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Abstract

Advances in computational methods in recent decades have signifi-
cantly expanded the range of problems in condensed matter physics
that can be tackled from first principles. Linear-scaling density func-
tional theory methods enable quantum mechanical calculations to be
performed on systems containing tens of thousands of atoms, with
modern approaches capable of reproducing the accuracy of plane
wave DFT approaches. This opens up the possibility of treating
highly complex molecular systems such as doped organic molecu-
lar crystals that require the dopant molecule to be contained within a
large periodic structure. One example of such a system is pentacene
in p-terphenyl, a system that finds use as a room-temperature maser.
Understanding the maser mechanism requires both a highly accurate
description of the pentacene molecule and a computationally efficient
approach that can correctly capture the impact of the p-terphenyl host
on the active pentacene subsystem. Quantum embedding allows an
accurate but expensive hybrid functional to be embedded within a
cheaper semi-local functional, for maximum combination of accuracy
and efficiency in a DFT-in-DFT framework. In this dissertation we
consider the implementation of embedded mean-field theory (EMFT)
in the linear-scaling DFT software package ONETEP, enabling hybrid
functionals to be used on selected subsystems within a cheaper DFT
environment. This approach is validated for several types of molecu-
lar systems, including a crystalline structure containing several thou-
sand atoms, demonstrating the potential of the EMFT approach when
combined with linear-scaling and verifying the importance of using
a large explicit host environment for accurate calculations.
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1 Introduction

There are very few parts of the modern world that have not been touched by the laser,
with applications found in fields far beyond the imaginations of the early researchers
who developed the device in the 1950s [1]. The theory behind the laser dates back
to the earliest days of quantum mechanics, but the first demonstration of the phe-
nomenon of stimulated emission in 1953 was via microwave emission with ammonia
i.e. a microwave laser (maser) [2, 3]. The earliest masers operated at temperatures near
absolute zero and required very large magnetic fields, a state of affairs that has scarcely
improved and has greatly restricted the applications of maser technology compared to
its younger sibling, the laser. In 2012, Oxborrow et al. demonstrated the first maser to
operate at room temperature and in Earth’s magnetic field using a p-terphenyl crys-
tal doped with pentacene [4]. Although this represents a significant step forward in
maser technology, there are challenges that remain to be overcome before such a de-
vice can have any practical applications, such as the need for continuous operation
and improvements in efficiency [5]. The driving principle behind the current device is
the alignment of the excited singlet and triplet states of pentacene. This facilitates an
intersystem crossing which gives rise to a population inversion within the triplet state,
enabling a photon with microwave frequency to be emitted. An understanding of this
process from first principles thus requires one to accurately describe the excitation en-
ergies and the transition rates arising from the intersystem crossing. Experimental and
computational studies have shown that the p-terphenyl host is not passive and instead
has a significant impact on the excitation energies of pentacene [6, 7], especially the
singlet energies, due to the delocalisation of these excited states [8]. Therefore a theo-
retical understanding of the maser requires an ab initio description of the excited states
of pentacene, as well as the ability to evaluate the impact of the wider crystal.

Since the advent of quantum mechanics a century ago, scientists have made in-
credible progress in advancing our understanding of the fundamental building blocks
of our world. Beginning with the hydrogen atom, our understanding of materials has
expanded to an extraordinary degree, with methods since developed to tackle the chal-
lenges faced by theorists at many different length scales, such as individual molecules,
periodic crystals, point defects in solid and more. However, the fundamental prob-
lem in exploiting the laws of quantum mechanics is the difficulty in applying them
to anything other than the most simple systems to obtain analytic solutions. The rise
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of computational science as a field has facilitated the first principles study of systems
much larger than would ever be possible by analytic means. Within the field of elec-
tronic structure, this has come about by a combination of theoretical insights that make
the solution of quantum systems viable and extensive work aimed at exploiting the
increasing power of computers. The modern quantum chemist or condensed matter
physicist has a vast array of methods at their disposal, depending on the properties that
they wish to probe. For excited states, wavefunction based approaches such as con-
figuration interaction [9] and coupled cluster [10] provide highly accurate results for
individual molecules. The GW approximation uses an alternative formulation based
on the single particle Green’s function [11], a method that has become highly popular
in recent years due to its accuracy and theoretical rigour [12]. The above approaches,
however, are restricted in their applicability by the cost of their calculations. Wave-
function based quantum chemical methods, in particular, suffer from highly inefficient
scaling with respect to the number of atoms in the system. Typically, quantum chem-
ical methods based on correlated wavefunctions exhibit scaling of N4-N7, where N is
the number of atoms.

Density functional theory (DFT) [13, 14] has become the method of choice for many
computational materials science applications due to its combination of good accuracy
and low computational cost [15]. Standard DFT, as formulated by Kohn and Sham
in 1965, reduces the complexity of the quantum system to an effective independent
electron problem, where all properties of the system can be obtained by knowing a
single quantity, the ground state electron density. This approach scales cubically with
the number of atoms in the system, a drastic improvement over wavefunction theory
(WFT) approaches. Many DFT codes now exploit the power of modern supercomput-
ers, enabling large-scale parallel calculations to be performed on structures consisting
of hundreds of atoms.

DFT has been a highly successful method for several decades, a fact encapsulated
by the rapid expansion of its use [16]. In the process, it has found use alongside experi-
mental methods to provide a theoretical explanation for observed phenomena, as well
as providing a predictive tool to aid experimental research in the search for new mate-
rials. Amongst the topics that have been probed using DFT are materials discovery for
renewable energy production [17], biological processes [18] and even the composition
of the Earth’s core [19]. In such cases, it can be used on individual molecules, small
composites such as proteins with hundreds of atoms or on infinite periodic crystals,
though standard implementations of Kohn-Sham DFT struggle for systems beyond a
few hundred atoms as the cubic scaling quickly makes larger calculations impossi-
ble. For the last few decades, extensive research has gone into the development of
computational methods that can bypass the cubic scaling barrier of DFT and achieve
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even greater efficiency which, by exploiting the phenomenon of locality in quantum
systems [20, 21], leads us towards the goal of linear-scaling density functional theory
(LS-DFT) [22–24]. A variety of formulations now exist that can give rise to LS-DFT,
with several electronic structure software programmes now available that can boast
this claim (see [25] and references therein). Consequently, the scientific bounds of DFT
have expanded to include systems consisting of tens of thousands of atoms, with on-
going work to push this limit even higher.

While the success of DFT is beyond question, it has its fair share of well-documented
drawbacks [15, 16, 26, 27]. As any electronic structure theorist will proudly declare, the
theoretical foundations for DFT, as encapsulated in the Hohenberg-Kohn theorems and
the Kohn-Sham equations, provide an exact treatment of the quantum system. How-
ever, practical uses of the method require approximations to the treatment of exchange
and correlation effects, such as the local density approximation (LDA) whereby it is
assumed that these interactions depend solely on the value of the density at a given
point in space (and not, for instance, derivatives of the density), which can severely
impact the accuracy of DFT calculations. Nowhere is this more prominently seen than
in band structure calculations, in particular the determination of the band gap, a central
quantity in determining whether a given solid will be a metal, insulator or semicon-
ductor [15]. The gold standard ab initio method in this field is GW , which frequently
captures band gaps that are in line with experimental observation, while DFT with
LDA habitually underestimates the band gap (if it predicts one at all). More sophis-
ticated approximations to exchange-correlation effects than LDA do exist [28–30], but
these also have their drawbacks and systematic improvements are not always forth-
coming. The result is that DFT by itself can give qualitatively incorrect behaviour for
electronic structure properties due to the severity of the approximations to exchange-
correlation.

In theory, excited state properties can be obtained with DFT if one knows the correct
functional form, but in practice approximations to exchange-correlation effects render
these beyond the scope of ground state DFT calculations. One approach to deal with
this is to allow time evolution of the Kohn-Sham DFT equations, giving rise to time-
dependent DFT (TDDFT) [31], which preserves several of the benefits of DFT, such
as connection to the electron density and moderate computational cost. Indeed, lin-
ear scaling approaches to TDDFT have recently been implemented, allowing for the
treatment of excited states in systems with thousands of atoms [32–34]. However,
many common implementations of TDDFT exclude history dependence from the sys-
tem which has further ramifications in terms of accuracy, which for small molecules
often lags behind WFT approaches. Methods do exist for the use of exact exchange in
DFT/TDDFT calculations, but these can be expensive and restrict the size of the system
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that one can simulate.
In recent years, there has been growing interest in quantum embedding methods

that seek to combine different levels of theory to solve quantum mechanical prob-
lems [35, 36]. The theoretical foundations for this have been well established [37, 38]
and current research focuses on optimising the effectiveness of such techniques. In
theory, quantum embedding enables one to combine a high level wavefunction-based
method to examine part of a system, while using a more efficient approach such as DFT
to treat the remaining environment (WFT-in-DFT) [39]. Similar approaches have long
been exploited for the study of solvents by combining quantum mechanical methods
(QM) for studying the solute with classical molecular mechanical (MM) treatments of
the solvent, known as QM/MM [40]. Quantum embedding takes this to the next level
by allowing an explicit quantum mechanical description of the environment. Using
LS-DFT, this would enable calculations to be performed on systems with thousands of
atoms while still providing a very accurate description of phenomena in the embedded
subsystem. In particular, embedded mean-field theory (EMFT) [41] is a form of quan-
tum embedding that is well-suited to the density matrix approach to linear-scaling [42].
Examples of potential applications include doped molecular crystals, such as the pen-
tacene in p-terphenyl structure used for the maser, and large proteins with excitations
that are highly localised in the structure.

This thesis details the investigation of environment effects on pentacene and subse-
quently the implementation of quantum embedding within the linear-scaling ONETEP
programme [43, 44], to enable quantum embedding approaches to be applied in sys-
tems containing thousands of atoms.

1.1 Dissertation outline

In Chapter 2 we begin by outlining the treatment of many electron quantum mechan-
ical systems and in particular some of the computational approaches used to tackle
these systems, building up basic approximations to the wavefunction before introduc-
ing the principles of DFT. We discuss the challenges that exist with performing DFT
calculations for real systems, followed by extensions of the DFT approach to periodic
systems and density matrices.

In Chapter 3 we discuss the basics of pseudopotential theory, which provides the
context behind embedding methods. This is followed by a discussion of embedding
from a DFT perspective, including the challenges therein and a variety of methods for
embedding systems, including EMFT.

Chapter 4 provides an introduction to LS-DFT, with a focus on density matrix meth-
ods to achieve linear-scaling and their implementation within ONETEP. Also included
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here are details of the relevant pre-existing functionalities within ONETEP that we will
exploit later. This is the final literature review chapter, with all material presented after
this being produced as part of this work.

Chapter 5 gives a detailed discussion of our studies of the pentacene in p-terphenyl
and related systems for the maser using both ground state methods and TDDFT. We
outline the challenges faced with providing reliable results for such systems and dis-
cuss the limitations of the pre-existing methods for ab initio studies of such systems.

Chapter 6 explores our early work with an embedding toy model within ONETEP,
examining the theoretical implementation of freeze-and-thaw and frozen density em-
bedding approaches, as well as the viability of a full quantum embedding approach.

Chapter 7 introduces the complete embedding structures as currently implemented
in the ONETEP package using embedded mean-field theory (EMFT), with correspond-
ing tests of the method and application to systems containing thousands of atoms.

Finally, Chapter 8 concludes the results presented earlier and outlines proposals for
future work.
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2 Background Theory —
From Schrödinger to Kohn-Sham

Although the laws of quantum mechanics have been known for nearly a century, the
key problem in making use of these laws is the difficulty of applying them to large
systems. Analytic solutions are only forthcoming for the most simple systems, such
as the hydrogen atom, so to gain any knowledge of real systems we must consider
numerical solutions. The rise of computational science as a field has facilitated the
first principles study of systems much larger than would ever be possible by analytic
means. However, even with the power of modern computers it is extremely difficult to
apply the laws of quantum mechanics in all their glory to systems consisting of more
than a few atoms as the computational cost becomes prohibitive.

In this chapter, we will briefly revise the fundamentals of quantum theory [1] before
seeing how we can construct approximate solutions to the many-body Schrödinger
equation. This will lead us naturally into density functional theory (DFT) [2, 3], where
we will focus on the challenges in obtaining accurate solutions for real systems. From
there we will explore the application of DFT to periodic systems via Bloch’s theorem.

2.1 The many-electron problem

2.1.1 The equations of motion

The fundamental physics of the interaction ofN electrons andM nuclei is encapsulated
within the time-dependent Schrödinger equation (TDSE),

Ĥ |Ψ〉 = i~
∂ |Ψ〉
∂t

, (2.1)

where Ψ ({ri}, {RI}, t) is the many-body wavefunction, which in general can depend
on electron position r, ion position R and time t, and Ĥ is the many-body Hamiltonian
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operator for the system,

Ĥ =−
N∑
i=1

~2

2me

∇2
i −

M∑
I=1

~2

2MI

∇2
I +

N∑
i=1

N∑
j>i

e2

4πε0

1

|ri − rj|

−
N∑
i=1

M∑
I=1

e2

4πε0

ZI
|ri −RI |

+
M∑
I=1

M∑
J>I

e2

4πε0

ZIZJ
|RI −RJ |

, (2.2)

where ZI is the atomic number for atom I , MI is its nuclear mass and all other physi-
cal constants have their usual meaning. In this equation the first two terms are the ki-
netic energies of the electrons and nuclei respectively, while the remainder are electron-
electron, electron-nucleus and nucleus-nucleus interaction terms. Note that the Hamil-
tonian itself does not depend on time.

Throughout this work we employ Dirac notation for representation of the wave-
function, such that |Ψ〉 is the state vector corresponding to the many-body wavefunc-
tion Ψ, which can be retrieved in the position representation,

Ψ (r,R) = 〈r,R|Ψ〉 . (2.3)

For simplicity throughout this work we will refer to Ψ (r,R) and its state vector |Ψ〉
interchangeably as the wavefunction, swapping between them as convenient. We also
use Hartree atomic units, whereby ~ = me = e = 4πε0 = 1, and drop explicit refer-
ence to these physical constants, which will make the notation much tidier. The reader
is warned, however, that these physical constants are still present implicitly through-
out this work, along with the corresponding units. Our task now is to find solutions
to (2.1). We begin by performing a separation of variables upon the wavefunction to
partition it into position- and time-dependent functions,

Ψ ({ri}, {RI}, t) = Φ ({ri}, {RI})T (t) . (2.4)

Recalling that the Hamiltonian (2.2) is a time-independent quantity, substituting this
result into (2.1) gives us two separate equations for Φ and T ,

ĤΦ ({ri}, {RI}) = εΦ ({ri}, {RI}) , (2.5)

i
∂T (t)

∂t
= ωT (t) , (2.6)

The time-dependent equation has solutions of the form e−iωt, such that the wavefunc-
tion can be written as

Ψ ({ri}, {RI}, t) = Φ ({ri}, {RI}) e−iωt. (2.7)
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The task of solving the many-body problem has thus been reduced down to finding
solutions to the time-independent Schrödinger equation (TISE, 2.5). However, analyti-
cal solutions to this set of equations are only forthcoming for the most basic of physical
systems, such as the hydrogen atom and other single-electron ions such as He+ and
Li2+. In order to determine solutions for more complex systems, we must consider
approximations to the many-body picture.

2.1.2 The Born-Oppenheimer Approximation

Given that the nuclei are considerably more massive than electrons in an atom, it is
reasonable to consider the motion of the nuclei to be slow compared to that of the
electrons. We thus assume that the electrons respond instantaneously to any change in
the nuclear configuration and neglect the kinetic energy of the nuclei. This is known as
the Born-Oppenheimer Approximation [4] and we will apply it throughout this work.

As a consequence, the electronic wavefunction is assumed to depend only paramet-
rically on the nuclear positions, which enables us to perform yet another separation of
variables,

Φ ({ri}, {RI}) = ψ ({ri} ; {RI})χ ({RI}) , (2.8)

where |ψ〉 is the many-electron wavefunction, which satisfies the equation

Ĥ |ψ〉 = E |ψ〉 , (2.9)

where the Born-Oppenheimer Hamiltonian, in Hartree units, is

Ĥ = −
N∑
i=1

∇2
i

2
+

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
J=1

ZI
|ri −RJ |

+
N∑
I=1

M∑
J>I

ZIZJ
|RI −RJ |

. (2.10)

A similar equation can be written down for the nuclear wavefunction |χ〉 [5]. The role
of the nuclei in the Born-Oppenheimer Approximation can be thought of as an external
potential acting on the electrons, a concept which becomes clearer if we rewrite the
Hamiltonian as

Ĥ = T̂ (r) + V̂ee(r) + V̂ext (r;R) + EII(R), (2.11)

where T̂ is the kinetic energy operator, V̂ee is the electron-electron interaction term, V̂ext

is the external potential resulting from the nuclei acting on the electrons and EII is the
(constant) ion-ion interaction energy.
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2.1.3 Variational principle

The average or expectation value a of any quantum operator Â can be expressed in the
form

a [Ψ] =
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

, (2.12)

where the square brackets indicate that a [Ψ] is a functional of the wavefunction [6] i.e.
a [Ψ] maps a function |Ψ〉 onto a number, just as the function f(x) maps a number x
onto another number. The mathematical details of functionals are left to the interested
reader; for our purposes we merely note that the rules of variational calculus using
functionals apply in much the same way as for functions.

Now consider a Hamiltonian Ĥ with eigenstates {Ψi} and corresponding eigenval-
ues {Ei}, such that |Ψ0〉 is the true ground state wavefunction with energy E0. Then
the variational principle states that for a given state |Ψ〉 the expectation value of the
Hamiltonian must satisfy [6]

E [Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0, (2.13)

where the equality holds if and only if |Ψ〉 = |Ψ0〉. In other words, the ground state
energy is a lower bound to the energy expectation value for a trial wavefunction |Ψ〉.
This provides a useful method for finding the ground state solution to the Schrödinger
equation as we can start from an initial guess for |Ψ〉 and minimiseE [Ψ] with respect to
|Ψ〉. By the variational principle, the wavefunction that yields the ground state energy
E0 will be the true ground state many-body wavefunction |Ψ0〉.

2.1.4 Hellmann-Feynman theorem

Consider the wavefunction Ψ (λ) that has an implicit dependence on the parameter λ.
Then the derivative of the energy E with respect to λ is given as

dE (λ)

dλ
= 〈Ψ|dĤ

dλ
|Ψ〉 , (2.14)

i.e. the derivative of the energy with respect to an external parameter can be calculated
as simply the expectation value of the derivative of the Hamiltonian — the depen-
dence of |Ψ〉 on λ does not feature. This is known as the Hellmann-Feynman theo-
rem. Most commonly, this theorem is invoked in the calculation of ionic forces. By the
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Born-Oppenheimer approximation, the electronic wavefunction depends only para-
metrically on the ionic coordinates, and so the forces can be calculated as

FI = − dE

dRI

= −〈Ψ| dĤ
dRI

|Ψ〉 . (2.15)

2.2 Trial wavefunction solutions

So far in our discussion we have neglected relativistic effects, which are not included
in the TISE. A rigorous treatment of relativistic effects within quantum mechanics
would require invocation of the Dirac equation, which is beyond the remit of this work.
Nonetheless, one relativistic property of the wavefunction which is not evident from
the TISE but is essential for understanding the quantum nature of matter is spin. Spin
is a property of fundamental particles that arises naturally from the Dirac equation
and has crucial experimental consequences such as the Zeeman effect. All particles
can be classified based on their spin as either bosons (integer spin) or fermions (half-
integer spin). The former includes photons, while the latter includes protons, neutrons
and electrons. In order to capture this in our discussion, we must insert spin as an
additional quantity upon which the wavefunction depends. Often in the literature
the dependence of the wavefunction on position r and spin σ is wrapped into a 4-
coordinate variable x,

x = {r, σ} . (2.16)

From the perspective of identifying solutions to the many-body problem, one conse-
quence of this property of electrons is that the wavefunction is antisymmetric with
respect to exchange of the space and spin coordinates of any two electrons,

Ψ (x1, x2, . . .) = −Ψ (x2, x1, . . .) . (2.17)

Any trial solutions to the many-body problem must therefore satisfy this property.
This gives rise to the celebrated Pauli exclusion principle for fermions, whereby no
two fermions can occupy the same quantum state, and demonstrates that the motion
of electrons is correlated [7].

A trial solution for the many-body problem can be constructed from a product of
one-electron orbitals {φi}, known as a Hartree product. While such a wavefunction
clearly does not satisfy the antisymmetry principle, it can be easily shown that a Slater
determinant composed of one-electron orbitals as a linear combination of Hartree prod-
ucts is antisymmetric and thus a valid trial solution. For example, for a two-electron
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system, the trial wavefunction would be

Ψ (x1, x2) =
1√
2

∣∣∣∣∣φ1 (x1) φ2 (x1)

φ1 (x2) φ2 (x2)

∣∣∣∣∣ (2.18)

=
1√
2

(φ1 (x1)φ2 (x2)− φ2 (x1)φ1 (x2)) ,

=−Ψ (x2, x1)

where the prefactor 1/
√

2 is included to ensure the wavefunction is normalised.

2.2.1 Hartree-Fock Theory

As a Slater determinant built from one-electron orbitals satisfies the Pauli exclusion
principle, the challenge now is to construct a suitable set of orbitals {φi} that will
yield a wavefunction that is optimal in the variational sense. The advance is provided
by Hartree-Fock theory [7–9], which involves constructing a single Slater determinant
from a set of single electron orbitals,

|ΦHF〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1 (x1) φ2 (x1) . . . φN (x1)

φ1 (x2) φ2 (x2) . . . φN (x2)
...

... . . . ...
φ1 (xN) φ2 (xN) . . . φN (xN)

∣∣∣∣∣∣∣∣∣∣
. (2.19)

The individual orbitals {φi} are solutions to the Hartree-Fock equations,

F̂ |φi〉 = εi |φi〉 , (2.20)

where F̂ is the Fock operator i.e. the effective Hamiltonian for the single-particle equa-
tion

F̂ ≡ Ĥcore +
N∑
j=1

(
2Ĵj − K̂j

)
, (2.21)

where Ĥcore is the one-electron core Hamiltonian consisting of the kinetic energy con-
tribution and nuclear-nuclear interactions, Ĵj is the Coulomb operator and K̂j is the
exchange operator,

Ĵj |φi〉 ≡ |φi〉 〈φj|
1

|r1 − r2|
|φj〉 , (2.22)

K̂j |φi〉 ≡ |φj〉 〈φj|
1

|r1 − r2|
|φi〉 , (2.23)
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where the braket indicates that integration is only done over one of the position vari-
ables,

〈φj|
1

|r1 − r2|
|φi〉 =

∫
φ∗j (r2)φi (r2)

|r1 − r2|
dr2. (2.24)

The summation in (2.21) runs over all orbitals since the self-interaction term i = j in
the Coulomb operator is exactly cancelled by the equivalent term in the exchange op-
erator. A detailed derivation of these equations is provided in Appendix A. Notice that
the solutions to each of the equations (2.20) implicitly depend on all other orbitals, the
effects of which are gathered into a mean-field approach in the form of the Coulomb
and exchange operators. The equations (2.20) can be solved self-consistently using the
variational principle to iteratively improve the quality of the Hartree-Fock wavefunc-
tion |ΦHF〉 until the total energy converges.

Although the Hartree-Fock method provides an approach to finding approximate
solutions to the many-body problem, it has its drawbacks. Most notably, there is no
accounting for correlation effects within the Hartree-Fock method beyond the Pauli
principle [7]. Consequently, the level of accuracy obtained with this approach is insuffi-
cient for understanding chemical properties — for instance, bond energies are severely
underestimated by Hartree-Fock compared to experiment [10].

2.2.2 Correlation effects — post Hartree-Fock

The Hartree-Fock orbitals are constructed as the ground state of the Fock operator, such
that |ΦHF〉 contains only occupied orbitals constructed from the lowestN eigenstates of
F̂ . One possible extension is to consider the inclusion of higher unoccupied orbitals via
the use of creation and annihilation operators on the Hartree-Fock wavefunction. The
exact many-body wavefunction can be rigorously expressed as a linear combination of
all permutations of single, double, triple etc. excitations [7],

|ΨFCI〉 =c0 |ΦHF〉+
∑
i,a

cai |Φa
i 〉+

∑
i>j,
a>b

cabij |Φab
ij 〉+

∑
i>j>k,
a>b>c

cabcijk |Φabc
ijk〉+ . . . , (2.25)

=

(
c0 +

n∑
p=1

Ĉp

)
|ΦHF〉 , (2.26)

where i, j, k, . . . denote the occupied orbitals replaced by the virtual orbitals a, b, c, . . .
by the action of the operators Ĉp on the Slater determinant |ΦHF〉, and c0 = 〈ΦHF|ΨFCI〉.
The determinants |Φa

i 〉 , |Φab
ij 〉 etc. represent single, double etc. excitations from the ground

state. This is known as full configuration interaction (FCI) and is the most general
wavefunction-based solution possible to the many-body problem. FCI generally yields
excellent agreement with experiment and is often treated as an exact result with which
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to compare other trial wavefunction methods constructed from equivalent one-electron
orbitals. This is due to the inclusion of additional contributions to the correlation en-
ergy (beyond the Pauli principle) that are missing from Hartree-Fock, and indeed we
can define the correlation energy as

Ec ≡ EFCI − EHF. (2.27)

However, the number of possible configurations scales factorially with the number of
electrons in the system, making FCI computationally unfeasible for all but the sim-
plest of physical systems. Instead, quantum chemists often make use of approximate
methods whereby the Hartree-Fock solution acts as the zeroth order term in an expan-
sion to include lower-order excited state transitions or perturbative external potentials.
Collectively these methods are referred to as post Hartree-Fock approaches, and include
coupled clusters (CC) [11], which make use of an exponential parametrization of the
operators in (2.26), and multi-configurational self consistent field (MCSCF) approaches
[12, 13], including its offspring complete active space second-order perturbation theory
(CASPT2) [14]. Typically, quantum chemical methods based on correlated wavefunc-
tions exhibit scaling ofN4−N7, whereN is the number of electrons in the system. This
renders large-scale calculations on systems including thousands of atoms beyond the
reach of such wavefunction-based methods.

2.3 Density functional theory

So far, we have only discussed approaches to solving the many-body Schrödinger that
involve approximations to the wavefunction. An alternative viewpoint comes cour-
tesy of density functional theory (DFT) [2, 3, 6], whereby all quantities of interest in a
quantum system can be expressed in terms of the electronic charge density,

n(r) = 〈Ψ|n̂|Ψ〉 = N

∫ N∏
i=2

dri|Ψ (r, r2, r3 . . . , rN) |2. (2.28)

where n̂ is the density operator. Equation (2.28) illustrates that, while the many-body
wavefunction is a function of 3N coordinates, n(r) depends on only three, greatly re-
ducing the complexity of the problem. The first density functional approach was pro-
vided by the Thomas-Fermi model [15, 16], whereby the kinetic energy is calculated as
a local functional of the electron density, modelled using the density of a set of non-
interacting electrons in a homogeneous gas [5]. Although this approach is too crude to
be used in practical calculations, this idea of describing energy quantities as function-
als of the electron density will in fact be fundamental for much of the work to come in
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the remainder of this thesis.

2.3.1 Hohenberg-Kohn theorems

The theoretical basis required for DFT is motivated by the two Hohenberg-Kohn theo-
rems [2]. To begin, we write the Hamiltonian in terms of an external potential Vext(r),

Ĥ =−
N∑
i=1

∇2
i

2
+

1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
+

N∑
i=1

Vext (ri) ,

=T̂ + V̂ee + V̂ext. (2.29)

The first theorem states that Vext(r) is determined uniquely by the ground state density
n0(r). Consequently, the Hamiltonian Ĥ is also uniquely determined, which yields
the exact many-body wavefunction for the system, from which it is possible to obtain
all ground and excited state properties of the quantum system. Thus all properties of
the system can be determined from knowledge of the ground state electron density
n0(r) alone. As a result, we can define the ground state many-body wavefunction to
be itself a functional of the density Ψ [n], since it is determined as an eigenstate of the
Hamiltonian (2.29).

The second theorem states that for any Vext(r), there exists a functional E [n], the
global minimum of which is precisely the ground state energy of the system, and
the electron density that minimises this functional is the ground state density n0(r).
From (2.29), we can write the total energy functional as

E [n] = 〈Ψ [n] |T̂ + V̂ee|Ψ [n]〉+

∫
Vext(r)n(r)dr,

=FHK [n] +

∫
Vext(r)n(r)dr. (2.30)

where FHK [n] is the Hohenberg-Kohn universal functional,

FHK [n] ≡ 〈Ψ [n] |T̂ + V̂ee|Ψ [n]〉 . (2.31)

This quantity is universal in the sense that for any system it is always possible to define
a functional in this way, independent of Vext, though of course this does not reveal any-
thing about the nature of the functional itself. The second Hohenberg-Kohn theorem
provides a DFT equivalent of the variational principle discussed in Section 2.1.3.
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2.3.2 Kohn-Sham equations

While the Hohenberg-Kohn theorems provide an academic insight into the nature of
the electronic structure problem, they do not in and of themselves form a practical
method for solving the many body problem, since the form of the universal functional
FHK [n] is unknown. The critical leap was provided by Kohn and Sham [3] in 1965.
They showed that the interacting many-body problem can be rigorously reduced to a
set of non-interacting independent electron equations acting in an external field VKS [n],
the Kohn-Sham potential. In this section we give a brief derivation of the Kohn-Sham
equations as this will help to clarify many key concepts that we will encounter later.

We seek to apply the variational principle to the Hohenberg-Kohn total energy
functional (2.30),

δ

δn(r)

[
FHK [n] +

∫
Vext(r)n(r)dr− µ

(∫
n(r)dr−N

)]
= 0, (2.32)

where µ is a Lagrange multiplier introduced to maintain normalisation. In order to
progress from this, we must consider the form of the universal functional FHK [n].
From (2.31), we have

FHK [n] = 〈Ψ [n] |T̂ + V̂ee|Ψ [n]〉 , (2.33)

= 〈T̂ 〉+ 〈V̂ee〉 , (2.34)

= (Ts [n] + ∆T [n]) + (EH [n] + ∆Vee [n]) . (2.35)

where Ts [n] is the non-interacting electron kinetic energy, EH [n] is the self-interacting
Hartree energy of n(r),

EH [n] ≡ 1

2

∫
n(r)n (r′)
|r− r′|

drdr′, (2.36)

and ∆T [n] and ∆Vee [n] contain the many-body effects that are not captured within the
non-interacting picture, which it is hoped will be considerably smaller in magnitude
than the non-interacting components. These last two terms consist of the exchange and
correlation effects that we briefly discussed in the previous section, collectively called
the exchange-correlation functional,

EXC [n] = ∆T [n] + ∆Vee [n] . (2.37)

We shall explore the nature of EXC in the next section. For now, we simply note that it
is a functional of the density whose exact form is unspecified.
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Substituting these terms into FHK [n], we have

δFHK [n]

δn(r)
=

δ

δn(r)

{
Ts [n] + EH [n] + EXC [n]

}
, (2.38)

=
δTs [n]

δn(r)
+

∫
n (r′)
|r− r′|

dr′ +
δEXC [n]

δn(r)
, (2.39)

=
δTs [n]

δn(r)
+ VH(r) + VXC(r). (2.40)

The final two terms in (2.40) are defined as the Hartree and exchange-correlation po-
tentials respectively,

VH(r) =

∫
n (r′)
|r− r′|

dr′, VXC(r) =
δEXC [n]

δn(r)
. (2.41)

Now substituting this result into (2.32), we obtain

δTs [n]

δn(r)
+ VH(r) + VXC(r) + Vext(r) = µ. (2.42)

We now define the Kohn-Sham potential,

VKS(r) ≡ VH(r) + VXC(r) + Vext(r) (2.43)

such that
δTs [n]

δn(r)
+ VKS(r) = µ. (2.44)

But (2.44) is simply the result we would get for a set of non-interacting electrons mov-
ing in an effective potential VKS(r) with kinetic energy Ts [n]. Thus we can write down
a set of independent electron Schrödinger equations,[

−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r), (2.45)

where {ψi } are the Kohn-Sham orbitals from which the density can be constructed,

n(r) =
∑
i

|ψi(r)|2. (2.46)

These are the Kohn-Sham equations, which can be solved by a self-consistent loop to
obtain the true ground state density n0(r) that minimises the functional E [n], via the
second Hohenberg-Kohn theorem. The brevity of this derivation may mask the pro-
found nature of the result — we have shown that it is possible to obtain the ground
state density n0(r) for a many-body interacting system by solving an equivalent set of
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independent electron equations for the fictitious Kohn-Sham system. By the Hohenberg-
Kohn theorems, we have thus established a method from which it is possible to derive
all the fundamental properties of a quantum system without direct reference to the
wavefunction.

2.4 The exchange-correlation problem

It is worth noting at this stage that the Kohn-Sham equations (2.45) and (2.46) provide
an exact theoretical description of all the properties of the ground state of the quantum
system. The only part of the universal functional whose form we have not yet speci-
fied is the exchange-correlation functional EXC [n]. In order to gain some more insight
into the nature of the exchange-correlation energy, let us combine (2.35) and (2.37) and
rewrite in terms of EXC [n] [5],

EXC [n] = FHK [n]− (Ts [n] + EH [n]) (2.47)

=
(
〈T̂ 〉 − Ts [n]

)
+
(
〈V̂int〉 − EH [n]

)
. (2.48)

The latter form illustrates that the exchange-correlation functional is exactly defined
as the difference between the true many-body interacting system and the independent
electron Kohn-Sham system. If we knew the exact form of this functional, then we
would be able to obtain the true ground state of the many-body interacting system via
solution of the Kohn-Sham equations. In practice, the form of EXC [n] is unknown in
general and we must make approximations to this functional in order to obtain useful
results with DFT. Nonetheless, decades of investigation into the design of approximate
functionals have revealed the importance of fulfilling the known properties of the exact
functional, which we shall briefly explore in the next section.

2.4.1 Properties of the exact functional

Due to effects such as Pauli repulsion, in real materials electrons tend to be spatially
separated, resulting in a region (or hole) around an electron where other electrons are
unlikely to be found. The exchange-correlation energy can be represented as an inter-
action between the electron density and an exchange-correlation hole [17],

EXC [n] =

∫
n(r)hXC (r, r′)
|r− r′|

drdr′ (2.49)

where hXC (r, r′), the exchange-correlation hole density, accounts for the non-classical
exchange and correlation interactions between two electrons simultaneously at r and
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r′. This quantity is normalised as∫
hXC (r, r′) dr′ = −1. (2.50)

In effect, the exchange-correlation hole has a net charge deficit of one electron. Equa-
tion (2.50) is known as the sum rule, and it is essential that any approximate exchange-
correlation functionals satisfy this condition.

The exchange-correlation hole can be split into distinct Kohn-Sham exchange and
correlation holes [6],

hXC (r, r′) = hX (r, r′) + hC (r, r′) , (2.51)

which, in turn, satisfy their own normalisation conditions,∫
hX (r, r′) dr′ = −1,

∫
hC (r, r′) dr′ = 0. (2.52)

Since the hole densities are additive, from (2.49) it is trivial to partition EXC [n] into
exchange and correlation contributions,

EXC [n] = EX [n] + EC [n] . (2.53)

EX is the exchange energy obtained from the Slater determinant of the Kohn-Sham
orbitals, while EC accounts for all remaining non-classical effects [10]. In general, the
exchange energy is the dominant contribution.

Throughout our discussion so far, we have implicitly assumed an integer electron
number, though there is no compelling reason for this (aside from physical sanity).
The Kohn-Sham DFT setup can be easily extended to consider fractional particle num-
ber [18, 19]. The resulting minimum energy curve is a series of straight line seg-
ments, with derivative discontinuities at integer Z, as illustrated in Figure 2.1. For
Z − 1 < N < Z, the slope corresponds to the ionisation energy of the Z-electron sys-
tem −IZ. This derivative discontinuity is another fundamental property of the exact
energy functional.

One consequence of the use of a fictitious Kohn-Sham picture is the loss of phys-
ical meaning for the Kohn-Sham eigenvalues. Nonetheless, the eigenvalues do have
a distinct meaning within DFT in the form of Janak’s theorem [21], which states that
the energy eigenvalues can be obtained by variation of the total energy functional with
respect to the occupancies {fi},

εi =
∂E [n]

∂fi
. (2.54)
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FIGURE 2.1: Schematic illustration of the piecewise linear form of the
exact exchange-correlation functional. The slopes of the [N − 1, N ] and
[N,N + 1] segments are the ionisation energy I and the electron affinity A

for the N electron system respectively. Based on Figure 2 in [20].

Combined with our previous discussion of the derivative discontinuity, we immedi-
ately see that the highest occupied molecular orbital (HOMO) energy is the negative
of the ionisation energy,

εHOMO = −IZ. (2.55)

Unfortunately, the corresponding result for the lowest unoccupied molecular orbital
(LUMO) is not quite so simple. Due to the discontinuity in the energy derivatives at
integer Z, there is a step change in the exchange-correlation potential as the number of
electrons changes from Z − δ to Z + δ, which yields a LUMO energy of [22]

εLUMO = −IZ+1 −∆XC, (2.56)

where ∆XC is the derivative discontinuity. Consequently, the Kohn-Sham gap is

Egap = IZ − IZ+1 = εLUMO − εHOMO + ∆XC. (2.57)

Finally, it is worth considering the asymptotic behaviour of the exchange-correlation
potential VXC(r). The long-range behaviour of this potential is dominated by the ex-
change term, leading to an r →∞ limit for finite systems of [23]

VXC(r)→ −1

r
. (2.58)
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2.4.2 Constructing approximate functionals

In their original paper [3], Kohn and Sham modelled the exchange-correlation func-
tional based on a homogeneous electron gas. This is known as the local density ap-
proximation (LDA), whereby the XC functional can be expressed as

ELDA
XC [n] =

∫
εLDA (n(r))n(r)dr, (2.59)

where εLDA (n(r)) is the energy density calculated from an equivalent homogeneous
electron gas at point r. Despite the simple nature of the LDA functional, it has proved
highly successful for a variety of chemical systems and properties [24], though it does
have its flaws such as strongly overbinding molecules and vastly underestimating
band gaps (if it predicts one at all). A seemingly sensible next step for constructing bet-
ter approximations to the XC functional would be to include higher order corrections
to the density, for instance by performing a Taylor expansion of n (r) [3]. However,
tests of such functionals yielded poor results even in comparison to LDA [10]. Funda-
mentally, this is due to the fact that such functionals violate the sum rule (2.50) [25],
which the LDA satisfies, an observation that highlights the importance of satisfying
this criterion when constructing new functionals.

More sophisticated approaches to XC approximations follow the strategy of Perdew
and Schmidt [26], climbing the rungs of Jacob’s ladder of exchange-correlation func-
tionals from “Hartree World” to the paradise of chemical accuracy. The next rung
above LDA is the generalised gradients approximation (GGA), whereby the energy
density is now assumed to depend on the first-order derivative of the density [27],

EGGA
XC [n] =

∫
εGGA ([n,∇n] , r)n(r)dr. (2.60)

where εGGA ([n,∇n] , r) is the energy density for the GGA functional in question, which
is explicitly constructed to ensure that the sum rule and normalisation conditions are
satisfied. Generally GGA functionals yield better results than LDA, in particular cor-
recting the severe overbinding of molecules that plagues LDA, though this improve-
ment is not uniform across molecular systems [28].

Climbing another rung of Jacob’s ladder leads us into the realm of meta-GGAs,
which introduce a dependence on the kinetic energy density τ [29],

EmGGA
XC [n] =

∫
εmGGA ([n,∇n, τ ] , r)n(r)dr, (2.61)
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FIGURE 2.2: Schematic illustration of the behaviour of various exchange-
correlation functionals for fractional electron number. Based on Figure 2

in [20] and Figure 1 in [31].

where τ(r) can be expressed as,

τ(r) =
1

2

Nocc∑
i

|∇ψi(r)|2, (2.62)

in order to reduce the self-correlation error typical of LDA and GGA functionals. While
this does generally improve accuracy, typically the benefits are modest as the improve-
ment is primarily contained within the correlation energy EC, which, as mentioned
earlier, is usually smaller in magnitude than the exchange energy. Importantly, meta-
GGAs satisfy the condition that the correlation energy of any one-electron density is
zero [30].

All of the functionals discussed so far fail to correct for self-interaction errors, which
can only be truly accounted for with exact exchange (i.e. Hartree-Fock) [31]. This
motivates the use of hybrid functionals [32], which replace a portion of the exchange-
correlation contribution from a semi-local functional with the exact-exchange contribu-
tion. For example, the popular B3LYP functional consists of contributions from LDA,
GGA and Hartree-Fock [33],

EB3LYP
XC =ELDA

x + a0
(
EHF

x − ELDA
x

)
+ ax

(
EGGA

x − ELDA
x

)
+ELDA

c + ac
(
EGGA

c − ELDA
c

)
. (2.63)

where a0 = 0.20, ax = 0.72 and ac = 0.81. Hybrid functionals yield accuracy that is
comparable to post-Hartree-Fock methods, though still within the framework of DFT
and at a significantly reduced cost [10]. The reason for the success of hybrid functionals
can be understood from Figure 2.2, which illustrates the variation of the total energy
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for fractional electron number of B3LYP compared to some of the other functionals we
have discussed so far. We see that the piecewise linear form of the exact functional is
not reproduced with approximate functionals and indeed there is a general tendency
for DFT functionals to follow a convex energy curve, while pure Hartree-Fock gives
the opposite result, an overestimation of the energy barrier to be crossed in transi-
tioning from N to N + 1 electrons. Hybrid functionals generally lie in between the
extrema of exact exchange and semi-local functionals, and so provide a better fit to
the exact functional behaviour. However, like semi-local functionals hybrids still suf-
fer from self-interaction error [31], which can only be truly eradicated with 100% exact
exchange.

2.4.3 More advanced approaches: range-separated hybrids

One of the most dramatic failures of LDA is the long-range asymptotic behaviour of the
exchange-correlation potential, which decays exponentially with distance for finite sys-
tems [23], in contrast to the expected 1/r behaviour from (2.58). This motivates the use
of range-separated hybrids (RSHs) [34, 35], wherein the short-range exchange interac-
tion is treated using a semi-local functional and the long-range using exact exchange.
The length-scale for this changeover is controlled by a range-separation parameter λ
with units of inverse length. RSHs show significantly reduced curvature compared
to other functionals, bringing them closer to the piecewise linearity of the exact func-
tional and minimising the impact of the derivative discontinuity [22]. This corrects for
the asymptotic failures of semi-local functionals, but introduces an arbitrariness in the
choice of λ — often RSHs are fitted to empirical data, the result of which is a system-
dependence in the choice of functional that can involve many tunable parameters [10],
undermining the universality of EXC.

Kronik and coworkers [20, 36, 37] have developed a formalism whereby the tun-
ing is performed such that εHOMO is the negative of the ionisation energy, the condi-
tion (2.55) of the exact functional. This optimally-tuned RSH (OT-RSH) provides a
more solid physical motivation for the tuning of the exchange interaction [38].

2.5 Density matrix approach to electronic structure

So far we have discussed the principles of quantum mechanics from the perspective
of the wavefunction and density functional theory, whereby it is possible to extract
all the properties of a quantum system by treating the electron density as the primary
quantity. In this section we will show that there is another perspective from which we
can understand a quantum system, namely the one-particle density matrix [39]. The
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density matrix formalism will be central to the work laid out in this thesis, so we will
review the important concepts here.

To begin, we define the density operator for an N electron system in terms of the
Kohn-Sham eigenstates {ψn} [39, 40],

ρ̂ =
∑
n

fn |ψn〉 〈ψn| , (2.64)

where {fn} are the occupancies of the Kohn-Sham states. Recall that the Kohn-Sham
orbitals are orthonormal i.e.

〈ψi|ψj〉 = δij. (2.65)

We shall now seek to illustrate the relationship between the formulation of DFT in
terms of the Kohn-Sham eigenstates outlined in Section 2.3 and the density matrix for-
malism by examining the properties of this object. Consider the square of the density
operator,

ρ̂2 =
∑
m,n

fmfn |ψm〉 〈ψm|ψn〉 〈ψn| ,

=
∑
m,n

fmfn |ψm〉 δmn 〈ψn| ,

=
∑
n

f 2
n |ψn〉 〈ψn| , (2.66)

which is simply ρ̂ if f 2
n = fn, which is trivially true if fn = 1 (occupied state below

the Fermi level) or fn = 0 (unoccupied, above the Fermi level). In practice, this state
of affairs is only achievable for computational methods if there is a bandgap in the
system. The property

ρ̂2 = ρ̂, (2.67)

is known as idempotency and is equivalent to orthonormality of the Kohn-Sham orbitals
with occupancies fn = { 0, 1 }. ρ̂ is thus a projector onto the space of occupied states.
Similarly, the trace of (2.64) can be written as

Tr(ρ) =
∑
i

〈ψi|ρ̂|ψi〉 , (2.68)

=
∑
i,n

fn 〈ψi|ψn〉 〈ψn|ψi〉 ,

=
∑
i

fi = N, (2.69)
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i.e. the density matrix is normalised such that

Tr (ρ) = N. (2.70)

Next, we will consider the trace of the product of ρ̂ and a quantum operator Â

Tr
(
ρ̂Â
)

=
∑
n

〈ψn|ρ̂Â|ψn〉 , (2.71)

=
∑
n,m

fn 〈ψn|ψm〉 〈ψm|Â|ψn〉 , (2.72)

=
∑
n,m

fnδnm 〈ψm|Â|ψn〉 , (2.73)

=
∑
n,m

fn 〈ψn|Â|ψn〉 , (2.74)

=
∑
n

fnan = 〈Â〉. (2.75)

Indeed, this is a general result: the expectation value of any operator in a statistical
ensemble can be written as

Tr
(
ρ̂Â
)

= 〈Â〉. (2.76)

Finally, we note that the density matrix can be written in the position representation as

ρ (r, r′) =
∑
n

fnψn(r)ψ∗n(r′), (2.77)

the diagonal elements of which are

ρ (r, r) =
∑
n

fn|ψn(r)|2 = n(r), (2.78)

i.e. the electron density can be easily extracted from the diagonal elements of the den-
sity matrix. By the Hohenberg-Kohn theorems, all data required to fully describe our
system is thus encapsulated within the one-particle density matrix, which we can con-
struct by virtue of the Kohn-Sham mapping from the many-body system to a fictitious
independent electron picture.

2.6 Periodic systems

Conceptually when we speak of the interactions of electrons it is natural to focus on the
case of individual atoms or molecules, however DFT can also be applied to periodic
systems. A comprehensive discussion of the theory of periodic systems is provided by
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Ashcroft & Mermin [41], but here we will only introduce some of the key concepts that
are needed. A crystal may (in an idealistic sense) be represented as a primitive unit cell
repeated on an infinite lattice, with the vertices of the primitive unit cell defined by the
lattice vectors {ai}. Then we define the Bravais lattice to be the set of all points with
position vectors of the form

R = n1a1 + n2a2 + n3a3, (2.79)

where {ni} are integers. The reciprocal lattice is defined as the set of wave vectors {K }
that produce plane waves with the periodicity of the Bravais lattice,

eiK·(r+R) = eiK·r, (2.80)

⇒ eiK·R = 1. (2.81)

From this it can be seen that the primitive vectors of the reciprocal lattice {bi} satisfy

bi · aj = 2πδij. (2.82)

Now we can construct any wave vector k in reciprocal space as

k = k1b1 + k2b2 + k3b3, (2.83)

where, in general, { ki } ∈ IR.
Crystalline systems can be simulated by choosing a large unit cell (or supercell) to

account for the bulk properties of the material, using periodic boundary conditions
(PBCs) imposed to avoid spurious edge effects. In practice PBCs are often applied in
place of open boundary conditions (OBCs) even for isolated systems, with the simula-
tion cell being sufficiently large to avoid spurious self-interactions between images in
neighbouring cells. The supercell approach may require extremely large supercells to
accurately capture the behaviour of the material in bulk. Fortunately, we can utilise the
power of reciprocal space to greatly reduce the complexity of the problem via Bloch’s
theorem.

2.6.1 Bloch’s theorem

Here we will follow the derivation of Ashcroft and Mermin [41]. Let us consider an
electron in a perfect lattice as defined above, with Bravais lattice vector R. Then the
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independent electron Schrödinger equation for this system may be written as

Ĥ |ψ〉 =

(
−1

2
∇2 + V (r)

)
|ψ〉 = E |ψ〉 , (2.84)

where V (r) is a potential with the periodicity of the Bravais lattice,

V (r + R) = V (r). (2.85)

Clearly the Hamiltonian for this system is also periodic. Now let us consider a transla-
tion operator T̂R which acts on any function that is periodic in the Bravais lattice such
that

T̂Rf(r) = f (r + R) . (2.86)

Then
T̂RĤ(r)ψ(r) = Ĥ (r + R)ψ (r + R) = Ĥ(r)T̂Rψ(r). (2.87)

Thus the Hamiltonian and translation operator commute i.e.
[
T̂R, Ĥ

]
= 0. As a conse-

quence they possess a simultaneous set of eigenstates,

Ĥ |ψ〉 = E |ψ〉 , (2.88)

T̂R |ψ〉 = c(R) |ψ〉 . (2.89)

Now
T̂RT̂R′ |ψ〉 = c(R)c (R′) |ψ〉 = c (R + R′) |ψ〉 , (2.90)

which implies that c can be represented as an exponential. Defining the eigenvalues of
the lattice vectors {ai}with corresponding complex numbers {xi},

c (ai) = e2iπxi . (2.91)

Then, remembering that the lattice vectors can be expressed in the form of (2.79), we
have

c(R) = c (a1)
n1 c (a2)

n2 c (a3)
n3 = eik·R, (2.92)

where k is a reciprocal lattice vector in the form of (2.83),

k = x1b1 + x2b2 + x3b3. (2.93)

such that ai · bj = 2πδij . Finally substituting this result into (2.89) we arrive at the first
form of Bloch’s theorem

T̂Rψ(r) = ψ (r + R) = eik·Rψ(r). (2.94)



Chapter 2. Background Theory —
From Schrödinger to Kohn-Sham

30

Let us now write down an ansatz for the wavefunction as a product of a plane wave
and a function unk(r) with the periodicity of the lattice,

ψnk(r) = eik·runk(r), (2.95)

where we have introduced the subscripts n and k to highlight the dependence on the
band index and wave vector respectively. Then

ψnk (r + R) = eik·reik·Runk (r + R) = eik·Reik·runk (r) = eik·Rψnk(r), (2.96)

which agrees with (2.94). Thus (2.95) is simply another statement of Bloch’s theorem.

2.6.2 Boundary conditions

At this point we must consider the boundary conditions for the wavefunction in the
crystal. We apply generalised PBCs, also known as Born-von Karman boundary con-
ditions [41],

ψ (r +Niai) = ψ(r), i = { 1, 2, 3 } , (2.97)

whereNi is the number of cells in the ai direction andNcells = N1N2N3 is the total num-
ber of primitive cells in the crystal i.e. the “ends” of the wavefunction are connected at
opposite surfaces. By Bloch’s theorem, we have

ψnk (r +Niai) = eiNik·aiψnk(r), (2.98)

which, applying (2.97) and (2.83), implies

eiNik·ai = 1 ⇒ e2πiNixi = 1, (2.99)

which is fulfilled if
xi =

mi

Ni

, mi ∈ Z. (2.100)

Thus the Bloch wave vectors must be of the form

k =
3∑
i=1

mi

Ni

bi. (2.101)

For each such wave vector there is associated a volume ∆k defined as

∆k =
b1

N1

·
(
b2

N2

× b3

N3

)
=

1

N

[
b1 · (b2 × b3)

]
. (2.102)
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The quantity in square brackets is the volume of the first Brillouin zone (FBZ), and
thus the number of allowed wave vectors is equal to the number of sites in the crystal.
Therefore we can restrict our treatment of k-space to sampling points within the FBZ.
As we approach the limit of a perfect crystalNi →∞, k becomes continuous in the FBZ,
however the wavefunctions vary smoothly in k-space [42], such that the sampling of
k-space can be discretised via methods such as the Monkhorst-Pack approach [43].

The size of the FBZ is inversely proportional to the size of the real-space unit cell,

ΩFBZ ∝
1

Ωcell
. (2.103)

Thus a larger supercell reduces the size of the corresponding FBZ in reciprocal space,
which concurrently reduces the number of k-points required. For the purposes of our
work, which we seek to apply to very large systems, our supercells will be sufficiently
large that we can restrict ourselves to a single k-point Γ, where k = 0.

2.6.3 Plane waves

Since it is possible to Fourier expand any periodic function, such as unk(r), in terms of
a plane wave basis, we can rewrite (2.95) as

ψnk(r) = eik·r
∑
G

cnGe
iG·r, (2.104)

where G is the reciprocal lattice vector G = y1b1 + y2b2 + y3b3. Thus Bloch’s theorem
illustrates that plane waves are a natural choice of basis for solving the Kohn-Sham
equations in a periodic system. In theory, the sum in (2.104) is over all possible G-
points, though in practice it is necessary to truncate this expansion. The highest G-
vector included in the expansion is specified by the kinetic energy cutoff,

Ecut =
|k + G|2

2
. (2.105)

This cutoff energy is a critical quantity for the quality of a Kohn-Sham DFT calcula-
tion. Traditionally calculations using plane wave implementations of DFT must be
converged with respect to this parameter.

Although plane waves follow naturally from our preceding description of Bloch’s
theorem, they do have their drawbacks. For spatially localised systems a large number
of plane waves are required to construct an accurate picture of the system. Addition-
ally, there is a vacuum penalty to be paid for isolated systems since the plane waves
expand into the vacuum even though there is, in principle, little or no density outside
the system of interest.
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2.6.4 Wannier functions

An alternative but equivalent approach to the Bloch orbital formalism can be obtained
by performing a Fourier transform of the Bloch wavefunctions [44],

|Rn〉 =
V

(2π)3

∫
BZ
dke−ik·R |ψnk〉 , (2.106)

where R is a real-space lattice vector and the integral is computed over the Brillouin
zone. The resulting functions are highly localised in space and orthonormal,

〈Rn|R′n′〉 = δRR′δnn′ , (2.107)

and are known as Wannier functions. The exp (−ik ·R) term in (2.106) provides a
generalised phase factor which shifts the Wannier function by R in real space. An
inverse Fourier transform can be constructed to produce the Bloch orbitals from the
Wannier functions,

|ψnk〉 =
∑
R

eik·R |Rn〉 . (2.108)

Combined with (2.106) this forms a unitary transformation between the Bloch and
Wannier functions. Thus the Wannier functions provide an equally valid description
of the periodic system as the Bloch orbitals. The price for this spatial localisation is
that the Wannier functions are not eigenstates of the Hamiltonian; in effect, we have
swapped localisation in energy space (via the Bloch orbitals) for localisation in position
space.

It is worth nothing that there is a gauge freedom to the Wannier functions that
arises from the relationship to the Bloch orbitals [45]. If we replace the Bloch orbital
|ψnk〉with

|ψ̃nk〉 = eiϕn(k) |ψnk〉 , (2.109)

where ϕn(k) is any real function that is periodic in reciprocal space, there is no resulting
change in our description of the system in the Bloch orbital formalism. Transforming
to the Wannier function basis,

|Rn〉 =
V

(2π)3

∫
BZ
dkei(ϕn(k)−k·R) |ψnk〉 , (2.110)

we see that the transformation is not unique due to the presence of the gauge free-
dom in ϕn(k), the choice of which will determine the form of the resulting Wannier
functions. Consequently, it is important to establish a suitable gauge when attempting
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to construct Wannier functions, though no particular choice of gauge can be consid-
ered superior. This freedom has given rise to many different schemes for construct-
ing Wannier functions for applications, such as maximally localised Wannier functions
(MLWFs) which involve a more general mixing of multiple bands rather than a sin-
gle band as discussed above. A comprehensive review of Wannier functions and their
applications is provided by Marzari et al. [46].

2.7 Summary

In this chapter we have provided a brief discussion of the challenges for solving the
many-body problem for materials applications. Some of the most accurate approaches
for treating ground and excited states of atoms and molecules fall within the realm of
post-Hartree-Fock methods, which seek to construct approximate wavefunction solu-
tions. However, the cost of such methods renders them unusable for large-scale cal-
culations consisting of hundreds or thousands of atoms. Density functional theory
(DFT) provides an alternative approach by treating the electron density n(r) as the
fundamental quantity of interest, while the Kohn-Sham equations provide a theoreti-
cally exact description of the quantum system within an effective independent electron
framework. The key challenge in DFT involves constructing good approximation to ex-
change and correlation effects as encapsulated within the energy functional EXC, some
of which we have discussed in this chapter. Following on from this, we saw how DFT
can also be applied to periodic systems via Bloch’s theorem, which highlights the suit-
ability of using a plane wave basis to construct the Kohn-Sham states. Equivalently,
localised Wannier functions give an equally valid description of periodic systems, a
point which we shall return to in later chapters.
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3 Multi-level Embedding

In Chapter 2 we discussed the foundations of ab initio approaches to electronic struc-
ture theory. Throughout we considered solutions whereby all electrons are treated
explicitly. Nonetheless when seeking to describe the properties of materials there are
many cases where a smaller subsystem is sufficient to provide a substantial description
of the properties of interest. For example, chemical bonding is determined by the con-
figuration of valence electrons in atoms, with closed inner shell electrons and nuclei
having little effect on the chemistry in question, while in large proteins photoexcita-
tions tend to be localised to a specific part of the system. In both of these cases, the
inactive environment provides essential information regarding the overall electronic
structure, but for specific properties a high degree of accuracy is only required for the
active subsystem. This principle forms the basis for the use of pseudopotential theory
for the first principles description of the electronic structure of atoms and molecules [1–
3], and similarly the use of quantum embedding [4, 5].

In this chapter, we begin by exploring the pseudopotential method, followed by an
introduction to quantum embedding. From there we will discuss the challenges faced
in the application of embedding and the methods that have been developed to enable
the use of multiple levels of theory in first principles studies.

3.1 Pseudopotentials

In most systems the electronic structure is determined primarily by the valence elec-
trons, with the core electrons providing a negligible contribution. The core wavefunc-
tions are highly spatially localised around the atomic centre which, together with the
need to maintain orthogonality with the valence electrons as they are all eigenfunc-
tions of the Hamiltonian, causes the valence electron wavefunctions to oscillate rapidly
around the nucleus. This can be extremely difficult to represent computationally in
e.g. a plane wave basis, requiring the use of many basis functions and a high cutoff
energy (2.105) in order to capture the core behaviour of the electronic wavefunctions.

Pseudopotential theory [1–3, 6] offers an alternative approach by replacing the core
orbital terms with an effective potential that describes the effect of the core on the va-
lence electrons. A new set of valence wavefunctions, known as pseudo-wavefunctions,
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Vps
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rc r

FIGURE 3.1: Schematic illustration of the pseudopotential approximation,
based on Figure 5 in [3]. The pseudopotential Vps converges to −Z/r be-
yond the cutoff radius rc. Within this core, the pseudopotential wavefunc-
tion ψps is smoothed compared to the all-electron wavefunction ψ, with

the two being equivalent in the long-range outside the core.

can be constructed which have the same properties as the all-electron counterparts out-
side a core cutoff radius rc but are much smoother and well-behaved within the core
region — see Figure 3.1 for a schematic illustration. There are three key principles
which any effective pseudopotential should satisfy:

• Accuracy — the pseudo-wavefunctions should exactly reproduce the properties
of the atomic wavefunctions, such as eigenvalues and scattering properties.

• Smoothness — the pseudo-wavefunction should be free of nodes within the cut-
off radius rc, thus rendering the wavefunction easier to represent and lowering
the cutoff energy.

• Transferability — ideally pseudopotentials should be valid for a range of chemi-
cal systems, since the differences between such systems should be controlled by
the valence electrons.

3.1.1 Phillips-Kleinman pseudopotentials

The fundamental theory underlying the pseudopotential approximation was set out
by Phillips and Kleinman [1], whereby the strong Coulomb interaction of the nucleus
and core electrons are replaced with an approximate potential, based on the orthogo-
nalised plane-wave method of Herring [7]. Consequently, we replace the all-electron
valence wavefunctions with a set of pseudo-wavefunctions, which are smooth and do
not oscillate rapidly in the core region. Since the core electrons are eigenstates of the
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all-electron Hamiltonian in a potential V (r),

Ĥ |ψv〉 =

(
−∇

2

2
+ V (r)

)
|ψv〉 = Ev |ψv〉 , (3.1)

the all-electron valence orbitals |ψv〉 must be orthogonal to the core states |χi〉. We
can then split |ψv〉 into a smooth, non-orthogonalised pseudo-wavefunction |ψ̃v〉 plus
a contribution to account for the orthogonality of the valence and core orbitals,

|ψv〉 = |ψ̃v〉+
core∑
i

ai |χi〉 , (3.2)

where ai is an expansion coefficient. Since 〈χi|ψv〉 = 0, we have

ai = −〈χi|ψ̃v〉 , (3.3)

such that the all-electron orbital can be expressed as

|ψv〉 = |ψ̃v〉 −
core∑
i

|χi〉 〈χi|ψ̃v〉 , (3.4)

=
(

1− P̂c
)
|ψ̃v〉 , (3.5)

where P̂c is a projector onto the space of core orbitals. Then, substituting the expression
for the all-electron orbital |ψv〉 into the Schrödinger equation,

Ĥ
(

1− P̂c
)
|ψ̃v〉 =Ev

(
1− P̂c

)
|ψ̃v〉 , (3.6)[

Ĥ −
core∑
i

εi |χi〉 〈χi|

]
|ψ̃v〉 =

[
Ev −

core∑
i

Ev |χi〉 〈χi|

]
|ψ̃v〉 , (3.7)

⇒

[
Ĥ +

core∑
i

(Ev − εi) |χi〉 〈χi|

]
|ψ̃v〉 =Ev |ψ̃v〉 , (3.8)

⇒
[
Ĥ + V̂nl

]
|ψ̃v〉 =Ev |ψ̃v〉 , (3.9)

where V̂nl is an additional non-local potential that accounts for the effect of the core
orbitals,

V̂nl =
core∑
i

(Ev − εi) |χi〉 〈χi| . (3.10)

The result is a pseudo-wavefunction |ψ̃v〉 that is smoother than the all-electron valence
orbital |ψv〉 but possesses the same eigenvalue [2].
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3.1.2 Norm-conservation and the Kleinman-Bylander expansion

An acceptable pseudopotential must satisfy the conditions set out at the beginning of
this section, namely that the pseudo and atomic wavefunctions must match outside the
cutoff radius and their eigenvalues must match. In addition, we require that outside
the core region ψv and ψ̃v must reproduce the same charge densities. This condition is
guaranteed if [3] ∫ rc

0

ψ∗v(r)ψv(r)dr =

∫ rc

0

ψ̃∗v(r)ψ̃v(r)dr. (3.11)

This is known as norm-conservation and generally pseudopotentials that satisfy this
condition ensure high transferability to a range of chemical systems. To preserve scat-
tering properties of the atomic system, norm-conserving pseudopotentials usually take
on a non-local potential form which can vary across angular momentum components.

From the Phillips-Kleinman method, we see that a non-local form for the pseudopo-
tential is a requirement to ensure an accurate representation of the core. In general we
can construct the pseudopotential in semi-local form as the sum of local and non-local
components,

V̂ps = V̂local + V̂nl, (3.12)

where the non-local potential V̂nl is composed from available angular momentum chan-
nels,

V̂nl =
∑
l

l∑
m=−l

|lm〉 ˆδVl 〈lm| . (3.13)

The cost of building the matrix elements of this semi-local pseudopotential scales with
the square of the size of the basis set. For plane-wave basis calculations on complex
systems this can be prohibitive since the number of basis functions can be many times
greater than the number of electrons in the system. A common method to bypass this
is provided by the Kleinman-Bylander representation [8],

V̂KB = V̂local +
∑
l

l∑
m=−l

|φ0
lmδVl〉 〈δVlφ0

lm|
〈φ0

lm|δVl|φ0
lm〉

, (3.14)

where {φ0
lm} are the pseudoatomic wavefunctions and

δVl = V̂l,NL − V̂local, (3.15)

and Vl,NL is the lth angular momentum channel of the non-local pseudopotential. This
potential VKB acts in the same way as the semi-local form V̂ps but scales only linearly
with basis size. We will discuss this point in more detail in Chapter 4.
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FIGURE 3.2: Schematic illustration of a system divided into two subsys-
tems, an active subregion A and an inactive environment B. With embed-
ding methods, the active subsystem density can be treated at a higher level
of theory than the environment, allowing for a mixture of accuracy and ef-

ficiency in an ab initio calculation.

3.2 Quantum embedding

In Chapter 2 we discussed some of the approaches which are available for producing
approximate solutions to the many-body problem. Density-functional theory (DFT),
combined with the pseudopotential approach outlined above, provides an (in princi-
ple) exact treatment of the electronic structure of the system. However, the accuracy
of any DFT calculation depends on the exchange-correlation functional that is utilised.
Simple semi-local functionals such as LDA are efficient to calculate but, as outlined
earlier, can drastically fail to reproduce the exact properties of the true exchange-
correlation functional. Accuracy can be improved by using more elaborate hybrid
functionals that combine semi-local functionals with Hartree-Fock exact exchange, such
as B3LYP. Application of such functionals to complex quantum systems is restricted
by the computation cost of such approaches, as the scaling of the exact exchange calcu-
lation can be prohibitive. In this section we will outline a theoretically exact approach
to partition the system into subsystems that can be computed at different levels of the-
ory [4, 5, 9], as shown in Figure 3.2.

3.2.1 Frozen Density Embedding (FDE)

We begin our discussion of quantum embedding from a density functional theory per-
spective, following the approach of Wesolowski and Warshel [9]. From our discussion
in Section 2.3, we know that for a given electron density ntot(r), the total energy func-
tional can be written as

Etot[ntot] = ENN +

∫
ntot(r)Vext(r)dr + EH [ntot] + EXC [ntot] + Ts [ntot] , (3.16)
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where ENN is the ion-ion interaction energy, Vext(r) is the external potential, EH [ntot] is
the Hartree energy (2.36), EXC [ntot] is the exchange-correlation functional and Ts [ntot]

is the kinetic energy functional.
The first step in FDE is to partition the electronic density into two subsets A and B,

ntot(r) = nA(r) + nB(r). (3.17)

Note that the density can always be partitioned into an arbitrary number of subsys-
tems, but for illustrative purposes we shall restrict our discussion to just two. The total
energy functional for the system can then be written as

Etot[nA, nB] =ENN +

∫
(nA(r) + nB(r))

(
V A

ext(r) + V B
ext(r)

)
dr

+
1

2

∫
(nA(r) + nB(r)) (nA(r′) + nB(r′))

|r− r′|
drdr′

+ EXC [nA] + EXC [nB] + Enad
XC [nA, nB]

+ Ts [nA] + Ts [nB] + T nad
s [nA, nB] (3.18)

where Enad
XC [nA, nB] and T nad

s [nA, nB] denote the non-additive kinetic and exchange-
correlation energies, respectively,

Enad
XC [nA, nB] ≡EXC [nA + nB]− EXC [nA]− EXC [nB] , (3.19)

T nad
s [nA, nB] ≡Ts [nA + nB]− Ts [nA]− Ts [nB] , (3.20)

where the first terms on the right-hand side of each equation are the exchange-correlation
and kinetic energies for the full system respectively. Collectively these account for the
non-linear interactions between the two subsystems [4].

The total energy functional can thus be partitioned as

Etot[nA, nB] = E[nA] + E[nB] + Eint[nA, nB], (3.21)

where E[ni] is the energy of each subsystem,

E[ni] =Ei
NN +

∫
ni(r)V

i
ext(r)dr

+
1

2

∫
ni(r)ni(r

′)

|r− r′|
drdr′ + EXC[ni] + Ts[ni], (3.22)
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and Eint is the interaction energy,

Eint [nA, nB] =E int
NN +

∫ [
nA(r)V B

ext(r) + nB(r)V A
ext(r)

]
dr

+

∫
nA(r)nB (r′)

|r− r′|
drdr′ + Enad

XC [nA, nB] + T nad
s [nA, nB] . (3.23)

HereEi
NN andE int

NN denote the nuclear-nuclear interaction energies within each subsys-
tem i and between subsystems respectively.

Just as in the conventional DFT approach covered in Section 2.3, we seek to min-
imise the functional Etot [nA, nB]. In the Wesolowski-Warshel frozen-density embed-
ding (FDE) approach, we proceed by minimising (3.18) with respect to the electron
density nA(r) while keeping nB(r) fixed (frozen), which yields the embedded Kohn-
Sham equations for the orbitals of subsystem A [9]:[

−∇
2

2
+ VKS [nA] (r) + V A

emb [nA, nB] (r)

]
ψA
i (r) = εA

i ψ
A
i (r), (3.24)

where VKS[nA](r) is the usual KS effective potential for A (see (2.43)) and V A
emb [nA, nB] (r)

is the effective embedding potential describing the interaction between A and B [4],

V A
emb [nA, nB] (r) ≡δEint [nA, nB]

δnA(r)
, (3.25)

=V B
ext(r) + V B

H (r) + V A
T [nA, nB] +

[
V tot

XC (r)− V A
XC(r)

]
. (3.26)

This is a local potential that accounts for the impact of the environment on the active
subsystem. All the terms contained within will look familiar from conventional DFT,
except for the kinetic potential [9],

V A
T [nA, nB] ≡ δT nad [nA, nB]

δnA(r)
, (3.27)

which arises due to the non-orthogonality of the subsystem orbitals [10]. An accurate
description of the embedded system thus requires knowledge of (3.27), which we shall
deal with in more detail in the next section. We thus see that using (3.24) we can solve
the embedded Kohn-Sham equations for the A subsystem in the presence of a frozen
B environment density as accounted for by the embedding potential V A

emb [nA, nB] (r).
The frozen density can be approximated to an acceptable level of accuracy rather than
requiring a full self-consistent optimisation, thus providing a potential computational
saving.
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Freeze-and-thaw iterative optimisation

There is, of course, nothing special about subsystem A in this derivation. We can re-
peat this for the B subsystem orbitals, enabling us to construct a pair of Kohn-Sham
eigenvalue equations for the orbitals in each subsystem,[

−∇
2

2
+ VKS [nB] (r) + V B

emb [nA, nB] (r)

]
ψB
i (r) = εB

i ψ
B
i (r), (3.28)

where V B
emb is defined as

V B
emb [nA, nB] (r) = V A

ext(r) + V A
H (r) + V B

T [nA, nB] +
[
V tot

XC (r)− V B
XC(r)

]
. (3.29)

Notice that the embedding and kinetic potentials in the coupled Kohn-Sham equations
are distinct, and so these equations must be solved in a nested optimisation loop in
order to reach the ground state total density ntot(r). This can be done via an itera-
tive freeze-and-thaw process, whereby first we solve for the thawed

{
ψA
i

}
in the pres-

ence of frozen nB(r), then swap frozen and thawed subsystems until self-consistency
is achieved. This provides an alternative route to obtaining the ground state density
for the full system rather than the standard Kohn-Sham optimisation of all orbitals
simultaneously.

3.2.2 Embedding potential and non-orthogonality

The key problem in the implementation of frozen-density embedding theory is the
description of the embedding potential (3.26). The first two terms, consisting of the ef-
fective potential arising from the presence of the orbitals and the density of the B sub-
system, are straightforward, accounting for the classical potential of the electrons and
nuclei in the frozen environment. The non-classical contributions are contained in the
exchange-correlation and kinetic potential terms. As ever, the exchange-correlation po-
tential terms must be approximated since the functional form of this term is unknown.
The kinetic potential VT (3.27) is a new complication that arises in embedding theory
due to the fact that the kinetic energy includes a non-additive contribution between the
A and B subsystems, as stated in (3.20). Recall that the exact form of the kinetic energy
functional for the many-body system is unknown, however, for a set of orthogonal
closed-shell orbitals {ψi}, the kinetic energy functional can be written as [11]

Ts =
∑
i

2 〈ψi| − ∇2/2|ψi〉 . (3.30)
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By splitting up the Kohn-Sham equations of A and B, we have made the KS orbitals of
the two subsystems eigenstates of different Hamiltonians, thus {ψA

i } and {ψB
i } are not

mutually orthogonal and we cannot write down the kinetic energy of the full system
in the form of (3.30), though we can for the A and B subsystems separately. This gives
rise to the non-additive contribution to the total kinetic energy, the primary difficulty
in describing an accurate embedding potential.

Before continuing, it is worth noting the similarity between T nad
s [n] and our discus-

sion of exchange-correlation in Sections 2.3 and 2.4. Recall from (2.37) that EXC [n] is
defined as the difference between the true many-body kinetic and interaction energies
and the non-interacting Kohn-Sham system,

EXC [n] =
(
< T̂ > −Ts [n]

)
+
(
< V̂int > −EH [n]

)
. (3.31)

The non-additive kinetic and exchange-correlation terms are another manifestation of
the fact that we do not know the correct form for the exact functionals. Unlike EXC [n],
little is known about the true form of T nad

s [n], which adds another layer of complexity
to the process of constructing accurate kinetic potentials.

3.3 Approximate embedding schemes

Although the FDE method was derived in the realms of DFT, it is applicable for any
method which produces an electronic density, from which the embedding potential can
be generated. This allows for the rigorous treatment of a physical system at multiple
levels of theory as suitable for the various subsystems. In this section we shall discuss
some of the more widely used approaches to multi-level embedding, based on the
classification presented by Gomes and Jacob [4].

3.3.1 Continuum solvation models

Continuum models [12] ignore the explicit molecular structure of the environment and
treat it instead as a solvent with a dielectric constant εenv. The active subsystem is
embedded within this solvent by constructing a cavity within the dielectric contin-
uum, with the transition from solvent to solute accounted for by electrostatic interac-
tions resulting from induced surface charges surrounding the cavity. The value of the
dielectric constant is usually taken from experimental measurements, while the size
and shape of the cavity can be tuned to reproduce free-energies for the specific solute-
solvent interaction. The charge induced on the cavity surface is known as the apparent
surface charge σ(r), giving rise to an electrostatic potential generated from the closed
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surface of the cavity,

V SC
emb(r) =

∫
Cavity
surface

σ(r′)

|r− r′|
d2r′, (3.32)

where the integral runs over the cavity surface area. This can be solved computation-
ally by discretising the cavity surface with point charges qs at position rs that represent
the apparent surface charge σ(rs) [4]. Then the embedding potential (3.26) can be rep-
resented as

V solvent
emb (r) ≈

∑
s

qs [εenv, nA(r)]

|r− rs|
. (3.33)

Such methods that make use of finite dielectric constants εenv are referred to as polar-
isable continuum models (PCM), due to the polarisation of the dielectric continuum
in this picture. An alternative formulation involves setting the environment dielectric
value to be infinite, such that the sum of the solute and solvent electrostatic potentials
vanishes at the cavity surface [12]. The finite dielectric solvent result can then be recon-
structed via the use of a scaling function that depends on the true εenv. This is known
as a conductor-like PCM (CPCM), and is the basis of popular solvation methods such
as the conductor-like screening model (COSMO) [12, 13]. Generally such methods are
of use for large solute-solvent systems, providing an average picture where explicit
molecular treatment would require the use of multiple configurations to provide a
representative description of environment effects.

3.3.2 Molecular mechanical embedding

Instead of the solvent model used in continuum approaches, molecular mechanical
(MM) embedding involves a discrete description of the environment structure, with
active subsystem interactions accounted for by classical force field models. When com-
bined with an explicit quantum mechanical (QM) description of the active subsystem,
this is referred to as QM/MM embedding [14]. The use of classical mechanics for
the solvent environment makes such methods very efficient for large systems such as
biomolecular structures [15].

Unlike continuum methods, QM/MM enables the explicit consideration of molec-
ular configurations in the environment. The embedding calculation can be performed
either as a QM correction to an MM calculation on the full system, whereby no QM-
MM coupling is included, or electrostatic interactions can be included directly in the
model to account for the response of the active electron density to the presence of the
environment. Other more sophisticated QM/MM embedding schemes, such as polar-
isable embedding and the use of link atoms to account for covalent bonds between
the active and environment regions, can be performed and are reviewed extensively
elsewhere [15].
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3.3.3 DFT-in-DFT

As discussed in Chapter 2, practical calculations with DFT can only be performed
by making approximations to the exchange-correlation functional, such as the local
density approximation (LDA), generalised gradient approximation (GGA) or exact-
exchange. Within the FDE formulation, the splitting up of this functional allows the
possibility of performing multi-level calculations by constructing each subsystem us-
ing different levels of approximation. Both the active and environment subsystems
are evaluated within DFT, using a high-level functional for the active region of interest
and a low-level functional for the remainder of the system for a DFT-in-DFT embed-
ding framework. The total exchange-correlation energy Eemb

XC can then be constructed
from the subsystem and interaction terms,

Eemb
XC [nA + nB] = E

high
XC [nA] + E low

XC [nB] + Enad
XC [nA, nB] . (3.34)

For semi-local functionals such as LDA or GGA, the non-additive term can be straight-
forwardly evaluated from (3.34). Embedding using hybrid functionals is convention-
ally done by treating the non-additive exchange term at the semi-local level [11]. Ef-
fectively this amounts to constructing the non-additive exchange-correlation potential
at the lower-level of theory, which constitutes an additional approximation [4].

In addition to the exchange-correlation term, approximations must be made to the
kinetic potential in order to perform useful calculations due to the non-orthogonality
dilemma outlined in Section 3.2.2. The earliest FDE approximations were based on the
Thomas-Fermi functional [9], which, as in conventional DFT, could be improved upon
by appeal to GGA functionals [16, 17]. Nonetheless, such approximations were only
found to be valid for weakly interacting systems such as hydrogen bonds, with cova-
lently bonded systems generally yielding poor results [18, 19]. Much effort has been
expended in attempting to construct good embedding potentials by more sophisticated
means [4, 5]. In the Optimized Effective Potential formalism (OEP), one constructs a lo-
cal potential for which the total energy remains stationary for small variations [20] [21].
While there exist many approaches to the embedding problem with OEPs [22] [23], the
rigour and extendability of these approaches is questionable, as for finite basis sets
the OEP problem is ill-posed [24]. Other methods have sought to establish a rigor-
ous approach to construct a well-defined potential for a range of chemical systems
(see [10, 25–27] for examples), but the fundamental problem of constructing an accu-
rate and flexible potential remains elusive, particularly for systems where there is a
strong overlap between the active and frozen subsystems.
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3.3.4 Wavefunction-in-DFT

Govind et al extended the original DFT-in-DFT formulation to include the treatment of
explicit correlation effects via the use of a quantum chemical approach within a DFT
environment [28], giving rise to wavefunction theory in DFT (WFT-in-DFT) embed-
ding. This allows the use of an accurate quantum chemical method such as the post
Hartree-Fock formulations discussed in Section 2.2.2 embedded in a cheaper DFT en-
vironment.

So far, we have only considered the application of quantum embedding to a de-
scription of the ground state system, however the formalism presented above can also
be applied to the treatment of excited states. This was confirmed for DFT-in-DFT by
Khait and Hoffmann [29] following the same approach as Perdew and Levy to the treat-
ment of excitations with ground-state DFT [30]. These excited states can be seen as the
densities that satisfy (3.24) which do not yield the energy global minimum. Khait and
Hoffmann also extended this formalism to WFT-in-DFT, showing that both the ground
state and a subset of excited states (i.e. the stationary points of the energy functional)
can be obtained in principle with embedding [29], opening the door for the treatment
of excited states in the WFT region while treating the environment with DFT. Nonethe-
less, as with DFT-in-DFT the accuracy of such approaches depends critically on pro-
ducing a decent description of the kinetic potential.

3.4 Projector embedding

Quantum mechanical embedding approaches suffer from the need to approximate the
kinetic energy potential (3.27). An alternative approach is to consider an explicit or-
thogonalisation of the embedded subsystem orbitals with respect to the environment,
which would eliminate the non-additive term in the kinetic energy and thus remove
the need to construct an accurate kinetic potential. Multiple approaches have been de-
veloped which make use of this approach [31–34], motivated by the Phillips-Kleinman
pseudopotential method discussed in Section 3.1. Indeed, pseudopotential theory can
be construed as a type of embedding where the valence orbitals are calculated in the
presence of an effective potential that describes the effect of the core orbitals. This con-
nection can be seen in efforts to develop general theories for the separation of multi-
electron systems, whereby the core-valence model is only a special case [6, 35, 36]. To
illustrate the theory behind this approach, we shall briefly outline how this formalism
can work within the context of Hartree-Fock theory.
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3.4.1 Embedded Hartree-Fock Equations

We begin by considering an embedded system consisting of a set of orbitals {φA
i },

representing the embedded subsystem, within the presence of a set of environment
orbitals {φB

i }. The bare Fock operator for this system is simply an extended version
of (2.21),

Ĥ = Ĥcore,A +
∑
j∈A

(
2ĴA

j − K̂A
j

)
+
∑
j∈B

(
2ĴB

j − K̂B
j

)
, (3.35)

which includes Coulomb and exchange operators for each subsystem. Initially, we
shall assume that the A and B subsystem orbitals are already orthogonal. Thus, a set of
equations for the embedded A orbitals can be constructed (see Appendix B for details),

(1− P̂ B)F̂ |φA
i 〉 = εi |φA

i 〉 . (3.36)

where P̂ B is a projector onto the B orbital subspace,

P̂ B ≡
∑
j∈B
|φB
j 〉 〈φB

j | . (3.37)

The result is a projected Fock operator, which can easily be made Hermitian to give the
Huzinaga equation [33, 36],(

F̂ − P̂ BF̂ − F̂ P̂ B
)
|φA
i 〉 = εi |φA

i 〉 . (3.38)

Following the Weeks-Rice method [37], we can generalise this result to the case
where the A and B orbitals are not mutually orthogonal by performing a Gram-Schmidt
orthogonalisation of the A orbitals,

|φ̃A
i 〉 =

(
1− P̂ B

)
|φA
i 〉 . (3.39)

Thus the Hartree-Fock equations can be generalised to (Appendix B)

(1− P̂ B)F̃ |φ̃A
i 〉 = εi |φ̃A

i 〉 , (3.40)

where the tilde above the Fock operator indicates that it is composed of projected or-
bitals,

F̂ = F̂ core,A +
∑
j∈A

(
2J̃A

j − K̃A
j

)
+
∑
j∈B

(
2ĴB

j − K̂B
j

)
. (3.41)

Expanding the {φ̃A
i } in (3.40), we get(

1− P̂ B
)
F̃
(

1− P̂ B
)
|φA
i 〉 = εi

(
1− P̂ B

)
|φA
i 〉 . (3.42)
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This can be rewritten as (
F̃ + V̂WR

)
|φA
i 〉 = εi |φA

i 〉 , (3.43)

where we have introduced the Weeks-Rice style pseudopotential [37],

V̂WR ≡ −P̂ BF̃ − F̃ P̂ B + P̂ BF̃ P̂ B + εiP̂
B. (3.44)

We thus see that the results from standard pseudopotential theory are easily extendable
to produce a projector approach to embedding theory. At this stage we will discuss
some of the practical implementations of the above concepts in the literature.

3.4.2 Manby projector embedding

Manby et al. [32] have developed a method that maintains the spirit of the projection
operator embedding but seeks to reduce the complexity of the resulting potential such
that it can be applicable to DFT-in-DFT or WFT-in-DFT calculations. Initially, a KS-DFT
calculation is performed over the full system. The molecular orbitals are then localised
and partitioned between the two subsystems, {φA

i } and {φB
i }, and the density matrices

ρA and ρB are formed.
This embedding approach gives rise to a Fock operator of the form

F̂ =
(

1− P̂ B
)
Ĥ
(

1− P̂ B
)
, (3.45)

where Ĥ is the total Hamiltonian and P̂ B is a projector onto the orbital subspace of B,

P̂ B ≡
∑
j∈B
|φB
j 〉 〈φB

j | . (3.46)

The key conceptual leap by Manby et al. is the observation that the lower part of the
spectrum of this Fock operator coincides with the spectrum of Ĥ + µP̂ B for µ → ∞
[38]. Thus the Weeks-Rice style embedding pseudopotential arising due to the non-
orthogonality of the A and B bases is replaced with a simple projector µP̂ B, where µ is
a constant.

The effect of µPB is to elevate the energy of the ith orbital εB
i in subsystem B to εB

i +µ

which, for µ → ∞, prevents the electrons in A from accessing the orbitals of B [39],
thus enforcing orthogonality. The non-additive kinetic energy is eliminated, greatly
simplifying the problem in principle. Tests of this method for a DFT-in-DFT system
reproduce the exact DFT results for the full system for µ→∞ [40], providing a useful
measure of the accuracy of any description of the embedding potential. In practice,
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the level-shift parameter µ must take on values in the range 103 − 106 EH to achieve
accuracy, though for higher values numerical instability can be problematic [40].

3.4.3 Huzinaga embedding

Another projector approach was recently proposed by Hégely et al. [33]. Rather than
using an ad hoc projector to enforce orthogonality, Hégely et al. utilise the Huzinaga
equation (3.38). Similar to the Manby approach, the molecular orbitals are localised
following a regular SCF calculation on the full system such that they can be assigned
to individual subsystems. The density matrix (see Section 2.5) can then be straightfor-
wardly written as the sum of the A and B subsystem matrices,

ρAB = ρA + ρB. (3.47)

Then the Huzinaga equations are solved for the active subsystem A, which in matrix
form can be expressed as

(
F− SρBF− FρBS

)
CA = SCAEA, (3.48)

where S is the atomic orbital overlap matrix, CA is the matrix of molecular orbital
coefficients and EA is a diagonal matrix of the Kohn-Sham orbital eigenvalues of the A
subsystem.

It is worth noting that, while derived from different starting points, the Manby
and Huzinaga projector methods are in effect simplifications of the general Weeks-Rice
pseudopotential method — both can be constructed by removing terms from (3.44).
Thus any implementation of a projector embedding approach would warrant some
thought regarding the “correct” potential to use, since there appears to be a degree of
ambiguity on this matter.

3.5 Embedded Mean-Field Theory (EMFT)

The Wesolowski-Warshel FDE picture which forms the basis for all the embedding
methods we have discussed so far operates on a straightforward partitioning of the
electronic density. Thus, whether we are considering embedding from the realms of
Hartree-Fock theory or Kohn-Sham DFT, there is a clear distinction between the molec-
ular orbitals (MOs) that are assigned to each subsystem, since they are eigenfunctions
of different Hamiltonians. In practice the physical distinction between subsystems
may not always be straightforward, and, as in the Manby and Huzinaga methods [32,
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33], a localisation of the MOs may be necessary. This implies a degree of arbitrari-
ness in the subsystem partitioning through the choice of a localisation scheme such
as Mulliken charges. In addition, such approaches require that the subsystem particle
number be fixed [41], which can be problematic for systems where electron transfer
is possible across bonds that are partitioned between subsystems. Some embedding
techniques avoid this problem by using the density matrix as their fundamental quan-
tity for performing quantum embedding [42, 43], since the matrix can be easily divided
into subsystem blocks and off-diagonal cross-overlap matrices,

ρ =

(
ρAA ρAB

ρBA ρBB

)
. (3.49)

The off-diagonal blocks facilitate electron transfer between the A and B subsystems.
From the perspective of performing electronic structure calculations, plane wave

basis functions (see Section 2.6.3) that can extend throughout the system are not in-
tuitively suitable for embedding. Indeed, an atom-centred basis set such as localised
Wannier functions (see Section 2.6.4) would appear to be a much more appropriate
basis for embedding calculations since each basis function can be easily assigned to a
particular subsystem. In this section we will explore an approach based on a purely
mean-field picture [41], whereby embedding will be performed via the density matrix.

In embedded mean-field theory (EMFT), the total energy can be written as

E [ρ] = tr [ρH0] +G [ρ] , (3.50)

whereH0 contains the one-electron terms of the Hamiltonian andG [ρ] contains all two-
electron terms (Hartree and exchange-correlation effects). In embedded mean-field
theory (EMFT), the two-electron interaction for the active subsystem A is constructed
at a higher level of theory to the rest of the system,

EEMFT [ρ] = tr [ρH0] +Glow [ρ] +
(
Ghigh [ρAA]−Glow [ρAA]

)
, (3.51)

where Glow and Ghigh are the two-electron interaction energies at the lower and higher
levels of theory, respectively. For example, the low level theory could be LDA while
the higher level uses a hybrid functional such as B3LYP. We assume here that the core
HamiltonianH0 is the same at both levels of theory, though this need not necessarily be
the case. The ground state of the embedded system can thus be obtained by minimising
(3.51) with respect to the elements of the density matrix.
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In general, we can use a hybrid functional for the active high-level subsystem, in
which case the total energy becomes,

EEMFT [ρ] = tr [ρH0] + E low
J [ρ] +

(
E

high
J [ρAA]− E low

J [ρAA]
)

+ E low
XC [ρ] +

(
E

high
XC [ρAA] + αEA

EE [ρ]− E low
XC [ρAA]

)
, (3.52)

where we have split the two-electron energy into contributions from Coulomb, exchange-
correlation and exact exchange components, αEA

EE is the exact exchange energy for sub-
system A and α is the portion of exact exchange to be included. The exact exchange
contribution can thus be expressed purely in terms of the active subsystem density
matrix,

EA
EX,0 = −1

4

∑
αβγδ∈A

ρAA
αβ (αγ|βδ) ρAA

γδ . (3.53)

This has a significant computation benefit, as the cost of evaluating this energy com-
pared to a hybrid calculation of the full system is reduced by a factor of O

(
(NA/N)4

)
,

where NA and N are the number of electrons in subsystem A and the full system re-
spectively. Alternatively, one could include couplings between systems A and B,

EA
EX,1 = −1

4

∑
αβ∈A;γδ

ρAA
αβ (αγ|βδ) ργδ, (3.54)

Although this is more expensive than EA
EX,0, there is still a saving of O

(
(NA/N)2

)
rela-

tive to an exact exchange calculation of the entire system. Fornace et al. have performed
tests for the EMFT approach on a variety of chemical systems, such as partitioning co-
valent bonds, hydrogenation of conjugated systems, and defect formation in graphene.

3.5.1 Block orthogonalisation

The use of substantially different exchange-correlation functionals with EMFT can give
rise to unphysical self-consistent solutions due to the collapse of the electron density
into the cross-overlap terms of the density matrix [44]. This has been observed for
localised atomic orbital basis sets by examining the normalisation term Tr [ρS], which
can be decomposed into subsystem components,

Tr [ρS] = N = Tr [ρAASAA] + Tr [ρBBSBB] + Tr [ρABSBA] + Tr [ρBASAB] . (3.55)

Although normalisation of the full density matrix is maintained, the existence of large,
negative terms in the off-diagonal terms Tr [ρBASAB] and Tr [ρABSBA] results in the di-
agonal blocks becoming substantially larger than the actual electron count in those
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subsystems. A self-consistent optimisation procedure can result in these terms becom-
ing progressively larger, producing physically meaningless electron density. Ding et
al. propose a solution to this by enforcing block orthogonality between the subsystem
components of the density matrix. Similar to the Manby projector method outlined
earlier [32], we begin by performing a Gram-Schmidt orthogonalisation of the environ-
ment orbital basis set {φB

i }with respect to the active subsystem basis using a projector,

|φ̃B
i 〉 =

(
1− P̂A

)
|φB
i 〉 , (3.56)

P̂A =
∑
j,k∈A

|φA
j 〉
(
SAA)-1

jk
〈φA

k | , (3.57)

where
(
SAA)-1

is the inverse overlap matrix constructed from the A subsystem atomic
orbitals. This defines a transformation from the initial, non-orthogonal atomic orbital
basis set {φ} to the block-orthogonalised

{
φ̃
}

,

|φ̃α〉 =
∑
i∈A,B

|φi〉Uiα (3.58)

where U is the transformation matrix,

U =

(
IAA (SAA)−1SAB

0 IBB

)
. (3.59)

Upon transforming the overlap matrix to the block-orthogonalised basis, the resulting
matrix S̃ is a block-diagonal matrix,

S̃ = UTSU =

(
SAA 0

0 S̃BB

)
, (3.60)

where
S̃BB = SBB(SAA)−1SAA(SAA)−1SBB. (3.61)

Consequently the normalisation condition is reduced to

Tr [ρS] = N = Tr [ρAASAA] + Tr [ρBBSBB] . (3.62)

Now all electrons are associated with the diagonal blocks of the density matrix. As
these blocks must be positive semi-definite, the electron density contained within each
diagonal sub-block must be less than the total electron density in the system, resulting
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in a new, implicit constraint on the density matrix,

0 ≤ Tr (ρAASAA) ≤ N, 0 ≤ Tr (ρBBSBB) ≤ N. (3.63)

3.6 Summary

In this chapter we have discussed the use of pseudopotentials in ab initio calculations,
whereby the influence of the atomic core on the chemically significant valence electrons
can be approximated with a single semi-local potential. This provides a theoretical and
historical background to quantum embedding methods, both via the embedding po-
tential that arises in the frozen density embedding (FDE) method, and the projector
methods that seek to enforce orthogonality between subsystem Kohn-Sham orbitals.
The former seeks to build reasonable approximations to the non-additive kinetic po-
tential in order to accurately describe the subsystem coupling, while the latter attempt
to bypass the difficulty associated with such approximations. Such approximate em-
bedding methods enable the use of multiple levels of theory for multi-scale calcula-
tions, for example QM/MM techniques or combining different exchange-correlation
functionals in different subsystems. We also reviewed the embedded mean-field the-
ory (EMFT) method, whereby the one-electron density matrix is partitioned between
subsystems which are treated using separate exchange-correlation functionals while
permitting electron transfer between subsystems.
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4 Linear-Scaling DFT and ONETEP

Traditionally, electronic structure calculations were performed by means of direct di-
agonalisation of the Hamiltonian matrix [1]. This has the advantage of yielding eigen-
states that can be associated with discrete energy levels, useful for comparison with
experiment, but diagonalisation is a cubic-scaling operation in CPU time [2]. Since
the Hamiltonian is a square matrix whose size is proportional to the number of ba-
sis functions M , solving the Kohn-Sham equations by direct diagonalisation scales as
O (M3), which prohibits their application to large-scale calculations. The choice of ba-
sis functions was critical, as M could be much larger than the number of atoms Na in
the system when using plane waves instead of localised orbitals such as Gaussians. As
computing power has increased, scientists have sought ways to avoid the O (M3) bot-
tleneck, such as iterative diagonalisation methods [3] that reduce the cost toO (NaM

2).
The use of the fast Fourier transform method (FFT) in particular, with a computational
scaling proportional to NaM ln (M), has enabled plane-wave DFT calculations to be
performed on systems with up to 1000 atoms, far beyond what would be possible with
direct diagonalisation [2].

For systems of several hundred atoms, the need to enforce orthogonality between
the Kohn-Sham orbitals becomes the bottleneck in CPU time. Cost-wise, increasing
the number of electrons in the system requires the use of a larger basis set, giving a
factor of Na. Each plane wave basis function extends throughout the system, such that
any manipulation of a single orbital is an O (Na) operation. Finally, each orbital must
be orthogonalised with respect to all the others which adds another factor of Na to the
scaling of the calculation [4]. Thus, due to the need to impose orthogonality the scaling
of a Kohn-Sham DFT calculation is O(N3

a ) with a plane wave basis,

TCPU ∼ c3N
3
a , (4.1)

where c3 is the prefactor for the calculation. While favourable compared to the wave-
function-based quantum chemical methods discussed in Chapter 2, this O(N3

a ) scaling
restricts the applications of KS-DFT in terms of system size. In recent decades there has
been widespread interest in linear-scaling DFT methods, whereby the computational
cost can be represented as

TCPU ∼ c1Na, (4.2)
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where c1 is the prefactor associated with the linear-scaling calculation. In general, c1 >
c3 [1], such that there is a crossover point where linear-scaling methods become more
efficient than conventional cubic-scaling approaches, usually on the order of hundreds
of atoms.

While there are many different approaches for achieving linear scaling (for reviews,
see e.g. [1, 2, 5, 6]), in this chapter we will focus on methods based on the one-particle
density matrix [7]. We will begin by discussing how the density-matrix formalism can
facilitate the use of linear-scaling methods, with particular focus on the use of local-
orbital basis sets and methods that avert the need to explicitly enforce orthonormality
during the self-consistent optimisation process. This will lead us into a review of the
implementation of such approaches within the ONETEP software package [8], which
will form the basis for the remainder of the work presented in this thesis.

4.1 Nearsightedness and linear-scaling

An intuitive understanding of chemical bonding highlights the importance of local-
ity in electronic structure — if such phenomena were determined by long-range ef-
fects in materials, our concept of chemical bonding and localised orbitals would be
ill-defined [9]. This is an example of the nearsightedness of electronic structure [10],
whereby the local electronic structure depends primarily on the external potential in
the immediate vicinity. Theoretically, in systems with a band gap nearsightedness
manifests itself via an exponential decay in the elements of the density matrix with
distance,

ρ (r, r′) ∼ e−γ|r−r
′|, (4.3)

where γ is a positive quantity that is proportional to the band gap [1]. From a compu-
tational perspective, nearsightedness highlights the fact that the cubic scaling of DFT
is an algorithmic consequence rather than one inherent to the physics of many-body
systems. This exponential decay forms the theoretical basis for linear-scaling methods
in insulators, as it allows one to impose a localisation constraint on the density ma-
trix. For metallic systems, the decay of the density matrix is slower, following a power
law rather than exponential [1]. However, an exponential decay arises in the canonical
ensemble at finite, non-zero temperatures [11, 12], facilitating the application of linear-
scaling approaches to metallic systems. For the remainder of this work, we will assume
that we are dealing with insulators and that the bandgap of the system is well-defined
at zero temperature.

The earliest LS-DFT approach was Yang’s divide-and-conquer strategy [13], where
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the system is split up into localisation regions, a process made possible by nearsighted-
ness [9]. The electron densities from these subsystems are gathered together to obtain
the total density. The divisions are made using the partition function for each subsys-
tem [14]. The prefactor associated with this method can be very high if large locali-
sation regions are used as much of the information in the density matrix is discarded
during a calculation [1].

Another approach is to make explicit use of the nearsightedness of the density ma-
trix ρ (r, r′) by truncating the off-diagonal elements that exceed a cutoff radius Rc [15].
This has the advantage that one does not need to refer directly to the individual KS
orbitals as all information regarding the physics of our system can be extracted by
examining the density matrix. This latter approach is the key principle behind the
ONETEP package, and so we will explore this in more detail as it is fundamental to the
rest of this work.

4.1.1 Density matrices with non-orthogonal basis sets

In Section 2.5 we reviewed the basic principles of density matrix theory [7, 16] within
the context of Kohn-Sham density-functional theory. Now we shall expand the Kohn-
Sham orbitals {ψn} in a set of basis functions {φα} known as support functions [17],
which need not be orthogonal,

|ψn〉 = |φi〉M i
n , (4.4)

where M is the matrix of expansion coefficients and we use the Einstein convention
of summing over repeated indices (i in this case). Throughout the remainder of this
work, we will apply the Einstein convention to Latin indices when referring to sup-
port functions, while Greek characters will denote distinct orbitals or matrix elements
and will not be summed unless explicitly stated. To account for the non-orthogonality
of the {φα} basis, we have to consider the tensorial properties of the quantities in this
equation [18, 19]. Subscripts refer to covariant quantities, while superscripts denote
contravariant tensors. Thus the matrix element Mα

n denotes a mixed contravariant-
covariant quantity, though since the {|ψn〉} form an orthogonal basis, there is techni-
cally no tensorial distinction for the n subscript/superscript.

The basis functions {φα} may be any generalised basis set of real or complex func-
tions, such as the Wannier functions discussed in Section 2.6.4. They form a covariant
set of basis functions that are biorthogonal to a dual basis of contravariant functions
{φα}, such that

〈φα|φβ〉 = δ β
α . (4.5)
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The overlap matrices for these bases are defined as

Sαβ = 〈φα|φβ〉 , (4.6)

Sαβ = 〈φα|φβ〉 =
(
S−1
)
αβ
, (4.7)

which form the metric tensors that can be used to convert covariant quantities to con-
travariant and vice versa. For more details on the use of tensors in electronic structure,
see [18, 19].

Returning to (2.64), we now expand the density operator in terms of the support
functions (4.4),

ρ̂ =
∑
n

fn |ψn〉 〈ψn| , (4.8)

=
∑
n

fn |φi〉M i
n

(
M †) j

n
〈φj| , (4.9)

= |φi〉

[∑
n

M i
n fn

(
M †) j

n

]
〈φj| , (4.10)

= |φi〉Kij 〈φj| , (4.11)

where
Kαβ ≡

∑
n

Mα
n fn

(
M †) β

n
= 〈φα|ρ̂|φβ〉 (4.12)

are the elements of the density kernel [20], the representation of the density matrix in
the dual basis. In the position representation, the density matrix can thus be expressed
as

ρ (r, r′) = φi(r)K
ijφ∗j(r

′), (4.13)

such that the electron density in the support function basis is given by

n(r) = φi(r)K
ijφ∗j(r) = Kij

[
φ∗j(r)φi(r)

]
. (4.14)

The properties of the density matrix established in Section 2.5 obviously still hold
in the support function representation. For example, idempotency (ρ2 = ρ):

ρ2 (r, r′) =

∫
ρ (r, r̃) ρ (r̃, r′) dr̃, (4.15)

=

∫ [
φi(r)K

ijφ∗j(r̃)
] [
φk(r̃)K

klφ∗l (r)
]

dr̃,

=φi(r)K
ij

[∫
φ∗j(r̃)φk(r̃)dr̃

]
Kklφ∗l (r),

=φi(r)K
ijSjkK

klφ∗l (r), (4.16)
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Comparing with (4.13), we see that idempotency is satisfied if

K = KSK. (4.17)

Similarly, the normalisation condition and expectation value for an operator corre-
sponding to an observable of the system become

Tr(ρ) = Tr [KS] = N, (4.18)

〈Â〉 = Tr [KA] . (4.19)

4.1.2 Constraining the density matrix

The density matrix formalism of DFT provides a framework within which it is possi-
ble to reconstruct all information for the fictitious Kohn-Sham system without direct
reference to the orbitals, enabling one to bypass the need for explicitly orthogonal-
isation. Linear-scaling approaches utilising density matrices must therefore seek to
enforce (2.67) while avoiding expensive diagonalisation to write the DM explicitly in
terms of the KS orbitals [15]. The ground state energy of the Kohn-Sham system can be
obtained from explicit minimisation of the (non-zero) elements of the density matrix,

E0 = min
ρij

Tr(ρH), (4.20)

where H is the Hamiltonian matrix and we must ensure that idempotency (equa-
tion (2.67)) and normalisation (equation (2.70)) remain satisfied throughout this proce-
dure. At the true ground state, the density matrix and the Hamiltonian will commute,

[ρ,H] = ρH−Hρ = 0. (4.21)

Purification transformations and penalty functionals

McWeeny [20] showed that an iterative steepest descent minimisation of a nearly idem-
potent matrix can be used to purify the matrix to idempotency,

ρk+1 = 3ρ2k − 2ρ3k, (4.22)

which yields the following relation for the eigenvalues of the density matrices,

λk+1 = 3λ2k − 2λ3k. (4.23)
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Then if −1
2
≤ λk ≤ 3

2
, it follows that 0 ≤ λk+1 ≤ 1. Successive iterations will improve

the idempotency of the matrix, with eigenvalues tending to 0 for unoccupied states and
1 for occupied states [15]. However, this merely yields weak idempotency [5], which
ensures that the eigenvalues are bound in the range [0, 1] but does not guarantee that
occupied states have an eigenvalue of 1, which can lead to numerical instabilities. An
appropriate starting point ρ0 that will ensure that (4.21) is satisfied can be obtained by
canonical purification [21].

The purification transformation can be derived as the result of a steepest descent
optimisation of [22]

P [ρ] = Tr
[(
ρ2 − ρ

)2]
=
∑
n

(
λ2n − λn

)2
. (4.24)

The term ρ2 − ρ vanishes if and only if ρ is idempotent. Thus the functional P [ρ] can
be used as an additional penalty functional term in a generalised total energy optimi-
sation routine [10, 23],

Q [ρ] = E [ρ] + αP [ρ] , (4.25)

where α is a positive constant defined such that the ground state energy will be ob-
tained when ρ is idempotent. Penalty functional approaches utilised in the literature
are variations of the term αP [ρ] designed in an effort to drive the density matrix to
idempotency during the optimisation.

LNV method

In the spirit of the purification transformation (4.22), Li, Nunes and Vanderbilt (LNV)
defined the density matrix ρ in terms of an auxiliary matrix σ, [24, 25]

ρ = 3σ2 − 2σ3, (4.26)

where σ can itself be written in terms of the support functions,

σ (r, r′) = φα(r)Lαβφ∗β(r′), (4.27)

where L is the auxiliary kernel. The density kernel K can thus be written as

K = 3LSL− 2LSLSL. (4.28)

Then the Kohn-Sham total energy functional E [ρ] can be expressed instead as a func-
tional of L,

E [L] = Tr [H (3LSL− 2LSLSL)] , (4.29)
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which can be minimised variationally with respect to the elements of the auxiliary
kernel {Lαβ } to obtain the ground state energy E0. The cubic dependence of the en-
ergy functional on the auxiliary kernel avoids the problem of multiple minima during
optimisation [26], and provided the occupancies remain within the range (−1

2
, 3
2
), min-

imisation of the functional will yield a variational approximation to the ground state.
However, should any of the occupancies fall outside the required range at any stage of
the optimisation, the algorithm may become unstable. Variations of the LNV method,
such as the Millam-Scuseria approach, have been developed to provide more stable
convergence [27].

Normalisation

There is also the question of normalisation of the density kernel. Thankfully this is
somewhat more straightforward than the task of enforcing idempotency. We can define
a grand potential of the form,

Ω = E − µN, (4.30)

where µ, the chemical potential, acts as a Lagrange multiplier to ensure that normali-
sation is maintained. Now we seek to find minima of the functional Ω instead of the
total energy directly,

Ω [ρ] = Tr [(H− µI) ρ] . (4.31)

Generally it can be more convenient to work at fixed chemical potential [17]. In terms
of the density kernel, the functional to be minimised can now be expressed as

Ω = Tr [HK− µSK] . (4.32)

Optimising the support functions

So far we have focused entirely on the density kernel and neglected the support func-
tions. One can consider the support functions to be fixed during the calculation, such
as in codes that utilise pseudoatomic orbitals or Gaussian basis sets [6], and only the
density kernel is optimised. Improvements in accuracy can be obtained by increasing
the size of the basis, although of course a larger basis implies a more costly calculation.
In addition, fixed basis set methods are susceptible to basis set superposition error
(BSSE) for binding energies, which requires counterpoise corrections to eliminate [28].

Other methods deal with the orbitals explicitly but remove the need for orthogo-
nality to be directly imposed [29]. For instance, in the approaches of Mauri et al. and
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Ordejon et al., a Löwdin transformation is performed on the single particle wavefunc-
tions [30],

|ψi〉 =
(
S−

1
2

)ij
|Φj〉 , (4.33)

The total energy functional is constructed such that orthonormality is implicitly in-
cluded. Minimisation with respect to the orbitals {Φi} proceeds without any orthogo-
nalisation and these orbitals are orthonormal only at the global minimum of the energy
functional [31], thus avoiding this costly procedure [5]. Meanwhile, the orbitals can be
constrained to maintain strict locality such that the nearsightedness of the density ma-
trix can still be exploited. Optimised local orbitals also do not suffer from BSSE, so no
correction to interaction energies is required [22].

4.2 The ONETEP approach

Having established the fundamental theory required, we now move on to a descrip-
tion of the ONETEP linear-scaling DFT code [8, 32], which we will use throughout the
remainder of this work. The density matrix is expressed in the form of (4.11), using an
atom-centred local-orbital basis {φα}, referred to as non-orthogonal generalised Wan-
nier functions (NGWFs) [33]. Given that we are mainly interested in calculations on
large-scale systems, we can limit ourselves to performing calculations at the Γ-point
in k-space (see Section 2.6.1) and the NGWFs are considered to be real. To facilitate
efficient calculations on large systems, a minimal number of NGWFs per atoms are
used during a calculation in ONETEP, such that the number of basis functions M is
comparable to the number of electrons. These functions are generated as an expansion
of periodic bandwidth limited delta functions, or psincs {Dk (r)},

φα (r) =

N1−1∑
k=0

N2−1∑
l=0

N3−1∑
k=0

Cklm,αDklm (r) , (4.34)

Dklm (r) =
1

N1N2N3

J1∑
p=−J1

J2∑
q=−J2

J3∑
s=−J3

ei(pb1+qb2+sb3)·(r−rklm), (4.35)

where Ni = 2Ji + 1 is the number of grid points in the direction of lattice vector ai, bi is
the corresponding reciprocal lattice vector, {rklm} are the grid points of the periodic cell
and the {Cklm,α} are expansion coefficients. An example of a psinc function compared
to a regular sinc (cardinal sine) function is shown in Figure 4.1, which highlights why
they can be considered “periodic sinc functions” [32].

The power of this approach can be seen from the fact that the psincs are related
to plane waves by a unitary Fourier transform, which makes the ONETEP approach
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FIGURE 4.1: Sinc function (left) and the periodic bandwidth limited delta
function (psinc, right).

effectively a linear-scaling reformulation of the plane wave method in terms of NGWFs
[33]. Just as plane wave basis set quality is controlled by the kinetic energy cutoff,
the quality of the psinc basis can be systematically improved using a single related
parameter, the grid spacing [8], which allows ONETEP calculations to be converged to
plane-wave accuracy [32].

4.2.1 Linear-scaling with ONETEP

In order to exploit nearsightedness for linear-scaling, each NGWF is associated with
a localisation region, outside of which they are forced to be zero [33]. For large-scale
calculations this results in the overlap matrix S and the Hamiltonian H being sparse [4].
Additionally, the density kernel elements Kαβ are truncated if the separation between
the centres of the corresponding NGWFs is greater than a specified cutoff distance
|Rα−Rβ| > Rc [8]. This enables us to use sparse matrix algebra to perform the required
matrix operations during a calculation, which for sufficiently sparse matrices can be
performed with O (N) scaling.

There is one final ingredient required to ensure that ONETEP calculations are linear-
scaling. As mentioned at the beginning of this chapter, fast Fourier transforms (FFTs)
are widely used in ab initio methods for efficient computations. However, theN2 ln (N)

scaling with system size is clearly inappropriate for linear-scaling. To bypass this
bottleneck, ONETEP uses the FFT box technique [34], whereby a box is constructed
around each NGWF that contains both it and its overlapping neighbours. The FFTs are
then performed for each box individually, rather than over the whole system. Since the
dimensions of the FFT box depends only on the NGWF radius, the size of the box is
independent of system size (provided the simulation cell is sufficiently large) and the
FFT operations can be performed in linear-scaling time.
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4.2.2 Total Energy Optimisation in ONETEP

Total energy minimisation in ONETEP takes place within a nested two-stage loop as
illustrated in Figure 4.2. In addition to optimising the elements of the auxiliary den-
sity kernel by means of the LNV method discussed in Section 4.1.2, we also optimise
our NGWF basis by minimising the total energy with respect to the expansion coef-
ficients of the underlying psinc basis. The total energy functional can then be writ-
ten as a function of the elements of the auxiliary kernel and the psinc coefficients
Ω
(
{Lαβ, {Cklm,α } }

)
, and the optimisation takes place in a two-stage process [26],

E0 = min
{Cklm,α }

L ({Cklm,α }) , (4.36)

L ({Cklm,α }) = min
{Kαβ }

Ω
(
{Kαβ; {Cklm,α } }

)
. (4.37)

The initial NGWFs are generated from truncated pseudoatomic orbitals. Then the den-
sity kernel is initialised by canonical purification [21], refined using a penalty func-
tional to ensure idempotency [23, 32] and optimised for this set of NGWFs via the
LNV algorithm [24, 25]. This setup ensures that approximate idempotency of the ker-
nel is maintained. Next, the NGWFs are updated by applying the NGWF gradient of
the total energy functional (see below) and this process repeated until convergence is
achieved [26].

4.2.3 NGWF and density kernel gradients

The total energy functional can be written as

Ω = Tr [K (H− µS)]− EDC [n] = Kij (Hji − µSji)− EDC [n] , (4.38)

where we have included the−µS term to ensure normalisation during the optimisation
and EDC [n] is the double-counting correction for the Hartree and exchange-correlation
contributions to the DFT band-structure energy [35]. For simplicity, we will transform
the Hamiltonian such that we do not need to explicitly refer to this term in the equa-
tions below,

H→ H− µS. (4.39)
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FIGURE 4.2: Self-consistent routine for optimisation of total energy in
ONETEP.

In addition, the optimisation procedure including the double-counting term yields the
same gradient as the band structure term Tr [KH], so for simplicity we omit the double-
counting term below. Now expanding the density kernel as in equation (4.28) we have

Ω = Tr [(3LSL− 2LSLSL)H] (4.40)

= 3LijSjkL
kmHmi − 2LijSjkL

kmSmnL
npHpi, (4.41)

which can be rewritten explicitly in terms of the NGWFs as

Ω = 3Lij 〈φj|φk〉Lkm 〈φm|Ĥ|φi〉 − 2Lij 〈φj|φk〉Lkm 〈φm|φn〉Lnp 〈φp|Ĥ|φi〉 . (4.42)

For clarity in this derivation we will treat the NGWFs directly as the variables to be
optimised, rather than their expansion coefficients, though this is a straightforward
addition.
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Now differentiating with respect to the NGWFs yields the contravariant gradient,

|gα〉 =
∂Ω

∂ 〈φα|
= |φi〉 (3LHL− 2LSLHL− 2LHLSL)iα

+ Ĥ |φj〉 (3LSL− 2LSLSL)jα,

= |φi〉Qiα + Ĥ |φj〉Kjα, (4.43)

where
Q = 3LHL− 2LSLHL− 2LHLSL. (4.44)

In order to obtain the correct gradient for the NGWF optimisation, we require the co-
variant term. This can be obtained by multiplying gα by the metric, the overlap matrix
S [18, 19]. The tensorially correct result is thus

|gα〉 = |gj〉Sjα , (4.45)

= |φi〉 (QS)iα + Ĥ |φj〉 (KS)jα . (4.46)

The NGWFs can then be updated by using the steepest descent method,

|φ(k+1)
α 〉 = |φ(k)

α 〉+ λ |gα〉 , (4.47)

where λ is the step length. In practice ONETEP uses conjugate gradients in successive
steps to enable more rapid convergence of the NGWFs.

We can obtain the density kernel gradient in a similar manner, by differentiating
(4.41) with respect to the elements of the auxiliary density kernel,

Gβα =
∂Ω

∂Lαβ
,

=[3 (SLH + HLS)− 2 (SLSLH + SLHLS + HLSLS)]βα, (4.48)

which as before must be converted to tensorially correct form, using the inverse over-
lap S−1,

Gβα =Sβj
∂Ω

∂Lij
Siα,

=
[
3
(
LHS−1 + S−1HL

)
− 2

(
LSLHS−1 + LHL + S−1HLSL

)]βα
. (4.49)
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4.3 Relevant ONETEP functionalities

There are many additional functionalities incorporated within ONETEP beyond sim-
ply calculating the ground state energy. In this section we will briefly review the func-
tionalities that will be of use to us in later chapters.

4.3.1 Forces and geometry optimisation

Having developed a format for obtaining the ground state of a quantum system, it
is often of interest to calculate the forces of and perform geometry optimisation on
molecular structures. The Hellmann-Feynman theorem, as discussed in Chapter 2,
can be used to calculate ionic forces within DFT, however this form is only strictly
true in the limit of a complete basis [36]. Within the ONETEP formalism, additional
contributions will arise from the implicit dependence of the density kernel and NGWFs
on ionic positions [37],

Fγ = − dE

dRγ

= − ∂E

∂Rγ

− ∂E

∂Kij

dKji

dRγ

−
∫

δE

δφi(r)

dφi(r)

dRγ

dr. (4.50)

In principle the derivatives of E with respect to {Kαβ } and {φα } will be zero at the
ground state, such that these terms can be neglected. In practice, while this may be true
for the kernel, the NGWF gradient cannot be converged to arbitrarily small accuracy
due to the competing effects of the kinetic energy operator, which tends to delocalise
the orbitals, and the strict localisation constraint imposed within ONETEP [36, 38].
As a result, a small but significant contribution will be retained from the NGWFs in
the form of Pulay forces from the use of a localised atom-centred basis [39]. The total
forces calculated in ONETEP are thus the Hellmann-Feynman contribution plus an
additional correction for the Pulay forces,

Ftotal
γ = FHF

γ + FPulay
γ . (4.51)

4.3.2 Conduction NGWF optimisation

The ONETEP minimal basis approach to finding the ground state energy provides a
description of the ground state properties of the system with accuracy comparable to
plane-wave methods [8, 32]. The same cannot be said, however, for excited state prop-
erties. The NGWF basis {φα } provides overall a poor description of the conduction
manifold, without which it is impossible to obtain a valid description of excited state
properties such as optical spectra [40]. This is not terribly surprising, as while in prin-
ciple conduction state properties should be accessible with a complete basis, there is



Chapter 4. Linear-Scaling DFT and ONETEP 72

no reason to believe that this should be true for the minimal NGWF basis used in a
ONETEP calculation, as the sole interest in the optimisation is providing an accurate
description of the occupied Kohn-Sham states.

A solution to this problem has been implemented within ONETEP in order to ac-
curately calculate conduction state orbitals [40, 41]. First, a ground state calculation is
performed, yielding an optimised set of valence NGWFs {φα } and density kernel Kv.
A new density matrix can be constructed for a set ofNc virtual orbitals above the Fermi
level,

σ (r, r′) =

(Nocc+Nc)/2∑
i=Nocc/2+1

ψi(r)ψ
∗
i (r
′), (4.52)

where we have assumed that the states are doubly occupied due to spin-degeneracy
(though this need not be the case in general) and the sum runs over the Nc lowest
unoccupied Kohn-Sham orbitals. We can then expand this quantity in terms of an
additional conduction NGWF basis {χα } and density kernel Kc,

σ (r, r′) = χi(r)K
ij
c χj(r

′). (4.53)

The virtual Kohn-Sham orbitals must be orthogonal with respect to the occupied va-
lence orbitals. To achieve this, we construct a projected Hamiltonian of the form,

Ĥproj = Ĥ − σ̂
(
Ĥ − µ

)
σ̂, (4.54)

where µ is a parameter used to shift the eigenvalues of the valence Hamiltonian above
the conduction states we wish to optimise. Thus, following the same procedure as in
Section 4.2.2, a minimisation of the functional

Ωcond = Tr
[
Hproj
c Kc

]
(4.55)

with respect to Kc and the orbitals {χα } will yield an optimised kernel and NGWF
basis spanning the Nc lowest virtual Kohn-Sham states. Subsequently, a one-shot di-
agonalisation of the Hamiltonian can be performed to obtain optical properties using
a joint valence-conduction NGWF basis [40].

The above procedure has been demonstrated to give accurate results for proper-
ties that depend on the low-lying states of the conduction manifold [41], however the
uppermost, delocalised states are still poorly described, particularly for molecular sys-
tems in vacuum. This is to be expected given that our local orbital basis is ill-suited to
characterise the high-energy states that can extend into the vacuum. Even for the low-
lying states, it is often necessary to use a larger NGWF cutoff radius and even a larger
number of NGWFs to capture the conduction state properties. Great care is needed in
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the choice of the number of conduction orbitals Nc and the shift parameter σ in order
to avoid becoming trapped in local minima during the optimisation procedure [40],
though much of this is now automated by ONETEP.

4.3.3 Hartree-Fock exchange

In addition to the standard set of semi-local exchange-correlation functionals, hybrid
functionals have been implemented within ONETEP [42]. In the Kohn-Sham formal-
ism, the exact exchange energy is given by

EHFx = −
∑
i,j

fifj

∫
ψ∗i (r)ψ

∗
j (r
′)

1

|r− r′|
ψj(r)ψi(r

′)drdr′, (4.56)

which, expanding the Kohn-Sham orbitals in our NGWF basis as in (4.4), becomes,

EHFx = −Kβα

∫ ∫
φα(r)φδ(r)

1

|r− r′|
φβ(r′)φγ(r

′)drdr′Kδγ (4.57)

= −Kβα (φαφδ|φβφγ)Kδγ = −KβαXαβ, (4.58)

where (φαφδ|φβφγ) is a two-electron integral and the last equation defines the exchange
matrix Xαβ . The computational challenge within ONETEP rests in the calculation of
the exchange matrix, as the number of two-electron integrals to be computed can scale
as ∼ N2

at − N4
at with the number of atoms in the system. Even so, a linear-scaling

calculation of the exchange matrix has been implemented in ONETEP [42], though
the cost of accurately calculating this term is extremely expensive and can be a severe
bottleneck.

4.3.4 Excitation energies from ONETEP

ONETEP is fundamentally a ground-state DFT code, and thus all the limitations of
standard DFT discussed in Chapter 2 apply here. In particular, even with a highly
accurate description of the ground state it is not possible to say anything about the
nature of excited states, such as excitation energies, based purely on a ground state
calculation. Thus extensions to the ONETEP approach are required for us to be able to
obtain excitation energies for the kinds of systems that we wish to study with linear-
scaling DFT.

Excited state properties can be obtained using time-dependent density functional
theory (TDDFT) [43], an extension of ground-state DFT which comes in two varieties
— time-domain TDDFT, which considers the time evolution of the ground state elec-
tric density, and the frequency-domain linear-response approach (LR-TDDFT), where
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the excitation energies are solutions to an effective eigenvalue equation [44]. The lat-
ter has been implemented within ONETEP in both the Tamm-Dancoff Approximation
(TDA) [45] and the full linear-response approach [46]. The semi-local adiabatic approx-
imation is used, whereby history dependence is neglected. As things stand, LR-TDDFT
in ONETEP is thus restricted to the use of semi-local exchange-correlation functionals,
restricting applications of the method due to the severe underestimation of charge-
transfer interactions by semi-local functionals.

So far in this chapter we have assumed spin degeneracy throughout and neglected
the effects of spin polarisation. Nonetheless, spin-polarised calculations are possible
by considering the total density matrix to be the sum of spin up and spin down com-
ponents,

ρ↑ (r, r′) = φα(r)
(
K↑
)αβ

φβ(r′), (4.59)

ρ↓ (r, r′) = φα(r)
(
K↓
)αβ

φβ(r′). (4.60)

where now the spin-polarised density kernels are normalised such that

Tr
[
K↑S

]
= N↑, (4.61)

Tr
[
K↓S

]
= N↓, (4.62)

where N↑ and N↓ are the number of electrons in spin up and spin down configurations
respectively, such that N↑+N↓ = N . Then the total energy functional can be written as

Ω = Tr
[
H↑K↑ + H↓K↓

]
. (4.63)

Note that there will be additional numerical factors of two in the spin-unpolarised
formalism, though we have neglected throughout this chapter for clarity. Taking ad-
vantage of this functionality, we can in fact extract the ground state electron density
for both the spin-polarised (triplet) and spin-unpolarised (singlet) configurations of
any system, and thus the ground state energies ET and ES. Assuming the singlet state
is lower in energy, the lowest triplet state excitation energy level can then be calculated
as

∆ES0→T1 = ET − ES. (4.64)

This is the ∆SCF method and can be used to extract triplet excitation energies, though
its applicability is limited to the lowest excitation energy as this is the only excited
state which can be rigorously described by a ground-state DFT calculation. On the
other hand, unlike LR-TDDFT there is no restriction on the use of hybrid functionals
within ONETEP, which enables useful comparisons of the two methods.
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4.4 Summary

In this chapter we have discussed the motivation and theoretical underpinning for
linear-scaling density functional theory in the density matrix formalism. The ONETEP
linear-scaling package can perform calculations on systems up to tens of thousands
of atoms by virtue of the combinations of the localised NGWF basis, sparse matrices
and the FFT box technique [4]. In addition, the expansion of the NGWFs in a basis of
psinc functions [33] enables calculations with quality systematically tunable to plane-
wave accuracy. While ONETEP is able to perform calculations using implicit solvation
models and QM/MM approaches, there is no facilitation for DFT calculations to be
performed at different levels of theory for different parts of the system, in spite of the
expansive nature of the method. In later chapters we will investigate the possibility of
implementing quantum embedding methods within ONETEP.
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5 Influence of the crystal host on
excitons in pentacene derivatives

The key motivation behind the work in this chapter is the desire to obtain a better un-
derstanding of the pentacene in p-terphenyl room temperature maser (RTM), in partic-
ular regarding the interaction of the active pentacene molecule with its host structure.
In this chapter, we perform an ab initio study of the ground state and excited state prop-
erties of this system using pre-existing electronic structure techniques. This work has
previously been published in [1] and is reproduced here with the permission of AIP
Publishing.

5.1 Background and Motivation

Pentacene (C22H14) is an organic molecule in the class of linear acenes, consisting of
five benzene rings fused together. As a family, the acene molecules have attracted a
great deal of interest in the scientific world, particularly in the last decade due to their
intriguing electronic properties which make them suitable for use in organic electronic
devices [2]. Amongst their general properties that make acenes amenable for electronic
applications is their high degree of mechanical flexibility and high charge-carrier mo-
bility [3], which has enabled them and their derivatives to be used as thin-film transis-
tors [2, 4–6]. Pentacene in particular has found use in organic photovoltaic systems [7],
not least due to the observation of singlet fission within the pentacene excitation spec-
trum which enables extremely high efficiencies [8]. While these cases tend to deal with
bulk crystalline and thin-film pentacene, for our purposes we are mainly concerned
with the use of pentacene as a dopant molecule in a crystalline structure composed of
p-terphenyl, which, by exploiting the excitation spectrum of pentacene, can be used as
the gain medium for a room-temperature maser [9].

The masing mechanism is illustrated in Figure 5.1. Initially, the pentacene molecule
is excited from the singlet ground state S0 to the lowest singlet excited state S1 using a
yellow light laser. This state coincides in energy with the triplet excited state T2, such
that there is a strong mixing of the two states via a mixture of spin-orbit coupling and
electron-phonon interactions. The result is a pair of states consisting of mixed singlet
and triplet character, S1 being dominated by the former and T2 by the latter, allowing
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(iii)	Non-radiative	
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(iv)	Phosphorescence/	
Non-radiative	decay

FIGURE 5.1: Pentacene excitation spectrum as part of the room-
temperature maser mechanism cycle [9]. Starting from the singlet ground
state S0, (i) the pentacene is photoexcited by a yellow light laser into the S1
state. From there, (ii) an intersystem crossing (ISC) transfers the molecule
to the triplet T2 state (see text for more details). The molecule then (iii) de-
cays to the triplet ground state T1, wherein a population inversion exists
between the X, Y and Z states in the ratio 0.76:0.16:0.08. The maser transi-
tion then occurs within the T1 state. Finally, the molecule decays back to

the S0 state. This figure is reproduced from [1].

an intersystem crossing (ISC) from the singlet to the triplet manifold [10] (note that,
strictly speaking, spin is not a good quantum number due to spin-orbit coupling, such
that the S1 → T2 ISC is a vertical transition between the mixed states). The sublevels
of the T2 state are populated such that the uppermost level is preferred, giving rise
to a population inversion that is preserved in the decay to the T1 triplet ground state.
The maser transition takes place within the T1 state, before decaying back to S1. This
system is the first successful demonstration of masing at room-temperature, although
further improvements are necessary before this can become a practical device [9, 10].
For example, the pentacene in p-terphenyl maser is a pulsed device and is not suitable
for continuous operation. Another major constraint is the slow decay rate from T1 back
to S0, causing the accumulation of excitons in the lowest triplet sublevel and breaking
the population inversion in T1.

Experimental studies of pentacene have shown significant variation in its excitonic
behaviour depending on the choice of host environment [11–13]. The change in molec-
ular excitation energies due to exposure to solvent effects is known as a solvatochromic
shift, and indeed for a p-terphenyl host even the choice of lattice site can be significant
— Patterson et al. observed an increase in the ISC rate by two orders of magnitude
due to the pentacene being placed in one of the four crystalline p-terphenyl lattice
sites, corresponding to a shift of 20 meV in the excitation spectrum [14]. Thus in or-
der to describe the behaviour of this system from first principles, it is clear that we
must develop an understanding of not just pentacene in vacuum but also the impact
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FIGURE 5.2: Various views of the pentacene (pink) in p-terphenyl (grey
and white) cluster used in this work. (A) shows the complete cluster con-
figuration with a pentacene molecule surrounded by its six nearest neigh-
bour p-terphenyls, each labelled by a number. (B) shows the orientation of
the molecules within the p-terphenyl herringbone crystal structure, with a
pentacene swapped for one p-terphenyl molecule. (C) displays the align-
ment of the acene rings within the neighbouring molecules. This figure is

reproduced from [1].

of the host structure. This would also enable us to consider other molecules that could
replace pentacene as the active molecule, potentially yielding better performance for
the maser. Past studies of the linear acene anthracene and its nitrogen-doped deriva-
tive phenazine, in which two sp2 nitrogen groups are contained within the central
aromatic ring, showed a comparable zero-field splitting in both molecules but with a
significantly more pronounced population inversion for phenazine, producing strong
phosphorescence [15]. An equivalent effect for pentacene could potentially reduce the
impact of the bottleneck in the return to S0.

5.2 Chromophores and the crystal host

As discussed in Chapter 3, there are a number of ways to embed an active subsys-
tem in a solvent environment [16]. Past studies on the importance of explicit solvent
effects have focused on the inclusion of explicit solvent regions regions when perform-
ing QM/MM type calculations within an implicit solvent environment. For instance,
solvation effects in water can be understood by including shells of water molecules
located within a given radius of the solute in the explicit quantum mechanical re-
gion, while treating the remainder as a polarisable continuum medium (PCM). In these
works, solvatochromic shifts were observed in the excitation spectra that varied by in-
clusion of additional solvent molecules in the active region, suggesting that at least
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some environment is needed explicitly to accurately describe the solute-solvent inter-
action [17–19]. Our simulation of the pentacene in p-terphenyl system will be based on
two models for the host — an implicit solvent using a conductor-like polarisable con-
tinuum medium (CPCM, see Chapter 3) and an explicit molecular host consisting of
the six nearest neighbour molecules of pentacene in the p-terphenyl herringbone crys-
tal structure as shown in Figure 5.2. Crystalline p-terphenyl has a dielectric constant
of εmicrowave = 2.98 in the microwave spectrum, compared to an optical light value of
εoptical = 2.81 [20, 21]. Preliminary tests showed similar results with both models, thus
a single value of εCPCM = 3 was selected for the CPCM to represent the host for implicit
solvent calculations.

5.2.1 Choosing the cluster

The explicit crystal host was selected using a 3 × 4 × 3 periodic cell of 72 p-terphenyl
molecules, the atomic positions and lattice parameters of which were taken from ex-
periment [22]. At low temperatures, crystalline p-terphenyl has four distinct lattice po-
sitions, though in room temperature conditions as would be applicable to the maser,
these four positions are averaged down to two in a herringbone configuration. A p-
terphenyl molecule was replaced with a single pentacene, which has a similar length
and width as p-terphenyl (see Figure 5.2) and so can maintain the same orientation and
centre of mass. The geometry was subsequently reoptimised at the PBE level of theory
in ONETEP, the linear-scaling nature of which makes geometry optimisation on struc-
tures containing thousands of atoms feasible [23, 24]. Since PBE lacks dispersion and
therefore cannot accurately capture long-range effects, the p-terphenyl carbon atom po-
sitions were fixed in their correct experimental locations, with only the carbon atoms
in pentacene and the hydrogen atoms across the crystal being allowed to reoptimise.
The lattice vectors were kept fixed for all geometry optimisations.

The full periodic crystal structure is too large to be of use for excited state calcula-
tions with hybrid functionals, so a cluster consisting of the pentacene and its six nearest
neighbour p-terphenyls was extracted to vacuum as the representation of the explicit
host. The size of this structure was chosen via an analysis of the HOMO and LUMO
states in the crystal. Due to the semi-local nature of the PBE functional, the HOMO and
LUMO states both spill out somewhat onto the neighbouring p-terphenyl molecules in
the crystal host. Since the S1 and T1 excited states in vacuum are primarily composed
of the HOMO→LUMO transition, it is important that any effects that the explicit host
may have on these transitions is accurately captured by the extracted cluster struc-
ture. Thus the proportion of the HOMO/LUMO states localised on the pentacene and
its neighbouring molecules was determined by partitioning the Kohn-Sham orbitals
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FIGURE 5.3: Left: contribution to HOMO and LUMO states of pentacene
by each of its 12 nearest neighbour p-terphenyls in the periodic crystal.
The first six data points correspond to the six molecules in Figure 5.2 and
the remainder are the next nearest neighbours. Right: proportion of HO-
MO/LUMO in active region. This figure is reproduced from the supple-

mentary material of [1].

based on contributions from the local orbitals assigned to each molecule. Indeed, in
the periodic p-terphenyl crystal structure, only 96.0% of the HOMO and 97.1% of the
LUMO are localised on the pentacene chromophore, with the remainder being spread
primarily across the 12 nearest p-terphenyls. Figure 5.3 shows the contributions to-
wards the HOMO and LUMO states from each of these molecules, with the first six
indices corresponding to the molecules indicated in Figure 5.2. We see that including
the six nearest neighbour p-terphenyls in the active region enables the cluster to repro-
duce over 99% of the crystalline HOMO/LUMO states. Thus the cluster of pentacene
surrounded by six p-terphenyls was selected for explicit host structure calculations.

5.2.2 Pentacene-based derivatives

As discussed earlier, nitrogen doping of acene molecules in past experimental studies
has resulted in an increased population inversion compared to undoped molecules,
enabling stronger phosphorescence and thus potentially a faster ISC [15]. This could
potentially improve the efficiency of the pentacene in p-terphenyl maser. For this rea-
son, four additional chromophores were considered, all of which include the doping
of pentacene with nitrogen. The four shown in Figure 5.4 are known as diazapen-
tacene (dap) molecules, labelled 6,13-dap, 5,12-dap, 1,8-dap and 2,9-dap according to
the location of the two nitrogen atoms. These were chosen based on a previous ab initio
study by Bogatko et al. [25], whereby a variety of alternative maser active molecules
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(A) Pentacene

(B) 6,13-diazapentacene (C) 5,12-diazapentacene

(D) 1,8-diazapentacene (E) 2,9-diazapentacene

FIGURE 5.4: Dopant molecules considered as part of this study. For
brevity, each diazapentacene molecule will be referred to by the shorthand

“m,n-dap” throughout this work. This figure is reproduced from [1].

Chromophore optimised Chromophore extracted
in crystal (mHa/a0) to vacuum (mHa/a0)

Pentacene 1.25 5.35
1-8 dap 1.90 4.48
2-9 dap 1.59 3.40
5-12 dap 1.48 3.90
6-13 dap 1.68 3.79

TABLE 5.1: Maximum root mean square (RMS) forces on each chro-
mophore for crystal-optimised geometry in crystal host and vacuum. This

table is reproduced from the supplementary material of [1].

were screened using time-dependent density functional theory (TDDFT) to find a se-
lection of molecules that bear qualitative excitonic similarity to pentacene. The diaza-
pentacene structures were selected for this study due to the similar size and shape of
these molecules to pentacene, such that they can still fit within the p-terphenyl herring-
bone lattice structure. We used the same procedure for optimisation of the pentacene
structure in crystal with all of the nitrogen-doped analogues studied here. The maxi-
mum root mean square (RMS) forces for each molecule are displayed in Table 5.1 both
in the crystal environment and extracted to vacuum. We see that the forces for all five
molecules are of comparable magnitude for both configurations, indicating that the
diazapentacene molecules are a good fit for the p-terphenyl crystal and are not sub-
stantially distorted compared to the pure vacuum arrangement.
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5.3 Excited state methods

Although density functional theory (DFT) is often thought of as a ground-state method,
and thus not suitable for the study of excited states, is is possible to extract informa-
tion on excited states from standard DFT calculations. One possibility is known as the
∆SCF method, whereby the lowest triplet excitation energy is obtained from two sepa-
rate SCF calculations. In the case of pentacene, since the lowest-lying triplet state T1 is
also the triplet ground state, the triplet excitation energy ∆ES0→T1 can be obtained from
the energy difference between a spin-polarised and a spin-unpolarised calculation,

∆ES0→T1 = Epol − Eunp. (5.1)

T1 is a special case, however, and for other excited states it is necessary to utilise
dedicated excitonic methods such as time-dependent DFT (TDDFT) [26]. Excitation
energies can be calculated in the linear-response form of TDDFT [27–29], whereby the
TDDFT equations are recast as effective eigenvalue equations. TDDFT retains a the-
oretical similarity to regular ground-state DFT, along with a scalability that enables
the application of TDDFT to large systems such as the pentacene in p-terphenyl clus-
ter used as part of this study. Linear-response TDDFT, in particular, can be made
linear-scaling [30–32]. Nonetheless, TDDFT does have its drawbacks, such as the well-
documented failure of semi-local exchange-correlation functionals to capture the ex-
cited states of linear acenes [33, 34]. In particular, singlet energies are severely under-
estimated due to the failure of semi-local TDDFT to describe the π-conjugated states
of pentacene. This limits the applicability of functionals such as PBE, and indeed has
detrimental effects for hybrid functionals such as B3LYP which also struggle to accu-
rately determine such states [35]. Instead, our focus here will be on the solvatochromic
shifts between vacuum and host calculations for comparisons of semi-local and hybrid
functionals. This raises the question of whether the failure of semi-local functionals
to capture acene excitation energies is systematic and thus if such comparisons are
valid. Long-range interactions in particular are not well represented by such function-
als, causing charge-transfer (CT) states to be unphysically low in energy.

Self-interaction errors can only be truly eradicated using exact exchange (see Sec-
tion 2.4), enabling hybrid functionals to provide a more realistic description of the
CT states and avoid the difficulties associated with semi-local functionals in explicit
host. Nonetheless, standard hybrid functionals also struggle to produce accurate ex-
citation energies for linear acenes [35], with results severely underestimated relative
to more accurate quantum chemical methods [11]. Optimally-tuned range-separated
hybrid functionals (OT-RSH, see Section 2.4.3) have in past studies produced highly
accurate results for systems that are difficult for semi-local TDDFT, such as acenes and
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CT excitations [36–38]. For this reason, in this study we make use of the OT-LCωPBE
functional, which has a 100% semi-local exchange form at short range and 100% ex-
act exchange at long range [39]. As these functionals are not currently available in
ONETEP, all excited state calculations presented in this chapter were performed using
Gaussian 09 [40] with the cc-pVTZ basis set [41]. For each chromophore, the range
separation parameter λ was tuned in vacuum such that the ionisation energy matched
the negative of the HOMO eigenvalue energy. These vacuum-tuned functionals were
also used for all calculations in implicit and explicit host.

5.4 Vacuum results

We will now look more closely at our choice of dopant molecules by examining their
ground and excited state properties in vacuum. Ground state calculations were done
using the linear-scaling ONETEP code, using the PBE exchange-correlation functional
with a kinetic energy cutoff of 750 eV. A minimal basis set of non-orthogonal gener-
alised Wannier functions (NGWFs) was used, with 1 per H, 4 per C and 4 per N. All
NGWFs have a radius of 10.0 bohr. Excited state calculations were performed using
Gaussian 09 [40] with the cc-pVTZ basis set [41], chosen such that the excited state en-
ergies using the PBE functional for all chromophores in vacuum matched the ONETEP
excitation energies for ∆ES0→S1 and ∆ES0→T1 using the NGWF basis mentioned above
to within ±5 meV. This ensured that, as much as possible, the ONETEP ground state
and Gaussian excited state calculations used equivalent basis sets.

5.4.1 Natural bond orbital (NBO) analysis

Nitrogen is a more electronegative element than carbon, so one would expect that
the substitution of N in place of C-H for the diazapentacene molecules would cause
measurable distortions in the electronic structure compared to pentacene. This can be
evaluated via a natural population analysis (NPA) of the molecules to determine the
electron population associated with each atom in a natural bond orbital (NBO) basis
set [42]. Figure 5.5 illustrates the population difference associated with each atom for
the diazapentacenes relative to pentacene. As expected, electric charge accumulates
on the nitrogens, such that there is a net reduction in the overall charge of the N sites
relative to the corresponding C-H sites of pentacene. These results are consistent with
previous studies of the impact of nitrogen substitution on pentacene [43], along with
the formation of electric dipoles in pyridine (nitrogen-doped benzene) due to charge
redistribution across the acene ring, reducing the spatial extent of the π-electron den-
sity.
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FIGURE 5.5: Changes in the electron populations associated with each
atom and acene ring for the diazapentacene molecules compared to pen-
tacene using natural population analysis (NPA). Circle radii are propor-
tional to the net electron population indicated. Nitrogen population dif-
ferences are compared to the combined C-H value for the corresponding

position on the pentacene molecule. This figure is reproduced from [1].

The acene rings of pentacene are not entirely equivalent in terms of their charge
distributions, which can cause the inner rings to be more chemically reactive than the
outer rings. Using our NPA, we do indeed see a small but measurable charge redistri-
bution across the molecule, such that the three inner rings each possess a net negative
charge of−0.004e and the two outer rings possess a +0.006e net positive charge. Given
the accumulation of electric charge in nitrogen-doped sites seen above, the next ques-
tion is whether this has any overall impact on the charge associated with each ring.
Figure 5.5 also shows the change in the net population for each ring relative to pen-
tacene. The most significant change is seen for 6,13-dap, which accumulates −0.39e in
the central ring where the two nitrogens are located, plus a positive charge of +0.16e
on each of the neighbouring rings. A similar though less striking effect can be seen for
5,12-dap, where there is a substantial charge variation on each ring though it is more
even than for 6,13-dap. 1,8- and 2,9-dap show comparatively little variation, seem-
ingly due to much of the charge redistribution being isolated within the outermost
rings where the nitrogens are located, as can be seen by examining the atomic popu-
lation changes. Nonetheless, for all chromophores the charge variation is significantly
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S1 (eV) T1 (eV)
Experiment [13] 2.3 0.86
Multi-reference Møller-Plesset
perturbation theory (MRMP) [44] 2.31 0.87
CCSD(T) (vertical excitation) [45] - 1.37
PBE TDDFT 1.62 0.81
OT-LCωPBE TDDFT 2.15 0.58
PBE ∆SCF - 0.91
OT-LCωPBE ∆SCF - 1.08

TABLE 5.2: Singlet and triplet excitation energies for pentacene in vacuum
from experimental and ab initio studies. TDDFT and ∆SCF results were
performed as part of this work, while MRMP and CCSD(T) are taken from

the references indicated. This table is reproduced from [1].

greater than between the individual acene rings of pentacene, indicating that there is
indeed a substantial change in the electronic structure for each diazapentacene struc-
ture. Based on these results, we would expect the 6,13-dap molecule to show the great-
est divergence in behaviour compared to pentacene, with 1,8- and 2,9-dap remaining
comparatively similar.

5.4.2 Vacuum excitations

In this section we will look more carefully at the excited state properties of pentacene
and its nitrogen-based derivatives. For this purpose we will use two methods to cal-
culate the excitation energies ∆ES0→S1 and ∆ES0→T1 , representing transitions from the
S0 ground state to the singlet excited state S1 and the T1 triplet ground state respec-
tively. For both states we make use of LR-TDDFT for determining both vacuum and
host excitation energies, while for the triplet state only we also use ∆SCF. Both the
semi-local PBE functional and the OT-LCωPBE functional were used in all calculations
for comparison.

Table 5.2 shows the vacuum energy levels of the S1 and T1 states for pentacene,
along with experimental and reference ab initio results. As expected, TDDFT with
PBE significantly underestimates the singlet excitation energy ∆ES0→S1 for pentacene,
while OT-LCωPBE yields much more accurate results for the S1 state. By contrast, for
the triplet state T1 PBE generally yields results closer to both experiment and wave-
function based quantum chemical methods than OT-LCωPBE, regardless of method
used. ∆SCF overestimates ∆ES0→T1 with range-separated hybrids relative to experi-
ment, while LR-TDDFT underestimates it significantly. The former is in line with the
tendency of quantum chemical methods to overestimate the difference between the
singlet and triplet ground states of pentacene [45, 46], while the latter is reminiscent of



Chapter 5. Influence of the crystal host on excitons in pentacene derivatives 90

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

Pentacene

2,9-dap

1,8-dap

5,12-dap

6,13-dap

E
x
ci
ta
ti
o
n
en

er
g
y
(e
V
)

PBE
OT-LCwPBE

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Pentacene

2,9-dap

1,8-dap

5,12-dap

6,13-dap

E
x
ci
ta
ti
o
n
en

er
g
y
(e
V
) PBE

OT-LCωPBE

FIGURE 5.6: Singlet and triplet excitation energies ∆ES0→S1 and ∆ES0→T1
for each chromophore in vacuum with PBE and OT-LCωPBE exchange-
correlation functionals. TDDFT calculations (solid lines) were performed
for both singlet and triplet states, and ∆SCF calculations (broken lines)

were used for triplet states only. This figure is reproduced from [1].

the triplet instability associated with linear-response TDDFT [47–49]. Thus the most ac-
curate singlet results are obtained using LR-TDDFT with OT-LCωPBE, while for triplet
energies the closest results to experiment for pentacene can be found with ∆SCF and
PBE.

Turning our attention to the other chromophores, Figure 5.6 displays the results for
the ∆ES0→S1 and ∆ES0→T1 excitation energies for all five of our molecules in vacuum.
Generally, 1,8- and 2,9-dap closely match pentacene for all levels of theory, while 5,12-
dap produces higher excitation energies. 6,13-dap yields lower singlet excitations but
the vacuum triplet energy is similar to that of pentacene. The similarity of 1,8- and 2,9-
dap confirms the predictions made using our NBO analysis previously, whereby these
two molecules show the least disturbance in their ground state electronic structures
compared to pentacene. 5,12-dap does show significant divergence in its excitation
spectrum, moreso than 6,13-dap, though this should be interpreted with caution due
to the difficulties in calculating accurate excitation energies for acene systems outlined
above. From the perspective of the maser, it would be more useful to consider the
relative behaviours of these molecules in host structures, as this presents a more mean-
ingful comparison of the molecular candidates and computational effects as opposed
to interpreting absolute energies.

5.5 Host effects

In this section we focus our efforts on the impact of the host on the various chro-
mophores discussed so far using the implicit CPCM model and the explicit p-terphenyl
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cluster. Based on the analysis of the vacuum pentacene results from earlier, we will
only work with the LR-TDDFT method for singlet calculations and the ∆SCF method
for triplet calculations.

Figure 5.7 displays the solvatochromic shift in ∆ES0→S1 and ∆ES0→T1 for each chro-
mophore both in implicit and explicit host. The singlet results for CPCM show a PBE
redshift of 30–40 meV less than the OT-LCωPBE for each chromophore, with 2,9- and
6,13-dap producing greater redshifts than pentacene while 1,8- and 5,12-dap show a
reduced shift. The singlet results for CPCM show a PBE redshift of 30–40 meV less
than the OT-LCωPBE for each chromophore, showing the same trend in both cases
of 2,9- and 6,13-dap producing greater redshifts than pentacene while 1,8- and 5,12-
dap show a reduced shift. The explicit host cluster indicates a far greater divergence
between the two functionals for singlet excitations. While there is a greater redshift
for pentacene with OT-LCωPBE than for PBE, the nitrogen-doped analogues display
the opposite behaviour, with the PBE redshift consistently increasing as the nitrogen
atoms are brought closer together. The scale of this disparity can be seen clearly from
a comparison of the S1 excitation energy for pentacene and 6,13-dap in cluster— with
OT-LCωPBE, the former shows a redshift of 65 meV, compared to 92 meV for the lat-
ter. However, with PBE, the pentacene redshift amounts to 58 meV compared to the
6,13-dap result of 189 meV.

For T1 in CPCM, an insignificant redshift of just 2 meV is observed for pentacene
with both OT-LCωPBE and PBE. Similarly, all the diazapentacene molecules apart
from 6,13-dap also display small energy shifts in CPCM, with a minor redshift for
2,9-dap compared to a blueshift of 6 meV and 11 meV for 1,8- and 5,12-dap for OT-
LCωPBE, a trend also followed using semi-local functionals. 6,13-dap produces the
greatest overall solvatochromic shift of all the chromophores, amounting to a 15 −
18 meV redshift. Turning our attention to the explicit cluster host, both functionals
again predict the same trends, with PBE suggesting a slightly greater redshift in all
cases. Once again, the standout result is for 6,13-dap, which yields a redshift of 30–
35 meV relative to vacuum, far greater than any other molecule for T1 in either host.

5.5.1 Discussion

In order to understand the impact of the host on the chromophores, we must disen-
tangle two effects — the importance of the choice of exchange-correlation functional
and the difference between the explicit and implicit hosts. The key result which re-
quires explanation is the large redshift in ∆ES0→S1 for 5,12- and 6,13-dap in explicit
host. An examination of the composition of these excitations in Figure 5.8 in terms of
the contribution of the HOMO→LUMO transition to the excitation reveals the cause of
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FIGURE 5.7: Solvatochromic shifts in ∆ES0→S1 (left) and ∆ES0→T1 (right)
by placing each chromophore in a conductor-like polarisable continuum
model (CPCM, solid) and an explicit p-terphenyl cluster (dashed lines).
Singlet calculations were performed using TDDFT and triplet calculations
using ∆SCF at either the PBE or OT-LCωPBE level of theory. This figure is

reproduced from [1].

this effect. The normally dominant HOMO→LUMO in vacuum (and CPCM) becomes
slightly diluted in explicit host due to the availability of additional molecular orbitals
from the neighbouring p-terphenyl molecules. While pentacene, 2,9- and 1,8-dap re-
tain their > 99% HOMO→LUMO makeup in explicit host with OT-LCωPBE, this is not
the case for 5,12- and 6,13-dap, which now contain significant contributions from other
molecules in their singlet excited state. This effect is even more dramatic with PBE, for
which only 56% and 66% of the S1 excitation are explicitly HOMO→LUMO for 5,12-
and 6,13-dap respectively, due to the inclusion of portions of spurious charge-transfer
(CT) states in the excitation. In this context, it is easy to see why the PBE cluster red-
shift is so large — the CT states are unphysically low in energy for 5,12- and 6,13-dap,
becoming mixed into their excitation spectra and lowering their overall energy rela-
tive to vacuum. This suggests that the ∆ES0→S1 PBE redshifts for 5,12- and 6,13-dap
are not physically meaningful and are simply a consequence of the failure of semi-local
TDDFT to describe long-range CT interactions. This indicates that for singlet states in
explicit host PBE is not a useful functional as it predicts unphysical behaviour.

Nonetheless, the fact that a qualitatively similar effect regarding the dilution of the
S1 state is observable with OT-LCωPBE, which should be free of such distortions, im-
plies that there is a significant change to the excitonic properties of these two molecules
in the presence of the explicit host. This is not represented by the CPCM data in Fig-
ure 5.8. To better understand this effect, Figure 5.9 shows the local density of states
(LDOS) plots for each molecule in explicit host with OT-LCωPBE. Energetically, the
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HOMO and LUMO of vacuum pentacene are isolated from the rest of the molecu-
lar orbitals, but placing the pentacene in explicit host causes additional p-terphenyl
molecular orbitals to be located above the HOMO-1 and below the LUMO+1 states.
Nitrogen-doping brings these host states closer in energy to the HOMO of the chro-
mophore, an effect that becomes more noticeable as the two nitrogens of the diazapen-
tacene structure are brought closer together. In this way, the nitrogen lone pairs pro-
vide a bridging mechanism between the pentacene HOMO/LUMO and the orbitals of
p-terphenyl, enabling the CT mixing observed in Figure 5.8.

For the S1 state, the two solvent models produce very similar behaviour for 1,8-,
5,12- and 6,13-dap with OT-LCωPBE, though they diverge for the other two molecules.
This does not capture the full picture, however, as the CPCM predicts a smaller redshift
in ∆ES0→S1 for 1,8- and 5,12-dap than pentacene, in contrast to the cluster structure
results, as well as underestimating the shift for 6,13-dap relative to pentacene. By con-
trast, for ∆ES0→T1 the two solvent models yield different trends despite predicting the
same redshift with OT-LCωPBE for pentacene. These results suggest that the CPCM
does not provide a full description of the impact of the p-terphenyl host structure on
the diazapentacenes, despite giving a good description of the electrostatic interaction
of the pentacene in p-terphenyl solute-solvent system, as expected by our earlier anal-
ysis of the chromophore excited states.

From a structural perspective, the CT coupling between the chromophore and its
host appears to depend significantly on the location of the nitrogen atoms in the di-
azapentacene structure, as only 5,12- and 6,13-dap show significant divergence from
pentacene in their excitation spectrum in explicit host. This is in line with the NBO
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analysis of Section 5.4.1, whereby significant charge redistribution across the acene
structure are only seen for the latter two molecules, while the former two retain an
electronic structure similar to pentacene. The location of the nitrogens themselves rel-
ative to the acene rings of the p-terphenyls (see Figure 5.2) is another possible cause of
this effect, since only 6,13-dap retains mirror symmetry through the major axis plane
while the other three molecules have two possible configurations within the cluster
corresponding to the alternative lattice positions in the herringbone structure. How-
ever, rotating these three molecules within the cluster yielded no appreciable change
in the excitation energies or molecular orbital composition, so we must rule this out.

5.6 Maser candidates

Given the results presented thus far, we are finally in a position to evaluate the suit-
ability of each diazapentacene molecule as maser candidates. The similarity of 1,8-
and 2,9-dap to pentacene in their ground and excited state properties both in vacuum
and host suggests that they have the potential to function as maser active molecules.
5,12-dap behaves in a similar manner to pentacene in the presence of the p-terphenyl
host but has the drawback that a significantly higher ∆ES0→T1 energy would slow the
decay back to the singlet state at the end of the masing process. The electronic struc-
ture of 6,13-dap is significantly distorted by the presence of the nitrogens on the central
acene ring, promoting a stronger interaction with the host environment and yielding
a greater redshift than any of the other chromophore candidates. In particular, the de-
crease in ∆ES0→T1 in host could produce a faster decay rate from T1 back to S0 reducing
the risk of bottlenecking in the maser process that impacts the pentacene in p-terphenyl
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device. While an analysis of the impact of nitrogen-doping on the intersystem crossing
rates and populations is beyond this study, based on previous studies of phenazine
and anthracene it is possible that the introduction of the nitrogen lone pairs would fa-
cilitate a stronger population inversion and thus produce a faster ISC rate. Combined
with the results discussed above, this would enable the tuning of the maser device via
selective doping of pentacene.

5.7 Summary

In this chapter we have presented the results of a ground and excited state study of
the excitonic properties of pentacene and its nitrogen-based analogues in explicit and
implicit p-terphenyl hosts. We have demonstrated the impact that nitrogen-doping can
have on the electronic structure of pentacene both in vacuum and in host structures,
which enabled us to consider the viability of each of the test molecules as potential
replacements for pentacene in the room-temperature maser. From the perspective of
ab initio methods for dopant molecules in large host structures, we saw that the use of
implicit hosts is insufficient to describe the full range of effects associated with such
molecular systems. With explicit host, the semi-local PBE exchange-correlation func-
tional fails to accurately describe long-range charge-transfer interactions, producing
physically meaningless results and requiring the use of methods that include portions
of exact exchange. Such methods can be computationally very expensive, which re-
stricts their use to systems of a few hundred atoms such as the cluster structure used
in this study. The combination of linear-scaling DFT to study ground state properties
and to produce the explicit host structure, and advanced hybrid functionals for excited
states has thus been demonstrated to be a useful combination, though it still leaves
room for improvement.
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6 Freeze-and-thaw embedding in
ONETEP

In Chapter 5 we discussed the impact of a p-terphenyl environment on the excited
states of pentacene using ground state DFT and TDDFT as implemented in Gaussian
and ONETEP. We saw that in order to accurately capture the vacuum and solvent
excited state energies with DFT, it is important to make use of optimally-tuned range-
separated hybrid (OT-RSH) functionals as semi-local functionals can fail drastically to
describe the absolute energies and the solvatochromic shifts for acenes in explicit hosts.
Implicit solvent models do not capture the full picture of the crystal host effects on the
excitonic properties of the acene guest molecules. However, the use of hybrid func-
tionals on molecules in explicit host is limited by the computational cost of performing
the exact exchange calculation, which can become prohibitive. Here we can see the po-
tential for the embedding methods discussed in Chapter 3 which raise the possibility
of performing a high-level calculation (e.g. with hybrids) on the subsystem of interest
while treating the environment at a lower level of theory (e.g. with semi-local function-
als). Combining embedding approaches with ONETEP’s linear-scaling infrastructure
requires a considerable adaptation to the ONETEP algorithm, which conventionally
involves a full optimisation of all non-orthogonalised generalised Wannier functions
(NGWFs) and density kernel elements as part of the self-consistent optimisation pro-
cedure discussed in Chapter 4. In this chapter we will outline a toy model for per-
forming freeze-and-thaw (F+T) and frozen density embedding (FDE) calculations with
ONETEP, plus the potential ramifications for the implementation of embedding.

6.1 Embedding and linear-scaling DFT

We saw in Chapter 3 that quantum embedding can be represented as a partitioning
of the electron density for various subsystems which, via the Wesolowski and Warshel
frozen density embedding (FDE) method, provides a complete description of the quan-
tum system [1, 2]. From the discussion of density-matrix theory in Chapter 4, we have
also seen that the density matrix approach to electronic structure provides a complete
description of the system since all information can be recovered from the density ma-
trix. The inherent nearsightedness of the density matrix [3, 4] facilitates the use of
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linear-scaling methods as it implies the localised nature of electronic structure. This lo-
cality indicates that, from a physical standpoint, linear-scaling methods can be straight-
forwardly adapted for embedding [5]. For example, the divide and conquer technique
involves calculating segments of the density matrix for separate parts of the system
separately, which are then pieced together to form the full density matrix [6]. This
bears a distinct similarity to the FDE self-consistent method for obtaining the ground
state density and highlights the similarity between the two approaches. In this section
we will explore in more detail the potential for combining embedding with ONETEP.

6.1.1 Embedding in ONETEP

We begin by outlining the ONETEP formalism outlined in Chapter 4 with the molec-
ular system partitioned into two regions, an active subsystem A and an environment
B. The partitioning of the full system is done on an atom-by-atom basis, such that the
non-orthogonal generalised Wannier functions (NGWFs) related to a particular atom
are all assigned to one subsystem. The active and environment NGWFs are denoted
{φA} and {φB}. Consequently, the elements of the density kernel K are also divided
into diagonal region blocks and off-diagonal, cross-overlap blocks,

K =

(
KAA KAB

KBA KBB

)
. (6.1)

The density matrix can then be reconstructed in terms of the subsystem NGWFs and
kernels,

ρIJ (r, r′) =
∑
α∈I

∑
β∈J

φIα(r)Kαβ
IJ φ

J
β(r′), I, J ∈ {A,B}, (6.2)

from which one can obtain the subsystem and total electronic densities,

ntot(r) =
∑
I,J

nIJ(r) =
∑
I,J

(∑
α∈I

∑
β∈J

Kαβ
IJ

[
φJβ(r)φIα(r)

])
. (6.3)

The overlap and Hamiltonian matrices for the complete system are then defined as

S =

(
SAA SAB

SBA SBB

)
, H =

(
HAA HAB

HBA HBB

)
, (6.4)

where

(SIJ)αβ = 〈φIα|φJβ〉 , (6.5)

(HIJ)αβ = 〈φIα|Ĥ|φJβ〉 . (6.6)
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At this stage we assume that there is a single Hamiltonian operator Ĥ that is applica-
ble to all subsystems, composed of the kinetic energy T̂ , the Hartree potential V̂H, the
external potential V̂ext and the exchange-correlation potential V̂XC,

Ĥ = T̂ + V̂H + V̂ext + V̂XC. (6.7)

The usual conditions of normalisation and idempotency apply for the full matrices
rather than the subsystem structures,

Tr [KS] = NA +NB, (6.8)

KSK = K, (6.9)

allowing for the transfer of density between the subsystems. In keeping with the stan-
dard NGWF optimisation procedure in ONETEP, we then seek to minimise the quan-
tity

Ω = Tr [KH] , (6.10)

subject to the usual constraints (see Chapter 4).
At this stage it is worth noting that, aside from a change of notation, we have not ac-

tually altered anything about the ONETEP algorithm. An optimisation of the elements
of the full density kernel K and the NGWFs {φA} and {φB}would yield the exact same
results as the standard algorithm laid out in Chapter 4. Nonetheless, the format pre-
sented above highlights the two potential approaches for combining embedding tech-
niques with the ONETEP method. Firstly, partitioning the NGWFs and density kernel
elements into subsystem structures enables the possibility of selectively optimising the
terms that are explicitly associated with a particular region of interest. Secondly, the
Hamiltonian submatrices (6.4) can be generalised to use different Hamiltonian oper-
ators in each subsystem, enabling the use of different levels of theory within a single
linear-scaling DFT calculation. We will return to this latter approach in Chapter 7, in
this chapter we will solely focus on the subsystem optimisation concept using a single
Hamiltonian.

The selective optimisation technique bears a distinct similarity to the frozen den-
sity embedding (FDE) method of Wesolowski and Warshel [1], whereby a subsys-
tem electron density is optimised self-consistently in the presence of a frozen envi-
ronment. However, as previously discussed in Chapter 3.5, the Wesolowski-Warshel
FDE method relies on a direct partitioning of the Kohn-Sham orbitals between the var-
ious subsystems. The electron densities are then constructed for the subsystems, with
normalisation and orthogonality of the Kohn-Sham orbitals enforced for each subsys-
tem separately. The loss of explicit orthogonality between the subsystem Kohn-Sham
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orbitals then gives rise to the non-additive kinetic potential (3.27) [7, 8], the primary
computational difficulty associated with such embedding methods. By contrast, in the
ONETEP embedding approach we perform the partitioning on an atom-by-atom basis,
assigning the NGWFs on each atom to the specified region. The density kernel is then
divided into parts related to the NGWFs in subsystems A and B only, plus the cross-
overlap between the subsystems. Normalisation and idempotency are thus enforced
for the full system in ONETEP embedding, rather than the subsystem structures in the
standard Wesolowski-Warshel embedding method, and is in fact closer in nature to
the Bowler-Gillan view of embedding [5]. This averts the need to construct the non-
additive kinetic potential, since idempotency of the full density matrix is equivalent
to orthonormality of all the Kohn-Sham orbitals. Optimising the NGWFs and den-
sity kernel elements selectively while imposing the full system constraints should thus
be possible in ONETEP without the need to construct elaborate kinetic potentials, or
enforce explicit orthogonality via the projector methods set out in Section 3.4.

For the remainder of this chapter, we will focus our efforts on the selective opti-
misation of the minimal NGWF basis set utilised in ONETEP for linear-scaling DFT
calculations. In general, during a self-consistent optimisation in ONETEP all NGWFs
are periodically updated along with the density kernel elements until the convergence
criteria are met. One aspect that is not well understood from an embedding perspec-
tive, however, is the validity of this approach when only a subset of the orbitals are
ever updated, with the remainder fixed either as pseudoatomic orbitals (PAOs) or an-
other type of basis function. In the next section we will examine the theory behind this
by examining the NGWF gradient for subsystem optimisation.

6.1.2 NGWF gradient for subsystem optimisation

Starting from the Kohn-Sham band-structure energy (see 4.2.2),

Ω = Tr [KH] , (6.11)

our task is to calculate the NGWF gradient by optimising only a subset of the NGWFs
available, namely {φA

i }, but using the full density kernel and Hamiltonian matrices.
The matrix product can be written as

KH =

(
KAAHAA + KABHBA KAAHAB + KABHBB

KBBHAA + KBBHBA KBAHAB + KBBHBB

)
(6.12)
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which gives,

Ω =Tr [KAAHAA + KABHBA] + Tr [KBAHAB + KBBHBB] (6.13)

=ΩA + ΩB + Tr [KABHBA + KBAHAB] . (6.14)

We thus see that the total energy functional can be split into the contributions from
each subsystem plus a non-additive contribution. However, we must also impose the
idempotency of the density kernel via the LNV method (Section 4.1.2),

K = 3LSL− 2LSLSL, (6.15)

where L is an auxiliary density kernel, which results in a ‘convolution’ of the subsys-
tem terms in (6.14).

For the moment we consider only the structure of the matrices in (6.4) i.e. we ef-
fectively treat these as 2 × 2 matrices and ignore their tensorial properties. This will
clarify which matrix blocks must be considered without having to write the individual
orbitals explicitly.

(KH)αβ = KαIHIβ,

= (3LαJSJKLKI − 2LαJSJKLKMSMNLNI)HIβ,

= 3LαJSJKLKIHIβ − 2LαJSJKLKMSMNLNIHIβ,

where we make use of the Einstein summation convention. Thus

Ω = Tr[KH] = 3LIJSJKLKMHMI − 2LIJSJKLKMSMNLNPHPI . (6.16)

Even with our 2 × 2 picture, there are 80 terms added together in this trace. Compar-
ing with (6.14), two terms are ΩA, another two are ΩB and the other 76 are the trace
Tr [KABHBA + KBAHAB]! This can be rewritten as

Ω = 3(LSLH)AA − 2(LSLSLH)AA

+ 3(LSLH)BB − 2(LSLSLH)BB. (6.17)
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Taking the derivative of our total energy functional with respect to an NGWF in sub-
system A, we obtain the contravariant gradient,

|gαA〉 =
∂Ω

∂ 〈φA
α |

= |φA
i 〉 (3LHL− 2LSLHL− 2LHLSL)iαAA + Ĥ |φA

i 〉 (3LSL− 2LSLSL)iαAA

+ |φB
j 〉 (3LHL− 2LSLHL− 2LHLSL)jαBA + Ĥ |φB

j 〉 (3LSL− 2LSLSL)jαBA,

= |φA
i 〉Aiα + Ĥ |φA

i 〉 Biα + |φB
j 〉 Cjα + Ĥ |φB

j 〉Djα, (6.18)

where

A = [3LHL− 2LHLSL− 2LSLHL]AA = QAA, (6.19)

B = [3LSL− 2LSLSL]AA = KAA, (6.20)

C = [3LHL− 2LHLSL− 2LSLHL]BA = QBA, (6.21)

D = [3LSL− 2LSLSL]BA = KBA. (6.22)

As usual, we must lower the index of the NGWF search direction vector such that the
resulting term is covariant:

|gα,A〉 = |φA
i 〉 Ãi.α + Ĥ |φA

i 〉 B̃i.α + |φB
j 〉 C̃j.α + Ĥ |φB

j 〉 D̃j.α, (6.23)

where

Ã = QAASAA + QABSBA, (6.24)

B̃ = KAASAA + KABSBA, (6.25)

C̃ = QBASAA + QBBSBA, (6.26)

D̃ = KBASAA + KBBSBA. (6.27)

This result is simply the gradient for a single NGWF in the presence of all the other
orbitals in a standard ONETEP calculation. We can thus construct a frozen-density
embedding (FDE) style optimisation algorithm by enforcing a zero NGWF gradient
for the (frozen) B orbitals while using the standard NGWF gradient for the A orbitals,

|gα,A〉 = |φA
i 〉 Ãi.α + Ĥ |φA

i 〉 B̃i.α + |φB
j 〉 C̃j.α + Ĥ |φB

j 〉 D̃j.α, (6.28)

|gα,B〉 = |0〉 . (6.29)

Alternatively, an iterative freeze-thaw (F+T) NGWF optimisation cycle can be devised
by swapping the orbitals to be optimised at any given step i.e. improving the A orbitals
for one step in the presence of the frozen B orbitals, before freezing {φA

i } and ‘thawing’
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{φB
i } for one step and so on until self-consistency is obtained. For initial tests, the

zero environment gradient was implemented by explicitly zeroing the components of
the NGWF gradient vector that correspond to the B subsystem orbitals after the full
gradient was calculated. Later this feature was integrated into ONETEP, alongside
the work explored in Chapter 7, by only calculating the relevant coefficient matrices
for thawed NGWFs and skipping the environment parts — both approaches yielded
equivalent results.

6.2 Results — iterative subsystem NGWF optimisation

Before we can examine the viability of FDE as an optimisation strategy for NGWFs, we
must check that an iterative F+T NGWF optimisation routine is capable of reproducing
the results that one would expect for a regular total energy optimisation in ONETEP.
For this purpose, we will consider the study of a water dimer in the configuration
shown in Figure 6.1a. The molecules are bound by a weak hydrogen bond (O· · ·H)
between the oxygen of one molecule (acceptor) and an adjacent hydrogen of the other
molecule (donor). The water dimer is a system that has been previously studied to
determine the validity of NGWFs in accurately reproducing ground state properties to
plane-wave accuracy and removing the spurious basis set superposition error (BSSE)
associated with fixed localised basis functions [9]. This structure allows for a straight-
forward partitioning of the NGWF regions between the two weakly-bound molecules
while still enabling the different components of the hydrogen bond to be treated at dif-
ferent levels of theory via the iterative freezing and thawing of the NGWFs. For all cal-
culations in this section we will use the PBE exchange-correlation functional [10], a gen-
eralised gradient approximation (GGA, see Chapter 2.4) to the exchange-correlation
problem. The standard norm-conserving pseudopotentials (see Chapter 3.1) for oxy-
gen and hydrogen distributed with ONETEP were used, along with a kinetic energy
cutoff of 1000 eV and an NGWF radius of 7.0 bohr for all atoms. All density kernel
elements are updated as per usual for a ONETEP calculation.

Figure 6.1 shows the behaviour of the NGWF gradient for the water dimer by per-
forming an iterative optimisation of the NGWFs for the acceptor and donor molecules
compared with a full NGWF optimisation of the entire system. We see that the NGWF
gradient gradually decreases throughout the optimisation, eventually dropping below
the specified threshold after 36 steps, albeit somewhat slower than the full system time
of 10 steps. Given that only half of the NGWFs are optimised at any stage in the F+T
cycle, the time required to perform this calculation is equivalent to performing 18 it-
erations for the whole system. This confirms that the F+T approach can successfully
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(A) Water dimer molecular structure.
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FIGURE 6.1: Left: Water dimer molecule used for embedding tests. The
distance between the oxygen atoms is used as a measure of the separation
between the molecules. Figure generated with Jmol [11]. Right: NGWF
gradient for water dimer for optimisation of donor and acceptor molecules
in freeze-and-thaw (F+T) cycles at a separation of 2.95 Å. The behaviour
of the gradient for a regular optimisation of all NGWFs is also shown for
comparison. Note that for F+T each step only optimises half of the NGWFs
in the system, and the gradient plotted at each data point is the gradient

for the NGWFs optimised at that step only.

optimise the NGWFs and density kernel for an interacting molecular system, thus il-
lustrating that the disparity between the NGWFs caused by the freeze-thaw algorithm
is no barrier to the use of NGWFs in total energy calculations. This is a fairly simplistic
test, since at any given stage the discrepancy in the NGWFs between the acceptor and
donor molecules remains small since once one molecule’s NGWFs are updated, the
other’s are updated immediately afterwards, with only an intermediate kernel recal-
culation distinguishing this from a standard ONETEP optimisation process.

To show that this is a general result, Figure 6.2 displays the error in total energy
between the full NGWF total energy and a series of F+T calculations for the same sys-
tem with up to 10 successive steps in the NGWF optimisation for each region. For
example, with two steps the acceptor NGWFs are updated for two successive itera-
tions, before switching back to the donor for the next two, then the acceptor and so
on until self-consistency is obtained. We see that the error in the total energy relative
to full NGWF optimisation never exceeds 1.5 meV, or ∼ 0.0002% of the Kohn-Sham
energy for this system. All F+T arrangements do eventually converge, taking as little
as 35 NGWF optimisation steps with four F+T cycles per region and a maximum of
59 NGWF optimisation steps for nine cycles per region. While the error is negligible
for all F+T calculations, we notice that the error drops to a minimum for 3–4 steps,
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FIGURE 6.2: Absolute difference in the final energies obtained from itera-
tive optimisation of NGWFs in freeze-thaw (F+T) cycles compared to full
optimisation of all NGWFs simultaneously for a water dimer. Each F+T
calculation was performed by updating the NGWFs for a fixed number
of steps in each region in turn. The acceptor and donor molecules were
treated as separate subsystems. Calculations were terminated once the

NGWF RMS gradient dropped below a preset threshold of 10−7 Ha.

before gradually increasing for greater numbers of steps. This suggests that it is in fact
optimal to allow some degree of flexibility in the NGWFs by optimising one region
in the presence of frozen NGWFs for a few optimisation steps, though too many F+T
cycles can reduce accuracy due to the growing disparity between NGWFs in different
regions.

Overall, these results confirm the validity of the F+T approach and provides some
confidence that a similar method can be deployed to the optimisation of only a subset
of NGWFs in the presence of a frozen environment, which we shall consider in the next
section.

6.2.1 Frozen density embedding (FDE)

Having established that it is possible to obtain the ground state density via an itera-
tive NGWF optimisation, we now consider the possibility of optimising a subset of the
NGWFs in our system in a quasi-FDE scheme. We focus our attention on the interac-
tion potential for the water dimer structure, using the same calculation parameters as
set out in Section 6.2. Even without using the selective NGWF optimisation scheme
outlined in Section 6.1.2, we can make direct comparisons of the quality of different
types of basis functions that can be used as starting points for further NGWF improve-
ments. Figure 6.3 shows the interaction potentials as a function of the separation of
the oxygen atoms in the dimer with three different sets of basis functions. The first
are pseudoatomic orbitals (PAOs) for which only the density kernel is optimised. The
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FIGURE 6.3: Interaction potential for water dimer using pseudoatomic or-
bitals (PAOs), molecular orbitals (MOs) and non-orthogonal generalised
Wannier functions (NGWFs). All density kernel elements are optimised
self-consistently at all stages of the calculations. No counterpoise correc-
tion is applied to account for basis set superposition error (BSSE) with

PAOs or MOs.

second are molecular orbitals (MOs) determined from an NGWF optimisation of each
water molecule in isolation, for which again there is no subsequent optimisation of
the basis and only the kernel is updated. Finally we show the results of a full NGWF
optimisation of all basis functions. We see that the PAOs vastly overbind the dimer rel-
ative to the NGWFs, as well as yielding a much shorter optimal molecular separation.
The MO basis by comparison yields a bond length that is too long with a shallow en-
ergy minimum. Both the MO and PAO results suffer from BSSE and can be improved
by utilising a counterpoise correction for the dimer calculation, however plane-wave
accuracy is only recovered with the BSSE-free NGWF basis [9].

Our FDE model enables us to perform selective NGWF optimisation for our system,
with which we can evaluate the accuracy of a partially optimised basis set. Figure 6.4a
shows the previous NGWF and PAO curves along with FDE calculations for the donor
and acceptor molecule. All orbitals are initialised with the same PAOs as were used
to perform the density kernel-only optimisation calculation. Then only the NGWFs of
one water molecule are updated during the calculation, the other’s being fixed at the
PAO level. In each case the named molecule is the one whose NGWFs are optimised.
We see that only updating the donor molecule orbitals produces a binding energy that
is even more inaccurate than the pure PAO calculation. While there is a lengthening of
the optimal O-O separation to 2.8 , this is still underestimated compared to the NGWF
results. By contrast, an FDE optimisation of the acceptor water yields results that are
more in alignment with the NGWF basis, with a significant reduction in the overbind-
ing effect and a bond length that matches the expected NGWF result. Though the FDE
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FIGURE 6.4: Interaction potential for water dimer via selective optimi-
sation of subsystem NGWFs, using either pseudoatomic orbitals (PAOs,
left) or molecular orbitals (MOs, right) as the starting point for the dimer
calculations. The donor and acceptor molecules were treated as separate

subsystems.

optimisation in this case does not correctly reproduce the NGWF interaction potential,
it does highlight the fact that a selective orbital optimisation can significantly improve
results compared to a PAO basis, in this case by updating the acceptor rather than the
donor orbitals.

Next, we consider the impact of using the MO basis as the starting point for an
FDE optimisation. Figure 6.4b shows the interaction potentials for FDE optimisation
of the donor and acceptor molecules compared to the MO functions discussed earlier.
Notice that a donor optimisation yields little improvement compared to the pure MO
calculation. The acceptor curve, however, shows significant improvement, with an
energy minimum that is only 20 meV higher than the full NGWF optimisation. We
see a divergence between the two curves as the separation is reduced, possibly due
to the increasing importance of the unoptimised orbitals at short range due to greater
overlap.

In each of the FDE graphs, optimisation of the acceptor orbitals yields significantly
better results than the donor. In our minimal basis set, each hydrogen atom has only
one orbital, while each oxygen atom possesses four, such that improving the oxygen
orbitals allows for a greater degree of flexibility in the density matrix. It is clear, then,
from the above results that an accurate description of the orbitals constituting the
O· · ·H bond is essential to obtain reliable results for the interaction potential. Fig-
ure 6.5 shows a comparison of the interaction potentials obtained by optimising only
the orbitals in the O· · ·H bond while holding the rest fixed and vice versa. The result is
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FIGURE 6.5: Interaction potential for water dimer via selective optimisa-
tion of subsystem NGWFs. Here the O· · ·H hydrogen bond between the
molecules is treated as a separate subsystem from the environment con-
sisting of all other atoms in the system. Pseudoatomic orbitals (PAOs)
obtained from monomer calculations were used as the starting point for

the dimer runs.

a significantly better fit with the O· · ·H optimisation than for any other schemes pre-
sented so far. The energy minimum is only 14 meV higher than that obtained from
a full NGWF optimisation of the dimer, while the minimum position is correctly re-
produced at 2.90 Å. Comparison can be made to the optimisation of the environment
orbitals only, such that the O· · ·H bond is described using only PAOs. There is scarcely
any improvement in the binding energy which remains vastly overestimated as for the
case of using PAOs for the whole system, however there is a noticeable improvement
in the optimal bond distance, which much more closely matches the all-NGWF result.
It would appear that, while all orbitals are significant for describing the full effects of
the water dimer interaction curve, ensuring that the O· · ·H bond is part of the active
system and that both of these atoms are treated at the same level of theory is important
for an accurate FDE description of this system.

In summary, an NGWF-in-PAO FDE optimisation of the O· · ·H bond of a water
dimer produces results that are in close agreement with an all-NGWF optimisation of
the system, an encouraging result for the correct description of structures with subsys-
tem orbital optimisation.

6.2.2 Excitation energies with FDE

We now consider the application of the subsystem NGWF method to the study of ex-
cited state properties. For this purpose we will focus on the familiar pentacene in
p-terphenyl cluster that we used in Chapter 5. As we saw in our study of the lower
excited states of this system, the excitation formed by the transition from the singlet



Chapter 6. Freeze-and-thaw embedding in ONETEP 112

Basis functions ∆ES0→T1 (eV)
PAOs 0.913

NGWFs 0.885

TABLE 6.1: Vacuum energy differences between the S0 singlet ground
state and the T1 triplet ground state for pentacene using non-orthogonal
generalised Wannier functions (NGWFs) and pseudoatomic orbitals
(PAOs). All calculations were performed using the PBE exchange-

correlation functional.

ground state S0 to the triplet ground state T1 is heavily localised on the pentacene
molecule, with a solvatochromic shift of only a few meV resulting from placing the
pentacene within an implicit or explicit p-terphenyl host. Thus this is a system that
would appear to be well suited to treating the pentacene at a higher level of theory
than the neighbouring molecules. In addition, using the ∆SCF method it is possible to
obtain the excitation energy ∆ES0→T1 by calculating the difference between two ground
state DFT calculations, one in the singlet spin-unpolarised configuration for S0 and the
other in the spin-polarised triplet arrangement for T1. This can be done in both vac-
uum and explicit solvent, the latter we represent using the six p-terphenyl cluster from
Chapter 5.

Vacuum calculations were performed using both a set of unoptimised pseudoatomic
orbitals (PAOs) and self-consistently updated NGWFs. For cluster calculations, a mix-
ture of optimised and fixed basis functions were used. Molecular orbitals (MOs) were
generated for the vacuum pentacene and the six neighbouring p-terphenyls separately,
which were then used for kernel-only optimisation and as starting points for FDE opti-
misation of the pentacene orbitals. Thus, five different combinations of basis sets were
used in total energy optimisation of the pentacene in p-terphenyl cluster — PAOs,
MOs, NGWFs, NGWFs-in-PAOs and NGWFs-in-MOs. The first two involve kernel-
only optimisation with fixed basis functions, the third a standard kernel and NGWF
optimisation process, and the final two are selective optimisation of the orbitals on the
pentacene only in the presence of either a PAO or MO p-terphenyl environment. In all
cases, both singlet and triplet calculations were performed. All results presented here
use the PBE exchange-correlation functional with a kinetic energy cutoff of 1000 eV
and a basis function radius of 10.0 bohr.

Table 6.1 displays the vacuum excitation energy ∆ES0→T1 for pentacene using both
PAOs and NGWFs as benchmark results. We see that the PAO basis overestimates the
energy of the transition by 28 meV compared to NGWFs. This is not a surprising result
as the minimal PAO basis is by no means an optimal basis choice — normally one
would perform a kernel-only optimisation with a larger number of basis functions,
but for illustration purposes the minimal basis highlights the difference in accuracy
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Basis functions ∆ES0→T1 (eV)
PAOs 0.928
MOs 0.881

NGWFs 0.879
FDE PAOs 0.101
FDE MOs 0.882

TABLE 6.2: Energy differences between the S0 singlet ground state and
the T1 triplet ground state for the pentacene in p-terphenyl cluster host for
various basis functions. All calculations were performed using the PBE
exchange-correlation functional. Frozen density embedding (FDE) calcu-
lations were performed via selective optimisation of orbitals associated
with the pentacene molecule only — ‘FDE PAOs’ uses pseudoatomic or-
bitals as the initial basis functions, ‘FDE MOs’ uses molecular orbitals (see

text for more details). All calculations were performed using ∆SCF.

between NGWFs and PAOs.
Moving on to the cluster calculations, Table 6.2 shows the results for ∆ES0→T1 for

each of the five basis types mentioned above. The stand-out result is the dreadful
performance of the FDE PAO basis, whereby only the pentacene molecule orbitals are
reoptimised relative to the PAO starting point. Most likely this reflects a breaking of the
variational principle for the spin-polarised run, since the PAO basis for the p-terphenyl
basis is not optimal and thus there remains room for variation in the density matrix
that is otherwise not possible with PAOs. The MO basis gives good results without
orbital reoptimisation, predicting an excitation energy only 2 meV above the NGWF
result. Allowing the pentacene orbitals to improve in the presence of p-terphenyl MOs
yields a result of 0.882 meV, just 3 meV higher than the optimal NGWF number. From
the perspective of solvatochromic shifts, there is no practical difference between the
NGWF, MO or FDE-MO results, which all predict a negligible redshift of under 6 meV
compared to vacuum. By contrast, the PAO-only basis predicts a blueshift of 15 meV,
thus illustrating that the minimal PAO basis gives qualitatively poor results for under-
standing the nature of this excitation. Combined with the failure of the NGWF-in-PAO
calculation to reproduce the ∆ES0→T1 excitation energy, it appears that the use of MOs
for pentacene and its environment is essential to obtain accurate results for this sys-
tem.

6.3 Summary

In this chapter we have outlined a preliminary implementation of subsystem NGWF
embedding in ONETEP. This has enabled the use of freeze-and-thaw style (F+T)
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NGWF optimisation as an alternative optimisation technique, which we have demon-
strated can reproduce the ground state total energy for a water dimer. Subsequently,
the use of frozen density embedding (FDE) NGWF optimisation, whereby only a sub-
set of orbitals are improved during the energy minimisation routine, was demon-
strated for the interaction potential of a water dimer and the T1 excited states of pen-
tacene in p-terphenyl. The former highlights the importance of carefully choosing the
orbitals for the optimisation is to be performed, as we saw that the choice of the O· · ·H
bond in a water dimer yielded the most accurate results compared to a full NGWF
optimisation. The latter reveals the importance of the choice of basis functions for the
environment orbitals, even in a system with a straightforward partitioning such as the
pentacene in p-terphenyl cluster.

While the use of FDE NGWF optimisation does present theoretical benefits from a
computational perspective, two caveats must be noted. Firstly, all the tests in this chap-
ter involved full optimisation of all density kernel matrix elements, the calculation of
which is the main bottleneck during the self-consistent optimisation procedure, as op-
posed to improving the NGWFs. Secondly, the approach discussed here is only a toy
model which has not been designed to truly take advantage of the potential benefits of
selective NGWF optimisation — the only difference compared to a standard ONETEP
optimisation being that the covariant NGWF gradient vector is zero for the frozen or-
bitals. Nevertheless, the tests presented here provide a useful foundation for the use of
embedding techniques in ONETEP as we have seen that selective NGWF optimisation
and the use of different levels of theory in subsystems is a feasible strategy within the
ONETEP linear-scaling architecture.
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7 EMFT in ONETEP

In Chapter 5 we studied the excited state properties of pentacene and its nitrogen-
doped analogues in both implicit and explicit solvent. We saw that the environment
can have significant impact on the excitonic properties of the solute molecule, which
manifests itself in the solvatochromic shift of the excited state energy levels relative
to vacuum. The inclusion of an explicit description for the host structure can result
in qualitatively different behaviour compared to an implicit solvent, plus it can yield
more substantial information regarding the nature of the interaction between the so-
lute and solvent molecules, as we saw with the local density of state (LDOS) analy-
sis of the chromophores in explicit host in Figure 5.9. This can also be important in
other chemical systems such as defects in crystals or active sites in large proteins, for
which there is a large environment that must be considered explicitly using quantum
mechanical methods. Ideally one would like to be able to study such systems using
the most accurate electronic structure methods available, for example using hybrid
exchange-correlation functionals such as discussed in Chapter 2, but such calculations
may span hundreds or thousands of atoms, thus being computationally prohibitive.
The quantum embedding techniques outlined in Chapter 3 offer a potentially attrac-
tive solution to this dilemma, by enabling a high-level calculation to be performed on
an ‘active’ subsystem within a cheaper, less accurate ‘environment’ system. In partic-
ular, the embedded mean-field theory (EMFT) method discussed in Section 3.5 offers
a very simple approach to quantum embedding grounded within the realms of the
single-particle density matrix, which as we saw in Chapter 4 is also a central quantity
for achieving linear-scaling with density-functional theory (DFT) calculations. This
makes the EMFT scheme an ideal candidate for combining quantum embedding with
linear-scaling DFT.

In this chapter, we will outline the implementation and testing of EMFT within
ONETEP. We begin with a theoretical formulation of embedding techniques in the
ONETEP framework, compared to the frozen density embedding (FDE) toy-model
discussed in Chapter 6. From there, a brief derivation and discussion of the cen-
tral quantities required for EMFT will be outlined, including the use of the block-
orthogonalisation (BO) method discussed earlier. Testing of the new approach will fol-
low for ground and excited state properties of a variety of molecular systems, demon-
strating the accuracy and viability of the linear-scaling EMFT and the challenges that
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remain with this approach. Reproduced in part with permission from [1]. Copyright
2019 American Chemical Society.

7.1 Combining EMFT and ONETEP

The starting point for the implementation of EMFT (see Section 3.5) within ONETEP is
the same as our subsystem approach outlined in Chapter 6. We partition the atoms of
the system into two subsystems, an active region A and an environment B, with corre-
sponding NGWFs {φA} and {φB}. As before, the density kernel and overlap matrices
are divided into diagonal blocks related to a particular subsystem and off-diagonal
cross-overlap terms,

K =

(
KAA KAB

KBA KBB

)
, S =

(
SAA SAB

SBA SBB

)
, (7.1)

such that the density matrix can be defined in terms of its subsystem components,

ρIJ (r, r′) =
∑
α∈I

∑
β∈J

φIα(r)Kαβ
IJ φ

J
β(r′), I, J ∈ {A,B}. (7.2)

The key difference with EMFT is that we now allow for the use of different Hamil-
tonian operators in the active and environment subsystems. It is assumed that the
kinetic, Hartree and external potentials are the same for all subsystems, with the only
divergence between the low-level and high-level Hamiltonians being contained within
the exchange-correlation potential,

Ĥhigh =T̂ + V̂H + V̂ext + V̂
high

XC , (7.3)

Ĥ low =T̂ + V̂H + V̂ext + V̂ low
XC . (7.4)

From this the Hamiltonian matrix is constructed such that the off-diagonal terms are
treated at the low-level of theory using Ĥ low,

HEMFT =

(
Hhigh

AA Hlow
AB

Hlow
BA Hlow

BB

)
. (7.5)

The core Hamiltonian from Equation (3.51) consists of the kinetic and external po-
tential terms, while the two-electron interaction energy is made up of the Hartree and
exchange-correlation potentials. The optimal density matrix can thus be found by min-
imising the quantity

EEMFT = min
{Kαβ},{φA

α}
Tr
[
KHEMFT] . (7.6)
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Following the same procedure as in Section 6.1.2, we can obtain the covariant EMFT
NGWF gradient,

|gα,A〉 = |φA
i 〉 Ãi.α + Ĥhigh |φA

i 〉 B̃i.α + |φB
j 〉 C̃j.α + Ĥ low |φB

j 〉 D̃j.α, (7.7)

where the coefficient matrices have the same form as Equations (6.24)– (6.27) but now
include the adjusted EMFT Hamiltonian matrix in Q. The key difference is that the
contribution from the environment NGWFs is operated on by the low-level Hamilto-
nian Ĥ low.

We now have the tools at our disposal to utilise EMFT within ONETEP. To begin,
the NGWFs and density kernel are initialised for the full system at the lower level of
theory as in a conventional ONETEP calculation. The total and subsystem electronic
densities ntot and nAA are computed from the respective NGWFs and density kernel
elements. The Hamiltonian operator is built using the kinetic, Hartree and external po-
tentials i.e. the first three terms in (6.7). At this stage, normally the density ntot would
be used to construct the exchange-correlation potential VXC(r) using whatever level of
approximation is chosen for the calculation, which is then added on to the Hamilto-
nian Ĥ . Instead, with EMFT we also determine the regional potentials V low,A

XC (r) and
V

high,A
XC (r) using the subsystem density nAA at the low and high levels of theory respec-

tively. The final EMFT XC potential is then given by

V EMFT
XC [ntot, nAA] (r) = V low

XC [ntot] (r) +
(
V

high,A
XC [nAA] (r)− V low,A

XC [nAA] (r)
)
. (7.8)

This corrected potential is used to construct the high-level Hamiltonian Ĥhigh, while the
uncorrected V low

XC (r) forms part of Ĥ low. Finally, the Hamiltonian matrix (7.5) is built,
with which we can proceed with a standard ONETEP optimisation for the DFT-in-DFT
system. The XC potentials and Hamiltonian are recalculated after each iteration of the
density kernel and NGWF optimisation

7.1.1 Block-orthogonalised EMFT

In addition to regular EMFT, we have implemented the block-orthogonalised version
(BO-EMFT) outlined in Section 3.5.1 for comparison. This proceeds in much the same
manner as regular EMFT, except for an additional step in constructing the block–
orthogonalised overlap matrix. The sub-blocks of the overlap matrix S are built using
the initial set of NGWFs {φA

α } and {φB
β }. The inverse overlap matrix for the active

system (SAA)−1 is calculated in linear-scaling time using the Hotelling algorithm [2],
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from which the projector matrix can be constructed,

PA
B = (SAA)−1SAB. (7.9)

Note that the inverse matrix in (7.9) is a contravariant tensor, and so PA
B is a mixed

contravariant-covariant quantity. This enables us to project out the environment NG-
WFs,

|φ̃B
α〉 = |φB

α〉 − |φA
i 〉
(
PA

B

)i
α
, (7.10)

such that, by construction, the overlap matrix in the block-orthogonalised basis be-
comes

S̃ =

(
SAA 0

0 S̃BB

)
. (7.11)

We can then carry out the optimisation of the density kernel and NGWFs with EMFT
as discussed in Section 7.1. In the BO-EMFT formalism, the covariant NGWF gradient
takes on the same form as (7.7) but with simplified coefficient matrices,

|gBO
α,A〉 = |φA

i 〉
(
ÃBO

)i
.α

+ Ĥhigh |φA
i 〉
(
B̃BO

)i
.α

+ |φ̃B
j 〉
(
C̃BO

)j
.α

+ Ĥ low |φ̃B
j 〉
(
D̃BO

)j
.α
, (7.12)

where

ÃBO = QAASAA, (7.13)

B̃BO = KAASAA, (7.14)

C̃BO = QBASAA, (7.15)

D̃BO = KBASAA. (7.16)

with similar equations for the environment orbital gradient. Interestingly, the subsys-
tem NGWF gradients in the block-orthogonalised format is equivalent to using the
subsystem matrix block SAA as the matrix for transforming from contravariant to co-
variant quantities, rather than the full overlap matrix S.

7.2 Results — initial tests of EMFT in ONETEP

Following on from the frozen density embedding (FDE) toy model discussed in Chap-
ter 6, we begin our testing of the EMFT implementation in ONETEP by studying the
water dimer interaction potential. For now we restrict ourselves to using the semi-local
PBE and LDA functionals for the active and environment exchange-correlation func-
tionals. All calculations were performed using a kinetic energy cut-off of 1000 eV and
an NGWF radius of 7.0 a0.
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FIGURE 7.1: Interaction potential for a water dimer using EMFT, treat-
ing either the acceptor (A) or donor (D) as the active subsystem. ‘PBE-
in-LDA’ refers to calculations where the active system is treated using the
PBE exchange-correlation functional while the environment is treated us-
ing LDA, and vice versa for ‘LDA-in-PBE’. All NGWFs and density kernel
elements are optimised self-consistently at all stages of the calculations.

7.2.1 NGWF optimisation with EMFT

Figure 7.1 shows the interaction potentials for PBE-in-LDA and LDA-in-PBE, treat-
ing either the donor or the acceptor molecule as the active region, compared to the
pure PBE and LDA energy curves. We observe that, in both cases, the EMFT interac-
tion potential closely follows the behaviour of the environment functional, with only
a small energy shift differentiating PBE-in-LDA from pure LDA or LDA-in-PBE from
pure PBE, and no significant change in the O-O separation minimum.

A possible reason for these poor results can be inferred from the form of the EMFT
potential in (7.8). Since the interaction between the active subsystem and environment
is described at the low-level of theory, with the EMFT correction only applied strictly
to the active NGWFs and kernel, it appears that the interaction between the donor and
acceptor water molecules is indeed dominated by the low-level functional, with only
a perturbative change in the interaction potential arising from the use of the more ac-
curate potential. This suggests that, as in Chapter 6 with our FDE model, we must
treat the O· · ·H bond as the active system in order to have a sensible description of the
bond interaction, since this is the region that determines the dimer interaction. How-
ever, an NGWF optimisation using EMFT in this configuration fails to converge, with
the NGWF gradient stalling while the total energy continues to decrease well below
the PBE or LDA total energies. Figure 7.2a shows the behaviour of the NGWF gradient
during an optimisation of the water dimer structure treating the hydrogen bond as the
active system. We see that for both PBE-in-LDA and LDA-in-PBE, the NGWF gradi-
ent does not converge as we would expect with regular PBE or LDA, or indeed when
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FIGURE 7.2: Behaviour of the NGWF gradient and electron populations
during a self-consistent optimisation of the NGWFs and density kernel

with EMFT, treating the O· · ·H hydrogen bond as the active system.

the partitioning was done on the molecular level. Examining the electron population
of the cross-overlap matrix blocks Tr [KABSBA] + Tr [KBASAB] in Figure 7.2b, we notice
that in contrast to the single functional calculations, EMFT causes a significant change
in the proportions of electric charge contained within each subregion. While the total
electron number Tr [KS] is conserved during the NGWF optimisation, the subsystem
populations can be altered as the density is redistributed. Interestingly, the PBE-in-
LDA and LDA-in-PBE calculations behave in an opposite manner to each other, with
the former seeing a decrease in the cross-overlap population and the latter an increase.
There are most likely two factors behind this phenomenon. First, the PBE functional
generally gives lower energies for this system than LDA, so dumping charge in the PBE
part of the system should, naively, lower the total energy. Secondly, the cross-overlap
term is treated at the ‘lower’ (environment) level of theory, such that the interaction
between the subsystems is computed with the low level functional. Thus, placing ad-
ditional charge in the region that uses the functional with a lower energy minimum
(i.e. PBE in this example) has the net effect of reducing the energy of the overall sys-
tem to physically meaningless values. The lack of constraints on the electron density
beyond normalisation of the total electron number thus facilitates the breaking of the
self-consistent cycle as there is no longer a well-defined energy minimum to converge
with respect to. This is reminiscent of the observation by Ding et al.[3] that the use
of very different exchange-correlation functionals can cause the collapse of the self-
consistent EMFT solution. The optimisation of the NGWF basis here introduces an
additional degree of variation compared to past studies with EMFT, which may ex-
plain the collapse of the self-consistent cycle with the relatively similar PBE and LDA
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FIGURE 7.3: Interaction potential for water dimer. For EMFT calculations,
only the density kernel is optimised at the high-level of theory, with the

NGWFs fixed at the lower level — see text for more details.
Active regions: acceptor (A), donor (D), hydrogen bond (O· · ·H).

functionals, compared to the hybrid functionals used by Ding et al.

7.2.2 Kernel-only optimisation

The difficulties presented in the preceding section with NGWF optimisation using
EMFT motivates an alteration to the self-consistent algorithm laid out in Section 7.1.
Instead of optimising the density kernel and NGWFs using the EMFT Hamiltonian, we
perform an initial optimisation of these quantities at the low-level of theory, then pro-
ceed with a kernel-only optimisation with EMFT using the NGWFs optimised with the
low-level functional. This averts the issue observed previously with charge spillover
causing the breakdown of the self-consistent cycle, while preserving the theoretical
computational benefits of treating only a small part of the calculation at the higher
level of theory, in this case as a post-processing step. For the moment we focus solely
on our PBE/LDA example.

Figure 7.3 shows the results for the kernel-only EMFT calculation for various com-
binations of functional and active subsystems. As with the NGWF optimisation, there
is scarcely any difference between the full low-level calculation and treating either the
acceptor or the donor as the active system with EMFT. With the O· · ·H active system,
we finally see an appreciable difference between the low-level and EMFT calculations,
whereby the energy minimum lying between the high- and low-level energies, pro-
ducing a PBE-in-LDA minimum of −307 meV compared to the PBE and LDA results
of −231 meV and −366 meV respectively. The minimum O-O separation with EMFT
coincides with the low-level minimum, which amounts to 2.75 meV for both LDA and
PBE-in-LDA compared to 2.90 meV for PBE only. It thus appears that selecting the
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FIGURE 7.4: Interaction potential for water dimer using block orthogo-
nalised (BO) and corrected (BO+) NGWFs, treating the O· · ·H bond as the

active subsystem.

O· · ·H bond as the active system with the kernel-only EMFT calculation produces the
best results of the systems tested so far, though there is clearly room to improve in
terms of both the depth of the potential and the molecule separation.

7.2.3 Block orthogonalisation

Given the resemblance between the difficulties discussed above regarding the use of
EMFT with NGWFs and the breakdown of the self-consistent method observed in
past studies, we now look at the possibility of using block-orthogonalised EMFT (BO-
EMFT) in ONETEP. As before, the NGWFs and density kernel are initially evaluated
at the low-level of theory, but now we block-orthogonalise the NGWFs in the environ-
ment with respect to the active subsystem orbitals as discussed in Section 7.1.1. The
density kernel is then reoptimised using BO-EMFT, holding the (now orthogonalised)
NGWFs fixed. This follows the formal structure of the initial BO-EMFT implementa-
tion of Ding et al. while also maintaining the use of a minimal set of basis functions.
From now on, all embedding calculations will treat the O· · ·H hydrogen bond as the
active system in the water dimer.

One potential difficulty with this procedure is that the block-orthogonalised orbitals
are not an optimal choice of basis functions for the system, which may cause an error in
the interaction potential similar to those observed in Chapter 6 for molecular orbitals
(MOs) and selective NGWF optimisation. As a test of the validity of this approach,
Figure 7.4 shows the results for block-orthogonalised LDA-in-LDA and PBE-in-PBE,
compared to normal SCF calculations. We see that in both cases the location of the min-
imal bond length is preserved, though there is also an increase in the energies leading
to a reduction in the depth of the potential. This effect amounts to 46 meV for PBE and
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FIGURE 7.5: PBE-in-LDA interaction potential for water dimer using block
orthogonalised (BO) NGWFs, treating the O· · ·H bond as the active sub-

system.

56 meV for LDA at the potential minima. Figure 7.4 also shows a corrected version of
the block-orthogonalised calculations (BO+), where we have shifted the energies such
that the energy minima coincide with the non-orthogonalised NGWF results. In both
cases, the BO+ curve shows excellent agreement with the normal NGWF results, sug-
gesting that the discrepancy between the BO and non-BO results for this system can be
accounted for by a simple energetic shift in the potential. Thus, by evaluating the dif-
ference in the depth of the energy minima for PBE with NGWFs and PBE-in-PBE with
BO-NGWFs, we can avoid the need to perform expensive additional counterpoise cor-
rections and maintain the use of a minimal set of basis functions to obtain accurate
interaction energies for this system.

Switching our attention to a PBE-in-LDA system, Figure 7.5 illustrates the use of
both standard and BO NGWFs evaluated at the LDA level. The energy minimum has
a value of −172 meV, compared to the actual PBE minimum of−231 meV and the non-
orthogonalised value of−307 meV. Significantly, the optimal O-O distance is located at
a separation of 2.85 Å, which is much closer to the expected PBE result of 2.90 Å than
the non-orthogonalised version of 2.75 Å. Applying the BO+ correction of 56 meV for
LDA, the energy minimum is found at −228 meV, in very close agreement with the
full PBE result and a great improvement over all our previous attempts at PBE-in-LDA
embedding for this system. While visually the two curves diverge at greater distances,
the agreement for the bond minimum verifies the accuracy of the BO+ method for an
embedded system with different functionals.
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FIGURE 7.6: Interaction potential for a water dimer. For EMFT calcu-
lations, B3LYP is used for the active subsystem, with the environment
treated at either the LDA (left) or PBE (right) levels of theory. All EMFT
were performed by optimising the NGWFs at the low-level of theory, be-
fore optimising the density kernel with EMFT. Also shown is the effect of
block-orthogonalising (BO) the environment NGWFs, with an additional

correction for the block-orthogonalisation error (BO+) also included.

7.2.4 Hybrid functionals

Having established that it is possible to reproduce the behaviour of a water dimer with
the PBE functional by treating only a subsystem (the hydrogen bond) with PBE while
the rest is described at the LDA level of theory, we now turn our attention to the use
of hybrid functionals. Computationally the exchange matrix is the bottleneck during
a ONETEP exact-exchange calculation, so reducing the size of the high-level region by
embedding the Hartree-Fock exchange region within a semi-local exchange-correlation
environment would be of significant computational value. We will initially focus on
B3LYP-in-LDA since the behaviour of these two functionals for this system is very
different and is thus a more challenging test of the algorithm. Initially the NGWFs will
be optimised at the low-level of theory (LDA), before performing a kernel-only LNV
optimisation of the density kernel using B3LYP-in-LDA.

Figure 7.6 illustrates the behaviour of an EMFT B3LYP-in-LDA calculation using
both non-orthogonalised and block-orthogonalised NGWFs. Without BO, EMFT yields
dreadful results, with the potential well being several hundred meV too deep and the
bond length too short. The BO+ approach reproduces the correct O-O separation of
2.90 Å, while the energy minimum is −189 meV, compared to the pure B3LYP result
of −209 meV. While this is not as accurate as the aforementioned PBE-in-LDA result,
it is clear that BO-EMFT using LDA NGWFs can provide a good description of the
interaction between two water dimers.
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FIGURE 7.7: Block-orthogonalised embedded mean-field theory (BO-
EMFT) algorithm as implemented in ONETEP. Compare with Figure 4.2

For a system such as this, it would be more realistic to make use of PBE as the low-
level functional, although the results here are less interesting given the close agree-
ment between the PBE and B3LYP energy curves as shown in Figure 7.6. Nonetheless,
we once again see that regular EMFT with kernel optimisation produces poor results
that significantly overbind the dimer. The BO+ method again gives results that are in
agreement with full B3LYP, with a potential depth of−201 meV. The B3LYP-in-PBE and
B3LYP results do diverge at short separation distances, but in spite of this the energy
minimum is reconstructed to a high level of accuracy. Thus we can conclude that our
implementation of BO-EMFT is working correctly and is capable of accurately repro-
ducing the behaviour of the high-level of theory with exact exchange.

These findings suggest that an alteration to the standard ONETEP algorithm is re-
quired for performing calculations with BO-EMFT for embedded systems. Figure 7.7
illustrates an adjusted form of the flow diagram shown in Figure 4.2, whereby the first
stage is performed entirely at the low-level of theory, before block-orthogonalising the
NGWFs and reoptimising the density kernel with the EMFT Hamiltonian. This is the
form of BO-EMFT that we will utilise throughout the remainder of this chapter.
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(A) 4 C atoms embedded (B) 8 C atoms embedded (C) 12 C atoms embedded

(D) 16 C atoms embedded (E) Full molecule,
pentacene

(F) Full molecule,
hydrogenated pentacene

FIGURE 7.8: Embedding regions used for the various calculations on pen-
tacene and terminally-hydrogenated pentacene. Active region atoms are
displayed as opaque, environment atoms are translucent. (A)- (D) show
the embedding regions used for pentacene — the regions used for hydro-
genated pentacene are identical, but with the 2 additional hydrogen atoms
bonded to the two left-most carbon atoms. (E) and (F) show the full struc-
ture of molecular pentacene and terminally-hydrogenated pentacene, re-
spectively. Each configuration is identified by the number of carbon atoms
included in the active region. Note that all hydrogen atoms are included
in the same subsystem as their neighbouring carbon. This figure is repro-

duced from[1].

7.3 Results — Hydrogenation of pentacene

Pentacene is a molecule of widespread interest within the organic chemistry commu-
nity, due to its utilisation for applications such as organic photovoltaics [4] and, as
explored in Chapter 5, room-temperature masers [5]. Past studies of EMFT have used
pentacene as a test system [3, 6], making it an ideal candidate to benchmark the use
of EMFT on a more complex system than the water dimer used earlier. The structures
of pentacene consists of five fused benzene rings, giving rise to molecular orbitals that
are delocalised across the system. Since relative energies are more meaningful and
generally of greater interest than total energies in ab initio contexts, we will focus our
attention on determining the reaction energy for the terminal hydrogenation of pen-
tacene, whereby two hydrogen atoms are bonded with two carbon atoms at one end of
the molecule as shown in Figure 7.8.

Our tests will focus on partitioning the rings between the low- and high-level re-
gions shown in Figure 7.8. We use PBE as the low-level of theory and B3LYP as
the high-level functional for all calculations here, with an NGWF radius of 9.0 bohr
(4.76 Å) and a cutoff energy of 800 eV. For EMFT calculations, we make use of the
block-orthogonalised method (BO-EMFT) outlined in Figure 7.7, whereby the density
kernel and NGWFs are optimised at the PBE level of theory, before the NGWFs are
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FIGURE 7.9: Terminal hydrogenation energy, ∆Ehyd, of a pentacene
molecule as a function of the number of C atoms treated with B3LYP,
with all NGWFs optimised at the PBE level of theory. The energy ob-
tained when both the kernel and the NGWFs are optimised using B3LYP
is marked with a dashed line. ∆Ehyd is calculated from Eq. (7.17). The
precise atoms included within the embedded active region for each calcu-

lation are shown in Figure 7.8. This figure is reproduced from[1].

block-orthogonalised and the kernel reoptimised using BO-EMFT for B3LYP-in-PBE
calculations. Two full molecule calculations are performed for each molecule at the
B3LYP level of theory, the first using NGWFs optimised at the PBE level of theory, and
the second with NGWFs optimised at the B3LYP level. The latter acts as the benchmark
for all other calculations.

For each embedding configuration, the terminal hydrogenation energy is defined
as

∆Ehyd = EHP − EP − EH2 , (7.17)

where EHP, EP, and EH2 are the energy of terminally-hydrogenated pentacene, pen-
tacene, and an isolated H2 hydrogen molecule respectively. While EHP and EP are
calculated with EMFT using the various subsystem partitions illustrated in Figure 7.8,
EH2 is always evaluated at the same level of theory as the extra hydrogen atoms in the
active part of the terminally hydrogenated structure.

The resulting hydrogenation energies are displayed in Figure 7.9. Starting on the
left of the graph, the first data point, corresponding to zero carbon atoms in the active
region, is a full PBE calculation. The final data point has all C atoms in the active re-
gion and is thus a B3LYP-level calculation using PBE NGWFs. All intermediary data
points are BO-EMFT calculations whereby the number of C atoms specified in both the
normal and hydrogenated pentacene molecules (the partitions shown in Figure 7.8)
are treated at the B3LYP level with PBE NGWFs, while the remaining parts of the
molecules are treated at the PBE level with NGWFs block-orthogonalised relative to
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the active subsystem orbitals. The dashed line represents the benchmark B3LYP cal-
culation whereby all NGWFs and density kernel elements are evaluated at the B3LYP
level in a non-embedding run.

Examining these results, we first notice that the B3LYP-level calculation using PBE
NGWFs is in excellent agreement with the benchmark B3LYP calculation. The differ-
ence amounts to 0.01 eV, an order of magnitude smaller than the difference between the
benchmark and all other results presented here. This result is well within the bounds
of chemical accuracy, and thus demonstrates that the use of low-level NGWFs for the
active subsystem at the high-level of theory is a valid approximation. Significantly, this
minimises the discrepancies between the basis functions used in each calculation, thus
making direct comparison of results more meaningful.

Turning to the EMFT results, we see that increasing the size of the active region
causes the hydrogenation energy ∆Ehyd to tend towards the full B3LYP result in an os-
cillatory manner. Increasing the number of active C atoms from four to eight reduces
the absolute error by 32%, from 2.12 eV to 1.44 eV. There is a further 59% reduction
in absolute error by increasing the active region size to 16 C atoms. In addition, we
see very close agreement between the 12 C atom result and the full B3LYP calculation,
though this is most likely just a fortuitous coincidence. We have thus demonstrated
that it is possible to systematically reduce the error in the hydrogenation energy from
using EMFT by increasing the size of the active region, such that the accuracy of our
embedding calculation is readily controllable. From a practical perspective, this sug-
gests that we can indeed use the expensive hybrid functionals in a small part of a
complex structure in order to obtain results with reasonable accuracy at a significantly
reduced computation cost. We will take advantage of this in the next section by apply-
ing our BO-EMFT approach to systems that would otherwise not be accessible without
a joint linear-scaling and embedding approach.

7.4 Excitation energies with pentacene derivatives

With the validity of our EMFT implementation confirmed for ground state calcula-
tions, we now turn our attention to excited state energies. For this, we will focus on
pentacene and its nitrogen-doped derivatives in a p-terphenyl cluster host that we used
earlier in Chapter 5 for our study of solvation effects. At this stage, we possess the tools
to perform a true embedding calculation by treating the dopant molecule as the active
subsystem and the p-terphenyl environment as the low-level environment. As before,
a BO-EMFT calculation proceeds by optimising the NGWFs and density kernel at the
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FIGURE 7.10: Singlet and triplet excitation energies of chromophores in
vacuum. Both PBE and B3LYP calculations make use of NGWFs optimised

at the PBE level of theory.

low-level of theory, before block-orthogonalising the NGWFs and reoptimising the ker-
nel with the LNV algorithm. The low-level functional here is PBE and the high-level is
the exact exchange B3LYP functional.

Although EMFT is only implemented for ground state optimisation of the NGWFs
and density kernel at present, we can still obtain excitation energies via the use of
spin-polarised density matrices as outlined in Section 4.3.4. The EMFT formulation
within a triplet configuration involves a trivial change to our preceding discussion
by making the density kernel the sum of an up and down kernel, such that the triplet
excitation energy ∆ES0→T1 can be determined using the ∆SCF method as the difference
in total energy between two BO-EMFT calculations. For pentacene, the singlet excited
state S1 is dominated by the HOMO→LUMO transition. Consequently, the singlet-
triplet splitting ∆ET1→S1 can be determined by the virial exciton method [7], whereby
the splitting is defined as the electron-repulsion integral (ERI) constructed from the
frontier orbitals,

∆ET1→S1 = (ψHψH|ψLψL) =

∫∫
ψ∗H(r)ψH(r)ψL(r′)ψ∗L(r′)

|r− r′|
d3r d3r′, (7.18)

where ψH and ψL are the HOMO and LUMO wavefunctions, respectively. This method
has previously been applied by Becke and coworkers to the evaluation of S1 for sin-
gle molecules, producing promising results for a multitude of systems, including aro-
matic systems with significant charge-transfer effects [7, 8]. The quantity in Eq. (7.18)
is readily available from an exact exchange calculation in ONETEP, which enables us
to calculate this in a post-processing step after a triplet ground state energy calculation.
Thus the singlet excitation energy ∆ES0→S1 can be easily found as the sum of the triplet
excitation energy and the singlet-triplet splitting.
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FIGURE 7.11: Solvatochromic shift of T1 and S1 states for various dopant
molecules in p-terphenyl cluster relative to vacuum.

Figure 7.10 shows the absolute T1 and S1 excitation energies for the various chro-
mophores in vacuum. For T1, the excitation energies with B3LYP (using PBE NGWFs)
follow the same trend as the PBE only results and, compared to the equivalent vacuum
calculations with OT-LCωPBE, the pentacene energy is much closer to the expected ex-
perimental value of 0.86 eV. The energies for the S1 state lie in an intermediate range
between the PBE and OT-LCωPBE results discussed in Chapter 5. While somewhat
underestimated compared to experiment, the pentacene B3LYP excitation energy is in
much closer agreement than PBE for the vacuum state. From the perspective of em-
bedding, the more interesting phenomenon to consider is whether the B3LYP-in-PBE
calculation can capture the solvatochromic shift for ∆ES0→S1 , since we expect this ex-
citation to be much more significantly affected than ∆ES0→T1 .

Figure 7.11 displays the solvatochromic shift for the singlet and triplet excitations
using B3LYP for the chromophore and PBE for the environment. Focusing on the T1
state, we see that there is a negligible change (less than 3 meV) in ∆ES0→T1 for every
chromophore except 6,13-diazapentacene, which undergoes a redshift of 18 meV. This
is a reduction compared to the predicted redshift of 30 meV for OT-LCωPBE in explicit
solvent from earlier, however we do see the same qualitative trend using hybrid BO-
EMFT as we did with the range-separated hybrid functional for all chromophores,
namely that 6,13-dap is the only molecule to witness a significant change in its ∆ES0→T1
energy.

Turning our attention to the S1 state, as expected there is a much more apprecia-
ble redshift for all molecules in the ∆ES0→S1 energy. The singlet calculation yields a
redshift of 38 meV for pentacene, compared to the 65 meV explicit host shift we saw
for OT-LCωPBE in Figure 5.7. For the nitrogen-based analogues, the smallest redshift
observed is 32 meV for 1,8-dap, while 6,13-dap sees the greatest redshift of 58 meV,



Chapter 7. EMFT in ONETEP 132

(A) Cluster configuration (B) Crystalline configuration

FIGURE 7.12: The two configurations used in this study for the pentacene
in p-terphenyl system. (A) shows the cluster configuration, consisting of
a pentacene molecule surrounded by six nearest neighbour p-terphenyl
molecules, the same structure as used previously in Chapters 5 and 6.
(B) shows the crystalline configuration, built using a 3 × 5 × 3 supercell
of crystalline p-terphenyl with the central p-terphenyl replaced by a pen-
tacene molecule. For both images, p-terphenyl molecules are shown as
wireframes, and the pentacene using a ball-and-stick model for ease of
viewing. H and C atoms are white and grey respectively. This figure is

reproduced from [1].

compared to 67 meV and 92 meV for OT-LCωPBE respectively. It thus appears that the
B3LYP-in-PBE calculation is underestimating the OT-LCωPBE results in explicit solvent
by 27–35 meV for all molecules. Significantly, we do not witness anything comparable
to the spurious charge-transfer (CT) mixing that was observed using PBE in explicit
host for these molecules in Chapter 5, with the B3LYP-in-PBE results instead following
the general trend of the pure OT-LCωPBE results. Indeed, we see the same qualitative
trends for the singlet excitation energy in explicit host between Figures 5.7 and 7.11,
with pentacene, 2,9-, 1,8- and 5,12-dap all yielding comparable redshifts for ∆ES0→S1 ,
while 6,13-dap yields a redshift that is greater by ∼20–25 meV.

7.5 EMFT for large systems

So far we have focused on the application of EMFT to the treatment of systems of up
to a few hundred atoms. For verification purposes this is useful as it enables direct
comparison to past studies with hybrid functionals, which can treat systems of similar
size. However, this does not push the boundaries of what is possible with EMFT, since
the use of a cheaper semi-local functional for the environment in ONETEP allows the
simulation of molecular structures containing thousands of atoms. We can therefore go
beyond our cluster calculations by considering a periodic crystal of p-terphenyl. This
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∆ES0→T1 (eV)
Configuration PBE B3LYP-in-PBE Exp.[11]

Vacuum 0.885 0.942
Cluster 0.879 0.934

0.86± 0.03Crystal 0.891 0.934

TABLE 7.1: Energy differences between the S0 singlet ground state and the
T1 triplet ground state for pentacene, both in vacuum and in the explicit
p-terphenyl hosts shown in Figure 7.12. For B3LYP-in-PBE calculations in
vacuum, PBE NGWFs were used, with only the density kernel being re-
optimised at the B3LYP level. In host, B3LYP-in-PBE refers to an EMFT
calculation, whereby the pentacene is treated as the active subsystem and
the p-terphenyl as the low-level environment. All calculations were per-

formed using ∆SCF. This figure is reproduced from[1].

structure [9] was obtained from the Cambridge Structural Database [10]. A 3×5×3 su-
percell with 90 p-terphenyl molecules was produced, and a pentacene substituted for
the central p-terphenyl molecule, similar to the cluster geometry used earlier. The re-
sulting structure, shown in Figure 7.12, consists of 2884 atoms, an order of magnitude
greater than the 228 atoms in our pentacene-doped p-terphenyl cluster. Such a cal-
culation would only be viable using linear-scaling DFT as implemented in ONETEP,
and the use of quantum embedding via EMFT enables us to consider the behaviour
of a pentacene molecule at the B3LYP level surrounded by a several thousand atom,
semi-local p-terphenyl explicit solvent.

Table 7.1 shows the ∆ES0→T1 excitation energies for PBE and B3LYP-in-PBE calcu-
lations of pentacene in both vacuum and explicit host compared to experiment. For
B3LYP-in-PBE, we see that the cluster and periodic crystal structures yield excitation
energies that match to the nearest meV, indicating a solvatochromic shift of only 8 meV
relative to vacuum. This is in line with the experimental observation that the T1 state
remains largely unaffected in a host structure, retaining its highly localised Frenkel ex-
citon nature [11]. In addition, the agreement between the cluster and crystal show that
the cluster is in fact producing a valid description of the excitation in the p-terphenyl
host for T1, in line with our earlier discussions in Chapter 5.

Looking at the S1 state, Table 7.2 shows a comparison of the singlet energies ∆ES0→S1

for each functional in host compared to experiment. Both PBE and B3LYP-in-PBE sig-
nificantly underestimate the vacuum and host excitation energies compared to experi-
ment. The PBE vacuum energy of 1.835 eV is much higher than the results we saw ear-
lier in Chapter 5 using time-dependent density functional theory (TDDFT), and indeed
compared to TDDFT calculations in the literature [15, 16]. This would suggest that the
virial exciton method can reduce somewhat the error that arises from the use of semi-
local TDDFT in linear acenes. For B3LYP-in-PBE, the ∆ES0→S1 energy of 1.895 eV is in
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∆ES0→S1 (eV)
Configuration PBE[12] B3LYP-in-PBE Exp.

Vacuum 1.835 1.895 2.31[13]
Cluster 1.801 1.853

2.1± 0.1[14]Crystal 1.804 1.756

TABLE 7.2: Energy differences between the S0 singlet ground state and
the S1 singlet excited state for pentacene, both in vacuum and in the ex-
plicit p-terphenyl hosts shown in Figure 7.12. The comments for Table 7.1
regarding B3LYP-in-PBE also apply here. All calculations were performed

using the virial exciton method [7]. This figure is reproduced from[1].

line with past first principles calculations of the excitation energy using TDDFT with
the B3LYP functional [17].

Focusing on the solvatochromic shift from vacuum to explicit host, we see a much
greater effect than for the T1 state, as we would expect from our previous discussion of
pentacene in Chapter 5. The PBE functional yields a redshift of 34 meV and 31 meV in
∆ES0→S1 for the cluster and crystal structures, respectively. The former is in fact lower
than the TDDFT result presented in Chapter 5. This could be explained by the un-
derestimation of long-range charge-transfer effects with semi-local TDDFT, such that
the S1 state is not a pure HOMO→LUMO transition in the p-terphenyl host. The lack
of a significant redshift in the crystal structure using the Becke virial exciton method
would appear to confirm that the PBE excitation is largely unaffected by the presence
of the wider crystal, and that the larger redshift with TDDFT is simply an artifact of the
generally dismal behaviour of semi-local TDDFT in describing the excitonic properties
of linear acenes like pentacene.

B3LYP-in-PBE produces significantly different results to PBE in the explicit host
structure. The cluster calculation gives a redshift of 42 meV, while the periodic crystal
produces a redshift of 139 meV. The crystal result represents a significant improve-
ment in agreement with the experimental finding of ∼ 200 meV for pentacene in p-
terphenyl [14]. This suggests that the six p-terphenyl cluster is too small to include all
the effects of the environment that one would expect from a fully periodic crystal host.
For instance, the lack of end-to-end molecules in the same orientation as the pentacene
may have significant effects upon the interaction between the dopant and its environ-
ment, or in this case there are additional effects from including an additional layer of
p-terphenyls surrounding the six molecule cluster. An alternative explanation may be
that this is a spurious effect caused by the dilution of the pentacene S0 → S1 excitation
in the host structure — if this is not a strictly HOMO→LUMO transition, then the virial
exciton method may not be valid for this system, which would undermine the reliabil-
ity of the calculation of ∆ET1→S1 . In Chapter 5 we saw that this excitation is primarily
HOMO→LUMO for pentacene in cluster, so if the cluster is sufficient to describe host
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effects then it is not clear why the difference between these calculations is so large. It
would therefore seem reasonable to conclude that the increased solvatochromic shift
for the periodic crystal represents a real effect that can be described using B3LYP but
is omitted from a pure PBE analysis of the system. Further studies of the virial exciton
method are required to verify the validity of this approach for embedded systems.

7.6 Summary

In this chapter we have outlined the implementation and testing of the embedded
mean-field theory (EMFT) approach to quantum embedding within the ONETEP pro-
gramme. We have seen that the block-orthogonalised formalism (BO-EMFT) produces
results that are in good agreement with non-embedding calculations for ground and
excited properties of a variety of systems, including single molecules and molecular
crystals. This approach is the most transferable method for using EMFT in ab initio
calculations as we have seen its usefulness when applied to subsystem partitions that
standard EMFT can struggle to describe, such as cutting covalent bonds. Based on
BO-EMFT, we have extended the ONETEP linear-scaling DFT package to enable multi-
level DFT-in-DFT embedding with different exchange-correlation functionals, includ-
ing hybrid exact-exchange functionals such as B3LYP in a semi-local host such as PBE.
This approach enables calculations to be performed on systems containing thousands
of atoms with an active subsystem described using exact-exchange. In terms of the
pentacene in p-terphenyl system that forms the basis for the room-temperature maser,
BO-EMFT can be used to qualitatively capture the importance of host environment ef-
fects, both in terms of the selection of dopant molecule and the size of the low-level
explicit host, indicating behaviour that cannot be understood from the use of purely
semi-local functionals.
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8 Conclusions

In this dissertation we have explored the possibilities for combining embedding meth-
ods and linear-scaling density functional theory. We began by looking at the theoreti-
cal foundations for both approaches, where the density matrix formalism in particular
provides a useful bridge between the two methods. We also considered the practical
side of it in Chapter 5 by studying the pentacene in p-terphenyl system from first prin-
ciples with pre-existing electronic structure methods. The limitations for such systems
due to the need for explicit host structures to be used to capture the true physics of
the system, plus the size restrictions imposed by the hybrid functionals required to
provide results of acceptable accuracy, provide solid practical foundations for a joint
quantum embedding – linear-scaling DFT approach to doped molecular crystals.

As a preliminary to a full embedding implementation, in Chapter 6 we described
a subsystem orbital optimisation strategy in the linear-scaling ONETEP package, with
which we confirmed the validity of treating different portions of the system at differ-
ent levels of accuracy with the ONETEP minimal basis set approach. From there in
Chapter 7 we outlined the implementation of embedded mean-field theory (EMFT)
in ONETEP, recasting the EMFT formalism in linear-scaling form and adapting the
ONETEP optimisation algorithms to consider subsystems operating at different lev-
els of theory. This approach was verified by testing a variety of systems with hybrid
functionals embedded in semi-local environments, the largest containing nearly 3000
atoms to demonstrate the power of the method. We observed qualitative and quan-
titative differences in excitonic behaviour from the inclusion of a full periodic cell of
crystalline p-terphenyl for the environment of a pentacene molecule compared to im-
plicit solvent and a cluster of nearest neighbour molecules, confirming the scientific
value of the quantum embedding method.

As future work, there are a variety of avenues which it is possible to explore with
this new method. From an algorithmic perspective, the implementation of EMFT in
ONETEP is a restrictive one, as it does not allow for optimisation of the basis functions
at the higher level of theory in an embedding calculation, restricting the self-consistent
optimisation algorithm to improvements in the density kernel only. Extending this
could make the method much more flexible and applicable to a wider variety of sys-
tems. Furthermore, more investigations are required to understand the nature of the



Chapter 8. Conclusions 139

breakdown in the self-consistent algorithm associated here with basis set optimisa-
tion and in past studies with large differences in exchange-correlation functionals. A
deeper understanding of this phenomenon is required before any further adaptation
to the ONETEP algorithm for EMFT can be carried out with confidence.

Aside from EMFT, the infrastructural work performed as part of this dissertation
to make embedding functional in ONETEP is adaptable to other embedding strate-
gies, such as Wesolowski-Warshel frozen density embedding and the Manby projector
method. They have not been implemented yet due to the focus on EMFT, which bears
a closer relation to ONETEP via the density matrix formalism, but in principle there is
no reason why this cannot be carried out in the future. Computational benefits can be
obtained using the subsystem NGWF optimisation routine, as there is now a clearly
viable way to reduce the extent to which subsystem orbitals need to be optimised
for large-scale calculations, potentially enabling new parallel strategies by optimising
components associated with different subsystems separately in a divide-and-conquer
fashion.

From the perspective of the room-temperature maser, a greater degree of flexibil-
ity is now available for the understanding of complex solute-solvent systems from an
embedding perspective. Additional maser active molecules, and potentially host en-
vironments, could be tested as viable candidates for an improved maser system. Such
approaches may require more sophisticated exchange-correlation functionals, such as
optimally-tuned range-separated hybrids (OT-RSH) to be used in combination with
time-dependent DFT (TDDFT). In principle both of these methods are compatible with
EMFT and linear-scaling but combining them in ONETEP remains an open problem.
The use of spin-orbit coupling to examine the triplet splittings would also represent an
important future development in understanding the pentacene excited states and their
behaviour in explicit host.

Serious consideration should be given to what other kinds of molecular systems
may be suitable for this approach, as in this work we have restricted ourselves to a
fairly narrow class of molecules and hosts. However there are potential applications
for biological systems with large proteins where a small subsystem must be described
with a high level of theory but the remainder of the structure is also important and so
must be accounted for. Overall, making quantum embedding viable within the linear-
scaling family has the potential to open up many new avenues of scientific inquiry.
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A Derivation of the Hartree-Fock
Equations

Hartree-Fock Theory is a staple of the condensed matter physicist or quantum chemist.
Here we provide the background for a conventional derivation of the Hartree-Fock
equations, as a supplement to the embedded Hartree-Fock theory described in the
main text. To begin, we will consider the derivation of the HF equations for the case
of a closed set of N mutually orthogonal orbitals {φi }, following the derivation by
Lowe [1].

The Hamiltonian for this system is given by

Ĥ = Ĥcore +
N∑
j=1

(2Ĵj − K̂j), (A.1)

where Ĥcore is the one-electron Hamiltonian (kinetic plus electron-nuclear interaction),
Jj is the Coulomb term and Kj is the exchange term:

Ĵj |φi〉 ≡ 〈φj|1/r12|φj〉 |φi〉 , (A.2)

K̂j |φi〉 ≡ 〈φj|1/r12|φi〉 |φj〉 . (A.3)

where r12 = |r1 − r2|. To find the optimum set of orbitals, we must minimise the
functional

L =
∑
i

〈φi|Ĥ|φi〉 =
∑
i

(
2Hii +

∑
j

(2Jij −Kij)

)
, (A.4)

where the double subscripts indicate matrix elements, with respect to the orbitals sub-
ject to the constraint that they remain orthonormal, yielding an equation of the form

δ

(
L− 2

∑
i,j

εij 〈φi|φj〉

)
= δ

(
L− 2

∑
i,j

εijSij

)
= 0, (A.5)
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where εij are Lagrange multipliers. The various matrix elements then become

δSij = 〈δφi|φj〉+ 〈φi|δφj〉 , (A.6)

δHii = 〈δφi|Ĥcore|φi〉+ 〈φi|Ĥcore|δφi〉 ,

= 〈δφi|Ĥcore|φi〉+ c.c., (A.7)

δJij = 〈δφi| 〈φj|1/r12|φj〉 |φi〉+ 〈φi| 〈δφj|1/r12|φj〉 |φi〉

+ 〈φi| 〈φj|1/r12|δφj〉 |φi〉+ 〈φi| 〈φj|1/r12|φj〉 |δφi〉 ,

= 〈δφi|Ĵj|φi〉+ 〈δφj|Ĵi|φj〉+ c.c. (A.8)

δKij = 〈δφi| 〈φj|1/r12|φi〉 |φj〉+ 〈φi| 〈δφj|1/r12|φi〉 |φj〉

+ 〈φi| 〈φj|1/r12|δφi〉 |φj〉+ 〈φi| 〈φj|1/r12|φi〉 |δφj〉 ,

= 〈δφi|K̂j|φi〉+ 〈δφj|K̂i|φj〉+ c.c. (A.9)

So

δJij = 〈δφi|Ĵj|φi〉+ 〈δφj|Ĵi|φj〉+ c.c. (A.10)

δKij = 〈δφi|K̂j|φi〉+ 〈δφj|K̂i|φj〉+ c.c., (A.11)

where c.c indicates the complex conjugate. Gathering it all together, our minimization
equation becomes

2
∑
i

〈δφi|

[(
Ĥcore +

∑
j

(
2Ĵj − K̂j

))
|φi〉 −

∑
j

εij |φj〉

]
+ c.c. = 0. (A.12)

The variations δφi and δφ∗i are independent, so the two halves of (A.12) must indepen-
dently be zero. In addition, these variations are arbitrary, so the part in square brackets
in the first half must equal zero for any variation δφ∗i . Hence we obtain[

Ĥcore +
∑
j

(
2Ĵj − K̂j

)]
|φi〉 =

∑
j

εij |φj〉 . (A.13)

We now define the Fock operator as

F̂ ≡ Ĥcore +
∑
j

(
2Ĵj − K̂j

)
, (A.14)

such that (A.13) becomes
F̂ |φi〉 =

∑
j

εij |φj〉 . (A.15)

This equation is rather complicated as the solution for one orbital depends on all the
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other orbitals, and so must be solved self-consistently. We can convert this to an eigen-
value problem by recasting (A.15) as a matrix equation:

F̂Φ = ΦE, (A.16)

where Φ is the vector of orbitals {φi } and E is a matrix of Lagrange multipliers. Now
let us post multiply each side of this equation by a unitary matrix U (U−1U = U †U = 111):

F̂ΦU =ΦEU, (A.17)

=ΦUU †EU,

⇒ F̂Φ′ =Φ′E′, (A.18)

where Φ′ = ΦU and E′ = U †EU . So far, we’ve achieved nothing since this is exactly
the same form as (A.16), but now consider the Coulomb term in the Fock operator
(following the derivation of Szabo and Ostlund [2]):

∑
i

J ′i =
∑
i

〈φ′i|1/r12|φ′i〉 =
∑
i

∑
k,l

〈φk|U∗ki1/r12Uli|φl〉 =
∑
k,l

[∑
i

U∗kiUli

]
〈φk|1/r12|φl〉

(A.19)
and since ∑

i

U∗kiUli = (UU †)lk = (111)lk = δlk, (A.20)

we have ∑
i

J ′i =
∑
k

〈φk|1/r12|φk〉 =
∑
k

Jk, (A.21)

i.e. a unitary transformation of the HF orbitals has no effect on the form of the Coulomb
term in the Fock operator. In addition, the exchange term can be rewritten as∑

j

K̂j
′
|φ′i〉 =

∑
j

〈φ′j|1/r12|φ′i〉 |φ′j〉 , (A.22)

=
∑
k,l,m

∑
j

〈φk|U∗kj1/r12Uli|φl〉Umj |φm〉 ,

=
∑
k,l,m

[∑
j

U∗kjUmj

]
Uli 〈φk|1/r12|φl〉 |φm〉 ,

=
∑
k,l

Uli 〈φk|1/r12|φl〉 |φk〉 ,

=
∑
k,l

UliK̂k |φl〉 ,

⇒
∑
j

K̂j
′
|φ′i〉 =

∑
k

K̂k |φ′i〉 , (A.23)
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so the form of the exchange operator is unaffected by the unitary transformation. Ĥcore

does not depend on the form of the HF orbitals and so remains unchanged. Thus we
conclude that the Fock operator is unchanged by the unitary transformation of the HF
orbitals i.e. F̂ ′ = F̂ .

All that remains, then, is to consider the Lagrange multipliers. We see from (A.15)
that these are the elements of the Fock matrix:

〈φk| F̂ |φi〉 =
∑
j

εij 〈φk|φj〉 =
∑
j

εijδjk = εik. (A.24)

Therefore,

ε′ij = 〈φ′j|F̂ ′|φ′i〉 , (A.25)

=
∑
k,l

〈φk|U∗kjF̂Uli|φl〉 ,

=
∑
k,l

U∗kj 〈φk|F̂ |φl〉Uli,

=
∑
k,l

U∗kjεklUli, (A.26)

which implies that E′ = U †EU . Since E is Hermitian, we can always choose a matrix U
such that E′ is diagonal [3]. Thus there exists a set of orbitals such that

F̂ ′ |φ′i〉 = ε′ii |φ′i〉 , (A.27)

which we can rewrite as
F̂ |φi〉 = εi |φi〉 . (A.28)

These are the Hartree-Fock equations. Physically, the unitary transformation has no
effect; it is simply a mathematical convenience.
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B Derivation of the Embedded
Hartree-Fock Equations

To begin, we partition the orbitals of the system into two sets, {φA
i } and {φB

i }, where
the former make up the active subsystem and the latter form the stationary environ-
ment. For illustrative purposes, we will first consider the case where the A and B
orbitals are mutually orthogonal.

The core Hamiltonian term in A can be split into a sum of A and B orbitals, the
latter of which disappears in the variation of the orbital space:

δHii = 〈δφA
i |Ĥcore,A|φA

i 〉+ c.c., (B.1)

Here we have given the operator the superscript A to make explicit the fact that it only
acts on the A orbitals.

The Coulomb, overlap and exchange matrices can be divided into three parts: in-
teraction between two A orbitals, interaction between two B orbitals and interaction
between A and B orbitals. Since the B orbitals remain stationary, we need only con-
sider the variation with respect to the A orbitals. First, the case where i ∈ A and j ∈ B:

δSij = 〈δφA
i |φB

j 〉 , (B.2)

δJij = 〈δφA
i |ĴB

j |φA
i 〉+ c.c. (B.3)

δKij = 〈δφA
i |K̂B

j |φA
i 〉+ c.c. (B.4)

where JB
j |φA

i 〉 = 〈φB
j |1/r12|φB

j 〉 |φA
i 〉 and KB

j |φA
i 〉 = 〈φB

j |1/r12|φA
i 〉 |φB

j 〉. Similar results can
be derived for the opposite case (i ∈ B and j ∈ A).

For i, j ∈ A, the results we obtain are equivalent to those in the case in Appendix A:

δSij = 〈δφA
i |φA

j 〉+ 〈φA
i |δφA

j 〉 , (B.5)

δJij = 〈δφA
i |ĴA

j |φA
i 〉+ 〈δφA

j |ĴA
i |φA

j 〉+ c.c. (B.6)

δKij = 〈δφA
i |K̂A

j |φA
i 〉+ 〈δφA

j |K̂A
i |φA

j 〉+ c.c. (B.7)
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Combining these results, our minimisation condition becomes:

2
∑
i∈A
〈δφA

i |

[(
Ĥcore,A +

∑
j∈A

(
2ĴA

j − K̂A
j

)
+
∑
j∈B

(
2ĴB

j − K̂B
j

))
|φA
i 〉

]

− 2
∑
i∈A
〈δφA

i |

[∑
j∈A

εij |φA
j 〉+

∑
j∈B

εij |φB
j 〉

]
+ c.c. = 0. (B.8)

Following the same argument as before, we obtain[
Ĥcore,A +

∑
j∈A

(
2ĴA

j − K̂A
j

)
+
∑
j∈B

(
2ĴB

j − K̂B
j

)]
|φA
i 〉 =

∑
j∈A

εij |φA
j 〉+

∑
j∈B

εij |φB
j 〉 (B.9)

Now defining the Fock operator for the whole system to be the quantity in square
brackets, we see that the Lagrange multipliers for the B states are given by

εij = 〈φB
j |F̂ |φA

i 〉 , (B.10)

so (B.9) can be rewritten as

F̂ |φA
i 〉 =

∑
j∈A

εij |φA
j 〉+

∑
j∈B
〈φB

j |F̂ |φA
i 〉 |φB

j 〉 , (B.11)

=
∑
j∈A

εij |φA
j 〉+ P̂ BF̂ |φA

i 〉 , (B.12)

where we have introduced the projection operator

P̂ B ≡
∑
j∈B
|φB
j 〉 〈φB

j | . (B.13)

Finally, we obtain a new form for the HF equation in the embedded regime:

(1− P̂ B)F̂ |φA
i 〉 =

∑
j∈A

εij |φA
j 〉 . (B.14)

A unitary transformation can be performed to cast (B.14) as an eigenvalue equation:

(1− P̂ B)F̂ |φA
i 〉 = εi |φA

i 〉 . (B.15)
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B.1 Generalised Embedded Hartree-Fock Equations

We now consider the general case of a set of orbitals {φA
i } that is not orthogonal to the

fixed set of orbitals {φB
i }. A result identical to (B.9) can be derived for a set of orbitals

{ φ̃A
i } that have been orthogonalised to the B orbitals by means of the Gram-Schmidt

approach, following the example of Phillips and Kleinman in their pseudopotential
approach [4]

|φ̃A
i 〉 =

(
1− P̂ B

)
|φA
i 〉 , (B.16)

where the projection operator is defined as

P̂ B =
∑
j∈B
|φB
j 〉 〈φB

j | . (B.17)

Then the generalised version of (B.9) is[
Ĥcore,A +

∑
j∈A

(
2J̃A

j − K̃A
j

)
+
∑
j∈B

(
2ĴB

j − K̂B
j

)]
|φ̃A
i 〉 =

∑
j∈A

εij |φ̃A
j 〉+

∑
j∈B

εij |φB
j 〉 , (B.18)

where the new Coulomb and exchange operators are defined as

J̃A
j |φ̃A

i 〉 ≡ 〈φ̃A
j |1/r12 ˜|φA

j 〉 |φ̃A
i 〉 , (B.19)

K̃A
j |φ̃A

i 〉 ≡ 〈φ̃A
j |1/r12|φ̃A

i 〉 |φ̃A
j 〉 , (B.20)

where we have included a tilde to indicate that these operators are formed from pro-
jected orbitals. Defining the quantity in square parentheses in (B.18) to be the Fock
operator F̃ , we get

F̃ |φ̃A
i 〉 =

∑
j∈A

εij |φ̃A
j 〉+

∑
j∈B

εij |φB
j 〉 . (B.21)

Just as before, we can express the Lagrange multipliers in the second sum as elements
of the Fock matrix, reducing the above equation to(

1− P̂ B
)
F̃ |φ̃A

i 〉 =
∑
j∈A

εij |φ̃A
j 〉 , (B.22)

which is identical to the result in (B.14).
Performing our unitary transformation, the result is(

1− P̂ B
)
F̃ |φ̃A

i 〉 = εi |φ̃A
i 〉 , (B.23)
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and substituting the form for |φ̃A
i 〉 into our HF equation, we get(

1− P̂ B
)
F̃
(

1− P̂ B
)
|φA
i 〉 = εi

(
1− P̂ B

)
|φA
i 〉 . (B.24)

This can be rewritten as (
F̃ + V̂ WR

)
|φA
i 〉 = εi |φA

i 〉 , (B.25)

where we have introduced the Weeks-Rice style pseudopotential [5],

V̂ WR ≡ −P̂ BF̃ − F̃ P̂ B + P̂ BF̃ P̂ B + εiP̂
B. (B.26)

This completes our derivation of the embedded Hartree-Fock equations.
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C Embedding data structures in
ONETEP

As part of the implementation of freeze-and-thaw embedding (F+T) and embedded
mean-field theory (EMFT) in ONETEP, a significant amount of changes were made to
the underlying data structures to handle these features. Fundamentally, this reflects the
fact that, prior to this work, the ONETEP algorithm was designed specifically to work
with a single quantum system described uniformly at a single level of theory. Other
forms of embedding, such as implicit solvation and QM/MM, are already available
but can be considered as external to the quantum density-functional theory (DFT) part
of the calculation. Implementing quantum embedding required substantial changes
to the underlying parallel strategies, sparse matrix structures and other data struc-
tures that are pervasive throughout the code, comprising a significant part of the work
discussed in this thesis. In this appendix we briefly discuss the most important data
structure changes that have been implemented and are now available within the aca-
demic release version of ONETEP. A detailed description of how to run embedding
calculations in ONETEP is available with the ONETEP documentation provided with
academic version 5.2 and later

C.1 New data types

• SPAM3_EMBED — modified version of traditional SPAM3 sparse matrix type to
allow for subsystem matrices.

type , public : : SPAM3_EMBED
in teger : : mrows
in teger : : nco ls
type (SPAM3) , a l l o c a t a b l e : : m( : , : ) ! Array o f SPAM3’ s
c h a r a c t e r ( len =30) : : s t r u c t u r e
l o g i c a l : : iscmplx ! TRUE i f ma t r ix i s complex
type (SPAM3) , pointer : : p ! P o i n t e r t o %m( 1 , 1 )

end type SPAM3_EMBED
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This contains a two-dimensional array of SPAM3 matrices SPAM3_EMBED%m, of
size (mrows × ncols), the elements of which are the subsystem matrices. For
embedding with two subsystems, the structure contains four matrices stored in
the form SPAM3_EMBED%m(1:2,1:2), with matching row and column indices
referring to diagonal matrices and alternating indices being off-diagonal terms,
while for a non-embedding calculation with one subsystem, there is only a sin-
gle matrix accessed via SPAM3_EMBED%m(1,1). Each SPAM3 has its own unique
structure code, composed of the SPAM3_EMBED structure and a subsystem iden-
tifier e.g. the structure code for the Hamiltonian of subsystem 1 would be H11.
The pointer SPAM3_EMBED%p is a shorthand for parts of the code that have not
yet been interfaced with the new embedding structures, acting as a pointer direct
to SPAM3_EMBED%m(1,1).

• SPAM3_EMBED_ARRAY — modified version of SPAM3_ARRAY, a generalised
version of SPAM3 that allows for the use of multiple spin channels and k-points.

type , public : : SPAM3_EMBED_ARRAY
in teger : : mrows
in teger : : nco ls
in teger : : num_spins
in teger : : num_kpoints
type (SPAM3_EMBED) , a l l o c a t a b l e : : m( : , : )
c h a r a c t e r ( len =30) : : s t r u c t u r e

end type SPAM3_EMBED_ARRAY

SPAM3_EMBED_ARRAY%m is a (num_spins×num_kpoints) array of SPAM3_EMBED
matrices, each of which are themselves composed of (mrows×ncols) SPAM3ma-
trices. Accessing matrices associated with different spin channels and k-points is
unchanged compared to SPAM3_ARRAY. For example, with two spin channels
and one k-point, there are two SPAM3_EMBED matrices available in the format
SPAM3_EMBED_ARRAY%m(1:2,1), while subsystem matrices are stored within
each SPAM3_EMBED in the same manner as discussed above. The embedding
code has been verified to work with multiple spin channels but not with multiple
k-points.

• REGION — new type within MODEL, containing all information specifically re-
lated to the subsystem, such as REGION%ELEMENT, the elements list which con-
tains information relating to the atoms in the subsystem. The model contains
MODEL%nsub regions, the data for which are stored as MODEL%REGION(1:nsub).
All structures contained within REGION are also still present in MODEL, but have
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been altered to refer exclusively to the whole system. So for example for two
subsystems, MODEL%ELEMENT is an amalgamation of the subsystem element lists
MODEL%REGION(1)%ELEMENT and MODEL%REGION(2)%ELEMENT. For one sub-
system, the regional quantities are merely pointers to the full system versions.

C.2 New module

• sparse_embed_mod.F90 — module designed for manipulation of SPAM3_EMBED
and SPAM3_EMBED_ARRAY types so that the subsystem structures can be passed
on to sparse_mod.F90. For example, the subroutine sparse_embed_product
takes two input matrices of type SPAM3_EMBED, amat and bmat, and returns the
output matrix cmat. The relevant code for this operation is:

! ==================================================
do j sub =1 , ncols

do isub =1 ,mrows
! Sum up a l l c o n t r i b u t i o n s from subsys t em p r o d u c t s
do ksub =1 , nsub

c a l l sparse_product ( cmat%m( isub , j sub ) , &
amat%m( isub , ksub ) , bmat%m( ksub , j sub ) )

c a l l sparse_axpy ( tmp_mat%m( isub , j sub ) , &
cmat%m( isub , j sub ) , 1 . 0 _DP)

end do
end do

end do
! Copy tmp_mat b a c k t o cmat
c a l l sparse_embed_copy ( cmat , tmp_mat )
! ==================================================

The three do...enddo loops cycle over all subsystem matrices, passing the rel-
evant matrices to the subroutine sparse_product for the sparse matrix multi-
plication. The cumulative result is stored in the local variable tmp_mat, calcu-
lated by adding the product matrices together using sparse_axpy. Finally the
resulting matrix is copied back to cmat and returned. If there is only one subsys-
tem in the calculation, then the relevant matrix structures are passed directly to
sparse_mod.F90.
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C.3 Major datatype modifications

• The local (pseudopotential), Hartree and exchange-correlation potentials are col-
lectively represented on the ONETEP fine grid as a single quantity, lhxc_fine.
For EMFT, this is now an array consisting of the total potentials required for each
subsystem separately, lhxc_fine(1:nsub) where nsub is the number of sub-
systems, such that the high- and low-level calculations can be performed with
different exchange-correlation potentials. The low-level term is thus the uncor-
rected full potential, while the active region quantity contains the final, corrected
EMFT potential as discussed in Chapter 7.

• Each subregion is allocated its own basis of NGWFs, with ngwf_basis(1:nsub)
now being an array of the type FUNC_BASIS with length equal to the number of
regions nsub. For the case of one subsystem, the data is then accessed simply via
an array of size 1. Similarly, the ngwfs_on_grid(1:nsub) quantity is an array
of type FUNCTIONS and length nsub, containing each subsystem’s NGWF data as
distributed on the grid, which are parallelised for each region separately across
the MPI framework (see below). This also applies to related FUNC_BASIS quanti-
ties such as non-local projectors (nl_projectors(1:nsub)) and the joint conduction-
valence NGWF basis (joint_ngwf_basis(1:nsub)).

• High-level data structures for quantities such as the density kernel (DKERN), Hamil-
tonian (NGWF_HAM) and overlap matrices (NGWF_REP) which contain SPAM3 or
SPAM3_ARRAY matrices have been replaced with the types SPAM3_EMBED and
SPAM3_EMBED_ARRAY. Conventions for accessing and manipulating these ma-
trices are the same as prior to the embedding implementation. This facilitates cal-
culation of total energies and forces, but has not been done for more specialised
features such as couplings and DFT with Hubbard U, which still use the non-
embedding structures.

C.4 Parallel strategies

In a normal ONETEP calculation, atoms are distributed across the available MPI pro-
cesses according to a ‘parallel strategy’. This determines how resources such as matrix
elements will be spread across the MPI environment in order to reduce the communi-
cation between nodes and maximise the efficiency of the calculation. Details on max-
imising parallel efficiency are available via the ONETEP documentation and website.

As part of the embedding infrastructure, each subsystem is given its own parallel
strategy, contained in the quantity MODEL%REGION%par. This contains all information



Appendix C. Embedding data structures in ONETEP 152

relating to the distribution of resources across the MPI nodes available to the calcula-
tion, which are determined by the parameter PARALLEL_SCHEME. There are three
settings for the distribution of resources during an embedding calculation:

• NONE: All subsystems are treated completely independently, with atoms distributed
across all available processors as though the other subsystems do not exist. The
number of MPI processes cannot be greater than the number of atoms in the
smallest subsystem. For example, if there are 8 processors available then each
will hold atoms and data from all subsystems, though the calculation will fail if
any subsystem has less than 8 atoms (or possibly slightly more if the space-filling
curve is in use). This is the default setting for testing but is not recommended for
practical calculations due to the constraint on the number of processors.

• SENATE: Nodes are partitioned evenly between all subsystems. For example, if
there are 8 processors and 2 subsystems, then each will be allocated 4 processors,
regardless of the number of atoms in each subsystem. Unlike the NONE setting,
there is no upper bound on the number of processors which may be used, so user
discretion is advised.

• HOUSE: Divides the processors proportionally between all subsystems, with a
minimum of 1 processor per subsystem. For example, if we have two subsystems
consisting of 15 and 5 atoms each, then with 8 processors each subsystem will be
allocated 6 and 2 nodes respectively. At a minimum all subsystems are granted 1
processor — if we had two subsystems with 1 and 100 atoms in our 8 processor
example, then they will receive 1 and 7 processor respectively. Like SENATE,
there is no upper bound on the number of processors that can be allocated and
finding a sensible setting is left to the user. This is the recommended setting for
running calculations, the others are mainly of use for testing.

In addition to MPI parallelisation, ONETEP utilises open multi-processing (OpenMP)
for memory sharing via multiple threads across a single node. The OpenMP paralleli-
sation has not been affected by the implementation of embedding.

C.4.1 Data structure changes for parallel strategies

In addition to the creation of regional parallel strategies via MODEL%REGION%par,
there are several other ways in which the handling of parallel strategies within ONETEP
have been altered.

• Deprecation of the global variable pub_par. Previously this was used through-
out the code to extract parallel strategy information, which is unsuitable for using
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multiple such strategies. Only used in parts of the code that are not yet compati-
ble with embedding.

• MODEL%par is now a pointer to MODEL%regions(1)%par. Like pub_par, this
is now used only in modules that have not been integrated with embedding
structures.

• Individual sparse matrices hold pointers to two parallel strategies, SPAM3%row_par
and SPAM3%col_par, for the strategies used to construct the elements along the
rows and columns of the sparse matrix. For diagonal matrices, these are the same.

C.5 Embedding algorithm

• For freeze-and-thaw embedding, the NGWF gradient is calculated in blocks for
each region’s NGWFs, such that for the frozen NGWFs there is no need to calcu-
late the gradient coefficients at all. The EMFT NGWF gradient depends on the
Hamiltonian operator corresponding to each region (see Chapter 7). This is im-
plemented via selective application of the lhxc_fine potential for each block of
regional NGWFs.

• Exchange-correlation calculations with EMFT require the use of multiple types
of exchange-correlation functionals. For semi-local functionals, this involves a
straightforward change of the functional to be used to generate the potential.
Hybrid calculations require initialisation of the spherical wave resolution of iden-
tity (SWRI) structures. With embedding, the SWRI process can be activated for
a specified active subsystem for hybrid-in-semi-local embedding. This required
few changes to underlying data structures, since the active subsystem quantities
can be passed to hf_exchange_mod.F90 without reference to the full system.
Currently there is no facility for off-diagonal terms between subsystems to be
calculated with exact exchange, limiting embedding to hybrids in a semi-local
environment.
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