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Abstract

To enable increasingly intelligent behaviours, autonomous robots will need to

be equipped with a deep understanding of their surrounding environment. It would

be particularly desirable if this level of perception could be achieved automatic-

ally through the use of vision-based sensing, as passive cameras make a compelling

sensor choice for robotic platforms due to their low cost, low weight, and low power

consumption.

Fundamental to extracting a high-level understanding from a set of 2D images

is an understanding of the underlying 3D geometry of the environment. In mobile

robotics, the most popular and successful technique for building a representation

of 3D geometry from 2D images is Visual Simultaneous Localisation and Mapping

(SLAM). While sparse, landmark-based SLAM systems have demonstrated high

levels of accuracy and robustness, they are only capable of producing sparse maps. In

general, to move beyond simple navigation to scene understanding and interaction,

dense 3D reconstructions are required.

Dense SLAM systems naturally allow for online dense scene reconstruction, but

suffer from a lack of robustness due to the fact that the dense image alignment used

in the tracking step has a narrow convergence basin and that the photometric-based

depth estimation used in the mapping step is typically poorly constrained due to

the presence of occlusions and homogeneous textures.

This thesis develops methods that can be used to increase the robustness of

dense SLAM by fusing additional sensing modalities into standard dense SLAM

pipelines. In particular, this thesis will look at two sensing modalities: acceleration

and rotation rate measurements from an inertial measurement unit (IMU) to address

the tracking issue, and learned priors on dense reconstructions from deep neural

networks (DNNs) to address the mapping issue.
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Chapter 1

Introduction

Contents

1.1 Robot Perception and Scene Understanding . . . . . . . . . . . 11

1.2 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 From Sparse to Dense . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Robust Dense Visual SLAM . . . . . . . . . . . . . . . . . . . . 17

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Paper I: Dense RGB-D Inertial Fusion . . . . . . . . . . 20

1.5.2 Paper II: Probabilistic Fusion of Learned Parametric Priors 21

1.5.3 Paper III: Probabilistic Fusion of Learned Nonparametric

Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Robot Perception and Scene Understanding

To enable increasingly intelligent behaviours, autonomous robots will need to be

equipped with a deep understanding of their surrounding environment. Self-driving

cars, for example, will need to identify potential hazards and quickly determine an

appropriate response based on factors such as terrain, weather, and the presence

of pedestrians, cyclists, or other vehicles. Home-cleaning robots will need to know

which areas of the house they have already cleaned, which areas require attention,
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1. Introduction

and how to complete their tasks without being intrusive or damaging fragile objects.

Autonomous search-and-rescue vehicles will need to quickly and efficiently explore

unknown and potentially dangerous environments while identifying people who need

help and other areas of concern. It would be particularly desirable if this level of

perception could be achieved automatically through the use of vision-based sensing,

as passive cameras make a compelling sensor choice for robotic platforms due to

their low cost, low weight, and low power consumption.

Extracting a high-level understanding from a set of 2D images is one of the core

challenges of computer vision and encompasses a broad range of topics such as ob-

ject detection, semantic segmentation, path planning and motion prediction. Funda-

mental to all of these, however, is an understanding of the underlying 3D geometry

of the environment. For this reason, much research in mobile robotics over the past

few decades has focused on building increasingly sophisticated methods to accur-

ately and robustly navigate and reconstruct the observed world. Building a detailed

representation of 3D geometry from a sequence of 2D images is the focus of this

thesis.

1.2 Visual SLAM

There are a number of computer vision techniques for estimating 3D structure from

a set of images. Some, such as Shape-from-Silhouettes [Fitzgibbon et al., 1998,

Hernández and Schmitt, 2004, Phothong et al., 2018] and Space Carving [Kutulakos

and Seitz, 2000, Tulsiani et al., 2017], are based on using multiple images of the

same scene from different viewpoints. Others use multiple images from the same

viewpoint but with varying lighting conditions, such as Shape-from-Shading [Zhang

et al., 1999, Yang and Deng, 2018], or varying camera intrinsics, such as Depth-from-

Defocus [Nayar et al., 1995, Tao et al., 2017]. More recently, a number of techniques

have been developed that use machine learning [Saxena et al., 2005, Hoiem et al.,

2005, Hoiem et al., 2008], and deep learning, in particular [Eigen et al., 2014, Liu

et al., 2015, Laina et al., 2016, Ummenhofer et al., 2017, Fu et al., 2018]. In mobile
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1.2. Visual SLAM

robotics, however, the most popular and successful techniques are those based on

Structure from Motion (SfM). These techniques rely on few assumptions about the

environment and, crucially, estimate the pose of the camera along with the 3D

geometry, making these methods well suited for robot navigation.

Many state-of-the-art SfM systems [Snavely et al., 2006, Furukawa and Ponce,

2007, Goesele et al., 2007, Agarwal et al., 2009, Frahm et al., 2010, Kazhdan and

Hoppe, 2013, Moulon et al., 2013, Wenzel et al., 2013, Wu, 2013, Fuhrmann et al.,

2014, Schönberger and Frahm, 2016, Schönberger et al., 2016] give impressive res-

ults, but typically rely on multi-stage pipelines and global optimisation, which is

problematic for robotic systems needing to estimate the geometry and poses in-

crementally and in real time. For this reason, incremental SfM has been one of

the main areas of focus in autonomous mobile robotics research for the past few

decades. In the robotics community, this incremental problem is usually known as

Visual Simultaneous Localisation and Mapping (SLAM), as an autonomous agent

in unknown surroundings needs to simultaneously localise its position against the

current map of the environment and update the map based on the images it captures

at its current position.

The SLAM problem is formulated as a probabilistic model that estimates the un-

known 3D structure and camera pose parameters from a sequence of noisy measure-

ments. According to [Durrant-Whyte and Bailey, 2006, Bailey and Durrant-Whyte,

2006], this probabilistic formulation of SLAM dates back to the 1986 IEEE Robotics

and Automation Conference; however SfM techniques greatly predate this. In 1913,

it was shown by [Kruppa, 1913] that given five manually labelled point correspond-

ences in two overlapping images it was possible to determine the relative poses of

the two cameras and the positions of all points up to a scale factor.

The use of cameras in robot navigation also predates visual SLAM, notably with

the work of [Moravec, 1977] and the Stanford cart. The Stanford cart had a single

camera that would slide along a 50cm rail to capture stereo images. By matching

features across stereo pairs as the cart moved, the position of the cart and any
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1. Introduction

obstacles could be determined. Using this method of Visual Odometry (VO), the

cart was capable of navigating a 20m course in approximately five hours.

The fundamental difference between the VO used by the Stanford cart and visual

SLAM, is that in SLAM the map is incrementally refined with additional measure-

ments. In particular, through a process called loop closure, the SLAM algorithm is

able to detect when the camera is viewing a previously mapped area and can remove

accumulated drift by adding constraints between the current camera pose estimate

and the pose estimates from when it previously visited the area.

Mostly due to a lack of processing power, however, early SLAM work focused on

other sensing modalities, such as sonars [Leonard and Whyte, 1991], rather than

cameras. Early visual SLAM systems using passive cameras relied on stereo setups

[Krotkov et al., 1995] which require careful calibration and time synchronisation. It

was not until the early 2000s that the first real-time monocular SLAM system was

demonstrated with MonoSLAM [Davison, 2003].

MonoSLAM used an Extended Kalman Filter (EKF) [Kalman, 1960] and extrac-

ted keypoint features [Shi and Tomasi, 1994] from images to use as landmarks. This

was followed by PTAM (Parallel Tracking and Mapping) [Klein and Murray, 2007],

which showed significant gains in robustness by tracking many more keypoints and

using bundle adjustment [Triggs et al., 1999] to jointly optimise for the camera

poses and landmark positions. A key insight of PTAM was to split the tracking

and mapping threads so that the tracking could be done in real time while the

bundle adjustment could be done at a slower rate in the background. The sparse,

feature-based approach of these early systems became the standard in visual SLAM

for many years.

In [Engel et al., 2017], the authors introduce a taxonomy for monocular visual

SLAM, categorising the systems along two axes. The first axis is direct vs. indirect.

Like [Irani and Anandan, 1999], this axis differentiates systems based on whether

the measurements that are used to estimate the camera pose and structure para-

meters are based on “measurable image quantities” such as pixel intensities, or on
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1.3. From Sparse to Dense

features abstracted from the image. In MonoSLAM and PTAM, the images are first

preprocessed to extract and match keypoints across multiple frames, after which the

geometric error of the landmark positions is minimised. Therefore, these systems

fall into the indirect category. It is also possible for systems to use the pixel in-

tensities directly in the SLAM formulation, for example by using the Lucas-Kanade

method [Lucas and Kanade, 1981] for image alignment. In these systems, it is the

photometric error between reprojected frames that is minimised. DTAM [Newcombe

et al., 2011b] is an example of a system that falls into this direct category. These

direct methods will be discussed in more detail in the next section.

The other axis in the taxonomy is sparse vs. dense. In sparse systems, only a small

selected subset of points are tracked and reconstructed (usually those points that

produce distinct feature descriptions, such as corners). For example, MonoSLAM

only tracks a few hundred keypoints and PTAM only tracks a few thousand. Dense

systems, conversely, attempt to use all of the pixels in the image. There is an

intermediate approach, called semi-dense, that uses a selected subset of the image,

but one that is much larger than is typical in sparse systems. LSD-SLAM [Engel

et al., 2014] is an example of such a semi-dense system. Semi-dense approaches are

usually grouped with dense methods because, unlike sparse methods, the subsets of

pixels are usually well-connected regions and cannot be considered independent.

Note that whether a system is sparse or dense does not depend on whether it

is direct or indirect. While it is possible for systems to be both sparse and direct

by performing direct image alignment on only a small number of pixels [Jin et al.,

2003, Engel et al., 2017], or dense and indirect by first computing the optical flow

[Ranftl et al., 2016] or by using an optimisable representation [Bloesch et al., 2018],

the vast majority of systems are either sparse and indirect or dense and direct.

1.3 From Sparse to Dense

As discussed earlier, the most successful early monocular SLAM systems were sparse

and indirect. As processing power continued to grow and more and more keypoints
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1. Introduction

could be added to the systems, and research on low-level vision led to the develop-

ment of many excellent feature descriptors (such as SIFT [Lowe, 1999], SURF [Bay

et al., 2006], FAST [Rosten and Drummond, 2006], BRIEF [Calonder et al., 2010],

ORB [Rublee et al., 2011], and BRISK [Leutenegger et al., 2011]), the accuracy and

robustness of state-of-the-art sparse SLAM systems became very high. An example

of one of these modern systems is ORB-SLAM [Mur-Artal and Tardós, 2017], which

is widely used for camera tracking in many applications.

One of the drawbacks of these sparse systems, however, is that they are only

capable of producing sparse maps. That is, the small set of landmarks that are re-

constructed by sparse SLAM systems are very useful for camera tracking, but there

are many application areas where a dense reconstruction of the environment would

be preferred. For example, dense reconstructions may be necessary to determine on

which parts of the terrain a robot can safely drive, and to enable free-space map-

ping for obstacle avoidance. Augmented reality systems require an understanding

of surfaces, not only for the placement of virtual objects, but to correctly render oc-

clusions. A dense shape reconstruction may be useful for robot manipulation tasks

such as identifying good grasp positions on objects. In general, to move beyond

simple navigation to scene understanding and interaction, dense 3D reconstructions

are required.

While there have been some attempts to “densify” sparse maps [Lovegrove et al.,

2011], dense SLAM systems naturally allow for online dense scene reconstruction.

With the emergence of commodity graphics processing units (GPUs), interest in

these methods increased. Early GPU-based algorithms showed that it was possible

to estimate dense depth maps [Merrell et al., 2007] and 3D mesh models [Newcombe

and Davison, 2010] in real time. One of the first real-time monocular dense SLAM

systems was DTAM (Dense Tracking and Mapping) [Newcombe and Davison, 2010].

DTAM tracks the camera pose using direct image alignment, minimising the photo-

metric error between the current frame and warped keyframe. Associated with each

keyframe is a photometric cost volume built up over many small baseline measure-

ments from which dense depth maps are extracted through a variational optimisa-
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1.4. Robust Dense Visual SLAM

tion technique. Other important examples include [Stuehmer et al., 2010], [Graber

et al., 2011], MonoFusion [Pradeep et al., 2013], REMODE [Pizzoli et al., 2014], and

LSD-SLAM [Engel et al., 2014], a semi-dense method.

The introduction of low cost commodity depth cameras such as the Microsoft

Kinect and ASUS Xtion Pro Live also led to increased research on dense methods.

As the existence of a high quality depth channel greatly simplifies both tracking and

mapping, many of the most impressive online 3D reconstruction systems make use

of RGB-D cameras. One of the first and most influential RGB-D SLAM systems

is KinectFusion [Newcombe et al., 2011a], which uses a volumetric map based on

a signed distance function (SDF). Many other RGB-D SLAM systems follow this

formulation [Kerl et al., 2013, Whelan et al., 2012, Kahler et al., 2015]. ElasticFusion

[Whelan et al., 2016], which will be discussed in more detail in Chapter 3, enables

greater scalability by using a surfel-based map and focusing on global consistency

by applying elastic map deformations upon loop closure.

1.4 Robust Dense Visual SLAM

While dense SLAM systems are currently valued for the 3D reconstructions they

produce, it is interesting that one of the original motivations behind dense SLAM

was to attain higher levels of robustness [Newcombe, 2012, Zienkiewicz, 2017]. The

argument was that since the quality of an estimate can only increase with additional

measurements, and since dense and direct systems use all of the available information

and do not suffer from bad correspondences, they should outperform sparse systems.

While dense SLAM does tend to be more robust to motion blur [Engel, 2017], in

general, it is quite brittle. In [Concha and Civera, 2017], the authors evaluate two

state-of-the-art dense RGB-D SLAM systems, ElasticFusion [Whelan et al., 2015]

and RGBDTAM [Concha and Civera, 2017], on the full set of sequences in the TUM

RGB-D Dataset [Sturm et al., 2012], a widely used RGB-D SLAM benchmark. Both

systems failed on more than a third of the 36 sequences. In the majority of cases,

these failures were a result of missing frames (requiring the systems to track across
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1. Introduction

large baselines) or a lack of sufficient photometric variation.

More generally, there are three main concepts that relate to the lack of robustness

in dense SLAM:

1. Tracking: Direct image alignment, on which the tracking step is usually

based, has a very narrow basin of convergence [Mobahi et al., 2012]. In prac-

tice, this restricts camera motions to being slow and smooth as without a prior

on the camera motion, the relative pose of the current frame is initialised with

the estimated pose of the previous frame. Some methods, such as a coarse-

to-fine technique [Baker et al., 2004], can help improve the situation, but not

enough for dense methods to track fast motions.

2. Mapping: Estimating depth by minimising the photometric error is not well

constrained due to the presence of occlusions, homogeneous textures, non-

Lambertian surfaces, and dynamic lighting. Dense SLAM systems address

this by using regularisers, usually based on smoothness [Newcombe et al.,

2011b, Pizzoli et al., 2014] or planar assumptions [Flint et al., 2011, Pradeep

et al., 2013, Concha et al., 2014, Concha and Civera, 2014, Concha and Civera,

2015]. These regularisers are often chosen in a generic and data-independent

way, and require tuning to get the best performance.

3. Joint Inference: Since dense SLAM systems use all of the pixels in the

image, it is not feasible to compute the joint probabilistic inference of all poses

and map points in a manner similar to sparse SLAM. Instead, dense systems

typically alternate between optimising for the camera pose (while assuming

that the map is correct) and optimising for the map (while assuming that the

pose is correct). This approximation of the probabilistic inference means that

not all existing cross-correlations are taken into account, as the accuracy of

the map depends on the accuracy of the poses and vice versa.

The focus of this thesis is on developing methods that can be used to increase the

robustness of dense SLAM by addressing the first two of these issues. While some
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1.4. Robust Dense Visual SLAM

work addressing the third issue has been done in conjunction with this thesis [Bloesch

et al., 2019, Czarnowski et al., 2020], it will not be directly discussed.

In particular, this thesis will look for ways in which dense SLAM can be im-

proved by fusing additional sensing modalities into standard dense SLAM pipelines.

Existing commercial robots that employ visual SLAM methods usually fuse measure-

ments from other sensors such as bump detectors and position sensitive devices [Zi-

enkiewicz, 2017], so keeping the standard pipeline intact to allow for the continued

fusion of other sensors is an important consideration. This thesis will look at two

sensing modalities, in particular: acceleration and rotation rate measurements from

an inertial measurement unit (IMU) to address the tracking issue, and learned priors

on dense reconstructions from deep neural networks (DNNs) to address the mapping

issue.

IMUs are a compelling sensor choice as they have become cheap and abundant in

consumer electronic devices. The fusing of inertial measurements has been widely

adopted in sparse visual SLAM, leading to high levels of accuracy and robustness

[Mourikis and Roumeliotis, 2007, Li and Mourikis, 2013, Tanskanen et al., 2015,

Jones and Soatto, 2011, Keivan et al., 2014, Leutenegger et al., 2014, Forster et al.,

2015]. This thesis demonstrates that similar improvements in robustness can be

gained by fusing inertial measurements into the tracking step of a dense SLAM

system.

The application of deep learning techniques to computer vision has led to dra-

matic increases in performance in many areas, including dense reconstruction [Eigen

et al., 2014, Ummenhofer et al., 2017, Laina et al., 2016, Liu et al., 2015]. It was

shown in [Fácil et al., 2017] that learning-based and geometry-based approaches

have a complementary nature as learning-based systems tend to perform better on

the interior points of objects but struggle on edges, and geometry-based systems

typically do well on areas with high image gradients but poorly on interior points

that may lack texture. The best way to combine these two approaches remains

an open problem, however. Some impressive results have been shown by taking
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the output of a traditional geometry-based system and passing this through a net-

work [Zhou et al., 2018]. As discussed above, however, it may be desirable to treat

a learning-based system as a “sensor” that is fused into a traditional dense SLAM

pipeline. The difficulty with this approach is that some measure of the uncertainty

associated with each prediction is required. This thesis will examine two methods

to learn priors on the reconstruction that can be fused into standard dense SLAM

systems.

1.5 Contributions

The contributions made in this thesis resulted in three separate publications. A full

list of publications done in conjunction with thesis are provided in the next section.

1.5.1 Paper I: Dense RGB-D Inertial Fusion

Laidlow, T., Bloesch, M., Li, W. and Leutenegger, S. (2017), Dense RGB-D-

Inertial SLAM with Map Deformations. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). [Laidlow et al., 2017].

Context

As discussed in the previous section, dense tracking works by estimating the relative

pose that minimises the photometric error between two frames. However, it is well-

known that the associated optimisation is highly nonlinear and susceptible to local

minima [Jin et al., 2003, Molton et al., 2004, Silveira et al., 2008, Mobahi et al.,

2012]. For this reason, a good initialisation is required for each frame to be tracked.

For general camera motion, a strong motion model may not be available and the

best initialisation may simply be the estimated pose of the previous frame. In effect,

this restricts dense SLAM implementations to slow, smooth trajectories where the

pose of the previous frame is a good initialisation. In actual robotic systems, this

may be too restrictive as vibrations, collisions and other fast or non-smooth motions

may frequently break this underlying assumption.
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Even with a good initialisation, the optimisation may still not converge without

sufficient photometric variation to constrain the problem. This can easily occur when

the camera view is dominated by a large homogeneous region such as a textureless

wall.

Contribution

To address these weaknesses in direct photometric alignment, and inspired by the

success of sparse visual-inertial systems [Jones and Soatto, 2011, Keivan et al., 2014,

Leutenegger et al., 2014, Forster et al., 2015, Shen et al., 2015, Mur-Artal and

Tardos, 2017, Qin et al., 2017, von Stumberg et al., 2018], this paper presents a

dense SLAM system that fuses acceleration and rotation rate measurements into

the tracking step in a tightly-coupled manner. This system has real-time capability

while running on a GPU. It jointly optimises for the camera pose, velocity, IMU

biases and gravity direction while building up a globally consistent, fully dense

surfel-based 3D reconstruction of the environment. Through a series of experiments

on both synthetic and real world datasets, it is shown that this dense visual-inertial

SLAM system is more robust to fast motions and periods of low texture and low

geometric variation than a related RGB-D-only SLAM system.

This dense RGB-D-inertial SLAM system is discussed in detail in Chapter 3.

1.5.2 Paper II: Probabilistic Fusion of Learned Parametric Priors

Laidlow, T., Czarnowski, J. and Leutenegger, S. (2019), DeepFusion: Real-Time

Dense 3D Reconstruction for Monocular SLAM using Single-View Depth

and Gradient Predictions. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). [Laidlow et al., 2019].

Context

One of the major motivations for the use of dense SLAM systems is the desire for

dense 3D reconstructions, as these scene representations may be useful for a number

of robotic tasks such as safe robot navigation, augmented reality, and manipulation
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tasks. Online dense reconstruction systems such as DTAM [Newcombe et al., 2011b]

typically estimate depth values for selected keyframes by minimising the photomet-

ric error over many frames. Unfortunately, this optimisation problem is not well

constrained due to the presence of occlusions, and homogeneous or repeated tex-

ture [Campbell et al., 2008]. To address this, dense systems typically use a strong

regulariser based on planar [Flint et al., 2011, Pradeep et al., 2013, Concha et al.,

2014, Concha and Civera, 2014, Concha and Civera, 2015] or smoothness assump-

tions [Newcombe et al., 2011b, Pizzoli et al., 2014].

As it is not possible to determine the translation of a camera using image corres-

pondences alone, monocular reconstruction systems also suffer from an inherent scale

ambiguity. It will be shown in Chapter 3 that it is possible to address this scale am-

biguity by fusing vision-based measurements with readings from an IMU; however,

in situations with low accelerations, scale becomes practically unobservable when

using low grade IMUs. Another option to resolve these issues in monocular depth

reconstruction is through the use of a depth camera [Newcombe et al., 2011a, Kerl

et al., 2013], but depth cameras are limited in range and to indoor spaces.

Contribution

This paper presents a 3D reconstruction system, called DeepFusion, that leverages

the output of a DNN to produce fully dense depth maps for keyframes with metric

scale. DeepFusion is capable of producing real-time dense reconstructions on a

GPU. It fuses the output of a semi-dense multi-view stereo algorithm with the depth

and depth gradient predictions of a DNN in a probabilistic fashion, using learned

uncertainties produced by the network. While the network only needs to be run

once per keyframe, the optimisation for the depth map can be run at frame rate so

as to constantly make use of the newest geometric constraints. Based on synthetic

and real world datasets, we demonstrate that DeepFusion is capable of performing

at least as well as other similar systems that combine deep learning with SLAM

while maintaining a standard probabilistic SLAM framework.
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DeepFusion is discussed in detail in Chapter 4.

1.5.3 Paper III: Probabilistic Fusion of Learned Nonparametric

Priors

Laidlow, T., Czarnowski, J., Nicastro, A., Clark, R. and Leutenegger, S. (2020), To-

wards the Probabilistic Fusion of Learned Priors into Standard Pipelines

for 3D Reconstruction. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). [Laidlow et al., 2020].

Context

As will be shown in Chapter 4, it is possible to probabilistically fuse the outputs of

a DNN into a standard dense reconstruction pipeline by having the DNN predict

its own aleatoric uncertainty and using a Gaussian likelihood loss function during

training. The problem with this approach, however, is that it forces the network

to predict a parametric and unimodal distribution. This type of distribution may

be particularly ill-suited to dense reconstruction where there is a clear need for a

multi-hypothesis prediction [Campbell et al., 2008].

Additionally, the previous paper only estimated multi-view geometric constraints

for keyframe pixels with a high image gradient as these are the points where a good

estimation is most likely. Unfortunately, these points also happen to be where there

are high depth gradients (edges of objects, etc.), which is where the network had

learned to predict a high uncertainty. This meant that in the fusion, very little

information was passed between semi-dense points and points on the interior of

objects. Therefore the depth values for interior points relied almost entirely on the

depth values predicted by the network.

Finally, the previous paper required the network to make an explicit prediction

of the uncertainty. While the network’s predictions matched intuition (the network

placed highest uncertainty at depth discontinuities where there are large or rapidly

changing gradients), it was difficult to train and it was not clear how the absolute
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magnitude of the values should be interpreted.

Contribution

This paper proposes fusing a learned single-view depth prior into a standard 3D re-

construction system. It presents a system that is capable of incrementally producing

dense depth maps for a set of keyframes. A DNN is trained to predict a discrete,

nonparametric probability distribution for the depth of each pixel from a single im-

age. This probability volume is then fused with another probability volume based

on the photometric consistency between subsequent frames and the keyframe im-

age. Combining the probability volumes from these two sources results in a volume

that is better conditioned. To extract depth maps from the volume, a cost function

that includes a regularisation term based on network predicted surface normals and

occlusion boundaries is minimised. That each of these components improves the

overall performance of the system is demonstrated through a series of experiments.

This is discussed in detail in Chapter 5.

1.6 Publications

The work described in this thesis resulted in the following publications:

• Laidlow, T., Czarnowski, J., Nicastro, A., Clark, R. and Leutenegger, S.

(2020), Towards the Probabilistic Fusion of Learned Priors into Stand-

ard Pipelines for 3D Reconstruction. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA). [Laidlow et al.,

2020].

• Laidlow, T., Czarnowski, J. and Leutenegger, S. (2019), DeepFusion: Real-

Time Dense 3D Reconstruction for Monocular SLAM using Single-

View Depth and Gradient Predictions. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA). [Laidlow et al.,

2019].
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• Laidlow, T., Bloesch, M., Li, W. and Leutenegger, S. (2017), Dense RGB-D-

Inertial SLAM with Map Deformations. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). [Laidlow et al., 2017].

While not described directly, the following publications were done in conjunction

with this thesis:

• Czarnowski, J., Laidlow, T., Clark, R., and Davison, A. J. (2020), Deep-

Factors: Real-Time Probabilistic Dense Monocular SLAM. IEEE Ro-

botics and Automation Letters (RA-L). [Czarnowski et al., 2020].

• Bloesch, M., Laidlow, T., Clark, R., Leutenegger, S. and Davison, A. J. (2019),

Learning Meshes for Dense Visual SLAM. In Proceedings of the Inter-

national Conference on Computer Vision (ICCV). [Bloesch et al., 2019].

• Bloesch, M., Sommer, H., Laidlow, T., Burri, M., Nuetzi, G., Fankhauser,

P., Bellicoso, D., Gehring, C., Leutenegger, S., Hutter, M. and Siegwart, R.

(2016), A Primer on the Differential Calculus of 3D Orientations.

CoRR, arXiv.org. [Bloesch et al., 2016].

The following video material provides a visualisation of one of the algorithms

developed in this thesis:

• Dense RGB-D-Inertial SLAM with Map Deformations, https://www.youtube.

com/watch?v=-gUdQ0cxDh0.

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation, the concepts used in dense SLAM, and

provides a primer on both inertial measurement units (IMUs) and deep neural

networks (DNNs).
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Chapter 3 describes a tightly-coupled dense RGB-D-inertial SLAM system. Through

a series of experiments on both synthetic and real world datasets, it is shown

that fusing inertial measurements into the tracking step makes the dense

SLAM system more robust to fast motions and scenes with low texture.

Chapter 4 presents DeepFusion, a real-time system that probabilistically fuses the

output of a semi-dense multi-view stereo algorithm with depth and depth

gradient predictions from a DNN to produce dense 3D reconstructions.

Chapter 5 describes another system for incrementally producing dense depth maps

for a set of keyframes. This system addresses the limitations found in the pre-

vious chapter by using a DNN to predict discrete, nonparametric probability

distributions for the depth of each pixel from a single image and then fusing

this probability volume with another probability volume based on the photo-

metric consistency between subsequent frames and the keyframe image.

Chapter 6 concludes the thesis with a discussion of the research presented and

suggestions for future work.
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Preliminaries
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2.1 Notation

This thesis makes use of the following notation:

2.1.1 General Notation
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a This font is used for scalars.

a This font is used for M-dimensional column vectors, where ai is the ith

element of the vector:

a =



a1

a2

...

aM


, aT =

[
a1 a2 . . . aM

]
. (2.1)

A This font is for M × N-dimensional matrices, where ai j is the matrix

element at the ith row and jth column:

A =



a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aM1 aM2 . . . aMN


. (2.2)

a This font is used for the homogeneous coordinate vector corresponding

to the coordinate vector a:

a =


a

1

 . (2.3)

1 This represents the identity matrix.

0 This represents the zero matrix.

(·)
× This denotes the cross-product operator that produces a skew-

symmetric matrix from a 3-dimensional vector, such that a × b = a×b:

a× =


a1

a2

a3


×

=


0 −a3 a2

a3 0 −a1

−a2 a1 0


. (2.4)
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2.1.2 Probability

p(x) This represents the probability density of x.

p(x|y) This represents the probability density of x given y.

2.1.3 Spaces and Manifolds

R This denotes the set of real numbers.

R+ This denotes the set of positive real numbers.

RM This denotes the vector space of real M-dimensional vectors.

RM×N This denotes the vector space of real M × N-dimensional matrices.

SM This denotes the M-sphere group.

SO(3) This denotes the 3D rotation group.

SE(3) This denotes the Special Euclidean group.

expq (·) This denotes the exponential map from R3 to S3.

expC (·) This denotes the exponential map from R3 to SO(3).

� This denotes the box-plus operator that applies a small perturbation

expressed in the tangent space to a manifold state.

� This denotes the box-minus operator that determines the difference

between two manifold states in the tangent space.

2.1.4 Frames and Transformations

FA
−→

This represents a frame of reference in R3.

Aa The represents the vector a expressed in FA
−→

.

ArAB This represents the position vector from the origin of F
−→A to the origin

of F
−→B, represented in F

−→A.

AvBC This represents the velocity of the origin of F
−→C as observed by F

−→B and

expressed in F
−→A.

CAB This represents a 3D rotation expressed as a rotation matrix (i.e. CAB ∈

SO(3)).
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qAB This represents a 3D rotation expressed as a Hamiltonian unit qua-

ternion (i.e. qAB ∈ S3).

⊗ This denotes quaternion multiplication, such that qAC = qAB ⊗ qBC .

TAB This represents the homogeneous transformation matrix that trans-

forms homogeneous points from F
−→B to F

−→A.

2.1.5 Camera Models and Images

fx This represents the horizontal focal length of the camera, in pixels.

fy This represents the vertical focal length of the camera, in pixels.

cx This represents the horizontal coordinate of the camera centre, in

pixels.

cy This represents the vertical coordinate of the camera centre, in pixels.

K This represents the intrinsic camera matrix:

K =


fx 0 cx

0 fy cy

0 0 1


. (2.5)

π(·) This denotes the perspective projection function:

π(a) = π
©«

a1

a2

a3


ª®®®®¬
=

1

a3


a1

a2

 . (2.6)

I(n)(u) This represents the intensity of image n at pixel coordinate u.

D(n)(u) This represents the depth value corresponding to the pixel coordinate

u in image n.
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2.2 Transformations

The homogeneous transformation matrix, TAB, transforms homogeneous points from

F
−→B to F

−→A:

Ap = TAB Bp. (2.7)

This is particularly useful for visual SLAM as the matrix can be used to represent

a six degrees-of-freedom (DoF) rigid transformation between two camera frames.

The 4×4 transformation matrix belongs to SE(3), consisting of a 3DoF rotation

and a 3DoF translation:

TAB =


CAB ArAB
0T 1

 , (2.8)

where CAB is a 3×3 rotation matrix in SO(3) (meaning CAB CT
AB = CT

AB CAB = 1

and det(CAB) = 1), and ArAB ∈ R
3.

Transformation matrices can be chained together:

TAC = TAB TBC, (2.9)

and are invertible:

TBA = T−1
AB =


CT

AB −CT
AB ArAB

0T 1

 . (2.10)

2.3 Camera Model

The camera model describes the relationship between 3D Euclidean points and their

projection onto the image plane of the camera. In this thesis, the pinhole camera

model is used (Figure 2.1), and all geometric distortions are assumed to have been

corrected.

The pinhole camera model uses four parameters to model the image formation

process (skew, a possible fifth parameter, is assumed to be zero): the focal length

in the horizontal direction ( fx), the focal length in the vertical direction ( fy), the

horizontal coordinate of the camera centre (cx), and the vertical coordinate of the
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Figure 2.1: Perspective projection of a 3D Eucliean coordinate to
a 2D pixel coordinate using the pinhole camera model. Modified
from: https://tex.stackexchange.com/questions/96074, original author:
https://tex.stackexchange.com/users/22653/perr0. License: CC BY-SA 3.0.

camera centre (cy). In an ideal pinhole camera, the focal length (which is the distance

between the camera centre and image plane) would be the same for the horizontal

and vertical directions, but these can differ in reality as the physical height and width

of the pixels may not be equal. These camera parameters are typically combined

into the intrinsic matrix, K:

K =


fx 0 cx

0 fy cy

0 0 1


. (2.11)

The projection of a 3D Euclidean point, Cp, expressed in the camera frame, FC
−→

,
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to a 2D pixel coordinate, u, is given by:

u =

u1

u2

 =

fx C p1
C p3

+ cx
fy C p2

C p3
+ cy

 = π
©«


fx Cp1 + cx Cp3

fy Cp2 + cy Cp3

Cp3


ª®®®®¬
= π

©«


fx 0 cx

0 fy cy

0 0 1



Cp1

Cp2

Cp3


ª®®®®¬
= π(KCp),

(2.12)

where π(·) is the perspective projection function:

π(a) = π
©«

a1

a2

a3


ª®®®®¬
=

1

a3


a1

a2

 . (2.13)

The projection function is not injective and, therefore, not invertible. However,

if the depth of the pixel (D(u) = Cp3) is known, the 3D Euclidean point Cp can be

recovered from the homogeneous pixel coordinate u:

Cp =


Cp1

Cp2

Cp3


= Cp3


1
fx

0
−cx
fx

0 1
fy

−cy
fy

0 0 1



fx C p1
C p3

+ cx
fy C p2

C p3
+ cy

1


= D(u)


1
fx

0
−cx
fx

0 1
fy

−cy
fy

0 0 1



u1

u2

1


= D(u)K−1u.

(2.14)

In addition to standard cameras, this thesis also makes use of depth or RGB-D

cameras. Depth cameras, such as the Microsoft Kinect or Asus Xtion Pro Live, also

capture a dense depth reading from the environment for each RGB frame of the

incoming video stream. Typically, the cameras register the depth readings to the

RGB frame (an assumption made in this thesis). To measure depth, these cameras

project a known infrared pattern onto the scene and capture the reflection with an

offset infrared sensor. The depth of each scene point can be computed by measuring

deviations between the captured and known reference patterns.

2.4 Nonlinear Optimisation

As will be shown later, both the tracking and mapping problems in dense SLAM

are typically formulated as nonlinear least-squares optimisation problems. For these
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types of problems, a cost function, c(·), is defined based on the (weighted) sum of

squared residuals for a given state estimate, x:

c(x) =
1

2

M∑
i=1

ri(x)
TWiri(x) =

1

2
r(x)TWr(x) =

1

2
| |r(x)| |2W, (2.15)

where

r(x) =
[
r1(x)

T r2(x)
T . . . rM (x)

T
]T
, (2.16)

W =



W1 0 . . . 0

0 W2 . . . 0
...

...
. . .

...

0 0 . . . WM


, (2.17)

ri(·) is a nonlinear residual function of arbitrary form, Wi is a symmetric, positive-

definite (and often diagonal) weighting matrix, and | | · | |W is the Mahalanobis norm.

In SLAM, the weighting matrix often will be the inverse covariance matrix associated

with a given measurement (Wi = R−1).

The suitability of a given state estimate, x, is determined by how well it minimises

the cost function:

x∗ = argmin
x

c(x) = argmin
x

1

2
| |r(x)| |2W. (2.18)

The Gauss-Newton algorithm is an iterative method that can be used to solve

this least squares minimisation problem. With each iteration, the algorithm first

approximates the nonlinear formulation by linearising the residual function, r(·),

using a first-order Taylor expansion about the current estimate of the solution, x̄:

min
x

1

2
| |r(x)| |2W = min

δx

1

2
| |r(x̄ + δx)| |2W ≈ min

δx

1

2
| |r(x̄) + Jδx| |2W, (2.19)

where δx is a perturbation around x̄, and

J =
∂r(x)
∂x

����
x=x̄

. (2.20)

Expanding the Mahalanobis norm and denoting r(x̄) as r̄ gives:

min
δx

1

2
| |r(x̄) + Jδx| |2W = min

δx

1

2
r̄TWr̄ + r̄TWJδx +

1

2
δxTJTWJδx. (2.21)
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Figure 2.2: In dense tracking, a nonlinear optimisation technique is used to find
the relative pose of camera B that minimises the photometric error between the
image observed by camera B and the warped image from camera A, given a depth
map, D(A)(Au). Dense tracking assumes photoconsistency and that all surfaces are
sufficiently textured.

The Gauss-Newton algorithm then computes an update to the current estimate

by taking the derivative of the resulting quadratic and setting it equal to zero:

δx∗ = −(JTWJ)−1JTWr̄. (2.22)

If all variables in the problem are observable, the system will have full rank and

a unique solution will exist. This update is then applied to the current estimate

(x ← x̄ + δx∗), and the process is repeated, relinearising at the new estimate, until

convergence.

2.5 Dense Tracking

As previously discussed, dense SLAM does not typically estimate the joint probab-

ility of camera and map parameters like is done in sparse SLAM, but, for computa-

tional feasibility, alternates between the tracking and mapping steps.

Unlike sparse tracking, which estimates a camera pose by minimising the reprojec-
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tion error over a set of 3D landmarks, dense tracking directly optimises over the pixel

intensities. The dense tracking problem is formulated as a nonlinear optimisation

problem:

ξ∗BA = argmin
ξBA

∑
Au ∈Ω(A)

ψ(I(A)(Au), I(B)(w(Au, D(A)(Au), ξBA))), (2.23)

where Au is the coordinate vector of a pixel in image A, w(·) is a warping function,

I(A)(·) is the intensity value of a given pixel in image A, I(B)(·) is the intensity value

of a given pixel in image B, D(A)(·) is the depth value associated with a given pixel

in image A and is assumed to be known, ξBA is the vector of parameters used by

the warping function to transform points from F
−→A to F

−→B, ψ(·, ·) is a function that

returns an error metric based on two intensity values, and Ω(A) is the set of pixels in

A that are co-visible in B. The dense tracking problem is illustrated in Figure 2.2.

Typically, the sum of squared differences (SSD) function is used for the error

metric:

ψ
(
I(A)(Au), I(B)(Bu)

)
=

1

2

(
I(A)(Au) − I(B)(Bu)

)2
, (2.24)

as this formulates dense tracking as a nonlinear least-squares optimisation problem

and enables using the Gauss-Newton algorithm discussed in Section 2.4.

For general 6DoF camera motion, the transformation parameters, ξBA, must rep-

resent a 3D rotation and a 3D translation. Common representations of 3D rotation

include quaternions (qBA) and rotation matrices (CBA). Both of these representa-

tions are overparameterised, however, as only unit quaternions (vectors in R4 be-

longing to S3) and the subset of 3 × 3 matrices that belong to SO(3) represent valid

rotations. Not only does this mean that the state space would have redundant

parameters, but also that these state representations would have to be continuously

re-normalised to avoid them becoming degenerate. Alternatively, it is possible to

use minimal representations such as Euler angles or angle-axis and avoid this prob-

lem, but these representations suffer from singularities where large changes in the

parameterisation are required to represent small changes in the state.
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Since most state estimation techniques work through iterative methods that con-

tinually apply small perturbations to a reference point (such as with Gauss-Newton

optimisation), it is possible to use the fact that all points on an n-dimensional man-

ifold have a local neighbourhood with a bidirectional mapping to a tangent space

in Rn. This allows for state representations to belong to S3 (qBA) or SO(3) (CBA),

but to have the small iterative updates calculated in a minimal parameterisation

belonging to R3 which are then mapped back to the manifold.

This thesis follows the implementation set out in [Hertzberg et al., 2011] and

[Bloesch et al., 2016], where this mapping between an n-dimensional manifold,Mn,

and its tangent space, Rn, are performed via the � (“box-plus”) and � (“box-minus”)

operators:

� :Mn
× Rn →Mn,

� :Mn
×M

n
→ Rn.

(2.25)

The � operator applies a perturbation, expressed in Rn, to the state estimate, ex-

pressed in Mn. The � operator determines the difference between two Mn state

representations in the tangent space. Note that the � and � operators can apply

to any manifold, and if that manifold is Rn itself, then the operators correspond to

standard vector addition and subtraction.

If the 3D rotation is represented by a unit quaternion, qBA ∈ S3, then the update

is applied by a local perturbation, δα ∈ R3, around the reference q̄BA ∈ S3:

qBA = q̄BA � δα = expq (δα) ⊗ q̄BA, (2.26)

where expq (·) is the exponential map from R3 to a unit quaternion:

expq (δα) =


sin

(
| |δα | |

2

)
δα
| |δα | |

cos
(
| |δα | |

2

)  ∈ S3. (2.27)

If the 3D rotation is represented by a rotation matrix, CBA ∈ SO(3), then the

update is applied by a local perturbation, δα ∈ R3, around the reference C̄BA ∈

SO(3):

CBA = C̄BA � δα = expC (δα)C̄BA, (2.28)
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where expC (·) is the exponential map from R3 to SO(3), also known as Rodrigues’

formula:

expC (δα) = 1 + sin (| |δα| |)
δα×

| |δα| |
+ (1 − cos (| |δα| |))

(
δα×

| |δα| |

)2

∈ SO(3), (2.29)

where

δα× =


0 −δα3 δα2

δα3 0 −δα1

−δα2 δα1 0


. (2.30)

For tracking the 6DoF camera pose with a 3D Euclidean vector, BrBA, and a

rotation matrix, CBA, then, a minimal parameterisation in R6 is required when

optimising Eq. 2.23:

ξBA =
[
δrT δαT

]T
∈ R6, (2.31)

where BrBA = B r̄BA � δr and CBA = C̄BA � δα.

The choice of the warping function, w(·), depends on the assumptions made about

camera motion and scene geometry. While Eq. 2.23 includes the depth values, D(A),

in the warping function, these are not strictly necessary if the camera motion is

purely rotational or if camera motion is translational and the scene is assumed to be

planar. In the case of general 6DoF camera motion, however, the following warping

function is used:

w(Au, D(A)(Au), ξBA) = π
(
K

(
expC (δα)C̄BAD(Au)K−1

Au + B r̄BA + δr
))
. (2.32)

Since w(·) needs to be a continuous function, the intensity value, I(B), is interpol-

ated using bilinear sampling.

The choice of the error metric, ψ(·, ·) is also important for dense tracking. As men-

tioned earlier, a common and simple approach that enables the use of a nonlinear

least-squares algorithm to solve Eq. 2.23 is to use the SSD function. Unfortunately,

this error metric makes the dense tracking optimisation problem susceptible to out-

liers, as large differences between the two intensity values will have a significant

impact on the least-squares system and potentially lead to spurious results. One
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option is to evaluate the error metric on small image patches around the corres-

pondences rather than on single pixels. Another possible solution is to use the sum

of absolute differences (SAD) function:

ψ
(
I(A)(Au), I(B)(Bu)

)
=

��� I(A)(Au) − I(B)(Bu)
��� , (2.33)

as the penalty on large outliers will be linear rather than quadratic. However, since

the SAD function is not differentiable at the origin, it can not easily be used with

common optimisation techniques like Gauss-Newton.

One approach that is sometimes used in this thesis to reduce the sensitivity of the

optimisation to outliers is to use a differentiable robust cost function like the Huber

loss. Compared with the least-squares quadratic penalty, the penalties of these cost

functions are less extreme when there are large differences in the intensity values.

The Huber loss function is given by:

ψ
(
I(A)(Au), I(B)(Bu)

)
=


1
2 e2, for |e| ≤ κ

κ
(
|e| − 1

2 κ
)
, otherwise

(2.34)

where

e = I(A)(Au) − I(B)(Bu), (2.35)

and κ is a hyperparameter to be tuned.

All of these error metrics are based on the assumption that photometric consist-

ency is maintained across frames; that is, it is assumed that the pixel intensities of

two true correspondences will be the same. In practice, it is possible to estimate

other parameters of the image formation process, such as bias and gain, to account

for differences in factors such as exposure time [Engel et al., 2017].

Another major assumption in the error metrics used for dense tracking is that the

environment remains static. Any moving objects in the scene could result in large

photometric errors. While these errors are often handled through the use of robust

cost functions and other methods to reduce the impact of outliers, it is possible to

go a step further and use techniques that identify dynamic objects [Jaimez et al.,
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2017, Scona et al., 2018, Barnes et al., 2018, Bescós et al., 2018, Xu et al., 2019] and

mask the resulting errors.

The dense tracking problem is usually solved by a nonlinear least-squares op-

timisation method such as Gauss-Newton. It has been shown, however, that the

cost landscape of Eq. 2.23 is highly non-convex with a very narrow convergence

basin [Mobahi et al., 2012]. For this reason, a good initialisation is required to

converge to the true global minimum. Without a prior on the camera motion, the

transformation is initialised at identity, limiting the dense tracking to only being

able to solve slow and smooth trajectories. One method that can help widen the

convergence basin is called coarse-to-fine tracking. With coarse-to-fine, the optim-

isation is first performed on a coarse resolution of the two images and the resulting

transformation is used to initialise the optimisation on a finer resolution of the im-

ages. This process is carried on up the “pyramid” of images until the original image

resolution is reached.

An important point to note is that the tracking discussed so far is based on finding

the relative pose between frames. An alternative to this frame-to-frame tracking is

model-based tracking where the global pose of a camera is tracked against a known

3D scene. This form of tracking works similarly to frame-to-frame tracking, but

instead of comparing the intensity values of one frame warped into another, the

rendered intensity values at the estimated pose are compared against those of the

current frame.

If a depth camera is being used, then it is also possible to perform dense tracking

by using geometric alignment in addition to the photometric alignment. With dense

geometric alignment, the goal is to align the point cloud produced by backprojecting

the depth channel with either the global model or a similar point cloud from a

previous frame. The most commonly used method to achieve this alignment is the

Iterative Closest Point (ICP) algorithm. This thesis uses the point-to-plane variant

of ICP and performs the geometric tracking against the global model. Given a

current estimate of the camera position, the ICP algorithm first matches each point
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from the current camera frame with the closest point in the global model based on

the Euclidean distance. Next, a transformation between the camera frame, F
−→C , and

world frame, F
−→W , is estimated by minimising a nonlinear cost function:

ξ∗WC = argmin
ξWC

∑
u

WnT
k

(
w(u, D(u), ξWC) −Wpk

)
, (2.36)

where w(·) is a warping function that transforms points from F
−→C to F

−→W according

to the transformation parameters, ξWC , Wpk is the 3D Euclidean point in the global

model that corresponds with the backprojected pixel coordinate, and Wnk is the

surface normal vector associated with that point. Using this update to the camera

pose, the points are matched again to the global model and the process is repeated

until convergence.

2.6 Dense Mapping

Most dense mapping systems are keyframe-based, estimating depth maps for a sub-

set of the incoming RGB frames. These depth maps are usually produced through

the use of a multi-view stereo approach. While depth maps are individually use-

ful for dense tracking, the combination of many depth maps are required for a

good 3D reconstruction. This combination can be done in a number of ways. One

simple method is to backproject the points to form a 3D point cloud. This can be

augmented with knowledge of the surface orientation to produce a surfel-based rep-

resentation [Whelan et al., 2016]. Alternatively, the depth maps can be fused into

a volumetric representation such as a signed distance function (from which a mesh

can be extracted using the marching cubes algorithm) [Newcombe et al., 2011a] or

occupancy map [Vespa et al., 2018]. While the way in which depth maps are fused

is an important research question in dense SLAM, it is not a focus of this thesis.

Instead, this thesis will focus on the creation of high quality depth maps that will

improve the reconstructions produced by any of the fusion methods.

Whereas dense tracking estimates the relative transformation between two frames

assuming the depth is known, multi-view stereo methods estimate the depth assum-

ing the relative transformation between the frames is known. Given the degree to

41



2. Preliminaries

Figure 2.3: Given the relative transformation between two cameras, A and B, the
depth map for camera A can be estimated by finding the depth values that minimise
the photometric error between the image observed by camera B and the warped im-
age from camera A. Like dense tracking, depth estimation assumes photoconsistency
between the two frames and that the surface is sufficiently textured.

which these problems are closely related, it is not surprising that the depth estima-

tion problem has the same formulation as dense tracking but with a different set of

minimisation variables:

D(A)(Au)∗ = argmin
D(A)(Au)∈R+

cdata

(
D(A)(Au)

)
, (2.37)

for all Au ∈ Ω, where

cdata

(
D(A)(Au)

)
= ψ(I(A)(Au), I(B)(w(Au, D(A)(Au), BrBA, CBA))). (2.38)

The depth estimation problem is illustrated in Figure 2.3.
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Since the relative transformation between the two cameras (BrBA, CBA) is assumed

to be known, the warping function w(·) becomes:

w(Au, D(A)(Au), BrBA, CBA) = π
(
K

(
CBAD(A)(Au)K−1

Au + BrBA

))
. (2.39)

The issues regarding the error metric, ψ(·, ·) in Eq. 2.37 are the same as those for

dense tracking. While it is possible to use an SSD function and easily estimate the

depth values using a nonlinear least-squares technique, the dense mapping minimisa-

tion problem is highly non-convex and requires a good initialisation for convergence.

An alternative approach is to discretise the depth range and do a direct search over

the possible depth hypotheses [Newcombe et al., 2011b].

As formulated in Eq. 2.37, the depth value corresponding to each pixel in image

A is estimated independently. Unlike sparse systems that estimate the 3D posi-

tion of sparsely distributed landmarks, the assumption that points in the scene are

independent is not statistically valid in dense systems as it is assumed that the

environment is composed of many connected surfaces. That is, the likelihood of a

pixel’s depth value is dependent on the depth values of other pixels in its local neigh-

bourhood. Such a formulation also does not work well in practise, as many factors

that frequently occur in natural environments (such as non-Lambertian surfaces,

occlusions, areas of low texture, and repeated texture in the scene) may mean that

the cost landscape associated with Eq. 2.37 has an ambiguous minimum or many

local minima.

To address these issues, dense SLAM systems typically make use of a geometry

prior. These priors usually take the form of a regulariser on the cost function, often

based on smoothness or planar assumptions:

D(A)∗ = argmin
D(A)∈R+

∑
Au∈Ω

cdata

(
D(A)(Au)

)
+

∑
Av∈N(Au)

creg

(
D(A)(Au), D(A)(Av)

) , (2.40)

where creg(·) is a regularisation cost term and N(Au) is the set of pixels in a neigh-

bourhood of Au.
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2.7 Inertial Measurement Units (IMUs)

As discussed above, the accuracy of dense tracking can suffer in situations with

fast motion (due to the narrow convergence basin of the minimisation problem) or

low texture (due to a lack of a photometric information to constrain the optim-

isation). Sparse SLAM methods, which can also struggle in these situations, have

typically addressed this lack of robustness by fusing inertial data into the estimation

procedure. Inertial measurement units (IMUs), particularly the low-cost microelec-

tromechanical (MEMS) IMUs, are a popular sensor choice and are commonly found

in consumer electronics. An IMU consists of an accelerometer and gyroscope that

return measurements of the specific force (acceleration relative to free-fall) and the

angular rate, respectively.

The fusion of visual and inertial information, in particular, can provide improve-

ments in both the robustness and accuracy over vision-only tracking because of the

complementary nature of the two sensing modalities. Incremental poses can be es-

timated at a high rate by integrating the incoming inertial measurements, providing

good initialisations for the photometric alignment used in the tracking step. These

incremental pose estimates will quickly accumulate drift, however, due to the integ-

ration of sensor noise, which is typically high in low-grade IMUs. The accelerometer

and gyroscope also have time-varying biases that cannot be estimated from the in-

ertial data alone. Visual information, on the other hand, can only be used with a

good initialisation, but can help constrain the drift in the pose estimates and make

the IMU biases observable.

There are two general methods for fusing inertial data with visual information:

loosely-coupled approaches and tightly-coupled approaches. In loosely-coupled sys-

tems, the inertial and visual systems run independently of each other, each treated

as a sensor model that returns a state estimate and associated covariance which

are usually combined together in a probabilistically meaningful manner. While this

reduces the computational complexity and allows for the extension of existing vision-

only SLAM systems without modification, it does not allow the vision system to gain
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any benefit from the inertial measurements.

In tightly-coupled systems, both sets of measurements are included in the model

and the pose is estimated jointly from the combined visual-inertial data. This en-

sures that any correlations between the state variables is kept intact. It has been

shown (e.g. [Leutenegger et al., 2014]) that the correlations maintained by a tightly-

coupled system are necessary for high-precision tracking.

For inertial estimation, a model of IMU kinematics and bias dynamics is required.

The state of the IMU, x, consists of a 6DoF pose (IrIS and qIS) of the IMU frame,

FS
−→

, in the inertial frame, FI
−→

, the velocity of the IMU (since the accelerometer meas-

urements are integrated twice), IvIS, and the biases of the gyroscope, bg, and accel-

erometer, ba:

x :=
[
Ir

T
IS qT

IS Iv
T
IS bT

g bT
a

]T
∈ R3

× S3
× R9. (2.41)

Assuming the effects of the Earth’s rotation can be ignored, the nonlinear continuous-

time state-transition model is given by:

∂IrIS
∂t
= IvIS,

∂qIS

∂t
=

1

2
qIS ⊗


−Sω̃ + bg − wg

0

 ,
∂IvIS

∂t
= CIS (S ã + wa − ba) + Ig,

∂bg

∂t
= wbg

,

∂ba

∂t
= −

1

τ
ba + wba

,

(2.42)

where wg, wa, wbg
, and wba

are uncorrelated zero-mean Gaussian noise processes,

Sω̃ and S ã are the measured rotational velocity and linear acceleration in the IMU

frame, Ig is the gravity vector in the world frame (assumed known), and τ is an

experimentally chosen time constant.

Using inertial data in a visual-inertial state estimation procedure requires know-

ledge of the transformation between the IMU and camera frames, as well as paramet-

ers for the noise models for the accelerometer and gyroscope. These can be obtained

45



2. Preliminaries

through the use of open-source calibration software such as Kalibr [Furgale et al.,

2013].

2.8 Deep Neural Networks

Deep learning techniques have led to significant increases in performance for many

computer vision tasks, such as image classification and semantic segmentation. More

relevant to dense SLAM, deep learning algorithms have also produced impressive res-

ults for both single- and multi-view depth prediction [Eigen et al., 2014, Ummenhofer

et al., 2017, Laina et al., 2016, Liu et al., 2015], and surface normal estimation [Eigen

and Fergus, 2015, Ramamonjisoa and Lepetit, 2019].

Deep neural networks (DNNs) are constructed from many biologically-inspired

“neurons”, each consisting of a weighted summation of inputs that is passed through

a nonlinear activation function to produce an output. A DNN, fθ(·), is used to

approximate an unknown function, f : X → Y. This approximation is done by

optimising a DNN’s weights, θ, to minimise the prediction error over all (x ∈ X,

y ∈ Y) pairs in a given training set.

This optimisation is performed using an iterative gradient descent technique.

Given the current set of weights, the network makes a prediction, fθ(x), for each

training example, x. Using a method called backpropagation, the gradient of the

total error with respect to each weight is calculated, and updates are applied to

the weights based on this gradient. This is repeated until convergence or until the

prediction error on a reserved validation set starts to increase (which suggests over-

fitting). Often it is not computationally feasible to do the minimisation over all

pairs at once, and the iterative step is calculated for a small mini-batch instead.

As the mini-batches are randomly drawn from the full training set, the optimisa-

tion procedure resembles stochastic gradient descent which may help avoid local

minima [Goodfellow et al., 2016].

The simplest neural networks, called multilayer perceptrons or fully-connected
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networks, consist of many neurons organised into layers, where each neuron in a layer

is densely connected to all of the neurons in the next layer. Dramatic improvements

on many computer vision benchmarks came with the development of convolutional

neural networks (CNNs) [LeCun et al., 1998]. Each layer of a CNN learns a small

filter that is convolved against the entire input domain. Since the same filter is

used throughout the whole layer, the number of weights that need to be estimated

is greatly reduced (allowing for bigger networks) and some translational invariance

exists between the input and output. Modern networks typically consist of many

convolutional layers, with the intuition being that each layer learns increasingly

abstract features from the layers below.

One of the most common DNN architectures is an encoder-decoder network with

a bottleneck in the middle. With each subsequent layer in the encoder, the spatial

resolution of the output is reduced, but the depth of the features is increased, with

the minimum spatial resolution at the bottlenck. The decoder reverses this process,

decreasing the feature depth but upsampling the input in each layer to produce

larger spatial resolutions. While forcing the information through the bottleneck

is necessary to have the DNN make use of the global context in the image, fine-

grained details are lost. To remedy this, most encoder-decoder networks use some

form of skip connections that pass feature maps from some of the encoder layers

to upsampled decoder layers. A successful example of an encoder-decoder network

with skip connections is U-Net [Ronneberger et al., 2015].

DNNs can be applied to both regression and classification tasks. For classification,

it is often desirable to have the network produce a probability distribution over the

possible classes. This can be enforced by applying the softmax function to the

output layer which maps a vector of arbitrary real numbers to be in the interval (0,

1) and sum to 1:

σ(z)i =
exp zi∑n
j=1 exp zj

. (2.43)
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Dense RGB-D Inertial Fusion
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3.1 Introduction

As discussed in Chapter 1, visual SLAM algorithms can be split into two broad

categories: sparse landmark-based systems and dense or semi-dense systems. While

sparse methods may not directly produce dense maps, pose estimation quality and
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robustness of state-of-the-art systems, such as [Mur-Artal et al., 2015] and [Forster

et al., 2014], are typically very high. Even higher accuracy and robustness have

been attained by the inclusion of inertial measurements in a tightly-coupled fusion.

Approaches are formulated either as filters e.g. [Mourikis and Roumeliotis, 2007, Li

and Mourikis, 2013, Tanskanen et al., 2015, Bloesch et al., 2015, Sun et al., 2018] or

as methods employing iterative minimisation, typically in a sliding window manner,

such as [Jones and Soatto, 2011, Keivan et al., 2014, Leutenegger et al., 2014, Forster

et al., 2015, Shen et al., 2015, Mur-Artal and Tardos, 2017, Qin et al., 2017, von

Stumberg et al., 2018]. Loosely-coupled approaches to visual-inertial fusion, such

as [Meier et al., 2011, Weiss et al., 2012, Engel et al., 2012] that separate out either

the visual or inertial estimation part have also been proposed. These methods are

popular due to their modularity, but disregard correlations in the state estimates,

typically leading to lower accuracy and/or robustness.

The maps produced by dense SLAM algorithms offer much more potential for gen-

eral scene understanding and interaction. As of now, however, vision-only SLAM,

and dense SLAM using direct image alignment in particular, suffers from a lack of

robustness in the tracking step when initialised too far from the “true” solution;

in fact, the tracking optimisation may not converge at all in absence of sufficient

texture and/or geometric variation in the depth channel. To address these shortcom-

ings, and inspired by the success of sparse visual-inertial systems, the integration

of acceleration and rotation rate measurements into the tracking of a dense SLAM

system is advocated. In principle, the tight integration of these complementary

sensing modalities should provide robustness in rapid motion, low texture and flat

walls. Furthermore, the inclusion of an IMU renders the gravity direction observ-

able, which not only improves map accuracy due to bounded absolute inclination

error, but may also be of paramount importance for robot control, most prominently

drones.

There have been a few recent examples of dense visual-inertial systems: both

[Omari et al., 2015] and [Ma et al., 2015] present loosely-coupled approaches, with

the former using the integrated IMU data as a prediction step in a filter to estimate
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Figure 3.1: Tightly integrating IMU measurements into a dense RGB-D SLAM
system leads to more accurate and robust tracking and 3D reconstruction compared
with using visual information alone. For example, the scene reconstructed above has
several large regions that lack photometric and geometric variation; despite this,
the visual-inertial system described in this chapter was able to create a globally
consistent reconstruction with flat and aligned walls.

the transformation between image pairs, and the latter fusing relative poses gen-

erated by inertial and stereo camera measurements in a manner similar to a pose

graph. A tightly-coupled semi-dense monocular visual-inertial odometry system is

presented in [Concha et al., 2016]. Unlike other pure monocular odometry systems,

it is able to use the inertial data to remove scale ambiguity. Their system uses a

semi-dense approach for tracking and, in a separate thread, estimates a fully dense

map below frame rate using a piecewise planar prior. Another example of a semi-

dense visual-inertial odometry system is described in [Usenko et al., 2016]. This

system is implemented within the stereo LSD-SLAM framework [Engel et al., 2015].
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Through a series of experiments, they demonstrate that their tightly-coupled ap-

proach outperforms both vision-only and loosely-coupled approaches. While their

system is closely related to the one described here, this thesis proposes a more

map-centric, fully dense approach where the goal is to generate an accurate and

complete reconstruction, rather than a camera-centric approach (usually based on

pose graph optimisation) that aims to estimate an accurate trajectory. Of course, as

previously discussed, the accuracy of the map and the accuracy of the trajectory are

closely related. The system described here additionally considers a depth channel

and performs map optimisation compliant with gravity alignment.

In this chapter, the RGB-D SLAM system ElasticFusion [Whelan et al., 2016] is

extended with tightly-coupled IMU integration, which is capable of more accurate

and robust fully dense mapping. Please see Figure 3.1 for an example map output.

More specifically, the following contributions are made:

• In the tracking step, the camera pose, velocity, IMU biases and gravity direc-

tion from an RGB-D camera and IMU are simultaneously estimated by min-

imising a joint photometric, geometric, and inertial energy functional.

• Concerning the mapping, the proposed system constructs a globally consist-

ent, fully dense surfel-based 3D reconstruction of the environment. The map is

optimised not through a pose graph, but by applying non-rigid space deforma-

tions using a sparse deformation graph. An addition to the deformation energy

is proposed that ensures consistency with the observable gravity direction.

• Through experiments on both synthetic and real world datasets, the benefits

of this approach are demonstrated. It performs well under aggressive motion,

fast rotations, and under low texture and geometric variation. Trajectory and

map reconstruction accuracy are demonstrated to be higher or on-par with an

RGB-D-only ElasticFusion.

• The system maintains real-time capability while running on a GPU. Un-

like [Concha et al., 2016] and [Usenko et al., 2016], which achieve real-time
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RGB / ICP
measurements
Camera pose

(a) RGB-D-only ElasticFusion

IMU measurements
Linear prior

t

Speed /
IMU biases /
gravity alignment

(b) RGB-D-inertial ElasticFusion

Figure 3.2: The factor graphs used for tracking optimisation in RGB-D-only and
RGB-D-inertial ElasticFusion are compared above. In RGB-D-only ElasticFusion,
the current camera pose is optimised against a factor based on the photometric re-
projection error with the previous frame and the ICP alignment error with the global
model. The inclusion of inertial measurements in RGB-D-inertial ElasticFusion ne-
cessitate augmenting the state with speed, IMU biases, and gravity alignment. The
temporal nature of IMU measurements requires that both the state of the current
frame (variables with thick outlines) and previous frame (variables with thin out-
lines) be optimised, and for older states to be marginalised and converted into a
linear prior.

performance on a CPU, the proposed system constructs a fully dense map at

frame rate.

3.2 Coordinate Frames

Four different coordinate frames will be used in this work:

• F
−→W , the world frame in which the global model is expressed. This frame

corresponds with the initial camera frame.

• F
−→I , the inertial frame that is aligned with gravity and shares an origin with

F
−→W .

• F
−→C , the camera frame in which the RGB-D data is observed.

• F
−→S, the sensor frame in which the IMU data is observed.
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3.3 System Overview

The system proposed here directly builds upon the vision-only dense RGB-D track-

ing and mapping approach of ElasticFusion [Whelan et al., 2016]. Like ElasticFu-

sion, tracking and mapping are performed in separate steps. In the tracking step,

a joint photometric, geometric and inertial energy functional is constructed. Please

see Figure 3.2 for a comparison of the factor-graph representation of the underlying

tracking optimisation problem in RGB-D-only and RGB-D-inertial ElasticFusion.

Whereas ElasticFusion combined the photometric and geometric terms based on a

tuning parameter, λ, here the terms are combined based on the covariances asso-

ciated with the measurement noise. A nonlinear optimisation formulation is then

used to simultaneously estimate the camera pose, velocity, IMU biases and gravity

direction. Unlike the original ElasticFusion which only estimated the current cam-

era pose, the proposed system estimates the states associated with both the current

and previous camera frames. After the optimisation, the state variables related to

the previous frame are marginalised and the remaining variables associated with the

current state are used as a prior in the next time step.

In the mapping step, a fully dense surfel-based surface representation is construc-

ted from the camera data and estimated poses obtained from the tracking step. The

map is kept globally consistent by applying non-rigid space deformations through a

sparse deformation graph. The deformation energy formulation proposed by Elast-

icFusion is extended to ensure consistency with the observable gravity direction.

3.4 Tracking

3.4.1 States & Local Parameterisation

At the arrival of each new camera frame, the current state, x1, is estimated while

simultaneously refining the previous state, x0. The system state is comprised of

the camera position in the world frame, W rWC , the camera orientation, qWC , the

velocity of the IMU in the inertial frame, IvIS, the biases of the gyroscopes, bg, and
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accelerometers, ba, and the orientation of the world frame in the inertial frame, qIW .

Therefore the system state, x, for a specific time instance is given by:

x :=
[
W rTWC qT

WC Iv
T
IS bT

g bT
a qT

IW

]T
∈ R3

× S3
× R9

× S3. (3.1)

While only two degrees of freedom are required to express the gravity direction in

the world frame, for simplicity, a 3D implementation with gauge freedom is used.

No issues related to this formulation were observed.

The system state exists on a manifold and so is updated by a local perturbation

δx in the tangent space through the � operator, such that x = x̄ � δx around a

reference x̄. For W rWC , IvIS, bg and ba, the � operator is equivalent to standard

vector addition. For qWC and qIW , a combination of the group operator (quaternion

multiplication) and exponential map is used (q � δα = expq(δα) ⊗ q). This results

in the following minimal local coordinate representation:

δx =
[
δrT δαT δvT δbT

g δbT
a δgT

]T
∈ R18. (3.2)

Similarly, a � operator can be introduced to compute the difference between two

systems states. For regular vector space quantities this corresponds to standard

subtraction. For orientations an inverse of the above � can be constructed (p � q =

logq(p ⊗ q−1
)).

3.4.2 Dense Photometric & Geometric Alignment

The RGB-D subsystem combines dense per-pixel photometric alignment with ICP

point-to-plane geometric alignment. The photometric alignment error for a pixel in

the current image, C1
u, is given by:

eRGB(x0, x1, C1
u) =

I(0)(π(K CT
WC0

CWC1
D(1)(C1

u)K−1
C1
u + CT

WC0
(W rWC1

−W rWC0
))) − I(1)(C1

u),

(3.3)

where I(0)(·) is the intensity of a given pixel in the previous image, I(1)(·) is the

intensity of a given pixel in the current image, π(·) is the projection function, CWC ∈
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SO(3) is the rotation matrix representation of qWC , K is the camera intrinsics matrix,

and D(1)(·) is the depth value of a given pixel in the current frame as measured by

the depth camera.

The geometric alignment error for a pixel in the current image, C1
u, is based on

a point-to-plane ICP technique:

eICP(x1, C1
u) = WnT

k (CWC1
D(1)(C1

u)K−1
C1
u +W rWC1

−Wpk). (3.4)

where Wpk is the 3D Euclidean point in the global model that corresponds with the

backprojected pixel coordinate, and Wnk is the normal vector associated with that

point.

3.4.3 Inertial Integration

For the formulation of the IMU measurement error term, the approach of [Leuteneg-

ger et al., 2014] is adopted, extending it to include the preintegration technique de-

scribed by [Forster et al., 2015]. The IMU measurements are integrated numerically

between the previous and current camera frames using a linearised and discretised

version of the model in Eq. 2.42. The final IMU error term is given by:

eIMU(x0, x1) = x̂1(x0) � x1, (3.5)

where x̂1(·) is the prediction of the current state made by integrating the IMU

measurements onto the previous state, x0.

3.4.4 Optimisation

The RGB-D-inertial tracking problem is solved using a joint cost function ctrack(·, ·)

that contains the weighted photometric alignment, geometric alignment and inertial
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terms:

ctrack(x0, x1) =
∑

C1
u∈Ω

WRGB eRGB(x0, x1, C1
u)2

+
∑
C1

u
WICP,C1

u eICP(x1, C1
u)2

+ eIMU(x0, x1)
TWIMU eIMU(x0, x1)

+
(
x0 � x̄0 −H∗−1b∗

)T
H∗

(
x0 � x̄0 −H∗−1b∗

)
,

(3.6)

where WRGB, WICP,C1
u, and WIMU are the inverse covariance (matrices) associated

with the respective measurement uncertainties, Ω is the set of pixels in the current

frame that are co-visible with the previous frame, and H∗ and b∗ are priors obtained

through the marginalisation step.

The cost function is minimised using a Gauss-Newton iterative method with a

three level coarse-to-fine pyramid scheme. After each iteration, the current and

previous states are updated using the � operator.

3.4.5 Partial Marginalisation & Fixation of Variables

The equations for the Gauss-Newton system are constructed from the Jacobians,

error terms and information relating to the current and previous states, taking the

form: 
H00 H01

H10 H11



δx0

δx1

 =


b0

b1

 . (3.7)

After the current and previous states are updated, the previous state is margin-

alised using the Schur-Complement:

H∗11 = H11 −H10H−1
00 H01, (3.8a)

b∗1 = b1 −H10H−1
00 b0. (3.8b)

The resulting H∗ and b∗ information is used as a prior in the next optimisation

step. This partial marginalisation fixes the linearisation point, but with each itera-

tion in the subsequent optimisation scheme, the linearisation point changes. Instead
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of relinearising at each step, a first-order correction is applied, ∆x, based on the

difference between the new and old linearisation points as is commonly done in the

literature [Leutenegger et al., 2014, Usenko et al., 2016]:

H∗
′

11 = H∗11, (3.9a)

b∗
′

1 = b∗1 +H∗11∆x. (3.9b)

3.5 Mapping

The mapping system proposed in this chapter is a direct extension of the one pro-

posed in ElasticFusion [Whelan et al., 2016]. As such, the notation used in Elastic-

Fusion to describe the mapping system is adopted. Like the original ElasticFusion,

the map is split into active and inactive areas. The active map is the area most

recently observed and is where the tracking and fusing takes place. If a segment of

the active map is not observed for a period of time, δt , it becomes inactive. The map

is kept globally consistent by attempting to match the currently observed portion

of the active map with the inactive map. If a match is detected, the loop is closed

by applying non-rigid space deformations through a sparse deformation graph.

A deformation graph is a set of nodes, Gl
∈ G, that are embedded in the global

model, each with a position, Gl
g, and a set of neighboring nodes, Gn

∈ N(G
l
).

Each deformation node stores a Euclidean transformation as a rotation, Gl
R, and a

translation, Gl
t , that is used to elastically deform surfels in the map from a source

position Qs to a destination position Qd through a deformation function, φ(·), defined

in [Whelan et al., 2016]. This affine transformation is determined by minimising a

cost function. In the original ElasticFusion, the cost function consists of five terms.

The first encourages rigidity in the deformation:

Erot =
∑
l

Gl
R
T
G

l
R − 1

2

F
. (3.10)

The second encourages smoothness in the deformation:

Ereg =
∑
l

∑
n∈N(Gl

)

Gl
R(G

n
g − G

l
g) + G

l
g + G

l
t − (G

n
g + G

n
t )

2

2
. (3.11)
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The third minimises the distance of each point from the desired deformation:

Econ =
∑
p

φ(Qp
s ) − Q

p
d

2

2
. (3.12)

The fourth constrains the inactive areas of the map such that the active map is

being deformed into the inactive map:

Epin =
∑
p

φ(Qp
d
) − Q

p
d

2

2
. (3.13)

The fifth term is only applied to global deformations, and is used to prevent previous

registrations, R, from being pulled apart by future global loop closures:

Erel =
∑
p

φ(Rp
s ) − φ(R

p
d
)
2

2
. (3.14)

As matches between the active and inactive areas of the map are determined only

by the RGB-D subsystem, a sixth cost term is included to constrain the graph from

deforming the map out of alignment with gravity:

Eimu =
∑
l

Gl
R Wg −Wg.

2

2
, (3.15)

where Wg denotes the acceleration due to gravity represented in vision-world frame

F
−→W .

Keeping the parameter choices the same as ElasticFusion, the total cost function

for local loop closures is given by:

Eloc = ω f Erot + ωrEreg + ωc(Econ + Epin) + ωiEimu, (3.16)

and the total cost for the global loop closures is given by:

Eglo = ω f Erot + ωrEreg + ωc(Econ + Epin + Erel) + ωiEimu, (3.17)

with ω f = 1, ωr = 10, and ωc = ωi = 100.

3.6 Experimental Results

The proposed system is evaluated in terms of trajectory estimation and reconstruc-

tion accuracy on both synthetic and real world datasets. The living room sequences
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of the ICL-NUIM dataset [Handa et al., 2014] are used for the experiments on syn-

thetic data. For the real world experiments, a dataset was recorded along with

ground truth poses from a Vicon motion capture system. The synthetic dataset

consists of slow, smooth trajectories usually required for dense visual SLAM. The

real world dataset contains a mixture of slow trajectories, aggressive motions and

sequences with low texture and geometric information where vision-only systems

tend to struggle.

Two metrics are considered when examining the performance of the system: the

absolute trajectory (ATE) root-mean-square error (RMSE) described in [Sturm

et al., 2012], and for reconstruction error, the mean distance from each point in

the reconstruction to the nearest surface in the aligned ground truth model. The

ATE RMSE is calculated for all sequences, but the reconstruction error is only avail-

able for the synthetic dataset. As the behaviour of the loop closure mechanism is

non-deterministic, each test is run 10 times and the average result is reported. Tests

where either system had lost tracking are denoted by brackets in the tables.

Through these experiments, it is shown that the dense RGB-D-inertial SLAM

system performs at least as well as the RGB-D-only system on “easier” trajectories

where the problem is well constrained by the visual data alone, but is much more

robust when facing sequences with fast motions or little photometric and geometric

variation.

3.6.1 Synthetic Data

Both the trajectory estimation and surface reconstruction accuracy of the system

are evaluated on a modified version of the living room sequences in the ICL-NUIM

dataset. The ICL-NUIM dataset is a benchmark that provides ground truth poses as

well as a 3D model with which to evaluate reconstructions of RGB-D SLAM systems.

The dataset does not come with inertial data, however, so in a manner similar

to [Kerl et al., 2015], splines are fit to the ground truth poses to simulate continuous

trajectories. IMU measurements are then generated along these trajectories using
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Table 3.1: System Parameters

Noise Parameter
Synthetic
Dataset

Real World
Dataset

Units

Gyroscope

Rate 200 200 Hz

Saturation 7.8 7.8 rad s-1

Noise Density 12.0e-4 12.0e-4 rad s-1 Hz-0.5

Bias Prior 0.03 0.03 rad s-1

Drift Noise Density 4.0e-6 4.0e-6 rad s-2 Hz-0.5

Accelerometer

Rate 200 200 Hz

Saturation 176.0 176.0 m s-2

Noise Density 8.0e-3 8.0e-2 m s-2 Hz-0.5

Bias Prior 0.1 1.0 m s-2

Drift Noise Density 2.0e-5 2.0e-5 m s-3 Hz-0.5

Static Bias [0, 0, 0] [0.060, 0.258, 0.126] m s-2

Gravitational Acc. 9.81 9.81 m s-2

the model described in [Nikolic et al., 2016] and the noise parameters given in Table

3.1. To make the synthetic dataset as realistic as possible, these noise parameters

were chosen to closely match those of the IMU used in real world experiments. Due

to the non-smooth trajectories of the dataset, however, it was necessary to sample

every 10th frame of the ground truth trajectories when fitting the splines. This

resulted in the new ground truth poses being close to but not exactly the same as

those in the original dataset. Therefore, the images were rendered at these new

poses using POV-Ray and the same noise models were applied to the images as

those in the original dataset.

Since the entire ground truth states are known for the synthetic dataset, it is

possible to demonstrate that the proposed system can accurately track the velocity

and IMU biases. For example, the error in the velocity and bias estimates for

Sequence LR0, provided in Fig. 3.3, quickly converges to zero.
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Figure 3.3: Error in the velocity and bias estimates when compared to the ground
truth values in synthetic dataset LR0. The proposed system is able to converge to
and track the correct values.

Table 3.2: ATE RMSE on the synthetic datasets (brackets indicate a tracking fail-
ure)

Sequence RGB-D-Only RGB-D-Inertial

LR0 0.032 0.009
LR1 0.009 0.012
LR2 0.009 0.009
LR3 (0.906) 0.019

The performance of the RGB-D-inertial and RGB-D-only versions of the system

are compared on each of the four living room sequences of the modified ICL-NUIM

dataset. The results for the ATE RMSE are given in Table 3.2 and for the recon-

struction error in Table 3.3.

Although slow, some of the sequences in the modified ICL-NUIM dataset are still

difficult for dense SLAM systems to follow, particularly the last sequence. In this

sequence, the camera moves slowly along a wall providing little photometric or geo-

62



3.6. Experimental Results

Table 3.3: Surface reconstruction accuracy on the synthetic datasets (brackets in-
dicate a tracking failure)

Sequence RGB-D-Only RGB-D-Inertial

LR0 0.014 0.008
LR1 0.007 0.009
LR2 0.010 0.011
LR3 (0.118) 0.010

metric variation. The results of the original ElasticFusion were not obtained using

the same set of internal parameters for each sequence in the ICL-NUIM dataset.

However, in this work, to showcase the robustness of the system and to avoid over-

fitting to a particular sequence, the default set of parameters was used across all

datasets. As a result, the RGB-D-only version of ElasticFusion now fails on this

sequence. The RGB-D-inertial system, however, is able to use the inertial data to

get through the difficult section of the sequence and successfully reconstructs the

scene. The RGB-D-inertial system performs approximately as well as the RGB-D-

only system on the three easier sequences.

3.6.2 Real World Data

While the synthetic data showed that the RGB-D-inertial system is capable of per-

forming at least as well as the RGB-D-only system on slow, smooth trajectories,

the real strength of visual-inertial systems is their robustness to aggressive motions

and sequences with little photometric or geometric information. To test this, a new

dataset of 21 sequences was collected using the Intel RealSense ZR300 visual-inertial

sensor. This sensor captures aligned RGB and depth images as well as inertial meas-

urements. The camera intrinsics, as well as the transformation between the camera

and IMU, TCS, was obtained using the Kalibr calibration system [Furgale et al.,

2013].

To see how the system would perform under different scenarios, a number of

different types of datasets were captured. Sequences 1-3 are slow, smooth trajectories
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Table 3.4: Comparison of ATE RMSE on the real world datasets (brackets indicate
a tracking failure)

Trajectory Type Sequence RGB-D-Only RGB-D-Inertial

slow
1 0.227 0.066
2 0.110 0.065
3 0.225 0.088

slow, loop closure
4 0.089 0.050
5 0.106 0.048
6 0.091 0.051

medium
7 0.156 0.077
8 0.166 0.069
9 0.118 0.124

fast
10 0.098 0.061
11 0.438 0.354
12 0.267 0.156

quick rotation
13 0.231 0.110
14 0.057 0.063
15 0.220 0.064

low texture
16 (54.238) 0.682
17 (26.306) 0.498
18 (6.536) (2.141)

long
19 0.373 0.560
20 0.359 0.216
21 0.417 0.202

that typical RGB-D SLAM systems could handle. Sequences 4-6 are also slow and

smooth, but with a large loop closure. Sequences 7-9 have slightly faster trajectories,

and sequences 10-12 have very aggressive trajectories but continue to map the same

area, allowing the SLAM system to keep tracking against a previously built up map.

Sequences 13-15 are also aggressive trajectories, but include a quick rotation into an

unmapped area of the scene. Sequences 16-18 are slow trajectories, but pass close

to a white wall such that the RGB-D data provides little photometric or geometric

information. Sequences 19-21 are slow, smooth trajectories, but much longer than

the other sequences, on the order of 15-20m.
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Figure 3.4: Top view of the estimated trajectories for Sequence 21. Integrating
the IMU data improves the tracking capabilities of the framework. In particular,
it increases robustness against visually degenerate situations which pose a signific-
ant problem to the RGB-D-only framework. Such a challenging event, where the
majority of the camera’s field of view was filled with a white wall, is highlighted
by thicker lines in the above trajectories. During this period, the RGB-D-inertial
system is able to closely follow the ground truth trajectory, while the RGB-D-only
system accumulates significant drift.

For each sequence, a ground truth trajectory was captured using the Vicon motion

capture system. As explained in [Sturm et al., 2012], these ground truth poses cannot

be used to create a reliable ground truth scene reconstruction through depth image

projection, as very small errors in the pose can result in very large errors in the

reconstruction. For this reason, the reconstruction error for these sequences is not

calculated, only the ATE RMSE.
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RGB-D-Only vs. RGB-D-Inertial

For each of the 21 sequences, the performance of the RGB-D-inertial system is com-

pared with the RGB-D-only system. The results of these experiments are presented

in Table 3.4. In all but 3 of the sequences the RGB-D-inertial system outperformed

the RGB-D-only system, often decisively. In particular, the RGB-D-only system was

not capable of tracking the sequences where the camera moves across a white wall.

The RGB-D-inertial system is able to rely on the IMU measurements to continue

tracking despite the lack of photometric or geometric information, but in the final

sequence of that group, the camera moves across the wall for too long and even the

RGB-D-inertial system fails. Another example of this occurs in Sequence 21, where

halfway through the trajectory the RGB-D-only system struggles when the camera

goes across a blank wall. This is visualised in Fig. 3.4.

Qualitatively, a higher degree of map consistency is generally achieved in the RGB-

D-inertial system compared with the RGB-D-only system. For example, Fig. 3.5

shows map reconstructions when the system is run on Sequence 7, a moderately

difficult sequence in the real world dataset. The top level views show how the

inclusion of inertial terms in tracking significantly reduces the amount of drift, as

the map is much better aligned for the RGB-D-inertial system. Keeping the map

aligned helps ElasticFusion find potential loop closures, but this will still sometimes

fail as shown in the pair of images second from the bottom.

Odometry vs. SLAM

To confirm that the proposed formulation of a globally consistent map is improving

the trajectory estimation, the performance of the system is compared with an open

loop version where the system is restricted to only tracking and fusing against the

active map (deformations are not allowed). This comparison is done on a sample

sequence from five of the different categories (excluding the quick rotation and low

texture scenes due to their difficulty). The results of these tests are shown in Table

3.5. On four out of the five sequences, the closed loop version performed at least as

well as the open loop version.
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vision-only visual-inertial

Figure 3.5: Qualitative comparison of map reconstructions in RGB-D-only (left)
and RGB-D-inertial (right) ElasticFusion: a higher degree of map consistency is
achieved through the inclusion of inertial measurements in the tracking. While loop
closure was enabled, the first zoom-in (row second from the bottom) shows that
ElasticFusion failed to detect and apply a larger loop closure (in both cases); but
it also shows smaller drift as a starting point before potential loop closures. The
second zoom-in (bottom row) highlights in more detail the generally higher map
consistency with inertial integration.
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Figure 3.6: Relation between accumulated position error and traveled distance for
Sequence 20 with three different setups: no IMU, gyroscope only, and full IMU
(gyroscope + accelerometer). Most of the accuracy is gained from the integration of
the gyroscopes. While the accelerometers do not significantly improve the accuracy
of the system, their integration can contribute to the reliability of the system.

Table 3.5: Comparison of ATE RMSE between open loop odometry and SLAM on
the real world datasets

Trajectory Type Sequence Odometry SLAM

slow 1 0.102 0.066
slow with loop closure 4 0.051 0.050
medium 7 0.078 0.077
fast 10 0.062 0.061
long 19 0.541 0.560
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Table 3.6: Comparison of ATE RMSE between RGB-D-inertial and RGB-D with
only gyroscopes on the real world datasets

Trajectory Type Sequence Gyro Only Full IMU

long
19 0.296 0.560
20 0.223 0.216
21 0.203 0.202

low texture
16 (7.548) 0.682
17 (3.916) 0.498
18 (0.917) (2.141)

Drift Analysis

In order to examine the relative contributions of the gyroscopes and accelerometers,

the system is tested on a number of sequences where the accelerometer related

residuals are ignored. Fig. 3.6 shows the position error as a function of the distance

travelled for Sequence 20, comparing RGB-D-only to RGB-D-and-gyroscopes-only

to the full RGB-D-inertial system. As this figure shows, most of the gain in accuracy

comes from the gyroscopes. This is confirmed by the results for the long sequences

in Table 3.6. Over such a long sequence, the gyroscopes-only setup can outperform

the full IMU due to the high noise levels of the accelerometers. The necessity of the

accelerometers, however, is shown by the low texture sequences in Table 3.6. As the

camera passes over the white wall, the gyroscope-only system fails because without

visual input the relative position is no longer constrained.

3.7 Conclusion

A real-time tightly-coupled dense RGB-D-inertial SLAM system has been presented

in this chapter. In the tracking step, a combined photometric, geometric and inertial

energy functional is minimised to simultaneously estimate the camera pose, velocity,

IMU biases and gravity direction. In the mapping step, the system constructs a fully

dense 3D reconstruction of the environment which is not only globally consistent,

but gravity aligned due to the addition of an inertial deformation energy applied to
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the deformation graph. It is shown through a series of experiments on both synthetic

and real world datasets that this RGB-D-inertial system is often more accurate than

the RGB-D-only version on slow, smooth trajectories, and is much more robust to

aggressive motions and a lack of photometric and geometric variation.

This increase in accuracy and robustness is supported by similar findings in recent

work on sparse visual-inertial SLAM. However, these gains do not come without

a cost. Adding an IMU to a system means a much more complicated calibration

procedure, for example. While Kalibr [Furgale et al., 2013] was helpful for estimating

the needed calibration parameters, generating the calibration sequences that had

sufficient motion around each axis while keeping the calibration pattern in view and

not saturating the accelerometer or gyroscope was difficult, and research towards

a calibration system capable of providing real-time feedback to the user would be

beneficial. Kalibr also assumes that the timestamps assigned to each camera image

and inertial reading were generated by the same clock, so only a static time offset

needs to be estimated. While this was true for the system presented in this chapter,

most visual-inertial setups will consist of separate cameras and IMUs, each with

their own clocks, requiring the drift between them to be estimated as well. As these

costs are not negligible, it is important to think about the environment in which a

potential system will be deployed. If a system is only expected to operate under slow

and smooth motions across reasonably textured scenes, and if the cost of a tracking

failure is relatively low, the extra engineering effort required for inertial fusion may

not be worth it.

The decision on whether or not to include inertial data does not have to be a

binary one. Most of the calibration issues centred around the accelerometer, while

most of the gain in accuracy and robustness came from the gyroscope. Unless a

lot of low texture scenes are expected, it may be preferable to only fuse gyroscope

data into the vision system. Also, using a higher quality IMU would make for an

easier calibration because with less noise, less data is required to get good parameter

estimates.
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While these are some of the limitations of visual-inertial SLAM, some other pos-

sible benefits remain to be explored. For example, even during tracking loss, there

will be some measure of inclination from the accelerometer. This measurement could

be used to help constrain the optimisation during camera relocalisation.
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4.1 Introduction

There has been continued research interest in using visual SLAM for the incremental

creation of dense 3D scene geometry due to its potential applications in safe robotic
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navigation, augmented reality and manipulation. Until recently, most dense mon-

ocular reconstruction systems typically estimate depth by minimising the photomet-

ric error over several frames. As this minimisation problem is not well-constrained

due to occlusion boundaries or regions of low texture, most reconstruction systems

employ regularisers based on smoothness [Newcombe et al., 2011b, Pizzoli et al.,

2014] or planar assumptions [Concha et al., 2014, Concha and Civera, 2015, Concha

et al., 2016].

Monocular reconstruction systems also suffer from an inherent scale ambiguity,

as it is not possible to determine a camera’s translation from image correspond-

ences alone. As was shown in the previous chapter, it is possible to address this

scale ambiguity by fusing vision-based measurements with readings from an iner-

tial measurement unit (IMU); however, in situations with low accelerations (for

example, when the camera is still), scale becomes practically unobservable when

using low grade IMUs. One option to resolve these issues in monocular dense recon-

struction is through the use of a depth camera (the approach taken by [Newcombe

et al., 2011a] and [Kerl et al., 2013]), but depth cameras have limited range, consume

more power, and do not typically work outdoors or in strong sunlight.

With the continued success of deep learning in computer vision, there have been

many suggestions for data-driven approaches to the monocular reconstruction prob-

lem. Several of these approaches propose a completely end-to-end framework, pre-

dicting the scene geometry from either a single image [Eigen et al., 2014, Laina et al.,

2016, Godard et al., 2017, Fu et al., 2018] or several consecutive frames [Ummen-

hofer et al., 2017, Zhou et al., 2017, Mahjourian et al., 2018, Zhou et al., 2018, Yao

et al., 2018, Chang and Chen, 2018]. Most promising, however, are those systems

that combine deep learning with standard geometric constraints [Weerasekera et al.,

2017, Tateno et al., 2017, Yang et al., 2018, Bloesch et al., 2018, Wang et al.,

2018, Tang and Tan, 2019]. It was shown in [Fácil et al., 2017] that learning-based

and geometry-based approaches have a complementary nature as learning-based sys-

tems tend to perform better on the interior points of objects but blur edges, whereas

geometry-based systems typically do well on areas with a high image gradient but
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Figure 4.1: Fusing the depth predictions of a semi-dense multi-view stereo system
with the depth and gradient predictions of a CNN allows for the creation of fully
dense depth maps at scale. The above projected keyframe depth map was created by
DeepFusion from only pose estimates and RGB images. Despite a lack of photomet-
ric texture on major scene components (such as the monitor and desk), which makes
it difficult to obtain good multi-view stereo depth estimates, the use of learned priors
allows for an accurate, dense 3D reconstruction.

perform poorly on interior points that may lack texture.

The optimal way to combine these two approaches, however, is not clear. The

best current results seem to come from systems that take the output of traditional

geometry-based systems and feed these into a deep neural network (DNN). A par-

ticularly impressive example of this type of system is DeepTAM [Zhou et al., 2018],

which passes a photometric cost volume through a network to extract a depth map.

One problem with using a network as the final stage in a reconstruction pipeline

is that an expensive network pass must be computed every time the underlying geo-
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metric information is updated, which may be unacceptably expensive for real-time

incremental systems. Another problem is that this framework breaks the probab-

ilistic formulation of typical dense SLAM pipelines, which may be necessary for

the fusion of additional sensors such as IMUs or wheel encoders. For these reas-

ons, a number of approaches that take network depth predictions and refine them

with geometric constraints have been proposed. In [Fácil et al., 2017], the authors

compute a network depth prediction for each keyframe and update a semi-dense

multi-view stereo depth map with each new frame. The two depth estimates are

then interpolated based on a set of tunable weights related to the image structure.

Another approach [Zhang and Funkhouser, 2018] predicts surface normals and oc-

clusion boundaries for each keyframe image and then attempts to fill in missing

values in the output of a depth camera. Unfortunately, the solve time is too slow to

be used on incremental SLAM systems. In [Yin et al., 2017], a CRF is used to refine

the regression results. In [Weerasekera et al., 2018], which greatly inspired the work

in this chapter, the authors were able to create accurate dense reconstructions using

a fully-connected CRF with network predicted uncertainties from a sparse set of 3D

points generated by a monocular SLAM system. Since they use the output of a mon-

ocular system to constrain the dense reconstructions, however, the resulting depth

maps are ambiguous in scale. In this chapter, the idea of maintaining global con-

sistency by linking neighbouring pixels in the reconstruction through depth gradient

predictions is used and extended to include the estimation of absolute scale. Per-

haps the most comparable work to that presented here is CNN-SLAM [Tateno et al.,

2017], which uses a network to predict an at-scale depth map for each keyframe and

then refines it through small baseline stereo constraints in real time. The refinement

in CNN-SLAM, however, is done on a per-pixel basis and therefore does not preserve

global consistency.

This chapter proposes DeepFusion, a 3D reconstruction system that is capable

of producing dense depth maps at scale in real time from RGB images and scale-

ambiguous poses provided by a monocular SLAM system. Network predicted depth

gradients are used as a constraint on neighbouring pixels to ensure global consistency

76



4.2. Method

R,t

Obtain pose 

from tracker

Solve

new 

kf?

yes

no

Obtain network 

predictions

Estimate 

semi-dense

depth

RGB Input

D Gx Gy

Ax=b

Fused Output

Figure 4.2: The DeepFusion framework.

in the reconstructions, and learned uncertainties to fuse the different modalities in a

probabilistic fashion. Please see Figure 4.1 for an example keyframe reconstruction.

4.2 Method

In this section, a system for producing dense reconstructions at scale in real time is

described. Please see Figure 4.2 for an overview of the DeepFusion framework.

DeepFusion represents the observed geometry with a series of keyframe depth

maps. With each new RGB image, the system obtains the pose from a monocular

SLAM system (ORB-SLAM2 [Mur-Artal and Tardós, 2017] in this implementation)

and then updates the semi-dense depth estimates for the active keyframe using the

method described in [Engel et al., 2013]. If the camera has translated more than

λtrans or had fewer than λinliers inliers in the semi-dense estimation, a new keyframe

is created.

To maintain a high frame rate, the network outputs are only generated once

per keyframe. Using a CNN, the log-depth, log-depth gradients and associated

uncertainties are predicted from the new keyframe image. Like [Weerasekera et al.,

2018] and [Eigen et al., 2014], log-depths are predicted instead of depths or inverse

depths because it is numerically better for network prediction (negative values are

meaningful) and it has the convenient property that the difference between two

log-depths (the gradient of the log-depth image) is the ratio of two depths, which is

scale-invariant. The choice is made to predict log-depth gradients in both the x- and

y-directions on the image plane rather than surface normals in order to maintain

the linearity of the optimisation problem, as this avoids the need for performing
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dot product and normalisation operations. Single-view depth prediction is a highly

under-constrained problem, and in practice it seems easier for the network to make

accurate predictions about fine-grained local geometry rather than absolute per-pixel

depth. For this reason, the absolute log-depth values and the log-depth gradients

are predicted separately to obtain separate uncertainties that reflect the difference

in the network’s ability at these two different tasks.

If a new keyframe is not created, then the current semi-dense depth map and

network outputs are fused to update the current depth map.

4.2.1 Network Architecture

For the network, a U-Net [Ronneberger et al., 2015] style architecture is used with

the same dimensions as the one in [Bloesch et al., 2018], except that three more

identical decoders are added to predict log-depth uncertainties, log-depth gradients,

and log-depth gradient uncertainties in addition to just the log-depths. All inputs

and outputs have a resolution of 256x192. See Figure 4.3.

In order to fuse the outputs of the network with the estimates coming from the

semi-dense multi-view stereo system, an uncertainty associated with each pixel in

each of the log-depth and gradient images is required. To obtain this, the method

described in [Kendall and Gal, 2017] is used to have the network learn to predict

both a mean and a variance with a maximum likelihood cost function:

cML(θ) =
∑

u

(y(u) − fθ,u(x))
2

σθ,u(x)
2

+ log(σθ,u(x)
2
), (4.1)

where θ is the set of network weights, x is the input image, y(·) is the ground truth

label for a given pixel, and fθ,u(x) and σθ,u(x)
2 are the network’s predictions for the

mean and variance of pixel u, respectively. The total loss is the sum of this loss

function for each of the output images.

Like [Bloesch et al., 2018], the network is trained on the SceneNet RGB-D dataset

[McCormac et al., 2017], a dataset of 5 million rendered indoor scenes. The network

is trained to predict log-depths that have been normalised by the focal length of the
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Figure 4.3: The network consists of a U-Net-style encoder and decoder with five
skip connections. During training, outputs are extracted at four different resolutions
with losses calculated for each of them. While a single encoder is shared across all
tasks, a separate decoder is used for each of the network predictions (depth, depth
uncertainty, depth gradients and depth gradient uncertainty).

SceneNet camera. In the same manner as CNN-SLAM [Tateno et al., 2017], the log-

depth predictions of the network are scaled by the focal length of the camera used

at test time so the absolute scale can be recovered for images captured by cameras

with different intrinsics. Since all predictions are done in logspace, the gradients

(which represent depth ratios) and uncertainties do not need to be scaled.

4.2.2 Semi-Dense Estimation

For the semi-dense multi-view stereo component, the depth estimation method

from [Engel et al., 2013] is implemented. For each pixel in the keyframe where

there is sufficient texture, a search is made along the epipolar line for the depth

value, D(0)semi(C0
u) that minimises the sum of squared differences for five equally

spaced points. Note that D(0)semi only has valid depth values at pixels corresponding

to a high image gradient. If there is a current depth estimate for pixel C0
u, the

search is conducted over the interval D(0)semi(C0
u) ± 2σsemi,C0

u. Otherwise, the search

79



4. Probabilistic Fusion of Learned Parametric Priors

is conducted over the entire epipolar line. Given a pixel in the keyframe, C0
u, and

the poses of the keyframe (W rWC0
, CWC0

) and reference frame (W rWC1
, CWC1

), the

photometric error is given by:

e(D(0)semi,C0
u) =

I(1)(π(K CT
WC1

CWC0
D(0)semi(C0

u)K−1
C0
u + CT

WC1
(W rWC1

−W rWC0
))) − I(0)(C0

u),

(4.2)

where I(0)(·) is the intensity of a given pixel in the keyframe, I(1)(·) is the intensity

of a given pixel in the reference frame, π(·) is the projection function, and K is the

camera intrinsics matrix.

The Jacobian of the error function, J
C0

u, is approximated with finite differences:

J
C0

u ≈
1

∆D(0)semi(C0
u)
∆e

C0
u (4.3)

where e
C0

u is the 5x1 vector containing the photometric error associated with each

of the five points. When searching for the minimum value along the epipolar line,

even sized steps of 1 pixel length are taken. Once the minimum is found, the

optimal depth at sub-pixel resolution is found by interpolating between two steps.

The difference in the photometric error at the two endpoints of the interpolation is

∆e
C0

u, and the difference between the depths at those points is ∆D(0)semi(C0
u).

The uncertainty of each semi-dense measurement is approximated by:

σ2
C0

u = (J
T
C0

u J
C0

u)
−1. (4.4)

The semi-dense depth estimates and uncertainties are then converted into logspace

to match the network outputs.

4.2.3 Optimisation

To update the current depth prediction, the following cost function consisting of

three terms is minimised with each new frame:

c(D(0), s) = csemi(D
(0), s) + cnet(D

(0)
) + cgrad(D

(0)
), (4.5)
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where D(0) is the set of log-depth values to be estimated and s is the scale correction

factor.

The semi-dense cost term imposes a unary constraint over the set of pixels where

valid semi-dense log-depth values have been estimated:

csemi(D
(0), s) =

∑
C0

u∈Ωsemi

1

σ2
C0

u
esemi(D

(0), s,C0
u)2

esemi(D
(0), s,C0

u) = log D(0)(C0
u) − log s − log D(0)semi(C0

u),

(4.6)

where σ2
C0

u is the uncertainty estimated by the approximation given in Eq. 4.4 and

D(0)semi(·) is the scale-ambiguous log-depth predicted by the semi-dense system for a

given pixel. Since the semi-dense log-depth estimates are calculated based on the

poses provided by a monocular SLAM system, they have an arbitrary scale. Because

the depth map to be estimated, D(0), is to scale, a scale correction factor, s is needed

to solve. With the fully dense per-pixel cost term, cnet(·), this scale correction factor

becomes observable.

The network depth cost term imposes an additional unary constraint over all

pixels of the fused depth map:

cnet(D
(0)
) =

∑
C0

u∈Ω

1

σ2
θ,depth,C0

u(x)
enet(D

(0),C0
u)2

enet(D
(0),C0

u) = log D(0)(C0
u) − fθ,depth,C0

u(x)

(4.7)

where fθ,depth,C0
u(x) and σ2

θ,depth,u
(x) are the log-depth and uncertainty predictions

made by the network (see Eq. 4.1). While the network may have a high uncertainty

about the absolute depth at any pixel, this cost term provides a weak prior on the

absolute scale of the scene and allows for the estimation of the scale correction factor,

s.

In order to maintain global consistency while fusing together the semi-dense and

network depth values, an additional cost term that imposes pairwise constraints
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between a given pixel and each of its four neighbours is included:

c(D(0)) =
∑

C0
u∈Ω


egrad,x(D

(0),C0
u)2

σ2
θ,grad,x,C0

u(x)
+

egrad,y(D
(0),C0

u)2

σ2
θ,grad,y,C0

u(x)


egrad,x(D

(0),C0
u) = log D(0)(C0

uE ) − log D(0)(C0
u) − fθ,grad,x,C0

u(x)

egrad,y(D
(0),C0

u) = log D(0)(C0
uS) − log D(0)(C0

u) − fθ,grad,y,C0
u(x)

(4.8)

where uE is the neighbouring pixel of u in the positive horizontal direction (“East”),

uS is the neighbouring pixel of uS in the positive vertical direction (“South”),

fθ,grad,x,C0
u(x) and fθ,grad,y,C0

u(x) are the log-depth gradients in the x- and y-directions

predicted by the network, and σ2
θ,grad,x,C0

u(x) and σ2
θ,grad,y,C0

u(x), the associated pre-

dicted uncertainties (see Eq. 4.1).

The semi-dense depth estimates can be very noisy and the network predictions can

have extreme outliers which have a significant impact on the final reconstruction.

For this reason, the Huber loss function on each of the cost terms is used.

The system is solved using the Opt [DeVito et al., 2017] optimisation framework.

With Opt, an energy function is defined for each term in the cost function, which

are then automatically compiled into GPU optimisation kernels. Ten Gauss-Newton

iterations are performed, alternating between solving for the depth and scale. With

this setup, it is possible to solve the system for each new frame in real time.

4.3 Experimental Results

4.3.1 Qualitative Results

Figure 4.4 shows some qualitative results from selected keyframes on the ICL-

NUIM [Handa et al., 2014] and TUM RGB-D [Sturm et al., 2012] datasets. Com-

paring the network depth predictions with the final fused depth maps shows that

including geometric constraints from the semi-dense depth estimation and pairwise

pixel constraints from the gradient predictions produces depth maps that are more

globally consistent and have fewer blurring artifacts.
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Figure 4.4: Qualitative results for selected keyframes on the ICL-NUIM Office2
(top), ICL-NUIM LivingRoom1 (middle) and TUM RGB-D fr2 desk (bottom) se-
quences. From left to right: input image, ground truth depth, semi-dense depth
estimate, network depth prediction, network depth gradient prediction in the x-
direction, network depth gradient prediction in the y-direction, and the optimised
depth map.

Figure 4.5: Example network predictions on sample images from the SceneNet RGB-
D dataset. From left to right: input image, log-depth prediction, log-depth uncer-
tainty prediction, log-depth gradient prediction in the x-direction, log-depth gradi-
ent in the x-direction uncertainty prediction, log-depth gradient prediction in the
y-direction, log-depth gradient in the y-direction uncertainty prediction.

Figure 4.5 shows the network output for sample images in the SceneNet RGB-

D dataset [McCormac et al., 2017]. The uncertainties associated with the gradient

images are clearly largest on areas of high image gradient suggesting that the network

has learned that these regions tend to correspond with depth discontinuities or other

rapid changes in the depth gradient.
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Table 4.1: Comparison of reconstruction accuracy in terms of percent-
age of correct depth values (within 10% of ground truth) on ICL-NUIM
and TUM RGB-D datasets (TUM/seq1: fr3/long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3/structure texture far). LSD-
SLAM (BS) is LSD-SLAM bootstrapped with a ground truth depth map, and RE-
MODE uses LSD-SLAM (BS) poses and keyframes.

Sequence DeepFusion CNN-SLAM LSD-SLAM (BS) LSD-SLAM ORB-SLAM Laina REMODE

ICL/office0 21.090 19.410 0.603 0.335 0.018 17.194 4.479
ICL/office1 37.420 29.150 4.759 0.038 0.023 20.838 3.132
ICL/office2 30.180 37.226 1.435 0.078 0.040 30.639 16.708
ICL/living0 24.223 12.840 1.443 0.360 0.027 15.008 4.479
ICL/living1 14.001 13.038 3.030 0.057 0.021 11.449 2.427
ICL/living2 25.235 26.560 1.807 0.167 0.014 33.010 8.681
TUM/seq1 8.069 12.477 3.797 0.086 0.031 12.982 9.548
TUM/seq2 14.774 24.077 3.966 0.882 0.059 15.412 12.651
TUM/seq3 27.200 27.396 6.449 0.035 0.027 9.450 6.739

Avg. 22.466 22.464 3.032 0.226 0.029 18.452 7.649

4.3.2 Reconstruction Evaluation

The reconstruction pipeline is evaluated by comparing it to the results obtained

by CNN-SLAM [Tateno et al., 2017], a state-of-the-art system that fuses together

network predictions and geometric constraints to produce fully dense depth maps.

Following the evaluation procedure of CNN-SLAM, the results are also compared to

the depth maps produced by a sparse feature-based monocular system (ORB-SLAM2

[Mur-Artal and Tardós, 2017]), a semi-dense geometric system (LSD-SLAM [Engel

et al., 2014]), a fully dense reconstruction method (REMODE [Pizzoli et al., 2014]),

and a pure deep learning approach (Laina, et al. [Laina et al., 2016]).

As there was no open-source version of CNN-SLAM available at the time of writ-

ing, DeepFusion is evaluated on the same sequences used in [Tateno et al., 2017] and

compared with their reported results. The sequences used for the comparison come

from two different datasets: the synthetic ICL-NUIM RGB-D dataset [Handa et al.,

2014] and the real world TUM RGB-D SLAM dataset [Sturm et al., 2012]. The

ICL-NUIM dataset provides rendered depth maps as a ground truth comparison

and the TUM RGB-D dataset approximates this with Kinect depth camera images.

As proposed by [Tateno et al., 2017], the percentage of estimated depth values
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that are within 10% of the corresponding ground truth depth values are measured

in order to evaluate both the reconstruction accuracy and density.

The results are presented in Table 4.1. While DeepFusion and CNN-SLAM have

approximately the same performance overall, this performance is not evenly distrib-

uted over the two datasets. DeepFusion performs the best on four out of the six

ICL-NUIM sequences, whereas CNN-SLAM performs the best on two out of the

three TUM RGB-D sequences. The reason for this most likely has to do with the

training data used by the two systems. The network is trained on the synthetic

SceneNet dataset [McCormac et al., 2017], whereas CNN-SLAM uses the network

described in [Laina et al., 2016] which is trained on the Kinect-captured NYUv2 [Sil-

berman et al., 2012]. In addition, two of the TUM RGB-D sequences used in the

comparison consist of the camera moving over flat planes covered in posters, with

seemingly little semantic information for the networks to leverage. These results

speak to the importance of keeping the network’s training data as close as pos-

sible to the domain in which the system will be deployed. While both DeepFusion

and CNN-SLAM clearly outperform the geometry-only systems, the learning-based

method proposed by Laina, et al. [Laina et al., 2016] also does well, performing

the best on two of the nine sequences. This demonstrates the power of learning-

based approaches, but ultimately the systems that can make use of both modalities

perform the best overall.

4.3.3 Scale Optimisation Evaluation

While the network predicted log-depth values are included in the optimisation prob-

lem to solve for the absolute scale of the reconstruction, there are alternative meth-

ods. For instance, in [Weerasekera et al., 2017], the authors first predict a scale-

ambiguous reconstruction and then scale their reconstruction by finding a least-

squares fit with a network predicted depth map. The advantage of the proposed

method is that it is able to use the relative uncertainties between the semi-dense

estimates and network predictions when performing the fusion.
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Table 4.2: Comparison of scale estimation methods in DeepFusion in terms of
percentage of correct depth values (within 10% of ground truth) on ICL-NUIM
and TUM RGB-D datasets (TUM/seq1: fr3/long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3/structure texture far).
“Least Squares for Scale Estimation” shows the results when using least squares to
align a scale-ambiguous estimation with the network depth prediction to estimate
a scaled depth map for each keyframe.

Sequence DeepFusion
Least Squares for
Scale Estimation

ICL/office0 21.090 18.135
ICL/office1 37.420 26.415
ICL/office2 30.180 31.359
ICL/living0 24.223 23.861
ICL/living1 14.001 10.372
ICL/living2 25.235 22.082
TUM/seq1 8.069 9.690
TUM/seq2 14.774 14.490
TUM/seq3 27.200 24.047

To demonstrate that the proposed method produces better results, a version of

DeepFusion is implemented that optimises for a scale-ambiguous depth map us-

ing only the semi-dense and gradient terms of the cost function and then finds a

least-squares fit with the network predicted depth and measured its performance

on sequences used for the reconstruction evaluation. The results are presented in

Table 4.2. In seven of the nine sequences, DeepFusion outperforms the least-squares

post-processing method.

4.3.4 Global Consistency Evaluation

One of the primary differences between DeepFusion and CNN-SLAM [Tateno et al.,

2017] is that DeepFusion includes a pairwise constraint on neighbouring pixels in

order to enforce global consistency on the optimised depth maps.

To show that including these constraints does in fact help produce more accurate

reconstructions, a version of DeepFusion is implemented that optimises for a depth
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Table 4.3: Analysis on the importance of pairwise constraints on reconstruc-
tion accuracy in terms of percentage of correct depth values (within 10%
of ground truth) on ICL-NUIM and TUM RGB-D datasets (TUM/seq1:
fr3/long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3/structure texture far). “No Pairwise Constraints” shows the results
when fusing together only the semi-dense and network log-depth values.

Sequence DeepFusion
No Pairwise
Constraints

ICL/office0 21.090 16.641
ICL/office1 37.420 24.633
ICL/office2 30.180 30.899
ICL/living0 24.223 21.643
ICL/living1 14.001 12.774
ICL/living2 25.235 21.772
TUM/seq1 8.069 9.469
TUM/seq2 14.774 14.187
TUM/seq3 27.200 23.584

map with absolute scale using only the network predicted log-depths, the semi-

dense log-depth estimates, and their associated uncertainties. The performance of

this version is evaluated on the sequences used in the reconstruction evaluation.

The results are presented in Table 4.3. In seven of the nine sequences, DeepFusion

outperforms the method that does not enforce global consistency.

4.3.5 Timing Evaluation

To demonstrate the real-time capability of the proposed system, the approximate

runtimes of each of the components are shown in Table 4.4. These runtimes were

based on an implementation using an Intel Core i7-5820K CPU and a GeForce GTX

980 GPU.

4.4 Conclusion

This chapter has presented DeepFusion, a system capable of producing dense 3D

reconstructions at scale in real time. By formulating a cost function that includes
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Table 4.4: Approximate timing information for key components in the DeepFusion
system.

Semi-Dense Optimisation Network Prediction

Mean 16ms 33ms 45ms
Min 1ms 26ms 44ms
Max 43ms 47ms 47ms

per-pixel losses based on network depth predictions and sparse semi-dense depth

estimates with pairwise constraints from network depth gradient predictions, it is

possible to estimate both the shape of the observed scene and its absolute scale. By

predicting both the per-pixel mean and variance, it is possible to obtain uncertainties

for all network outputs and fuse the outputs together with the geometric constraints

in a probabilistic fashion. Through a series of experiments on synthetic and real

datasets, it is demonstrated that DeepFusion performs at least as well as other

comparable systems. Furthermore, through a series of ablation studies, the value of

estimating the scale of the depth maps by including the network depth output as

a per-pixel constraint in the optimisation and using pairwise constraints to enforce

global consistency is demonstrated.

A weakness of the approach presented in this chapter is that it forces the network

to predict a parametric and unimodal depth distribution which may be ill-suited to

dense reconstruction where there can be a clear need for a multi-hypothesis predic-

tion. Additionally, multi-view geometric constraints were only estimated for key-

frame pixels with a high image gradient. Unfortunately, these points also tend

to be where there are high depth gradients (as they often correspond with edges

of objects), and this is where the DNN has learned to predict high uncertainty. In

practice, this means that very little information is passed between semi-dense points

and points on the interior of objects. Therefore, the depth values of these interior

points rely almost entirely on the depth values predicted by the network and do not

benefit from the fusion.
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The next chapter will attempt to address some of these issues by training a DNN

to predict a nonparametric probability distribution for the depth of all pixels.
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5.1 Introduction

As discussed in the previous chapter, there has been a lot of recent research on data-

driven approaches to the depth estimation problem, and the best current results
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5. Probabilistic Fusion of Learned Nonparametric Priors

Figure 5.1: Fusing a single-view nonparametric depth probability distribution pre-
dicted by a DNN with standard photometric error terms helps to resolve ambiguities
in the photometric error due to occlusions or lack of texture. The above projected
keyframe depth map was created by the system. Despite a lack of photometric
texture on the desk, walls and computer monitor, the system is able to create an
accurate 3D reconstruction through the use of the data-based priors.

seem to come from systems that take the output of traditional geometry-based

pipelines and feed these into a DNN to produce a final output (e.g. DeepTAM [Zhou

et al., 2018]). It may be desirable, however, to treat learning-based systems as an

additional component that is fused into the pipeline of a traditional system. Such a

framework would keep the probabilistic formulation intact and prevent the necessity

of having to perform an expensive neural network pass every time the geometric

information is updated. Also, as DNNs perform best on images close to the training

dataset, it would be possible to switch the network component on or off or switch

between different networks depending on the environment being reconstructed. The

difficulty of this approach, however, is that to probabilistically fuse the network

outputs into a 3D reconstruction system, some measure of the uncertainty associated
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5.1. Introduction

with each prediction is required.

In general, uncertainty can be classified into two categories: model or epistemic

uncertainty and statistical or aleatoric uncertainty. In [Gal and Ghahramani, 2016],

the authors suggest using a Monte Carlo dropout technique to estimate the model

uncertainty of a network, but this requires multiple expensive network passes.

Like [Bishop, 1994], the authors of [Kendall and Gal, 2017] propose having the

network predict its own aleatoric uncertainty and using a Gaussian or Laplacian

likelihood as the loss function during training, which was the method used in the

previous chapter. The problem with this approach is that it forces the network

to predict a parametric and unimodal distribution. As shown in [Campbell et al.,

2008], this type of distribution may be particularly ill-suited to dense reconstruction

where there may be a clear need for a multi-hypothesis prediction.

One proposal has been to use a multi-headed network with each head making a

separate prediction [Zhou et al., 2018, Peretroukhin et al., 2019]. From these many

predictions, one can calculate the mean and covariance to use in a probabilistic

fusion algorithm. The drawbacks of this approach are that it increases the size of

the network and requires a careful balancing of the relative size of the network body

and heads.

Recently, both [Fu et al., 2018] and [Liu et al., 2019] achieved impressive results

by having their networks predict discrete, nonparametric probability distributions.

While [Liu et al., 2019] uses these distributions to fuse the output with other network

predictions, this method has not been used to fuse the predictions of networks with

the output of standard reconstruction pipelines.

In this chapter, a dense mapping system is proposed that fuses together the output

of a DNN with a standard photometric cost volume to create dense depth maps for a

set of keyframes. A network is trained to predict a discrete, nonparametric probab-

ility distribution for the depth of each pixel over a given range from a single image.

Following [Liu et al., 2019], this collection of probability distributions for each pixel
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in the keyframe is referred to as a probability volume. Then, with each subsequent

frame, a probability volume based on the photometric consistency between the cur-

rent frame and the keyframe image is created and fused into the keyframe volume.

It is argued that combining the probability volumes from these two sources will

result in a better conditioned probability volume. Depth maps are extracted from

the probability volume by optimising a cost function that includes a regularisation

term based on network predicted surface normals and occlusion boundaries. Please

see Figure 5.1 for an example keyframe reconstruction created by this system.

5.2 Method

The proposed dense mapping system represents the observed geometry as a collection

of keyframe-based probability volumes. That is, instead of representing the surface

as a depth map with a single depth estimate per pixel, the depth is represented

with a per-pixel discrete probability distribution over a given depth range. These

probability volumes are initialised with the output of a monocular depth prediction

network. With each additional RGB image, the system computes a cost volume

based on the photometric consistency. This cost volume is then converted to a

probability volume and fused into the volume of the current keyframe. Once the

number of inliers drops below a given threshold, a new keyframe is created. To

propagate information from one keyframe to another, the previous distribution is

warped and fused into the new one.

When extracting a depth map from the probability volume, it would be possible to

take the depth values with the highest probability, but in featureless regions where

there is also high network uncertainty this would be susceptible to false minima and

cause local inconsistencies in the prediction. Also, as the probability distribution

is discrete, taking the maximum would result in a quantisation of the final depth

prediction. To overcome these shortcomings, a smooth probability density function

(PDF) is first constructed from the volume using a kernel density estimation (KDE)

technique. Then negative log probability of this PDF along with a regularisation
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term is minimised. While many dense systems propose using regularisers based

on smoothness [Newcombe et al., 2011b, Pizzoli et al., 2014] or planar assump-

tions [Concha et al., 2014, Concha and Civera, 2014, Concha and Civera, 2015], the

examples of [Weerasekera et al., 2017] and [Laidlow et al., 2019] are followed, and

the reconstruction is penalised for deviating from the surface normals predicted by

a DNN.

5.2.1 Multi-Hypothesis Monocular Depth Prediction

Rather than predict a single depth value for each pixel, the network predicts a

discrete depth probability distribution over a given range, similar to [Fu et al., 2018]

and [Liu et al., 2019]. Not only does this allow the network to express uncertainty

about its prediction, but it also allows the network to make a multi-hypothesis depth

prediction. As discussed in [Fu et al., 2018], the prediction of the depth probability

distribution can be improved by having a variable resolution over the depth range. A

log-depth parameterisation is chosen, following the examples of [Weerasekera et al.,

2018] and [Eigen et al., 2014]. By uniformly dividing the depth range in log-space,

the desired result of having higher resolution in the areas close to the camera and

lower resolution farther away is achieved.

For the network architecture (see Figure 5.2), a ResNet-50 encoder is used [He

et al., 2016], followed by three upsample blocks, each consisting of a bilinear up-

sampling layer, a concatenation with the input image, and then two convolutional

layers to bring the output back up to the input resolution. All inputs and outputs

have a resolution of 256x192.

As the network predicts a discrete distribution rather than a depth map, it is

not possible to use a standard loss function based on the sum of squared errors. A

cross-correlation loss would not be ideal either, as it would not penalise the network

less for predicting high probabilities in incorrect bins that are close to the true bin

than in bins farther away. Instead,the ordinal loss function proposed in [Fu et al.,
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Figure 5.2: The network consists of a ResNet-50 encoder with an output stride size
of 8 and no global pooling layer.The output of the encoder is then passed through
three upsample blocks consisting of a bilinear resize, concatenation with the input
image, and then two convolutional layers to match the output resolution to the
input. The probability distribution that the network outputs is discretised over 64
channels.

2018] is chosen:

c(θ) = −
∑
i

[
k∗i∑
k=0

log(pθ,i(k
∗
i ≥ k)) +

K−1∑
k=k∗i+1

log(1 − pθ,i(k
∗
i ≥ k))

]
, (5.1)

where

pθ,i(k
∗
i ≥ k) =

K−1∑
j=k

pθ,i(k
∗
i = j), (5.2)

θ is the set of network weights, K is the number of bins over which the depth range

is discretised, k∗i is the index of the bin containing the ground truth depth for pixel

i, and pθ,i(k
∗
i = j) is the network prediction of the probability that the ground truth

depth is in bin j.

Like [Liu et al., 2019], the network is trained on the ScanNet RGB-D dataset [Dai

et al., 2017]. The depth range is set to be between 10cm and 12m and the log-depth

values are grouped uniformly into 64 bins.

Each keyframe created by the system is initialised with this network output.
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5.2.2 Fusion with Photometric Error Terms

For each additional reference frame, a DTAM-style cost volume is constructed [New-

combe et al., 2011b]. First, both the keyframe and reference frame images are nor-

malised by subtracting their means and dividing by their standard deviations. Then

the photometric error is calculated by warping the normalised keyframe image into

the reference frame for each depth value in the cost volume and taking the sum of

squared differences on 3x3 patches. To simplify the later fusion, the midpoint of

each of the depth bins used for the network prediction are used as the depth values

in the cost volume. Poses are obtained from an oracle, such as a separate tracking

system like ORB-SLAM2 [Mur-Artal and Tardós, 2017].

To convert to a probability volume, the negative of the photometric error is separ-

ately scaled for each pixel such that it sums to one over the ray. This new probability

volume is then fused into the current keyframe volume:

pi(k
∗
i = k) = pKF,i(k

∗
i = k)pRF,i(k

∗
i = k), (5.3)

for each pixel i, which is then scaled to sum to one.

5.2.3 Kernel Density Estimation

To avoid a quantisation of the final depth prediction and to have a smooth function

to use in the optimisation step, a PDF is constructed for the depth of each pixel, u,

using a KDE technique with Gaussian basis functions:

fu(d) =
K−1∑
k=0

pu(k
∗
u = k) φ (d(k), σ) , (5.4)

where φ (µ, σ) is the probability density of the Gaussian distribution with mean µ

and standard deviation σ, d(k) is the depth value at the midpoint of bin k, and σ is

a constant smoothing parameter across all pixels and depth values. The value of σ

is a hyperparameter that needs to be tuned empirically; it was found that σ = 0.1

worked well on the test cases.

An example of a discrete PDF produced by the system and the smoothed result

after applying the KDE technique is shown in Figure 5.3.
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Figure 5.3: The fusion algorithm produces a discrete probability distribution for each
pixel in the keyframe. To reduce discretisation errors and to have a continuous cost
function for the optimiser, the probability values along each ray are converted into
a smooth probability density function using a kernel density estimation technique.

5.2.4 Regularisation

Although the fused probability volume will have more local consistency than using

the photoconsistency terms alone, the result can still be improved by adding a regu-

larisation term to the optimisation used to extract the depth map. While most dense

reconstruction systems base their regularisers on smoothness or planar assumptions,

the proposed system uses the surface normals predicted by a DNN as was done in

both [Weerasekera et al., 2017] and [Laidlow et al., 2019] as this may allow for better

preservation of fine-grained local geometry. To predict the surface normals from the

keyframe image, the state-of-the-art network SharpNet is used [Ramamonjisoa and

Lepetit, 2019]. As the local surface orientation of the depth estimation is determ-

ined from neighbouring pixels and it is not desirable to incur high costs at depth

discontinuities, the regularisation term is masked at occlusion boundaries, which are

also predicted by SharpNet. Since SharpNet actually predicts a probability of each
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Figure 5.4: To regularise the depth estimate, the surface normals and occlusion
boundaries predicted by SharpNet are used [Ramamonjisoa and Lepetit, 2019].
Some examples of the predictions made by SharpNet on the TUM RGB-D data-
set [Sturm et al., 2012] are shown above. From left to right: input RGB images,
predicted normals, predicted occlusion boundaries with a probability greater than
0.4.

pixel belonging to an occlusion boundary, all pixels with a probability higher than

0.4 are included in the mask. Example predictions of surface normals and occlusion

boundaries made by SharpNet on the TUM RGB-D dataset [Sturm et al., 2012] are

shown in Figure 5.4.

5.2.5 Optimisation

To extract a depth map from the probability volume, a cost function consisting of

two terms is minimised:

c(D) = cf (D) + λcn(D), (5.5)

where D is the depth map to be estimated, and λ is a hyperparameter used to

adjust the strength of the regularisation term. Empirically, a value of λ = 1.0 · 107

was found to work well.

The first term, cf , imposes a unary constraint on each of the pixels:

cf (D) = −
∑
u∈Ω

log
(
fu(d = D(u))

)
(5.6)
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where fu(d = D(u)) is the smoothed PDF of pixel u evaluated at depth D(u).

The second term, cn(·), is a regularisation term that combines two pairwise con-

straints:

cn(D) =
∑
u∈Ω

bu

(
〈nu,D(u)K

−1u − D(uE )K
−1uE〉

)2

+bu

(
〈nu,D(u)K

−1u − D(uS)K
−1uS〉

)2
,

(5.7)

where uE is the neighbouring pixel of u in the positive horizontal direction (“East”),

uS is the neighbouring pixel of u in the positive vertical direction (“South”), bu ∈

{0, 1} is the value of the occlusion boundary mask for pixel u, 〈·, ·〉 is the dot product

operator, nu is the normal vector predicted by SharpNet for pixel u, and K is the

camera intrinsics matrix.

The cost function is minimised by applying 100 iterations of gradient descent with

a step size of 0.2, and the optimisation is initialised with the maximum probability

depth values from the fused probability volume. The process of going from a fused

probability volume through the smoothing and optimisation to an extracted depth

map is currently only able to run at a few Hz; however, this could be improved

significantly by using Newton’s method or the primal-dual algorithm. As the main

contribution of this work is to show the benefit of the fusion, this is left for future

work.

5.2.6 Keyframe Warping

To avoid throwing away information on the creation of each new keyframe, the

probability volume of the current keyframe is warped into the new one. As the

probability volume is a distribution over the depth values of a pixel, however, warp-

ing the probability volume is not trivial. To do this, the proposed system uses a

discrete variation of the method described in [Loop et al., 2016], where the depth

probability distribution is first converted to an occupancy-based probability volume,

where for each depth bin along the ray there is a probability that the associated point

in space is occupied. This occupancy grid is then warped into the new frame and

converted back to a depth probability distribution.
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The probability that the voxel Sk,u (corresponding to depth bin k along the ray

of pixel u) is occupied, conditioned on the depth belonging to bin j:

p(Sk,u = 1|k∗u = j) =


0 if k < j

1 if k = j

1
2 if k > j

. (5.8)

To convert a depth probability distribution into an occupancy probability, the

conditional is marginalised out:

p(Sk,u = 1) =
K−1∑
k=0

pu(k
∗
u = k)p(Sk,u = 1|k∗u = k), (5.9)

where pu(k
∗
u = k) is the value of the depth probability volume in bin k for pixel u.

As the occupancy grid represents probabilities for locations in 3D space, it can be

directly warped into the new keyframe, filling in any unknown values with a default

occupancy probability. In this work, a default probability of 0.01 is used.

After warping, the occupancy grid can be converted back into a depth probability

distribution:

pu(k
∗
u = k) =

∏
j<k

[
1 − p(Sj,u = 1)

]
p(Sk,u = 1), (5.10)

and scaled so that the distribution sums to one along the ray.

5.3 Experimental Results

The system is evaluated on the Freiburg 1 sequences of the TUM RGB-D dataset

[Sturm et al., 2012]. Please note that only the RGB images are processed by the

system and the depth channel is only used as a “ground truth” with which to validate

the results against.

5.3.1 Qualitative Results

Figure 5.5 shows the various PDFs for a sample of four pixels taken from a keyframe

in the TUM RGB-D sequence fr1/desk. The PDFs in the first row are those predicted
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by the DNN. Note that the network is able to make multi-hypothesis predictions

and can have varying degrees of certainty. The PDFs in the second row are those

that result from the photometric cost volume. For some of the pixels (such as pixels

A and C), the photometric error results in a clear peak. This situation is most often

found on corners and edges in the image where there are large intensity gradients.

For pixels in textureless regions or on occlusion boundaries or areas with repeating

patterns, the photometric PDF may have many peaks (such as pixel B) or no peak

at all (such as Pixel D). The final row of the figure shows the fused PDF for each

of the pixels. By fusing the two PDFs together, uncertainty can be reduced and

ambiguous photometric data can be resolved.

An example reconstruction for a single keyframe with various ablations is shown

in Figure 5.6.

5.3.2 Quantitative Evaluation

The value of fusion on the reconstruction pipeline is demonstrated by comparing the

performance of the system on each of the Freiburg 1 TUM RGB-D sequences under

three different scenarios: using only the network probability volume, using only the

photometric probability volume and using the fused probability volume. To isolate

the performance of the reconstruction system, the ground truth poses provided in

the dataset are used. The performance is evaluated using three metrics defined

in [Eigen et al., 2014]: the absolute relative difference (L1-rel), the squared relative

difference (L2-rel) and the root mean squared error (RMSE). Note that since the

photometric probability volume has extremely noisy results on textureless surfaces,

it was found that the results were improved by initialising the optimisation with the

expected value of the depth from the probability volume rather than the highest

probability depth.

The results are presented in Table 5.1. In six of the sequences, the best result

is achieved by fusing together the network and photometric probability volumes.

While there is a large performance gain in using the network over the photomet-
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Photometric-Only, No Optimisation

Photometric-Only, With Optimisation

Network-Only, No Optimisation Fused Volume, No OptimisationKeyframe Image

Ground Truth Depth Network-Only, With Optimisation Fused Volume, With Optimisation

Figure 5.6: Qualitative results from an example keyframe and 6 additional reference
frames in the TUM RGB-D fr1/360 sequence. The top left image is the keyframe
image, and the bottom left is the ground truth depth. The remaining images on
the top row are the depth estimates obtained by taking the maximum probability
depth from each corresponding probability volume. The bands of colour show the
quantisation that results from using this method. The remaining images in the
bottom row are the depth estimates that result after performing the optimisation
step. Note that the photometric error is only capable of estimating the depth at
pixels with a high image gradient (the repeated edges are the result of pose error).
While using only the network prediction results in a good reconstruction, the best
reconstruction is obtained by fusing the network and photometric volumes together.

ric probability volume, the best outcome is achieved by fusing the two together.

In one of the sequences (fr1/floor), the best result is achieved by using only the

photometric probability volume. For this entire sequence, the camera is aimed at

a bare wooden floor, and, being well outside the training distribution, the network

produces particularly bad priors. In the remaining two sequences, the best result

is achieved using only the network probability volume. In one of these sequences

(fr1/rpy), the camera motion is purely rotational and the photoconsistency-based

subsystem is not able to produce meaningful depth estimates.

To show the benefit of the regularisation method, the performance of the full sys-

tem is compared against three other regularisation schemes: using no optimisation

at all (taking the depth values that maximise the discrete probability distribution),

optimising without any regularisation (this will allow for the smoothing of the depth

maps based on the continuous PDF, but provide no regularisation), and regularising
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5.3. Experimental Results

Sequence System L1-rel L2-rel RMSE

fr1/360
Network-Only 0.193 0.147 0.555
Photometric-Only 0.633 1.008 1.514
Fused 0.191 0.143 0.555

fr1/desk
Network-Only 0.295 0.201 0.447
Photometric-Only 0.541 0.503 0.859
Fused 0.278 0.177 0.427

fr1/desk2
Network-Only 0.237 0.139 0.423
Photometric-Only 0.522 0.494 0.890
Fused 0.236 0.138 0.424

fr1/floor
Network-Only 0.806 0.727 0.821
Photometric-Only 0.488 0.303 0.562
Fused 0.785 0.691 0.796

fr1/plant
Network-Only 0.426 0.502 0.816
Photometric-Only 0.726 1.422 1.983
Fused 0.416 0.485 0.833

fr1/room
Network-Only 0.231 0.155 0.493
Photometric-Only 0.605 0.762 1.187
Fused 0.226 0.147 0.488

fr1/rpy
Network-Only 0.242 0.199 0.577
Photometric-Only 0.514 0.577 1.047
Fused 0.255 0.212 0.614

fr1/teddy
Network-Only 0.294 0.271 0.773
Photometric-Only 0.748 1.569 2.108
Fused 0.297 0.277 0.792

fr1/xyz
Network-Only 0.241 0.162 0.432
Photometric-Only 0.517 0.403 0.764
Fused 0.225 0.137 0.401

Table 5.1: Comparison of reconstruction errors on Freiburg 1 TUM RGB-D [Sturm
et al., 2012] sequences showing the relative performance of using only the network-
predicted probability volume, only the photometric probability volume, and the
fused probability volume.
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using the total variation. To make the comparison with total variation be as fair as

possible, the hyperparameters of the system were tuned for the best performance on

the test sequences (λ = 1.0 · 102 and a step size of 0.05). The results are presented

in Table 5.2. In eight of the nine cases the best performance is achieved when using

the surface normals and occlusion masks predicted by SharpNet.

Finally, to evaluate the method for warping probability volumes between key-

frames, the system is compared against a version without warping where each key-

frame is initialised only with the network output and does not receive any informa-

tion from other keyframes. The results are presented in Table 5.3. Using the warping

method improves the performance of the system in eight of the nine cases.

5.4 Conclusion

A method for fusing learned monocular depth priors into a standard dense map-

ping pipeline has been presented. By training a DNN to predict nonparametric

probability distributions, the network is allowed to express uncertainty and make

multi-hypothesis depth predictions.

Through a series of experiments, it was demonstrated that by fusing the discrete

probability volume predicted by the network with a probability volume computed

from the photometric data, a better performance is achieved than using either on

its own. Unfortunately, the gap in performance between a system that uses only

network predictions and a system that uses the fused volumes is not significant. This

is largely due to the probability density of the network predicted distributions being

significantly more clustered than the probability density of the distributions estim-

ated from photoconsistency. While the relative certainty of the network predictions

may be justified by the accuracy of the depth estimates it produces, it is likely that

this confidence is a result of the network overfitting during training. Developing

DNNs that are better able to predict appropriate confidence measures or finding a

better way to balance the fusion of the two modalities remains for future work.
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5.4. Conclusion

Sequence System L1-rel L2-rel RMSE

fr1/360

No Optimisation 0.210 0.184 0.608
Smoothing-Only 0.207 0.179 0.601
Total Variation 0.194 0.152 0.565
Normals + Occlusions 0.191 0.143 0.555

fr1/desk

No Optimisation 0.324 0.292 0.537
Smoothing-Only 0.323 0.289 0.533
Total Variation 0.296 0.226 0.470
Normals + Occlusions 0.278 0.177 0.427

fr1/desk2

No Optimisation 0.283 0.240 0.537
Smoothing-Only 0.280 0.235 0.532
Total Variation 0.254 0.181 0.470
Normals + Occlusions 0.236 0.138 0.424

fr1/floor

No Optimisation 0.806 0.772 0.861
Smoothing-Only 0.807 0.771 0.860
Total Variation 0.801 0.738 0.836
Normals + Occlusions 0.785 0.691 0.796

fr1/plant

No Optimisation 0.436 0.558 0.863
Smoothing-Only 0.435 0.555 0.857
Total Variation 0.425 0.520 0.830
Normals + Occlusions 0.416 0.485 0.833

fr1/room

No Optimisation 0.267 0.227 0.583
Smoothing-Only 0.265 0.223 0.577
Total Variation 0.243 0.179 0.522
Normals + Occlusions 0.226 0.147 0.488

fr1/rpy

No Optimisation 0.327 0.434 0.781
Smoothing-Only 0.320 0.390 0.755
Total Variation 0.265 0.231 0.621
Normals + Occlusions 0.255 0.212 0.614

fr1/teddy

No Optimisation 0.296 0.300 0.799
Smoothing-Only 0.295 0.296 0.792
Total Variation 0.290 0.276 0.771
Normals + Occlusions 0.297 0.277 0.792

fr1/xyz

No Optimisation 0.299 0.303 0.595
Smoothing-Only 0.296 0.298 0.590
Total Variation 0.255 0.212 0.493
Normals + Occlusions 0.225 0.137 0.401

Table 5.2: Comparison of reconstruction errors on Freiburg 1 TUM RGB-D [Sturm
et al., 2012] sequences showing the relative performance of different regularisation
schemes. No Optimisation: results from taking the depth value with the maximum
probability in the probability volume. Smoothing-Only: results from minimising the
smoothed negative log probability density function without including a regularisa-
tion term. Total Variation: results from using the total variation of the depth as a
regulariser. Normals + Occlusions: the pipeline as described in this chapter.
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Sequence System L1-rel L2-rel RMSE

fr1/360
No Keyframe Warping 0.202 0.157 0.575
Keyframe Warping 0.191 0.143 0.555

fr1/desk
No Keyframe Warping 0.316 0.236 0.474
Keyframe Warping 0.278 0.177 0.427

fr1/desk2
No Keyframe Warping 0.283 0.195 0.480
Keyframe Warping 0.236 0.138 0.424

fr1/floor
No Keyframe Warping 0.776 0.684 0.787
Keyframe Warping 0.785 0.691 0.796

fr1/plant
No Keyframe Warping 0.420 0.490 0.845
Keyframe Warping 0.416 0.485 0.833

fr1/room
No Keyframe Warping 0.256 0.189 0.528
Keyframe Warping 0.226 0.147 0.488

fr1/rpy
No Keyframe Warping 0.297 0.263 0.654
Keyframe Warping 0.255 0.212 0.614

fr1/teddy
No Keyframe Warping 0.302 0.286 0.791
Keyframe Warping 0.297 0.277 0.792

fr1/xyz
No Keyframe Warping 0.315 0.247 0.521
Keyframe Warping 0.225 0.137 0.401

Table 5.3: Comparison of reconstruction errors on Freiburg 1 TUM RGB-D [Sturm
et al., 2012] sequences showing the performance gain from using the method to warp
keyframe probability volumes.

While predicting nonparametric probability distributions for each pixel helps to

overcome some of the weaknesses of the method described in the previous chapter,

it comes at the cost of a much higher computational load. The system described

here does not have real-time performance, although it may be possible to achieve

that with significant engineering effort. Even so, the resources required to compute,

store and warp the probability volumes are much higher than the unimodal Gaussian

distributions used in Chapter 4. This suggests that there may be some trade off

between accuracy and speed for these types of systems. Depending on the intended

application of the system, one of these methods may be better suited than the other.
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Chapter 6

Conclusions and Future Work

A number of contributions have been presented in this thesis that aim to increase

the robustness of dense visual SLAM through the fusion of additional sensing mod-

alities. In particular, acceleration and rotation rate measurements from an IMU

were proposed to address convergence issues in dense tracking, and learned priors

on dense reconstructions from DNNs were proposed to help constrain the depth es-

timation problem. Using a sensor fusion approach enables keeping the probabilistic

formulation of standard pipelines, which is particularly important in mobile robotics

where the fusion of many sensors is common and often necessary.

In Chapter 3, a dense RGB-D SLAM system was presented where inertial meas-

urements were fused into the tracking step in a tightly-coupled fashion. Through

the joint optimisation of the camera pose, velocity, IMU biases and gravity direction

it was shown that such a system was capable of building a globally consistent, fully

dense 3D reconstruction of the environment while being more robust to fast motions

and periods of low texture and low geometric variation.

While some of the inertial information was passed to the mapping step in the

form of a constraint ensuring consistency with the observable gravity direction,

the complete set of cross-correlations with the inertial measurements could not be

taken into account due to the separation of tracking and mapping that exists in

dense SLAM. There has been some promising work using compact, optimisable
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representations through which a joint inference can be done [Bloesch et al., 2018,

Tang and Tan, 2019, Bloesch et al., 2019, Czarnowski et al., 2020], and it is an open

research question as to whether inertial fusion in these systems would result in the

levels of accuracy and robustness seen in sparse SLAM.

Chapter 4 proposed using learned parametric priors to help constrain the depth

estimation problem. A real-time system was presented that fused the output of a

semi-dense multi-view stereo algorithm with the depth and depth gradient predic-

tions of a DNN using a standard probabilistic framework. The DNN predicted its

own aleatoric uncertainties for the outputs using a Gaussian likelihood loss function

during training. While the uncertainty predictions matched intuition (the highest

uncertainty occurred at depth discontinuities where there are large or rapidly chan-

ging gradients), it was difficult to train and it was not clear how the magnitude of

the values should be interpreted. The uncertainty predictions were also forced to

conform with a parametric and unimodal distribution which may be ill-suited for

dense reconstruction where there is often a need for a multi-hypothesis prediction.

Also, the system only estimated multi-view geometric constraints for pixels with a

high image gradient as these are the points where a good estimation is most likely.

Unfortunately, these points typically happened to be where there were high depth

gradients and the network had learned to predict high uncertainties. This meant

that in practice, very little information was passed between the semi-dense points

and points on the interior of objects during the fusion step and the depth estimation

relied almost entirely on the network prediction.

Chapter 5 addressed some of these shortcomings by training a DNN to predict a

discrete, nonparametric probability distribution for the depth of each pixel from a

single image. By having a nonparametric formulation, the network was able to make

use of multi-hypothesis predictions. This predicted probability volume was then

fused with another probability volume based on the photometric consistency between

subsequent frames and the keyframe image. Unlike the previous chapter, the photo-

metric probability distributions were calculated for every pixel ensuring that some

photometric information was available at every pixel during the fusion step. Depth
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maps were extracted from the fused volume, using a regularisation method based

on network predicted surface normals and occlusion boundaries. While this system

did not quite achieve real-time performance, additional engineering effort could be

made to speed up the optimisation step by implementing a primal-dual algorithm

or Newton’s method. In any case, the computational requirements for this method

were much higher than the method described in Chapter 4, and a trade off between

accuracy and computation needs to be navigated.

Unfortunately, the gap in performance between using the fused predictions and

network-only predictions was not significant. This was mostly due to the photo-

metric probability distributions only having strong peaks on pixels with high image

gradients and the DNN being very confident in its own predictions. Since the test

data was close to the data on which the DNN was trained, the network may have

been justified in making such confident predictions. However, it is likely that this

level of confidence is related to an issue that was also noticed in Chapter 4: during

training, the network begins to overfit to the training data and learns to become

overconfident in its own predictions. The network has no way of knowing if the im-

ages seen at test time are close to those it observed in the training set and therefore

does nothing to temper its confidence. Developing DNNs that are able to predict ap-

propriate confidence measurements remains an ongoing research problem, although

there have been some promising recent results [Carvalho et al., 2020].

The bigger question to be asked is whether it is worth keeping the probabilistic

formulation at all given that other methods of combining deep learning and dense

reconstruction are capable of producing much more accurate results. The best results

currently seem to come from systems that take the outputs of classic, photometric-

based approaches and feed them into a DNN for regularisation. DeepTAM [Zhou

et al., 2018] is the state-of-the-art example of such a system; it passes a photometric

cost volume through a DNN to extract a depth map for a given keyframe. While the

depth maps it produces are very accurate in comparison to other methods, there is

no measure of uncertainty and it is far from being a real-time system. However, as

mentioned previously, a probabilistic formulation has been a mainstay of robotics
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research for decades and it seems unlikely that the correct course is to abandon this

formulation now. Most decisions that robots need to make require some measure

of uncertainty, especially for those that are safety critical. For this reason, it is

important to continue research in the direction of probabilistic fusion of learned

priors into standard systems even if the results of such systems are not yet capable

of obtaining such high levels of accuracy as DeepTAM and other similar approaches.

In general, there is no best way to build a dense SLAM system. The many

design decisions that go into constructing one will be heavily based on the goals

and requirements of the system and the expected application area. For example, if

real-time capability is important, it may not be possible to use systems like Deep-

TAM that need to run an expensive DNN pass for each update. Depending on the

computational budget, it may not be possible to run any DNN at all, and instead a

reconstruction system would need to rely on more basic priors, such as planes, for

regularisation. Similarly, different systems may have different needs regarding the

accuracy of the reconstructions and their ability to handle uncertainty. All of these

factors would have significant influence into how a dense reconstruction system is

put together.

In both Chapter 4 and Chapter 5, the depth was regularised based on network

predictions of the surface orientation (depth gradients in Chapter 4 and surface

normals in Chapter 5). It may be useful to explore other methods for regularisation

using network predictions, as the surface orientation estimates were often noisy,

especially around object boundaries. It may be better, for instance, to have networks

predict planar regions or other large geometric primitives as these may be more

robustly estimated.

Perhaps the more interesting research direction, however, would be to use DNNs

to enable the building of SLAM systems that operate at much more abstract levels of

scene understanding and interaction. Most likely, these higher levels of understand-

ing would involve the inclusion of semantic information in the map representation.

While semantic labels have been used to augment existing dense reconstructions,
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it seems likely that developing truly joint geometric and semantic representations

will be an important part of incremental scene understanding. For example, if a

reconstruction system believed that a specific region represented a floor, tabletop or

wall, then it could apply a strong planar prior to the reconstruction. Similarly, more

complicated shape-based priors could be used for objects in the scene. It seems likely

that the next generation of SLAM systems will find a way to combine semantics and

geometry in an elegant and meaningful way, as not only will this result in better

reconstructions, but may also provide other things that are useful for robotic tasks

such as object segmentations and an understanding of traversable terrain.

Finally, throughout this thesis, many different SLAM algorithms were evaluated.

The evaluation metrics were chosen from standard ones used in the SLAM com-

munity, such as the absolute trajectory error or average per-pixel RMSE on depth

maps. It is not clear that these are the best metrics for evaluating SLAM algorithms,

however. Like the design of a SLAM system itself, the best metrics to use should

depend on the goals of that system. For example, with augmented reality applic-

ations, the reduction of local tracking error that causes the “swimming” of virtual

objects placed in a scene is of the utmost importance, whereas the drift accumulated

over an entire sequence might not. It may be the opposite case for ground vehicles

expected to navigate autonomously over long distances: the local tracking error may

not be nearly as important as ensuring that the global drift is small enough that

the vehicle can reach its final objective. Furthermore, SLAM systems are complic-

ated software engineering projects that consist of many design choices and tunable

parameters that may interact in complicated ways. This makes any real comparison

of SLAM systems difficult, if not impossible. The development of better evaluation

techniques and a movement towards publishing full results (i.e. frame-by-frame pose

estimates rather than final scores on a given metric) would greatly benefit the SLAM

community.
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