
Changepoint analysis using Gaussian process

regression: A Bayesian statistical model

for the identification of lithological strata in

geotechnical engineering

A thesis submitted by

Jens Bendel

— to the —

Department of Mathematics at Imperial College London

in partial fulfilment of the requirements for the

degrees of Master of Philosophy of Imperial College London and

Diploma of Imperial College London



Abstract

Around the Earth’s surface it is common for the ground to be made up of

layers of different soil stacked on top of each other. The field of geotechnical

engineering studies these lithological layers and their effect on engineering

work such as tunnelling or the construction of buildings and bridges. A

standard procedure to determine a segmentation of the ground into individ-

ual layers is to take a drilling core and examine slices sampled at various

depths. Typical methods to distinguish soil layers are based on microfossil

content or measurements of physical quantities such as the water content of

the soil. Common practice is the inspection of these properties by eye using

expert engineering judgement. Such approaches lack scientific rigour and

fail to address the uncertainty that is inherent to any such analysis.

This thesis discusses statistical methodology (changepoint analysis) in

order to propose a reproducible scientific approach for the identification of

soil layers based on measurements of water content. With a focus on uncer-

tainty quantification the proposed approach combines a Bayesian change-

point method with a Gaussian process regression model for each soil layer.

This Gaussian process changepoint method is applied to data from the con-

struction site of underground railway tunnels. The method correctly identi-

fies well-established layers while suggesting that a previously proposed sub-

division of a particular layer (A3) is not supported by the dataset. Further

results indicate that more research work is needed with regard to the collec-

tion of data as well as the development of statistical methodology. Overall,

this thesis shows that the proposed focus on mathematical rigour and un-

certainty quantification is very much needed.
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Chapter 1

Introduction

Around the Earth’s surface it is common for the ground to be made up of

layers of different soil stacked on top of each other. This composition of

layers can for example be the result of marine deposition over the course of

thousands or millions of years. The field of geotechnical engineering inves-

tigates these lithological layers and their effect on engineering work such as

tunnelling or the construction of buildings and bridges. A standard proce-

dure to partition the ground into individual layers is to take a drilling core

and examine slices sampled at various depths. Commonly, individual layers

of soil are not visible to the naked eye but a partition into layers can, for

instance, be based on microfossil content or physical quantities such as the

water content of the soil. Different approaches to partition the ground into

individual layers can generally lead to different results. This motivates a

reproducible scientific approach such as the statistical method presented in

this thesis.

In Section 1.1 we proceed by introducing the example of the London

Clay Foundation, which will be the main example throughout this thesis.

Based on this example we then continue the discussion of the segmentation

of soil into layers based on water content. The presentation of geotechnical

background is based on Hight et al. (2007).

Section 1.2 highlights the contributions of this thesis and gives a brief

overview of the entire dissertation.
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1.1 The London Clay Foundation and water con-

tent profiles

Because of the relevance for engineering works, the soil structure in a metropo-

lis such as London is particularly well-studied (Hight et al., 2003, 2007). The

formation of soil strata found there is known as the London Clay Founda-

tion (LCF) and stretches across the London basin, a larger region in the

south-east of England. The current geotechnical understanding of the LCF

goes back to the work of King (1981) who determined a partitioning into

five divisions (A to E) using biostratigraphy, that is, based on microfossils

present in the layers (Pantelidou and Simpson, 2007). These divisions are

still used as benchmark (Pantelidou and Simpson, 2007; Wang et al., 2014a)

even today.

In the LCF the soil consists of sands, clays and silts of different coarse-

ness, higher clay content generally meaning higher water content. More

recent research (Hight et al., 2003, 2007; Wang et al., 2014a) has shown

that an analysis of the water content can lead to a segmentation similar to

that established by King (1981). For such an analysis a sequence of water

content measurements at various depths is taken. The resulting dataset is

referred to as a water content profile. Water content profiles of the LCF

have been found to be well described by a piecewise linear model (Wang

et al., 2014a). Some of the transition points from one linear segment to the

next coincide with the boundary layers between different geological strata

identified by King (1981), while within each soil layer the water content is

well described by a linear model.

A simple but important motivation to base the segmentation on water

content measurements is the comparably low cost of this method: Measuring

the water content is easier and cheaper than a microscopic analysis that

needs to be carried out by an expert. Also the analysis of the measurements

is easier and cheaper once an analysis procedure has been established.

Further power of basing a segmentation on water content lies in geotech-

nical engineering applications. In the construction of Terminal 5 at London

Heathrow Airport (Hight et al., 2007), the information is needed to under-

stand the stand-up time of temporary soil slopes before failures such as land

slides occur. In other contexts the information is used to understand the

effects of tunnelling on the environment, for example in the construction of
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the Jubilee line of the London Underground network (Standing and Bur-

land, 2006). For these geotechnical engineering applications the effects of

a property like water content are likely of higher relevance than those of

microfossil content. In this context Hight et al. (2007) express particular in-

terest in potential identification of previously unidentified sub-layers. They

use the example of an observed land slide in which one soil sub-layer per-

sisted – “presumably because of its larger sand content” visible in the water

content profile.

We conclude that segmenting soil based on water content is a highly

relevant field of research for various applications in geotechnical engineering.

Section 1.2 presents the contributions of this thesis to the field.

1.2 Contributions and structure of this thesis

Section 1.1 highlighted the potential of investigating soil strata based on

their water content. First attempts of such analyses were based on engi-

neering judgement. Personal communication with Dr. Standing1 suggests

that this usually means an analysis by eye, sometimes taking previous knowl-

edge into account; in particular the benchmark by King (1981). Wang et al.

(2014a) propose a mathematically rigorous approach

• to address the subjectivity that comes with the analysis based on the

judgement of an engineer,

• to formally include uncertainty such as measurement error that goes

into this judgement,

• and to hence establish a scientific method to perform the analysis.

This thesis presents such an approach. The presented method differs from

that of Wang et al. (2014a) as it quantifies uncertainty using a state-of-

the-art Bayesian approach. The presented analysis is transparent and re-

producible. The results show that, in fact, there is a significant amount of

ambiguity about possible segmentations and that the standard presented in

the literature is far from definite. The results from the proposed Bayesian

method partially coincide with those of King (1981) but generally suggest

1The project presented in this thesis is a collaboration with Dr. Jamie Standing, who
is a geotechnical engineer in the Department of Civil and Environmental Engineering at
Imperial College London.
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a different segmentation. Some boundary layers suggested by King are not

identified while the Bayesian method identifies further (sub)layers not sug-

gested by King. These results motivate further research work to investigate

the possible new layers. The presented method is readily applicable to other

datasets to identify segments that show statistically coherent patterns. For

the piecewise linear model of the water content data coherent means that

within one segment the data is scattered homogeneously around a line. The

transition points from one coherent segment of data to the next are not

known to us in advance. We refer to those as changepoints and they are in

fact the centre of interest in our analysis as they indicate the transition from

one soil layer to the next according to our model. The pertinent statistical

methodology, changepoint analysis, is reviewed in Section 3.

The rest of this thesis is laid out in the following way. Section 2 sets

the framework for concepts and notation used in the rest of this thesis.

Sections 3 and 4 review the statistical literature and the building blocks

that will be used to construct the statistical model which, in Section 5, is

applied to a water content profile.
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Chapter 2

Statistical framework

The purpose of this section is to set the statistical framework for this the-

sis. We introduce a simple linear regression model and give a generally

phrased introduction to Bayesian statistics. We then demonstrate the ideas

by discussing how to turn the linear regression model into a Bayesian linear

regression model. This facilitates the introduction of advanced statistical

methodology in Sections 3 and 4.

2.1 Notation

Consider a dataset of n measurements y1, y2, . . . , yn that are associated with

inputs x1, x2, . . . , xn. Throughout this thesis a core sample of soil will serve

as example: The measurement yj denotes the water content of the soil mea-

sured at a depth of xj . While spatial variables such as depth or distance

might be the most common applications in the geotechnical sciences we may

also think of yj to be a stock price or a temperature at a certain point in

time xj .

2.2 Regression analysis

A common goal of a statistical analysis is to investigate the relationship be-

tween the measurements and the corresponding inputs. Regression analysis

assumes that there exists a function f(·) such that the measurement yj is
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related to its input xj via

yj = f(xj) + ηj . (2.1)

Deviation from the value f(xj) is accounted for by adding ηj , a zero-mean

random variable that models measurement noise. Throughout most of this

thesis we make the common assumption that η1, η2, . . . , ηn are independent

and follow a normal distribution with mean zero and noise variance σ2.1

A simple but powerful choice for f(·) is that of a line. A linear regression

model assumes

f(xj) = β0 + β1xj (2.2)

for all j and the goal of a linear regression analysis is to infer parameter

values β0, β1 that provide the best fit of the model to the data. Of course

one might find that the assumption of a linear relationship cannot be justified

and the linear model should then be rejected.

Let θ = (β0, β1, σ
2) denote the vector of all parameters. It will be useful

to state models in terms of the likelihood p(y|θ) instead of the representation

via random variables in equation (2.1). The likelihood is the probability

density function (PDF) of the measurement given all parameters. For a

single measurement y with input x and the example of the linear regression

model with normally distributed noise this means

p(y|θ) = N(y;β0 + β1x, σ
2) =

1√
2πσ2

exp

(
− [y − (β0 + β1x)]2

2σ2

)
.

We use N(µ, σ2) to denote a normal distribution with mean µ and variance

σ2, and N(y;µ, σ2) to denote its PDF evaluated at y. The joint likelihood of

all independent measurements y1, y2, . . . , yn is given by the product of the

individual likelihoods,

p(y1, y2, . . . , yn|θ) =

n∏
j=1

p(yj |θ) =

n∏
j=1

N(yj ;β0 + β1xj , σ
2).

1Examples for models with non-Gaussian noise are briefly discussed in Section 4.6.
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2.3 Bayesian statistical inference

In this thesis we are interested in methods that use a dataset of observa-

tions D to infer about (the structure of) the mechanism that generated this

dataset. For the main contents of this thesis it will be useful to have outlined

some concepts and terminology of Bayesian statistics.

2.3.1 Parametric Bayesian statistics

We start from a parametric statistical modelM phrased in terms of a prob-

ability density function (PDF), p(D|θ), where θ denotes the unknown vector

of parameters that determine the distribution. To turn this statistical model

into a Bayesian statistical model we consider θ as a random variable and

define the prior distribution of the parameter. Let p(θ) denote the PDF

of the prior distribution. We will refer to both, the prior distribution and

its PDF p(θ), as the prior. This terminology originates from the idea that

p(θ) describes the distribution of the parameter prior to taking the data into

account. Once the data is observed Bayes’ formula links the Bayesian model

(likelihood and prior) to the posterior distribution of θ given the data D:

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (2.3)

If the posterior is in the same family of probability distributions as the

prior then the Bayesian model is referred to as a conjugate model. The

denominator p(D) plays a crucial role in Bayesian statistics. It is referred

to as the marginal likelihood because it is obtained from the likelihood by

marginalising over the prior distribution of the parameter θ,

p(D) =

∫
p(D|θ)p(θ) dθ. (2.4)

It is common for the prior distribution to depend on a vector of parameters

itself. Denoting this vector by ψ we then write the prior distribution as

p(θ|ψ) and refer to ψ as hyperparameter in order to highlight the different

levels of hierarchy between ψ and the parameter θ. Bayes’ formula can

be used to summarise the model and clarify the hierarchy of the random
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quantities involved:

p(θ|D, ψ) =
p(D|θ)p(θ|ψ)

p(D|ψ)

with p(D|ψ) =
∫
p(D|θ)p(θ|ψ) dθ. If ψ is unknown, a fully Bayesian treat-

ment requires the specification of a prior on ψ, p(ψ), which is then referred

to as hyperprior. With

p(D) =

∫
p(D|ψ)p(ψ) dψ (2.5)

Bayes’ formula yields

p(θ, ψ|D) =
p(D|θ, ψ)p(θ, ψ)

p(D)

=
p(D|θ)p(θ|ψ)p(ψ)

p(D)
.

The first equality is simply equation (2.3) with parameters (θ, ψ) replaced by

θ. The second equality emphasises the hierarchical structure of the model; in

particular that the distribution of the data does not depend on ψ if θ is given:

p(D|θ, ψ) = p(D|θ). Of course, the procedure of hyperparametrisation can

be continued, leading to hyperhyperparameters and hyperhyperpriors. But

no details about such “three-stage” (Carlin et al., 1992) (or higher) levels of

hierarchy will be needed in this thesis.

Bayesian analysis requires the evaluation of integrals, in particular the

marginal likelihood in (2.4) or (2.5). For conjugate models these integrals

are of closed form. In practice this is rarely the case and computational

approximation methods are needed.

A simpler approximation that is commonly used at the level of hyper-

parameters is known as type II maximum likelihood (ML-II). Instead of

computing its posterior distribution, ψ is estimated from the data by max-

imising the marginal likelihood,

ψ∗ := arg max
ψ

p(D|ψ).
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2.3.2 Model comparison

The Bayesian framework can be applied in situations where we wish to

compare different statistical models M1, . . . ,MK . Let p(Mj) denote the

probabilities describing our prior belief about the individual models. The

posterior probability of model Mj is given by Bayes’ formula

p(Mj |D) =
p(D|Mj)p(Mj)

p(D)

where p(D|Mj) is the probability of the data under the assumption of model

Mj and p(D) =
∑K

j=1 p(D|Mj)p(Mj). Two competing modelsMj andMk

can be compared based on the Bayes factor

p(D|Mj)

p(D|Mk)
=
p(Mj |D)

p(Mk|D)

p(Mk)

p(Mj)
,

which does not depend on the choice of the prior. The Bayes factor is

identical to the ratio of the posterior probabilities in the case of equal prior

probabilities.

Section 2.3.1 considers the Bayesian treatment of the parameters for one

model and thus the dependence on the model is not included in the notation.

Here we rewrite equation (2.5) including the model

p(D|Mj) =

∫
p(D|Mj , ψ)p(ψ|Mj) dψ. (2.6)

We can rewrite equation (2.4) similarly and hence refer to p(D|Mj) as the

marginal likelihood.

2.4 Example: Bayesian linear regression

For a Bayesian analysis of the linear regression model in equations (2.1)

and (2.2) we assign a prior distribution p(β|ψ) with hyperparameter ψ to

the parameter β = (β0, β1)T . If we assume that ψ and the noise variance

σ2 are known and we are only interested to infer about the intercept β0 and

the slope β1 of the regression line, then the model is summarised by

p(β|y1:n, ψ, σ
2) =

p(y1:n|β, σ2)p(β|ψ)

p(y1:n|ψ, σ2)
.
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Denoting ψ = (σ2
0, σ

2
1) and defining a normal prior distribution

p(β0, β1|σ2
0, σ

2
1) = N(β0; 0, σ2

0)N(β1; 0, σ2
1)

leads to a normal posterior distribution and thus a conjugate model. The

integral that defines the marginal likelihood p(y1:n|σ2
0, σ

2
1, σ

2) is of closed

form but rather than performing the calculations we note that using an

independent Gaussian prior means that observation yj is given as the linear

combination of three Gaussian random variables,

yj = β0 + β1xj + ηj ,

and hence the observations y1, . . . , yn are also normally distributed with

mean zero2 and covariances

Cov(yj , yk) = Cov(β0 + β1xj + ηj , β0 + β1xk + ηk)

= Cov(β0, β0) + xjxkCov(β1, β1) + Cov(ηj , ηk)

= σ2
0 + xjxkσ

2
1 + δjkσ

2,

where

δjk :=

0 iff j 6= k,

1 iff j = k,
(2.7)

denotes the Kronecker delta. The predictive distribution p(y∗|y1:n, σ
2
0, σ

2
1, σ

2)

for unobserved y∗ with input x∗ is also normal. Bayesian linear regression

with normally distributed noise is well studied. We refer to Gelman et al.

(2013) for further details and more advanced models.

If the noise variance σ2 is unknown it can be included in the Bayesian

inference process by assigning a prior distribution and studying its posterior.

By choosing an inverse gamma prior distribution σ2 ∼ IG(a, d) and a condi-

tional (on σ2) normal prior for the weights, βj |σ2 ∼ N(0, σ2
jσ

2), j = 0, 1, we

obtain a conjugate model. We refer to Section A.1 for details and only give a

brief overview here. The hyperparameters in this model are σ2
0, σ

2
1, a, d and

the joint prior distribution p(β, σ2|σ2
0, σ

2
1, a, d) is a normal-inverse-gamma

2 In the more general case of a non-centred prior, p(β0, β1|σ2
0 , σ

2
1 , µ0, µ1) =

N(β0;µ0, σ
2
0)N(β1;µ1, σ

2
1), the mean function is E(y) = E(β0 + β1x + η) = E(β0) +

xE(β1) = µ0 + µ1x and the covariance function remains unchanged.
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distribution (see Section A.1). The hierarchy of parameters is summarised

by Bayes’ formula for the posterior distribution

p(β, σ2|y1:n, σ
2
0, σ

2
1, a, d) =

p(y1:n|β, σ2)p(β, σ2|σ2
0, σ

2
1, a, d)

p(y1:n|σ2
0, σ

2
1, a, d)

(2.8)

=
p(y1:n|β, σ2)p(β|σ2

0, σ
2
1, σ

2)p(σ2|a, d)

p(y1:n|σ2
0, σ

2
1, a, d)

. (2.9)

This posterior as well as the marginal likelihood and the predictive distri-

bution are of closed form (see Section A.1) but not normal.

With the notation and concepts introduced in Section 2 we now proceed

to give introductions to more advanced statistical methodology: Change-

point analysis is introduced in Section 3 and Gaussian process regression in

Section 4.

21



Chapter 3

Changepoint methods

Section 1 identified the need for a rigorous mathematical approach to iden-

tify individual soil layers in a core sample based on a water content profile.

The proposed approach is based on the assumption of a piecewise linear

structure of the water content data. A transition from one linear segment of

measurements to the next indicates the transition from one soil layer to the

next. To infer the number of soil layers and the locations of the boundaries

between them is the central objective of this thesis. An appropriate statis-

tical framework for such an inference procedure is the field of changepoint

analysis. It is introduced in this section.

Section 3.1 introduces changepoints as a general statistical concept to

describe time-series-like datasets that show abrupt changes of statistical

behaviour. We then review methods to analyse such data in situations where

the number or locations of changepoints are unknown. In order to introduce

some basic ideas we consider the case of models with at most one changepoint

in Section 3.2. These ideas can then be extended to the situation where

there are multiple changepoints and where the number is unknown. The

discussion of such multiple-changepoint methods is split between frequentist

and Bayesian approaches, Sections 3.3 and 3.4. Section 3.6 concludes with

a discussion of the introduced methods in the face of the application to the

water content profile data in Section 5.
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3.1 Introduction

We are now going to give some introductory examples for the statistical

concept of a changepoint as well as a formal definition. The general idea of

changepoints is visualised in Figure 3.1a. All datasets displayed in Figure 3.1

100 175 300 500

(a)

100 175 300 500

(b)

100 175 300 500

(c)

Figure 3.1: Examples for data generated from changepoint models. All
datasets consist of 500 outputs with changepoints occurring at inputs 100,
175 and 300. (a) Piecewise linear mean. (b) Constant mean and piecewise
constant variance. (c) AR(1) process with piecewise constant coefficients.
Figure in the style of Eckley et al. (2011, Figure 10.1).

show a common feature: the statistical properties of the data change at

x = 100, 175, and 300. Consider the example of a linear regression model

in Figure 3.1a. Assuming homogeneity throughout the entire dataset and

trying to fit one line to all 500 data points will not yield a useful model.

Splitting the dataset at x = 100, 175, and 300 and fitting one line to each

of the four segments of data will provide a much better model for the data

at hand.

Our model will consider the data as samples from an underlying proba-

bility distribution. Whenever there is an abrupt change in this distribution

from a data point (xτ , yτ ) to the subsequent data point (xτ+1, yτ+1) we re-

fer to the index τ or the input xτ as a changepoint location or changepoint.

There can also be more than one changepoint in a dataset. A collection of

m changepoints τ1, τ2, . . . , τm divides the dataset into m+ 1 segments and a

given set of changepoints τ1, τ2, . . . , τm is referred to as a segmentation of the

dataset. Note that the jth segment contains all measurements with indices

τj−1 + 1, τj−1 + 2, . . . , τj , that is, the measurements yτj−1+1, yτj−1+2, . . . , yτj .

For indices s and t with s ≤ t we use the notation ys:t := (ys, ys+1, . . . , yt)

such that the jth segment can be written as sj := yτj−1+1:τj and the en-
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tire dataset is given by y1:n. Similarly we denote τ1:m := (τ1, τ2, . . . , τm).

Discussing the statistical model and the computer algorithm will be more

convenient in terms of indices τj and tj . Discussing results however can often

be more clear in terms of inputs xτj and xtj . Due to to the one-to-one rela-

tion between indices and inputs we will use either notation when appropriate

and refer to both as changepoint or changepoint location interchangeably.

Our focus is on datasets with an unknown number m of changepoints at

unknown locations τ1, τ2, . . . , τm and the main objective is to infer about m

as well as τ1, τ2, . . . , τm. We refer to m, τ1, τ2, . . . , τm as changepoint param-

eters.

3.1.1 Motivational examples

Example 1. A simple example for a changepoint model is to assume a Gaus-

sian distribution with constant variance and piecewise constant mean (Barry

and Hartigan, 1993, Section 3): yk ∼ N(θj , σ
2) for all yk in the jth segment.

If the variance σ2 is unknown it can be included as a model parameter

(θ1, . . . , θm+1, σ
2).

Example 2. Another example studied by Eckley et al. (2011) assumes

that all observations have mean zero and that the variance is constant within

each segment:

yk ∼ N(0, θj) (3.1)

for all yk in the jth segment. The data shown in Figure 3.1b was generated

from this model based on the following parameters: m = 3, τ1 = 100,

τ2 = 175, τ3 = 300, θ1 = 1, θ2 = 5, θ3 = 1, θ4 = 10.

Example 3. The data shown in Figure 3.1a was generated using the same

changepoint parameters but a very different model for the data in each of

the four segments. Each segment is described by a linear regression model

y = ax+ b+ η

with normally distributed noise η. Hence, each segment parameter θj con-

sists of the slope, y-intercept and noise variance for the jth segment θj =
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(aj , bj , σ
2
j ). The likelihood for an individual segment is given by

p(yτj−1+1:τj |θj) =

τj∏
k=τj−1+1

N(yk; ajxk + bj , σ
2
j )

with

N(yk; ajxk + bj , σ
2
j ) =

1√
2πσ2

j

exp

(
− [yk − (ajxk + bj)]

2

2σ2
j

)
.

3.1.2 A changepoint model

We now combine the concept of changepoints with a changepoint-free re-

gression model. The changepoint parameters m, τ1:m are used to split the

dataset into m+ 1 segments such that each segment is homogeneous in the

sense that there is no further changepoint in any of the segments. Each seg-

ment is then described by a regression model with its own segment parameter

θj . In terms of the likelihood our changepoint model is given as

p(y1:n|m, τ1:m, θ1:m+1) =

m+1∏
j=1

p(yτj−1+1:τj |θj), (3.2)

where p(yτj−1+1:τj |θj) is the segment likelihood that describes the regression

model for the jth segment. For notational convenience we denote τ0 := 0

and τm+1 := n.

Conditional on the changepoint parameters the segments are modelled

independently, in other words, the data in one segment provides no informa-

tion about the data in any other segment. This is the reason for the product

form of the likelihood on the right-hand side of equation (3.2). Similarly,

the segment parameter of each segment contains all information about the

segment. Thus, the segment likelihoods p(yτj−1+1:τj |θj) only depend on their

respective parameter θj instead of all segment parameters θ1:m+1.

3.1.3 A changepoint method

Given a dataset of n observations y1:n we are interested in the number

of changepoints m ∈ {0, 1, . . . , n − 1} present in the data as well as their

locations τ1, . . . , τm. In this section we give an overview of state-of-the-art

25



methods that allow us to infer these parameters. A changepoint method is a

combination of a statistical model with an algorithm that allows us to infer

the changepoint parameters. The methods we discuss can be different on

three levels:

(i) The statistical model used by a method: One of the most simple

models for a change in mean (cf. Section 3.1.1) is given by yk = µk + ηk,

where {ηk}nk=1 is an i.i.d. sequence of zero-mean random variables (often

assumed to be Gaussian) and µk = θj for all τj−1 + 1 ≤ k < τj . Instead of

this piecewise constant mean we may consider a slightly more general model

of a piecewise linear mean yk = (akxk + bk) + ηk, where xk is the input

corresponding to measurement yk, and the parameter (ak, bk) is constant

for all measurements within the same segment. For both of these models

all measurements are independent given the parameters. In order to in-

troduce dependence between measurements an autoregressive model can be

used. We also discuss methods that introduce a latent sequence {hk}nk=1.

Depending on the model a latent variable hk either takes values 0 or 1 to

indicate the presence of a changepoint, or indicates which segment the corre-

sponding measurement yk belongs to by taking one of the values 1, . . . ,m+1.

The methods then infer the value of the latent variables in order to infer the

number of changepoints and their locations. Recall that, generally, any def-

inition of a segment-wise likelihood p(yτj−1+1:τj |θj) can be used to formulate

a model.

(ii) Frequentist or Bayesian approach: frequentist approaches estimate

the number of changepoints and their locations for example by maximising a

penalised version of the likelihood. For most applications this maximisation

requires the use of optimisation algorithms. The Bayesian approach defines

a statistical model in terms of a likelihood as well as a prior distribution

on the parameters of the model. For the likelihood p(y1:n|m, τ1:m, θ1:m+1) in

equation (3.2) this means that a prior p(m, τ1:m, θ1:m+1) needs to be speci-

fied. Similar to the frequentist approach algorithms are needed, but now to

compute the posterior distribution

p(m, τ1:m, θ1:m+1|y1:n) =
p(m, τ1:m, θ1:m+1)p(y1:n|m, τ1:m, θ1:m+1)

p(y1:n)
. (3.3)

(iii) The algorithm used by a method: As we just noted the analysis

of most statistical models requires us to use computer algorithms in order
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to draw statistical inference. For the methods we discuss the main differ-

ence is often the algorithm that is used to either estimate the changepoint

parameters or to compute the posterior distribution.

Once the model (i) is specified the objective is to find out which pa-

rameter values explain the data best. If we know that there is exactly one

changepoint and we are interested in its location the problem is much sim-

pler than the general case. Similarly we might only be interested whether

one changepoint has occurred or no change is present. We start by looking

at these simpler cases in Section 3.2 as they provide a good introduction to

common methodology. In Sections 3.3 and 3.4 we introduce existing meth-

ods for the general problem of identifying the number of changepoints in a

dataset as well as their locations.

3.2 At-most-one-changepoint methods

This section is used to introduce some basic ideas of changepoint methods.

A lot of the content presented can be extended or modified to the multiple-

changepoint problem that we introduced in Section 3.1 and return to in

Sections 3.3 and 3.4. For this section only we assume that there is either

one changepoint τ ∈ {1, . . . , n − 1} or no changepoint in the data. Hence

the models we take into consideration are given by the likelihoods p(y1:n|θ0)

or p(y1:τ−1|θ1)× p(yτ :n|θ2).

3.2.1 At most one change (AMOC)

If we are only interested whether there is a single changepoint in a dataset

or not we can consider the changepoint problem as a hypothesis testing

problem: Testing the null hypothesis “There is no changepoint.” against

the alternative hypothesis “There is exactly one changepoint.” In order

to apply a generalised likelihood-ratio test we compare the maximum like-

lihood value under the null hypothesis p
(
y1:n|θ̂0

)
against the maximum

likelihood value under the alternative hypothesis. The latter is given by

maxτ∈{1,...,n} p
(
y1:τ−1|θ̂1

)
× p

(
yτ :n|θ̂2

)
, where the maximum likelihood es-

timate of the segment parameter θ̂ = (θ̂1, θ̂2) depends on the value of τ . The
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test statistic for the likelihood-ratio test is given by

D := −2 ln
p
(
y1:n|θ̂0

)
maxτ∈{1,...,n} p

(
y1:τ−1|θ̂1

)
× p

(
yτ :n|θ̂2

)
= 2

{
ln

[
max

τ∈{1,...,n}
p
(
y1:τ−1|θ̂1

)
× p

(
yτ :n|θ̂2

)]
− ln p

(
y1:n|θ̂0

)}
.

This test statistic is compared to a critical value c that needs to be deter-

mined. If D > c the null hypothesis is rejected (meaning that a changepoint

has been found) and

τ̂ := arg maxτ∈{1,...,n}p
(
y1:τ−1|θ̂1

)
× p

(
yτ :n|θ̂2

)
is used to estimate its location.

Likelihood ratio methods make the somewhat strong assumption of a

parametric form of the likelihood. They further require the evaluation of

the likelihood under the null and the alternative hypotheses. For many

distributions this has been done, cf. Chen and Gupta (2011); Eckley et al.

(2011). They also require the determination of a critical value for the derived

test statistic. Chen and Gupta (2011) provide asymptotic distributions for

some test statistics but for most distributions simulations are needed. In-

formation about the uncertainty regarding the presence of a changepoint

comes with the significance level of the constructed test and does not pro-

vide information about uncertainty regarding the changepoint location.

A popular non-parametric approach to design a statistical test for the

AMOC problem are cumulative sum (CUSUM) methods. In order to eval-

uate CUSUM test statistics only cumulative sums need to be computed.

Estimation of parameters and evaluation of likelihoods are not needed.

As an example consider the AMOC model for a change in mean (Sec-

tion 3.1.1, Example 1 for m ∈ {0, 1}). We define the cumulative sums

Sk :=
∑k

j=1 yj , k ∈ {1, . . . , n} and denote Vk := k
(

1
kSk −

1
nSn

)
. The non-

parametric test statistic

T := max
k∈{1,...,n}

1√
k
|Vk| ,

compares the cumulative statistic Sk/k to the baseline statistic Sn/n. The

definition of T becomes more perspicuous with the following observations
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(Khmaladze, 2007): Under the alternative hypothesis of a single changepoint

τ ∈ {1, . . . , n} the expected value of Vk is

EH1(Vk) =

k(θ1 − θ̄), for k ∈ {1, . . . , τ};

τ(θ1 − θ̄) + (k − τ)(θ2 − θ̄), for k ∈ {τ + 1, . . . , n},

where θ̄ := τ
nθ1+n−τ

n θ2. Hence, for θ1 > θ2 a plot of the points (k,EH1(Vk)) ∈
R2 yields the shape of an upside-down letter V with its peak at k = τ . For

θ1 < θ2 the shape is that of a V. Under the null hypothesis of no changepoint

the expected value of Vk is simply zero for all k: EH0(Vk) = 0, k ∈ {1, . . . , n}.
Hence, if the test statistic T deviates too much from zero the null hypothesis

is rejected. An estimate for the changepoint location is then given by

τ̂ := arg max
k∈{1,...,n}

1√
k
|Vk| .

The problem of choosing a critical value c for which to reject the null hypoth-

esis if T > c and the limited treatment of uncertainty in the changepoint

results persist. We refer to Khmaladze (2007) and Nam (2013), respectively,

for discussions. For CUSUM methods to test a change in other model param-

eters than the mean we refer to Lee et al. (2006). A software implementation

of CUSUM methods for changes in mean is available in the R package Killick

and Eckley (2014).

3.2.2 Penalised likelihood

Up to some extent the penalised likelihood approach is similar to the like-

lihood ratio test discussed in Section 3.2.1. Both approaches are based on

the idea of comparing likelihoods in order to decide between a model that

includes a changepoint and one that does not. The key difference is the in-

clusion of a penalty term that penalises models with (too) many parameters.

Similar to Section 3.2.1 the approach compares the penalised likelihood for

the model with no changepoint

−2 ln p(y1:n|θ̂0) + dim(θ0)n
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to the penalised likelihood for the model with exactly one changepoint

−2 ln p(y1:n|τ, θ̂1, θ̂2) + (dim(θ1) + dim(θ2) + 1)n.

Generally, we can write the penalised likelihood as

−2 max
λ

p(y1:n|λ) + dim(λ)φ(n),

where λ denotes the vector of all parameters and φ(n) the a penalty function

that only depends on the number of observations. We return to possible

choices for φ(n) in Section 3.3.1 where we discuss the penalised likelihood

for the multiple-changepoint problem.

3.2.3 Bayesian methods

In order to obtain a Bayesian statistical model we need to specify a prior

distribution for the parameters: for the number of changepoints m, the

changepoint location τ , and the segment parameters θ0, θ1, θ2. The goal of

the analysis is the posterior distribution of m and τ . For the at-most-one-

changepoint problem the prior distribution for m is given by the probability

of there being one changepoint P (m = 1) as this also determines the proba-

bility of no changepoint being present P (m = 0) = 1−P (m = 1). We denote

the prior distribution for the changepoint location by p(τ). An important

feature of the Bayesian approach is the treatment of the model parame-

ters θ. Instead of using a point estimate we can integrate over all possible

parameter values to obtain the posterior distribution given by

P (m = 0|y1:n) ∝ P (m = 0)p(y1:n|m = 0)

= P (m = 0)

∫
p(y1:n|m = 0, θ0)p(θ0) dθ0

and, using the notation θ = (θ1, θ2),

P (m = 1, τ |y1:n) ∝ P (m = 1)p(τ)p(y1:n|m = 1, τ)

= P (m = 1)p(τ)

∫
p(y1:n|m = 1, τ, θ)p(θ) dθ.

In this way any uncertainty regarding the model parameters is incorporated

into our model.
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In order to decide whether there is a change or not we can consider

the ratio P (m=1|y1:n)
P (m=0|y1:n) while P (m = 1, τ |y1:n) provides information about the

location with the advantages of a Bayesian approach: The full posterior

distribution comprises situations where more than one changepoint location

yield a good model fit and provides information regarding the uncertainty

about the possible locations. General difficulties of Bayesian modelling are

the choice of prior as well as computing the posterior distribution. The

choice of the prior might have a significant influence on the final result of the

analysis and computer simulations might be needed in order to approximate

the posterior distribution. We discuss these problems and their solutions in

more detail in Section 3.4.

3.3 Multiple-changepoint methods: frequentist ap-

proaches

Section 3.2 introduced several changepoint methods (Section 3.1.3) for sce-

narios in which there is either no or exactly one changepoint in a dataset. In

this section we consider frequentist methods for the general case of m ≥ 0

changepoints.

Most of the methods we discuss work in the following fashion. A statis-

tical model is formulated, often in terms of a likelihood. A function of the

data and the model parameters is introduced as a measure of fit, that is, in

order to quantify how well the model fits the data for different parameter

values. Due to the tight links to mathematical optimisation it is common

to minimise a cost function (the negative measure of fit) rather than max-

imising the measure of fit. The most common form for this cost function

(Killick and Eckley, 2014) is

φ1(λ)φ2(n) +

m+1∑
j=1

C(yτj−1+1:τj ), (3.4)

where λ denotes the vector of all parameters. Choosing C(·) := −2 ln p(·|λ)

and φ1(λ) := dim(λ), for instance, leads to the penalised likelihood approach

discussed in Sections 3.2.2 and 3.3.1. The sum of segment-wise cost terms

is due to the product form on the right-hand side of equation (3.2).

The next step is to minimise the cost function, or more precisely, to deter-
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mine the model and the parameter values that provide the best explanation

for the observations at hand with respect to the cost function. With the

objective of minimising a cost function we are now in a classic optimisation

scenario. Hence, various methods, problems and solutions apply:

• In most applications the maximisation of the measure of fit can only

be performed approximately using computer algorithms.

• Overfitting is a common problem and the penalty term φ1(λ)φ2(n)

that penalises more complex models can be used to address this.

The rest of this section introduces existing frequentist approaches that are

usually given as a combination of an optimisation criterion and an algo-

rithm. Section 3.3.1 discusses existing theory for cost functions given as the

sum of a likelihood and a penalty term. Binary segmentation (Section 3.3.2),

segment neighbourhood search (Section 3.3.3) and optimal partitioning (Sec-

tion 3.3.4) are algorithms able to minimise cost functions given by (3.4), in

particular those discussed in Section 3.3.1.

Another cost function of the form (3.4) is given by the minimum de-

scription length (MDL). It has been combined with segment neighbourhood

search but was originally introduced in combination with a piecewise au-

toregressive model and a genetic algorithm. An overview is given in Sec-

tion 3.3.5.

With an increasing size of datasets the computational complexity of al-

gorithms becomes more and more relevant, an issue that has received an

increasing amount of attention more recently. One way to reduce the com-

plexity of an algorithms is pruning. We discuss pruned versions of segment

neighbourhood search and optimal partitioning in Section 3.3.6.

3.3.1 Penalised likelihood (multivariate) as cost function

The penalised likelihood approach is a parametric frequentist approach which,

for the AMOC problem was introduced in Section 3.2.2. The same idea can

be extended to multiple-changepoint problems by taking a model selection

view: For each possible number of changepoints m we find those locations

of the m changepoints (as well as the corresponding segment parameters)

that maximise the likelihood. We obtain one model for each m. In order

to avoid over-fitting we add a penalty function to the likelihood in order to
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penalise model complexity such as a high number of parameters. The sum

of likelihood and penalty term of each model can then be compared in or-

der to determine the best model. For the at-most-one-changepoint problem

this approach is similar to the likelihood ratio approach in the sense that

both base their decision on a comparison of likelihoods. Common choices

for the penalising function are the Bayesian information criterion (BIC),

also known as Schwarz information criterion (SIC, Schwarz (1978)), and

Akaike’s information criterion (AIC, Akaike (1974)). The latter tends to

overestimate the number of changepoints while the BIC has been shown to

asymptotically estimate the correct value of m (Yao, 1988). Uncertainty

quantification regarding the number of changepoints can thus be based on

these asymptotic results but does not provide uncertainty results regarding

their location. Comparisons of the penalised likelihood approach for dif-

ferent penalty functions and with other changepoint methods can be found

in Eckley et al. (2011). An overview of theoretical results under different

model assumptions is given by Fryzlewicz et al. (2014).

3.3.2 Binary segmentation

Binary segmentation is an algorithm that utilises any at-most-one-changepoint

method to solve a multiple-changepoint problem. The at-most-one-changepoint

method is applied to the entire dataset. If a changepoint is found the time

series is split into two parts: the part before the changepoint and the part

after. Then the at-most-one-changepoint method is applied to each of these

two parts. This procedure continues until no more changepoint is found.

This procedure means that binary segmentation is a greedy algorithm: At

each iteration the locally optimal choice for the location of one changepoint

is made. As a result not all possible changepoint configurations are explored

and hence a globally optimal segmentation of the data might not be found

(Killick et al., 2012). At the same time this makes the algorithm compu-

tationally fast. It is also versatile, as any at-most-one-changepoint method

can be used. It is one of the most applied methods and accuracy and consis-

tency results exist. A detailed discussion of binary segmentation is given by

Fryzlewicz et al. (2014) who introduces a randomised version as wild binary

segmentation. This modification aims to handle short distances between

consecutive changepoints while requiring less application specific tuning of

the algorithm.
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3.3.3 Segment neighbourhood (also known as global segmen-

tation)

Segment neighbourhood search works inductively: Based on results calcu-

lated to obtain the optimal arrangement of m− 1 changepoints one change-

point is added to find the optimal arrangement of m changepoints amongst

all possible arrangements. Optimality is determined with respect to a mea-

sure of fit, that is, by measuring how well each possible segmentation fits

the data. The most common measure of fit is the segment-wise negative log-

likelihood. Despite the use of a dynamic programming approach the method

is computationally expensive, for example compared to binary segmentation.

However, it is guaranteed to find an optimal solution as it considers all possi-

ble changepoint configurations and shows good results in simulations (Braun

et al., 2000; Eckley et al., 2011; Nam, 2013).

For a detailed discussion of approximate and extended versions of seg-

ment neighbourhood search we refer to Maidstone et al. (2016) and Maid-

stone (2016) who consider a combination of segment neighbourhood search

with the pruning method of the pruned exact linear time algorithm (Sec-

tion 3.3.6).

3.3.4 Optimal partitioning

Jackson et al. (2005) proposed a dynamic programming algorithm, referred

to as optimal partitioning, that is guaranteed to find the globally optimal

segmentation in O(n2) time, where n denotes the number of data points.

Amongst the strengths of this algorithm is the automatic determination of

the optimal number of changepoints. The incremental and dynamic struc-

ture of the algorithm make it particularly suitable for online analysis. It re-

quires an additive structure of the objective function with respect to which

optimality is assessed, in other words, the cost associated to a segmentation

{y1:τ1 , . . . , yτm+1:n} must be given as the sum of the cost associated to the

individual segments yτj−1+1:τj .

The pruned exact linear time algorithm (Section 3.3.6) is based on opti-

mal partitioning but includes a pruning step in order to reduce its compu-

tational time complexity.
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3.3.5 Auto-PARM using MDL

Davis et al. (2006) introduce the automatic piecewise autoregressive model

(Auto-PARM), an approach that splits data into segments, each modelled

by a (different) autoregressive (AR) process. While there are different AR

parameters for each segment, dependence between segments is modelled

by permitting AR linear dependence on previous observations also across

changepoints. The approach is parametric and frequentist and assumes i.i.d.

Gaussian noise. Besides the number of changepoints and their location the

model includes several AR parameters. Davis et al. (2006) propose the use

of a genetic algorithm that is guaranteed to find the optimal segmentation

with respect to the minimum description length (MDL) criterion. The idea

of MDL is to split the data into two parts: a first part explained by the

model, and secondly the residual, that is, the data minus the part explained

by model. It is then calculated how much space is needed to store the data

using this decomposition. The model that uses the least space is considered

best.

Results regarding uncertainty are available for the changepoint location,

but only if the number of changepoints is assumed to be known.

Eckley et al. (2011) introduce a combination of MDL with segment neigh-

bourhood search instead of the genetic algorithm of Davis et al. (2006).

One of the main benefits but also a potential problem is the assumption

of an AR structure. The approach stands out with its capability to capture

changes in autocorrelation (as well as in mean and in variance) and to model

dependence between observations, even across segments. At the same time

its performance might be affected if the AR assumption is not satisfied.

3.3.6 Pruned versions of optimal partitioning and segment

neighbourhood search: PELT, pDPA, FPOP, SNIP

When the size n of a dataset increases the computational complexity of many

algorithms eventually makes them unfeasible. While this is no problem with

the relatively small dataset we are analysing in Section 5 it has motivated

several recent attempts to speed up existing methods.

The pruned exact linear time (PELT) method proposed by Killick et al.

(2012) is based on optimal partitioning (Section 3.3.4) but eliminates po-

tential changepoint positions from computations at every iteration if they
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cannot lead to an optimal segmentation. This pruning can lead to a signifi-

cant reduction of computational complexity: If all assumptions are satisfied

a computational complexity of O(n) can be achieved. If no pruning can be

done the complexity O(n2) of optimal partitioning is maintained. A key

assumption that needs to be satisfied is an even spread of the changepoints

in the data: it assumes that the number of changepoints grows linearly with

the number of data points in the dataset. Because the decision rule whether

to eliminate a potential changepoint position or not is based on an inequality

it is referred to as inequality based pruning.

The pruned dynamic programming algorithm (pDPA) proposed by Rigaill

(2010) and thus also referred to as Rigaill’s method is based on segment

neighbourhood search (Section 3.3.3). Compared to the PELT method

it also uses a different pruning criterion referred to as functional prun-

ing (Rigaill, 2015). Discussions of PELT and pDPA are given by Killick

et al. (2012) and Rigaill (2015).

Maidstone et al. (2016) take PELT and pDPA and exchange the com-

bination of underlying algorithm and pruning method. This results in two

new methods: the combination of functional pruning with optimal parti-

tioning (FPOP) and the combination of segment neighbourhood search with

inequality based pruning (SNIP).

3.4 Multiple-changepoint methods: Bayesian ap-

proaches

For a Bayesian statistical model we need to specify a prior distribution

p(m, τ1:m, θ1:m+1)

for the parameters of the likelihood (3.2). Bayes formula (3.3) combines

prior information, the model and the data into the posterior distribution

p(m, τ1:m, θ1:m+1|y1:n) =
p(m, τ1:m, θ1:m+1)p(y1:n|m, τ1:m, θ1:m+1)

p(y1:n)
, (3.5)

with marginal likelihood

p(y1:n) =

∫
p(m, τ1:m, θ1:m+1)p(y1:n|m, τ1:m, θ1:m+1) d(m, τ1:m, θ1:m+1).
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A point estimator similar to a maximum likelihood estimator is the maxi-

mum a posteriori (MAP) estimator

arg max
m,τ1:m,θ1:m+1

p(m, τ1:m, θ1:m+1|y1:n).

Other Bayesian point estimators are the posterior mean or median. However,

the Bayesian approach generally provides the whole posterior distribution

instead of only a point estimate. While this bulk of information is harder to

summarise, the extra information is very valuable when we want to quantify

the uncertainty attached to any inference we draw from a statistical analysis.

This trait of the Bayesian approach also arises if the value of the segment

parameters θ1:m+1 is unknown and not of interest. Integrating both sides of

equation (3.5) over all possible values of θ1:m+1 we obtain

p(m, τ1:m|y1:n) =
p(m, τ1:m)p(y1:n|m, τ1:m)

p(y1:n)
(3.6)

and inference drawn from this posterior takes all uncertainty about the seg-

ment parameters into account.

For most models it is not possible to compute the posterior distribution

analytically, a standard problem in Bayesian statistics. The following sec-

tions hence discuss methods to approximate the posterior. One difficulty in

approximating the posterior PDF (3.6) is the dimension of the parameter

(m, τ1:m) as the dimension of τ1:m changes with the value of m. Reversible-

jump Markov chain Monte Carlo methods address this problem and are

introduced in Section 3.4.1.

Other Bayesian models avoid this problem by not inferring about the

changepoint parameters m and τ1:m directly. Instead a sequence of un-

observable (also known as hidden or latent) variables is introduced which

contains all information about m and τ1:m. These models are combined

with sampling algorithms that approximate the posterior distribution of the

latent variables. We discuss these models in more detail in Sections 3.4.2,

3.4.3 and 3.4.4.

3.4.1 Reversible-jump Markov chain Monte Carlo (RJ MCMC)

Markov chain Monte Carlo (MCMC) methods (Robert and Casella, 2004)

provide a popular approach to approximate the posterior distribution in a

37



Bayesian statistical model. Standard MCMC methods such as the Metropolis-

Hastings (MH) algorithm (Hastings, 1970) require the dimension of the pa-

rameter space to be fixed. In the model formulation given by (3.5) the

dimension of the parameter (m, τ1:m, θ1:m+1) changes with the value of m.

Reversible-jump Markov chain Monte Carlo (RJ MCMC) is an adaptation of

the MH algorithm (Green, 1995). The adaptation allows the Markov chain

of samples to jump between parameter spaces of different dimensions.

To illustrate this idea we outline a possible way of constructing a sampler

for the model described by (3.5). This outline is based on the sampler used in

Green (1995). We describe the proposal step that, based on the most recent

sample (m, τ1:m, θ1:m+1) out of the Markov chain of samples, generates the

next new sample in the chain. The first step is to randomly decide which

marginal parameter will be changed. Either only a segment parameter θk, or

only a location parameter τj , or the number of changepoints m. In the first

two cases the second step is to, again randomly, decide which dimension

k (or j ) is updated and then draw a random proposed value for θk (or

τj). Because the dimension of the parameter does not change the sampling

is similar to that in an MH sampler. In the case where we update m the

second step is to decide whether to add or remove a changepoint. If a

changepoint is added we next randomly draw its location τnew. The new

changepoint will lie between two existing changepoints, say in the interval

(τj + 1, τj+1). Then the segment parameter θj+1 will be replaced by two

randomly drawn segment parameters for the intervals (τj + 1, τnew) and

(τnew + 1, τj+1). Similarly, if a changepoint is removed, two segments are

joined to one and require the random draw of a segment parameter for the

new segment.

Each of the above steps requires the specification of a probability distri-

bution. These distributions must satisfy regularity conditions for the theo-

retical guarantee that the generated samples can be used to asymptotically

approximate the posterior distribution, see Green (1995) for details. Like

most MCMC algorithms RJ MCMC further requires application-specific

tuning of the proposal distribution and monitoring of the convergence of

the Markov chain so that successfully applying RJ MCMC is a generally

difficult task. Green (1995) applied RJ MCMC to the multiple-changepoint

problem. A second analysis (Green, 2003) of the same dataset showed that

in the analysis of Green (1995) the Markov chain of samples had not explored
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the entire parameter space.

3.4.2 Product-partition models

For Gaussian observations with constant variance and a change in piece-

wise constant mean, yk ∼ N(µk, σ
2), Barry and Hartigan (1992, 1993) pro-

pose a formulation of the changepoint model as a product-partition model

(Hartigan, 1990). Let S1, S2, . . . , Sb denote a partition of a set S0 with n

elements. A probability distribution over all possible partitions is called

a product-partition distribution (PPD) if the probability of any given par-

tition S1, S2, . . . , Sb can be written as a product K
∏b
j=1 c(Sj), where K

is a normalising constant. In the changepoint context we only consider

S0 = {1, . . . , n} and require that any partition not defining a segmentation

(as defined in Section 3.1) is assigned probability zero. That is, c(Sj) = 0

if Sj is not a consecutive sequence of indices s, s + 1, . . . , t − 1, t resulting

in well-defined ys:t. In the notation of changepoint locations τ1:m we have

b = m+ 1 and Sj = {τj−1, τj−1 + 1, . . . , τj}. A PPD combined with the as-

sumption of independent segments conditional on the parameters is referred

to as product-partition model (PPM). In the changepoint context this latter

assumption is given by equation (3.2). PPMs offer the advantage that com-

putations can be performed segment-wise. Barry and Hartigan (1992, 1993)

propose an exact implementation of their changepoint method at a cost of

O(n3) as well as an approximation at a cost of O(n). The method has been

implemented in the R package bcp (Erdman et al., 2007) and applied and

compared in Erdman and Emerson (2008).

For the implementation – instead of modelling the number of change-

points and their locations directly – Barry and Hartigan (1992, Section 4.1)

introduce a latent process h1:n, where hk ∈ {0, 1} indicates whether there is

a changepoint at yk+1 or not. This formulation of changepoint locations is

equivalent to that using indices τ1:m but has the advantage that the distribu-

tion of h1:n is of dimension n. Hence, instead of RJ MCMC (Section 3.4.1),

a standard Gibbs sampler (Geman and Geman, 1984; Casella and George,

1992) can be used to sample from the posterior distribution of h1:n.

The approach by Fearnhead (2006) (discussed in Section 3.4.4) can be

seen as a product-partition model. In Section 3.4.3 we discuss hidden

Markov models which also introduce a latent sequence h1:n. For PPMs

the latent variables are independent but conditioning on the latent vari-
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ables does not imply independence of the observations. For hidden Markov

models the latent variables are not independent, but the observations are

independent given the latent sequence.

3.4.3 Hidden Markov models (HMMs)

Hidden Markov models (HMMs) offer a versatile framework for time series

modelling which has also been applied to the changepoint problem. The

following definition of an HMM is based on Cappé et al. (2006) and suited

for the application to the changepoint problem. For a general introduction

and overview we refer to Cappé et al. (2006). A random variable is called

hidden (or latent) if its value is unobservable. In order to give a definition

of an HMM we, together with the observations {yk}k∈N, define a stochastic

process {hk}k∈N. The stochastic process {(hk, yk)}k∈N is an HMM iff

• {hk}k∈N are hidden,

• {hk}k∈N form a Markov chain,

• given hk the distribution of yk is fully determined and

• given {hk}k∈T , for some index set T ⊂ N, the corresponding observa-

tions {yk}k∈T are independent.

In order to fully define the Markov chain {hk}k∈N we need to specify the

transition probabilities for the Markov chain to transition from a state zi to

state zj , that is

P (hk+1 = zj |hk = zi) (3.7)

for k ≥ 2 and zi, zj ∈ R. The initial distribution of h1 is specified without

conditioning. The distribution of the observations {yk}k∈N is specified in

terms of the emission probability (distribution) p(yk|hk). The random vari-

able hk can be seen as a parameter that determines the distribution of the

observation yk.

In order to apply the HMM to the changepoint problem Chib (1998) con-

siders the Markov chain to take values in the finite state space {1, 2, . . . ,m+

1} and uses hk to indicate what segment the observation yk is in. In terms

of the Markov chain this means that if hk takes a value i then hk+1 can only

stay in the same state (take the same value) or move to the next state (take
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the value i+1). HMMs that restrict the way in which the latent process can

move are referred to as constrained HMMs. For the model of Chib (1998)

the initial distribution of h1 is trivial with P (h1 = 1) = 1 and the transi-

tion probabilities (3.7) are zero unless zj = zi or zj = zi + 1. The model

also requires that all segments are visited, so that P (hn = m + 1) = 1.

The formulation of Chib (1998) allows a Bayesian treatment via a recur-

sive MCMC algorithm developed for HMMs (Chib, 1996). This algorithm

samples from the joint posterior p(h1:n, θ1:m+1|y1:n,m) of the latent state

sequence h1:n and the model parameters θ1:m+1 given the observations y1:n

and the number of changepoints m. Thus, the number of changepoints m

needs to be estimated first and inference about the changepoint locations is

drawn conditional on this estimate. Chib (1998) suggests model compari-

son based on Bayes factors in order to estimate m, that is, considering the

ratio of the marginal likelihood p(y1:n|m) for two different values of m at a

time. While the marginal likelihoods can rarely be computed analytically

the employed MCMC method provides an approximation as a by-product.

An approximation of the posterior p(m|y1:n) can also be obtained.

The method of Chib (1998) is a sophisticated changepoint method with

only few shortcomings. The MCMC method still needs to be customised

and tuned and uncertainty quantification for the number and the locations

of changepoints is performed separately.

A more recent approach based on a constrained HMM (Luong et al.,

2013) expresses uncertainty through confidence intervals for the individ-

ual changepoint locations. However, the approach assumes the number of

changepoints to be known in advance and requires an a priori estimate of

the changepoint locations. This prior information heavily influences the fi-

nal result and thus the approach can be seen as a method to analyse the

uncertainty for a specific arrangement of changepoints at hand.

An unconstrained HMM studied by Aston et al. (2012) leads to poste-

rior distributions that can be computed exactly, given an estimate of the

model parameter θ1:m+1. More precisely, given the data y1:n and an estimate

θ̂1:m+1 of the model parameter, the following two posterior distributions can

be computed without introducing error caused by approximation or sam-

pling: the distribution of the number of changepoints p(m|θ̂1:m+1, y1:n), and

P (t ∈ τ1:m|θ̂1:m+1, y1:n) := P (∃j : τj = t|θ̂1:m+1, y1:n), the probability of
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a changepoint at time t. A key benefit of this exact approach is that no

sampling of the latent state variables ht is needed. Thus, the correspond-

ing approximation error and computational cost are avoided. Aston et al.

(2012, Figure 3b) show that large numbers of samples are needed to obtain

good approximations to the exact result if a sampling scheme is used. A

key drawback of the approach by Aston et al. (2012) is that it is conditional

on (an estimate of) the model parameter θ1:m+1. In practice θ1:m+1 thus

needs to be estimated and any uncertainty with regards to this estimate is

not accounted for.

Nam et al. (2012) and Nam (2013) extend the approach of Aston et al.

(2012) to fix this shortcoming. Using a sequential Monte Carlo (SMC)

method they draw samples {θ(i)
1:m+1}Ni=1 from the model parameter poste-

rior p(θ1:m+1|y1:n) and approximate the posterior changepoint distribution:

P (t ∈ τ1:m|y1:n) ≈
∑N

i=1wiP (t ∈ τ1:m|θ(i)
1:m+1, y1:n). With the results by As-

ton et al. (2012) all P (t ∈ τ1:m|θ(i)
1:m+1, y1:n) can be computed exactly without

simulating the latent variables ht. Sampling error is only introduced when

sampling θ
(i)
1:m+1. As a by-product of the method these samples can be used

to approximate the model parameter posterior p(θ1:m+1|y1:n). Having (ap-

proximately) integrated with respect to the model parameter posterior the

uncertainty regarding the model parameter θ has been fully accounted for.

Further extensions considered include model selection as well as uncertainty

quantification for changes in the autocovariance structure of the observations

y1:n.

Nam et al. (2012) assume the number of latent states of the HMM to

be known in advance. Nam et al. (2014) propose a parallel SMC sampler to

estimate this number. Their method approximates the posterior distribution

of the number of underlying states and causes no additional computational

cost. Nam et al. (2015) modify the method of Nam et al. (2012) to quantify

uncertainty for changes in autocorrelation. Nam et al. (2012) note that

their assumption of a time-homogeneous HMM implies a geometric prior

distribution for the segment length which might be inappropriate for many

applications. In order to specify different prior distributions Nam et al.

(2012) suggest Hidden semi-Markov models and Variable Transition HMMs.
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3.4.4 Exact sampling (from the posterior) via recursions

Fearnhead (2006) introduces a method to sample from the joint posterior dis-

tribution of the number of changepoints and their locations directly, that is,

without approximation errors as for example those associated with MCMC

methods. The corresponding algorithm also does not require application-

specific tuning and the results obtained are not conditional on the model

parameters. For these desirable properties of the method several (often re-

strictive) model assumptions must be made. The key to the exact sampling

is an independence assumption: Conditional on the number of changepoints

and their locations the segment parameters are modelled to be independent

under the posterior distribution. This independence enables the use of a

recursive procedure similar to the forward-backward algorithm for HMMs

(Baum et al., 1970; Fearnhead, 2008; Scott, 2002). The method further

assumes that partial (and thus segment-wise) marginal likelihoods can be

computed, either due to a conjugate model or numerically, with the latter

leading to an increase in computational cost. The approach is fully Bayesian

and two ways of specifying a prior can be used. The first way is to take a

point-process view and assign a prior to the segment lengths, indirectly spec-

ifying a prior for the number and the locations of the changepoints. This is a

special case of product-partition models (Section 3.4.2). The second option,

based on Green (1995), is to specify a prior for the number of changepoints

and then a conditional prior for the locations given the number.

Modifications of the approach have been considered: Fearnhead (2006,

Section 4.2) shows that the method can be used within an MCMC method

even if the independence assumption does not hold. Integrals which can be

calculated explicitly under the independence assumption then need to be

approximated at additional computational cost. Fearnhead and Liu (2007)

present an online version of the method. They further provide empirical

results showing that computationally cheaper approximation to the method

can be feasible; small probabilities that otherwise would have to be saved

and processed by the algorithm are pruned.

Following the neat exploration in Eckley et al. (2011) we now present

the method in more detail. We start with the changepoint model phrased

in terms of its likelihood (equation 3.2). For a Bayesian model we need

to specify a prior distribution on all parameters. For each of the segment

parameters θj we assume the same prior p(θ|ψ), where ψ denotes a vector
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in which we collect all parameters used to define the prior distribution. For

any observations ys:t from one segment with parameter θ we assume that

the segment marginal likelihood

Q(s, t;ψ) := p(ys:t|ψ) =

∫
p(ys:t|θ)p(θ|ψ) dθ (3.8)

can be computed analytically. For the number of changepoints and their

locations we define the prior indirectly by specifying a prior distribution for

the length τk+1−τk of a segment yτj−1+1:τj . We define g to be the probability

mass function of this prior distribution, g(t;ψ) := P (τk+1 − τk = t|ψ), and

S to be its survival function, S(t;ψ) := P (τk+1 − τk ≥ t|ψ). We obtain

p(m, τ1:m|ψ) = S(τm+1 − τm;ψ)
m∏
k=1

g(τk − τk−1;ψ), (3.9)

where ψ, besides the parameters of the prior for θ, now also includes all

parameters of the prior distribution for m and τ1:m. We obtain the posterior

probability

p(m, τ1:m|y1:n, ψ) ∝ p(y1:n|m, τ1:m, ψ)p(m, τ1:m|ψ) (3.10)

= p(sm+1|ψ)S(τm+1 − τm;ψ)

m∏
k=1

p(sk|ψ)g(τk − τk−1;ψ).

(3.11)

In order to generate independent samples from this posterior distribution

we introduce a latent process C1:n: We define the random variable Ct as the

most recent changepoint before t. Hence, Ct takes values in {0, 1, . . . , t−1},
where Ct = 0 = τ0 indicates that no changepoint has occurred in the data

before t. Given Ct−1 = i the next variable Ct can only take two values:

Ct = i, which means that there is no changepoint at t − 1, or Ct = t − 1

iff there is a changepoint at t − 1. The sampling is performed using an

algorithm similar to the forward-backward algorithm for hidden Markov

models.1 In the forward part of the algorithm we compute the probabilities

1The forward-computations presented here are identical to those in the original forward-
backward algorithm. The original forward-backward algorithm then backward-computes
probabilities that would correspond to P (Ct = i|y1:n). An introduction to hidden Markov
models that includes a discussion of the forward-backward algorithm can be found in
Jurafsky and Martin (2009).
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γt(i) := P (Ct = i|y1:t) for t ∈ {1, . . . , n} and i ∈ {0, . . . , t− 1}, based on the

iterative formulas

γt(i) ∝ γt−1(i)P (yt|Ct = i, y1:t−1, ψ)P (Ct = i|Ct−1 = i, ψ)

= γt−1(i)
Q(i+ 1, t;ψ)

Q(i+ 1, t− 1;ψ)

S(t− i;ψ)

S(t− 1− i;ψ)

for i ∈ {0, . . . , t− 2} and

γt(t− 1) ∝ Q(t, t;ψ)
t−2∑
j=0

γt−1(j)
g(t− 1− j;ψ)

S(t− 1− j;ψ)

derived in Section A.3. In the backward part we generate samples from the

posterior distribution (3.10) as follows. We start by drawing the last change-

point τm from the distribution P (Cn|y1:n). Then, iteratively backward, we

draw τk, given τk+1 = t, from P (Ct|y1:t, Ct+1 = t) given by

P (Ct = i|Ct+1 = t, y1:n, ψ) ∝ P (Ct = i|y1:n, ψ)P (Ct+1 = t|Ct = i, yt+1:n, ψ)

= P (Ct = i|y1:t, ψ)P (Ct+1 = t|Ct = i, ψ)

= γt(i)
g(t− i;ψ)

S(t− i;ψ)
. (3.12)

The backward iteration is complete when t = 0 is drawn as a changepoint.

One run of the backward iteration yields one sample from the posterior dis-

tribution of (m, τ1:m). The forward part of computing (and storing) proba-

bilities only needs to be performed once. With these probabilities stored it

is cheap to run the backward iteration to generate samples.

Software implementation Pseudo code describing the changepoint al-

gorithm of Eckley et al. (2011) as it was implemented for this thesis is given

as Algorithm 1. The weight function W used in the algorithm is given by

W (ys:t, ψ) =

Q(ys:t, ψ) if length(ys:t) = 1;

Q(ys:t,ψ)
Q(ys:t−1,ψ) if length(ys:t) > 1.

(3.16)

In the pseudo code in Eckley et al. (2011) the index t runs from 1 to n

while i runs from 0 to t − 1. This is in consistency with the mathematical
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Algorithm 1 Algorithm for simulating from the posterior distribution of
changepoint positions. Adapted from Eckley et al. (2011).

Input: A set of data of the form (y1, . . . , yn).
The weight function W (·;ψ) defined in equation (3.16).
Survival function for segment length S(·; p).
Values for the hyperparameters ψ, p.
The number N of samples that we wish to generate.

Forwards computations:
Initialise: Set γ0(0) := 1.
Iterate: For t ∈ {1, . . . , n− 1}:

1. For i ∈ {0, . . . , t− 1}:

γt(i) := γt−1(i)
S(t− i+ 1, p)

S(t− i, p)
W (yi:t, ψ). (3.13)

2. s := 0.

3. For j ∈ {0, . . . , t− 1}:

s := s+ γt−1(j)
S(t− j, p)− S(t− j + 1, p)

S(t− j, p)
. (3.14)

4. γt(t) := W (yt, ψ)× s.

5. Normalise: Define A :=
∑t

i=0 γt(i) and for all i ∈ {0, . . . , t} set γt(i) :=
γt(i)/A.

Backwards simulations:
Initialise: For all j ∈ {0, . . . , N − 1} and all t ∈ {0, . . . , n− 1} set ctj := 0.
Iterate: For j ∈ {0, . . . , N − 1}:

1. Draw a random element t from the set of indices 0, . . . , n − 1 using γn−1 as
vector of probability masses.

2. If t > 0 set ct−1
j := 1.

3. While t > 0:

Draw a random element u from the indices {0, . . . , t−1} with probability
masses

P (u = i) ∝ γt−1(i)
S(t− i, p)− S(t− i+ 1, p)

S(t− i, p)
. (3.15)

Set t := u.

If t > 0: set ct−1
j := 1.

Output: N vectors cj = (c0j , . . . , c
n−1
j ), j ∈ {0, . . . , N−1}, where each cj represents

a sample of changepoints.
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derivation of the formulas in Eckley et al. (2011) as well as in this thesis.

I implemented the algorithm in Python, which uses index origin zero. I

therefore chose to provide the pseudo code in Algorithm 1 with index origin

0 for all indices. As a result particular care needs to be taken with the

computation of the probability masses in equations (3.13), (3.14), (3.15):

Letting γt(i) denote the quantities and indices in Eckley et al. (2011) and

β·· the quantities and indices used Algorithm 1 we have

γt(i) = P (Ct = i|y1:t)

= P (C̃t−1 = i|ỹ0:t−1)

=: βt−1
i =: βsi ,

with s := t−1 ∈ {0, . . . , n−1}. In equation (3.15) we use βr−1
i = γr(i), where

r is the changepoint location drawn in the previous step. Equation (3.15)

results from equation (3.12). Therefore we must multiply βr−1
i = γr(i) =

P (Cr = i|y1:t) by a factor g(r−i)
S(r−i) = S(r−i)−S(r−(i−1))

S(r−i) and not shift the index

to be g((r−1)−i)
S((r−1)−i) .

3.5 Further reading

Before we conclude with a discussion (Section 3.6) of the presented change-

point methods we point to further work that is beyond the scope of this

thesis.

3.5.1 Existing simulation studies

Killick et al. (2012) compare PELT, binary segmentation and optimal par-

titioning. Fryzlewicz et al. (2014) proposes wild binary segmentation and

compares his method with other methods that are available implemented in

R packages, including binary segmentation and PELT. Eckley et al. (2011)

compare the Bayesian approach of Fearnhead (2006) with several frequen-

tist methods such as segment neighbourhood in combination with MDL and

penalised likelihood as cost functions, and binary segmentation based on the

likelihood-ratio test and a test based on Bayes factors.

47



3.5.2 Changepoint methods considered in this thesis versus

other existing methods

The examples from Section 3.1.1 and the statistical model described in Sec-

tion 3.1.2 are based on several assumptions that suit the problem posed

in Section 1. The idea of a changepoint problem is more general: Given

an ordered sequence of observations y1, . . . , yn we wish to identify indices

τ1, . . . , τm such that the observations within each segment yτj−1+1:τj were

drawn from the same probability distribution.

Different cases of this very general problem occur in various fields of

research. As a result various methods exist but are often specific to a par-

ticular case of the changepoint problem. We now point out the scope of the

methods considered in this thesis and provide references for information on

content that is not covered here.

While our dataset is ordered by the depth at which the measurements

were made any ordered set of data points (time series) might be searched for

changepoints. We only consider one-dimensional indices and one-dimensional

measurements. Changepoint problems for multivariate measurements in an

offline scenario have been considered by Matteson and James (2014).

We mostly discuss parametric statistical models. A starting point for

literature on non-parametric changepoint methods are the article by Pet-

titt (1979) as well as the recent book by Brodsky and Darkhovsky (2013).

Schmidt and Morup (2013) is a recent example for a non-parametric Bayesian

approach.

Most parametric models we discuss assume one family of probability

distributions with different parameter values for each segment. Generally

different distributions for each segment and non-parametric models can be

employed.

Changepoint problems can be split into online and offline problems.

In the online scenario the data is obtained and analysed sequentially. It

is often desirable to detect a changepoint as soon as possible but a single

new observation might not be sufficient yet in order to detect a change. In

the offline scenario the dataset is analysed retrospectively, in other words,

once all observations have been made. Of course, any online method can

be applied in an offline scenario. The dataset described in Section 5.1 is

available offline.
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The assumption of independence between measurements from different

segments facilitates computations and is essential for most of the methods

discussed in this thesis. While this assumption is reasonable for the present

application in Section 5 there are applications for which it does not hold.

We refer to Nam (2013, Section 6.1) and Fryzlewicz et al. (2014) for further

information.

3.6 Discussion

We have reviewed state-of-the-art methods to infer the number and loca-

tions of changepoints in a dataset. The discussion was split into frequentist

methods that provide an estimate of the optimal number and arrangement

of changepoints with respect to a cost function, and Bayesian methods that

approximate the posterior distribution of a Bayesian model. Amongst the

frequentist methods binary segmentation is a simple and fast algorithm but

not guaranteed to find the optimal segmentation of a dataset. Its greedy pro-

cedure does not check all possible arrangements of changepoints. Segment

neighbourhood search checks all possible segmentations which is of course

associated with a high computational complexity. If the corresponding as-

sumptions are satisfied the PELT method provides the exactness of segment

neighbourhood at the computational complexity of binary segmentation.

With the dataset at hand (Section 5.1) we are not concerned about com-

putational complexity. The main focus is to quantify the uncertainty that

comes with the result of a changepoint method. For the frequentist meth-

ods uncertainty quantification can be at most provided using asymptotic

arguments. The Bayesian approach addresses the issue of uncertainty quan-

tification naturally and is therefore employed for the analysis in Section 5.
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Chapter 4

Gaussian process regression

Section 3 introduced changepoint methods as an appropriate way to model

and identify soil layers based on a water content profile of a core sample.

Changepoint models require the specification of a regression model for each

changepoint-free segment of data. In particular does the Bayesian method of

Eckley et al. (2011), introduced in Section 3.4.4 and recommended as a result

of the discussion in Section 3, require a Bayesian model for which we can

compute the marginal likelihood. In this thesis we introduce the combination

of the changepoint method of Eckley et al. (2011) with a Gaussian process

model. The potential of this formulation lies in the graphical intuition of

Gaussian processes and the use of the kernel trick (Section 4.4.2). The latter

means that the piecewise linear model used in Section 5 is immediately

applicable for datasets with non-linear segment structures.

This section introduces Gaussian processes as a state-of-the-art non-

parametric Bayesian approach to regression analysis. This motivates the use

of a Gaussian process model in the context of Bayesian changepoint analy-

sis. Section 4.1 gives a probabilistic definition of a Gaussian process. On the

basis of examples we provide some insight into how different choices of the

covariance structure affect the data generated or described by a Gaussian

process model. In Sections 4.2 and 4.3 we present how Gaussian processes

can be used to perform Bayesian regression analysis. Section 4.4 gives an

alternative derivation of Gaussian process models as Bayesian linear regres-

sion models. We use this view to make further conceptual and practical

remarks. Sections 4.5 and 4.6 discuss the application of Gaussian process

models to big datasets or datasets for which an assumption of normally
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distributed noise is unsuitable. These sections give an account of topical

research in the field of Gaussian process regression and indicate that the

approach presented in this thesis can be extended to datasets of bigger size

and models with non-Gaussian likelihood. Section 4.7 summarises the po-

tential of a Gaussian process approach to regression. We conclude that it is

a potent choice for the regression part of a changepoint analysis, an example

of which is given in Section 5.

4.1 Gaussian processes

A stochastic process is a collection of random variables with a continuous

index set. Let {f(x)}x∈X denote a stochastic process, so that each f(x)

is a random variable and X a continuous subset of R. A stochastic pro-

cess is fully described by consistently specifying the joint distribution of

f(x1), f(x2), . . . , f(xn) for any collection of n ∈ N indices x1, . . . , xn.

A special case of stochastic processes are Gaussian processes, which can

be seen as an extension of the multivariate Gaussian distribution. A stochas-

tic process is called a Gaussian process if any collection f(x1), f(x2), . . . , f(xn)

follows a multivariate Gaussian distribution. Similarly to a Gaussian dis-

tribution a Gaussian process is fully defined by its mean function m(·) and

covariance function k(·, ·):

m(x) := E[f(x)],

k(x, x′) := E[(f(x)−m(x))(f(x′)−m(x′))],

with x, x′ ∈ X .

Let (Ω,A, P ) be the probability space on which we define the Gaussian

process. Most of the time it is a notational overload to express the depen-

dence of f(x) on ω ∈ Ω and hence omitted. But for clarity in the definition

let us briefly consider the random variable f·(x) : Ω → R, ω 7→ fω(x).

Each realisation {fω(x)}x∈X of a Gaussian process defines a function via

fω : X → R, x 7→ fω(x). In this sense it is often said that a Gaussian pro-

cess specifies a probability distribution over a class of functions. The mean

function and, in particular, the covariance function of the Gaussian process

determine what class of functions is assigned high or low probability.

51



Figure 4.1: Four functions drawn from a Gaussian process with mean zero
and linear covariance function (4.1) with parameters set to σ2

0 = σ2
1 = 1.

4.1.1 Examples for covariance functions

A Gaussian process with mean and covariance function given by

m(x) := 0, k(x, x′;σ0, σ1) := σ2
0 + σ2

1xx
′ (4.1)

yields a probability distribution over linear functions of the form x 7→ w1x+

w0 with w0, w1 ∈ R. An example of samples randomly drawn from such

a Gaussian process is shown in Figure 4.1. It turns out that the Gaussian

process defined by (4.1) is equivalent to randomly drawing a y-intercept w0

and a slope w1 from independent Gaussian distributions with mean zero and

variances σ2
0 and σ2

1, respectively: wj ∼ N(0, σ2
j ), j ∈ {0, 1}.

This equivalence between Bayesian linear regression and the Gaussian

process model specified by (4.1) is discussed more generally by Williams

(1998) who also shows that the potential of Gaussian processes goes far be-

yond this simple linear example. Different choices for the covariance function

result in distributions over various different classes of functions that can be

used for (non-)linear Bayesian regression. Properties such as differentiabil-

ity, stationarity or periodicity can be imposed by the choice of the covariance

function. While the construction of a valid covariance function is generally

no easy task, a variety of examples and applications can be found in the

literature. We refer to Rasmussen and Williams (2006) for a comprehensive

treatment and only consider here the covariance functions that are most

commonly used in the literature.
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Figure 4.2: Three functions drawn from a Gaussian process with mean zero
and squared exponential covariance function (4.2) using parameter values
` ∈ {1, 2, 4}.

The standard example for a covariance function is the squared exponen-

tial (SE) covariance function

kSE(x, x′) = exp

(
−(x− x′)2

2`2

)
. (4.2)

Its prevalence is most likely due to having a simple form while still being

sufficiently versatile to yield satisfactory results in a wide range of applica-

tions.1 In the form stated in (4.2) the SE covariance function only has one

parameter `. For similar values of x and x′, that is, sufficiently small (x−x′)2,

the covariance is close to one. It decreases as (x−x′)2 gets larger. The char-

acteristic length-scale parameter ` determines the scale of this decrease as

visible in Figure 4.2: Consider nearby x1, x2; for larger values of ` we observe

higher (positive) correlation between the function values f(x1), f(x2). The

same observation can be made in all plots shown Figures 4.3 and 4.4.

Covariance functions that depend on the inputs x, x′ only through the

difference d := x − x′ are called stationary and often written as a function

of d, for example kSE(d) = exp
(
− d2

2`2

)
.

Realisations of a zero-mean Gaussian process with SE covariance func-

1 During the first chapters Rasmussen and Williams (2006) almost exclusively use the
SE covariance function as example before introducing various other choices in chapter 4.
Throughout their book the SE covariance function keeps being used as reference. Wilson
and Adams (2013, section 4.2) comment on strengths and weaknesses of the SE covariance
function and compare its performance in several applications.
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(a) ` = 1. (b) ` = 4.

Figure 4.3: Functions drawn from Gaussian processes with zero mean func-
tion, m(x) = 0 for all x, and squared exponential covariance (4.2) function.
(a) The characteristic length-scale was set to ` = 1 and four functions were
drawn. (b) The characteristic length-scale was set to ` = 4 and eight func-
tions were drawn.

tion are smooth (infinitely differentiable). It can be derived from the Matérn

family of covariance functions,

kMatern,ν(d) =
21−ν

Γ(ν)

(√
2νd

`

)ν
Kν

(√
2νd

`

)
,

as the smoothness parameter ν > 0 tends to infinity. Here Γ denotes the

Gamma function and Kν denotes the modified Bessel function of the second

kind. For values of ν that are of the form p+ 1
2 for some non-negative integer

p the Gamma and the Bessel functions take simpler forms. In particular,

we have (Abramowitz and Stegun, 1965):

kMatern,1/2(d) = exp

(
−d
`

)
;

kMatern,3/2(d) =

(
1 +

√
3d

`

)
exp

(
−
√

3d

`

)
;

kMatern,5/2(d) =

(
1 +

√
5d

`
+

5d2

3`2

)
exp

(
−
√

5d

`

)
,

(4.3)

where kMatern,1/2 is also known as the exponential covariance function.

The characteristic length-scale parameter ` > 0 plays the same role as it
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does for the squared exponential covariance function. The parameter ν > 0

controls the smoothness of the sample functions drawn from a Gaussian

process with a Matérn covariance function. For increasing ν the functions

become smoother, illustrated in Figure 4.4. For ν = 5/2 sample functions

already look similar to those of the squared exponential covariance function

in Figures 4.2 and 4.3. Rasmussen and Williams (2006) argue that in appli-

cations with noisy data it might be hard to decide which value ν ≥ 7
2 best

models the data, and that even the distinction from an SE covariance func-

tion might not be possible. Hence, the cases ν ∈
{

1
2 ,

3
2 ,

5
2

}
given in (4.3) are

most commonly implemented in practice, for example in the GPML Matlab

software package by Rasmussen and Nickisch (2005 – 2017) that was used

to create Figures 4.1 to 4.4.

By definition of the covariance function we have Var(f(x)) = k(x, x) with

d = x− x = 0. For the SE and the Matérn covariance function this implies

a variance of k(0) = 1. Alternative conventions include the signal variance

σ2 as a parameter of the covariance function, for example by defining the

squared exponential covariance function as σ2 exp
(
− d2

2`2

)
.

4.1.2 Visualisation of functions randomly drawn from a Gaus-

sian process

Figures 4.1 to 4.4 show functions that were randomly drawn from Gaussian

processes. The usual procedure to plot a deterministic function f is to eval-

uate the function at finitely many inputs x1, . . . , xn, then plot the points

(xj , f(xj)), and interpolate between them. Plotting a function randomly

drawn from a Gaussian process works similarly, except that evaluating f

means to draw (f(x1), . . . , f(xn)) from a multivariate normal distribution.

We start by choosing a mean function m, a covariance function k and pa-

rameter values. As an example, consider the zero mean function and the

squared exponential covariance function with ` = 1 in Figure 4.3a. We

choose an interval [a, b] ⊂ X as domain for the plot and a partition of

the interval, a = x1 < x2 < · · · < xn = b. Figure 4.3a uses the inter-

val [a, b] = [−5, 5] and n = 500 equidistant inputs xj . Next we compute

the mean vector m := (m(x1), . . . ,m(xn)) and the n× n covariance matrix

K = (Kj,k)j,k=1,...,n given by Kj,k := k(xj , xk). For Figure 4.3a, the mean

vector is the zero vector of length n = 500 and K is a 500 × 500 matrix

with Kj,k = kSE(xj , xk). We then draw a sample (y1, . . . , yn) from the n-
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(a) ν = 1/2.

(b) ν = 3/2.

(c) ν = 5/2.

Figure 4.4: Sample functions drawn from a Gaussian process with mean
zero and Matérn covariance function. Each figure corresponds to one value
of ν and shows three samples. Each sample was drawn from a GP with
length-scale parameter ` ∈ {1, 10, 100}, respectively. A discussion of the
parameters ` and ν is given in the text.
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dimensional normal distribution with mean m and covariance matrix K.

Finally, we plot the points (xj , yj) and linearly interpolate between them.

For rough functions such as those drawn from a Matérn covariance func-

tion with ν = 1/2 (Figure 4.4a) a finer partition of n = 1000 or n = 2000

might be needed. If the partition is not fine enough for the resolution of the

plot, the interpolation can have the effect that the drawn rough functions

look smoother than they are. For the plots based on the linear covariance

function in Figure 4.1 it is sufficient to use n = 2.

4.2 Gaussian process regression

Section 4.1 introduced the probabilistic concept of Gaussian processes. In

Section 4.2.1 we use this concept to define a Gaussian process regression

model. Observations y are modelled to be given by an unobserved func-

tion f plus observational noise. The unobserved function f is modelled as

realisation of a Gaussian process. Adding Gaussian noise results in a Gaus-

sian process description of the observations y. Section 4.2.2 discusses the

treatment of the parameters of the Gaussian process.

4.2.1 Function-space view

We start with a dataset D = {(xi, yi)|i = 1, . . . , n}, where (xi, yi) is an input

xi with corresponding observation yi. Our regression model assumes that

the relation between inputs and corresponding observations is given by

yi = f(xi) + ηi

for an underlying function f : X → R and i.i.d. Gaussian observational

noise: ηi ∼ N(0, σ2) for all i = 1, . . . , n. Hence, letting I denote the n × n
identity matrix and defining f := (f(xi))i=1,...,n we can write

y1:n|f, σ2 ∼ N(f, σ2I). (4.4)

Gaussian process regression is considered non-parametric in the sense

that we do not infer about the unobserved “parameters” f(xi) by computing

their posterior distribution. Instead f is assigned a prior distribution and

integrated out as part of the regression analysis. More precisely, we assign
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a Gaussian process prior to f , that is, for any selection of x1, . . . , xn we

assume

(f(xi))i=1,...,n|ψ ∼ N(0,K) (4.5)

with mean zero 0 ∈ Rn and covariance matrix K given by Ki,j = k(xi, xj)

for some covariance function k(·, ·) with parameters ψ. Given (ψ, σ2) we

have a conjugate model with marginal likelihood

y1:n|σ2, ψ ∼ N(0,K + σ2I). (4.6)

Effectively, we have defined a Gaussian process {y(x)}x∈X with mean func-

tion zero and covariance function

ky(xj , xk) = k(xj , xk) + σ2δjk, (4.7)

where δjk denotes the Kronecker delta defined in (2.7).

We recapitulate the hierarchy between parameters by writing down the

above model in terms of Bayes’ formula for the posterior distribution of all

parameters:

p(σ2, ψ, f|y1:n) ∝ p(y1:n|σ2, ψ, f)p(f|σ2, ψ)p(σ2, ψ)

= p(y1:n|σ2, f)p(f|ψ)p(σ2)p(ψ).

Integrating out f yields the posterior distribution over the hyperparameters

only:

p(σ2, ψ|y1:n) ∝ p(y1:n|σ2, ψ)p(σ2)p(ψ). (4.8)

4.2.2 The (hyper)parameters of the covariance function

In the literature on Gaussian process regression the parameters of the co-

variance function are often referred to as hyperparameters. The reason for

this terminology lies in the construction of the model in Section 4.2.1, where

ψ denotes the parameter of the prior distribution on the parameters f. The

noise variance is often included as a hyperparameter of the covariance func-

tion ky. Besides the more concise notation and terminology, another reason

for this is the similar treatment of σ2 and ψ in the analysis.

Because σ2 and ψ are unlikely to be known in practice a fully-Bayesian

approach would be to: assign a prior distribution to both parameters and
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analyse their posterior distribution (4.8). In Section 2.4 the normal-inverse-

gamma model is used to assign a prior distribution to σ2. While this ap-

proach still yields a conjugate model it disrupts the “pure” Gaussianity that

is maintained in the Gaussian process model. Similarly, assigning a prior

distribution to ψ leads to a collapse of the practical, elegant but fragile

end-to-end Gaussian structure. Quantities of interest such as marginal like-

lihood, posterior, and the predictive distribution no longer have a closed

form. We then rely on numerical methods to approximate these.

A common approach in practice is the estimation of the hyperparame-

ters using the ML-II approach, that is, by maximising the marginal likeli-

hood (4.6) with respect to the hyperparameters and setting

(σ̂2, ψ̂) := arg max
σ2,ψ

p(y1:n|σ2, ψ).

The partial derivatives of the marginal likelihood with respect to the hyper-

parameters can be computed and hence gradient-based optimisers can be

used. For details, also on alternative methods such as cross-validation, we

refer to Rasmussen and Williams (2006, Section 5.4).

4.2.3 Gaussian process regression with linear covariance func-

tion

Consider the following three ways of performing linear regression with Gaus-

sian noise in a Bayesian fashion:

(A) A Gaussian process model with linear covariance function (4.1) with

parameters σ2
0, σ

2
1, σ

2;

(B) Bayesian linear regression with known variance σ2 discussed at the

beginning of Section 2.4;

(C) Similar to (B) but with an inverse gamma prior on the unknown noise

variance as in equation (2.8).

We have seen that models (A) and (B) are equivalent in the following sense:

In both models the observations y1:n follow a multivariate Gaussian distribu-

tion. Hence, they are fully described by means and pairwise (co)variances.

Sections 2.4 and 4.2.1 show that these characteristics are identical for both

models. Thus, if we only consider the statistical model for the observations
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y1:n, the models (A) and (B) are equivalent. The difference between the

two is how we arrive at this final description of y1:n. This relationship is an

example of the more general relationship between the weight-space view and

the function-space view on Gaussian processes and topic of Section 4.4.

The parametric hierarchical structure for each of the models is different

and each comes with its own advantages and disadvantages. The weight-

space view might seem more intuitive because it is a somewhat simple exten-

sion of the standard linear regression model. Once we consider more complex

structures it might become easier to take the function-space view to combine

covariance functions and tune their parameters. Even the seemingly simple

example of a squared exponential covariance function corresponds to a non-

trivial infinite linear combination of Gaussian basis functions (Rasmussen

and Williams, 2006, Section 4.2.1). From a practitioner’s perspective it is

easier to think about what regression function might be suitable rather than

to think about what linear combination of basis functions to choose.

In comparison to model (C), models (A) and (B) do not assign a prior

distribution to the noise variance σ2 but instead treat it as known or estimate

its value from the data. As discussed in Section 2.4 assigning a prior to σ2 as

in (C) is closer to the fully Bayesian approach but disrupts the Gaussianity

of the model.

4.3 Gaussian process prediction and imputation

Suppose we are in the situation of Section 4.2.1. For a new input x∗ it is a

matter of interest to predict the value of f(x∗) based on the observed data

D, in other words, we are interested in the distribution of f(x∗) given D. For

known fixed values for the parameters σ2 and ψ we firstly have (Rasmussen

and Williams, 2006, Section 2.2):

f(x∗)|D, σ2, ψ ∼ N
(
kT∗ (K + σ2I)−1y1:n, k∗∗ − kT∗ (K + σ2I)−1k∗

)
, (4.9)

where k∗ = (k(x∗, xi))i=1,...,n and k∗∗ = k(x∗, x∗). In practice σ2 and ψ will

be unknown and we approximate

p(f(x∗)|D) =

∫
p(f(x∗)|D, σ2, ψ)p(σ2, ψ|D) d

(
σ2, ψ

)
.
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For a full Bayesian treatment Monte Carlo methods can be employed. A

simpler approximation is given by

p(f(x∗)|D) ≈ p(f(x∗)|D, σ2
0, ψ0), (4.10)

where σ2
0, ψ0 denote point estimates of σ2, ψ. This corresponds to the ap-

proximation of p(σ2, ψ|D) by a singular distribution with mass in (σ2
0, ψ0)

only. A common choices is the ML-II estimate. This simple approximation

does not take uncertainty regarding σ2, ψ into account but the right hand

side of equation 4.10 can be computed analytically via (4.9).

4.4 The weight-space view

In Section 4.2.1 we introduced Gaussian process models as a way of defining a

prior distribution over functions. The approach we follow there is commonly

known as taking the function-space view (Williams, 1998). For the choice

of a linear covariance function k(·, ·) Section 4.2.3 discusses the equivalence

to a Bayesian linear regression model. Consider the more general linear

regression model given by

f(x) =

p∑
i=1

wiφi(x) = wTφ(x),

with a vector of weights w := (w1, . . . , wp)
T and a vector of basis functions

φ1, . . . , φp evaluated at x, φ(x) := (φ1(x), . . . , φp(x))T . We assign a Gaussian

prior to the weights, w ∼ N(0,Σw). While this procedure is different from

the function-space approach we can already see that this defines a prior

distribution over some class of functions: With the basis functions fixed we

obtain, for each realisation of w, a function f . As a linear combination of

normally distributed wi, the distribution of f(xj) is also normal. Hence, we

have defined a (potentially singular) Gaussian process with mean zero and

covariance function

k(xj , xk) = Cov(f(xj), f(xk)) =

p∑
i=1

p∑
l=1

φi(xj)φl(xk)Cov(wi, wl)

= φ(xj)
TΣwφ(xk). (4.11)
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This shows how we can change our view from weight-space to function-space.

The reverse direction, namely that Gaussian processes defined in function

space also have a representation in weight space, is a consequence of Mer-

cer’s theorem (Section A.2). The theorem, simply speaking, guarantees that

covariance functions (such as the examples discussed in Section 4.1.1) can

be written in the form of (4.11). For this view note that for positive definite

Σw the covariance function (4.11) is an inner product via 〈a, b〉Σw := bTΣwa

for a, b ∈ Rp.

4.4.1 Singularity

For linearly dependent basis functions or for p < n the multivariate normal

distribution of f is singular: The space spanned by p basis functions is at

most of dimension p. Hence, if we consider n > p points f(x1), . . . , f(xn) in

this space they must be linearly dependent.

The Bayesian linear regression model (Section 2.4) is obtained as the

special case p = 2, w = (β0, β1), φ1 ≡ 1, φ2(x) = x, and Σw = diag(σ2
0, σ

2
1).

This model defines a prior distribution over lines, which are fully deter-

mined by two points that lie on it. Any further points on the line will be

a linear combination of the other two. In consistency with the above ob-

servation the linear covariance function leads to a singular model as soon

as there are n > 2 observations. In practice this issue is irrelevant when

we add the noise term to model the observations y(xj) = f(xj) + ηj . In

weight space this can be represented by basis functions φ1 ≡ 1, φ2(x) = x,

φi(xj) = δi=j+2 for 3 ≤ i ≤ n + 2, 1 ≤ j ≤ n, and prior covariance matrix

Σw = diag(σ2
0, σ

2
1, σ

2, σ2, . . . , σ2) ∈ R(n+2)×(n+2). The diagonal structure of

Σw implies independence of the weights which, combined with the linearly

independent basis functions, guarantees non-singularity of f.

4.4.2 The kernel trick

The duality between weight and function space is often referred to as the

kernel trick. The “trick” is that, by working with covariance functions given

by

k(x, x′) = 〈φ(x), φ(x′)〉Σ,

we can use the interpretation and structure of the weight space without

explicitly dealing with the representation in weight space. Depending on
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the situation authors stress different views on this idea:

Schölkopf et al. (2002, Remark 2.8) for instance write: “Given an algo-

rithm which is formulated in terms of a positive definite kernel k, one can

construct an alternative algorithm by replacing k by another positive defi-

nite kernel k̃.”. The Gaussian process changepoint model introduced in this

thesis (Section 5) can be looked at this way: The GP regression model with

linear covariance function can be derived from Bayesian linear regression.

However, none of the discussed formulas for inference and prediction depend

on the specific choice of linear k. We have already seen several examples

for kernels that impose non-linear structures in Section 4.1.1. The Gaus-

sian process changepoint model in Section 5 is derived and implemented in

Python with a piecewise linear model in mind. Simply by changing the co-

variance function k we have the model formulation and software for a variety

of changepoint models readily available.

A second view on the kernel trick stresses that we do not need to know

the explicit weight-space representation of a covariance function. In practice

it can be easier to choose a covariance function that leads to a prior over

a suitable class of regression functions (for instance from the examples in

Section 4.1.1) than it is to select a suitable set of basis functions. As long

as the covariance function is positive definite the Gaussian process prior is

well defined.

Rasmussen and Williams (2006, Section 2.1) use the term to stress

that computational savings can be made when we take advantage of high-

dimensional structures in weight space at the cost of low-dimensional eval-

uations of the covariance function: For n << p, in particular for p = ∞,

we achieve computational savings if we can avoid explicit evaluations of the

basis functions φ(x1), . . . , φ(xn) because the inner product is of a simpler

closed form.

4.4.3 Kernel methods

The ideas discussed in Section 4.4.2 are known and applicable in a much

wider context. A variety of optimisation methods are based on kernels and

from this point of view GP methods are only one example of kernel meth-

ods. A kernel function (short kernel) is a symmetric bivariate function

k : X 2 → R. To generalise the idea of the weight-space view we define the

feature map φ : X → F , x 7→ (φ1(x), . . . , φp(x)) that transforms the inputs
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into a (usually higher- and often infinite-dimensional) feature space F . For

many optimisation problems the basic idea is to find F and φ so that the

optimisation becomes easier for the features φ(x1), . . . , φ(xn) than it is for

the original data x1, . . . , xn. Equation (4.11) generalises to

k(x, x′) = 〈φ(x), φ(x′)〉F , (4.12)

where 〈·, ·〉F denotes an inner product on the feature space F .

In this thesis kernels occur in form of covariance functions that define

the structure between two observations y(xj), y(xk) in a regression context.

Further examples include classification where a kernel can describe the sim-

ilarity between two observations. We refer to the book by Schölkopf et al.

(2002) and restrict our remarks with the role of kernels in GP regression in

mind.

Now suppose we have a kernel method using a kernel k. What kind of

functions k̃ are able to do the kernel trick? And when does a kernel k have

a representation as in (4.12)? We have seen the answer to the first question

in the context of GP regression: Whether or not a covariance function k̃

leads to a well-defined (that is, non-singular) GP model is equivalent to

K = (k(xj , xk))j,k being positive definite for all x1, . . . , xn. The above quote

by Schölkopf et al. (2002) reveals that this observation generalises to kernel

methods, that is, kernels need to be positive definite to do the kernel trick.

The answer to the second question is given by Mercer’s theorem. We refer

to Appendix A.2 for details.

4.5 Computational cost and methods to reduce it

The dataset studied in Section 5 consists of n = 159 observations (xi, yi) ∈
R2. In the era of big data (Liu et al., 2018) this could be considered as tiny.

Computational complexity is not an issue in Section 5 but the method as it

is presented would become unfeasible if it was applied to bigger datasets.

The favourable properties (flexibility, interpretability, and in particular

uncertainty quantification) of the Bayesian non-parametric GP approach are

reflected in its computational complexity, which, generally speaking, is of or-

der O(n3). In practice this means that datasets from the size of thousands

(Hensman et al., 2013) or ten thousands (Liu et al., 2018) are already con-
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sidered big data for a Gaussian process model. To scale2 Gaussian process

models up to big datasets all approaches replace exact expensive computa-

tions with cheaper approximative ones. Peng et al. (2017) perform Gaussian

process regression on a dataset with over one billion trip records of taxi jour-

neys in New York City. Other big-data applications of Gaussian processes

include Hensman et al. (2013) and Deisenroth and Ng (2015) who use up to

700,000 training and 100,000 test points to predict airline delays, and Hens-

man et al. (2017) who study the full dataset of almost 6 million data points,

using two thirds for training and one third for testing. Liu et al. (2019)

compare state-of-the-art scalable Gaussian process models on datasets that

describe the 3D structure of proteins, the kinematics of a robotic arm, and

data from the Sloan Digital Sky Survey (SDSS) which “[...] has created

the most detailed three-dimensional maps of the Universe ever made, with

deep multi-color images of one third of the sky, and spectra for more than

three million astronomical objects.”3 The rest of this section gives a quick

overview of the work that has been done in order to scale GP models to

still be applicable for bigger datasets. We start by briefly explaining the

computational complexity of Gaussian process modelling.

A parametric statistical model uses available data to estimate parameters

of the likelihood. These estimates then form the basis for further analysis

such as prediction. Gaussian process models are considered non-parametric

Bayesian models in the sense that the data is not used to estimate the

parameters f. Instead f is integrated out of the model and the marginal

likelihood as well as the predictive distribution depend directly on all data.

The computational complexity of Gaussian process regression is dominated

by this dependence on the data. More precisely, looking at equations (4.6)

and (4.9), the data enters the PDFs through the covariance matrix K+σ2I.

The required computation of the determinant and the inverse of this n× n
matrix means that the analysis has a computational complexity of O(n3).

Several approaches exist to reduce this computational complexity, mostly

under the name of scalable Gaussian process methods. Following Liu et al.

(2018) we split the discussion between global and local approximations.

2A statistical model is called scalable if it stays applicable even when the size of the
dataset is increased / “scaled up”.

3https://www.sdss.org/
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4.5.1 Local approximations

Local approximations split the dataset D into m local disjoint subsets Dk,
k = 1, . . . ,m. For each of the m subsets a Gaussian process model is fitted

and referred to as “local expert”. The separate treatment reduces the com-

putational complexity for the training to O(n3m−2). Prediction is performed

at a complexity of O(n2m−1) by combining the predictions of the individ-

ual experts. The product-of-experts (POE) model (Hinton, 2002) assumes

independence of the expert predictions via the product form predictive PDF

p(y∗|D, x∗) =

m∏
k=1

[pk(y
∗|Dk, x∗)]βk ,

where βk = 1 for all k. As m increases the variance of this predictive dis-

tribution goes to zero leading to over-confident predictions (Deisenroth and

Ng, 2015). Generalisations that choose βk adaptively in order to counterbal-

ance this issue go under the name of generalised-product-of-experts models

(Cao and Fleet, 2014).

Tresp (2000) proposed Bayesian committee machines (BCM), an exten-

sion of the POE to ensure that the predictive distribution of y∗ falls back to

the prior when x∗ is far from the observed data D. A combination of BCM

and the generalised POE model was proposed by Deisenroth and Ng (2015)

under the name of robust Bayesian committee machines.

Liu et al. (2019) review local approximations and compare them to sparse

approximations discussed below.

4.5.2 Global approximations

Global approximations approximate the full n×n covariance matrix Ky and

we outline the most common approaches.

Tapering Kaufman et al. (2008) study tapering methods, also known as

sparse kernel methods, to reduce the cost of maximum likelihood estimation

of the parameters of the covariance function. The approach is based on the

idea that the correlation between two observations yj , yk is low if they lie

far from each other, more precisely, if |xj−xk| is larger than some threshold

parameter γ. The corresponding entries of the covariance matrix are set to

zero, producing a covariance matrix that is sparse, with entries tapering off
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as we move away from the diagonal. Existing methods can then be used that,

for sparse matrices, perform matrix operations at a lower computational

cost, leading to a complexity of O(αn2) for some 0 < α < 1.

Sparse approximations Many of the most popular methods are grouped

under the name of sparse approximations. The underlying idea is to in-

troduce m latent variables that enable a sparse approximation of covari-

ance matrices. More precisely, the random latent variables f(x̃1), . . . , f(x̃m)

(referred to as “inducing variables” or “support variables”) are modelled

as marginals of the Gaussian process prior at inducing points x̃1, . . . , x̃m.

Quiñonero-Candela and Rasmussen (2005) introduced a unifying view show-

ing that various methods suggested in the literature can be seen as different

ways of approximating the prior p(f, f(x∗)). Their formulation of “exact

inference with an approximated prior” stresses the difference to more re-

cent approaches such as Titsias (2009) and Hensman et al. (2013). Both

of the latter also introduce latent variables but the approximation is made

when computing the posterior p(f, f(x∗)|y). Generally, the computational

cost of sparse approximations is of the order O(m2n), though combinations

with stochastic optimisation and variational methods have recently achieved

O(m3) (Hensman et al., 2017). For prediction all approaches scale at the or-

der of O(m2). A review focussed on sparse approximation methods is given

by Liu et al. (2019), showing that, compared to other methods, the low

complexity of the aforementioned stochastic variational GP methods comes

at the price of being sensitive to the initial setting of hyperparameters and

some restrictive assumptions such as a heteroscedastic noise variance.

Spectral approximations / Fourier features A group of methods that

are not based on sparse approximations, is instead based on a spectral repre-

sentation of stationary covariance functions: k(x, x′) = 1
2π

∫∞
−∞ e

iω|x−x′|s(ω) dω,

where s denotes the Fourier transform of k. The approach taken by Rahimi

and Recht (2008), named random Fourier features, uses a Monte Carlo sum

to approximate this integral. The points (/ frequencies) ωk for this approx-

imation are randomly drawn from a PDF proportional to s(ω). Hensman

et al. (2017) provide a useful review of spectral approximations. Instead

of randomly drawing Fourier features they propose a regularly spaced grid.

They combine this with a variational approach to sparse approximation like
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the one of Titsias (2009). Opper and Archambeau (2009) study a similar

non-sparse approach that can be applied to Gaussian process models with

non-Gaussian likelihood (see Section 4.6).

4.5.3 Discussion and further comments

How well the discussed scalable GP models perform in practice depends on

the dataset at hand and can largely be said to depend on whether the under-

lying model assumptions match the data. In the study by Liu et al. (2019) for

example, the sparse approximation of the prior by Snelson and Ghahramani

(2006) is the only global model that is capable to correctly learn and predict

the variance for data with heteroscedastic noise. In the analysis of data from

the SDSS, uncertainty quantification is the main motivation to employ the

computationally complex GP approach (Almosallam et al., 2016). Hence,

all other global approximations would be considered unsuitable. However,

if we only consider the quality of the mean prediction (leaving the correct

estimation of the noise variance aside), stochastic variational methods (Tit-

sias, 2009; Hoang et al., 2015, both are global sparse approximations of the

posterior) outperform the heteroscedastic model, despite the incorrect as-

sumption of homoscedastic noise. The posterior approximations converge

to the exact posterior distribution as the number of inducing points m in-

creases (Hoang et al., 2015). This, of course, is only of limited significance

because (i) computational savings are only achieved for small m, and (ii)

the exact posterior is still that of a model assuming homoscedastic noise.

For fair comparisons of the quality of approximations the scaling parame-

ters (that is, the number of inducing points for sparse approximations or the

number of experts for local approximations) are chosen so that all compared

approximations run at the same computational cost. In such settings it is

interesting to observe the different strengths of global vs. local approxima-

tions. Global methods spread inducing points across the input domain and

hence, when the number of inducing points is small, they miss patterns that

are only visible on a local level. Local methods tend to better capture such

patterns but suffer from local over-fitting, leading to worse predictions away

from the local domains.

For a comparison of local approximations we refer to Deisenroth and

Ng (2015). Most of this section is based on Liu et al. (2019) whose re-

view is focussed on sparse approximations (global) versus local methods,
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using simulated as well as multiple real-world datasets. A review of spectral

approximations is given by Hensman et al. (2017).

4.6 Gaussian process models with non-Gaussian

likelihood

A Gaussian process prior with a Gaussian likelihood as specified by (4.4)

leads to a conjugate model. The marginal likelihood and the predictive dis-

tribution are of closed form and given by equations (4.6) and (4.9). But

Gaussian process models are not restricted to a Gaussian likelihood. Ex-

amples for non-Gaussian distributions of the noise ηi are the Student’s t-

distribution (Neal, 1997) and the beta distribution (Jensen et al., 2013).

For these likelihoods we lose the conjugacy of the model and approximation

methods are used for the analysis.

The GPML Matlab software package (Rasmussen and Nickisch, 2005

– 2017) includes implementations of various likelihoods as well as suitable

approximation methods. The likelihoods can be summarised into three cat-

egories: standard regression with output domain R 3 yi; classification with

yi ∈ {−1,+1}; and generalised linear regression with one of the three output

domains R>0, N, or (0, 1).

4.7 Summary and conclusion (Motivation for the

GP approach)

Gaussian process models provide a framework to fit a regression function to

a dataset in a Bayesian manner. The Bayesian approach allows us to encode

prior knowledge about the class of regression functions considered suitable

and results in a predictive distribution, addressing uncertainty quantification

in a state-of-the-art fashion. Different covariance functions (Section 4.1.1)

can be chosen to encode properties such as smoothness or periodicity. While

it is not easy to invent covariance functions, there is a toolbox of well-known

functions readily available. These can be combined to build more complex

covariance functions as needed.

The parameters of the covariance function are used to further tune the

properties of the regression functions and can be learned from the data (Sec-
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tion 4.2.2). Like the form of the covariance function itself, the parameters

are interpretable. Examples include the noise variance, smoothness param-

eters, or length-scale parameters. The latter control the level of correlation

between observations based on the distance between them. Different Gaus-

sian process models4 can be compared in a fully probabilistic framework us-

ing Bayesian model selection or cross-validation (Rasmussen and Williams

(2006, Section 5.4)).

Gaussian process models are less user-friendly on big datasets and in high

dimensions when there is little prior understanding of the structure and when

computational cost becomes an issue. Reducing the computational cost of

Gaussian process models when more structure or information is available is

a topical field of research (Section 4.5).

The dataset considered in this thesis is small, the inputs are one-dimensional

and due to previous research (Wang et al., 2014a) we have a good under-

standing of the structure. Hence, the Gaussian process framework is suitable

and allows us to provide empirical evidence for our final choice of model.

4Following Rasmussen and Williams (2006, Section 5.1) the term model includes the
choice of mean function, covariance function and parameter values.
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Chapter 5

Changepoint analysis of a

single core sample

Section 1 introduced the problem of soil layer identification and motivated

the statistical analysis of a water content profile as a scientific way to ap-

proach this problem. This section presents such an analysis based on the

method proposed by this thesis, a Gaussian process changepoint model: As

a conclusion of Section 3 the model is based on the Bayesian changepoint

method of Eckley et al. (2011), combined with Gaussian process models for

each segment of data. Gaussian process models are an intuitive formulation

of a Bayesian regression model and discussed in Section 4.

Section 5.1 describes the dataset which will be analysed. The full statis-

tical model is recapped in Section 5.2. Results of the analysis are presented

in Section 5.3 with a discussion in Section 5.4.

5.1 The dataset

The dataset at hand is a water content profile of the London Clay Formation

(LCF) taken from borehole 1 at St James’s Park, London (Hight et al., 2003).

The dataset consists of n = 159 values (xj , yj), j ∈ {1, . . . , n}, where yj

denotes the water content measured at a depth of xj . Water content is given

in percent and depths are given in metres. The data is ordered by depth:

x1 < x2 < · · · < xn with x1 = 9.85 and xn = 39.9 metres. Measurements are

taken approximately every 0.15 to 0.2 metres. Water content measurements

y1, . . . , yn lie between approximately 18.22% and 33.37%. The dataset is
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visualised in Figure 5.1.

Figure 5.1: Moisture contents from split U4 samples, borehole 1, as discussed
by Wang et al. (2014a) and Wang et al. (2014b). Data provided by Dr. Jamie
Standing.

Around a depth of 20 metres, we see an abrupt drop of the water con-

tent from approximately 28% to approximately 24%. A similar shift is visible

around a depth of 32 metres. Both of these changes have been found to co-

incide with boundaries between two lithological strata (Wang et al., 2014a).

Between the two changes an upwards trend is visible and the data could be

described as scattered around a line with positive slope. This exemplifies the

structure that leads us to the description of the dataset by a piecewise lin-

ear model. Under the assumption of a piecewise linear changepoint model

we would expect both of these changes to be identified as changepoints.

For the segments from 10 to 20 metres and from 32 to 40 metres it is less

clear where further changepoints occur and what segments of data might be

well-described by a line. The statistical approach presented in this section

addresses assessment of the data in a mathematically rigorous way.

The terminology and notation used throughout Section 5 was introduced

in Section 3.1. Based on the present application the mathematical param-

eters now have the following interpretation: The soil in the core sample is

made up of an unknown number of m+1 layers and the jth segment of data

sj = yτj−1+1:τj contains those measurements that were taken from the jth
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soil layer. The first and last measurements in segment j were taken at a

depth of xτj−1+1 and xτj , respectively.

5.1.1 A priori information

The benchmark established by King (1981) based on microfossil content

divides the LCF into 5 layers, A to E, with subdivisions A1, A2, A3, B1,

B2, C1, C2, C3, D1, D2, E (Hight et al., 2003). This full profile extends

over a depth of about 120 metres. The dataset analysed in this thesis only

covers about 30 metres and we cannot expect all layers to occur. Depending

on the location where a core sample is taken some of the top layers might

not be present. In general we are thus not able to know which part of the

full profile we expect to find in the data. In order to enable the comparison

of my results I analyse a dataset that has been studied in the literature.

In particular I restrict the analysis to be based solely on water content.

Hight et al. (2003) suggest that the dataset covers layers A2, A3 and B,

without further division into B1 and B2, stating that “The step changes

in water content with depth were confirmed by King to be the boundaries

to the lithological units [. . . ]” (Hight et al., 2003, Section 3.4). A further

subdivision of A3 into A3i and A3ii is shown in some but not all figures

and not mentioned in the text. Standing and Burland (2006) suggest the

presence of layers A2, A3, B1, B2 as well as the further subdivision of A3

into A3i and A3ii. The latter can hardly be justified if solely based on the

water content profile itself but is the result of a broader analysis of the core

sample of soil as well as additional core samples from nearby boreholes.

Wang et al. (2014a), in a first mathematical analysis, mainly identify the

same layers as Hight et al. (2003) but also suggest one (or two) potential

new layers towards the deep end (and the “beginning”) of the core sample.

Hight et al. (2003) also study further datasets, in particular water content

profiles from boreholes around London. Based on a water content profile

from the construction site of London Heathrow Airport’s Terminal 5, about

25 kilometres from the source of the present dataset in St James’s Park,

Hight et al. (2003, p. 869) propose: “In unit B the water content profile

suggests that it would be possible to subdivide the layer into at least three

parts [. . . ]”.1 Due to the thickness of the individual layers being “remarkably

1Based on a biostratigraphical analysis De Freitas and Mannion (2007) endorse this
division.
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authors SB06 K81 H03 H03T5

identified layers

B3

B2
B B

B2

B1 B1

A3ii A3ii* A3ii* A3ii

A3i A3i* A3i* A3i

A2 A2 A2 A2

estimate for m 4 3 3 ≥ 4

Table 5.1: Simplified overview of lithological strata identified based on water
content, see discussion in the text. The authors are Standing and Burland
(2006) (SB06), King (1981) (K81), Hight et al. (2003) (H03). H03T5 refers
to the results of Hight et al. (2003) for data from Terminal 5 rather than St
James’s Park. The asterisk (*) indicates that the split of layer A3 into A3i
and ii is not properly addressed by the authors.

uniform across the London area” Hight et al. (2003, p. 869) one might expect

to find a similar structure in the water content profile analysed in this thesis.

An overview of the discussed findings is given in Table 5.1.

As also discussed in Section 1, these analyses are based on engineering

judgement and usually done by eye. From a scientific point of view such

approaches lack mathematical rigour. A Bayesian approach, such as the

one taken in this thesis, is one way to perform in a mathematically sound

manner the incorporating of a priori knowledge as done by the engineers.

5.2 Practical implementation

Section 5.3 presents the results of a statistical analysis of the water content

profile introduced in Section 5.1. In line with the conclusions of Section 3

the analysis uses the changepoint method of Eckley et al. (2011) discussed

in detail in Section 3.4.4. We now briefly recap the statistical model to

provide details about my practical implementation, including the inputs

of Algorithm 1: the number of samples generated, the marginal likelihood

Q(·;ψ) required for the computation of the weight function W (·;ψ), the
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survival function S(·; p), the treatment of the parameters ψ and p.

The presented results are a discussion of N = 10000 independent samples

drawn from the posterior p(m,xτ1 , . . . , xτm |y1:n). As previously explained,

drawing a larger number of samples poses no problem. But this was found

to not change the qualitative aspects of the presented results.

For my implementation I follow Eckley et al. (2011) by choosing a geo-

metric prior distribution, that is,

S(t; p) = (1− p)t−1 (5.1)

in equation (3.9). In Section A.4 we show that this is equivalent to assigning

the following hierarchical prior distribution to the number of changepoints

and their locations: First, a binomial distribution is assigned to the number

of changepoints, p(m) ∼ B(n− 1, p), and then, conditional on m, a uniform

distribution to the changepoint locations, p(τ1:m|m) = 1/
(
n−1
m

)
.

For this particular choice of the survival function the fractions in equa-

tions (3.13), (3.14), (3.15) simplify:

S(t− i+ 1, p)

S(t− i, p)
=

(1− p)t−i+1

(1− p)t−i
= 1− p

and similarly

S(t− j, p)− S(t− j + 1, p)

S(t− j, p)
= 1− S(t− j + 1, p)

S(t− j, p)
= 1− (1− p) = p,

both for all (occurring) values of t, i, j.

In line with the conclusions of Section 4 we combine the changepoint

method of Eckley et al. (2011) with a Gaussian process model for each

segment. Hence, the marginal likelihood Q(·) implemented for the algorithm

(see equations (3.8) and (3.16)) is

Q(ys:t;ψ) = p(ys:t|ψ) = N(ys:t; 0,Ky),

cf. equation (4.4). We use mean zero and a linear covariance function

ky(xj , xk) = ψ0 + ψ1xjxk + δjkψ2

from equations (4.1) and (4.7) with parameters ψ = (ψ0, ψ1, ψ2) to define
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Figure 5.2: Probability mass function of a binomial distribution with pa-
rameters n = 159 and p = 0.025.

the covariance matrix Ky for our analysis. The noise variance σ2 is now

denoted by ψ2 for notational uniformity.

Our treatment of p, the parameter of the prior survival function, is based

on the discussion of prior information in Section 5.1.1: We set p := 0.025,

defining the binomial prior distribution shown in Figure 5.2. The mean

np and mode b(n+ 1)pc of this prior distribution approximately match the

result of m = 4 boundaries (that is, 5 segments) suggested by Standing and

Burland (2006). An almost identical prior probability is assigned to the

case of m = 3 when the subdivision of layer B is not assumed. Positive but

decreasing probabilities are assigned to segmentations with fewer or more

boundaries, the latter being suggested for instance by the analysis of the

potentially similar water content profile from Heathrow Terminal 5 (Hight

et al., 2003).

The parameters ψ0, ψ1, ψ2 of the covariance function enter the algorithm

through the marginal likelihood p(ys:t|ψ). Whenever this likelihood needs

to be evaluated we first execute an optimisation step to find the value of

ψ that maximises p(ys:t|ψ) for the current segment ys:t of data. Hence, the

value of ψ depends on, and is generally different for, each segment of data

ys:t.
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5.3 Results

This section presents the results of the statistical method recapped in Sec-

tion 5.2, which provides us with N = 10000 independent samples from the

posterior distribution of m and τ1, . . . , τm. The generated samples contain

a substantial amount of information. For the presentation of results we rely

on summary statistics to grasp this information. The reader of this thesis

might have interest in particular details or questions that can be addressed

using these samples. Because it is impossible to foresee and cover these I

focus on those that seem most interesting or are common in the literature.

We start by considering the posterior distribution p(m|y1:n) of the number of

changepoints. Because m is a key quantity of interest this is presumably the

most obvious choice and, due to being univariate, also the simplest quantity

to consider. Then we discuss how to draw inference about the changepoint

locations which is a much more involved issue.

5.3.1 Marginal posterior of only the number of changepoints

The histogram in Table 5.2 approximates the marginal posterior distribution

p(m|y1:n) of the number of changepoints m. It is visualised in Figure 5.3

where each bar shows the number of samples with the respective number

of changepoints. Since m is a one-dimensional variable the histogram pre-

Table 5.2: Approximate posterior probabilities pk := P (m = k|y1:n) in %
for different numbers of changepoints in the data. Probabilities are zero for
k < 2 and for k > 13. Approximations are based on N = 10000 samples.
Numbers are visualised in Figure 5.3.

k 2 3 4 5 6 7 8 9 10 11 12 13

pk 0.15 1.59 5.67 16.64 28.12 28.69 12.85 4.80 1.24 0.20 0.04 0.01

sented in Figure 5.3 provides a good summary of its posterior distribution.

The mode shows that most samples (2869 out of 10000) are found to have

7 changepoints,

P (m = 7|y1:n) ≈ 2869

10000
= 28.69%,

making m̂ = 7 the MAP estimate for m. The mean and the median of the

posterior distribution P (m|y1:n) are given by 6.4171 and 6, respectively.
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Figure 5.3: A visualisation of Table 5.2: A histogram showing the relative
frequencies of samples with m = k changepoints, giving an approximation
to the posterior distribution p(m|y1:n).

5.3.2 Posterior distribution of the changepoint locations

Analysing the posterior distribution of the changepoint locations τ1:m is dif-

ficult. The dimension of τ1:m changes with the value of m and even when we

fix the value of m it is difficult to summarise m-dimensional distributions

for m > 2. Note that the difficulty we are discussing is regarding the ques-

tion of how to summarise the comprehensive information comprised by the

samples. Answering particular questions or obtaining individual quantities

such as the joint MAP estimate for (m, τ1:m) is straightforward. However,

only considering a MAP estimate skips the procedure of understanding the

information about m and τ1:m that is available to us. The MAP estimate

is the result of considering all possible values of (m, τ1:m) and selecting the

one value of (m, τ1:m) that has the largest posterior probability. While all

available information goes into this selection process, the only result is a

single value whereas most of the information is discarded.

Instead of the indices τ1, . . . , τm the following presentation often uses

the equivalent input depths xτ1 , . . . , xτm of the dataset. The latter has the
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advantage of being interpretable while the former provides simpler notation.

A one-dimensional summary statistic: the probability of a change-

point at t

Following Nam (2013, Section 3.2) we consider

P (t ∈ {τ1, τ2, . . . , τm}|y1:n), (5.2)

the posterior probability of there being a changepoint at xt, in Figure 5.4.

This one-dimensional function of t (or xt) is useful to get a first idea regard-

Figure 5.4: A summarising representation of the posterior distribution of the
changepoint locations τ1:m. The horizontal axis shows the depth xt, the ver-
tical axis the approximate posterior probabilities P (t ∈ {τ1, τ2, . . . , τm}|y1:n)
of a changepoint occurring at xt.

ing the distribution of changepoints in the dataset but ignores any depen-

dence structure between changepoint locations. As an example, consider

two indices t1, t2 with high probabilities P (tj ∈ {τ1, τ2, . . . , τm}|y1:n), for

example xt1 = 10.6 and xt2 = 20.55. Despite the high probabilities for

each index, they might have zero probability of occurring as changepoints

together. This would mean that, while it is very likely to have a boundary
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at each of the two locations xt1 = 10.6 and xt2 = 20.55, it is very unlikely

that we have boundaries at both locations.

Results presented by conditioning on different values of m

In order to break down the information comprised by the samples we proceed

by considering information about the locations τ1:m for one fixed value of m

at a time.

Figure 5.5 shows P (t ∈ {τ1, τ2, . . . , τm}|m = k, y1:n), the aforementioned

probability (5.2), but conditional on a fixed number of changepoints, |m =

k. We present results for those values k that have the highest posterior

probability P (m = k|y1:n) as seen in Figure 5.3.

Figure 5.5: A summarising representation of the posterior distribution of
the changepoint locations τ1:m. The horizontal axis shows the depth xt, the
vertical axis shows the conditional probabilities P (t ∈ {τ1, τ2, . . . , τm}|m =
k, y1:n), displayed for k ∈ {5, 6, 7, 8}.

Starting with the most common value m = 7 (cf. Figure 5.3) we con-

sider only those samples with 7 changepoints in Table 5.3. These samples
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Table 5.3: Description of the 2869 (out of 10000) samples that have 7 change-
points. This table presents the 8 most common configurations of 7 change-
points together with the number of times (“count”) each configuration xt1:7
occurred. It also shows the relative frequency (in %) obtained as the fraction
of count divided by 2869.

count relative frequency xt1 xt2 xt3 xt4 xt5 xt6 xt7

474 16.52 10.6 20.55 32.4 36.55 37.2 38.05 38.7

131 4.57 10.6 20.55 32.55 36.55 37.2 38.05 38.7

112 3.90 10.6 20.55 32.4 36.55 37.2 38.4 38.7

104 3.62 10.6 20.55 32.2 36.55 37.2 38.05 38.7

83 2.89 10.6 20.55 32.4 36.55 37.2 38.2 38.7

40 1.39 10.6 20.55 32.55 36.55 37.2 38.4 38.7

36 1.25 10.45 20.55 32.4 36.55 37.2 38.05 38.7

32 1.12 10.6 20.55 32.05 36.55 37.2 38.05 38.7

alone provide an approximation to the m-dimensional conditional posterior

distribution p(τ1:m|y1:n,m = 7). Once we have studied this distribution for

different values of m we can use the gained insights and compare our findings

between different values of m.

From Table 5.3 we obtain the following results: The most commonly sam-

pled configuration of changepoints xt1:7 = (10.6, 20.55, 32.4, 36.55, 37.2, 38.05, 38.7)

occurs 474 out of 10000 times yielding the joint posterior probability

P (m = 7, τ1:m = t1:7|y1:n) ≈ 474

10000
= 4.74%;

or the conditional (on m = 7) posterior probability

P (τ1:m = t1:7|m = 7, y1:n) ≈ 474

2869
≈ 16.52%.

The latter could also be computed as

P (τ1:m = t1:7|m = 7, y1:n) =
P (m = 7, τ1:m = t1:7|y1:n)

P (m = 7|y1:n)

≈ 474/10000

2869/10000
.

While there are approximately
(
n
m

)
=
(

159
7

)
> 1011 possible values for τ1:m

only 1280 of these values occur amongst the 10000 samples. The 8 most
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Table 5.4: Description of the 2812 (out of 10000) samples that have 6 change-
points. This table presents the 6 most common configurations of 6 change-
points together with the number of times (“count”) each configuration xt1:6
occurred. It also shows the relative frequency (in %) obtained as the fraction
of count divided by 2812.

count relative frequency xt1 xt2 xt3 xt4 xt5 xt6

317 11.27 10.6 20.55 32.4 36.55 37.2 38.7

164 5.83 10.6 20.55 32.4 36.55 37.2 38.05

159 5.65 20.55 32.4 36.55 37.2 38.05 38.7

97 3.45 10.6 20.55 32.55 36.55 37.2 38.7

67 2.38 10.6 20.55 32.2 36.55 37.2 38.7

63 2.24 10.6 20.55 32.4 36.55 37.2 38.9

common values are presented in Table 5.3. The 8 presented values are the

only values that were sampled at a relative frequency of at least 1%, while

most values (1071 out of 1280, that is, 83.67%) occur only once.

Based on the plot of the raw data in Figure 5.1 it is already possible

to identify the depths of approximately 11, 20 and 32 metres as candidates

for changepoint locations. Figure 5.5 endorses this guess. It comes as no

surprise that the most common changepoints configurations in Tables 5.3

(and 5.4) reflect this insight.

Most sampled configurations of changepoints are very similar. The first

and second most common value in Table 5.3, for example, only differ in the

third coordinate xt3 : 32.4 vs. 32.55. This observation indicates uncertainty

in regard to the exact location of xτ3 |m = 7, which can, if it should be of

interest, be inferred about in more detail.

Table 5.4 shows similar details as Table 5.3 but for the median m = 6

of the posterior distribution. The event of m = 6 changepoints also has

the second largest posterior probability P (m = 6|y1:n) ≈ 2812
10000 = 28.12% as

visible in Figure 5.3. Out of the
(

159
6

)
possible values of τ1:m|m = 6 only

1001 have positive probability based on the samples. Again, most values

(773 out of 1001 ≈ 77%) occur just once.

The third most common configuration of 6 changepoints puts no bound-

ary layer at a depth of 10.6 metres. This is particularly remarkable as this

configuration has a total probability of 159
10000 , higher than for any configu-

ration with m = 7 changepoints except the most common one with 474
10000 .
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5.4 Discussion

This section presented a practical application of the Gaussian process change-

point method introduced in this thesis. The state-of-the-art approach is

mathematically rigorous and explicitly addresses the uncertainty that is in-

herent to any such analysis. In order to enable the comparison of my results

with those of existing analyses my analysis was performed on an established

dataset, the water content profile of the core sample from borehole 1 at St

James’s Park. Following common engineering practice my method incorpo-

rates a priori knowledge about the number of changepoints in the data. In

line with the overall mathematically rigorous method and treatment of un-

certainty this knowledge is encoded in the prior distribution of the Bayesian

model.

The presented results demonstrate that the proposed focus on mathe-

matical rigour and uncertainty quantification is very much needed. The key

findings include:

• In agreement with all existing analyses the rather striking changes

around the depths of 20 and 32 metres are captured.

• Our results propose that the number of changepoints m is higher than

all previous analyses suggest.

• The variability of the posterior distribution p(m|y1:n) (Figure 5.3)

shows that there is a significant amount of uncertainty regarding the

number of changepoints. This suggests that the standard presented in

the literature (Section 5.1.1) is questionable.

• We conclude that a further subdivision of layer A3 (=20 to 32 metres)

as it has been suggested by several authors is not supported by the

present dataset. In particular is the possible changepoint at a depth

of 27.9 metres in the results of Wang et al. (2014a) (explicitly alluded

to by Wang et al. (2014b)) no tenable statistical result.

• Our analysis draws attention to a change at around 10.6 metres. This

change in the data, also visible by eye, has not been regarded by other

authors. However, it might be possible to link it to further subsections

identified by Hight et al. (2007) in their analysis of a water content

profile from the site of Heathrow Terminal 5 at which more of the top
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B2 soil layer is present in the ground (that is, further measurements

at depths < x1 = 9.85 metres are available).

• Our method provides an unprecedented amount of information that

can be considered in detail. One example is the third most probable

segmentation in Table 5.4, which is the fifth most probable segmenta-

tion overall (that is, under the posterior distribution p(m, τ1:m|y1:n))

and does not include a changepoint at a depth of xt = 10.6, cf. dis-

cussion at the end of Section 5.3.2.

5.4.1 Future work

Besides the changepoint at 10.6 metres our results suggest multiple closely

spaced changepoints towards the deep end of the dataset (36.55 to 38.9 me-

tres). An inspection of the data in this region by eye gives little insight.

This suggests two lines for future work: On the one hand our results moti-

vate further engineering research to scrutinise the soil and its geotechnical

properties in these regions. On the other hand the assumptions that the

presented results are based on should be investigated further. The estima-

tion of the parameter ψ for example (described at the end of Section 5.2)

is based on maximisations of the likelihood and thus takes the data into

account. This optimisation step might lead to overfitting and could have

impacted results such as the closely spaced changepoints between 36.55 and

38.9 metres.

Further future work, constituting a major step in geotechnical engineer-

ing as well as statistical research, is to establish a joint model for sequences

of data obtained either from multiple nearby boreholes or multiple sequences

of measurements obtained from the same borehole. The detail of interest

is that the number of soil layers is identical and that the thicknesses of

most layers are similar across sequences. Taking additional core samples

into account provides further information that can improve our analysis. In

particular we can improve our estimates of m and τ1:m as well as our quantifi-

cation of the uncertainty in the estimates. For example, sharing information

between individual boreholes can help to identify outliers that might oth-

erwise be identified as changepoints. Similarly, Wang et al. (2014b) point

out that there could be a changepoint that is only detectable in some of the

core samples.
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Appendix A

Mathematical details

A.1 Standard Bayesian linear regression with un-

known variance

Following Minson et al. (2014) consider the linear model

y = Xβ + η,

with observations vector y ∈ Rn×1, design matrix X ∈ Rn×r, weights β ∈
Rr×1, and random noise vector η ∈ Rn×1. We assume

η ∼ N(0, σ2D),

that is, a normal linear model with zero-mean and covariance matrix D ∈
Rn×n. We thus have a parametric model y|θ ∼ N(Xβ, σ2D) with model

parameter θ = (β, σ2).

Taking a fully Bayesian approach we assume the weights β and the noise

variance σ2 to be unknown and specify a prior distribution. To obtain a

conjugate model we employ a conditional normal prior

p(β|σ2) = N(β;µ, σ2V )

with mean vector µ and a positive definite covariance matrix V ∈ Rr×r,
as well as an inverse-gamma prior IG(a, d) with positive shape parameter
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a > 0 and rate parameter d > 0:

p(σ2) = IG(σ2; a, d)

=
(a/2)d/2

Γ(d/2)

(
σ2
)− d+2

2 exp
(
− a

2σ2

)
.

The joint prior distribution

p(θ) = p(β, σ2)

= p(β|σ2)p(σ2)

= N(β;µ, σ2V )IG(σ2; a, d)

=: NIG(β, σ2; a, d, µ, V )

is known as a normal-inverse-gamma (NIG) distribution1 with parameters

a, d, µ, V . As a result of the conjugate model the posterior distribution is

(Minson et al., 2014, Appendix B)

p(θ|y) = NIG(β, σ2; ã, d̃, µ̃, Ṽ )

with posterior parameters

Ṽ := (V −1 +XTD−1X)−1 ∈ Rr×r,

µ̃ := Ṽ (V −1µ+XTD−1y) ∈ Rr×1,

ã := a+ µTV −1µ+ yTD−1y − µ̃T Ṽ −1µ̃ ∈ R>0,

d̃ := d+ n.

Only ã depends on the observations y while all other quantities are constant

with respect to y.

The marginal likelihood is given by

p(y) =
1

(2π)n/2 det(D)1/2

det(Ṽ )1/2

det(V )
1
2

(a/2)d/2

(ã/2)d̃/2
Γ(d̃/2)

Γ(d/2)

=

(
1

πn det(D)

det(Ṽ )

det(V )

ad

ãd̃

)1/2
Γ(d̃/2)

Γ(d/2)
.

1A different parametrisation of the inverse-gamma distribution is given by a scaled-
inverse-chi-squared distribution. The resulting normal-inverse-chi-squared (NIX) distri-
bution is also used in the literature as the conjugate model for a normal linear regression.
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For independent noise (D = I) the predictive distribution of unobserved

outputs y∗ = (y∗1, . . . , y
∗
q )
T corresponding to a design matrix X∗ ∈ Rq×r is

(O’Hagan, 1994, Section 9.39)2 a multivariate t-distribution,

p(y∗|X∗, X, y) = tν(y∗;µ∗,Σ)

=
Γ((ν + q)/2)

Γ(ν/2)νq/2πq/2|Σ|1/2

(
1 +

1

ν
(y∗ − µ∗)TΣ−1(y∗ − µ∗)

)− ν+q
2

=
Γ((ν + q)/2)

Γ(ν/2)πq/2|νΣ|1/2
(
1 + (y∗ − µ∗)T (νΣ)−1(y∗ − µ∗)

)− ν+q
2 ,

(A.1)

with ν = d̃ degrees of freedom, location parameter µ∗ = X∗µ̃ and covari-

ance parameter Σ = ã
d̃
(Iq + X∗Ṽ (X∗)T )). Mean and (co)variances of the

predictive distribution are given by

E(y∗|X∗, X, y) = µ∗ = X∗µ̃ and Cov(y∗j , y
∗
k|X∗, X, y) = d̃/(d̃− 2)Σj,k.

For the engineering problem considered in Section 5 the equations simplify

to

yj = β0 + β1xj + ηj

with independent noise (D = In) and a zero-mean independent normal prior

on the weights β = (β0, β1)T , that is, µ = 0 and V = diag(σ2
0, σ

2
1):

p(β|σ2) = N(β; 0, σ2

([
σ2

0 0

0 σ2
1

])
).

2O’Hagan (1994) uses the last representation (A.1) to define a multivariate t-
distribution with covariance parameter C := νΣ. For this parametrisation the
(co)variances are given by 1

ν−2
Cj,k.
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As a result the above formulas simplify to

Ṽ := (V −1 +XTX)−1 ∈ R2×2,

µ̃ := Ṽ XT y ∈ R2×1,

ã := a+ yT y − µ̃T Ṽ −1µ̃

= a+ yT y − µ̃TXT y

= a+ (y −Xµ̃)T y ∈ R>0,

d̃ := d+ n

and

p(y) =

(
1

πn
det(Ṽ )

det(V )

ad

ãd̃

)1/2
Γ(d̃/2)

Γ(d/2)

with

det(V ) = σ2
0σ

2
1,

V −1 = diag(1/σ2
0, 1/σ

2
1),

X =

(
1 . . . 1

x1 . . . xn

)T
,

XTX =

(
n

∑n
j=1 xj∑n

j=1 xj
∑n

j=1 x
2
j

)
,

XT y =

( ∑n
j=1 yj∑n
j=1 xjyj

)
,

yT y =

n∑
j=1

y2
j .

Finally, in the notation of Section 5, let θ = (w0, w1, σ
2), ψ = (a, d, σ2

0, σ
2
1),

p(ys:t|θ) =

t∏
k=s

φ(yk;w0 + w1xk, σ
2)
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and

p(θ|ψ) = p(w0, w1, σ
2|a, d, σ2

0, σ
2
1)

= NIG
(
(w0, w1)T ; a, d, µ = 0, diag(σ2

0, σ
2
1)
)
.

We obtain the marginal likelihood

Q(ys:t;ψ) =

∫
p(ys:t|θ)p(θ|ψ) dθ

=

(
1

πl
det(Ṽl)

det(V )

ad

ãd̃ll

)1/2
Γ(d̃l/2)

Γ(d/2)

required for the algorithm, where now

l := t− s+ 1,

Xs:t :=

(
1 . . . 1

xs . . . xt

)T
,

Ṽl := (V −1 +XT
s:tXs:t)

−1 ∈ Rr×r,

µ̃l := ṼlX
T
s:tys:t ∈ Rr×1,

ãl := a+ yTs:tys:t − µ̃Tl Ṽ −1
l µ̃l

= a+ yTs:tys:t − µ̃Tl XT
s:tys:t ∈ R>0,

d̃l := d+ l

and the simple form of det(V ), V −1, XTX, . . . still hold. For the implemen-

tation we note

lnQ(ys:t;ψ) =
1

2

(
− lnπ + ln det(Ṽl)− ln det(V ) + d ln a− d̃l ln ãl

)
+ ln Γ(d̃l/2)− ln Γ(d/2).

A.2 Mercer’s theorem

For any continuous positive definite kernel k Mercer’s theorem states the

existence of a feature map φ so that k(x, x′) is given by the inner product

〈φ(x), φ(x′)〉. Following Schölkopf et al. (2002) let (X ,A, µ) denote a finite

measure space and let L2(X ) denote the space of all measurable functions

f : X → R for which
∫
X f(x)2 dµ(x) is finite. Let further L∞(X 2) denote
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the space of measurable functions k : X 2 → R for which there exist a finite

u ∈ R such that |k(x, x′)| < u for µ2-almost all (x, x′) ∈ X 2.

Theorem 1 (Theorem 2.10 in Schölkopf et al. (2002)) Suppose that

k ∈ L∞(X 2) is a symmetric real-valued function such that the integral oper-

ator

Tk : L2(X )→ L2(X ), (Tkf)(x) :=

∫
X
k(x, x′)f(x′) dµ(x′)

is positive definite; that is, for all f ∈ L2(X ), we have∫
X 2

k(x, x′)f(x)f(x′) dµ(x) dµ(x′) ≥ 0.

Let ψj ∈ L2(X ) be the normalised orthogonal eigenfunctions of Tk associated

with the eigenvalues λj > 0, sorted in non-increasing order. Then

1. the supremum supj∈N |λj | is finite;

2. k(x, x′) =
∑NH

i=1 λjψj(x)ψj(x
′) holds for almost all (x, x′). Either

NH ∈ N, or NH = ∞; in the latter case, the series converges ab-

solutely and uniformly for almost all (x, x′).

The feature map to write the kernel as an inner product is then given by

φ(x) := (
√
λ1ψ1(x),

√
λ2ψ2(x), . . . ).

A.3 Derivation of formulas for Fearnhead’s method

This section derives the formulas for the probabilities γt(i) stated in Sec-

tion 3.4.4. For presentational simplicity we drop the conditioning on ψ from

our notation. In order to derive the iterative formulas used in the forward

part of the algorithm let t = 2, . . . , n and i = 0, . . . , t − 2. The event

Ct = i implies Ct−1 = i and all computations are for non-trivial events

P (Ct = i) > 0. Fearnhead and Liu (2007) refer to “standard filtering recur-

sions” when stating the relation

γt(i) := P (Ct = i|y1:t)

= P (Ct = i|yt, y1:t−1)

∝ P (yt|Ct = i, y1:t−1)P (Ct = i|y1:t−1),
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but it can also be seen as a direct instance of Bayes formula conditional

on y1:t−1. In order to establish a recursive formula for γt(i) we express the

prior term P (Ct = i|y1:t−1) as the product of the prior probability γt−1(i) =

P (Ct−1 = i|y1:t−1) and the transition probability P (Ct = i|Ct−1 = i),

P (Ct = i|y1:t−1) = P (Ct−1 = i|y1:t−1)P (Ct = i|Ct−1 = i, y1:t−1)

= P (Ct−1 = i|y1:t−1)P (Ct = i|Ct−1 = i),

giving

γt(i) ∝ γt−1(i)P (yt|Ct = i, y1:t−1)P (Ct = i|Ct−1 = i).

The last two factors can be written as

P (yt|Ct = i, y1:t−1) =
P (y1:t|Ct = i)

P (y1:t−1|Ct = i)

=
P (y1:i|Ct = i)P (yi+1:t|Ct = i)

P (y1:i|Ct = i)P (yi+1:t−1|Ct = i)

=
P (yi+1:t|Ct = i)

P (yi+1:t−1|Ct = i)

=
Q(i+ 1, t;ψ)

Q(i+ 1, t− 1;ψ)

and

P (Ct = i|Ct−1 = i) =
P (Ct = i, Ct−1 = i)

P (Ct−1 = i)

=
P (Ct = i)

P (Ct−1 = i)

=
S(t− i)

S(t− 1− i)
,
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where in both cases we do not use the specific choice for likelihood and the

prior until the last equality. Similarly, now for i = t− 1,

γt(t− 1) = P (Ct = t− 1|y1:t)

∝ P (yt|Ct = t− 1, y1:t−1)P (Ct = t− 1|y1:t−1)

= P (yt|Ct = t− 1)
t−2∑
j=0

P (Ct = t− 1|Ct−1 = j, y1:t−1)P (Ct−1 = j|y1:t−1)

= Q(t, t;ψ)

t−2∑
j=0

γt−1(j)
g(t− 1− j;ψ)

S(t− 1− j;ψ)
.

A.4 Derivation of an equivalent prior specification

In Section 5.2 we use a geometric distribution to define the prior on the

length of a segment via its survival function S(·). We claim that this

is equivalent to assigning hierarchical prior distribution to the number of

changepoints and their locations. We will now prove this claim. From equa-

tion (5.1) we derive the joint prior distribution (3.9) as

p(m, τ1:m) = S(τm+1 − τm)
m∏
k=1

g(τk − τk−1)

= (1− p)τm+1−τm−1
m∏
k=1

p(1− p)τk−τk−1−1

= pm(1− p)−(m+1)
m+1∏
k=1

(1− p)τk−τk−1

= pm(1− p)−(m+1)(1− p)τm+1−τ0

= pm(1− p)n−m−1.

If follows that

p(m) =
∑
τ1:m

p(m, τ1:m)

=
∑
τ1:m

pm(1− p)n−m−1

=

(
n− 1

m

)
pm(1− p)n−1−m,
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since n = τm+1 is not amongst the changepoints τ1:m. This is a binomial

distribution, p(m) ∼ B(n− 1, p). Further,

p(τ1:m|m) =
p(m, τ1:m)

p(m)

=
pm(1− p)n−m−1(

n−1
m

)
pm(1− p)n−1−m

=
1(
n−1
m

) ,
meaning that we have a conditional uniform distribution for the changepoint

locations, p(τ1:m|m) = 1/
(
n−1
m

)
.
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