so a less wave-like structure is observed (upper left).
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There are two clear strands for future work. In the first, we note that our model involves
many choices, such as the choice of family of compatible spaces or the time discreti-
sation used for the microphysics parametrisations. With regards to the coupling of the
microphysics routines to one another and the dynamics, the choice of splitting of the rou-
tines was arbitrary and should be investigated. To aid further model development, these
choices should be explored through a series of controlled tests. One example might be
to decouple the microphysics from vertical motions by solving the moist shallow-water
equations, such as those of [93] or [94].

The other strand of work involves augmenting the features described in this chapter.
For instance, turbulence and radiation parametrisations could be added to the model, or
other transport schemes for the lower-order spaces. Simulations over the sphere should
be performed, for example that of [95].

101



II
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6 INTRODUCTION TO STOCHASTIC

GEOPHYSICAL FLUIDS

In this part of the thesis, we explore a framework of stochastic parametrisations, in which
the effect of the unresolved processes upon the resolved flow is described through a
stochastic contribution to the advecting velocity. In this framework, presented by [11],
the noise is introduced through a variational principle so that the circulation theorem still
holds. This chapter will outline the key points of the stochastic framework of [11]. Then
we look at this stochastic formulation through discretisations of two simple geophysi-
cal fluids. Chapter 7 investigates the stochastic quasi-geostrophic equation, looking at
the statistical properties of an enstrophy-conserving finite element discretisation of the
equation. Finally, the stochastic Camassa-Holm equation and its peakon solutions are
explored in Chapter 8.

6.1 MOTIVATION

When attempting to express the effect of unresolved processes upon the resolved flow
using parametrisations, the challenge is that the unresolved processes are unknown. In
numerical weather prediction models, another large source of uncertainty is in obtaining
the initial condition from real observations. Much of the recent skill in weather forecast-
ing over recent decades has come from the advent of data assimilation and ensemble
forecasting [96]. Rather than simply running a single model, a modern weather fore-
cast involves an ensemble of simulations with slightly differing initial conditions, each
of which evolves along a different forecast trajectory, initially guided by observations of
the atmosphere. This provides a way of expressing the forecast uncertainty.

Another way to quantify this uncertainty that has received recent attention is to express
the uncertainty in the parametrisations by formulating them with a stochastic compo-
nent. An introduction to this approach is [97], while a summary of recent developments
can be found in [98]. However, as argued by [99], the details of the stochastic approach
matter and should be consistent with the physical causes of the uncertainty.

This motivates approaches to stochastic fluid dynamics which preserve some of the
physical structure of the deterministic equations. Here we will consider descriptions
in which the advection has a stochastic component. Some approaches, such as those of
[100] and [101], conserve energy. In contrast, the framework presented by [11] preserves
the circulation theorem. This latter formulation is the focus of the remainder of this the-
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sis.
We then look to apply the stochastic framework of [11] to simple geophysical fluids.
In Chapters 7 and 8, we explore properties of the quasi-geostrophic equation and the
Camassa-Holm equation within this framework. The rest of this chapter outlines some
background material, briefly describing some concepts in both stochastic calculus and
variational approaches to fluid dynamics. Then the formulation of [11] is explained.

6.2 STOCHASTIC CALCULUS

We begin by considering a process W that is stochastic in time. As a stochastic process,
W does not evolve smoothly, meaning it is not differentiable, although it is continuous
in time. For this reason, equations containing stochastic processes are typically written
containing integrals or differentials rather than derivatives. W can however be written
as increments corresponding to time intervals, with dW describing the limit as the time
intervals tend to the infinitesimal dt. We choose W to be a Wiener process, so that dW
is a random variable with independent increments taken from an identical Gaussian
probability distribution, which has mean 0 and variance dt. A consequence of this is
that

(dW)2 = dt (6.1)

and that in terms of a random number N (0, 1), normally distributed with mean 0 and
variance 1,

dW =
√

dt N (0, 1). (6.2)

There are other types of stochastic process, such as Poisson processes or the more general
Lévy processes, but here we consider only Wiener processes. These are very common in
physical processes due to the central limit theorem, which describes how the probability
of the sum of independent random variables tends to a Gaussian distribution.

When describing Wiener processes, two types of calculus are natural, each correspond-
ing to different types of physical system. Systems described by Itô calculus consist of
discrete jumps which are separated by a time scale that is much smaller than the time
scale of interest [99]. Such processes are common in financial mathematics. If the time t
is partitioned into discrete intervals, then the Itô integral of a random variable X(t,Wt)
can be written as ∫t

0

X(t,Wt) dW = lim
N→∞

N−1∑
i=0

X(ti)
(
Wti+1 −Wti

)
. (6.3)

The expectation of an Itô term in a stochastic differential equation is zero.

In contrast, Stratonovich calculus describes the limit, as the frequency spectrum tends to
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being uniform, of a process continuous in time with coloured noise [102]. This Stratonovich
description occurs more regularly in physics and engineering. The Stratonovich integral,
denoted with ◦, is

∫t
0

X(t,Wt) ◦ dW = lim
N→∞

N−1∑
i=0

1
2
(X(ti+1) + X(ti))

(
Wti+1 −Wti

)
. (6.4)

Although the expectation of a Stratonovich term is not necessarily 0, unlike its Itô coun-
terpart, Stratonovich calculus is equipped with the usual product rule.

Expansion of (6.3) and (6.4) via a Taylor series, assuming X(t,Wt) is differentiable with
respect to both t andWt, reveals the relationship between the Stratonovich and Itô inte-
grals to be ∫t

0

X(t,Wt) ◦ dW =
1

2

∫t
0

∂X

∂W
dt+

∫t
0

X(t,Wt) dW, (6.5)

which shows that transformation between the two calculi introduces a drift term.

Finally, we consider a change of variables using Itô calculus, which is described by Itô’s
lemma. Following [103], we consider the stochastic differential equation

dX = f dt+ g dW. (6.6)

To derive the equation for the evolution of Y(X, t), it is again expanded as a Taylor series,
revealing that

dY =

(
∂Y

∂t
+ f

∂Y

∂X
+
g2

2

∂2Y

∂X2

)
dt+ g

∂Y

∂X
dW. (6.7)

For an informal introduction to stochastic calculus see [103], while a rigorous text is [104].

6.3 VARIATIONAL PRINCIPLES FOR FLUID DYNAMICS

Just as there are Lagrangian and Hamiltonian descriptions of systems in classical me-
chanics, the evolution of many fluids can be described with Lagrangian or Hamiltonian
formulations. Lagrangian approaches involve using Hamilton’s principle: the equations
of motion are those that extremise the action S, often subjected to some constraints en-
forced by Lagrange multipliers. For instance, consider a fluid of velocity vwith a density
ρ obeying a continuity equation. It satisfies Hamilton’s principle for the following action:

S =

∫t
0

[
`(v, ρ) +

∫
Ω

λ

(
∂ρ

∂t
+∇ · (ρv)

)
dx
]

dt, (6.8)

where `(v, ρ) is the Lagrangian of the system and λ is the Lagrange multiplier enforcing
the continuity equation. Taking free variations, then manipulating, yields the equations
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of motion of the system, including

∂

∂t

(
1

ρ

δ`

δv

)
+ v · ∇

(
1

ρ

δ`

δv

)
+
1

ρ

∑
j

δ`

δvj
∇vj −∇ δ`

δρ
= 0. (6.9)

This approach is commonly known as the Clebsch variational principle, see for instance
[105]. Similar derivations can be found in [106] and [107].

Fluids with Hamiltonian structure have equations of motion defined in terms of a Hamil-
tonianH and a Poisson bracket {F,H}. The time derivative of a variable F of the system is
given by

dF
dt

= {F,H} . (6.10)

Commonly this is a Lie-Poisson bracket, which depends upon variational derivatives,
taking the form

{F,H} (v) =

〈
v,

[
δF

δv
,
δH

δv

]〉
, (6.11)

where, for operators A and B, [A,B] = AB − BA is the commutator and 〈A,B〉 =∫
ΩAB dx is the L2 pairing.

An elegant language unifying the concepts of variational principles is geometric me-
chanics. In this description, the evolution of the system is expressed abstractly via a Lie
group (a group that is a differentiable manifold) or a group of diffeomorphisms (a dif-
ferentiable isomorphism between manifolds). In the case of fluids, the smooth evolution
of a labelled particle within the fluid is a diffeomorphism.

A central concept within geometric mechanics is the Lie derivative, Lv, with respect to
some vector field v. The definition, from [108], of a Lie derivative Lv acting upon a
differential k-formω , is given by Cartan’s formula:

Lvω := v ¬ dω+ d(v ¬ω), (6.12)

where d is the exterior derivative and ¬ represents the interior product, with both de-
scribed in Chapter 2. This typically plays the role of the advective derivative term, and
its action upon a 0-form a and a density ρ dV is given by [109] as

Lva ≡ v · ∇a, Lvρ dV ≡∇ · (ρv) dV. (6.13)

Another entity within geometric mechanics is the momentum map, which combines two
k-forms q and p, defined by

〈p � q, v〉X := 〈p,−Lvq〉V , (6.14)
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where V is a vector space and X(V) is the Lie algebra of vector fields [105]. More in-
formation on momentum maps can be found in [110] or [108]. For 0-form a and 3-form
ρ dV , the action of the momentum map is given by

p � a = −p∇a, p � ρ dV = ρ∇p dV. (6.15)

In the language of geometric mechanics, the analogue of the Euler-Lagrange equation
(6.9) is the Euler-Poincaré equation:

∂

∂t

(
δ`

δv

)
+ Lv

(
δ`

δv

)
=
δ`

δρ
� ρ. (6.16)

For more on geometric mechanics, see for instance [109].

6.4 THE STOCHASTIC VARIATIONAL FRAMEWORK

The main result of [11] is the presentation of a stochastic variational framework for fluid
dynamics. The advecting field is the stochastic velocity

dxt(x) = v(x, t) dt+
∑
i

Ξi(x) ◦ dWi, (6.17)

where the dWi are Wiener processes governed by the Stratonovich calculus and theΞi(x)
functions distribute the noise in space. If q is an advected quantity, the stochastically
constrained variational principle of [11] is δS = 0, where the action S is given by

S = (v, p, q) =

∫
[`(v, q) dt+ 〈p,dq+ Ldxtq〉] . (6.18)

This approach was justified by [111], who decomposed the deterministic flow into slow,
large-scale motions and fast, small-scale fluctuations. Homogenisation theory was then
used to obtain the large-scale flow. The key property of this framework, as shown by [11],
is that the circulation theorem is preserved by the stochastic transport. Other examples
of investigations of this class of stochastic equations include [112], [113], [114] and [115].
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7 ON A DISCRETISATION OF THE

STOCHASTIC QUASI-GEOSTROPHIC

EQUATION

In this chapter, we apply the stochastic formulation outlined in Chapter 6 to a commonly
used simple model within geophysical fluid dynamics: that of the quasi-geostrophic
(QG) equation. This builds upon the author’s Master’s thesis, [116], which presented
an enstrophy-conserving finite element discretisation of the stochastic QG equation and
investigated its statistical properties. The inspiration for the work in this chapter came
from [117], which demonstrated that the statistics of different discretisations of the quasi-
geostrophic equation depended upon the properties conserved by the discretisation. We
therefore attempt to show that the same statistical theory applies to our discretisation of
the stochastic QG equation.

The main new results presented in this chapter are:

• the use of the Metropolis algorithm to generate samples from the statistical dis-
tribution, allowing the statistical distribution to be sampled for arbitrary spatial
domains, which was not the case for the sampling method used in [116];

• the demonstration of convergence of the statistical distribution to the fluid dis-
cretisation, in the limit that the grid spacing goes to zero, thus verifying that the
statistical theory applies to our discretisation;

• the examples comparing the discretisation and the statistical distribution over spher-
ical domains, including in the presence of topography. This was not possible with
the statistical sampling method used in [116].

This chapter is adapted from our paper [12], where these results first appeared.

7.1 INTRODUCTION

The quasi-geostrophic (QG) equation is one of the simplest in the hierarchy of mod-
els of geophysical fluid dynamics. It describes a shallow, divergence-free fluid near
geostrophic balance – the balance between the Coriolis and pressure gradient forces.
The QG equations can be derived by expanding the rotating shallow water equations
in terms of a small Rossby number Ro � 1, where Ro expresses the size of the inertial
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forces relative to the rotational forces. The state of the system is defined by the potential
vorticity (PV) field q, with the governing equations written as

∂q

∂t
+∇⊥ψ · ∇q = 0, q := ∇2ψ− Fψ+ f, (7.1)

where vectors are two-dimensional (with no vertical component),F is a non-dimensional
Froude number, f is the non-dimensional Coriolis parameter and ψ is the stream func-
tion related to the velocity u by

u =∇⊥ψ. (7.2)

A full derivation and description of the QG system can be found in [118].

In contrast to (7.1), the stochastic QG equation within the framework of [11] is written as

dq+ dxt · ∇q = 0, q := ∇2ψ− Fψ+ f, (7.3)

where dxt is given by (6.17) and is the new advecting velocity with a stochastic compo-
nent. This equation was originally derived in [11] from a Hamiltonian perspective. As
in [116] and [12], it can also be obtained by inserting the appropriate Lagrangian into the
appropriate analogue of the stochastic variational principle (6.18). This is the approach
we use here. Following the framework of [107], we construct the following action

S[u, ρ, φ,p,q, P] =

∫
`(u, ρ, P) dt+

∫
Ω

φ

[
dρ+

(
u dt+

∑
i

Ξi(x) ◦ dWi

)
· ∇ρ

]

+ p ·

[
dq+

(
u dt+

∑
i

Ξi(x) ◦ dWi

)
· ∇q

]
d2x dt,

(7.4)

where ` will be the Lagrangian, φ is the Lagrange multiplier for the continuity equa-
tion of ρ, while p enforces the constraint advection of Lagrangian particles described by
q(x, t), the back-to-labels map returning the Lagrangian label of the fluid particle at po-
sition x at time t. Here we shall assume that the basis functions Ξi are divergence-free,
and are tangential to the boundary ∂Ω of the domain Ω, which we shall assume to be
simply connected.

Following [107], we use the specific Lagrangian for QG:

`(u, ρ, P) =

∫
Ω

[
1

2
ρ|u|2 −

1

2
Fρu · ∆−1u+ ρu · R+ P(ρ− ρ0)

]
d2x, (7.5)

where R is the fluid velocity due to the rotation of the planet so that ẑ · ∇ × R = f, and
where the operator ∆−1 is the inverse of the Laplacian operator.

After computing the Euler-Lagrange equations and eliminating p, q and φ, computa-
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tions in [11] lead to the equation

d
(
1

ρ0

δ`

δu

)
+ dxt · ∇

(
1

ρ0

δ`

δu

)
+
1

ρ0

∑
k

δ`

δuk
∇dxkt +∇

δ`

δρ
dt = 0.

δ`

δP
= 0. (7.6)

For the QG case this gives

1

ρ0

δ`

δu
= u+ R− F∆−1u,

δ`

δρ
=
1

2
|u|2 −

1

2
Fu · ∆−1u+ u · R+ P, ρ = ρ0. (7.7)

Taking the curl of (7.6) and manipulating using vector calculus identities yields

(d + dxt · ∇)

[
ẑ · ∇×

(
1

ρ0

δ`

δu

)]
= 0. (7.8)

For the QG reduced Lagrangian we compute

ẑ · ∇×
(
1

ρ0

δ`

δu

)
= ẑ · (∇× u) + ẑ · (∇× R) − F∆−1ẑ · (∇× u), (7.9)

= ∇2ψ− Fψ+ f, (7.10)

after substituting (7.7) and introducing the stream function ψ so that ∇⊥ψ = u. The
boundary conditions require that ψ = 0 on ∂Ω. The resulting equation is

(d + dxt · ∇)
[
∇2ψ− Fψ+ f

]
= 0, (7.11)

which is the stochastic QG equation for potential vorticity q = ∇2ψ − Fψ + f. This
equation has an infinite set of conserved quantities,

Cp =

∫
Ω

qp d2x, (7.12)

for p = 1, 2, 3, . . ., with p = 1 corresponding to the total PV, and p = 2 proportional to the
enstrophy, which is given by Z = 1

2

∫
Ω q

2 d2x. Although the energy is not conserved,
we can deduce that it remains bounded, since

2E =

∫
Ω

(
|∇ψ|2 + Fψ2

)
d2x, (7.13)

=

∫
Ω

(f− q)ψ d2x, (7.14)

6

(∫
Ω

(f− q)2 d2x
)1/2(∫

Ω

ψ2 d2x
)1/2

, (7.15)

6 C

(∫
Ω

q2 d2x
)1/2(

2

∫
Ω

|∇ψ|2 + Fψ2 d2x
)1/2

, (7.16)
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with C a positive constant having used the Poincaré inequality, and hence

E 6
√
C/2

∫
Ω

q2 d2x, (7.17)

and so E is bounded by a constant multiplied by the enstrophy, a positive constant of
motion.

7.2 FINITE ELEMENT DISCRETISATION

In this section we describe, for the stochastic QG equation, a discretisation that preserves
the total PV and enstrophy. This discretisation was presented in [116] and [12]. We use
a finite element discretisation, which allows for the equation to be easily solved on arbi-
trary meshes, and in particular on the sphere.

The weak form of the stochastic QG equation is obtained by multiplying equation (7.3)
by a test function γ, and integrating by parts to obtain

d
∫
Ω

γq d2x−
∫
Ω

q∇γ ·

(
∇⊥ψ dt+

∑
i

Ξi(x) ◦ dWi

)
d2x = 0, (7.18)

where the boundary term vanishes since dxt · n̂ = 0 on ∂Ω. A similar procedure, multi-
plying the relationship betweenψ and q by a test functionφ that vanishes on the bound-
ary leads to ∫

Ω

(Fφψ+∇φ · ∇ψ) d2x =
∫
Ω

φ (f− q) d2x. (7.19)

This is the standard weak form for the Helmholtz equation.

We introduce a finite element discretisation by choosing a continuous finite element
space V , defining

V̊ = {ψ ∈ V : ψ = 0 on ∂Ω} . (7.20)

The finite element discretisation is obtained by choosing (q,ψ) ∈ (V, V̊) such that equa-
tions (7.18)-(7.19) hold for all test functions (γ,φ) ∈ (V, V̊).

It follows immediately from the weak form (7.18) that the total PV is conserved, since
choosing γ = 1 leads to

d
∫
Ω

q d2x = 0. (7.21)

The enstrophy is conserved since choosing γ = q leads to

d
∫
Ω

q2 d2x = 0. (7.22)
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Proof that the p-th moment is conserved requires taking γ = qp−1, but this is not in
V for p > 2 and thus higher moments are not conserved. In the absence of noise, this
discretisation also conserves energy; it reduces to the standard vorticity-stream function
finite element formulation. For time integration we use the implicit midpoint rule, and
we obtain ∀γ ∈ V and ∀φ ∈ V̊ , ∫

Ω

γ
(
qn+1 − qn

)
d2x

−

∫
Ω

qn+1 + qn

2
∇γ ·

(
∇⊥ψn+1/2∆t+

∑
i

Ξi(x)∆Wi

)
d2x = 0,

(7.23)

∫
Ω

(
Fφψn+1/2 +∇φ · ∇ψn+1/2

)
d2x−

∫
Ω

φ

(
f−

qn+1 + qn

2

)
d2x = 0, (7.24)

where ∆Wi are independent random variables with normal distribution, N(0, ∆t). This
provides a coupled non-linear system of equations for (qn+1, ψn+1/2) which may be
solved using Newton’s method.

Taking γ = 1 immediately gives conservation of the total vorticity Π,∫
Ω

(
qn+1 − qn

)
d2x = 0. (7.25)

All the quadratic invariants of the continuous time equations are conserved by the im-
plicit midpoint rule, meaning this scheme conserves the enstrophy Z exactly as well. The
scheme is also unconditionally stable through the use of the implicit midpoint rule.

7.3 STATISTICAL PROPERTIES OF THE NUMERICAL SCHEME

One of our main goals in this chapter is to understand the properties of the discretisation
presented in section 7.2. We are particularly motivated by the work of [119] and [117],
which looked at the statistical mechanics of discretisations of the deterministic equation
but with randomised initial states. In particular, [117] looked at how the conservation
properties of the discretisation could affect the statistics. In both cases, the distribution of
states in phase space was given by a Gibbs distribution. It is therefore of interest whether
this same approach could be applied to our discretisation of the stochastic QG equation,
and whether this can still be described by the Gibbs distribution.

The statistical mechanics of quasi-geostrophic fluids has previously been studied, for
example [120]. More recently, the statistical mechanics of numerical discretisations has
been considered. [119] considered Fourier truncations of the QG equation, whilst [117]
considered finite difference methods using Arakawa’s Jacobian, conserving energy and
enstrophy. [117] also considered the other Arakawa schemes that conserve energy but
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not enstrophy, or conserve enstrophy but not energy, and compared the numerical re-
sults with statistics from Gibbs distributions derived under those assumptions. Since
the stochastic QG equation in our finite element discretisation does not conserve energy
but does conserve enstrophy, we are in exactly this second situation. Following that pa-
per, from the maximum entropy principle with constraints of conserved total vorticity
Π and enstrophy Z, we find that the invariant distribution for the finite element dis-
cretisation is the Gibbs distribution G(Q), whereQ is the vector of values describing the
discrete q field. For our numerical scheme the probability density function for this Gibbs
distribution is

G(Q) = C−1 exp [−α (Z(Q) + µΠ(Q))] , (7.26)

where C, α and µ are parameters providing the constraints of conserved Π, conserved Z
and that the integral of the distribution is unity.

In this chapter, we are interested in computing statistics from this distribution and com-
paring them to what is obtained from time averages over numerical solutions from the
finite element discretisation. For example, the expectation of the energy E of the system
is then

〈E〉 =
∫
RN
E(Q)G(Q) dQ. (7.27)

In general it is not possible to compute this integral analytically. Our approach is there-
fore to sample the distribution using a Metropolis algorithm.

Before we do this, we will decompose the state vector Q into stationary and fluctuat-
ing parts:

Q = 〈Q〉+Q ′. (7.28)

The components {Qi} ofQ are the coefficients in the finite element discretisation, so that
for finite element basis {φi} with N components,

q =

N∑
i

Qiφi(x). (7.29)

Dubinkina and Frank showed in [117] that the average values 〈Qi〉 took a constant value.
Following their computation, we evaluate〈

∂Z

∂Q
+ µ

∂Π

∂Q

〉
G
=

∫
RN

(
∂Z

∂Q
+ µ

∂Π

∂Q

)
C−1 exp [−α(Z(Q) + µΠ(Q))] dQ. (7.30)

Inspection of the right hand side reveals that〈
∂Z

∂Q
+ µ

∂Π

∂Q

〉
= −α−1

∫
RN

∂

∂Q
G(Q) dQ, (7.31)

113



and if G(Q) decays sufficiently fast at infinity then we conclude that〈
∂Z

∂Q
+ µ

∂Π

∂Q

〉
= 0. (7.32)

In the finite element discretisation with domainΩ, Π(Q) and Z(Q) are given by

Π(Q) =

N∑
i

∫
Ω

φi(x)Qi d2x, Z(Q) =
1

2

N∑
i,j

QiQj

∫
Ω

φi(x)φj(x) d2x. (7.33)

Substituting these into (7.32) gives〈∫
Ω

φi(x)(Q(x) + µ) d2x
〉

= 0, ∀φi. (7.34)

This means that Q(x) is the L2-projection of the constant function µ × 1 into V , but
µ × 1 ∈ V , and we conclude that 〈Q(x)〉 = −µ for all i. For an initial value for the
fluid simulation of Π(Q) = P0, this gives 〈Qi〉 = P0/A, where A =

∫
Ω d2x.

The significance of this result is that it is possible to use the Metropolis algorithm to
generate samples from the distribution given in equation (7.26) by taking samples from

G ′(Q ′) = C−1 exp[−Z(Q ′)]. (7.35)

This generates samples Q ′ with 〈Π(Q ′)〉 = 0 and 〈Z(Q ′)〉 = Z ′, which can be trans-
formed into samples of the desired distribution G(Q) (i.e. with 〈Π(Q)〉 = P0 and
〈Z(Q)〉 = Z0) by taking

Qi =
P0
A

+Q ′i

√
Z0
Z ′

−
P20
2AZ ′

. (7.36)

The Metropolis algorithm can therefore be used to take samples from G ′(Q), which
avoids the evaluation of the parameter α in (7.26). The Metropolis algorithm finds sam-
ples of G ′(Q ′) by generating samples from a similar, known distribution, L(Q ′). A given
sampleQ ′ is accepted to be from G ′(Q ′) if

G ′(Q ′)
cL(Q ′)

> 1, (7.37)

where c is a prescribed constant greater than 1. The Metropolis algorithm also allows
us to avoid evaluating the normalisation constants of the distributions. A more detailed
description of the Metropolis algorithm can be found for example in [121].

The known distribution L(Q ′) that we use is

L(Q ′) = C−1
L exp

[
−ZL(Q

′)
]
. (7.38)
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The lumped enstrophy ZL(Q ′) is defined as

ZL(Q
′) =
∑
ij

∫
Ω

1

2
Q2iφi(x)φj(x) d2x ≡

∑
i

1

2
Q2iM

L
i , (7.39)

with lumped mass matrixML
i :=

∑
j

∫
Ωφi(x)φj(x) d2x. This distribution is now straight-

forward to sample, as

L(Q ′) = C−1
L exp

(
−

N∑
i

1

2
Q2iM

L
i

)
= C−1

L

N∏
i

exp
(
−
1

2
Q2iM

L
i

)
. (7.40)

The known distribution is then sampled by generating coefficients Q ′i that are normally
distributed with mean 0 and variance 1/ML

i .

Therefore samples of the Gibbs distribution G(Q) are found by using the Metropolis
algorithm with the known L(Q ′) to get samples of G ′(Q ′), and translating the samples
Q ′ using (7.36). It is important to note that in general a generated sample Q will not
have Π(Q) = P0 and Z(Q) = Z0. Instead the samples will have Π(Q) and Z(Q) dis-
tributed around P0 and Z0. As the resolution increases, the distribution of samples will
become tighter around the possible states in the discretisation.

7.4 NUMERICAL RESULTS

In this section we compute numerical trajectories of the finite element discretisation, and
compare their time averages with statistics computed using the Gibbs-like distribution.
The aim was to learn about the properties of the stochastic QG equation using this ap-
proach, and to show that the Gibbs-like distribution describes the distribution of the
states of discretisation in phase-space, in the limit that the grid spacing goes to zero.

7.4.1 EXPERIMENTAL SET-UP

The tests were run on a sphere with unit radius, that is approximated using an icosa-
hedral mesh. The resolution of this mesh can be refined by subdividing the triangular
elements at a given resolution into four smaller triangles to obtain the next resolution.
The refinement level of the icosahedron is the number of times this process has been re-
peated to form the mesh. The function space V was P1. The fluid simulation was run
for T time steps of ∆t = 1 and the stochastic part of the stream function was generated
using the projections of the first nine spherical harmonics onto the icosahedron. The
strength of the stochastic part of the stream function (i.e. the multiplicative constant to
the stochastic basis functions) was kept the same for each basis function. It was found
not to affect the average values of the simulation, but increasing it did increase the speed
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with which the averaged values converged to their limits.

For the statistical simulation, the Gibbs-like distribution was used with Π and Z corre-
sponding to the initial condition of the fluid simulation. At the first stage of the statistical
simulation, n samples were generated to create an accurate approximation for Z ′ to use
in equation (7.36). Then the statistical simulation took n samples of the Gibbs-like dis-
tribution that were used for the comparison with the statistics of the fluid simulation.
Average properties are found for each simulation by taking the mean value of each sam-
ple. In the case of the fluid simulation, the system at each time step is considered to be a
sample.

7.4.2 COMPARISON OF MEAN FIELDS

As the simulations are run, this generates average states in which q is well-mixed over
the domain. Figure 7.1 shows that the average values predicted from the fluid sim-
ulation and the Monte Carlo simulation lie very close to one another, even when the
fluid simulation starts far from its average state. This figure plots the average Casimirs
C3 =

∫
Ω q

3 d2x and C4 =
∫
Ω q

4 d2x as a function of the number of samples used in
calculating that average for a single run of the simulation: we call this the rolling average
of the simulations and denote it by angular brackets 〈·〉t. This plot was from a run at
icosahedron refinement level 4, and the fluid simulation was initialised with q = sin λ
for latitude λ.

Figure 7.1: The evolution of the rolling average of the Casimirs (left) C3 =
∫
Ω
q3 d2x and (right) C4 =∫

Ω
q4 d2x as the stochastic fluid simulation is run for 105 time steps and as 105 samples are taken from the

Gibbs distribution. Both of these are plotted on the same axis, taking one time step of the fluid simulation to
be one sample. The fluid simulation was run from an initial condition of q = sin λ. One of the key predictions
of the statistical theory was that the long-time average values of quantities from the fluid simulation would tend
to those averages of samples taken from the statistical distribution (in the limit of the discretisation resolution
tending to zero). Here two quantities are shown that are not inherently conserved by the discretisation. These
results therefore support the predictions of the statistical theory.

We also took the rolling mean of different diagnostic fields. These were observed to
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converge to similar fields for both the statistical sampling and from solving the equa-
tions of motion. Figure 7.2 shows a comparison of the mean q2 fields generated via each
different method (this is more meaningful than the mean q field, which shows very little
variation over the domain). The differences shown over the domain are due to the differ-
ences in area of the elements. The fluid simulation results shown in Figure 7.2 (left) are
slightly higher than those in 7.2 (right) as at finite resolution the value of Z of the Gibbs
distribution is not exactly equal to that of the fluid simulation. As the resolution of the
model is refined, the areas of the element will become closer together, and the deviations
in the field over the domain should decrease. This was observed and is plotted in Figure
7.3.

Figure 7.2: A comparison of the mean square potential vorticity q2 field generated at icosahedron refinement
level 4 by (left) the stochastic fluid simulation run for 105 steps with an initially random field and (right)
105 samples taken from the Metropolis algorithm. In contrast to figure 7.1, this shows average field values
rather than average global values. We observe that the two fields are essentially the same, as predicted by the
statistical theory. These fields are not uniform over the domain as the element size is not uniform over the
domain.

7.4.3 THE EFFECT OF F

The effect of the constant F upon the convergence of the model was also investigated.
The equations of motion were solved for a series of different values forF . For each value
of F , the fluid model was run 50 times, creating an ensemble with different realisations
of the noise. Our aim is to learn about the behaviour of the discretised stochastic QG
equation by initialising the fluid at a state far from being well-mixed, and looking at the
effect F has on the rate of mixing under stochastic noise. The initial condition was cho-
sen to be q = sin λ, which is a state far from a well-mixed equilibrium.

The difference between the initial value of C4 and its value for the ensemble average was
recorded after T = 2000 time steps. We found that the average change in C4 over this
time was a good proxy for the rate of mixing of the PV field: the larger the difference, the

117



Figure 7.3: (Left) a plot of the final value of
∫
Ω
(q2 − q̄2)2 d2x after 104 time steps at ∆t = 1 of the fluid

simulation, where q̄2 =
∫
Ω
q2 d2x/A and A =

∫
Ω

d2x. This shows that as the resolution is increased, the
variations in the mean q2 field reduce. (Right) the rate of mixing (i.e. rate of convergence of statistics to the
equilibrium values) of the fluid simulation as a function of the parameter F , as measured by the speed at which
the fourth Casimir C4 moves away from its initial value. Each point represents the difference at the 2000th
time step of the ensemble mean value of C4 from its initial value. We observe that the rate of mixing is low
for large F , which corresponds to large (dimensionless) Rossby deformation radii. This is because scales that
are below the Rossby deformation radius are effectively just transported by the flow field without feeding back,
and so a large F places more scales in this category.

higher rate of mixing. This was plotted as a function of 1/
√
F , which describes a char-

acteristic length scale. These values are displayed in Figure 7.3, which shows smaller
differences for smaller length scales (or higher values of F). This experiment was also
performed at different resolutions, which showed the same behaviour.

7.4.4 CONVERGENCE WITH RESOLUTION

Solving the equations of motion produces only samples with identical Π and Z. In con-
trast, the samples taken from the Gibbs distribution will have differing values of Π and
Z, but spread about those values specified in the distribution. As the resolution is in-
creased, samples taken from the Gibbs distribution should fit more tightly around the
samples taken from solving the equations of motion.

To investigate this we ran the fluid simulation and sampled the Gibbs distribution at
various resolutions to produce histograms of various statistics. We took 10000 samples
from the Gibbs distribution without scaling the resultant Q field (i.e. the samples had
〈Π(Q)〉 = 0 and 〈Z(Q)〉 = Z ′ as described in section 7.3, where Z ′ will be resolution de-
pendent). This corresponds to a fluid simulation with an initial state ofΠ = 0 andZ = Z ′.
Histograms at different resolutions of the Π and Z values of the statistical samples are
plotted in Figure 7.4. They have been normalised to remove the resolution dependence
of Z ′.

The resultant histograms do indeed fit more tightly around the conserved fluid values as
the resolution is increased. Figure 7.5 plots the standard deviation of these histograms as
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a function of resolution, showing linear convergence. We also would expect to see simi-
lar behaviour for other statistics, although in the case of more complicated statistics such
as variances or higher moments of the distribution, we expect that a very large number
of samples will be required in order to observe this convergence.

Figure 7.4: Histograms of the (left) Π =
∫
Ω
q d2x and (right) Z = 1

2

∫
Ω
q2 d2x values of different samples of

the Gibbs distribution at three resolutions. The statistical theory predicted that the Gibbs distribution should
converge to the probability distribution describing the discretisation as the grid spacing tends to zero. These
histograms represent this, showing that global values of samples from the Gibbs distribution fit more tightly
around that from the fluid discretisation as the grid spacing is reduced.

Figure 7.5: The standard deviations of the histograms such as those in Figure 7.4 of (left) Π =
∫
Ω
q d2x and

(right) Z = 1
2

∫
Ω
q2 d2x as a function of resolution. This shows the convergence of the Gibbs distribution to

the delta function as the grid spacing goes to zero, thus supporting the prediction that the fluid discretisation
is described by the Gibbs distribution as the grid spacing is reduced to zero.

7.4.5 TOPOGRAPHY

The fluid and statistical models also show the same properties when topography is in-
cluded in the model. This is done by the addition of an extra term to the potential vor-
ticity definition:

q := ∇2ψ− Fψ+ f+ h. (7.41)

We performed similar experiments to those described above by mimicking an isolated
mountain, as described as the fifth test case in [76]. In this case, the topography is de-
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scribed by the following function:

h = h0(1− r/R), (7.42)

where h0 = 2, R = π/9 and r = min
[
R2, (λ− λc)

2 + (θ− θc)
2
]
, for latitude λ and lon-

gitude θ. The centre of the mountain is at λc = 3π/2 and θc = π/6. Figure 7.6 shows
comparisons between the fluid and statistical simulations of mean ψ fields plotted after
T = 105 time steps and n = 105 samples were taken. The third icosahedron refinement
level was used. For both simulations, the average fields are very similar.

Figure 7.6: A comparison of the mean stream function ψ field generated over topography. In this case we
used flow over a single mountain, and we show (left) the stochastic fluid simulation run for 106 steps and
(right) 106 samples taken from the Metropolis algorithm. The plots are essentially the same, illustrating that
the predictions of the statistical theory also hold when topography is included in the model.

7.5 SUMMARY AND OUTLOOK

The work of [11] gave the framework for a stochastic variational principle for QG, with
this equation derived from a Lagrangian perspective in [116]. [116] then presented a fi-
nite element discretisation for the stochastic QG equation that conserved the enstrophy
of the system. Following [117], which showed that different discretisations of the deter-
ministic QG equation had different statistical properties, we looked at the statistics of
the discretisation for the stochastic QG equation. Statistical predictions were then made
about this discretisation following the approach of [119], which were tested by sampling
using a Metropolis algorithm (in contrast to [116]). The statistics generated by sampling
the resulting Gibbs-like distribution were compared with those averaged quantities from
solving the stochastic equations of motion, showing that the Gibbs-like distribution does
indeed describe the enstrophy-conserving discretisation of the stochastic QG equation.

The stochastic variational framework of [11] offers a promising approach to stochastic
parametrisation of the effects of unresolved processes upon the resolved flow. It provides
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a particularly elegant way of coupling these processes together whilst preserving the cir-
culation theorem of the fluid. Two possible applications are describing the backscatter of
unresolved motions on the resolved scales and the use of ensemble forecasting with data
assimilation, in which the nearby trajectories of the state can preserve physical proper-
ties of the system. However, as demonstrated in this chapter, the statistical properties of
such a stochastic approach within a numerical discretisation depend upon the properties
of the discretisation itself. This is an important concept to bear in mind when designing a
stochastic parametrisation, which is used to capture the statistics of the underlying flow.
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8 PEAKONS IN THE STOCHASTIC

CAMASSA-HOLM EQUATION

In this final chapter, we consider the application of the stochastic framework of [11]
to a shallow-water wave system. We look at the stochastic Camassa-Holm equation,
which has been already been studied by [115] and [112]. We develop the work of [112],
which investigated the formation of peaked soliton solutions – known as peakons – in
the stochastic Camassa-Holm equation. In the deterministic case, a smooth, positively-
valued initial condition with a negative slope and an inflection point always forms a
peakon in finite time [122]. [112] found that peakons form under the same conditions
in the stochastic case but only with non-zero probability (and not necessarily a proba-
bility of one). Building on this work, we numerically investigate the formation of such
peakons in the presence of the stochastic approach to parametrisation of [11].

The results of this chapter are:

• demonstration that the stochastic Camassa-Holm admits weak peakon solutions
when the equation is written in hydrodynamic form, which was not explicitly
shown by [115] or [112];

• presentation of a finite element discretisation to the hydrodynamic form of the
stochastic Camassa-Holm equation, which is a natural way to discretise the equa-
tion, with peakons being weak solutions of the stochastic Camassa-Holm equation;

• demonstration that when describing peakons, the finite element discretisation of
the stochastic Camassa-Holm equation converges to the (ordinary) stochastic dif-
ferential equations for the evolution of the peakons, which is important for using
the discretisation to investigate the behaviour of peakons;

• numerical experiments supporting the argument that peakons always form in the
stochastic Camassa-Holm equation, providing evidence for the unanswered ques-
tion of [112].

This chapter is adapted from our paper [15], where these results are also presented.
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8.1 BACKGROUND

8.1.1 THE DETERMINISTIC CAMASSA-HOLM EQUATION

In this chapter, we build on the work of [115] and [112] in exploring the properties of the
Camassa-Holm equation within the stochastic framework of [11]. The Camassa-Holm
equation was introduced in [122], and describes one-dimensional dispersive shallow-
water waves. It has a bi-Hamiltonian structure and possesses special soliton solutions,
which propagate at constant velocity without changing shape or amplitude, as non-
linear and dispersive effects cancel out. Here we briefly present the deterministic equa-
tion in three different forms.

The first form of the Camassa-Holm equation, for velocity u is

ut − α
2uxxt + 3uux = 2α2uxuxx + α

2uuxxx, (8.1)

with subscripts x and t denoting partial derivatives with respect to spatial coordinate x
and time t respectively, and α as a parameter.

The Hamiltonian structure of (8.1) is commonly exploited to write it as the coupled equa-
tions

m = u− α2uxx, (8.2a)

mt + (mu)x +mux = 0, (8.2b)

where m can be treated as a momentum that is related to u via a Helmholtz operator.
The velocity u can be found via the inverse of the Helmholtz operator, which we denote
by

u = K ∗m. (8.3)

A third form of (8.1), which we call the hydrodynamic form, can be derived by first
writing (8.2b) as an operation upon m, which combined with the definition of m gives
the following equation for u:

(∂t + ∂xu+ ux)
(
1− α2∂2x

)
u = 0. (8.4)

The left hand side describes the action of two operators, and we find the result of alter-
nating their order by introducing the commutator, so that

(
1− α2∂2x

)
(∂t + ∂xu+ ux)u = −

[
∂t + ∂xu+ ux, 1− α

2∂2x
]
u. (8.5)

Inspection of the commutator shows that it can be written as the gradient of a potential.
Applying the inverse Helmholtz operator to both sides, which commutes through the
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gradient, gives

(∂t + ∂xu+ ux)u = −∂xK ∗
[
α2
(
u2
)
xx

+
α2

2
(ux)

2

]
(8.6)

Noticing that the non-linear term on the left can also be written as a gradient, and using
K ∗ (u−α2uxx) = u, gives the final hydrodynamic form of the Camassa-Holm equation,

ut = −∂x

{
1

2
u2 + K ∗

[
u2 +

α2

2
(ux)

2

]}
. (8.7)

The significance of this form of the equation is that no second derivative of u directly ap-
pears in the equation. This equation admits weak peakon solutions, as will be discussed
in Section 8.2.

Equations (8.1), (8.2) and (8.7) are equivalent ways of expressing the Camassa-Holm
equation.

8.1.2 THE STOCHASTIC CAMASSA-HOLM EQUATION

The deterministic equation (8.2) can be found by exploiting the Hamiltonian structure:

mt = −(∂xm+m∂x)
δH

δm
, (8.8)

with the Hamiltonian

H =
1

2

∫
Ω

(
u2 + α2u2x

)
dx =

1

2

∫
Ω

m (K ∗m) dx, (8.9)

in which case δH/δm = u. A similar approach can be used to find the stochastic
Camassa-Holm equation, as used in [112]. In this case, we introduce the stochastic
Hamiltonian

dH =
1

2

∫
Ω

m (K ∗m) dt dx+
∫
Ω

m
∑
j

Ξj ◦ dWj dx. (8.10)

The respective variational derivative is then δdH/δm = dxt, with dxt from (6.17). The
resulting stochastic equation is then

dm = −(m dxt)x −m (dxt)x , (8.11)

which can be thought of as the stochastic case of (8.2). This equation also possesses a
hydrodynamic form, which can also be obtained by considering the commutator[

d + ∂x dxt + ∂x (dxt) , 1− α2∂2x
]
u =

α2 (2uxx (dxt)x + 5ux (dxt)xx + 2u (dxt)xxx) .
(8.12)
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Separating this into deterministic and stochastic parts gives

(d + ∂xdxt + (dxt)x)u = −K ∗
[
α2 (7uxuxx + 2uuxx)

]
dt

−
∑
j

K ∗
[
α2
(
2uxxΞ

j
x + 5uxΞ

j
xx + 2uΞ

j
xxx

)]
◦ dWj,

(8.13)

which results in

du =− ∂x

{
1

2
u2 + K ∗

[
u2 +

α2

2
(ux)

2

]}
dt

−
∑
j

{
uxΞ

j + K ∗
[
2uΞjx + α

2uxΞ
j
xx

]}
◦ dWj.

(8.14)

Unlike (8.7), the right hand side of (8.14) cannot be written purely as a gradient, but it
also contains no double derivatives of u.

In this chapter, we extend the work of [115], which originally derived the stochastic
Camassa-Holm equation (8.11). The authors then presented a discretisation of the stochas-
tic ordinary differential equations describing the evolution of peakons, and used this
discretisation to explore the interaction of peakons. The other main work which we de-
velop is that of [112], who showed the probability of peakon formation in this regime is
positive, though not necessarily unity. This can compared with the deterministic case, in
which peakons always form from an inflection point upon a negative slope within finite
time. We attempt to extend this by investigating peakon formation numerically.

The structure of the remainder of this chapter is: in Section 8.2, we verify that peakons
do indeed satisfy the stochastic Camassa-Holm equation by writing it in hydrodynamic
form. In Section 8.3 we present a finite element discretisation for the stochastic Camassa-
Holm equation, showing its numerical convergence properties in Section 8.4. Finally, we
numerically investigate the steepening lemma of [112] using our discretisation in Section
8.5.

8.2 PEAKON SOLUTIONS TO THE STOCHASTIC CAMASSA-HOLM EQUATION

The equation that we are attempting to solve

du =− ∂x

{
1

2
u2 + K ∗

[
u2 +

α2

2
(ux)

2

]}
dt

−
∑
j

{
uxΞ

j + K ∗
[
2uΞjx + α

2uxΞ
j
xx

]}
◦ dWj.

(8.15)
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This admits weak peakon solutions, of the form

u = K ∗ [δ (x− q(t))p(t)] = p(t)e−|x−q(t)|/α, (8.16)

in which q(t) represents the position of the peakon and p(t) represents its momentum,
and together they form a pair of canonical coordinates satisfying a Hamiltonian system.
As stated in [112], the Hamiltonian of this stochastic system ofM peakons can be written
as

dh =
1

4

M∑
a,b=1

pa(t)pb(t)e
−|qa(t)−qb(t)|/α (8.17)

The evolution of these canonical coordinates is described by the pair of coupled stochas-
tic differential equations

dpa = −
∂dh
∂qa

= −pa(t)
∂dxt(qa(t))

∂q
, (8.18a)

dqa =
∂dh
∂pa

= dxt(qa(t)), (8.18b)

where
dxt(qa(t)) = u(qa(t)) dt+

∑
i

Ξi(qa(t)) ◦ dWi. (8.19)

Considering a single peakon and writing u = p(t) exp(−|x− q(t)|), gives

dxt(q(t)) = p(t) dt+
∑
j

Ξj(q(t)) ◦ dWj. (8.20)

In [112] it was argued that substitution of (8.18) into (8.16) yields (8.11). However, the
peakon solution (8.16) only makes sense as a weak solution to (8.14), the verification of
which is the focus of this section. In other words, they are solutions to∫

Ω

φdu dx =
∫
Ω

φx

{
1

2
u2 + K ∗

[
u2 +

α2

2
(ux)

2

]}
dt dx

−
∑
j

∫
Ω

φ
{
uxΞ

j + K ∗
[
2uΞjx + α

2uxΞ
j
xx

]}
dx ◦ dWj,

(8.21)

for all φ ∈ H1.

To verify that such peakons do indeed satisfy this equation, we take

φ = A cos(kx) + B sin(kx), Ξj = Cj cos(jx) +Dj sin(jx). (8.22)
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Using (8.16) and (8.18), we write the differential du as

du =
u

p
dp−

u

α
sign(x− q)dq, (8.23)

= −
pu

α
sign(x− q) dt− u

∑
j

[
1

α
Ξj(q)sign(x− q) + Ξjx(q)

]
◦ dWj. (8.24)

The K∗ operation is performed upon some f(x) as

K ∗ f =
∫
Ω

e−|x−y|/αf(y) dy. (8.25)

Taking the domainΩ as R and combining these elements to compute the integrals, both
right and left hand sides of (8.21) return

2p2αk

1+ α2k2
[B cos(kq) −A sin(kq)]dt

−
2pα

1+ α2k2

∑
j

[
(BCjk−ADjj) cos(jq) cos(kq) − (ACjk+ BDjj) cos(jq) sin(kq)

+(ACjj+ BDjk) sin(jq) cos(kq) + (BCjj−ADjk) sin(jq) sin(kq)
]
◦ dWj,

(8.26)

thus verifying that u = p(t) exp [−|x− q(t)|/α] is a solution to (8.21), if p and q satisfy
(8.18).

8.3 FINITE ELEMENT DISCRETISATION

Here we present a mixed finite element discretisation of the stochastic Camassa-Holm
equation in the case of c0 = 0 and γ = 0, inspired by equation (8.15), to have confidence
in the discrete representation of peakons.

Considering the space V of continuous linear functions, we seek to find the(
u(n+1), ∆F(h), ∆G(h)

)
∈ (V, V, V) (8.27)

that satisfy, for all (ψ,φ, ζ) ∈ (V, V, V), the equations∫
Ω

[
ψ
(
u(n+1) − u(n)

)
+ψu

(h)
x ∆v(h) dx−ψx∆F(h) +ψ∆G(h)

]
dx = 0, (8.28a)∫

Ω

[
φ∆F(h) + α2φx∆F

(h)
x − φu(h)u(h)∆t−

α2

2
u
(h)
x u

(h)
x ∆t

]
dx = 0, (8.28b)

∫
Ω

ζ∆G(h) + α2ζx∆G
(h)
x −

∑
j

(∫
Ω

2ζu(h)Ξjx − α
2u(h)Ξjxx

)
∆Wj

 dx = 0, (8.28c)
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where ∆t is the time step, u(n) is the value of u at the n-th time level, and we have used
the implicit midpoint rule to discretise in time, so that u(h) = 1

2(u
(n+1) + u(n)). The

stochastic velocity ∆v(n+1/2) is given by

∆v(n+1/2) = u(n+1/2)∆t+
∑
j

Ξj∆Wj, (8.29)

and ∆Wj is a normally distributed number with zero mean and variance ∆t.

8.4 CONVERGENCE OF THE DISCRETISATION TO PEAKON SOLUTIONS

Figure 8.1: (Left) a plot showing the strong convergence of the numerical discretisation with ∆t. This plot
thus shows that as ∆t → 0, the solution converges for individual realisations of the noise. (Right) a plot
showing the convergence as ∆x → 0 of the discretisation from Section 8.3 of the stochastic Camassa-Holm
equation to the equations (8.30) describing the evolution of peakon solutions. For both plots, the true solution
was computed by solving (8.30), and using this to create the u field corresponding to a peakon solution of
momentum p and position q within the discretisation from Section 8.3. Crosses mark the data points, with a
solid best fit line overlaid.

In this section, we show that when describing the evolution of a peakon, our discretisa-
tion presented in Section 8.3 converges to the equations

dp =
p

2

∑
j

[(
Ξjx(q)

)2
− Ξj(q)Ξjxx(q)

]
dt− p

∑
j

Ξjx(q)dWj, (8.30a)

dq =

p+ 1

2

∑
j

Ξj(q)Ξjx(q)

 dt+
∑
j

Ξj(q) dWj. (8.30b)

To do this, we set up a periodic one-dimensional domain of length Ld = 40, and taking
α = 1, we specify an initial condition of

u =

{
exp [(x− Ld/2)/α] , x < Ld/2,

exp [−(x− Ld/2)/α] , x > Ld/2.
(8.31)
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First we establish a numerical solution of (8.30) that is well-resolved temporally, by solv-
ing (8.30) using a simple forward Euler timestepping scheme, with initial condition of
p = 1 and q = 20 and with ∆t = 10−5. For the stochastic basis functions, we used only a
single function:

Ξ0 = 0.02 sin
(
4πx

Ld

)
. (8.32)

Then we performed two tests, one showing the strong convergence of the discretisa-
tion (8.28) to this high resolution solution of (8.30) as ∆t approached 10−5. This was
performed at fixed spatial resolution with ∆x = 40/2000. The second test showed con-
vergence of (8.28) to (8.30) as ∆x→ 0, using ∆t = 10−5.

When solving our discretisation (8.28) with a larger time step, say n∆t, to ensure that
the realisation of the noise corresponded to those with ∆t, the random number used for
that larger time step would be 1√

n

∑n
i ∆W, where ∆W are the random numbers corre-

sponding to the smaller ∆t. At a given time step, the p and q calculated from (8.30) were
translated into the u field corresponding to a peakon in the discretisation of the PDE
using (8.16), which could be compared with the u found from solving (8.28).

Results showing the strong temporal convergence of the discretisation are shown in Fig-
ure 8.1 (left), whilst Figure 8.1 (right) displays the results of the spatial convergence of
the discretisation to the underlying stochastic differential equations for the evolution of
the peakon.

8.5 NUMERICAL INVESTIGATIONS OF THE STEEPENING LEMMA

One of the key results of [112] was the investigation of the steepening lemma for the
stochastic Camassa-Holm system. In the deterministic case, a peakon will always form
in finite time from an inflection point on a negative slope, which was one of the key re-
sults of [122]. In [112], it was shown that there was a non-zero probability of a peakon
forming in these conditions in the stochastic Camassa-Holm system. In this section we
attempt to investigate, numerically, whether this probability is simply non-zero or al-
most unity.

To add to this discussion, we perform numerical simulations of the stochastic Camassa-
Holm equation, using the discretisation of Section (8.3), under many different realisa-
tions of the noise, and record the formation of peakon solutions. The first step in this
investigation is to determine a numerical diagnostic for whether a solution is in fact a
peakon. Our diagnostic used is the distance between inflection points in u in the dis-
cretisation, which we denote as µ. For a smooth peak, as ∆x → 0, µ will converge to
some non-zero value, whilst for a peaked solution, µ will converge to zero as ∆x→ 0.
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Figure 8.2: The evolution of µ, the distance between inflection points, for the deterministic case with initial
condition given by (8.33). This is plotted at various resolutions, illustrating that initially, in the absence of a
peakon, µ converges to a non-zero number. As the peakon forms, this measure is no longer converged, and as
∆x → 0, µ → 0. Due to errors in measuring the location of the inflection points within a cell, µ can be very
noisy. To reduce this, we applied a low pass filter to µ. An interesting feature of the evolution of µ is a fairly
sudden drop in the values at around t = 10.

Figure 8.3: A histogram showing the estimated time of peakon formation for 1000 realisations of the noise
(8.34) from the initial state (8.33). The dashed black line shows the peakon formation time from the deter-
ministic case. These times are determined to be the first time at which the gradient of the linear best fit curve
of log(µ) against log(∆x), at a given time, exceeded a threshold, which we chose to be 0.4. The implication
of this plot is that the effect of the noise upon peakon formation is to make it occur earlier.

As a peakon forms, values of µ calculated at different resolutions diverge, as illustrated
in Figure 8.2, which shows the evolution of a peakon within the discretisation of Section
8.3 at differing resolutions. This figure was produced in a domain of length Ld = 40,
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with a time step of ∆t = 0.001, and with the initial condition set as

u =
1

exp (x− xc) + exp (xc − x)
, (8.33)

with xc = 203/15. We have applied a low-pass filter to the µ values so as to reduce error
in the measurement of the positions of the inflection points. This data can be used to ap-
proximate a time for the formation of the peakon, which we take to be the time at which
the gradient of the best fit line of log(µ) as a function of log(∆x) at a given time breaches
a certain threshold, which we take to be 0.4.

Extending this approach to stochastic simulations, again using the initial condition (8.33),
the histograms showing the evolution of µ over many different realisations (as a function
of time t and resolution ∆x) are shown in Figure 8.3. This experiment was performed for
1000 realisations of the noise, where the stochastic basis functions were n = 1, 2, . . . , 6 of

Ξn =

{
0.08 sin((n+ 1)πx/Ld), n is odd,
0.08 cos(nπx/Ld), n is even

(8.34)

Figure 8.4 clearly shows that the inflection points move closer together as both time
evolves, and ∆x → 0. The histogram showing the peakon formation times from these
realisations of the noise is shown in Figure 8.3.

In all these realisations of the noise, a peakon was adjudged to have formed, providing
supporting evidence for the hypothesis that peakons form with a probability of unity in
the stochastic Camassa-Holm equation from a smooth initial condition with an inflection
point on a negative slope, which is clearly not something that can be explicitly proved
experimentally. In fact, the evidence from Figures 8.3 and 8.4 is that the stochastic noise
prompts the peakon solution to emerge more quickly than in the deterministic case.

8.6 SUMMARY AND OUTLOOK

We have extended the discussion of peakons within the stochastic Camassa-Holm equa-
tion begun by [115] and [112]. This first result was a demonstration that peakons satisfy-
ing the equations (8.18) derived in [115] do indeed satisfy the stochastic Camassa-Holm
equation (8.15) when it is cast in hydrodynamic form. Next, we presented a new finite
element discretisation for (8.15). This is a natural choice of discretisation for studying
peakons, given that the peakon itself is a weak solution to the Camassa-Holm equation.
We then showed numerically that this discretisation converges both strongly in time and
also converges to (8.30) as ∆x → 0. This discretisation then provided a tool with which
to investigate the steepening lemma of [112] for the stochastic Camassa-Holm system.
Starting with smooth initial conditions, we investigated the formation of peakons un-
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Figure 8.4: Histograms of µ, the distance between inflection points of the profile, over many realisations of
the noise. The experiments were all initialised with the condition (8.33), and plotted here are the evolutions
of µ with time at different resolutions ∆x of the discretisation. In each panel, the dashed black line shows the
value of µ in the deterministic case at that resolution. These plots illustrate that µ becomes much smaller as
the peakon solution forms from the smooth initial condition. It also shows that as ∆x→ 0, before the peakon
forms, µ converges to some non-zero number, but once the peakon has formed it converges to zero. It is also
interesting to note that the µ measured in the deterministic case tends to be smaller than in the stochastic
cases.

der different realisations of the stochastic noise. No examples without peakon formation
were found, and the noise was observed to tend to lead to faster peakon formation.

To summarise, in this chapter we attempted to investigate the behaviour of the Camassa-
Holm system when including a stochastic description of unresolved processes according
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to the formulation of [11]. Our results suggest that the peakon-forming behaviour is still
preserved by this approach.
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9 SUMMARY AND OUTLOOK

Describing the effects of unresolved processes upon the resolved flow is one of the great-
est challenges in numerically modelling geophysical fluids. Within many models, the
evolution of the resolved flow is treated separately from the parametrisation of the un-
resolved processes. One major research question is how to couple these components
together within the discretisation: both temporally and spatially. At the same time, the
use of finite element methods to discretise the equations of geophysical fluids is increas-
ing in prominence. This is due to their mathematical elegance and flexibility over ar-
bitrary meshes, with software developments making these methods more accessible to
researchers.

The UK Met Office is developing a compatible finite element discretisation for the re-
solved flow (the dynamical core) of its numerical weather prediction model, which is an
important moment in the field. This followed the demonstration by [8] that these meth-
ods could provide many of the properties of [9], which are considered important for
dynamical cores, while at the same time supporting a quasi-uniform grid over the globe.
A new choice of spatial discretisation raises more questions as to the coupling between
the resolved and unresolved processes.

Another consideration in describing the effects of the unresolved processes is their uncer-
tainty, which can be captured by the use of stochastic parametrisations. A new approach
to this is through the variational principle of [11] in which the transport has a stochastic
component, thus offering a new way of coupling together the resolved and unresolved
flow.

The work presented in this thesis builds on research in these two areas. Motivated by
the decomposition of fields into mean and fluctuating parts, as is common in geophysi-
cal parametrisations, Chapter 4 described an implementation of the lowest-order set of
compatible spaces in discretising the (dry) compressible Euler equations. The main focus
of Chapter 4 was the introduction of a new transport scheme which facilitated the use
of these spaces within Gusto, a dynamical core library using a compatible finite element
discretisation. This centred on the concept of recovering the fields into a higher-order
space, where the transport could take place.

Following this, Chapter 5 presented a method of coupling the compatible finite element
dynamical core to physics parametrisations via the inclusion of moisture. Some of the
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concepts involved in the coupling of these parts of the model were discussed before the
model was demonstrated through a series of test cases. Two of these test cases were new,
with one being appropriate to use for convergence tests of the full model.

In Chapters 7 and 8 the impact of the stochastic formulation of [11] upon two simple
geophysical fluids was investigated. Chapter 7 considered the statistical properties of a
finite element discretisation of the stochastic quasi-geostrophic equation. This showed
that the choice of discretisation (and the quantities it preserves) can determine the statis-
tics of the stochastic model. The peakon solutions of the stochastic Camassa-Holm equa-
tion were the subject of Chapter 8, which presented a new finite element discretisation
which converges to the stochastic equations describing the evolution of peakon solu-
tions. This discretisation was used to investigate the formation of peakons within the
stochastic equation.

Both of these topics are active areas of future research. As LFRic (the compatible fi-
nite element dynamical core of the UK Met Office) is developed, important choices will
need to be made. What is the most efficient strategy for the solver? Which set of compat-
ible finite element spaces should be used? Meanwhile there are aims to implement more
capabilities in Gusto: flow over topography, a varied choice in temporal discretisations
and an arsenal of physical parametrisations to name but a few. Discussed at the end of
Chapter 4 were some of the features necessary to the recovered space transport scheme
to be used over spherical domains. More generally the coupling of physical parametri-
sations and dynamical components of numerical weather prediction models has many
open questions: how tightly to couple the components (for different physical processes);
whether to perform the components upon different spatial grids; how to separately dis-
cretise the components in time.

The recent work of [123] upon the stochastic variational framework of [11] has demon-
strated that it is promising for use in data assimilation. Future research is needed into
how the noise should be distributed spatially through the choice of the Ξ functions. An-
other related stochastic formulation being explored involves a different choice of the
advecting field. In this case, the advecting velocity is written in terms of the Lagrangian-
averaged velocity:

dxt = E(u) dt+
∑
j

Ξj ◦ dW, (9.1)

where E(u) satisfies its own deterministic equation featuring the Ξj functions.

This thesis presented a collection of works relating to the coupling of resolved and un-
resolved physical processes in discretisations of geophysical fluids. This is an under-
explored field with many open questions, making it a very exciting area of research for
the future.
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APPENDIX: TABLE OF PHYSICAL CONSTANTS

Specific heat capacity of dry air at const. volume cvd 717 J kg−1 K−1

Specific heat capacity of dry air at const. pressure cpd 1004.5 J kg−1 K−1

Specific heat capacity of water vapour at const. volume cvv 1424 J kg−1 K−1

Specific heat capacity of water vapour at const. pressure cpv 1885 J kg−1 K−1

Specific heat capacity of liquid water at const. pressure cpl 4186 J kg−1 K−1

Specific heat capacity of moist air at const. volume cvml cvd + rvcvv + (rc + rr)cpl
Specific heat capacity of moist air at const. pressure cpml cpd + rvcpv + (rc + rr)cpl
Specific gas constant for dry air Rd 287 J kg−1 K−1

Specific gas constant for water vapour Rv 461 J kg−1 K−1

Specific gas constant for moist air Rm Rd + rvRv
Reference latent heat of vaporisation of water at TR LvR 2.5×106 J kg−1

Latent heat of vaporisation of water Lv LvR − (cpl − cpv)(T − TR)
Reference temperature TR 273.15 K
Reference pressure pR 105 Pa
Constant in Tetens’ formula Csat

0 610.9 Pa
Constant in Tetens’ formula Csat

1 -17.27
Constant in Tetens’ formula Csat

2 35.86 K
Ratio of Rd to Rv ε 0.623
Ratio of Rd to cpd κ 2/7
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