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Abstract

The penetration of new types of devices, such as domestic storage and electric ve-

hicles, offers increasing flexibility on demand side. This will bring both new oppor-

tunities and challenges to the operation of power systems. The aim of this thesis

is to design novel distributed control strategies for large scale coordination of flex-

ible devices. To this end, flexible devices are modelled as self-interested rational

agents that aim at minimizing their individual costs in response to the broadcast

price signals. This thesis mainly consists of three parts, considering that the price

signals can be designed in different forms, and that flexible devices could operate in

different markets (e.g. energy markets, and integrated energy and reserve markets).

The first part presents a multi-agent framework for the coordination of large pop-

ulations of micro-storage devices in energy markets, under the assumption that the

electricity price is some monotone increasing function of total power demand. The

second part extends the work of the first part through taking into account the

topology of power networks: the proposed modelling framework envisages hetero-

geneous groups of loads that operate at different buses, connected by transmission

lines of limited capacity. The locational marginal prices of electricity are used as

price signals, which are different in general for each bus and calculated through an

optimal power flow problem. In the framework of the third part, it is envisioned

that micro-storage devices and electric vehicles participate in an integrated energy-

reserve market, and that they can contribute to the provision of reserve by being

available to reduce their power consumption. These flexible devices autonomously

schedule their operation in response to two kinds of price signals – the locational

marginal prices of energy and reserve.

Iterative schemes for the coordination of the flexible devices are presented in the

three parts. It is proved that the proposed coordination schemes can ensure the

convergence to stable market configurations, characterized as aggregative equilibria

at which each device cannot further reduce its cost by unilaterally changing its

power profile. Distributed implementations of these proposed control strategies are

discussed, and their performance is evaluated in simulations on large scale power

systems.
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Chapter 1

Introduction

1.1 Background and Motivation

Electricity demand is increasing in all sectors along with the economic development

in recent decades, requiring enough generation capacity to meet the growing global

electricity demand. At the same time, enhanced reliability is needed in the entire

system and all its operation in order to provide high-quality electricity and avoid

serious faults. Smart grids, which involve integration of low carbon generation,

demand side response, energy storage devices, etc., are promising electrical systems

to handle these challenges in a sustainable, reliable and economical way [1]. This

thesis will explore the methods of incorporating demand side response into smart

grids.

The increasing diffusion of new types of loads, such as electric vehicles and smart

appliances, represents a crucial element in the ongoing transition of power systems

towards the smart grid paradigm. The flexible devices can shift or reduce their

power consumption according to users’ needs (e.g. reducing energy cost) and the

system requirement (e.g. matching the demand with supply). Utilities have mech-

anism to signal their customers at which time they can reduce or increase their

21



22 Chapter 1. Introduction

consumption, in return customers receive a monetary benefit from the utility com-

panies. The flexible loads, if not coordinated, could bring a number of potential

drawbacks [2, 3], such as causing new demand peaks and significant voltage devi-

ations in the power grid. For example, if all flexible devices schedule their power

consumption at the times when the energy price is the lowest during a day in order

to reduce their individual energy costs, the aggregate residential demand will in-

crease dramatically at those times. This phenomenon creates pronounced rebound

peaks in the demand profile and consequently increases the energy price at those

times, making the power schedule of the flexible devices suboptimal. However, if the

devices are properly coordinated, the flexibility in the power consumption of private

customers could be potentially exploited for multiple purposes, such as optimizing

energy cost for domestic households, flattening demand profiles and providing an-

cillary services for the system [4, 5]. As for the provision of ancillary services, the

transaction occurs in an ancillary service market. In this market, the flexible devices

can make a profit by contributing to ancillary services such as spinning reserve, since

they could provide their availability to reduce their power consumption if necessary.

The clearing of energy and ancillary services is normally auctioned in the forms of

integrated markets. In these markets [6], the energy market and ancillary service

market are simultaneously cleared. The common feature of simultaneous market

clearing of energy and ancillary services is the use of optimization model, usually

a linear programming model. These models are formulated to optimize production

cost [6], while balancing supply and demand and ensuring reliability. Energy price

is associated to power balance equation while the price of ancillary service such as

reserve is associated to ancillary service requirement constraint. Non-linear cases

such as the optimization of costumer’s payment are investigated in [7, 8]. Because

of the strong interaction between the supply of energy and the provision of ancillary

services [9], the integrated markets are considered to be reasonable. When partici-

pating in an integrated market, each flexible device has two cost components: energy

cost for power consumption based on the energy price and ancillary service revenue
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for ancillary service provision based on the ancillary service price.

Many schemes have been proposed in the literature to coordinate flexible loads

[10]. In general, the coordination strategies are categorized into centralized and dis-

tributed approaches. Centralized strategies such as references [11, 12] envision a cen-

tral entity that collects information from all flexible devices and centrally determines

their power consumption in order to optimize some global objectives. However, these

schemes become complicated to implement and computationally expensive for large

numbers of flexible devices, making them unsuitable for big and complex systems.

Better scalability is obtained with distributed schemes [13] that also preserve the

privacy of the appliances. Game theory has been extensively applied to devise

distributed control strategies for coordination of flexible devices. The associated

games are designed to admit Nash equilibria, which normally correspond to the so-

cial optima of some auxiliary minimization programs. The connection between Nash

equilibria and social optima has been investigated in [14].

1.2 Thesis Contributions

In order to rationally utilise the flexiblility from demand side (e.g. utilising it to

reduce operational costs, minimize the energy cost of each device, avoid rebound

peaks and provide ancillary services), this thesis designs novel distributed control

strategies for large-scale deployment of flexible devices such as domestic storage de-

vices and electric vehicles. Game-theoretic schemes are applied to coordinate these

devices, which are modelled as self-interested agents that aim to reduce their own

costs by changing their power profiles in response to the broadcast price signals.

Iterative algorithms are proposed to coordinate the agents so that they can reach

an aggregative equilibrium, where no agent can further reduce its cost by unilater-

ally adjusting its power profile. The main novelties of the proposed coordination

strategies are listed as follows:
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• A multi-agent system approach is proposed to coordinate large populations of

micro-storage devices performing energy arbitrage. The modelling framework

considers the storage devices with limited efficiency (accounting for power

losses) and the bidirectionality of power flows.

• A similar coordination problem is investigated for electric vehicles, while taking

into account network topology. In this case, the locational marginal price

(LMP) of electricity at each bus, characterized as the Lagrange multiplier

associated to an optimal power flow problem, is used as price signal broadcast

to the electric vehicles. In order to solve the problem of the potential price

discontinuity of the LMPs, a more complex pricing structure and a novel notion

of equilibrium are introduced.

• The coordination problem of flexible devices is further extended in integrated

energy-reserve markets, where, in addition to the energy cost, the devices

could receive rewards by providing reserve. In these markets, flexible devices

respond to two kinds of price signals - the LMPs of energy and reserve.

• The proposed coordination schemes guarantee the convergence to aggregative

equilibra, minimized cost sustained by each single device and the optimality of

some social welfare, for any penetration level of flexible devices and any grid

topology.

1.3 Thesis Structure

The rest of the thesis is organized as follows. First, Chapter 2 presents the influence

of the penetration of energy storage devices on the future power networks. Then, it

designs a distributed price-based coordination strategy for the operation of micro-

storage devices, assuming that the electricity price is a monotone increasing function

of the total power demand. Chapter 3 considers a more realistic model compared

to Chapter 2. It takes into account network topology, envisaging that loads operate
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at a number of buses, connected by transmission lines of limited capacity. Addi-

tionally, the price signal broadcast to the flexible loads is the locational marginal

price of electricity at each bus, which is calculated through an optimal power flow

problem. The performance of the proposed coordination strategy is evaluated in the

IEEE 24-bus system. In the modelling framework of Chapter 4, the flexible devices

(including storage devices and electric vehicles) operate in an integrated energy and

reserve market, where they can provide reserve by being available to reduce their

power consumption. As a result, the flexible devices adjust their power profiles in

response to both energy and reserve prices in order to minimize their own costs.

Simulations are carried out on the PJM 5-bus system to verify the effectiveness of

the coordination strategy in integrated energy-reserve markets. Finally, Chapter 5

summarizes the novelties of the thesis and discusses some relevant potential future

work.
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Chapter 2

Distributed Coordination of

Micro-storage Devices

2.1 Introduction

Energy storage devices are promising candidates in the process of transforming the

conventional power grid into a smart and intelligent power system. It is expected

that individual homes will be equipped with micro-storage devices which store elec-

tricity and charge their batteries when necessary. The adoption of energy storage

devices can bring a number of benefits, which have been researched by a number of

studies such as [15, 16, 17]. For example, storage devices can be utilised to facilitate

the integration of intermittent renewable generations such as wind and solar, assist

voltage regulation and reduce operation cost. However, some challenges still exist

in the popularization of storage devices. For instance, if all micro-storage devices

charge their batteries at the same time, a higher demand peak may occur in the

electricity market, which requires more generation capacity and results in more car-

bon emissions. To coordinate the storage devices, a number of research has been

carried out, among which game theoretic approaches have been extensively adopted

[18, 19]. Although these approaches have different objectives, they all pursue an

27
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equilibrium, at which some optimal solution to the relevant problem is obtained.

In [20] a distributed scheme for the management of micro-storage devices, which

uses the method of mean field games, is presented. In this scheme, the coordina-

tion problem of large storage populations are approximated as a differential game

with infinite players that perform energy arbitrage. In [21], two game-theoretical

approaches are proposed for the coordination of the storage devices in the future

grid. One is played between self-interested consumers, which finally reaches a Nash

equilibrium, while the other is played between the central entity and the consumers,

which results in a Stackelberg equilibrium. In [22], a distributed algorithm based

on welfare theory is proposed to calculate the optimal prices and demand schedules,

in the case that households are equipped with different appliances including storage

devices. To manage agent-based micro-storage devices, the framework proposed in

[23] uses an adaptive mechanism based on predicted market prices to maximize the

profit of each agent. In this framework, a Nash equilibrium is reached, at which

peak demands and carbon emissions are reduced. However, the cited works do

not consider efficiency models (for example with different power losses associated to

charging and discharging) which is crucial in realistic modelling of storage operation.

This chapter presents a game-theoretic framework to coordinate the storage devices

with power losses taking into account. The power losses limiting storage efficiency

are expressed as fractions of the exchanged power, with different coefficients when

charging and discharging are performed. As a result, nonlinearities appear in the

model. In the game-theoretic framework, the storage devices are modelled as self-

interested players aiming at minimizing their individual energy costs over a certain

time interval. The proposed coordination scheme for micro-storage devices relies on

the preliminary findings of [24]. Although the work in [24] studies the coordination

of flexible demand without accounting for power losses, its proposed algorithm is a

reference to design the coordination strategy of storage devices. The general idea

is to update the power profiles of the devices sequentially in response to iterative

broadcast price signals. These broadcast prices are assumed to be strictly monotone
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increasing with respect to the demand level. It is proven that the proposed coordina-

tion scheme for micro-storage devices can always reach an aggregative equilibrium,

at which no storage device can reduce its energy cost by unilaterally changing its

power scheduling and the optimality of some social welfare is also reached.

2.2 Modelling of Micro-storage Devices and Elec-

tricity Market

A population N = {1, . . . , N} of micro-storage devices operate in the discrete time

interval T = {1, . . . , T}. The dynamics of the single device j ∈ N are described by

the following equations:

Ej,t+1 = Ej,t + uj,t∆t (2.1a)

Ej,0 = E0
j (2.1b)

where ∆t is the considered time step. The quantity Ej,t corresponds to the the energy

level of the individual device j ∈ N at time t ∈ T . It evolves dynamically according

to (2.1a), where uj,t represents the power charged/discharged by the battery and

is considered a control input to be determined by the device j. The proposed

modeling framework envisages storage devices with limited efficiency: to account

for power losses, only a fraction η− ≤ 1 of the discharged power is sold to the

network. Similarly, when some battery is charging x amount of power, a larger

amount η+x with η+ ≥ 1 is bought from the system. This can be summarized by

the following function:

η(x) =

 µ+ if x ≥ 0

µ− if x ≤ 0
(2.2)

denoting by y(uj,t) the power exchanged with the network by device j at time t:

y(uj,t) = η(uj,t)uj,t. (2.3)
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The above notation is extended in a vector sense, denoting by Ej = [Ej,1, . . . , Ej,T ] ∈

RT the energy values of the device j across time. Similarly, uj ∈ RT and y(uj) ∈ RT

denote the charge/discharge rate and the power exchanged with the network by the

device j across time.

The individual device j is subject to the following operational constraints:

Ej,T = Ej,0 = E0
j (2.4a)

0 ≤ Ej,t ≤ Ēj ∀t ∈ T (2.4b)

¯
Pj ≤ uj,t ≤ P̄j ∀t ∈ T . (2.4c)

In order to avoid full discharge of each device j, equation (2.4a) imposes that its

charge level at the beginning and at the end of the considered time interval remains

the same. This constraint is applicable for day-ahead markets: the time interval is

set to 24h to implement daily cycles. In addition, (2.4b) and (2.4c) ensure that the

charge level Ej,t and charge/discharge rate uj,t are always within feasible bounds.

From (2.1), the operational constraints (2.4) can equivalently be expressed with

respect to u, as specified below:

Definition 2.1. Let Uj denote the set of feasible charge/discharge profiles for device

j. For the signal uj : T → R, it holds uj ∈ Uj if the following conditions are fulfilled:

T∑
t=1

uj,t = 0 (2.5a)

0 ≤ E0
j +

t∑
x=1

uj,x ·∆t ≤ Ēj ∀t ∈ T (2.5b)

¯
Pj ≤ uj,t ≤ P̄j ∀t ∈ T . (2.5c)

In order to characterize the impact of the storage devices on the global quantities

of the power grid, let u = [u1, . . . , uN ] ∈ RNT represent the overall charge/discharge

scheduling of the storage population and U = U1×· · ·×UN the associated feasibility
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set. The total power demand in the system at time t, when u is applied, is denoted

as Dt(u) and it has the following expression:

Dt(u) = dt +
N∑
j=1

η (uj,t)uj,t = dt +
N∑
j=1

y(uj,t). (2.6)

In other words, the demand Dt(u) corresponds to the total power consumption dt

of all inflexible loads in the system (assumed to be known a priori) plus the total

power variation introduced by the storage devices. The electricity market can then

be abstracted as a monotone increasing function Π of total demand, expressing the

electricity price pt at time t as:

pt = Π(Dt(u)). (2.7)

Assumption 2.1. The function Π : R+ → R+ is strictly monotone increasing and

Lipschitz continuous, with Lipschitz constant Γ.

The choice of an increasing function of demand for the electricity price is common in

a power system context, as the marginal cost of generation is generally higher when

higher demand needs to be accommodated. The hypothesis of Lipschitz continuity

has been introduced to simplify the analysis: weaker continuity notions can be

considered with minor modifications.

2.3 Energy Arbitrage as a Competitive Game

The individual storage devices are modelled as self-interested rational agents that

perform energy arbitrage and schedule their charge/discharge profile uj in order to

maximize their profit, charging energy at low prices and discharging when electricity

is more expensive. The devices interact with each other through the changes in

power demand and electricity price introduced by their operation strategies: the
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higher is the total charge of the devices, the more expensive electricity will be (and

vice versa). This setup can be characterized by a game-theoretical framework with

the following elements:

• Players : The population N = {1, . . . , N} of storage devices.

• Strategies : The set Uj of feasible charge/discharge profiles uj.

• Objective functions : Each device j ∈ N aims to minimize its energy cost Cj

(equivalently, maximize its profit −Cj), defined as follows:

Cj(u) =
T∑
t=1

Π(Dt(u))y (uj,t) ∆t. (2.8)

As expressed in (2.8), at each time t the individual device j trades with the system

y (uj,t) ∆t units of energy at price Π(Dt(u)). Note that the single term in the sum

of (2.8) is positive when y (uj,t) > 0 (the device is buying and charging energy) and

negative when y (uj,t) < 0 (the device is discharging and selling energy to the grid).

The main objective of the subsequent theoretical analysis and of the proposed control

scheme is the convergence of the storage strategies to a stable market configuration,

characterized by the following equilibrium notion:

Definition 2.2. Consider the charge/discharge profile u∗ ∈ U of the storage popu-

lation, with u∗ = [u∗1, . . . , u
∗
N ]. This corresponds to an aggregative equilibrium if the

following holds for all j ∈ N :

T∑
t=1

Π(Dt(u
∗)) · y

(
u∗j,t
)
·∆t = min

uj∈Uj

T∑
t=1

Π(Dt(u
∗)) · y(uj,t) ·∆t (2.9)

where the aggregate demand profile Dt(u
∗) is equal to:

Dt(u
∗) = dt +

N∑
j=1

y
(
u∗j,t
)

(2.10)
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The proposed aggregative equilibrium notion is expressed as a fixed point condition:

each storage device minimizes its energy cost based on the electricity price Π(Dt(u
∗))

associated to a certain power demand Dt(u
∗) (from (2.9)). In turn, the overall

operation strategy u∗ induces that very same demand profile, as imposed in (2.10).

Remark 2.1. The aggregative equilibrium defined above is also known as a Wardrop

equilibrium, which is a good approximation of the classical Nash equilibrium notion

when the number of agents trends to infinity [25]. For the Wardrop equilibrium,

the effect of an individual agent on the global quantities of the system is negligible.

Since the power consumption uj of the individual storage device (in the order of

kWs) is orders of magnitude smaller than total power demand D(u) (generally in

the order of GWs), one can assume that each storage device has negligible market

power and performs its cost minimization considering the electricity price to be fixed.

As a result, the decision variable uj,t do not appear in the price Π(Dt(u
∗)) in the

right-hand side of (2.9). However, the Nash equilibrium considers the imperceptible

changes in the value of the price Π(Dt(u
∗)) caused by the power schedule uj,t of a

single storage device. This is neither necessary in the present case nor applicable to

mathematical analysis.

In order to provide a more compact characterization of the equilibrium notion pre-

sented above, some functions of the charge/discharge profile uj are preliminarily

introduced:

α(u, j, t) =

 uj,t if uj,t > 0

uj,t −
¯
Pj if uj,t ≤ 0

(2.11a)

β(u, j, t) =

 P̄j − uj,t if uj,t ≥ 0

−uj,t if uj,t < 0
(2.11b)

e(u, j, t̄,
¯
t) =


mint∈{

¯
t,..., t̄−1} Ej,t

∆t
if

¯
t < t̄

Ēj−maxt∈{t̄,...,
¯
t−1} Ej,t

∆t
if

¯
t > t̄

(2.11c)
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The equilibrium is now characterized through the following quantity:

γ(u, j, t̄,
¯
t) = α(u, j,

¯
t) · β(u, j, t̄) · e(u, j, t̄,

¯
t) ·
[
Π(D

¯
t(u))− η(uj,t̄)

η(uj,
¯
t)

Π(Dt̄(u))

]
(2.12)

The sign of γ(u, j, t̄,
¯
t) indicates whether a device j can swap a power amount from a

time instant t =
¯
t to a time instant t = t̄ to reduce its energy cost. There exists such

a feasible power swap if γ(u, j, t̄,
¯
t) > 0. In the case of γ > 0, since the functions in

(2.11) are always nonnegative, we have positivity of all factors in (2.12). It follows

that uj can be reduced at time
¯
t (since a(u, j,

¯
t) > 0) and increased at time t̄ (since

b(u, j, t̄) > 0) without violating the constraints (2.4b) on the charge level (since

e(u, j, t̄,
¯
t) > 0). Moreover, the power swap is also cost reducing (since also the last

factor in (2.12) is positive). This important result can be formalized as follows.

Proposition 2.1. The charge/discharge profile u∗ ∈ U corresponds to an aggregative

equilibrium if and only if:

γ(u∗, j, t̄,
¯
t) ≤ 0 ∀j ∈ N , ∀(t̄,

¯
t) ∈ T × T . (2.13)

Proof. See Appendix A.1.

In other words, this proposition means that at the aggregative equilibrium, no stor-

age device can perform a feasible power swap to reduce its energy cost.

2.4 Strategy Update as Dynamical System

In order to properly coordinate the charge/discharge profiles of the storage devices

and converge to an aggregative equilibrium, a novel distributed control strategy

is proposed. It is envisioned that each device sequentially updates its strategy in

response to an updated power signal, with the objective of reducing its energy cost.
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2.4.1 Multi-valued Mapping

The update of the charge/discharge profiles is described by the evolution of the

following dynamical system:

u(0) = u0 u(k + 1) ∈ F (u(k)) (2.14)

where F : U 7→ U is a multi-valued correspondence and u(k) ∈ U ⊆ RNT denotes

the strategies of the storage population after k updates. In order to formally define

F , some relevant quantities are preliminarily introduced:

Sj(u) := arg max
(t̄,

¯
t)∈T ×T

γ(u, j, t̄,
¯
t) (2.15)

∆(u, j, t̄,
¯
t) := min ({α(u, j,

¯
t), β(u, j, t̄), e(u, j, t̄,

¯
t), λ(u, j, t̄,

¯
t)}) . (2.16)

The functions α and β are defined in (2.11a) and (2.11b), respectively, whereas λ

has the following expression:

λ(u, j, t̄,
¯
t) =

η(uj,
¯
t)Π(D

¯
t(u))− η(uj,t̄)Π(Dt̄(u))

Γ
(
η(uj,

¯
t)2 + η(uj,t̄)2

) (2.17)

where Γ is the Lipschitz constant of the price function Π, as discussed in Assumption

2.1. The set Sj(u) contains the pairs of time instants (t̄,
¯
t) that maximize the value of

the function γ and can therefore be considered for cost-reducing power swaps. The

problem of maximizing γ in (2.15) can be easily solved with enumeration method.

The function ∆(u, j, t̄,
¯
t) represents the associated amount of power variation. The

terms α, β and e in (2.16) ensure feasibility of the power swap, whereas λ is an

additional bound that preserves the original price order at t̄ and
¯
t after the power

swap, as required by the proof of the following Proposition 2.2. A multi-valued

mapping Fj : U 7→ U is now defined for each device j ∈ N :

Fj(u) =
⋃

sj∈Sj(u)

f (sj)(u) (2.18)
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where each element f (sj)(u) ∈ U ⊆ RNT can equivalently be represented in a vecto-

rial form as f (sj)(u) =
[
f

(sj)
1,1 (u), . . . , f

(sj)
N,T (u)

]
. Each single component f

(sj)
i,t (u) ∈ R

has the following expression when sj = (t̄,
¯
t):

f
(sj)
i,t (u) =


ui,t + ∆(u, j, t̄,

¯
t) if i = j, t = t̄

ui,t −∆(u, j, t̄,
¯
t) if i = j, t =

¯
t

ui,t otherwise

(2.19)

When the mapping Fj(u) is applied, the device j performs a cost-reducing oper-

ation, increasing its charge/reducing its discharge at time t = t̄ and decreasing

its charge/increasing its discharge a time t =
¯
t. The amount of swapped power

∆(u, j, t̄,
¯
t) associated to this strategy update ensures feasibility of the new strategy

and convergence to equilibrium, as discussed later on. The application of Fj(u)

does not modify the strategies of all the other storage devices i ∈ N\{j}. The

mapping F describing the iterative update mechanism of the storage population,

with the devices sequentially updating their strategies one after another, can then

be characterized by the following composition:

F (u) := (FN ◦ · · · ◦ F1) (u). (2.20)

The evolution of the devices’ strategies u(k) associated with the application of the

mapping F is now formally defined:

Definition 2.3. Given the dynamical system (2.14) with F as defined in (2.20), its

solution set Φ is the following:

Φ :=
{
φ : N+ → U : φ(k + 1) ∈ F (φ(k)) ∀k ∈ N+

}
. (2.21)
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2.4.2 Theoretical Results

The analysis on the convergence and optimality of the proposed mapping F is based

on Lyapunov tools and considers the following function V of the players’ strategies

u:

V (u) :=
T∑
t=1

∫ Dt(u)

0

Π(x) dx. (2.22)

In order to prove convergence and optimality of the proposed strategy update, the

following preliminary results are introduced first:

Proposition 2.2. For the function V in (2.22), evaluated along any solution φ ∈ Φ,

it holds:

V (φ(k + 1)) ≤ V (φ(k)) ∀k ∈ N (2.23a)

φ(k + 1) = φ(k) ∀k : V (φ(k + 1)) = V ((φ(k)) (2.23b)

lim
k→∞

V (φ(k)) = V∞, V∞ ∈ R+ (2.23c)

Proof. See Appendix A.2.

It is now possible to provide the main results on the convergence and optimality of

the proposed multi-valued mapping.

Theorem 2.1. Let Ω∗ denote the set of aggregative equilibria as presented in Defi-

nition 2.2 and indicate by |x|S the distance between some element x ∈ U and a set

S ⊆ U . For any solution φ ∈ Φ, it holds:

lim
k→+∞

|φ(k)|Ω∗ = 0. (2.24)

Proof. See Appendix A.3

Theorem 2.2. For any feasible strategy u ∈ U and any aggregative equilibrium

u∗ ∈ Ω∗ ⊆ U , it holds:

V (u∗) ≤ V (u). (2.25)
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Proof. See Appendix A.4.

Theorem 2.2 states that the proposed update scheme converges to a set of points

Ω∗ which are not only aggregative equilibria but also global minima of the function

V in (2.22). We wish to emphasize that V corresponds to the sum over time of the

integral of the electricity price Π. Since Π can be interpreted as the marginal cost

of generation, it follows that V quantifies the total generation costs of the power

system. As a result, any point u∗ not only constitutes a market equilibrium for the

agents, but it is also optimal for the overall system.

Remark 2.2. It has been proven in Appendix A.2 that a feasible power swap of

each device j that reduces its own cost also ensures the reduction of the value of

the global function V . This game is known as a potential game since the incentive

of all storage devices to change their strategy can be expressed using a single global

function. The global function is called the potential function, corresponding to the

function V in the present work. The potential function is a useful tool to analyze

equilibrium properties of games because of the strong connection between the optima

of the potential function and the equilibria, as stated in Theorem 2.2.

2.4.3 Pseudo-Code of the Coordination Scheme

The coordination scheme of micro-storage devices characterized by the mapping F

is then presented in Algorithm 1, which consists of three main phases.

In the first Initialization phase, the algorithm sets the initial power scheduling

u(0) of the whole population of storage devices to some initial value u0. In addition,

two variables are initialized. The variable k is an iteration counter while the vari-

able conv is used to detect whether a change in power scheduling has occurred at

the latest iteration in the phase Power scheduling update. In this phase, each

full execution of the FOR cycle in step 2.d) corresponds to the application of the

mapping F in (2.20). In particular, each single iteration with index j is equivalent
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to the application of Fj in (2.18). Specifically, a storage device j selects the time

instants t̄∗,
¯
t∗ ∈ Aj that maximize γ. If the maximized γ is positive, it implies that

the cost of device j can be reduced by shifting the amount of power δ from time
¯
t∗

to t̄∗. After each FOR cycle, the iteration number k is increased by one as step 2.b).

If no device j can perform a feasible power swap after a finite number of iteration

k (i.e., γ(u(k), j, t̄,
¯
t) ≤ 0 for all j and (t̄,

¯
t) ∈ Aj × Aj), the variable conv remains

equal to 1 throughout the FOR cycle and the final scheduling u(k) is returned as

the solution u∗ of an aggregative equilibrium in the Final Results phase. This is

consistent with Proposition 2.1.

Algorithm 1 Iterative scheme - Micro-storage device coordination

1. Initialization phase. An initial power scheduling is set for each storage
devices and some flag variables are set:

u(0) = u0 ∈ U k = 0 conv = 0

2. Power scheduling update. The power scheduling of the micro-storage de-
vices are iteratively updated:
WHILE (conv = 0)

(a) conv = 1

(b) k = k + 1

(c) u(k) = u(k − 1)

(d) FOR j = 1 : 1 : N

i. FIND (t̄∗,
¯
t∗) such that:

(t̄∗,
¯
t∗) ∈ arg max

(t̄,
¯
t)∈Aj×Aj

γ(u(k), j, t̄,
¯
t)

ii. IF γ(u(k), j, t̄∗,
¯
t∗) > 0

conv = 0 δ = ∆(u(k), j, t̄∗,
¯
t∗)

uj,t̄∗(k) = uj,t̄∗(k) + δ uj,
¯
t∗(k) = uj,

¯
t∗(k)− δ.

END FOR

END WHILE

3. Final results. The aggregative equilibrium solution is equal to the power
scheduling at the last iteration:

u∗ = u(k).
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2.4.4 Distributed Implementation

The implementation of the coordination algorithm in practical contexts is now

discussed. In particular, the proposed algorithm can be implemented in a dis-

tributed manner through a bidirectional communication scheme between the in-

dividual agents and some central entity (e.g. the system operator).

1. Initialization Phase: Each device j ∈ N initializes its charge/discharge profile

uj = u0
j autonomously. The information of the scheduled power profiles u(0) of

the devices is sent to the central entity, which calculates the total power demand

D(u(0)) and the associate price Π(D(u(0))).

2. Power scheduling update:

(a) The price signal Π(D(u)) is broadcast by the central entity to a device j.

(b) After receiving the price signal, the device j updates its strategy in order to

reduce its energy cost. To do so, it selects a pair of advantageous time instants

sj = (t̄,
¯
t) ∈ Sj(u) that maximize γ according to (2.15). If the maximized γ is

positive, it implies that a feasible power swap can be performed by device j to

reduce its cost. Then the device will swap the amount of power ∆(u, j, t̄,
¯
t) in

(2.16) from time
¯
t to time t̄. The agent j has all the information to perform such

cost-reducing operation, as γ(u, j, t̄,
¯
t) and ∆(u, j, t̄,

¯
t) exclusively depend on the

current charge/discharge profile uj (known by agent j) and the electricity price

Π(D(u)) (broadcast by the system operator). The power swap corresponds to

the application of f (sj)(u) ∈ Fj(u) according to the expression in (2.19).

(c) The power swap is communicated to the system operator, which updates u as

f (sj)(u) and calculates the new price signal Π(D(u)).

(d) Steps 2.a)-2.c) are repeated for the next device j + 1 (resetting the index to 1

when j = N).

3. The procedure is terminated until no device can perform a feasible power swap
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to reduce its energy cost. In other words, γ(u(k), j, t̄,
¯
t) is not great than zero for all

j ∈ N and (t̄,
¯
t) ∈ Aj ×Aj. This means that the aggregative equilibrium is reached

according to Proposition 2.1.

Remark 2.3. The above method has been chosen for its close correspondence with

the theoretical formulation of the strategy update as composition of mappings Fj.

An alternative implementation of a one-shot strategy with reduced communication

requirements is available and is discussed in detail in [24] for the case of demand

response. In this strategy, the flexible devices are coordinated through the broadcast

of a single price signal (different in general for each device). To generate the price

signal for each device, the central entity needs to collect all the information of the

micro-storage devices and emulates a modified version of Algorithm 1. In response

to its individual price signal, each device will schedule the power profile to minimize

its energy cost. The resulting power scheduling of the whole population of the storage

devices corresponds to an ε-approximate aggregative equilibrium. It should be noted

that the privacy of the storage devices is divulged in the one-shot strategy.

2.5 Case Studies

In this section, the distributed control strategy for the coordination of storage devices

is applied to analyze a future scenario of UK power demand with a high penetration

of micro-storage devices. The inflexible demand profile dt of the future UK scenario

(obtained from historical data) is represented by the blue curve in Fig. 2.1, and it

is predicted that two different populations NA and NB (N = NA ∪ NB) of micro-

storage devices will be installed in private households. It is assumed that the device

numbers of populations NA and NB are that NA = NB = 5 · 105. Furthermore, it

is assumed that the devices of population NA are with the same battery capacity

and power rating such that ĒA = 20kWh and P̄A = −
¯
PA = 2kW . With Similar

assumption, the devices of population NB, which are with higher power rating and
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battery capacity, have the following parameters: ĒB = 30kWh and P̄B = −
¯
PB =

3kW . The value of the initial charge level E0
j of each storage device in the current

case study is determined according to a uniform distribution with support [0, Ēj].

Besides, η− and η+ are set to 0.98 and 1.02, respectively.

A time interval of 24h and a time discretization of 0.25h (namely, T = {1, . . . , 96}

and ∆t = 0.25) are considered. To perform the coordination strategy, it is necessary

to firstly determine initial charge/discharge profiles u(0) for the storage devices. In

this simulation, the initial charge/discharge profile uj(0) of each storage device is

set as follows:

uj,t(0) = 0 ∀j ∈ N ∀t ∈ T . (2.26)

As uj,t(0) = 0 for any device j ∈ N , the aggregate demand profile Dt(u(0)) coincides

with the inflexible demand dt. Next, the coordination process is performed, during

which each storage device aims at minimizing its energy cost.
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Figure 2.1: Initial (blue line) and final (red line) aggregate demand profiles.
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The performance of the algorithm on the demand profile Dt is shown in Fig. 2.1,

showing that the control strategy tends to shave demand peaks and fill demand

valleys. This is reasonable since, in order to minimize their energy costs, the devices

will charge at cheapest electricity prices (with lowest demand level) and discharge

at highest prices (with highest demand level).
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Figure 2.2: Total generation costs V (u(k)) and average profits GA(k) and GB(k)

with respect to update count k.

The capability of increasing the average profit of storage devices and reducing total

generation costs is also tested, considering the following price function Π for some

positive constant a and b:

Π(Dt(u)) = aDt(u) + b. (2.27)

The function Π(Dt(u)) is obviously monotone increasing with respect to the aggre-

gate demand Dt(u), thus satisfying Assumption 2.1. For certain charge /discharge
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profiles u(k) at k-th update, the corresponding total generation cost can be expressed

as follows:

V (u(k)) =
T∑
t=1

(
1

2
a ·Dt(u(k))2 + b ·Dt(u(k))

)
∆t. (2.28)

The corresponding average profit GA(k) of the devices of population NA is:

GA(k) = −
∑

j:j∈NA

∑T
t=1 Π(Dt(u(k)))y(uj,t(k))∆t

NA

. (2.29)

Similar expression can be obtained for the average profit GB(k) of population NB.

The values of V (u(k)), GA(k) and GB(k) at different updates are shown in Fig. 2.2.

This figure shows that the control strategy terminates after k = 40 updates. It is

seen that the total generation costs V (u(k)) gradually decrease with the increase in

the update count k, which is consistent with Proposition 2.2. The profits GA(k) and

GB(k) increase with k, and it is interesting to notice that higher profit is achieved

by devices with higher power rating and battery capacity. Furthermore, the val-

ues of V (u(k)), GA(k) and GB(k) almost remain unchanged when the aggregative

equilibrium is being approached (when k is approaching to 40).

Table 2.1: Total generation cost V , average profit GA and GB for individual devices
in the scenarios of partial efficiency and full efficiency.

Partial efficiency Full efficiency
V $175.84 million $175.68 million
GA $1.13 $1.26
GB $1.72 $1.90

The values of V , GA and GB obtained in the above simulations (storage devices

with partial efficiency) are compared to those in the scenario of storage devices with

full efficiency, presented in Table 2.1. The latter case can easily achieved by setting

both η− and η+ equal to 1. As expected, the consideration of partial efficiency

increases the total generation cost and reduces the average profit of micro-storage

devices (about 10% reduction with respect to the scenario of full efficiency). This

can be straightforward explained: to charge a certain amount ∆ of power, a storage

device with partial efficiency needs to buy a larger amount η+∆ (η+ > 1) of power
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from the grid, increasing the cost; Similarly, to discharge an amount ∆ of power, a

storage device with partial efficiency sells a smaller amount η−∆ (η− < 1) of power

to the grid, decreasing the revenue. The increase of the total generation cost V can

be explained with the same reason.

2.6 Summary

This chapter proposes a multi-agent system approach for the coordination of large

populations of micro-storage devices performing energy arbitrage. The individual

batteries are modelled as price-responsive self-interested agents that select their

charge/discharge profile to maximize profit and interact between each other through

the changes in power demand caused by their aggregate strategy. The main novelty

is the design of an iterative control strategy that ensures asymptotic convergence to

an optimal market equilibrium when partial efficiency of the agents (with ensuing

nonlinearities), bidirectionality of power flows and state constraints are considered.

Distributed schemes for its implementation and performance evaluation through

case studies in large-scale power system are also provided.



Chapter 3

Coordination of Flexible Loads

Considering Network Topology

3.1 Introduction

3.1.1 Relevant Work

In addition to the increasing number of micro-storage devices as introduced in Chap-

ter 2, the penetration of flexible loads, such as smart appliances and electric vehicles,

is also expected to increase significantly in the future. Unlike the micro-storage de-

vices that can discharge their batteries to sell energy to the grid, the flexible loads,

e.g. electric vehicles, only consume energy. The electrification of the transport sector

can mitigate the shortage of fossil fuels and improve energy efficiency [26], whereas

the increasing flexibility on the demand side can be explored and utilised in power

systems for multiple purposes, such as reducing operational costs and avoid rebound

peaks [27]. Chapter 3 will study the coordination of flexible loads. A large amount

of research has been carried out to achieve flexible demand coordination, evaluating

centralized and distributed approaches. Compared to distributed approaches, cen-

46
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tralized control strategies are normally computationally expensive for large numbers

of flexible loads. Multiple distributed approaches have been considered, including

Lagrange relaxation methods [28], congestion pricing [29] and stochastic pricing [30].

Game theory has also been extensively applied to devise distributed control strate-

gies for coordination of flexible loads [31, 32, 33, 34, 35, 36]. The general approach

adopted in these papers is to model the flexible loads as self-interested players that

compete for energy consumption at the cheapest prices. On this basis, distributed

control actions are designed in order to converge to a stable market outcome (char-

acterized as an equilibrium) and to possibly maximize some social welfare.

3.1.2 Motivation

It is worth emphasizing that all these works including Chapter 2 consider a unique

price function throughout the grid, repartitioning total costs among the users pro-

portionally to their fraction of total power consumption [31] or assuming that the

electricity price, at a certain time instant, is some monotone increasing function

of total power demand at the same time (e.g. [32, 33, 34, 35, 36] and Chapter

2). This choice captures a fundamental property of electricity markets, where the

marginal cost of generation is increasing and higher supply corresponds to higher

prices. However, the proposed modelling frameworks only consider distribution net-

works [32, 35, 36] or conduct a whole-system analysis (e.g. [33, 34] and Chapter

2) that does not account for any underlying network topology. In particular, the

pricing schemes in [31, 32, 33, 34, 35, 36] and Chapter 2 neglect two fundamental

characteristics of realistic power grids: the presence of multiple buses (connected

by transmission lines of limited capacity) and, as a result, the arising of different

locational marginal prices (LMPs) throughout the system if anyone of transmission

lines is congested.

Recent work has proposed novel modelling approaches that incorporate the trans-

mission network, investigating the impact of EVs [37, 38], and more generally de-
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mand response [39, 40] on the locational marginal prices of the system. The in-

teractions between distribution and transmission and the impact of uncertainties

have also been assessed in [41] and [42], respectively. However, differently from

[31, 32, 33, 34, 35, 36], all the cited papers [37, 38, 39, 40, 41, 42] do not provide

any theoretical guarantee on the convergence to equilibrium of their coordination

scheme, nor they can ensure social optimality of their solution.

3.1.3 Contributions

The objective of this chapter is to bridge the gap between the research approaches

presented in [31, 32, 33, 34, 35, 36] and in [37, 38, 39, 40, 41, 42]. In particular, the

framework presented in this work combines a rigorous theoretical analysis (guar-

anteeing convergence and optimality of the proposed coordination scheme) with an

explicit modelling of the transmission infrastructure (accounting for the underly-

ing network topology and assessing the impact of demand response on LMPs and

generation costs).

These results are obtained considering heterogeneous price-responsive loads operat-

ing at distinct buses of the power system. The congestion of transmission lines is

taken into account and the LMPs at each bus are characterized as the Lagrange mul-

tipliers associated to a linearized AC optimal power flow (ACOPF) problem, whose

solution depends on the operation strategy of the flexible loads. The proposed co-

ordination scheme for flexible demand relies on the preliminary findings of [43] and

envisions iterative better-response updates by the price-responsive loads, which are

characterized as the evolution of a multi-valued mapping. The formulation and the

results of [43] have been expanded to explicitly consider a more complex pricing

structure with LMPs. In order to account for the congestion of the transmission

lines and the potential price jumps that this might cause, a more general class of

aggregative games has been considered and a novel notion of variational aggrega-

tive equilibrium is introduced. Through the application of Lyapunov tools, it is
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demonstrated that the proposed coordination scheme converges to an equilibrium

and achieves global optimality for any penetration level of flexible demand and any

grid topology. Distributed implementations of the proposed scheme and simulative

results on the IEEE 24-bus system are also provided.

3.2 Modelling of Optimal Power Flow and Elec-

tricity Prices

The considered power system is composed by a finite set M = {1, . . . ,M} of dis-

tinct buses. The set of transmission lines (of limited capacity) linking two buses is

denoted as L = {1, . . . , L}, with s(l), r(l) ∈M indicating the reference sending and

receiving nodes of line l, respectively. As commonly assumed in theoretical analyses

of electricity markets, the electricity price pm at each bus m corresponds to the LMP

associated to an optimal power flow problem [9]. A linearized ACOPF model in [44]

is solved over the discrete time interval T = {1, . . . , T}. Let D ∈ RMT denote a

vector of demand values whose individual component Dm,t corresponds to the total

active power demand at bus m at time t. A similar notation is adopted for the gen-

eration vector G, voltage angle vector θ and voltage magnitude v, representing by

Gm,t, θm,t and vm,t their scalar values for bus m and time t. The linearized ACOPF

in [44] can now be expressed as:

ϕ(D) = min
G,GQ,θ,v2

M∑
m=1

T∑
t=1

fm(Gm,t) (3.1)

subject to (∀l ∈ L,m ∈M, t ∈ T ):

Pl,t = gl
v2
s(l),t − v2

r(l),t

2
− bl

[
θs(l),t − θr(l),t

]
+ PL

l,t (3.2a)

Ql,t = −bl
v2
s(l),t − v2

r(l),t

2
− gl

[
θs(l),t − θr(l),t

]
+QL

l,t (3.2b)
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Gm,t −Dm,t =
∑

{l:s(l)=m}

Pl,t −
∑

{l:r(l)=m}

Pl,t +

(
M∑
n=1

Gmn

)
v2
m (3.2c)

GQm,t −DQm,t =
∑

{l:s(l)=m}

Ql,t −
∑

{l:r(l)=m}

Ql,t +

(
M∑
n=1

−Bmn

)
v2
m (3.2d)

¯
Gm ≤ Gm,t ≤ Ḡm (3.2e)

¯
GQm ≤ GQm,t ≤ ḠQm (3.2f)

¯
v2
m ≤ v2

m,t ≤ v̄2
m (3.2g)

¯
θm ≤ θm,t ≤ θ̄m (3.2h)(

sin

(
2πc

a

)
− sin

(
2π

a
(c− 1)

))
Pl,t −

(
cos

(
2πc

a

)
−

cos

(
2π

a
(c− 1)

))
Ql,t − sin

(
2π

a

)
S̄l ≤ 0

(3.2i)

The Linearized ACOPF described in (3.1)-(3.2) determines the active power gener-

ation values G (and associated reactive power generation GQ, voltage angles θ and

voltage magnitude v) that minimize total generation costs. It should be noted that

the voltage variable is considered to be v2 instead of v in order to keep the linearity

of the constraints in (3.2). The function fm(g) in the objective function (3.1) repre-

sents the cost of generating g units of power at bus m and is assumed to be strictly

convex. Conditions (3.2a) and (3.2b) are the linearized model of active power flow

Pl,t and reactive power flow Ql,t on line l with respect to θ and v2, where gl and

bl are the conductance and susceptance of line l, respectively. The last terms PL
l,t

and QL
l,t represent power losses on line l, which has been also linearized. Their ex-

pressions are not shown for complexity, but can be found in [44]. Constraints (3.2c)

and (3.2d) are nodal power balance expressions. The last terms of (3.2c) and (3.2d)

represent the power flows on the shunt elements, where Gmn and Bmn are the real

and imaginary part of Ymn in the admittance matrix. The limits of the variables G,

GQ, v2 and θ are shown in (3.2e), (3.2f), (3.2g) and (3.2h), respectively. Finally, the

transmission line limits P 2
l,t + Q2

l,t ≤ S̄l are approximated in (3.2i) by the piecewise
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linearization method in [45]. The constraints hold for c = 1, 2, ..., a, where a is the

side number of a convex regular polygon that approximates the circles associated to

the line limits in P −Q plane.

3.2.1 Electricity Prices

In order to characterize the locational marginal prices associated to a certain vector

of demand values D, some properties of ϕ(D) are preliminarily discussed.

Proposition 3.1. The minimized generation cost ϕ(D) is a strictly convex function

on any set [Dmin, Dmax]
MT ⊂ RMT

+ .

Proof. See Appendix B.1.

From the convexity result of Proposition 3.1, ϕ(D) is Lipschitz continuous on the

open interval (Dmin, Dmax)
MT , where Dmin and Dmax can include all feasible values

of demand. It straightly follows that ϕ(D) is differentiable almost everywhere [46],

with the exception of some zero-measure set D ⊂ (Dmin, Dmax)
MT . Introducing the

notion of sub-differential, we can write:

∂ϕ(D)

∂Dm,t

=

 ϕ′m,t(D) if D 6∈ D[
¯
ϕ′m,t(D), ϕ̄′m,t(D)

]
if D ∈ D

(3.3)

where
¯
ϕ′m,t(D) and ϕ̄′m,t(D) are the left and right partial derivatives of ϕ(D) with

respect to Dm,t.

The electricity price pm,t is chosen as the Lagrange multiplier associated to the power

balance constraint (3.2c), i.e. the marginal cost of providing an additional unit of

power at bus m at time t. Within the considered theoretical framework, this price

corresponds to the partial derivative presented in (3.3). To account for the points

of non-differentiability of the optimized cost ϕ(D), two distinct price signals are
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considered:

¯
pm,t(D) =

 ϕ′m,t(D) if D 6∈ D

¯
ϕ′m,t(D) if D ∈ D.

(3.4a)

p̄m,t(D) =

 ϕ′m,t(D) if D 6∈ D

ϕ̄′m,t(D) if D ∈ D.
(3.4b)

Under the current formulation, p̄m,t is the marginal cost of providing an additional

unit of power at bus m. Conversely,
¯
pm,t represents the marginal saving of reducing

by one unit the power supplied to bus m.

We wish to emphasize that the double price formulation in (3.4) is not only a

mathematical technical detail but it also represents a crucial element in correctly

characterizing price variations and the cost minimization of the loads. In particular,

the proposed formulation allows to formally account for the price “jumps” resulting

from a marginal generator reaching its maximum capacity or the saturation of some

line. In these cases, the electricity price will vary discontinuously. Considering the

corresponding value of the demand vector D, the quantities
¯
pm,t(D) and p̄m,t(D)

will represent the different price values at bus m and time t before and after the

jump. It follows that D ∈ D and the minimized cost function ϕ(D) will not be

differentiable in these particular cases.

These price discontinuities are particularly relevant in the cost minimization problem

of flexible demand. Each load, in order to correctly evaluate its cost variation, will

have to consider
¯
pm,t when its power consumption is reduced (thus reducing total

demand D) and p̄m,t when its power consumption is increased (thus increasing total

demand D). This is consistent with the equilibrium formulation in the following

Definition 3.2, where the considered prices are selected accordingly to the sign of

the associated power scheduling variation.
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3.2.2 Local Monotonicity of Prices

As a preliminary step in the definition of the proposed control scheme and in the

theoretical assessment of its convergence and optimality properties, an important

monotonicity property of the prices in (3.4) is presented.

Proposition 3.2. Assume strict convexity of the generation cost functions fm(G)

in (3.1). For any bus m ∈ M and time t ∈ T , the corresponding electricity prices

p̄m,t(D) and
¯
pm,t(D) are monotone increasing with respect to demand Dm,t at the

same bus m and time instant t.

Proof. See Appendix B.2.

We wish to emphasize that this monotonicity is only used to rigorously derive the

convergence of the proposed coordination algorithm. The algorithm still works in

reality even without this condition. This has been verified in the simulation of the

IEEE 24-bus system, which does not use the monotonicity as a premise.

From the above considerations, the following power quantity can now be introduced:

Definition 3.1. Consider a demand vector D ∈ RMT , a bus m ∈ M and two time

instants t̄,
¯
t ∈ T . The quantity ε(D,m, t̄,

¯
t) is defined as follows:

ε(D,m, t̄,
¯
t) := arg min

x≥0

(∣∣p̄m,t̄(D + x · (êm,t̄ − êm,
¯
t))−

¯
pm,

¯
t(D + x · (êm,t̄ − êm,

¯
t))
∣∣)

(3.5)

where êm,t is the unit vector of the standard orthogonal basis associated to bus m

and time t.

In the above definition, ε is the positive amount of power that can be swapped

between
¯
t ant t̄ in order to minimize their price differential. From the monotonicity

of
¯
pm,t and p̄m,t, when p̄m,t̄ ≤

¯
pm,

¯
t the quantity ε corresponds to the maximum power

swap between
¯
t and t̄ that preserves their original price order.
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3.3 Modelling of Flexible Demand

This section presents the modelling framework of the flexible loads. These are de-

scribed as price-responsive rational agents, characterizing their interactions through

a game-theoretical set-up and introducing the concept of variational aggregative

equilibrium.

3.3.1 Individual Devices and Impact on Aggregate Power

Demand

A population N = {1, . . . , N} of price-responsive devices is considered, denoting

by µj ∈ M the power system bus in which the flexible load j ∈ N operates. The

flexible loads are considered as self-interested rational agents that operate over the

discrete time interval T = {1, . . . , T}. In particular, each load j ∈ N schedules

its power consumption over time uj = [uj,1, . . . , uj,T ] ∈ RT in order to complete an

assigned task at minimum energy cost. The task of agent j can be unequivocally

characterized by three quantities:

• Its rated power Pj.

• The total energy Ej required to complete its task.

• The set of time instants Aj ⊆ T during which it is available to operate.

Any feasible power consumption profile uj guaranteeing task completion for agent j

belongs to the set Uj, defined as:

Uj :=

{
uj ∈ RT :

T∑
t=1

uj,t ·∆t = Ej , 0 ≤ uj,t ≤ Pj · 1Aj(t) ∀t ∈ T

}
(3.6)
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where ∆t denotes the time discretization step and 1Aj(t) is the indicator function:

1Aj(t) =

 1 if t ∈ Aj

0 if t 6∈ Aj.
(3.7)

The equality in (3.6) ensures that the total energy consumed by load j is equal

to the energy required to complete its task. The inequalities in (3.6) impose that

the (positive) power consumption of load j cannot exceed its rated power Pj for t

within the availability interval Aj and must be zero for t outside it. The proposed

notation can be extended, representing by u = [u1, . . . , uN ] ∈ RNT the scheduled

power profile of the whole population and by U = U1 × · · · × UN the corresponding

feasibility set.

Assumption 3.1. The power scheduling problem admits at least one solution. In

other words, the parameters (Pj, Ej,Aj) of each device j are such that U 6= ∅.

In order to account for the impact of the flexible loads on the power system quantities

discussed in Chapter 3.2, it is sufficient to replace the demand vector D ∈ RMT with

a function D(u) : U → RMT of the power scheduling u. For the individual demand

component Dm,t, it holds:

Dm,t(u) = dm,t +
∑

{j:µj=m}

uj,t (3.8)

where dm,t is the known inflexible demand at bus m at time t.

Remark 3.1. The proposed modelling framework directly considers the impact of

flexible demand at a transmission level and it does not specifically account for the

effects on the underlying distribution network. This is consistent with previous works

[37, 39, 40, 42, 38] on the subject and it is done in order to perform a theoretical

high-level analysis that, by introducing the least degree of simplification and retaining

structural aspects of the power system, ensures important properties of convergence

and optimality for the proposed control scheme. As discussed in Chapter 5, an
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explicit characterization of the distribution network will be a key direction for further

research in this area.

3.3.2 Game-theoretical Framework and Aggregative equi-

librium

The coordination of the power scheduling by the flexible loads is analyzed within

a game-theoretical framework. Each device is modeled as a self-interested player

that aims to minimize its individual cost in response to broadcast price signals. The

following competitive game is considered:

• Players: The set N of flexible devices.

• Strategies: The set Uj of feasible power profiles for a single flexible device

j ∈ N .

• Objective function: Energy cost of task completion. For a certain price signal

p : T → R+, the following expression can be provided for the cost Cj of device

j:

Cj =
T∑
t=1

pt · uj,t∆t. (3.9)

Within this framework, the flexible loads are rational agents competing for power

consumption at cheap prices. In the next section, we propose a coordination strategy

of the devices that ensures convergence to a stable market configuration. This is

expressed as a variational aggregative equilibrium, defined as follows.

Definition 3.2. The scheduled power consumption u∗ ∈ U ⊂ RNT corresponds to a

variational aggregative equilibrium if the following holds for all u ∈ U :

∆Cj =
∑

t: uj,t≥u∗j,t

p̄∗µj ,t
[
uj,t − u∗j,t

]
∆t−

∑
t:uj,t≤u∗j,t

¯
p∗µj ,t

[
u∗j,t − uj,t

]
∆t ≥ 0 ∀j ∈ N

(3.10)
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¯
p∗m,t =

¯
pm,t (D(u∗)) p̄∗m,t = p̄m,t (D(u∗)) ∀m ∈M, ∀t ∈ T . (3.11)

This definition represents an extension of the aggregative equilibrium, which has

already been applied in the context of price-responsive demand coordination [33,

47, 25]. The general idea in these works is to characterize the equilibrium as a fixed

point, which is similar to Definition 2.2 in Chapter 2: the power scheduling of each

device is optimal for a certain price signal and, at the same time, the aggregate power

consumption of all loads induces that very same price. This concept satisfyingly

approximates a Nash equilibrium if the effect of the individual player on the global

quantities of the system is negligible. This is true in the present case of large-scale

deployment of flexible demand, as the power consumption of a single device is orders

of magnitude smaller than total power demand.

Definition 3.2 proposes a generalization of the aggregative equilibrium concept for

the case of non-differentiable global cost functions and discontinuous LMPs which,

as underlined in our analysis, naturally arise from line congestion and maximum

generation capacity when the proposed linearized ACOPF is considered. The left-

hand side of (3.10) denotes the energy cost variation ∆Cj incurred by the single

device j if it switches from the candidate equilibrium solution u∗j to some other fea-

sible power profile uj ∈ Uj. This cost variation is the difference between the costs of

increased power consumption at certain time instants (priced at p̄∗) and the savings

from reduced power consumptions at other times (priced at
¯
p∗). At equilibrium,

as imposed in (3.10), the cost variations ∆Cj associated to a different strategy are

always greater or equal than zero. Note that, if the minimized generation cost ϕ(D)

is a function differentiable everywhere, the signals p̄∗ and
¯
p∗ are the same, leading

to the classical definition of aggregative equilibrium. The second part of the fixed

point condition is given by (3.11), which ensures that the overall power consumption

of the devices leads to same prices p̄∗ and
¯
p∗ considered in (3.10).

In order to derive an equilibrium condition that is equivalent to the definition in
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(3.10), to be used in the subsequent analysis, the following function similar to (2.12)

in Chapter 2 is introduced:

γ(u, j, t̄,
¯
t) :=

(
¯
pµj ,

¯
t(D(u))− p̄µj ,t̄(D(u))

)
(Pj − uj,t̄)uj,

¯
t. (3.12)

The sign of γ indicates the possibility by the single load to reduce its cost. If

γ(u, j, t̄,
¯
t) > 0, the device j operating at bus µj, starting from a schedule u, can

reduce its cost by swapping power from time t =
¯
t to time t = t̄. In fact, consid-

ering the non-negativity of the factors (Pj − uj,t̄) and uj,
¯
t in (3.12), the condition

γ(u, j, t̄,
¯
t) > 0 implies three distinct inequalities:

¯
pµj ,

¯
t(D(u)) > p̄µj ,t̄(D(u)) uj,t̄ < Pj uj,

¯
t > 0.

The conditions above indicate, respectively, that:

• An advantageous price difference exists between
¯
t and t̄.

• The device j can consume more power at time t̄.

• The device j can consume less power at time
¯
t.

The last two points make the power swap between
¯
t and

¯
t feasible, while the first

one makes it cost-reducing for the device j. It follows that an equilibrium is reached

when γ is always non positive and no device can perform a cost-reducing power

swap. This is formalized by the following result:

Proposition 3.3. The scheduled power consumption u∗ ∈ U corresponds to a vari-

ational aggregative equilibrium, as presented in Definition 3.2, if and only if:

γ(u∗, j, t̄,
¯
t) ≤ 0 ∀j ∈ N , ∀(t̄,

¯
t) ∈ Aj ×Aj. (3.13)

Proof. See Appendix B.3.
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3.4 Distributed Coordination of Flexible Demand

This section proposes a distributed control strategy for flexible demand coordination.

This is initially characterized in Chapter 3.4.1 as a multi-valued mapping (similar to

Chapter 2.4.1), theoretically demonstrating with Lyapunov techniques and convex-

ity arguments its asymptotic convergence to a variational aggregative equilibrium

that is also socially optimal. An equivalent pseudo-code algorithm representation is

given in Chapter 3.4.2, whereas Chapter 3.4.3 discusses the implementation of the

proposed control strategy in practical contexts, envisioning a distributed scheme

where individual loads iteratively update their power scheduling, on the basis of

broadcast price signals, in order to reduce their energy cost.

3.4.1 Power Update as Evolution of Dynamical System

The power scheduling update of the flexible loads is described by the following

discrete-time dynamical system:

u(0) = u0 ∈ U u(k + 1) ∈ F (u(k)) (3.14)

where F : U 7→ U is a multi-valued correspondence and u(k) denotes the scheduled

power consumption of the flexible loads after k iterations of the proposed coordina-

tion strategy. In order to characterize the multi-valued mapping F , the following

quantities are preliminarily introduced:

Sj(u) := arg max
(t̄,

¯
t)∈Aj×Aj

γ(u, j, t̄,
¯
t) (3.15)

∆(u, j, t̄,
¯
t) := min

({
ε(D(u), µj, t̄,

¯
t), Pj − uj,t̄, uj,

¯
t

})
(3.16)

The set Sj(u) associates to a device j ∈ N the pairs of time instants sj = (t̄j,
¯
tj)

that maximize the function γ under the current u and can therefore be considered



60 Chapter 3. Coordination of Flexible Loads Considering Network Topology

for cost-reducing power swaps. Considering the constraints in (3.6) and Definition

3.1 for ε, the function ∆ returns the maximum feasible power swap that device j

can perform between t̄ and
¯
t while preserving their original price order.

The multi-value mapping Fj associated to the power scheduling update of a single

device j is now defined:

Fj(u) =
⋃

sj∈Sj(u)

f (sj)(u) =
⋃

sj∈Sj(u)

[
f

(sj)
1,1 (u), . . . , f

(sj)
N,T (u)

]
(3.17)

where the single component f
(sj)
i,t (u) of f (sj)(u) in (3.17), corresponding to the up-

dated power consumption of device i at time t, has the following expression when

sj = (t̄,
¯
t):

f
(sj)
i,t (u) = ui,t + ∆(u, j, t̄,

¯
t) · 1{j}(i)

[
1{t̄}(t)− 1{

¯
t}(t)

]
. (3.18)

When the mapping Fj(u) in (3.17) is applied, a single element sj = (t̄j,
¯
tj) is selected

within the set Sj(u) and the device j swaps power from time
¯
tj to t̄j. The amount of

swapped power corresponds to ∆, defined in (3.16). The last two terms in its mini-

mum function ensure that the updated power scheduling remains feasible, whereas

the first term ε, defined in (3.5), guarantees that the power swap is performed (i.e.

∆ > 0) only if there is an advantageous price differential between the time instants

t̄j and
¯
tj. All other devices i ∈ N\{j} maintain their previous power scheduling.

The complete multi-valued correspondence F in (3.14) can now be expressed as the

composition of N mappings Fj, iterated over the whole population of flexible loads

N = {1, . . . , N}:

F (u) := (FN ◦ · · · ◦ F1) (u). (3.19)

The evolution of the power scheduling u(k) according to the proposed update strat-

egy can now be characterized as follows:

Definition 3.3. Given the dynamical system (3.14), with F defined in (3.19), its
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solution set Ψ can be expressed as:

Ψ := {ψ : N→ U : ψ(k + 1) ∈ F (ψ(k)) ∀k ∈ N} . (3.20)

This definition is similar to Definition 2.3. Some fundamental properties of the solu-

tion set Ψ are now demonstrated, showing that the proposed power update strategy

(characterized by the mapping F ) always converges to the variational aggregative

equilibrium presented in Definition 3.2.

This is proved with Lyapunov arguments, selecting the optimized generation costs

ϕ(D) as the considered Lyapunov function. Similarly to the Lyapunov stability

theorem in the discrete-time case, we aim to demonstrate that the function ϕ(D)

is always nonincreasing when evaluated over the state trajectories (3.19) of system

(3.14), as shown in Proposition 3.4. This implies convergence to equilibrium – as

demonstrated in Theorem 3.1.

The first step in our analysis is the following result:

Proposition 3.4. For the optimized generation cost ϕ presented in (3.1), evaluated

along any solution ψ ∈ Ψ, it holds:

ϕ(D(ψ(k + 1))) ≤ ϕ(D(ψ(k))) ∀k ∈ N (3.21a)

ψ(k + 1) = ψ(k) ∀k : ϕ(D(ψ(k + 1))) = ϕ(D(ψ(k))) (3.21b)

lim
k→∞

ϕ(D(ψ(k))) = ϕ∞, ϕ∞ ∈ R+ (3.21c)

Proof. See Appendix B.4.

Proposition 3.4 shows that the proposed power update of the flexible loads, char-

acterized by the multivalued mapping F , has the fundamental property of reducing

the total generation costs of the system at each iteration. As a result, the minimized
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generation cost ϕ asymptotically converges to some finite value ϕ∞. In addition,

from (3.21b), the proposed strategy updates the power scheduling of the loads only if

this ensures a reduction of total costs. The main equilibrium and optimality results

can now be provided.

Theorem 3.1. Let Ω∗ denote the set of variational aggregative equilibria introduced

in Definition 3.2. Indicating by |x|Γ the distance between some element x ∈ U and

the set Γ ⊆ U , it holds:

lim
k→∞
|ψ(k)|Ω∗ = 0 ∀ψ ∈ Ψ. (3.22)

Proof. See Appendix B.5.

This result ensures that the proposed scheme asymptotically converges to the set of

variational aggregative equilibria. In other words, when the final power scheduling

is applied, each device has no unilateral interest in modifying its power consumption

in order to reduce its energy cost. This property holds for any grid topology, any

penetration level of flexible demand and all parameters of the price-responsive loads.

Global optimality of the equilibrium can also be demonstrated, under some mild

assumptions:

Theorem 3.2. If the optimized generation cost is differentiable at the aggregative

equilibrium u∗ ∈ Ω∗, i.e. D = D(u∗) /∈ D in (3.3), the following optimality property

is verified:

ϕ (D(u∗)) ≤ ϕ (D(u)) ∀u ∈ U . (3.23)

Proof. See Appendix B.6.

The theorem shows that any aggregative equilibrium u∗ is also socially optimal if

the function ϕ(D) is differentiable at D = D(u∗). In these cases, there exists no

feasible power scheduling u ∈ U whose associated generation cost ϕ(D(u)) is lower

than ϕ(D(u∗)) obtained at equilibrium.
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3.4.2 Pseudo-Code and Flowchart Representation

Algorithm 2 Iterative scheme - Flex. demand coordination

1. Initialization phase. Starting values for power scheduling of the loads and
flag variables are set:

u(0) = u0 ∈ U k = 0 conv = 0

2. Power scheduling update. The scheduled power profiles of the individual
loads are iteratively updated:
WHILE (conv = 0)

(a) conv = 1

(b) k = k + 1

(c) u(k) = u(k − 1)

(d) FOR j = 1 : 1 : N

i. FIND (t̄∗,
¯
t∗) such that:

(t̄∗,
¯
t∗) ∈ arg max

(t̄,
¯
t)∈Aj×Aj

γ(u(k), j, t̄,
¯
t)

ii. IF γ(u(k), j, t̄∗,
¯
t∗) > 0

conv = 0 δ = ∆(u(k), j, t̄∗,
¯
t∗)

uj,t̄∗(k) = uj,t̄∗(k) + δ uj,
¯
t∗(k) = uj,

¯
t∗(k)− δ.

END FOR

END WHILE

3. Final results. The aggregative equilibrium solution is equal to the power
scheduling at the last iteration:

u∗ = u(k).

The power scheduling update described by (3.19) and (3.17) can be performed

through Algorithm 2, graphically summarized by the flowchart in Fig. 3.1.

The Initialization phase of the algorithm sets the power scheduling u(0) of the

whole population to some initial value u0.

In the Power scheduling update phase, each full execution of the FOR cycle in

step 2.b) corresponds to the application of the mapping F in (3.19). In particular,

each single iteration with index j is equivalent to the application of Fj in (3.17).
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First, the time instants t̄∗,
¯
t∗ ∈ Aj which maximize γ are selected. Then, if the

maximized γ is positive, the device j can reduce its energy cost by shifting the

amount of power δ from
¯
t∗ to t̄∗. As established in Theorem 3.1, the algorithm

converges to an aggregative equilibrium. When γ(u(k), j, t̄j,
¯
tj) ≤ 0 for all j ∈ N

and (t̄j,
¯
tj) ∈ Aj ×Aj, the logical variable conv remains equal to 1 throughout the

FOR cycle and the final scheduling u∗ = u(k), returned in the Final results phase,

fulfills (3.13) in Proposition 3.3.

Start

Find

Yes

Yes

Yes

No

No

No

End

Figure 3.1: Flowchart of Algorithm 2.
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3.4.3 Implementation Scheme

Algorithm 2 constitutes a pseudo-code representation of the iterated application of

the multi-valued mapping F in (3.19). It details the steps required to calculate the

modified power schedule by each individual load and specifies the stopping criterion

for the iterative updates. In this section, we present an implementation scheme for

the application of this algorithm in a distributed way, considering iterated broadcast

of prices and individual devices that autonomously modify their power schedule to

reduce their costs. Relying on a bi-directional communication scheme between the

system operator and the flexible loads, the operations associated to each step of the

algorithm can be performed as follows:

1. Initialization phase: Each device j determines an initial feasible power con-

sumption profile uj(0) = u0
j ∈ Uj. This can be obtained by broadcasting a certain

price signal p to all the loads and letting each device j schedule its power consump-

tion uj(0) = u0
j in order to minimize (3.9). The scheduled power profiles u(0) are

communicated to the central entity, which determines the resulting aggregate power

demand D(u(0)) through (3.8).

2. Power scheduling update: Implementation of the WHILE cycle in step 2 can

be performed as follows:

• The price signals p̄µj(D(u(k))) and
¯
pµj(D(u(k))), i.e. the locational marginal

prices at bus m = µj associated to the current demand profile D are calculated

according to (3.4) and broadcast to device j. This device can then indepen-

dently determine the time instants t̄∗,
¯
t∗ ∈ Aj of an advantageous power swap

reducing its energy cost (as in step 2.b.iii of Algorithm 2).

• The device j applies (3.16) and independently calculates δ in step 2.b.iv of

Algorithm 2, i.e. the maximum amount of power consumption that can be

swapped in its power schedule from time
¯
t∗ to t̄∗.
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• The device j communicates t̄∗,
¯
t∗ and δ to the central entity which in turn

calculates the new demand profile D(u(k + 1)) and the convergence flag conv.

3. Final results: When Algorithm 2 converges to an aggregative equilibrium, as

proven in Theorem 3.1, the WHILE cycle described above is concluded and the

devices cannot further reduce their energy costs. Their final power profiles u∗j will

be equal to uj(k) at the last iteration k.

In order to find out the communication scale of the practical implementation, the

information exchanged at each iteration k of Algorithm 2 is firstly summarized in

the Table 3.1.

Table 3.1: Communication between flexible loads and central entity at an iteration

k of Algorithm 2.

k-th
Information from entity to load j Information from load j to entity

iteration

Load 1 Price signal (after power swap of load N) Power swap of load 1

Load 2 Updated price after power swap of load 1 Power swap of load 2

Load 3 Updated price after power swap of load 2 Power swap of load 3

...
...

...

Load N Updated price after power swap of load N − 1 Power swap of load N

It is seen from the table that there are N times of communication between the central

entity and the flexible loads at each iteration. At each time of the communication,

the central entity broadcasts a price signal to a load j, and this load performs a power

swap to reduce its energy cost in response to the price signal. The information of the

power swap is then returned to the entity which will update the price accordingly.

If the coordination algorithm terminates after a number k = K of iterations, there

will be K ·N times of information exchanged between the entity and the loads.
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3.4.4 Methods for Faster Algorithm Convergence

The coordination scheme in Algorithm 2 has been chosen for its simplicity and

because it directly maps the multi-valued function F , introduced in (3.19) to ana-

lytically describe the scheduling update of the loads. Some alternative approaches

that can ensure faster convergence are discussed below:

Best response strategy: Each load directly applies its cost-minimizing schedule

in response to a price broadcast, with no impact of its previous power scheduling.

This approach has exhibited fast convergence to equilibrium in simulation, but such

result has not been formally proved.

One-shot strategy: With this method, discussed in detail in [24] for a simplified

pricing structure, the flexible loads are coordinated through the broadcast of a sin-

gle price signal (different in general for each load). These prices are calculated by

the central coordinator, which receives the characteristics and task parameters of all

the devices and internally emulates Algorithm 2 to calculate the final equilibrium

solution. It should be mentioned that, in this case, one-shot convergence is obtained

at the expenses of the loads’ privacy.
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3.5 Simulation Results

Figure 3.2: Diagram of the IEEE 24-bus system.

The performance of the proposed control scheme is assessed in simulation on the

IEEE 24-bus system [48]. The generation cost fm(g) at each bus m is assumed to

be a quadratic function of the power generation g, i.e. fm(g) = amg
2 + bmg. The

diagram of the system and its relevant generation and parameters are shown in Fig.

3.2. Other parameters, such as reactive power generation limits of generators and

resistance, reactance and susceptance of transmission lines, can be found in [48].
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The inflexible active demand profiles dm,t are derived from historical data and are

in general different for each bus. Their values are shown in Fig. 3.3 (left - black

dashed lines). It is assumed that the inflexible demand at each bus operates at 0.95

lagging power factor and that the feasible range of voltage magnitude at each bus

is between 0.9 p.u. and 1.1 p.u.. Additionally, the system model is considered to be

power lossless, i.e. the terms PL
l,t and QL

l,t are equal to zero in (3.2a) and (3.2b). A

future scenario with high penetration of electric vehicles is considered: each vehicle

j is modeled as a power load with unity power factor [49], aiming at charging its

battery at minimum cost within its availability interval Aj. The number Nm of EVs

at each bus m is shown in Fig. 3.2. We denote by Nm ⊆ N the subset of Nm

devices operating at bus m. The required energy Ej of all devices j ∈ Nm is chosen

according to a Gaussian distribution with mean xEm and standard deviation δEm. In

addition, it is assumed that all the vehicles at bus m have the same rated power Pm.

For instance, the energy and power parameters for the EVs at bus 1 are selected as

follows:

xE1 = 30 kWh δE1 = 1kWh P1 = 10kW.

The final time T = 24h and time discretization step ∆t = 0.25h are chosen for

the considered time horizon. It is assumed that each vehicle j can operate in a

continuous time interval [tj, tj + dj]. The equivalent availability window Aj of the

single device j can be expressed in discrete time as:

Aj = {t ∈ T : tj ≤ t ·∆t ≤ tj + dj} . (3.24)

The values of tj and dj for all devices j ∈ Nm operating at bus m are also determined

according to Gaussian distributions with mean values xtm and xdm and standard

deviations δtm and δdm, respectively. For example, the availability parameters for the

EVs at bus 1 are:

xt1 = 21 : 30 h δt1 = 1.5 h xd1 = 10 h δd1 = 1.5 h.
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It should be noted that the normal distributions used to generate the EVs parameters

Ej, tj and dj are properly truncated and rescaled in order to ensure feasibility and

well-posedness of the considered scheduling problem.

3.5.1 Algorithm Implementation

The coordination of the flexible devices has been performed with Algorithm 2. The

initial condition u(0) = u0 in Step 1) envisages constant power profiles for all loads.

The power update in Step 2) has been carried out by sequentially selecting a sin-

gle device at each iteration. A single power swap is performed according to the

expressions provided in step 2.d) before moving on to the next device.

The final results of the proposed coordination scheme, denoted by the star super-

script, have been compared with the scenario PG (price-greedy). In this latter case,

a more naive approach is applied and each load j ∈ Nm determines its power con-

sumption profile according to the price p̄m(d), i.e. the electricity price when only

inflexible demand d is considered. The total power consumption of the flexible loads

in this scenario is denoted as uPG.

The demand and price profiles obtained with the two policies mentioned above are

compared in Fig. 3.3, in which a limited number of relevant buses is considered. In

the present case study, the two price signals p̄ and
¯
p introduced in (3.4) coincide in

all cases and therefore only the signal p̄ is shown. The most relevant trend is that

the electricity price p̄m(D(u∗)) obtained with the proposed algorithm is consistently

flatter than p̄m(D(uPG)). All the electric vehicles schedule their charge between

22:00h and 7:00h, when the electricity price at their bus is constant and minimum.

As expected, at equilibrium no device can exploit any price differential to reduce

its energy cost and therefore has no unilateral interest in changing its final power

consumption profile. Note that the same flattening trend, albeit on a lesser scale,

appears in the demand profiles Dm(u∗), which do not exhibit the significant rebound
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peaks of Dm(uPG). The flattening of the demand profiles Dm(u∗) in Fig. 3.3 is only

partial since the iterative power update of the devices is based on differences in

LMPs which, in general, do not exclusively depend on local demand but are also

affected in non-trivial ways by the demand values at other buses.
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Figure 3.3: Demand profiles (left) and electricity prices (right): no flexible demand

(black dashed trace), with proposed scheduling (red trace) and PG scenario (blue

dashed trace).

The generation profiles with the proposed scheme and under the PG scenario are

compared in Fig. 3.4. Differently from the significant variation in the PG case, the
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algorithm completely flattens generation at each bus during night-time.
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Figure 3.4: Generation profiles: no flexible demand (black dashed trace), with pro-

posed scheduling (red trace), PG scenario (blue dashed trace) and generation ca-

pacity (green dashed trace).
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Figure 3.5: Power flows: no flexible demand (black dashed trace), application of
proposed scheduling (red trace), PG scenario (blue dashed trace) and transmission
capacity (green dashed trace).

Some relevant examples of apparent power flows (obtained with the proposed al-

gorithm and in the PG case) are represented in Fig. 3.5. It can be seen that, in

general, there are reduced variations over time when the final configuration with

D = D(u∗) is considered. Note that line 27 always works at its maximum capacity.

To assess the impact of generation capacity limits and lines congestion on the lo-

cational marginal prices, LMPs at buses 7 and 8 for D = D(u∗) are plotted in

Fig. 3.6. A few interesting trends can be underlined. As expected, the two prices

p̄7,t(D(u∗)) and p̄8,t(D(u∗)) will be the same when there is no congestion on the line

11 connecting them (see top-left plot of Fig. 3.5). As soon as congestion appears

on line 11, the prices become different: the LMP at bus 8 will vary continuously

and its variations will be linked with the ones of other buses (i.e. buses 9 and 10),

which are connected to bus 8 by lines 12 and 13 (not congested). Conversely, in this

situation any additional unit of power at bus 7 can only be provided by generator 7
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at its marginal generation cost, which leads to the negative price jump of p̄7,t(D(u∗)

(black trace).
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Figure 3.6: The comparison of price profiles at buses 7 and 8 for D = D(u∗).
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Figure 3.7: Profiles of total generation for the considered scenarios (left) and total

generation costs as a function of algorithm iteration k (right).

The performance of the proposed algorithm is also assessed from a whole-system

perspective. In particular, the profiles of total generation GTOT,t =
∑M

m=1Gm,t for

the different considered scenarios are compared on the left of Fig. 3.7. Interestingly,

one can see that the proposed control strategy with D = D(u∗) completely flattens

the total generation profile GTOT . This can be intuitively explained by the fact

that, according to Theorem 3.2, the final configuration obtained with the proposed
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coordination scheme not only is an equilibrium but it is also socially optimal. As

we are considering strictly convex generation costs in (3.1) and the total generation

over time is a fixed quantity, the generation profile will naturally tend to be flat

at the optimum. In relation to this point, the generation costs ϕ are reported in

Fig. 3.7 as a function of the number k of algorithm iterations. Consistently with

the theoretical results of Proposition 3.4, the function ϕ(D(u(k))) is decreasing over

k. It can be seen that there is no further reduction of ϕ(D(u(k))) after k = 15

iterations, and the algorithm has converged. As established in Theorem 3.2, the

final value reached by ϕ(D(u(k))) corresponds to the minimized generation costs of

the system, which is smaller than the costs ϕ(D(uPG)) in the PG scenario.

3.5.2 Robustness with respect to Uncertainties

In the above simulations, the inflexible demand d is known without uncertainties.

To test the robustness of the control scheme with respect to forecast errors, it is

now assumed that the coordination is performed with an estimate d̃ of inflexible

demand. Denoting by d̃m,t the estimated inflexible demand at bus m and time t,

the following expression is considered:

d̃m,t = dm,t + ηm,t (3.25)

where ηm,t represents the forecast error on inflexible demand at bus m at time

t. Assuming that renewable generation has zero marginal cost and it is always

dispatched first, the quantity ηm,t can equivalently represent a negative error forecast

in renewable generation. The error forecast ηm is characterized as a random walk

ηm,t+1 = ηm,t + σmet, where et represents uncorrelated white noise with zero mean

and unitary variance. With this formulation, ηm,t is a random variable with zero

mean and standard deviation equal to σm ·
√
t, which is consistent with basic models

for wind error forecast as shown for example in [50]. To account for error forecast
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Figure 3.8: Average energy cost Cav (left) and average generation costs ϕav (right)
as functions of the parameter σ.

correlation at the different buses due to geographical proximity, two independent

noise signals et are considered for the South buses (e.g. buses 1-12) and for the

North ones (buses 13-24). The value of σm at each node m is obtained as the

rescaling of a unique parameter σ by the fraction of total demand at that node.

The coordination algorithm has been applied by considering the inflexible demand

estimate d̃ rather than the actual profile d, denoting by ũ∗ the power scheduling of

the loads at the final equilibrium solution. In this case of imperfect information, the

total generation costs will be equal to ϕ(D(ũ∗)) and the energy cost C̃j sustained

by the single device j will correspond to:

C̃j =
T∑
t=1

pµj ,t(D(ũ∗)) · ũ∗j,t ·∆t

The optimal scheduling ũ∗ has been calculated over L = 50 realizations of the es-

timated inflexible demand profile d̃. The resulting cost Cav (average of C̃j over

all devices and demand realizations) and the total generation costs ϕav (average

of ϕ(D(ũ∗)) over all demand realizations) are plotted in Fig. 3.8 as a function of

the standard deviation parameter σ. As expected, for increasing values of σ (cor-

responding to higher forecast errors) the average energy cost Cav for the individual

load and the average total generation costs ϕav increase. However, it can be seen

that the performance degradation remains relatively small, even when large values

of the standard deviation parameter σ are considered.
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3.6 Summary

This chapter presents a novel distributed scheme for the coordination of large popu-

lations of flexible electric loads. A comprehensive modelling framework is proposed

for demand response operating in multi-bus power systems, explicitly accounting for

the congestion of transmission lines and the impact of flexible demand on the loca-

tional marginal prices at each bus. The main original contribution is a theoretical

analysis that provides guarantees of convergence to a stable market outcome and

global optimality, for any grid topology and penetration level of flexible demand. In

addition, a double pricing structure and a novel concept of variational aggregative

equilibrium are proposed to characterize stable market configurations in the case

of discontinuous price functions. Practical implementation of the presented control

scheme is discussed and its performance is evaluated in simulation on the IEEE

24-bus system with high penetration of electric vehicles.



Chapter 4

Coordination of Flexible Devices

in Integrated Markets

4.1 Introduction

As mentioned in Introduction 1.1, flexible devices can contribute to the provision of

ancillary services by being available to reduce their power consumption. However,

the works in both Chapter 2 and Chapter 3 do not envision the possibility for

the flexible devices to also provide ancillary services. Considering this factor, this

chapter studies the coordination of flexible devices in an integrated market of energy

and ancillary services. In addition, the flexible devices considered in this chapter

include both the storage devices and flexible loads that have been introduced in

Chapter 2 and Chapter 3, respectively.

This active participation of demand response to ancillary services has been assessed

with different approaches. For example, centralized methods for primary frequency

support in microgrids are presented in [51] and reward allocation mechanisms are

proposed in [52] to enable provision of ancillary services by thermostatically con-

trolled loads. Market frameworks have also been widely investigated for the pro-

78
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vision of frequency response [53, 54] and reserve services [55, 56, 57, 58]. These

papers consider flexible demand that actively participates to ancillary services mar-

kets. However, [53, 54, 55, 56, 57, 58] do not provide any theoretic guarantee of

convergence and optimality of their proposed market setup.

This chapter bridges the gap between the game-theoretic schemes in [31, 32, 33,

34, 35, 36] and the market approaches proposed in [53, 54, 55, 56, 57, 58]. In

particular, it considers large populations of flexible devices (EVs and storage) that

individually participate to an integrated energy and reserve market. This scenario is

analysed through a rigorous game-theoretic setup in order to formally demonstrate

convergence of the proposed coordination scheme to an optimal configuration.

For simplicity, this chapter uses a DC optimal power flow (DCOPF) model to anal-

yse the integrated market instead of using the linearized ACOPF in Chapter 3. The

coordination problem is still analysed through an agent-based framework, similar

to previous chapters: each individual device (either a domestic micro-storage or an

electric vehicle) is modelled as a self-interested rational agent that responds to the

price signals and determines its operational schedule in order to optimize its own

objective function. In addition to the minimization of the energy cost, the individual

device will also aim to maximize the rewards received for allocation of reserve. Using

Lyapunov techniques, it is demonstrated that the proposed coordination strategy

converges to a stable market configuration (characterized as an aggregative equilib-

rium) that is also socially optimal. Simulations are carried out on the PJM 5-bus

system to test the validity of the proposed scheme and assess its performance.
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4.2 System Model

The considered power system is composed by a set M = {1, . . . ,M} of nodes con-

nected by a set L = {1, . . . , L} of transmission lines. The reactance and maximum

capacity of each line l ∈ L are denoted by Xl and F̄l, respectively. The analysis is

performed over a discrete time interval T = {1, . . . , T}, with a time discretization

step ∆t. Power demand is denoted by the vector D ∈ RMT , whose single compo-

nent Dm,t corresponds to the total power consumption at node m at time t. With

a similar notation, Fl,t indicates the power flow over line l ∈ L at time t ∈ T from

the sending node s(l) ∈ M to the receiving node r(l) ∈ M. Generation, reserve

and voltage angle vectors are denoted as G ∈ RMT , R0 ∈ RMT and θ ∈ RMT ,

respectively.

It is assumed that the power system operates under an integrated energy-reserve

market. Consistently with the approach presented in [6] and [59], a DCOPF is solved

to optimally dispatch power and procure reserve capacity. Similarly to [6], start-up

times and costs are neglected, avoiding the use of binary variables. The presented

formulation will be expanded in future work to consider a detailed unit commitment.

Under the proposed framework, the DCOPF corresponds to the solution of the

following minimization problem:

ϕ(D,R) = min
G,R0,θ

M∑
m=1

T∑
t=1

(
fGm(Gm,t) + fRm(R0

m,t)
)

(4.1)

subject to:

Dm,t −Gm,t +
∑

{l:s(l)=m}

Fl,t −
∑

{l:r(l)=m}

Fl,t = 0 ∀m ∈M ∀t ∈ T (4.2a)

|Fl,t| =
∣∣∣∣ 1

Xl

·
[
θr(l),t − θs(l),t

]∣∣∣∣ ≤ F̄l ∀l ∈ L, ∀t ∈ T (4.2b)

¯
Gm ≤ Gm,t ≤ Ḡm ∀m ∈M, ∀t ∈ T (4.2c)
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R0
m,t ≤ Ḡm −Gm,t ∀m ∈M, ∀t ∈ T (4.2d)

M∑
m=1

(
R0
m,t +Rm,t

)
≥ ∆Gmax

L ∀t ∈ T . (4.2e)

The objective function in the right-hand side of (4.1) corresponds to the sum (over

all times t and buses m) of the generation cost fGm(Gm,t) for producing Gm,t units of

power and the cost fRm(R0
m,t) for providing R0

m,t units of reserve. The functions fGm

and fRm are assumed to be strictly convex.

Regarding the constraints, (4.2a) corresponds to the supply-demand balance. The

inequalities in (4.2b) ensure that the power flow Fl,t does not exceed the maximum

line capacity F̄l, whereas (4.2c) imposes that generation at bus m is always within

the minimum (
¯
Gm) and maximum (Ḡm) power capability. The amount of reserve

R0
m,t that can be procured by generation at bus m at time t is constrained by (4.2d)

and cannot exceed the extra available capacity. Finally, (4.2e) imposes that the

total allocated reserve exceed some minimum quantity ∆Gmax
L , which for example

can correspond to the largest power unit capacity. Note that, in the left-hand side

of (4.2e), the total procured reserve is calculated as the sum over all buses of two

components: the reserve R0
m,t procured by the committed generation and the reserve

Rm,t provided by flexible demand and storage, which will be characterized in the

next section.

Remark 4.1. Compared with the linearized ACOPF in Chapter 3, the DCOPF

neglects the reactive power and transmission losses while keeping the convexity and

linearity. The neglect has little impact on the final results of the work, since the

energy price and reserve price are related to the active power, and the transmission

losses are quite small (due to high voltage at transmission level). It is also consistent

with other works [37, 38, 39, 40] studying the interactions between price-responsive

demand and the transmission network, where a DC formulation has been considered

for the optimal power flow problem and the calculation of the LMPs. The DCOPF

model is mostly used for the purpose of market clearing owing to its simplicity,

robustness and less computation.
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We wish to emphasize that, if one assumes inelastic demand and perfect competi-

tion, the result of the OPF problem can be considered as the solution of a traditional

centralized market mechanism [60]. Under this paradigm, one can define the prices

for energy and reserve provision as the relevant Lagrange multipliers of the con-

straints in (4.2). For a formal characterization of these quantities, note that the

optimized operational cost ϕ in (4.1) can be expressed as a function of the total

power demand D and the reserve R procured by the flexible devices. These quan-

tities do not appear as decision variables of the problem and depend instead on the

aggregate behaviour of the flexible devices (described in Chapter 4.3). As a result,

one can define the prices as follows:

pm,t(D,R) =
∂ϕ(D,R)

∂Dm,t

(4.3a)

ρm,t(D,R) = −∂ϕ(D,R)

∂Rm,t

. (4.3b)

The quantity pm,t represents the marginal cost of accommodating an additional unit

of demand at node m at time t and it can be interpreted as the price of electricity

at that bus and time instant. Similarly, the quantity ρm,t represents the marginal

saving obtained if flexible devices increase by an additional unit their allocated

reserve Rm,t at node m at time t (counterbalanced by an opposite reduction of

R0
m,t from generators). As a result, ρm,t can be considered the price at which the

allocation of reserve by flexible devices is rewarded.

Assumption 4.1. The function ϕ(D,R) is differentiable with respect to Dm,t and

Rm,t for any m ∈ M and t ∈ T . Its derivatives pm,t(D,R) and ρm,t(D,R) in (4.3)

are Lipschitz continuous.

The hypothesis of global differentiability of ϕ is introduced to simplify the subse-

quent analysis and ensure that the prices p and ρ in (4.3) are always well-defined.

The results presented in the rest of this chapter can be extended to the case of ϕ

differentiable almost everywhere by using the double-price framework presented in
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Chapter 3 or reference [61].

4.3 Price-Responsive Flexible Devices

It is envisioned that a large population of storage devices and EVs operate in the

considered power system. These devices have the capability to autonomously de-

termine their power schedule during the considered time interval T , according to

their constraints and objectives. In addition, they also have the possibility to con-

tribute to reserve, providing their availability to reduce their power consumption if

necessary. This section proposes an agent-based modelling of these flexible devices,

presenting their dynamics and objectives and characterizing their overall impact on

the power system.

4.3.1 Dynamics and Constraints

Consider a population N = {1, . . . , N} of flexible devices partitioned into two

groups: the set NEV of EVs and the set N S of storage batteries. Each device

j ∈ N operates over the time interval T according to a scheduled power profile

uj = [uj,1, . . . , uj,T ] ∈ RT , where uj,t denotes the power charged/discharged by de-

vice j at time t. The feasibility of the power schedules uj for EVs and storage is the

same as that presented in Chapter 2 and 3, which is shown as follows.

EVs : Each EV j ∈ NEV has rated power P̄j and requires a certain amount of

energy Ej to fully charge its battery. Its charging can only occur within the interval

Aj = {T sj , T sj + 1, . . . , T ej } ⊆ T , when the EV is plugged into the grid. Therefore,

the set Uj of all feasible charging profiles uj for an EV j ∈ NEV can be defined as:

Uj :=

{
uj ∈ RT :

T∑
t=1

uj,t ·∆t = Ej , 0 ≤ uj,t ≤ P̄j · 1Aj(t) ∀t ∈ T

}
(4.4)
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where 1Aj(t) is the indicator function:

1Aj(t) =

 1 if t ∈ Aj

0 if t 6∈ Aj.
(4.5)

The equality in (4.4) guarantees that the energy charged by the EV j over the time

interval T is equal to required amount Ej, while the inequalities indicate that the

positive charging rate of the EV j cannot exceed its rated power P̄j during the

availability times Aj and should be zero outside Aj. Note that the formulation (4.4)

of the feasible set Uj is still valid if one considers other types of flexible loads.

Storage Devices : The storage device j ∈ N S is characterized by the following

parameters: its energy capacity Ēj, its maximum charging rate P̄j and discharg-

ing rate
¯
Pj. For a certain initial energy Ej,0 and charge/discharge profile uj, the

associated energy level Ej,t of storage j at time t is expressed as:

Ej,t = Ej,0 +
t∑

x=1

uj,x ·∆t. (4.6)

The set Uj of all feasible power profiles uj for the storage device j ∈ N S is defined

as:

Uj :=

{
uj ∈ RT :

T∑
t=1

uj,t = 0, 0 ≤ Ej,0 +
t∑

x=1

uj,x ·∆t ≤ Ēj,

¯
Pj ≤ uj,t ≤ P̄j ∀t ∈ T

}
.

(4.7)

The equality in (4.7) is equivalent to the cyclic constraint Ej,0 = Ej,T from (4.6),

ensuring that the initial and final storage energy levels are equal. The first and

second chains of inequalities in (4.7) ensure that the energy level Ej,t and charg-

ing/discharging rate uj,t remain within feasible limits.

The set U of feasible power schedule u ∈ RNT for the whole population can be



4.3. Price-Responsive Flexible Devices 85

characterized as follows:

U = U1 × · · · × UN . (4.8)

4.3.2 Reserve Service Provision

It is envisioned that EVs and storage devices can contribute to the provision of

reserve by being available to reduce their power consumption. For simplicity, it is

assumed that this power reduction must last for a period of ∆t, i.e. the considered

time discretization step. For example, in the proposed case study, the time step

∆t has been chosen equal to 30 minutes. The reserve amount r deliverable at time

t by the single EV or storage is expressed as a function of the scheduled power

consumption u. In particular, it is assumed that each device allocates the maximum

feasible reserve amount, i.e. the maximum power reduction that does not violate

the feasibility conditions expressed in (4.4) and (4.7).

EVs : At each time t, the maximum reserve amount r that can be provided by the

EV j corresponds to a reduction of its power consumption from its scheduled value

uj,t to 0.

rj,t(u) = uj,t ∀j ∈ NEV . (4.9)

Storage Devices : The reserve r that can be allocated by the storage j at time

t is determined by the feasibility constraints in (4.7) and must fulfill the following

conditions:

rj,t(u) ≤ uj,t −
¯
Pj (4.10a)

Ej,t − rj,t(u)∆t = Ej,0 +
t∑

x=1

uj,t∆t− rj,t(u)∆t ≥ 0 (4.10b)

Equation (4.10a) imposes that rj,t(u) is smaller than the maximum feasible power

reduction uj,t−
¯
Pj whereas (4.10b) ensures that a potential power reduction of rj,t(u)

units by storage j at time t does not violate its energy constraints. The reserve r
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can then be expressed as:

rj,t(u) = min

(
Ej,t
∆t

, uj,t −
¯
Pj

)
∀j ∈ N S. (4.11)

4.3.3 Aggregate Impact of Flexible Devices

It is now possible to express D and R, which appear as parameters of the minimized

cost ϕ in (4.1), as functions D̃(u) and R̃(u) of the overall power schedule u of the

flexible devices. The total demand D̃m,t(u) at bus m at time t is given by the sum

of the power demand dm,t of the inflexible devices (assumed to be known a priori)

and the total power consumption of the flexible devices. Denoting by µj ∈ M the

bus at which the device j ∈ N operates, it holds:

D̃m,t(u) = dm,t +
∑

{j:µj=m}

uj,t. (4.12)

Similarly, the total reserve R̃m,t(u) provided by the flexible devices at bus m at time

t, when the scheduling u is applied, has the following expression:

R̃m,t(u) =
∑

{j:µj=m}

rj,t(u). (4.13)

Replacing the generic terms D and R in (4.3) with the corresponding expressions

D̃(u) and R̃(u) yields:

p̃m,t(u) := pm,t(D̃(u), R̃(u)) (4.14a)

ρ̃m,t(u) := ρm,t(D̃(u), R̃(u)). (4.14b)

The functions p̃m,t(u) and ρ̃m,t(u) correspond, respectively, to the prices of electricity

and reserve as functions of the overall power schedule u by the flexible devices.
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4.4 Game-Theoretic Formulation

The power consumption and reserve service provision of the flexible devices is con-

trolled in a distributed manner. Each device is modelled as a self-interested rational

agent that autonomously schedules its power consumption and procured reserve to

minimize its cost C, on the basis of broadcast price signals. For a certain device j,

its cost C can be expressed as a function of the schedule u of the whole population

and the power profile uj of the considered device.

EVs : The cost C of EV j has the following expression:

C(u, uj) =
T∑
t=1

[p̃µj ,t(u) · uj,t − ρ̃µj ,t(u) · rj,t(u)] + ψ(uj) ∀j ∈ NEV (4.15)

Three distinct components appear in the cost expression:

• Electricity cost : the sum over all discrete time instants t of the power con-

sumption uj,t, multiplied by the electricity price p̃µj ,t(u).

• Reserve revenue: the sum over time of the allocated reserve rj,t(u), multiplied

by the reserve price ρ̃µj ,t(u) with changed sign, since this represents a revenue

for the device.

• Discomfort cost : summarized by the function ψ.

The function ψ is meant to represent the potential discomfort incurred by the EV

owner if, by actually providing reserve, the vehicle battery is not fully charged by

the end of the considered interval. Denoted by Ê(uj, t) the final energy mismatch if

reserve is provided by the EV j at time t, the following expression is considered for

ψ:

ψ(uj) =
∑
t∈Aj

ξ · Ê(uj, t), (4.16)

where ξ is a penalty factor. The missed energy Ê(uj, t), if positive, will correspond
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to the difference between the required energy Ej and the maximum energy that

the EV can charge by operating at the maximum power rate P̄j after the potential

reserve service provision:

Ê(uj, t) = min

0, Ej −

 t−1∑
τ=T sj

uj,τ∆t+

T ej∑
τ=t+1

P̄j∆t

 . (4.17)

To capture the sensitivity of the cost C in (4.15) with respect to the power profile

uj of the single EV, the gradient ∇ujC(u, uj) =
[
∂C(u,uj)

∂uj,1
, . . . ,

∂C(u,uj)

∂uj,T

]
is consid-

ered. Recalling from (4.9) that the provided reserve rj,t(u) is equal to the power

consumption uj,t when j ∈ NEV , the individual components of ∇ujC(u, uj) have

the following expression:

∂C(u, uj)

∂uj,t
= p̃µj ,t(u)− ρ̃µj ,t(u) +

∂ψ(uj)

∂uj,t
∀j ∈ NEV . (4.18)

Storage Devices: In the present modelling framework, no extra cost ψ is consid-

ered for storage, as no customer discomfort is associated to its final energy level. As

a result, the cost C sustained by the storage device j only consists of the first two

components in (4.15).

C(u, uj) =
T∑
t=1

[
p̃µj ,t(u) · uj,t − ρ̃µj ,t(u) · rj,t(u)

]
∀j ∈ N S. (4.19)

The individual components of the gradient ∇ujC(u, uj) have the following expres-

sion:

∂C(u, uj)

∂uj,t
= p̃µj ,t(u)−

T∑
s=t

ρ̃µj ,s(u)
∂rj,s(u)

∂uj,t
∀j ∈ N S. (4.20)

Note that the partial derivatives
∂rj,s(u)

∂uj,t
appear in (4.20) only for s ≥ t. This is

because changes in uj,t at time t only modify the energy level Ej,s in (4.6) for s ≥ t.

Consequently, the reserve values rj,s(u) in (4.11) will be affected by changes in uj,t

only if s ≥ t, implying that
∂rj,s(u)

∂uj,t
= 0 when s < t.
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Remark 4.2. In the present framework, it is assumed that the storage devices have

full efficiency and no energy loss is associated to their charge/discharge operation.

This assumption is to avoid the nonlinearity introduced by the partial efficiency of

storage devices, simplifying the mathematical analysis. For more accurate results,

the case of storage devices with partial efficiency can be easily accommodated using

the analytical approach presented in Chapter 2.

4.4.1 Flexible Demand Operation as Competitive Game

On the basis of the modelling analysis presented above, the operation of the flexible

devices can be characterized as a competitive game with the following elements:

• Players: The set N of EVs and storage devices.

• Strategies: The set Uj of feasible power profiles for each device j ∈ N .

• Objective Functions: The cost C for EVs and storage devices presented in

(4.15) and (4.19), respectively.

In other words, the flexible devices can be considered as price-responsive rational

players that schedule their power profiles to minimize their own costs, competing for

power consumption at times with lower price p̃(u) and for reserve allocation at times

with higher rewarded price ρ̃(u). The devices interact with each other through the

changes in prices introduced by their aggregate power profile. Notice in fact that

variations in the individual power profiles uj modify the overall power schedule u

and change the price signals p̃(u) and ρ̃(u) in (4.14). For example, all devices will

try to consume more power at times when p̃(u) is low. However, by doing so, they

will increase u and induce higher prices.
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4.4.2 Aggregative Equilibrium

The power profile u∗ scheduled by the flexible devices should correspond to a stable

market configuration that satisfies each individual price-responsive agent. Within

the proposed game-based framework, this can be characterized as an aggregative

equilibrium of the game described in Chapter 4.4.1.

Definition 4.1. Consider a feasible power schedule u∗ with u∗j ∈ Uj, ∀j. This

corresponds to an aggregative equilibrium if the following conditions hold:

C(u∗, u∗j) ≤ C(u∗, uj) ∀uj ∈ Uj, ∀j ∈ N . (4.21)

Condition (4.21) implies that, at the equilibrium u∗, no device j can unilaterally

reduce its individual cost by changing its scheduled power u∗j into any other feasible

profile uj. This equilibrium solution, as achieved according to the iteration scheme

later proposed, has the following additional fairness features:

• Each device cannot unilaterally reduce its cost.

• Equal devices are charged equal cost.

• Flexibility is rewarded: larger availability windows imply cheaper cost.

Similarly to Definition 2.2 and 3.2, the concept of aggregative equilibrium is con-

sidered instead of the classic Nash formulation. It is assumed that the strategy

variation of agent j from u∗j to some other uj has a negligible impact on the overall

schedule u∗ (i.e. the first variable of the cost C) and therefore on the prices p̃(u∗)

and ρ̃(u∗). In other words, all devices are assumed to be price-takers.
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4.5 Distributed Control Strategy

In this section we propose a distributed scheme that, by iterated price broadcasts

and independent power schedule updates by the flexible devices, converges to the

aggregative equilibrium introduced in Definition 4.1. Convergence will be proved

with Lyapunov methods, demonstrating that a certain function V is reduced at each

schedule update. In the present analysis, the chosen V has the following expression:

V (u) = ϕ(D̃(u), R̃(u)) +
∑

j∈NEV
ψ(uj). (4.22)

Note that V corresponds to the sum of the minimized operational cost ϕ and the

EV discomfort ψ, thus representing a global cost index for the considered problem.

4.5.1 Elementary Power Swap

It is envisioned that the flexible devices sequentially update their power profile in

response to price signals, with the objective of reducing their cost function. The

fundamental power update operation of device j consists of a power swap of ∆

power units from time
¯
t to time t̄. Starting from an initial power schedule u ∈ U ,

the updated global power profile u+ after the swap will have the following expression:

u+
i,s =


ui,s −∆ if i = j, s =

¯
t

ui,s + ∆ if i = j, s = t̄

ui,s otherwise

(4.23)

If one denotes by êj,t the vector of the standard orthogonal basis associated to the

components j and t of RNT , the following equivalent compact expression can be

provided:

u+ = u+ ∆
(
êj,t̄ − êj,

¯
t

)
(4.24)
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For a certain power schedule u ∈ U , the amount of power ∆ that can be swapped

by the single device j ∈ N is limited by the quantity δ, defined as follows:

δ(u, j, t̄,
¯
t) = min

{
a(u, j, t̄), b(u, j,

¯
t), c(u, j, t̄,

¯
t), d(u, j, t̄,

¯
t)
}
. (4.25)

Each of the four terms of the minimum function in (4.25) is now described in detail:

• Maximum feasible power increase at time t̄:

a(u, j, t̄) = P̄j − uj,t̄ (4.26)

• Maximum feasible power decrease at time
¯
t:

b(u, j,
¯
t) =

 uj,
¯
t if j ∈ NEV

uj,
¯
t −

¯
Pj if j ∈ N S

(4.27)

The bounds a and b ensure that u+
j in (4.23), i.e. the new power schedule of device

j after the elementary swap, always fulfils the power bounds in (4.4) and (4.7) when

∆ ≤ a and ∆ ≤ b.

• Maximum feasible power swap that fulfils energy constraints:

c(u, j, t̄,
¯
t) =


P̄j if j ∈ NEV

min
t∈{

¯
t,..., t̄−1}

Ej,t
∆t

if j ∈ N S,
¯
t < t̄

Ēj −maxt∈{t̄,...,
¯
t−1}Ej,t

∆t
if j ∈ N S, t̄ <

¯
t

(4.28)

By imposing ∆ ≤ c, the energy constraint in (4.7) is also fulfilled. For example, in

the second case in (4.28), it is ensured that the minimum energy level of the storage

device j between
¯
t and t̄− 1, which is lowered by c∆t as a result of the power swap,

remains above the minimum zero value. The third case in (4.28) fulfils a similar

purpose when t̄ <
¯
t and the state of charge of the storage is increased between t̄ and
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¯
t− 1. Since no energy constraints are considered when j ∈ NEV , in the first case in

(4.28) c corresponds to the maximum power P̄j.

• Maximum cost-reducing power swap.

The last term d in (4.25) ensures that ∆ > 0 only if the associated power swap

reduces the cost of the individual device. This term can generally be defined as

follows:

Proposition 4.1. For all j ∈ N , (t̄,
¯
t) ∈ Aj×Aj, u ∈ U , there exists d(u, j, t̄,

¯
t) ≥ 0

such that, for any ∆ ∈ [0, d(u, j, t̄,
¯
t)], the following conditions hold:

d(u, j, t̄,
¯
t) = 0 ⇐⇒ ∇ujC(u, uj)

(
êj,t̄ − êj,

¯
t

)
≥ 0 (4.29a)

C
(
u, u+

j

)
− C(u, uj) = ∇ujC(u, uj)

(
êj,t̄ − êj,

¯
t

)
∆ (4.29b)

∃ α > 0 : V (u+)− V (u) = ∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
α (4.29c)

Proof. See Appendix C.1.

Condition (4.29a) imposes that d is positive (and therefore a power swap is performed

by device j between times
¯
t and t̄) only when the gradient of C is negative. This

means that also the cost variation C
(
u, u+

j

)
− C(u, uj) is negative, as established

in (4.29b). Finally, (4.29c) ensures that the variations of C and V caused by the

power swap have the same sign.

4.5.2 Coordination Algorithm

The proposed coordination strategy is described in Algorithm 3, which includes

three main phases. In the Initialization phase, the power schedule of the devices

is initialized to some arbitrary u(0) ∈ U . Two additional variables are also initialized:
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k keeps track of the number of iterations in the algorithm, whereas the flag variable

conv indicates whether an equilibrium has been reached and the update iterations

can thus be terminated. In the Power scheduling update, the execution of a FOR

cycle corresponds to a sequential strategy update by all devices, from j = 1 to j = N .

After the update in step 2.a) of the relevant indexes, in step 2.b.i) the individual

device j performs its strategy update by selecting a pair of time instants (t̄,
¯
t) that

maximize the (non-negative) function δ and therefore are potentially associated to a

cost-reducing power swap. This power swap is then performed in step 2.b.ii), where

the power schedule uj is updated. Finally, step 2.c.iii) is set to 0 if the current δ is

greater than zero, to signal that the devices are still improving their strategy and

convergence has not been reached yet. When the non-negative δ maximized in step

2.b.i) is equal to zero for all loads, the variable conv remains equal to one throughout

the whole FOR cycle and the Final results phase is reached, returning the desired

equilibrium solution u∗.

Algorithm 3 Iterative scheme - Flexible device coordination

1. Initialization phase. Set:

uj(0)← u
(0)
j ∈ Uj ∀j k ← 0 conv ← 0

2. Power scheduling update

WHILE (conv = 0)

(a) conv ← 1 k ← k + 1 u(k)← u(k − 1).

(b) FOR j = 1 : 1 : N

i. (t̄,
¯
t)← arg max

t1,t2

δ(u(k), j, t1, t2)

ii. uj,t̄(k)← uj,t̄(k) + δ(u(k), j, t̄,
¯
t)

uj,
¯
t(k)← uj,

¯
t(k)− δ(u(k), j, t̄,

¯
t)

iii. IF δ(u(k), j, t̄,
¯
t) > 0 : conv ← 0.

END FOR

END WHILE

3. Final results. The power schedule at the last iteration corresponds to the
aggregative equilibrium:

u∗ ← u(k).
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The convergence and optimality of the proposed coordination scheme are now for-

mally demonstrated.

Theorem 4.1. Under Assumption 4.1, for any population N of flexible devices op-

erating in the power system, Algorithm 3 asymptotically converges to an aggregative

equilibrium u∗.

Proof. See Appendix C.2.

Theorem 4.2. The final aggregative equilibrium u∗ is a global minimizer of the

function V :

V (u∗) ≤ V (u) ∀u ∈ U . (4.30)

Proof. See Appendix C.3.

From these results, we can conclude that the coordination scheme returns a power

schedule u∗ which corresponds to a stable market configuration (i.e. an aggregative

equilibrium). Recalling that V can be interpreted as a global cost index, it follows

that u∗ also represents a socially optimal solution for the coordination problem of

flexible devices.

4.5.3 Practical Implementation

The proposed algorithm can be implemented in a distributed manner, assuming that

each appliance is equipped with a smart controller and can receive price signals from

a central entity. Such implementation is discussed for each of the three main phases

of Algorithm 3.

1. Initialization phase: Each device j determines an initial feasible power profile

uj(0) ∈ Uj. This can be induced in a distributed way by broadcasting some initial

prices p0 and ρ0 and letting each device schedule its power profile uj(0) = u0
j , with
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the objective to minimize its cost C(u, uj) in (4.15) or (4.19). The resulting power

profiles uj(0) and the associated allocated reserve rj(u(0)) of each device j are then

communicated to the central entity, which can calculate the corresponding aggregate

demand D(u(0)) and reserve R(u(0)) through (4.12) and (4.13). Resolution of the

OPF problem (4.1)-(4.2) allows to derive the associated prices p̃(u(0)) and ρ̃(u(0))

through (4.3) and (4.14).

2. Power scheduling update: Each iteration of the WHILE cycle in Algorithm

3 can be implemented as follows:

• The signals p̃µj(u(k)) and ρ̃µj(u(k)), i.e. the prices of energy and reserve at

bus m = µj where device j operates, are broadcast to device j. In response to

these prices, the device j selects the pair of time instants (t̄,
¯
t) that maximize

the non-negative function δ (step 2.b.i)). The power amount δ is then shifted

from time
¯
t to t̄ (step 2.b.ii)), leading to a reduction of the energy cost C.

• After the power swap, the device j communicates the changes of its power

profile uj(k) and reserve amount rj(u(k)) to the central entity, which updates

the overall power schedule u(k) and the prices p̃µj(u(k)) and ρ̃µj(u(k)) accord-

ingly. The updated prices are then broadcast to the next device j + 1 and the

operations described above are repeated.

• After all the devices have updated their schedule once (corresponding to the

completion of FOR cycle in step 2.b)), the iteration number k is increased by

one (step 2.a)), and the next iteration is performed.

3. Final results: As demonstrated in the proof of Theorem 4.1, after a finite

number of iterations, the maximized quantity δ(u(k), j, t̄,
¯
t) is equal to zero and no

advantageous power swap can be performed between
¯
t and t̄. This implies that an

equilibrium is reached and the algorithm is terminated. The final power schedule

u∗ will be equal to u(k) at the last iteration k.

The information exchanged at each algorithm iteration k is summarized in Table
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4.1. It can be seen that all the devices communicate with the central entity once at

a single iteration. For a single device j, the central entity broadcasts the signals of

energy price and reserve price to it, and then the device performs a power swap to

reduce its cost in response to the price signals. The information of the changes in

its power profile and reserve provision caused by the power swap is then returned to

the entity which then updates the prices accordingly. When no device can perform

a feasible power swap to reduce its cost after a finite number k = K of iterations,

the coordination algorithm terminates, and there are K · N times of information

exchanged between the central entity and the devices.

Table 4.1: Communication between flexible devices and central entity at an iteration

k of Algorithm 3.

k-th
Information from entity to device j Information from device j to entity

iteration

Device 1
Energy price and reserve price

(after power swap of device N)

Changes in power and reserve amount

caused by power swap of device 1

Device 2
Updated energy price and reserve price

after power swap of device 1

Changes in power and reserve amount

caused by power swap of device 2

Device 3
Updated energy price and reserve price

after power swap of device 2

Changes in power and reserve amount

caused by power swap of device 3

...
...

...

Device N
Updated energy price and reserve price

after power swap of device N − 1

Changes in power and reserve amount

caused by power swap of device N

4.6 Computation Performance of Proposed Ap-

proach

In the case study presented in Chapter 4.7, a centralized approach would require the

resolution of an optimization problem with a number of variables greater thanN ·T =

37, 800 · 48 = 1, 814, 400. It is easy to see how this centralized formulation would
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quickly become unsolvable for larger systems. On the other hand, by considering

a distributed framework where each individual device operates independently in

response to price signals, the proposed approach envisages the separate resolution

of N smaller sub-problems, each with a much smaller number T of decision variables.

In relation to this point, it is worth discussing the computational complexity and

the scalability of the proposed approach. The coordination algorithm presented in

this work envisages sequential updates of the operational strategy by each individual

device, in response to updated price signals. With the proposed approach, the time

required to calculate the equilibrium solution is fundamentally linear with respect

to the number |N | of smart controlled devices. In relation to this point, we wish

to emphasize that this basic sequential approach has been chosen to facilitate the

presentation of the proposed methodology and the subsequent theoretical analysis

(i.e. the convergence and optimality results of Theorem 4.1 and 4.2). However,

faster convergence and improved scalability can be obtained with some adjustments

to the coordination algorithm. For example:

• Simultaneous power updates by multiple devices: instead of updating

and broadcasting new price signals to a single device at each strategy update, a

subset of devices can use the same price signal and modify their power profiles

at once. This would reduce the number of required iterations and further

enhance the scalability of the proposed method. Numerical convergence of

this alternative method has been verified in simulation.

• Jacobi iterative methods: all devices (iteratively) update their operational

strategies at once. Such schemes have been applied, for example, to the prob-

lem of EV charging coordination with no provision of ancillary services [32],

[62]. With this approach, the convergence speed would still depend on the

number of controlled devices, but the bi-directional exchange of information

would be reduced.
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• One-shot strategy: the central entity internally emulates the proposed co-

ordination algorithm and then performs a one-shot broadcast of the final price

signal, in order to directly induce the associated equilibrium solution. This

scheme, initially presented in [24] for the simpler case of smart appliances not

providing ancillary services, assumes that the central coordinator would pos-

sess some general knowledge of the devices’ population, based for example on

estimations or on historical data.

4.7 Simulations

4.7.1 System Model and Parameters

Figure 4.1: The PJM 5-bus system.
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The proposed coordination algorithm is tested on the PJM 5-bus system [63] in Fig.

4.1. A time interval of T = 24h is considered, with time discretization ∆t = 0.5h.

The generation and reserve cost functions are assumed to be quadratic, i.e. fGm(x) =

1
2
amx

2 + bmx and fRm(x) = 1
2
cmx

2 + dmx. Relevant generation and transmission

parameters are presented in Fig. 4.1. To fulfill the reserve service requirement (4.2d),

the total allocated reserve must be greater than or equal to ∆Gmax
L = Ḡ5 = 450MW.

Inflexible demand dm at buses m = 2, 3, 4 has been derived from historical data [64].

As for flexible devices, we consider a population of EVs NEV
m and storage batteries

N S
m at buses m = 2, 3, 4, with NEV = NEV

2 ∪NEV
3 ∪NEV

4 and N S = N S
2 ∪N S

3 ∪N S
4 .

A description of the two types of devices is provided below:

EVs : The required energy amount Ej for the EV j at bus m is determined ac-

cording to a Gaussian distribution with mean value βEm and a standard deviation

ωEm. Additionally, the rated power P̄j is set to the same value P̄j = 11kW for all

j ∈ NEV . Relevant parameters are listed below:

βE2 = βE3 = βE4 = 30 kWh

ωE2 = 1.0 kWh ωE3 = 1.5 kWh ωE4 = 1.5 kWh.

It is assumed that each EV j at node m must complete its charging within a con-

tinuous time interval [tj, tj + dj]. The start time tj and the duration dj also follow

Gaussian distributions, with mean βtm and βdm and standard deviations ωtm and ωdm,

respectively:

βt2 = 20:30 h ωt2 = 1.5 h βd2 = 10 h ωd2 = 1.0 h

βt3 = 21:30 h ωt3 = 1.5 h βd3 = 11 h ωd3 = 2.0 h

βt4 = 21:00 h ωt4 = 1.0 h βd4 = 11 h ωd4 = 1.5 h

Accordingly, the availability time interval Aj of EV j can be expressed in the dis-

cretized time horizon as:

Aj = {T sj , T sj + 1, . . . , T ej } = {t ∈ T : tj ≤ t ·∆t ≤ tj + dj} .

Storage Devices : An homogeneous population of storage batteries is considered,
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with the following parameters:

P̄j = −
¯
Pj = 2.5 kW Ēj = 25 kWh ∀j ∈ N S.

The total installed storage capacity is equal to Ēj · |N S| = 432.5 MWh. The initial

energy levels Ej,0 are determined stochastically, according to a uniform distribution

with support [0, Ēj].

4.7.2 Algorithm Implementation and Results

In the Initialization phase of Algorithm 3, the initial power schedule u
(0)
j ∈ Uj is

chosen as a constant power profile over the availability interval Aj when j ∈ NEV

and is identically equal to zero when j ∈ N S. The WHILE cycle in the Power

scheduling update phase is iterated k = 15 times in order to converge to the final

equilibrium solution u(n) = u∗. This implies that 15N = 15 · 37, 800 = 567, 000

times of communication have occurred between the central entity and the flexible

devices. Simulations have required about 90 minutes on a standard PC machine

with a 4-core 2.40 GHz Intel(R) Xeon(R) E5620 processor and 12 GB of RAM. The

final results are compared to a No-Flexibility scenario (denoted as NF), where the

devices do not react to price signals, do not provide reserve and simply apply the

initial power schedule u(0).

Fig. 4.2 compares the electricity price profiles (left) and the power demand (right)

obtained with the proposed algorithm and in the NF scenario. It can be seen that

prices are different at each node and are generally flattened when the proposed coor-

dination scheme exploits the flexibility offered by EVs and storage. It is interesting

to note that, at bus 2, the price p̃2,t is lower than pNF2,t also during the first hours

of the day, when the demand D̃2,t is higher than DNF
2,t . This is due to the interplay

between demand D and allocated reserve R in the price expressions (4.3) and the

fact that, in the NF scenario, EVs and storage do not provide any reserve, thus

indirectly impacting also electricity prices. A similar flattening trend can be seen

in the demand profiles: when the equilibrium schedule u∗ is applied, a substantial
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peak-shaving/valley-filling is introduced. From the disaggregation of flexible de-

mand D̃(u∗) in its components D̃S(u∗) (from storage) and D̃EV (u∗) (from EVs), it

can be seen that the electric vehicles schedule their charge during night-time, when

electricity prices are lower. Similarly, the storage devices perform energy arbitrage

by charging during night time and discharging at peak times.
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Figure 4.2: Electricity prices (left) and demand profiles (right) at each bus, when the

NF scenario (blue dashed lines) and the proposed solution (red lines) are considered.

For the latter, the coloured areas represent the net power contribution of storage

(blue) and EVs (green).
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Figure 4.3: Power flows on the transmission lines when the NF scenario (blue dashed

lines) and the proposed solution (red lines) are considered.

The power flows F (u∗) and FNF , obtained respectively with the proposed algorithm

and in the No-Flexibility scenario, are compared in Fig. 4.3. The negative values

on some of the lines indicate that power is flowing in the direction opposite to the

conventional one considered on the line. For example, the negative values of F5(u∗)

and FNF
5 indicate that the power on line 5 is flowing from node 4 to node 3. A trend

similar to the one for demand profile can be seen: the proposed algorithm is able

to reduce the variation over time of the power flow. Note also that line 6 remains
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congested and operates at its maximum capacity 100MW over the whole considered

period of 24h. This leads to different locational marginal prices throughout the

network, as shown in Fig. 4.2.
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Figure 4.4: Reserve price (left) and allocated reserve (right).

Fig. 4.4 compares the prices for reserve provision at the final equilibrium solution

and in the NF scenario (left) and shows the disaggregation of allocated reserve

from different sources (right) when the considered algorithm is applied. Note that

the reserve price ρ̃m,t(u
∗) obtained with the proposed control strategy is always

lower than the price ρNFm,t in the NF scenario. This is to be expected since, by

providing reserve, the flexible devices reduce the marginal value (i.e. the price)

of additional units of reserve. In the right part of Fig. 4.4, it can be seen how

the EVs mostly provide reserve during the early hours of the day (when they are

charging and therefore are available to reduce their power consumption). Conversely,

the contribution of storage covers almost the whole day, with the exception of the

interval between t = 16 : 00h and t = 21 : 00h, when the batteries are mostly

discharging.

The power production and allocated reserve of the generators are shown in Fig.

4.5. Note that the capacity of the generator at bus 1 is fully allocated to power

production (no reserve is provided). For the generators at the other buses, when

Algorithm 3 is applied there is a reduction of reserve and an increase of power

production during the early hours of the day (to accommodate the higher demand
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from flexible devices).
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Figure 4.5: Power production and allocated reserve at each bus.
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Figure 4.6: Comparison of total demand profiles (left) and global cost V (u(k)) as a

function of the algorithm iteration k (right).

Finally, Fig. 4.6 evaluates the convergence of Algorithm 3 and its performance from

a system perspective. On the left, the aggregate demand profiles DTOT
t (u(k)) =∑M

m=1 D̃m,t(u(k)) – at different iterations k – are shown. It can be seen how the

proposed sequential power swaps from the EVs and storage gradually flatten the
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demand profile, consistently with the trends shown in Fig. 4.2. The right part

of Fig. 4.6 shows the values of the function V (u(k)) in (4.22) at each algorithm

iteration k. Note that V (u(k)) is reduced at each step and reaches a minimum at

k = 15, as established in Theorem 4.2. From previous considerations, V represents

a global cost index of the system, implying that the final equilibrium solution of the

proposed algorithm is also socially optimal.

Table 4.2: Daily costs sustained by generators and single EV/storage devices in the

NF scenario and with the proposed algorithm.

Scenario No Flexibility (NF) Proposed algorithm

Cost ($) Total Energy Reserve Total Energy Reserve

Generation 5.402 ·105 4.118 ·105 1.284 ·105 5.133 ·105 4.107 ·105 1.026 ·105

EVs 0.92 0.92 0 0.47 0.91 -0.46

Storage 0 0 0 -0.96 -0.03 -0.93

A comparison of the daily costs sustained by generation and individual flexible

devices under the NF scenario and with the proposed control strategy is presented

in Table 4.2. From a generation perspective, it can be seen that our algorithm

reduces total costs by approximatively 5%, with particularly lower costs for reserve

allocation. It should be emphasized that the comparison does not consider the

payments made in the proposed coordination scheme to EVs and storage for reserve

allocation, which in the present case amount to $25, 519 . From an EV perspective,

it can be seen that total costs are halved with our control scheme: this is the

result of substantial revenues for reserve allocation and a marginal reduction in the

electricity costs. In this respect, note that the average total cost for single EV

is not equal to the sum of the energy and reserve components, as EVs also incur

in an average discomfort cost of $0.02, as defined in (4.16). Regarding storage,

this is assumed not to operate and have zero costs in the NF scenario. When the

proposed algorithm is applied, as in the EV case, storage will obtain most of its

revenues for reserve allocation. It is interesting to notice that low revenues from
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energy arbitrage are caused by the flexible devices themselves, which tend to flatten

the demand/price profiles and therefore reduce the price differentials that can be

exploited for advantageous charge/discharging by the batteries.

4.8 Summary

This chapter presents a novel game-theoretic scheme for coordination of price re-

sponsive flexible devices operating in an integrated energy-reserve market. The

proposed algorithm ensures the convergence to a stable market configuration which

is also globally optimal, for any grid topology and penetration level of demand

response. The algorithm is tested in simulation on the PJM 5-bus system, demon-

strating its capability to flatten generation and demand profiles at each node while

reducing the operational costs of the system.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Table 5.1: Comparison of different chapters

Chapter 2 Chapter 3 Chapter 4

Object of study Micro-storage devices Flexible loads
Micro-storage devices

and flexible loads

Whether considering

network topology
No Yes Yes

Whether considering

power losses
Yes No No

Whether considering

ancillary services
No No Yes

Market clearing

Assuming price

monotone increasing

with demand

LMPs associated to

a linearized

ACOPF problem

LMPs associated to

a DCOPF problem

Price signal Energy price Energy price
Energy price and

reserve price

The penetration of flexible devices such as micro-storage devices and electric vehicles

is increasing the flexibility of demand side. In order to coordinate these devices, this

108
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thesis proposes novel distributed schemes using game-theoretical frameworks. In the

frameworks, the flexible devices are modelled as self-interested players that aim at

minimizing their individual costs in response to iterative broadcast price signals.

The devices are coordinated through iterative algorithms, which converge to stable

configurations (characterized as aggregative equilibria) where no device can further

reduce its cost by unilaterally changing its power scheduling. The studies in Chapter

2, 3 and 4 are summarised in Table 5.1.

In Chapter 2, we analyse the coordination of large populations of micro-storage de-

vices under a whole system framework (without considering network topology). The

electricity price is assumed to be a monotone increasing function of total demand.

Two main aspects have been considered: the bidirectionality of power flows and

power losses. Power losses limiting storage efficiency are expressed as fractions of

the exchanged power, with a charging coefficient and a discharging coefficient. The

strategy update of storage devices is charaterized as a multi-valued mapping. It is

demonstrated that the proposed scheme converges an aggreagtive equilibrium (at

which each storage device minimizes its energy cost) and achieves global optimility

(minimizing total generation costs). Meanwhile the peaks and valleys of the total

demand profile are shaved and filled, respectively.

In Chapter 3, we investigate the coordination of flexible loads while expanding the

work in Chapter 2 to take into account network topology. Because of the presence

of network topology, the LMP of electricity at each bus is used as the price signal,

instead of simply assuming like Chapter 2 that the electricity price is some monotone

increasing function of total demand. The LMPs (generally different at different

buses) correspond to the Lagrange multipliers associated to a linearized AC optimal

power flow problem. Furthermore, we introduce a double pricing structure and

a novel variation equilibrium to solve the problem of discontinuous LMPs. The

iterative scheme for flexible demand coordination is analytically characterized as

a multi-valued mapping. Its convergence to a stable market configuration (i.e.,
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variational equilibrium) and global optimality are analytically demonstrated, for

any penetration level of flexible demand and any grid topology. The simulations

have verified that the proposed coordination strategy ensures flattened generation

profile at each bus, reduced variations over time of power flow and minimized total

generation costs.

In Chapter 4, we propose a novel coordination scheme for both micro-storage devices

and flexible loads operating in an integrated energy-reserve market. Differently from

previous chapters, these devices can also earn reserve revenue by being available to

reduce their power consumption. In this case, we design a multi-price setup that

includes energy price and reserve price. The price signals are obtained through the

resolution of a DC optimal power flow problem that explicitly takes into account the

impact of demand response on the optimal power dispatch and reserve procurement

of generators. To simplify the mathematical analysis, it is assumed that the storage

devices have full efficiency, rather than the partial efficiency considered in Chapter

2. The performance of the coordination scheme has been evaluated in simulations,

demonstrating its capability to minimize the cost of flexible devices, flatten demand

profiles and reduce the costs of generators.

5.2 Comparison with Centralized Approaches

Differently from centralized approaches, the proposed approaches in this thesis uti-

lize a multi-agent framework which is a distributed approach. The coordination

schemes assume that each flexible load and storage device can independently sched-

ule its operational strategy in response to external price signals, with the unique

objective of minimizing its own cost function. This framework exhibits relevant

potential advantages with respect to centralized approaches:

• Less computation: the distributed approaches are able to break down the
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complex task of coordinating large number of flexible devices into smaller sub-

problems that are easier to solve. However, for centralized approaches, the

resulting optimization problem would be extremely large and include a very

high number of decision variables.

• Economic optimality for single devices: the final equilibrium solution ob-

tained with the proposed schemes ensure cost minimization for each individual

device, which cannot further reduce its energy cost by unilaterally changing

its strategy. This might not be the case when using centralized approaches,

since they will generally optimize only the overall operation of the devices’

population.

• Full control of the devices: with the proposed approaches, customers pre-

serve full control of their devices, whose operation is not determined by exter-

nal entities.

• Privacy: the envisioned distributed structure of the coordination algorithm

preserves the privacy of the customers. If the initial aggregate demand profile

is known (or estimated), the coordination algorithm only requires the com-

munication of the strategy changes adopted at each iteration by the agents,

rather than their full power consumption profiles.

5.3 Future Work

Future work will focus on the following directions.

• The work in this thesis only considers the impact of price-responsive devices on

the transmission infrastructure. Future work will try to build a bi-level opti-

mization model to also account for the effect of flexible devices on distribution

networks. The approach proposed by [41] that involves both transmission and

distribution networks will initially be investigated. A theoretical study will
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also be conducted, evaluating whether the presented results of convergence

and optimality can be extended to a double-level network topology which ac-

counts for transmission and distribution at the same time.

• Future work would expand the existing framework to conduct a stochastic op-

timization, which explicitly models and accounts for uncertainties on demand,

generation and price. To do this, some relevant work could be first studied.

For example, the work in [65] represents price uncertainty by means of sce-

narios when coordinating EVs. Generation uncertainty is considered in [66] to

construct stochastic unit commitment and reserve scheduling problems.

• Instead of using DCOPF and linearized ACOPF model, future work will con-

sider more complex models, e.g. a probabilistic security-constrained AC op-

timal power flow that guarantees N-1 security [67] or a security-constrained

unit commitment (SCUC) model that determines the committed generation.

In the SCUC model, some other relevant factors of individual unit operating

constraints are included, such as ramping constraint and start-up cost. The

SCUC problem belongs to a mixed-integer non-linear programming (MINLP)

problem. In addition, multiple generation technologies such as nuclear, wind,

open cycle gas turbines (OCGT) and combined cycle gas turbines (CCGT)

could be also considered in the complex models.

• Flexible devices can provide not only spinning reserve but also some additional

ancillary services (e.g. frequency control and non-spinning reserve). In this

case, the flexible devices will respond to multiple prices and consequently the

coordination scheme becomes more complex. The prices of ancillary services

need to be calculated through building a proper model. Future work will

focus on designing coordination schemes for flexible devices operating in the

markets where they could contribute to several kinds of ancillary services, and

evaluating whether the presented results of convergence and optimality still

hold.
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• In addition to coordinating flexible devices, future work will also manage dis-

tributed energy source generations (e.g. wind [68, 69] and solar energy) to

achieve some objectives. This involves the concept of virtual power plants

(VPPs). A VPP consists of a central IT control system and an integration of

several power sources (such as distributed energy sources, flexible power con-

sumer and batteries). VPP aims to operate these power sources as a unique

plant and dispatches them through the central control system to trade energy

in wholesale electricity market and provide ancillary services for system op-

eration. The heart of a VPP is an energy management system (EMS) which

coordinates the power flows coming from the generators, controllable loads

and storages [70].

• All the proposed distributed algorithms in the thesis require a central entity

to update the prices and broadcast them to individual devices. Future work

will explore decentralized algorithms to coordinate the flexible devices. These

algorithms belong to distributed algorithms, but they are tailored to the appli-

cations without a central authority, and communication is only limited among

agents considered as neighbors.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Proposition 2.1

To prove the proposition statement, an equivalent characterization of a feasible

power profile u is first provided. Elementary variations of the candidate equilibrium

solution u∗ are then analyzed, proving their feasibility. Finally, the equilibrium

property is demonstrated.

Characterization of feasible power profiles : It is first shown that any uj ∈ Uj

can be expressed as the sum of u∗j and a finite number M of elementary variations

δ(m):

uj = u∗j +
M∑
m=1

δ(m). (A.1)

Each variation δ(m) ∈ RT is characterized by two time instants
¯
t(m), t̄(m) ∈ T and a

power quantity ∆(m), through the following expression:

δ
(m)
t =


∆(m) if t = t̄(m)

−∆(m) if t =
¯
t(m)

0 otherwise.

(A.2)
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To verify that (A.1) is always valid, we present a constructive method to calculate the

functions δ(1), . . . , δ(M). The power variation δ(1) is defined first. Let E
(0)
j = E∗j and

Ej denote the energy vectors associated by (2.1a) to u
(0)
j = u∗j and uj, respectively.

Given ∆u
(1)
j = uj − u(0)

j we have:

t̄(1) = min
t∈T

{
t : ∆u

(1)
j,t > 0

}
(A.3a)

¯
t(1) = min

t∈T

{
t : ∆u

(1)
j,t < 0

}
(A.3b)

∆(1) = min
{∣∣∣∆u(1)

j,t̄(1)

∣∣∣ , ∣∣∣∆u(1)

j,
¯
t(1)

∣∣∣} . (A.3c)

The following expression can then be provided for δ(1):

δ
(1)
t =


∆(1) if t = t̄(1)

−∆(1) if t =
¯
t(1)

0 otherwise.

(A.4)

The power profile resulting from the application of δ(1) is expressed as u
(1)
j = u

(0)
j +

δ(1). It can be proven that u
(1)
j and the associated charge level E

(1)
j from (2.1a) are

feasible and fulfill (2.4). To verify that (2.4a) holds for E
(1)
j , it is sufficient to note

that, given the feasibility of u
(0)
j , the following holds:

E
(1)
j,T = E0

j +
T∑
t=1

u
(1)
j,t ∆t = E0

j +
T∑
t=1

u
(0)
j,t ∆t+

T∑
t=1

δ
(1)
t ∆t = E0

j . (A.5)

To check that (2.4c) holds for u
(1)
j , as we are assuming feasibility of u

(0)
j = u∗j and

uj, it is sufficient to show the following:

u
(1)
j,t = u

(0)
j,t ∀t ∈ T \

{̄
t(1), t̄(1)

}
(A.6a)

uj,
¯
t(1) ≤ u

(1)

j,
¯
t(1) < u

(0)

j,
¯
t(1) (A.6b)

u
(0)

j,t̄(1) < u
(1)

j,t̄(1) ≤ uj,t̄(1) . (A.6c)
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Note that (A.6a) straightly follows from (A.4) whereas (A.6b) and (A.6c) derive

from the expression of ∆(1) in (A.3c), which ensures that u
(1)
j,t is always a convex

combination of u
(0)
j,t = u∗j,t and uj,t when t ∈ {t̄(1),

¯
t(1)}. Finally, condition (2.4b) for

E
(1)
j is verified exploiting the feasibility of u

(0)
j = u∗j and uj (with associated charge

levels E
(0)
j and Ej). For the case

¯
t(1) < t̄(1), it is sufficient to check the following:

Ej,t ≤ E
(1)
j,t < E

(0)
j,t ∀t :

¯
t(1) ≤ t < t̄(1) (A.7a)

E
(1)
j,t = E

(0)
j,t ∀t :∈ T \

{
t :

¯
t(1) ≤ t < t̄(1)

}
(A.7b)

Considering equation (2.5b), condition (A.7b) is a result of (A.6a) and equal total

sum of u(0) and u(1), whereas (A.7a) straightly follows from (A.6a) and (A.6b).

Similar checks can be performed for the opposite case with
¯
t(1) > t̄(1), confirming

that (2.4) holds for u
(1)
j and associated charge level E

(1)
j and therefore u

(1)
j ∈ Uj.

All the other variations δ(m) can be obtained with the same procedure detailed above,

replacing u
(0)
j , u

(1)
j and ∆u(1) with u

(m−1)
j , u

(m)
j and ∆u(m), respectively. Similar

arguments can be used to demonstrate that u
(m)
j = u

(m−1)
j + δ(m) ∈ Uj. Note that,

as a result of the power variation δ(m), the modified vector u
(m)
j is equal to uj in its

component t = t̄(m) or t =
¯
t(m). With each power variation, the cardinality of the

support of ∆u
(m)
j = uj − u(m)

j is reduced by one, implying that there exists a finite

number M ≤ T such that:

u
(M)
j = u∗j +

M∑
m=1

δ(m) = uj. (A.8)

Feasibility of modified strategies : The following condition is now verified:

u∗j + δ(m) ∈ Uj ∀m ∈ {1, . . . ,M} . (A.9)

The case with
¯
t(m) < t̄(m) in (A.2) is discussed first. It has been proven that

u
(m)
j = u

(m−1)
j + δ(m) ∈ Uj when u

(m−1)
j ∈ Uj. This is equivalent to state that, for
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the positive power amount ∆(m), it holds:

∆(m) ≤
E

(m−1)
j,t

∆t
∀t ∈ {̄t(m), . . . , t̄(m) − 1} (A.10a)

∆(m) ≤ u
(m−1)

j,
¯
t(m) − ¯

Pj (A.10b)

∆(m) ≤ P̄j − u(m−1)

j,t̄(m) . (A.10c)

In fact, if u
(m−1)
j ∈ Uj, condition (A.10a) is equivalent to (2.4b) with Ej = E

(m)
j ,

where E
(m)
j is the charge level associated to u

(m)
j . Similarly, conditions (A.10b) and

(A.10c) are equivalent to (2.4c), which is already fulfilled at all other time instants

since u
(m−1)
j ∈ Uj. Finally, condition (2.4a) is always verified for u = u

(m)
j when

u
(m−1)
j ∈ Uj, since the total sum of the power profiles remains constant. With the

same reasoning, u∗j + δ(m) ∈ Uj if and only if the following holds for ∆(m):

0 < ∆(m) ≤ min

 ⋃
{t:

¯
t(m)≤t<t̄(m)}

E∗j,t
∆t

, u∗j,
¯
t(m) −

¯
Pj, P̄j − u∗j,t̄(m)


 . (A.11)

To show that (A.11) holds and therefore u∗j + δ(m) ∈ Uj, from (A.10) it is sufficient

to verify that:

E
(m−1)
j,t ≤ E∗j,t ∀t ∈ {̄t(m), . . . , t̄(m) − 1}. (A.12a)

u
(m−1)

j,
¯
t(m) − ¯

Pj ≤ u∗j,
¯
t(m) −

¯
Pj (A.12b)

P̄j − u(m−1)

j,t̄(m) ≤ P̄j − u∗j,t̄(m) (A.12c)

As a result of the proposed constructive method, the following inequalities hold:

u∗j,t = u
(0)
j,t ≥ u

(1)
j,t ≥ · · · ≥ u

(M)
j,t = uj,t ∀t ∈ T̄ (A.13a)

u∗j,t = u
(0)
j,t ≤ u

(1)
j,t ≤ · · · ≤ u

(M)
j,t = uj,t ∀t ∈ T̄ (A.13b)

where T̄ :=
{
t : u∗j,t > uj,t

}
and T̄ :=

{
t : u∗j,t < uj,t

}
. Since

¯
t(m) ∈ T̄ and

t̄(m) ∈ T̄ , it follows that u∗
j,
¯
t(m) ≥ u

(m−1)

j,
¯
t(m) and u∗

j,t̄(m) ≤ u
(m−1)

j,t̄(m) , thus proving (A.12b)
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and (A.12c). Condition (A.12a) is now verified by contradiction. Suppose that there

exists a time instant s ∈ {̄t(m), . . . , t̄(m) − 1} such that:

E∗j,s < E
(m−1)
j,s . (A.14)

If such inequality holds, there must be at least one previous power variation δ(p) with

p < m such that t̄(p) ≤ s and
¯
t(p) > s. The inequality

¯
t(p) > s implies that

¯
t(p) >

¯
t(m).

However, by the constructive method, we have that
¯
t(1) ≤

¯
t(2) ≤, . . . ,≤

¯
t(M), which

contradicts the inequality
¯
t(p) >

¯
t(m) and consequently indicates that (A.14) does not

hold. Hence (A.12a) is proven. Note that this proof considers the case
¯
t(m) < t̄(m).

Similar arguments can be used to obtain the same result when
¯
t(m) > t̄(m), thus

proving (A.9).

Equilibrium proof : Let C∗j and Cj denote the energy cost of device j in (2.8)

when u∗j and uj in (A.1) are applied, respectively. The following expression can be

derived:

Cj = C∗j +
M∑
m=1

(
Π(Dt̄(m)(u∗))

[
y
(
uj,t̄(m)

)
− y

(
u∗j,t̄(m)

)]
+Π(D

¯
t(m)(u∗))

[
y
(
uj,

¯
t(m)

)
− y

(
u∗j,

¯
t(m)

)])
= C∗j +

M∑
m=1

∆C(m)

(A.15)

where ∆C(m) corresponds to the m-th term of the sums in the second term of

(A.15). Note that u∗ is not an aggregative equilibrium if there exists uj ∈ Uj such

that Cj < C∗j . From (A.15), this is the case if and only if there exists m ≤ M such

that ∆C(m) < 0 (for the sufficiency, note that u∗ + δ(m) would be a cost-reducing

strategy). As a result, the proposition statement is verified if it is proved that

γ(u∗, j, t̄(m),
¯
t(m)) > 0 if and only if ∆C(m) < 0. To prove it, the following case is

analyzed first:

0 /∈
(
u∗j,t̄(m) , uj,t̄(m)

)
∪
(
uj,

¯
t(m) , u∗j,

¯
t(m)

)
(A.16)

In other words, it is first assumed that the control values at t = t̄(m) and t =
¯
t(m) do
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not cross zero. As a result, from (2.2) , we have η(u∗
j,t̄(m)) = η(uj,t̄(m)) and η(uj,

¯
t(m)) =

η(u∗
j,
¯
t(m)). This simplifies considerably the expression of the cost variation ∆C(m),

which from (2.3) can be rewritten as:

∆C(m) = ∆(m)
[
η(u∗j,t̄(m))Π(Dt̄(m)(u∗))− η(u∗j,

¯
t(m))Π(D

¯
t(m)(u∗))

]
. (A.17)

In this case, from (A.16) and feasibility of u∗ + δ(m), we have:

0 < ∆(m) ≤ α(u∗, j,
¯
t(m)) (A.18a)

0 < ∆(m) ≤ β(u∗, j, t̄(m)). (A.18b)

0 < ∆(m) ≤ e(u∗, j, t̄(m),
¯
t(m)). (A.18c)

Moreover, since ∆(m) > 0 and we are assuming negativity of ∆C(m), it holds:

η(u∗j,
¯
t(m))Π(D

¯
t(m)(u∗))− η(u∗j,t̄(m))Π(Dt̄(m)(u∗)) > 0. (A.19)

Note that the inequalities (A.18) and (A.19) correspond to positivity of the four

factors of γ(u∗, j, t̄(m),
¯
t(m)) in (2.12). Since its first three factors are always nonneg-

ative, it follows that γ(u∗, j, t̄(m),
¯
t(m)) > 0 if and only if ∆C(m) < 0. The proposition

statement is verified if the above results also hold in the following case:

0 ∈
(
u∗j,t̄(m) , uj,t̄(m)

)
∪
(
uj,

¯
t(m) , u∗j,

¯
t(m)

)
. (A.20)

To check this, a smaller power swap ∆̃ can be considered, with the following prop-

erties:

0 < ∆̃ < ∆(m) (A.21a)

0 /∈
(
u∗j,t̄(m) , u

∗
j,t̄(m) + ∆̃

)
∪
(
u∗j,

¯
t(m) − ∆̃, u∗j,

¯
t(m)

)
. (A.21b)
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For the associated cost variation, it holds:

∆C̃ = ∆̃
[
η(u∗j,t̄) · Π(Dt̄(m)(u∗))− η(u∗j,

¯
t) · Π(D

¯
t(m)(u∗))

]
. (A.22)

To extend the results obtained for (A.16) to the case in (A.20) and conclude the

proof, it is sufficient to consider that ∆C̃ < 0 when ∆C(m) < 0. This is not formally

proved for length reasons but it is straightforward to verify if one considers that

the power increase at time t̄(m) from u∗j to uj is associated to higher costs when the

zero is crossed (coefficient µ+ > 1 is considered instead of µ− < 1) and the power

decrease at time
¯
t(m) from u∗j to uj is associated to lower savings when the zero is

crossed (coefficient µ− < 1 is considered instead of µ+ > 1).
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A.2 Proof of Proposition 2.2

Proof of (2.23a): The following equivalent property is verified:

V (u+) ≤ V (u) ∀u+ ∈ F (u), ∀u ∈ U . (A.23)

As the mapping F is defined in (2.20) as the composition of N submappings Fj, it

is sufficient to prove the following stronger condition:

V (y) ≤ V (u) ∀y ∈ Fj(u),∀j ∈ N , ∀u ∈ U . (A.24)

Note that (A.24) is verified if the following holds for all sj(u) = (t̄,
¯
t) ∈ Sj(u):

V (y) = V (f (sj)(u)) < V (u) if γ(u, j, t̄,
¯
t) > 0 (A.25a)

V (y) = V (f (sj)(u)) = V (u) if γ(u, j, t̄,
¯
t) ≤ 0 (A.25b)

The case with positive γ is analyzed first. In this scenario, given the nonnegativity

of the functions α, β and e in (2.11), it holds:

Π(D
¯
t(u)) >

η(uj,t̄)

η(uj,
¯
t)

Π(Dt̄(u)). (A.26)

From the expression of γ(u, j, t̄,
¯
t) in (2.12), it follows that also ∆(u, j, t̄,

¯
t), as defined

in (2.16), is positive. Given (2.22), expression (2.19) for the single components of

f (sj)(u) and definition (2.6) of the aggregate demand Dt(u), it holds:

V (f (sj)(u))− V (u) =

∫ Dt̄(u)+η(uj,t̄)∆(u,j,t̄,
¯
t)

Dt̄(u)

Π(x) dx−
∫ D

¯
t(u)

D
¯
t(u)−η(uj,

¯
t)∆(u,j,t̄,

¯
t)

Π(x) dx.

(A.27)

Let W (z) : R→ R denote the function returning the right-hand side of (A.27) when

∆(u, j, t̄,
¯
t) is replaced by z. Its derivative takes the following expression:
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Ẇ (z) =
dW (z)

dz
= η(uj,t̄)Π (Dt̄(u) + η(uj,t̄)z)− η(uj,

¯
t)Π
(
D

¯
t(u)− η(uj,

¯
t)z
)
.

(A.28)

The following conditions are fulfilled:

Ẇ (0) = η(uj,t̄)Π (Dt̄(u))− η(uj,
¯
t)Π
(
D

¯
t(u)

)
< 0 (A.29a)

Ẇ (z) < 0 ∀z ∈

[
0,
η(uj,

¯
t)Π(D

¯
t(u))− η(uj,t̄)Π(Dt̄(u))

Γ
(
η(uj,

¯
t)2 + η(uj,t̄)2

) )
(A.29b)

where (A.29a) corresponds to the last inequality in (A.26). To verify that also

(A.29b) holds, it is sufficient to consider (A.29a) and the following inequality as a

result of the Lipschitz continuity of Π established in Assumption 2.1:

Ẇ (z) ≤ η(uj,t̄) [Π (Dt̄(u)) + Γη(uj,t̄)z]− η(uj,
¯
t)
[
Π
(
D

¯
t(u)

)
− Γη(uj,

¯
t)z
]

= Ẇ (0) + Γ
[
η(uj,t̄)

2 + η(uj,
¯
t)

2
]
z

To verify that (A.25a) holds, it is sufficient to consider the following:

V (f (sj)(u))− V (u) =

∫ ∆(u,j,t̄,
¯
t)

0

Ẇ (z) dz < 0

where the inequality follows from expressions (2.16) and (2.17), which ensure that

∆ is always within the interval considered in (A.29b) when γ(u, j, t̄,
¯
t) > 0. In order

to also verify (A.25b) and conclude the proof of (2.23a), one can follow a similar

reasoning, showing that ∆(u, j, t̄,
¯
t) = 0 when γ(u, j, t̄,

¯
t) ≤ 0. As a result, we have

f (sj)(u) = u and V (f (sj)(u)) = V (u).

Proof of (2.23b): As it has been proven that V is non decreasing when any Fj

is applied, it follows that (A.25b) must hold for all j ∈ N when u = φ(k) and

V (φ(k + 1)) = V (φ(k)). As previously established, this implies ∆(u, j, t̄,
¯
t) = 0 for

all j and therefore φ(k + 1) = φ(k).

Proof of (2.23c): This straightly follows from (2.23a) and the boundedness of V .
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A.3 Proof of Theorem 2.1

The theorem can be verified by showing that, from the upper semi-continuity of F ,

all solutions φ ∈ Φ asymptotically converge to their omega-limit set Ω(φ). From the

invariance of the set Ω(φ), it follows that Ω(φ) ⊆ Ω∗. The rigorous analytical steps

can be found in the proof of [43, Theorem 1] which also applies to the present case.
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A.4 Proof of Theorem 2.2

Consider the functional Ṽ (d) : RT → R defined as follows:

Ṽ (d) =
T∑
t=1

G(dt) (A.30)

with d ∈ RT and G(dt) =
∫ dt

0
Π(x) dx. The theorem statement is equivalent to the

following condition:

Ṽ (D(u∗)) ≤ Ṽ (D(u)) ∀u ∈ U . (A.31)

From the strict monotonicity of the price function Π established in Assumption 2.1 it

follows that Ṽ is strictly convex. As a result, condition (A.31) holds if the following

is verified:

T∑
t=1

Π(Dt(u
∗)) [D(u)−D(u∗)] =

T∑
t=1

Π(Dt(u
∗))

[
N∑
j=1

y(uj,t)− y(u∗j,t)

]
≥ 0 ∀u ∈ U .

(A.32)

A slightly stronger condition is proved:

T∑
t=1

Π(Dt(u
∗))
[
y(uj,t)− y(u∗j,t)

]
≥ 0 ∀j ∈ N (A.33)

As we have established that u∗ corresponds to an aggregative equilibrium and u∗ ∈

U , it follows from (2.9) that (A.33) always holds, thus concluding the proof.
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Appendix to Chapter 3

B.1 Proof of Proposition 3.1

Two key points are preliminarily shown. Firstly, the objective function in the right-

hand side of (3.1) is strictly convex given the strict convexity of each fm. Secondly,

let G(D) denote the set of feasible active and reactive power generation, and voltage

angle and magnitude vectors (G,GQ, θ, v2) that fulfill (3.2) for a certain demand

vector D ∈ RMT . The graph of G is convex. This property straightly follows from

the linearity and convexity of the constraints in (3.2). As a result of the above

points, the strict convexity of ϕ(D) with respect to D follows from the maximum

theorem under convexity [71].
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B.2 Proof of Proposition 3.2

For simplicity, we consider the simplified case in which the minimized generation

cost ϕ(D) in (3.1) is always differentiable. As a result, prices at bus m at time t are

unique and equal to:

p̄m,t(D) =
¯
pm,t(D) = pm,t(D) =

∂ϕ(D)

∂Dm,t

. (B.1)

From Proposition 3.1, we have that ϕ(D) is a strictly convex function and therefore

its Hessian matrix H is positive definite, with H � 0. From basic properties of

positive definite matrices, the following holds for each diagonal element of H:

∂2ϕ(D)

∂D2
m,t

> 0 ∀t,m. (B.2)

To verify the proposition statement, it is sufficient to check the positivity of the

following partial derivative:

∂pm,t(D)

∂Dm,t

=
∂

∂Dm,t

(
∂ϕ(D)

∂Dm,t

)
=
∂2ϕ(D)

∂D2
m,t

> 0 ∀t,m. (B.3)
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B.3 Proof of Proposition 3.3

Each feasible power schedule uj for agent j can be expressed as the sum of the strat-

egy u∗j at the candidate equilibrium solution plus a finite number Q of elementary

variations:

uj = u∗j +

Q∑
q=1

δq (B.4)

where each term δq : T → R, for some ∆q > 0 and (t̄q,
¯
tq) ∈ Aj × Aj has the

following expression:

δq,t = ∆q · 1{t̄q}(t)−∆q · 1{
¯
tq}(t). (B.5)

The above expressions can represent all the elements uj ∈ Uj, since these are charac-

terized by the same fixed sum. In addition, one can assume without loss of generality

that each δq corresponds to a feasible power swap of ∆q between the time instants

t̄q and
¯
tq. As a result, it must hold:

0 < ∆q ≤ min
({
Pj − u∗j,t̄q , u

∗
j,
¯
tq

})
(B.6)

If one substitutes (B.4) in (3.10), the cost variation ∆Cj can be written as:

∆Cj =
∑
q

[
p̄∗µj ,t̄q(D(u∗))−

¯
p∗µj ,

¯
tq(D(u∗))

]
∆q∆t (B.7)

Suppose that ∆Cj < 0 for some uj ∈ Uj. From (B.6) and (B.7) there should exist

q̂ ≤ Q such that the following holds:

p̄∗µj ,t̄q̂(D(u∗)) <
¯
p∗µj ,

¯
tq̂

(D(u∗)) u∗j,t̄q̂ < Pj u∗j,
¯
tq̂
> 0. (B.8)

This would imply γ(u∗, j, t̄q̂,
¯
tq̂) > 0, thus proving the proposition statement by

contradiction.
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B.4 Proof of Proposition 3.4

Proof of (3.21a): An equivalent condition is verified:

ϕ(D(u+)) ≤ ϕ(D(u)) ∀u+ ∈ F (u), ∀u ∈ U . (B.9)

From (3.19), F is the composition of N elementary mapping Fj, defined in (3.17).

Therefore, a slightly stronger condition can be proven by means of inequalities on

each Fj:

ϕ(D(y)) ≤ ϕ(D(u)) ∀y ∈ Fj(u),∀j ∈ N , ∀u ∈ U . (B.10)

Note that (B.10) holds if, for all sj = (t̄j,
¯
tj) ∈ Sj(u), we have:

ϕ
(
D
(
f (sj)(u)

))
< ϕ (D (u)) if γ(u, j, t̄j,

¯
tj) > 0 (B.11a)

ϕ
(
D
(
f (sj)(u)

))
= ϕ (D (u)) if γ(u, j, t̄j,

¯
tj) ≤ 0 (B.11b)

For the case of (B.11a) with γ(u, j, t̄j,
¯
tj) > 0, since by definition uj,t̄j ≤ Pj and

uj,
¯
tj ≥ 0, as a result of (3.12) it holds:

¯
pµj ,

¯
t(D(u))− p̄µj ,t̄(D(u)) > 0 uj,t̄j < Pj uj,

¯
tj > 0. (B.12)

For the function ε in (3.5), given the monotonicity of p̄ and
¯
p established in Propo-

sition 3.2, we have:

ε (D(u), µj, t̄j,
¯
tj) > 0 (B.13)

which implies positivity of ∆ in (3.16), as a result of (B.12):

∆ (u, µj, t̄j,
¯
tj) = ∆̄ > 0. (B.14)

Recalling expressions (3.8) and (3.18), and applying the mean value theorem for

non-smooth functions [72], the left-hand side in (B.11a) can be rewritten as follows:
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ϕ
(
D
(
f (sj)(u)

))
= ϕ

(
D
(
u+ ∆̄

(
êj,t̄j − êj,

¯
tj

)))
= ϕ

(
D (u) + ∆̄

(
êµj ,t̄j − êµj ,

¯
tj

))
= ϕ(D(u)) +

〈
∂ϕ(D̃), ∆̄

(
êµj ,t̄j − êµj ,

¯
tj

)〉 (B.15)

where D̃ is some convex combination of D(u) and D
(
f (sj)(u)

)
and ∂ϕ denotes the

generalized gradient of ϕ. From Proposition 3.1, this corresponds to the subdiffer-

ential of ϕ. The above equation can now be rewritten as:

ϕ
(
D
(
f (sj)(u)

))
= ϕ (D (u)) + ∆̄

(
p̄∗ −

¯
p∗
)

(B.16)

with p̄∗ ∈ ∂ϕ(D̃)

∂D̃µj,t̄j
and

¯
p∗ ∈ ∂ϕ(D̃)

∂D̃µj,¯
tj

. Condition (B.11a) is therefore verified by the

positivity of ∆̄ in (B.14) and the following:

p̄∗
(a)

≤ ϕ̄′µj ,t̄j(D̃)
(b)
< p̄µj ,t̄j

(
D
(
f (sj)(u)

)) (c)

≤
¯
pµj ,

¯
tj

(
D
(
f (sj)(u)

)) (d)
<

¯
ϕ′µj ,

¯
tj

(D̃)
(e)

≤
¯
p∗.

(B.17)

The inequalities (a) and (e) follow from (3.3) and (3.4), (b) and (d) are a result of

Proposition 3.2 and (c) holds by construction of ε(D(u), µj, t̄j,
¯
tj) as expressed in

(3.5) in Definition 3.1. We can conclude that (B.11a) holds as a result of (B.16) and

(B.17). Similar arguments can be used to also verify (B.11b), thus proving (3.21a).

Proof of (3.21b): Since ϕ is nonincreasing when any Fj is applied, (B.11b) must

hold for all j ∈ N when u = ψ(k) and ϕ(ψ(k+1)) = ϕ(ψ(k)). As previously proved,

this implies ∆(u, µj, t̄j,
¯
tj) = 0 for all j and therefore ψ(k + 1) = ψ(k).

Proof of (3.21c): This property straightly follows from (3.21a) and the bound-

edness of ϕ.
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B.5 Proof of Theorem 3.1

Consider the omega-limit set Ω(ψ) associated to the solution ψ ∈ Ψ and defined as

follows:

Ω(ψ) :=
{
u∞ : ∃ {kn}n∈N , lim

n→∞
kn =∞, lim

n→∞
ψ(kn) = u∞

}
. (B.18)

The theorem is verified if the following holds for all ψ ∈ Ψ:

lim
k→∞
|ψ(k)|Ω(ψ) = 0 (B.19a)

Ω(ψ) ⊆ Ω∗. (B.19b)

Condition (B.19a): This result holds if the mapping F is upper-semicontinuous

[73, Chapter 6.3.3]. Since F takes non-empty compact values, the upper-semicontinuity

of the mapping is guaranteed by F having a closed graph G [74, Chapter 3B]. Ac-

counting for the compactness of U , it is sufficient to show that the graph Gj of the

individual mappings Fj in (3.19) is closed [75]. The graph Gj can be expressed as:

Gj =
{

(u, f (sj)(u)) : u ∈ U , f (sj)(u) ∈ Fj(u)
}

=
⋃

sj∈Aj×Aj

G(sj) =
⋃

sj∈Aj×Aj

{
(u, f (sj)(u)) : u ∈ U (sj)

}
.

(B.20)

where U (sj) ⊆ U has the following expression:

U (sj) = { u ∈ U : sj = (t̄j,
¯
tj) ∈ Sj(u) }

= {u ∈ U : sj = (t̄j,
¯
tj), γ(u, j, t̄j,

¯
tj) ≥ γ(u, j, t̄,

¯
t) ∀(t̄,

¯
t) ∈ Aj ×Aj} .

(B.21)

One can verify that G(sj) is closed since the state-space subset U (sj) is closed (defined

by a set of non-strict inequalities) and each component f
(sj)
i,t (u) of f (sj)(u) in (3.17)

is continuous with respect to u. This means that also Gj is closed (union of a finite

number of closed sets), thus proving the closedness of G, the upper semi-continuity

of F and condition (B.19a).
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Condition (B.19b): To verify that each point in Ω(ψ) also belongs to the set of

variational aggregative equilibria Ω∗, it is preliminarily shown that, as a result of

(3.21c) and continuity of ϕ and D, the following holds for all u∞ ∈ Ω(ψ):

ϕ(D(u∞)) = ϕ
(
D
(

lim
n→∞

ψ(kn)
))

= lim
n→∞

ϕ(D(ψ(kn))) = lim
k→∞

ϕ(D(ψ(k))) = ϕ∞.

(B.22)

Moreover, as a result of the outer-semicontinuity of the mapping F , weak-forward

invariance of Ω(ψ) is also guaranteed [73, Chapter 6.3.3]:

F (u∞) ∩ Ω(ψ) 6= ∅ ∀u∞ ∈ Ω(ψ). (B.23)

As (B.22) establishes that all points u∞ ∈ Ω(ψ) have equal costs ϕ∞ and ϕ is non

decreasing along all trajectories ψ, there must exist s1 = (t̄1,
¯
t1) ∈ S1(u∞) such that:

ϕ
(
D
(
f (s1)(u∞)

))
= ϕ(D(u∞)) γ(u∞, 1, t̄1,

¯
t1) ≤ 0. (B.24)

If this were not the case, from (3.19) and (3.21a), we would have ϕ(D(u+)) <

ϕ(D(u∞)), ∀u+ ∈ F (u∞), which contradicts (B.23) if one considers (B.22). As γ is

maximized by all s ∈ S1(u∞) from (3.15), we have:

γ(u∞, 1, t̄,
¯
t) ≤ 0 ∀s = (t̄,

¯
t) ∈ S1(u∞). (B.25a)

∆(u∞, 1, t̄,
¯
t) = 0 ∀s = (t̄,

¯
t) ∈ S1(u∞) (B.25b)

where (B.25b) also implies F1(u∞) = {u∞}. Recursive application of the same

arguments for j = 2, . . . , N yields:

γ(u∞, j, t̄,
¯
t) ≤ 0 ∀sj = (t̄,

¯
t) ∈ Sj(u∞),∀j ∈ N . (B.26)

The proof of (B.19b) is concluded by noting that, from (3.15), conditions (B.26) and

(3.13) in Proposition 3.3 when u∗ = u∞.
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B.6 Proof of Theorem 3.2

Given the differentiability of ϕ(D(u∗)), the following gradient vector can be derived

from (3.3):

∇mϕ(D) =

[
∂ϕ(D)

∂Dm,1

, . . . ,
∂ϕ(D)

∂Dm,T

]
=
[
ϕ′m,1(D), . . . , ϕ′m,T (D)

]
. (B.27)

From the strict convexity of ϕ(D) in Proposition 3.1, it is sufficient to prove the

following local condition for any u ∈ U :

〈∇mϕ(D(u∗)), Dm(u)−Dm(u∗)〉

=
T∑
t=1

ϕ′m,t(D(u∗)) · [Dm,t(u)−Dm,t(u
∗)]

=
T∑
t=1

ϕ′m,t(D(u∗))

 ∑
j:µj=m

uj,t − u∗j,t

 ≥ 0

∀m ∈M. (B.28)

We recall that any u ∈ U can be characterized as the sum of u∗ and a finite number Q

of power swaps δq, as presented in equations (B.4)-(B.5) in the proof of Proposition

3.3. Therefore, condition (B.28) holds if the following is verified for all j ∈ N :

T∑
t=1

ϕ′µj ,t(D(u∗))
[
uj,t − u∗j,t

]
=

T∑
t=1

ϕ′µj ,t(D(u∗))

[
Q∑
q=1

δq,t

]

=

Q∑
q=1

∆q

[
ϕ′µj ,t̄q(D(u∗))− ϕ′µj ,

¯
tq(D(u∗))

]
=

Q∑
q=1

∆q

[
p̄µj ,t̄q(D(u∗))−

¯
pµj ,

¯
tq(D(u∗))

]
≥ 0.

(B.29)

Consider now the equilibrium condition (3.13) in Proposition 3.3. From expression

(3.12) of γ and recalling (B.6) from the feasibility of δq, one can conclude that

¯
pµj ,

¯
tq(D(u∗)) ≤ p̄µj ,t̄q(D(u∗)) at the equilibrium u∗ ∈ Ω∗, thus proving (B.29) and

the theorem.
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Appendix to Chapter 4

C.1 Proof of Proposition 4.1

Note that (4.29a) can be verified by construction and the proposition holds if there

exists ∆̄ > 0, different in general for (4.29b) and (4.29c), such that these conditions

are satisfied when ∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0 and ∆ ∈ [0, ∆̄].

Proof of (4.29b): When j ∈ NEV , the only term in (4.18) which depends on

uj is the derivative of the discomfort cost ∂ψ(uj)/∂uj,t. Since Ê(uj, t) in (4.17) is

piecewise linear, the same holds for ψ(uj) in (4.16). This means that ∂ψ(uj)/∂uj,t

and the cost derivative ∂C(u, uj)/∂uj,t are piecewise constant ∀t ∈ T . As a result,

there always exists ∆̄ > 0 such that:

∂C(u, uj + êj,t̄s− êj,
¯
ts)

∂uj,t̄
=
∂C(u, uj)

∂uj,t̄
∀s ∈ [0, ∆̄] (C.1a)

∂C(u, uj + êj,t̄s− êj,
¯
ts)

∂uj,
¯
t

=
∂C(u, uj)

∂uj,
¯
t

∀s ∈ [0, ∆̄]. (C.1b)

To take into account the possibility of uj being a discontinuity point (where the cost

derivative switches between two constant values), it is assumed that the left and

right derivative are considered in (C.1a) and (C.1b), respectively. Given ∆̄ and the

143
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associated modified strategy u+
j = uj +

(
êj,t̄ − êj,

¯
t

)
∆̄, it holds:

C(u, u+
j )− C(u, uj) =

∫ ∆̄

0

∇ujC(u, uj + êj,t̄s− êj,
¯
ts)
(
êj,t̄ − êj,

¯
t

)
ds

=

∫ ∆̄

0

∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
ds = ∇ujC(u, uj)

(
êj,t̄ − êj,

¯
t

)
∆̄. (C.2)

Equation (C.2) also holds in the case j ∈ N S by considering r instead of ψ in the

proof above.

Proof of (4.29c): Consider the following parametrized expression W for the vari-

ation of the function V :

W (∆) = V (u+
(
êj,t̄ − êj,

¯
t

)
∆)− V (u) = V (u+)− V (u)

= ϕ(D̃(u+), R̃(u+))− ϕ(D̃(u), R̃(u)) + ψ(u+
j )− ψ(uj) (C.3)

When j ∈ NEV , we have ∂Dµj ,t(u)/∂uj,t = ∂Rµj ,t(u)/∂uj,t = 1. Therefore, if we

consider ũ(s) = u+
(
êj,t̄ − êj,

¯
t

)
s, it holds:

W (∆) =

∫ ∆

0

∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Dµj ,t̄

+
∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Rµj ,t̄

− ∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Dµj ,
¯
t

− ∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Rµj ,
¯
t

+
∂ψ(ũj(s))

∂uj,t̄
− ∂ψ(ũj(s))

∂uj,
¯
t

ds. (C.4)

Recalling the price equations (4.3) and (4.14) and expression (4.19) for the cost

derivative, the quantity Ẇ (∆) = dW (∆)/d∆ evaluated at ∆ = 0 is equal to:

Ẇ (0) =

(
p̃µj ,t̄(u)− ρ̃µj ,t̄(u) +

∂ψ(ũj(s))

uj,t̄

)
−
(
p̃µj ,

¯
t(u)− ρ̃µj ,

¯
t(u) +

∂ψ(ũj(s))

uj,
¯
t

)
= ∇ujC(u, uj)

(
êj,t̄ − êj,

¯
t

)
. (C.5)

As initially established in this proof, we are considering ∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0

and therefore we have W (0) = 0 and Ẇ (0) < 0. For continuity of W and Ẇ
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(ensured by Assumption 4.1), there exists a finite ∆̄ such that W (∆) < 0 for all

∆ ∈ (0, ∆̄], thus concluding the proof. Same arguments can be used to demonstrate

the proposition statement when j ∈ N S, recalling that in this case ∂Dµj ,t(u)/∂uj,t =

1 and ∂Rµj ,t(u)/∂uj,t = ∂rj,t(u)/∂uj,t.
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C.2 Proof of Theorem 4.1

Proof of convergence: It is initially demonstrated that Algorithm 3 converges asymp-

totically to some final power schedule u∗. To this end, the following preliminary

result is proved:

V (u(k)) ≤ V (u(k − 1)) ∀k > 0. (C.6)

In the algorithm, when δ > 0 for a device j, it is sufficient to note that the gradient

∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0 from (4.29a) and therefore, from (4.29b)-(4.29c), we

have:

V (u+)− V (u) < 0. (C.7)

In addition, it is trivial to check when δ = 0, we have V (u+) = V (u) as in this case

u+ = u. It is now sufficient to conclude that after a FOR cycle (from k − 1-th to

k-th cycle), (C.6) holds. Since V is a bounded quantity, it follows from (C.6) that

V (u(k)) converges to some minimum value. At such minimum the IF condition

in step 2.b.iii) is never verified, otherwise V would be further reduced. Hence the

variable conv (set to 1 in step 2.a) does not change value throughout the FOR cycle

and it ensures that step 3) and the final power schedule u∗ is reached.

Proof of equilibrium: To verify that the final result u∗ of Algorithm 3 corresponds to

the aggregative equilibrium of Definition 4.1, an alternative formulation is considered

for the feasible power profiles uj ∈ Uj of device j. In particular, each uj can be

characterized as the sum of the candidate equilibrium solution u∗ and a finite number

M of elementary power swaps δ(m):

uj = u∗j +
M∑
m=1

δ(m). (C.8)

Each δ(m) corresponds to swapping ∆m units of power from time
¯
tm to time t̄m and

it can be expressed as follows:
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δ(m) = ∆m

(
êt̄m − ê

¯
tm

)
. (C.9)

The terms δ(1), . . . , δ(M) can always be selected in order to fulfil the following feasi-

bility conditions:

u
(m)
j = u∗j +

m∑
i=1

δ(i) ∈ Uj ∀m ∈ {1, . . . ,M} (C.10a)

ũ
(m)
j = u∗j + δ(m) ∈ Uj ∀m ∈ {1, . . . ,M} . (C.10b)

Furthermore, the following additional condition is assumed:

∇ujC
(
u∗, u∗j + ε

(
êj,t̄ − êj,

¯
t

))
= ∇ujC(u∗, u∗j) ∀ε ∈ [0,∆m]. (C.11)

This does not introduce any loss of generality since ∇ujC is piecewise continuous:

any δ(m) with associated ∆m not fulfilling (C.11) can be split into multiple smaller

swaps such that (C.10) and (C.11) hold.

The equilibrium result is now demonstrated by contradiction. In particular, it is

assumed that u∗ is not an aggregative equilibrium and there exists some uj ∈ Uj

such that C(u∗, uj) < C(u∗, u∗j). From (C.10), if this were the case, there would

exist m ∈ {1, . . . ,M} such that:

C(u∗, u∗j + δ(m)) < C(u∗, u∗j). (C.12)

From the feasibility result in (C.10b) for u∗j + δ(m), we have:

a(u∗, j, t̄m) > 0 b(u∗, j,
¯
tm) > 0 c(u∗, j, t̄m,

¯
tm) > 0. (C.13)

From (C.12) and (C.11), it follows that C(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0. As a result of

(4.29a), it also holds:

d(u∗, j, t̄m,
¯
tm) > 0. (C.14)
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We can conclude from (C.13) and (C.14) that δ(u∗, j, t̄m,
¯
tm) in (4.25) is also positive.

This is not possible, since u∗ = u(k) represents the final result in step 3 of Algorithm

3, which is only reached when the variable conv remains equal to one through in

step 2 and therefore δ(u∗, j, t̄m,
¯
tm) ≤ 0. It follows that (C.12) cannot hold, thus

concluding the proof by contradiction.
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C.3 Proof of Theorem 4.2

Given the strict convexity of fGm and fRm and the linearity of all the constraints

in (4.2), it follows that ϕ(D,R) is strictly convex. Therefore, (4.30) holds if the

following sufficient condition is satisfied for all u ∈ U :

M∑
m=1

∇Dmϕ(D̃(u∗), R̃(u∗))
[
D̃m(u)− D̃m(u∗)

]
+

M∑
m=1

∇Rmϕ(D̃(u∗), R̃(u∗))
[
R̃m(u)− R̃m(u∗)

]
+
∑

j∈NEV
∇ujψ(u∗j)(uj − u∗j) ≥ 0 (C.15)

Recalling (4.12) and (4.13), this corresponds to:

M∑
m=1

[
∇Dmϕ(D̃(u∗), R̃(u∗))

∑
{j:µj=m}

(
uj − u∗j

) ]

+
M∑
m=1

[
∇Rmϕ(D̃(u∗), R̃(u∗))

∑
{j:µj=m}

(rj(u)− rj(u∗))
]

+
∑

j∈NEV
∇ujψ(u∗j)(uj − u∗j) ≥ 0. (C.16)

A slightly stronger condition is considered over all j ∈ N and uj ∈ Uj. In the case

j ∈ NEV and µj = m, this corresponds to:

∇Dmϕ(D̃(u∗), R̃(u∗))(uj − u∗j)

+∇Rmϕ(D̃(u∗), R̃(u∗))(rj(u)− rj(u∗)) +∇ujψ(u∗j)(uj − u∗j) ≥ 0 (C.17)

Since ∇Dmϕ and ∇Rmϕ correspond respectively to the vectors of prices p̃m and ρ̃m,

this is equivalent to ∇ujC(u∗, uj)(uj − u∗j) ≥ 0, which is always verified since u∗j is

an aggregative equilibrium according to Definition 4.1, thus concluding the proof.
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