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Abstract

Concurrent programs are executed by multiple threads that run simultaneously. While

this allows programs to run more efficiently by utilising multiple processors, it brings

with it numerous complications. For example, a program may behave unpredictably or

erroneously when multiple threads modify the same memory location in an uncoordinated

manner. Issues such as this are difficult to avoid, and when introduced, can break the

program in unpredictable ways. Programmers will therefore often turn towards automated

tools to aide in the detection of concurrency bugs.

The work presented in this thesis aims to provide methods to aid in the creation of tools

for the purpose of finding and explaining concurrency bugs. In particular, the following

studies have been conducted:

Dynamic Race Detection for C/C++11 With the introduction of a weak memory

model in C++, many tools that provide dynamic race detection have become outdated,

and are unable to adequately identify data races. This work updates an existing data race

detection algorithm such that it can identify data races according to this new definition.

A method for allowing programs to explore many of the weak behaviours that this new

memory model permits is also provided.

Record and Replay Much work has gone into record and replay, however, most of this

work is focussed on whole system replay, whereby a tool will aim to record as much of the

program execution as possible. Contrasting this, the work presented here aims to record as

little as possible. This sparse approach has many interesting implications: some programs

that were previously out of reach for record and reply become tractable, and vice versa.

To back this up, controlled scheduling is introduced that is capable of applying different

scheduling strategies, which combined with the record and replay is beneficial for helping

to root out bugs.
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Tool Support Both of the above techniques have been implemented in a tool, tsan11rec,

that builds on the tsan dynamic race detection tool. A large experimental evaluation is

presented investigating the effectiveness of the enhanced data race detection algorithm

when applied to the Firefox and Chromium web browsers, and of the novel approach to

record and replay when applied to a diverse set of concurrent applications.
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1 Introduction

Linux introduced the notion of threads in C with pthreads [NBF96] 1996. But it wasn’t

until fifteen years later in 2011 that C formally adopted threads with C11 [ISO11b].

Most modern languages provide some form of support for multi-threading, including

Java [GPB+06] and Go [go]. Hardware has also become very accommodating of threads,

with many multi-core processors providing low level caches shared between threads, through

which data can be shared, and hardware barriers to communicate. Multi-threading has

therefore become commonplace, with many programs utilising it in some form, even indi-

rectly through the use of a library.

The introduction of multi-threading has provided many benefits to programmers with

regards to program speed, structure and many others aspects; however, it also introduces

a number of pitfalls, which ultimately makes multi-threaded programming very difficult

to do correctly. For a single-threaded program, program bugs will depend on the program

code and how the program interacts with the environment, such as the file system or

network. With multiple threads, the order in which they execute becomes a major source

of nondeterminism, and so one must also consider how they communicate and modify

parts of the program state. If two threads modify, for example, the same data structure,

it may end up in an undefined state. Attempting to debug such programs is also more

difficult. Running the same program twice and ensuring the relevant program environment

and inputs are the same on both runs will not ensure that the program will follow the

same sequence of states. In these cases, traditional debugging methods such as pausing

a program with a debugger will not be enough, as there will be no clear indication as to

how the program became in such a state.

Perhaps the most defining type of bug that arises with multi-threading is the data race,

typically defined as follows: A data race occurs between two threads when both access

the same location, at least one is a write, at least one is non-atomic, and neither happens

before the other [Lam78]. But without any formalisation, what are “atomic accesses” and

“happens-before”? Before C11, happens-before was assumed to occur primarily between

the lock and unlock operations on mutexes, between a parent and child thread upon thread

creation and joining, and between operations in the same thread according to program

12



order. It was also assumed that lock operations were atomic. From this grew the lock-

based approach to multi-threading, where everything that could be accessed by multiple

threads was guarded by some form of lock. Atomics were introduced with C11 that can

be accessed by multiple threads without the need for locks, but are also more difficult to

use, as there is no longer a region of code that is mutually exclusive.

To help fix these issues, programmers may use a program analyser. An analyser will

capture and infer properties of the program in an attempt to inform the user of particular

deficiencies in the program. There are many different kinds of analysers, that focus on

different deficiencies and use different methods of approach. For example, the Address-

Sanitizer [HH12] tool will analyse a program, while it is running, and inform the user of

any address violations detected. This of course means that it will only detect address

violations, and only if they occur during that particular execution.

1.1 Current Issues

The current state of concurrent programming has become unclear. While program analy-

sers, libraries, research and understanding on the pitfalls of concurrent programming have

come a long way, it has become muddied by the introduction of complicated memory

models and the plethora of different models that different hardware and languages specify.

In the particular case of program analysers, while research continues to be performed on

improving the efficiency and their ability to detect data races according to some arbitrary

and simple definition of a data race, none of this research addresses the issue of the

increased complexity of the memory models embedded in the languages, or helping the

user to understand what is wrong with their program.

1.2 Contributions

In light of the issues raised above, this work focuses on three important issues:

Dynamic race detection for C11/C++11 (§3) focuses on the detection of data

races in the presence of a weak memory model, specifically, C11/C++11. It does so by

updating the traditional vector clock algorithm [FF09] to be aware of the nuances of the

C11/C++11 memory model. It also allows the exploration of some of the weak behaviours

permitted by C11/C++11, something that was previously restricted to static analysers

due to the perceived difficulties.
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Controlled scheduling with sparse record and replay (§4) attempts to solve the

issue of both finding and reproducing difficult to find data races. It does so by introducing

a method of controlled scheduling that works in tandem with a record and replay system.

This takes a sparse approach to record and replay, where instead of recording as much as

possible, it tries to record as little as possible.

ThreadSanitizer §5 details the implementation of the two previous contributions as

an extension of ThreadSanitizer (tsan), a state of the art dynamic race detection tool. An

extensive evaluation of the tool is provided, showing that it can scale to large applica-

tions and can both find and reproduce bugs. These applications range from small litmus

tests, to large programs such as popular web browsers, and real-time applications such as

videogames.

1.3 Publications

The material presented in this thesis has been published as follows:

Dynamic race detection for C++11 The dynamic race detection work of §3, and its

implementation and evaluation in §5.2, have been published in the 2017 ACM SIGPLAN

conference on Principles of Programming Language (POPL 2017) [LD17b]. This work has

an approved artifact and a companion website which can be found online [LD17a].

Sparse Record and Replay With Controlled Scheduling The controlled schedul-

ing and record and replay work of §4, and its implementation and evaluation in §5.3,

have been accepted and is to appear in the 2019 ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation (PLDI 2019). A reference to a draft is

provided [LD].
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2 Background

2.1 Multi-Threaded Programs

Multi-threaded programming allows programs to be executed with multiple threads of

execution. In C++11, threads are created explicitly with the std::thread class, by

passing in a function pointer. This function becomes the main function for the thread. An

example program is shown in Figure 2.1, whereby the main thread constructs two threads

t1 and t2, passing in the Summation function as the entry point and a pointer to the data

that needs summing. The join operation will cause the thread invoking it to block until

the specified child thread has finished. Each thread may run on two separate processors

concurrently, in theory doubling the speed over using a single thread. In practice, the

overhead of thread creation and completion will result in diminishing returns for fixed-size

data with the increase in thread count [Rod85].

Another example program is shown in Figure 2.2. The audio subsystem has been given

its own dedicated thread, tasked with consolidating all sound samples being played, mixing

them together and then sending the mixed sample to the audio device. Other threads do

not need to be concerned with playing back the audio with the correct timing, simplifying

them. The responsiveness of the audio will be improved, as the audio thread cannot be

busy working on other parts of the program.

In both examples, certain steps are taken to ensure correctness in how the threads inter-

act. In the audio example, access to samples_pending is guarded by a mutex. Mutexes

ensure mutually exclusive access to parts of the process memory space. In this case, if a

thread is in PlaySample and has acquired the mutex, the audio thread must wait until the

mutex is freed before it can acquire it and move past the mutex acquire. Mutual exclusion

is a common tool used in concurrent programs, but has the drawback that only one thread

may be running inside a mutex-protected region at a time.

The summation example uses an atomic variable instead. Under most circumstances,

variables are not safe to access concurrently. Atomics, however, are safe to use without the

guarantee of mutual exclusion, so in this case, there is no issue with total. The benefit

of this is that there is no need for mutual exclusion, and therefore threads are left to run
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const size_t kDataCount = 1024;

int data[kDataCount ];

std::atomic <int > total (0);

void Summation(const int *data , size_t count) {

int total = 0;

for (size_t idx = 0; idx < count; ++idx) {

total += data[idx];

}

::total += total;

}

int main(int argc , char **arv) {

FillData ();

std:: thread t1(Summation , &data[0 * kDataCount / 2], kDataCount / 2);

std:: thread t2(Summation , &data[1 * kDataCount / 2], kDataCount / 2);

t1.join ();

t2.join ();

std::cout << "Total: " << total << std::endl;

return 0;

}

Figure 2.1: Multiple threads perform a summation over disjoint sets of data concurrently,
providing a linear speed-up over a single-threaded approach.

std::list <const SoundSample&> samples_pending;

std::list <const SoundSample&> samples_active;

std::mutex audio_mtx;

void RunAudio () {

InitAudio ();

while (! shutdown) {

SoundSample mixed_sample = MixSamples(samples_active );

SendAudio(mixed_sample );

std:: this_thread :: sleep_for(std:: chrono :: milliseconds (10));

std:: unique_lock <std::mutex > lck(audio_mtx );

samples_active.splice(samples_active.end(), samples_pending );

}

}

void PlaySample(const SoundSample& sample) {

std:: unique_lock <std::mutex > lck(audio_mtx );

samples_pending.push_back(sample );

}

int main(int argc , char **arv) {

std:: thread audio_thread(RunAudio );

...

if (weapon_fired) {

PlaySample(weapon_sample );

}

...

audio_thread.join ();

return 0;

}

Figure 2.2: The audio playback has a dedicated thread. The main thread does not need
to think about it, and the audio will be responsive.
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in parallel.

In these examples, the programmer has taken the necessary precautions to ensure that

there are no adverse effects caused by the multi-threaded approach. Sometimes these

precautions are not enough, and the program can fail in strange ways. Consider the

Summation function in Figure 2.1, specifically the line ::total += total;. For atomic

locations, the += is an atomic read-modify-write, it performs the load, addition and store

as a single, irreducible operation. If this line is instead ::total = ::total + total;,

the load, addition and store will be three separate operations. Two threads could then

load the original value of total in parallel, without seeing the updated value from the

other thread. The resulting value would then be incorrect.

Now consider the audio example of Figure 2.2, and imagine someone has added func-

tionality for stopping samples that are currently being played, that looks as follows:

void StopSample(const SoundSample& sample) {

samples_active.remove(sample );

}

Said person has clearly forgotten to acquire the mutex first. The effects of this error is not

clear, for example, the list may become corrupt and the program may crash as a result,

the function may fail to stop the sample from playing, or, most likely, the program will

appear to continue as expected. One of the major problems with concurrency bugs is their

tendency to appear rarely and unpredictably, and so they are often colloquially known as

heisenbugs [MQB+08].

Concurrent programming has undergone much work, with many programming con-

structs being created specifically for use in multi-threaded programs, such as condition

variables, monitors, and even data structures specifically designed to be safely accessed by

multiple threads. But even with these constructs, the extra complications that come with

inter-thread interactions will still result in subtle bugs [ND13, BAM07].

2.2 Memory Models

The examples shown in Figures 2.1 and 2.2 provide two distinct methods of multi-threaded

interaction: the well established method of using mutual exclusion and the more modern

approach of using atomics. While the atomic approach avoids the need to block threads,

it has many nuances that must be formalised through the use of a memory model. To see

why this is necessary, a closer look at the hardware is required.

Consider the simple abstract program fragment shown in Figure 2.3a. Each thread

writes to one of x and y before reading the other in parallel. Assume that all accesses
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x = 1;

print y;

y = 1;

print x;

(a) Two threads write to and read from x and
y. The vertical bars represent separate
threads running in parallel.
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y=0       x=0

(b) The CPUs do not communicate directly
with memory, and may read older values
from the cache or leave stores in the cache.

Figure 2.3: Simple parallel program, showing one of the possible ways in which it can
run on hardware.

are atomic, and therefore safe. A common assumption will be that there is a sequentially

consistent ordering over all of the operations. For example, one execution may be x=1;

y=1; print x; print y;, and so the program will output 1 1. Under sequential consis-

tency, the program should never output 0 0. These assumptions do not hold in reality

though, and it is possible for the program to output 0 0, depending on the hardware and

compiler. One such way is shown in Figure 2.3b, whereby each store is kept in the CPU’s

cache causing each load to see the initial value in memory. Given the typical hardware

setup of Figure 2.3b, enforcing sequential consistency over all threads will in fact be more

tricky and expensive than going without. Other ways in which this can happen include the

compiler reordering operations, or the CPU executing operations out-of-order, a common

feature in modern CPUs.

Under a single processor, how memory operations interact is mostly unambiguous. With

multiple processors, the state of the system can become unspecified, particularly if the

memory operations are non-atomic. The role of a hardware memory model is to specify

the behaviour of memory operations, such as how they interact and how they are ordered.

From Figure 2.3, it is clear that without some way to order memory operations, the

values a load can read will be mostly unconstrained, which is particularly problematic when

considering the locking example of Figure 2.2. One common solution is to use memory

barriers (also known as memory fences), to prevent the memory operations from being

reordered beyond certain points. An example of how memory barriers prevent reorderings

is shown in Figure 2.4. This barrier will not prevent the operations on either side of the

barrier from being reordered amongst themselves however. Different types of hardware
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x=1; y=1; z=1;

__sync_synchronize ();

a=1; b=1; c=1;

-

(a) Memory stores separated by a GCC builtin
barrier, which will compile into a hardware
barrier.

x=1

y=1 z=1

b=1 a=1

c=1C
P
U

B
A
R
R
IE

R

(b) Barrier prevents memory operations from
shifting across it, but does not prevent
other reorderings.

Figure 2.4: The diagram on the right shows how a barrier prevents memory operations
from shifting over it.

x = 1;
y = 1;

bar = 1;
release();

acquire();
while(bar != 1);

print x;
print y;

(a) Synchronisation between release and ac-
quire barriers.
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print y

print xC
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bar==1

bar==0

bar==0

(b) The green arrow represents visibility, or
happens before. It crosses the thread
boundary thanks to barrier synchronisa-
tion.

Figure 2.5: Barrier synchronisation. The operations before the barrier on CPU1 become
visible to those after the barrier on CPU2.

will have their own variations of barriers, which will be defined by the underlying memory

model.

For interthread ordering, which is crucial for the locking example in Figure 2.2 to work,

barriers must connect across threads. Most hardware will provide two kinds of barriers:

a release barrier, which will prevent reordering past it, and an acquire barrier, which

will prevent reordering before it. A barrier can also be both, such as the one shown in

Figure 2.4b. Release barriers synchronise with acquire barriers, causing everything ordered

before the release barrier to become visible to everything ordered after the acquire barrier.

For this to work, the barrier is usually coupled with a memory access, and requires one

memory access to read from another. An example is shown in Figure 2.5. When the

load on bar reads from the store by CPU1, represented by the red arrow, the barriers

synchronise, and so CPU2 can safely access x and y.
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While most hardware memory models share the same basic principles, trying to cater for

all of them in a high level programming language such as C++ or Java would be difficult.

These languages that provide support for concurrency will therefore also provide their own

software memory model, to bridge the gap between the program and the hardware, and

to provide a single unified memory model which the programmer can program against. It

is the responsibility of the compiler, that implements a language specification, to ensure

that whatever code gets generated to run on hardware respects the underlying software

memory model of the language.

2.3 Program Analysis

With the complexity of programs increasing over time, so too does the complexity of the

bugs they exhibit. Many programs will have bugs that are too contrived to detect manually

and too difficult to fix by hand. The process of finding and explaining bugs autonomously

through the use of program analysis can therefore be beneficial.

Broadly speaking, program analysers come in two forms, static and dynamic, as depicted

in Table 2.1. A static analyser will work on the source program, while a dynamic analyser

runs alongside the program, collecting information while it is running. Both kinds of

analysis have a precision-scalability trade-off. Some cheap static analysers will scale really

well, but only check simple properties (e.g. C Lint [Dar96]) or have a high false positive

rate (e.g. FindBugs [HP07]), while others are much more detailed but do not scale (e.g.

CDSChecker [ND13]). Dynamic analysers typically incur a linear increase in execution

time, but the slowdown varies depending on the nature of the analysis. Dynamic analysis

can almost never be used to prove absence of bugs, as they will typically only explore single

executions, but bug reports will usually be accurate. Static analysers can be complete,

but can also produce bug reports that are imprecise or are not even an issue, or if they

are, it might not be clear how to reproduce them.

To demonstrate how these analyses work in practise, and the practical differences be-

tween the two, consider a static and dynamic analyser that can detect invalid memory

accesses, that will be applied to the program of Figure 2.6. This program reads in a vector

of numbers, sorts them, and then prints the nth number, specified by the first user ar-

gument. Assume that the parse_numbers function will correctly parse each number and

exit the program if there is an invalid number provided.

An example run of a static analyser is shown in Figure 2.7. This particular analyser aims

to construct a knowledge base of the program in question, using it to identify semantic

errors such as memory access violations. The knowledge base of the program starts off
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Static analysis Dynamic analysis

Analyses the codebase, without execution. Collects and analyses as the program is ex-
ecuting.

Collects information on all possible execu-
tions.

Only collects information on a single exe-
cution.

Generally works on small programs (<200
LOC), but can scale very well (e.g. for type
checkers, linters).

Scales up to very large programs.

Runs as its own executable, applied to the
source or executable for the codebase of
interest

Requires instrumentation of the original
program, with a static library bundled
with the executable.

Table 2.1: Differences between static and dynamic analysis.

int main(int argc , char **argv) {

if (argc < 3) {

return 1;

}

size_t count = argc - 2;

long pos = strtol(argv[1], NULL , 10);

long *nums = malloc(sizeof(long) * count);

parse_numbers (&argv[2], count , nums);

qsort(nums , count , sizeof(long), compare );

if (pos < 0 || pos > count) {

return 1;

}

printf("%ld\n", nums[pos]);

return 0;

}

Figure 2.6: Finding the nth number in an unordered sequence of numbers.

empty, and is gradually added to upon processing each line. When the print statement

is reached, it deduces that the range of potential indexes into nums can be invalid, as the

program permits the index to equal count. This knowledge base can become complex

when loops and functions are also included.

An example of a dynamic analysis is shown in Figure 2.8. Here the program is instru-

mented by calling into a library at certain points in the program execution, which keeps

track of certain parts of the program’s state. These library calls can be added to the rel-

evant lines in the program by the compiler automatically, removing the need for the user

to modify the program manually. In this case, only events that occur during a particular

execution can be analysed.
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  if (argc < 3) {
    return 1;
  }
  size_t count = argc - 2;
  long pos = strtol(argv[1], NULL, 10);
  long *nums = malloc(
      sizeof(long) * count);

  if (pos < 0 || pos > count) {
    return 1;
  }
  printf("%ld\n", nums[pos]);

argc >= 3

count = argc - 2, count >= 1

pos >= LONG_MIN, pos <= LONG_MAX

nums.length = count, nums.length = argc - 2
nums.length >= 1
nums.range = [0..count - 1]

pos >= 0, pos <= count

nums.access[pos]
nums.access[0..count]

Figure 2.7: Knowledge about the program is gradually built up while processing the lines
of the program. When nums is accessed, the possible range of indexes is out
of the range of the array.

...
long *nums = malloc(
    sizeof(long) * count);

...
printf("%ld\n", nums[pos]);

Static library

0x80000000..0x8000FFFF
0x80020000..0x8003FFFF
...

Allocated regions

void interceptor_mmap (
    void *ptr, size_t size) {
  ...
  AddRegion(ptr, size);
}

extern “C” void __check_access (
    void *location) {
  if (!InRegion(location)) {
    error;
  }
}

...
push size
call malloc

...
push pos
call __check_access
pop
push str123
push nums[pos]
call printf

Source

Assembly

Figure 2.8: A static library is bundled with the executable, which is called into at certain
points in the program. This library keeps track of all valid memory regions
and ensures all memory accesses are valid.
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Many tools exist that can perform program analysis to detect memory violations. A

couple of the most widely used analysers are AddressSanitizer [SBPV12] and MemorySan-

itizer [SS15], two dynamic analysers built into LLVM.
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3 Dynamic Race Detection for C/C++11

With the introduction of threads of execution as a first-class language construct, the

C/C++11 standards give a detailed memory model for concurrent programs [ISO11b,

ISO11a]. A principal feature of this memory model is the notion of a data race, and that

a program exhibiting a data race has undefined semantics. As a result, it is important for

programmers writing multi-threaded programs to take care to avoid data races.

Prior to the introduction of this memory model, the provision of threads was system and

compiler dependent, and the definition of a data race was informal but commonly agreed

upon. This lead to much work being created on the detection of data races in C/C++

programs, and other languages such as Java.

Despite the introduction of a formal definition of a data race, much of the work on data

race detection for C/C++11 programs is still created with the old informal definition in

mind. The most significant reason for this is that the definition of a data race in C++11

is far from trivial, due to the complex rules for when synchronisation occurs between the

various atomic operations provided by the language, and the memory orders with which

atomic operations are annotated.

Another subtlety of this new memory model is the reads-from relation, which speci-

fies the values that can be observed by an atomic load. This relation can lead to non-

sequentially consistent (SC) behaviours; such weak behaviours can be counter-intuitive

for programmers. The definition of reads-from is detailed and fragmented over several

sections of the standards, and the weak behaviours it allows complicate data race analysis,

because a race may be dependent upon a weak behaviour having occurred.

Because of these factors, working out by hand whether a program is race-free, even for

small litmus tests, is difficult.

The aim of this chapter is to investigate the provision of automated tool support for

race analysis of C++11 programs, with the goal of helping C++11 programmers write

race-free programs. The current state-of-the-art in dynamic race analysis for C++11 is

ThreadSanitizer [SI09] (tsan). Although tsan can be applied to programs that use C++11

concurrency, the tool does not understand the specifics of the C++11 memory model: it

can miss both data races and errors, and report false alarms.
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The main research questions considered are: (1) Can synchronisation properties of a

C++11 program be efficiently tracked during dynamic analysis? (2) How large a fragment

of the C++11 memory model can be modelled efficiently during dynamic analysis? (3)

Following from (1) and (2), can a memory model-aware dynamic race analysis tool scale

to large concurrent applications, such as the Firefox and Chromium web browsers? These

applications can already be analysed using tsan, without the full extent of the C++11

memory model; by modifying tsan to be fully aware of the memory model, can applications

such as these be explored?

Sections 3.1 and 3.2 detail existing work. The rest of the section is original work that

builds on these two sections. The original work presented in this chapter is structured as

follows:

Extending the vector clock algorithm for C++11 §3.3 The vector clock-based

dynamic race detection algorithm [FF09] is extended to handle C++11 synchronisation

accurately, requiring awareness of release sequences and fence semantics.

Exploring weak behaviours §3.4 Many C++11 weak behaviours are due to the reads-

from relation, which allows a load to read from one of several stores. This section presents

the design of an instrumentation library that enables dynamic exploration of this relation,

capturing a large fragment of the C++11 memory model.

Operational model §3.5 This section formalises the instrumentation of §3.4 as an

operational semantics for a core language. Unlike related works on operational semantics

for C/C++11 that aim to capture the full memory model, the semantics presented here is

intended as a basis for dynamic analysis of real-world applications, thus trades coverage

for feasibility of implementation.

Characterising the operational model axiomatically §3.6 The practically-focussed

design of the operational model in §3.6 means that not all memory model behaviours can

be observed. To make this precise, the behaviours that are unobservable have been char-

acterised via a single additional axiom to those of an existing axiomatic formalisation of

C++11, and an argument that this strengthened memory model is in correspondence with

the operational model is provided.

A detailed implementation and evaluation of the instrumentation described in this chapter

is provided in §5.2. The implementation is provided as an extension to ThreadSanitizer.
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3.1 C/C++11 Memory Model

The C/C++11 specification provides a unified memory model that abstracts away the

memory model of the underlying hardware, allowing programmers to target a single plat-

form [ISO11b, ISO11a]. The C/C++11 memory model has been designed such that it

avoids excluding behaviours that a potential underlying hardware memory model could

exhibit, as doing so would reduce the usability of C/C++11 for programmers who wish

to make full use of such hardware. As a result, the C/C++11 memory model is very per-

missive in the behaviours that it will allow. In some case, this can lead to some confusing

and unintuitive executions.

Four basic low level atomic operations are provided: stores, loads, read-modify-writes

(RMWs) and fences. Stores and loads will write to and read from an atomic location

respectively. RMWs will modify (e.g. increment) the existing value of an atomic location,

storing the new value and returning the previous value atomically. Fences apply memory

order constraints on the program. Atomic operations on the same location are safe to

use across multiple threads in a racy manner, and are expected to race, as this allows

communication between threads without the use of locks. These races are not regarded as

data races according to the C++11 memory model however.

While atomics allow safe access to atomic locations, on their own they do not help

memory accesses that are non-atomic. As shown in §2.2, the general hardware-based

solution is to use memory barriers. To briefly recap, the release barrier prevents memory

operations ordered before the barrier from being shifted after it, while also releasing, or

publishing, the side effects for other threads to see. The acquire barrier prevents memory

operations ordered after it from being shifted before it. A barrier is implicitly attached to

certain atomic operations. When an atomic load with an acquire barrier reads the value

stored by an atomic store, the side effects published by any release barrier on that store,

and only that store, are guaranteed to become visible to any memory operation ordered

after the acquire barrier. This is the most common method of inter-thread communication,

called synchronisation.

In C/C++11, atomic operations are annotated with a memory ordering. There are

six types of ordering: relaxed, consume, acquire, release, acquire-release and sequentially

consistent. Release and acquire resemble the release and acquire barriers discussed in

§2.2. Relaxed applies no barrier semantics, but does have other ordering implications.

Sequentially consistent applies release and acquire semantics, and also enforces a strict

total order over all operation marked as such, provided the program is race-free. Consume

has a special meaning, and in line with many previous works, is not considered in this
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work [ND13, BDW16, VBC+15]. The consume ordering is rarely considered due to its

unusual semantics and lack of implementation in most compilers.

While these orderings order non-atomic operations, the question now is: what value

should an atomic load read? Or rather, what orders the orderings? Because it is not

feasible to specify precisely what value should be read, or the order in which atomic

operations are executed, the C/C++11 memory model instead specifies what can and

cannot happen. This means the model is axiomatic, and as such is defined as a set of

axioms. An execution of a C/C++11 program is only considered valid if it abides by the

axioms of the C/C++11 memory model.

The set of executions that a program can exhibit is often referred to as the behaviours.

A behaviour that cannot be exhibited under strict sequential consistency is called a weak

behaviour. The release orderings can be ordered by strength as relaxed > release > release-

acquire > sequentially-consistent, with a similar ordering for the acquire orders. A weaker

ordering here means that it will allow more program behaviours than a stronger ordering.

If a particular hardware setup cannot handle a given ordering, it can be strengthened by

going up the chain, with the guarantee that a stronger ordering will not introduce new

behaviours, but may restrict them; this guarantee has been shown to be false in some

circumstances however [BDW16]. By providing this guarantee, a program written to be

able to exploit weak behaviours can still be run on hardware that cannot exhibit them, by

strengthening the orderings, as long as the hardware is at least capable of strict sequential

consistency. Any hardware that can enforce strict sequential consistency can satisfy the

C/C++11 memory model.

The rest of this section is dedicated to formalising the C/C++11 memory model. This

follows the Post-Rapperswil formalisation of Batty et al. [BOS+10]. Although recent

works have condensed the formalisation [BDW16, VBC+15], the descriptive presentation

of [BOS+10] provides a greater degree of intuition, especially for designing the instrumen-

tation framework in §3.4.

Pre-executions A program execution represents the behaviour of a single run of the

program. These are shown as execution graphs (e.g. Figure 3.2c), where nodes represent

memory events. For example, a:Wrelx=1 is a memory event that corresponds to a release

write of 1 to memory location x; a is a unique identifier for the event. The event types

W, R, RMW and F represent read, write, RMW and fence events, respectively. Memory

orderings are shortened to rlx, rel, acq, ra, sc and na for relaxed, release, acquire,

release-acquire, sequentially-consistent and non-atomic, respectively. An RMW has two

associated values, representing both the value read and the value written. For example,
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b:RMWrax=1/2 shows event b reading value 1 from and writing value 2 to x atomically.

Fences have no associated values or atomic location; an example release fence event is

c:Frel.

Execution graphs are used throughout this work to provide a clear representation of

specific executions. These graphs are best viewed in colour. In each graph, events in the

same column are issued by the same thread.

Sequenced-before (sb) is an intra-thread relation that orders events by the order they

appear in the program. The sb relation is not total within a thread, as operations within

an expression are not ordered. For example, ++i + ++i will result in two unsequenced

loads of i.

Additional-synchronises-with (asw) causes synchronisation on thread launch, between

the parent thread and the newly created child thread. Let a be the last event performed

by a thread before it creates a new thread, and b be the first event in the created thread.

Then (a, b) ∈ asw . Similarly, an asw edge is also created between the last event in the

child thread and the event immediately following the child-parent join operation in the

parent thread.

The events, sb edges and asw edges form a pre-execution. This represents one possible

flow of the program according to the control flow of the program, with arbitrary values for

the memory loads. Due to the presence of branches, there can be many, possibly infinitely

many, pre-executions. A pre-execution represents a possibility, and may or may not be

able to be extended to an actual execution.

Figure 3.2a shows an execution graph for a pre-execution of the program in Listing 3.1.

Because there is no information on what store the loads have read from, the values of

the loads are ambiguous. Unnecessary information is often omitted from these graphs to

prevent them from becoming cluttered. Most notably, the initialisation of variables and

the additional-synchronises-with edges will usually be omitted.

Candidate Executions Each pre-execution can be extended with a set of witness re-

lations, to give a candidate execution. These relations represent the runtime observations

of the execution. Not all pre-executions can be extended to a candidate execution, e.g.

when a load cannot be matched with any store. Consider the pre-execution of Figure 3.2a

in which event g reads the value 4, there will be no store that can be matched to g, and

thus no candidate executions.

Reads-from (rf ) shows which store each load reads from. For a store a and load b,

(a, b) ∈ rf indicates that the value read by b was written by a. Each load must have

exactly one rf edge incident on it.
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int nax = 0;

std::atomic <int > x(0);

void T1() {

nax = 1;

x.store(1, std:: memory_order_release );

x.store(3, std:: memory_order_relaxed );

}

void T2() {

x.store(2, std:: memory_order_relaxed );

}

void T3() {

x.load(std:: memory_order_acquire );

nax; // read from ‘nax ’

}

Figure 3.1: Simple racy C++11 program.

Modification-order (mo) is a total order over all of the stores to a single atomic location.

Each location has its own total order.

Sequentially-consistent (sc) order is a total order over all atomic operations in the execu-

tion marked with sequentially-consistent ordering. It is expected that the other relations,

sb, rf and mo, do not conflict with sc, thus restricting many of the behaviours that would

otherwise be allowed.

The set of all candidate executions for a given program is called the candidate set.

Figure 3.2b shows one possible candidate execution for the pre-execution of Figure 3.2a.

The number of ways in which a pre-execution can be extended grows very quickly with the

number of memory events, due to the many ways in which the relations may be arranged.

For example, the modification order over the 4 writes to x in Figure 3.2a can be arranged

in 24 different ways. When combined with the 4 possible stores the load in g can read

from and the 2 stores for h, gives 192 candidate executions.

A candidate execution does not have to be viable according to the C/C++11 memory

model, as checking for consistency comes at a later step. Many of these candidates will

therefore have seemingly bizarre behaviours. For example, Figure 3.3 shows another can-

didate execution for the pre-execution of Figure 3.2a, with mo going backwards in program

order.

Derived Relations A candidate execution must still be checked against the C/C++11

memory model for consistency. To simplify the consistency rules, the candidate execution

can be extended with a set of derived relations.

A release-sequence (rs) represents a continuous subset of the modification order. An rs

is headed by a release store, and continues along each store to the same location. The rs
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a:Wna nax=0

b:Wna x=0

sb

c:Wna nax=1

asw

f:Wrlx x=2

asw

g:Racq x=?

asw

d:Wrel x=1

sb

e:Wrlx x=3

sb

h:Rna nax=?

sb

(a) A pre-execution of the program in Listing 3.1, the only possible pre-execution for this program.

c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=1

rf

e:Wrlx x=3

sb,mo

g:Racq x=3

rf

f:Wrlx x=2

mo sb

(b) The pre-execution in Figure 3.2a has been extended with a set of possible witness relations to
give a candidate execution. The initialisations of the main thread have been excluded.

c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=1

hb, rf

rs

e:Wrlx x=3

sb,mo, rs

g:Racq x=3

hb,sw

rf

f:Wrlx x=2

mo sb

(c) Given the candidate execution of Figure 3.2b, you can derive the derived relations. The
hypothetical release sequence and some happens-before relations have been excluded for clarity.

Figure 3.2: Pre-execution, witness and derived relations for the program in Listing 2.1.
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c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=1

rf

e:Wrlx x=3

sb

f:Wrlx x=2

mo

mo

g:Racq x=2
rf

sb

Figure 3.3: A candidate execution for the pre-execution of Figure 3.2a. The modification
order will prevent this from being allowed by the C/C++11 memory model.

is blocked when another thread performs a store to the location. An RMW from another

thread will however continue the rs. An example of this is shown in Figure 3.2c, whereby

an rs headed by d extends down to e. Another example is shown in Figure 3.4, where

instead the rs headed by d is blocked by the store in another thread labelled f .

A hypothetical-release-sequence (hrs) works in the same way as a release sequence, but is

headed by both release stores and non-release stores. The rules for extending and blocking

are the same as for release sequences. The hrs is used for fence synchronisation.

Synchronises-with (sw) defines the points in an execution where one thread has synchro-

nised with another. When a thread performs an acquire load, and reads from a store that

is part of a release sequence, the head of the release sequence synchronises with the ac-

quire load. This means that release sequences are necessary for synchronisation, and so the

aforementioned release sequence blocking behaviour can be detrimental if synchronisation

is required. An asw edge is also an sw edge.

Happens-before (hb) is simply (sb ∪ sw)+ (where + denotes transitive closure), repre-

senting Lamport’s partial ordering over the events in a system [Lam78]. Because an sw

edge is also an hb edge, when event a in thread A synchronises with event b in thread

B, every side effect sequenced before a in A will become visible to every event sequenced

after b in B.

Figure 3.2c shows the candidate execution of Figure 3.2b that has been extended with

the derived relations. The release store of d heads a release sequence, that then extends

down to e. When the acquire load of g reads from e, the event that headed the release

sequence synchronises with g. Due to synchronisation, the non-atomic write of c happens

before the non-atomic read of h.

Figure 3.4 shows another candidate execution. The release sequence is blocked by the
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c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=0

dr

rs

e:Wrlx x=3

sb

f:Wrlx x=2

mo

g:Racq x=3

rf
mo

sb

Figure 3.4: The release sequence headed by d is blocked by event f , causing a data race
between c, the non-atomic write to nax, and h, the non-atomic read from
nax; if the blocking event f is removed, there is no race.

store of f . As e is not a part of the release sequence, there is no synchronisation, and so

the non-atomic accesses are not ordered.

Data Races A further relation can now be defined that will identify data races. To

reiterate, a data race occurs between two memory accesses when both operate on the

same location, at least one is non-atomic, at least one is a store, and neither happens

before the other. The hb relation defined above suitably fits this notion of happens before.

Figure 3.4 shows an execution with a data race, as there is no sw edge between the release

store d and acquire load g, and therefore no hb edge between the non-atomic accesses c

and h.

The C/C++11 standards state that data races are undefined behaviour. It does not

matter if a particular execution does not have a data race; if any of the consistent execu-

tions have a data race the behaviour of the program is undefined.

The negative consequences of data races are well known from a research perspec-

tive [Adv10a, Adv10b], but to a regular programmer, they can seem inconsequential. The

obvious assumption is that the physical representation of the bits in memory may become

mangled after two concurrent stores. In practise, this is not an issue for most systems,

especially with the introduction of transactional memory [CSW18]. The bigger issue lies

with the compiler. Consider a C++11 compiler that takes as input a well formed C++11

program. The compiler will assume that any program given to it is well formed, and thus

race free. A programmer can still give it a racy program, but the compiler will transform

it under the assumption that it is race free. For example, consider a thread that performs

a series of non-atomic stores, but does not follow up with a release atomic operation. From

the compiler’s perspective, no other thread is going to try to access the locations of these
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stores, as doing so would constitute a data race. The compiler may therefore simply omit

the stores for efficiency, leaving them invisible to other threads.

Consistent Executions A consistent execution is a candidate execution that abides by

the C/C++11 memory model. The consistent set is a candidate set filtered by consistency.

The rules for consistency are presented as a set of axioms. For an execution to be consistent

it must satisfy all of the axioms. The set of executions that are allowable is the consistent

set, with the caveat that if any consistent execution contains a data race, the set of allowed

executions is empty and the program is undefined.

There are seven axioms that determine consistency [BOS+10]. Some of these axioms will

be simplified, as consume ordering and locks are not being considered. A brief overview of

each axiom is given in this section, but will be covered in more detail where appropriate

when describing the exploration of weak behaviours in §3.4.

The well -formed -threads axiom restricts the formation of memory events, sb, and asw .

This will prevent considering pre-executions that will only lead to inconsistent executions.

The well -formed -rf -mapping axiom similarly restricts rf , such as not allowing a load

specified at one location reading from a store to another location, or a load reading from

multiple stores. This will prevent considering candidate executions that will trivially be

inconsistent. The consistent-locks axiom is not considered, as locks have not been affected

by this work.

The three axioms, consistent-sc-order , consistent-mo and consistent-rf -mapping , cor-

respond with the formation of the sc, mo and rf relations. These are non-trivial, and are

covered in more detail in §3.4. The last axiom is consistent-ithb axiom which, without

consume, simply requires hb to be irreflexive.

As long as an execution follows these axioms, it is deemed a valid execution of a well

formed C/C++11 program. This leads to some interesting behaviours. A weak behaviour

is one that would not appear under any interleaving of the threads using sequentially

consistent semantics. To illustrate this, Figure 3.5 shows two such executions that arise

from well-known litmus tests [AMT14, BOS+11, BWB+11, ND13]. In the load and store

buffering examples, at least one of the reads will not read from the most recent write in mo,

no matter how the threads are interleaved. In the load buffering example, one of the reads

will read from a write that could not have occurred yet at that point in the execution.

While these behaviours are allowed by the memory model, whether they are observed

in practice will depend on practical issues such as the effect of compiler reorderings and

properties of the hardware on which a program is executed.
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d:Rrlx x=0

rf

f:Rrlx y=0

rf

c:Wrlx y=1

sb

e:Wrlx x=1

sb

(a) Store buffering.

c:Rrlx x=1

d:Wrlx y=1

sb

e:Rrlx y=1

rf

f:Wrlx x=1

sb

rf

(b) Load Buffering.

Figure 3.5: Example executions showing some of the common weak behaviours allowed
by the C/C++11 memory model.

3.2 Dynamic Race Detection

A dynamic race detector aims to catch data races while a program executes. This requires

inferring various properties of the program after specific instructions have been carried

out.

The vector clock (VC) algorithm is a prominent method for race detection that can

be applied to multiple languages, including C++ with pthreads, and Java [FF09, Mat88,

PS03, PS07, ISZ99]. It aims to compute the happens-before relation. Each thread in the

program has an epoch representing its current logical time. A VC holds an epoch for each

thread, and each thread has its own VC, denoted Ct for thread t. The epoch for thread t′

in Ct represents the logical time of the last instruction executed by t′ that happens before

any instruction thread t will execute in the future. The local epoch for thread t, Ct(t), is

denoted c@t.

VCs have an initial value, ⊥V , a join operator, ∪, a comparison operator, ≤, and a

per-thread increment operator, inct. These are defined as follows:

⊥V = λt.0 V1 ∪ V2 , λt.max(V1(t), V2(t))

V1 ≤ V2 , ∀t.V1(t) ≤ V2(t)

inct(V ) = λu. if u = t then V (u) + 1 else V (u)

Upon creation of thread t, Ct is initialised to inct(⊥V ), possibly joined with the clock of the

parent thread, depending on the synchronisation semantics of the associated programming

language. Each atomic location m has its own VC, Lm, which is updated as follows: when

thread t performs a release operation on m, it releases Ct to m: Lm := Ct. When thread t

performs an acquire operation on m, it acquires Lm using the join operator: Ct := Ct∪Lm.

Thread t releasing to location m and the subsequent acquire of m by thread u simulates
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void T1() {

nax = 1; // A

x.store(1, std:: memory_order_release ); // B

}

void T2() {

if (x.load(std:: memory_order_acquire) == 1) // C

x.store(2, std:: memory_order_relaxed ); // D

}

void T3() {

if (x.load(std:: memory_order_acquire) == 2) // E

nax; // read from ‘nax ’ // F

}

Figure 3.6: The write from T2 can cause T1 to fail to synchronise with T3, resulting in
a data race on nax; tsan cannot detect the race.

synchronisation between t and u. On performing a release operation, thread t’s vector

clock is incremented: Ct := inct(Ct).
To detect data races, specific checks are performed to ensure that certain accesses to

each location are ordered by hb, the happens-before relation. As all writes must be totally

ordered, only the epoch of the last write to a location x, denoted Wx, needs to be known

at any point. As data races do not occur between reads, the reads do not need to be

totally ordered, and so the epoch of the last read by each thread may need to be known.

A full VC must therefore be used to track reads for each memory location, denoted Rx for

location x; Rx(t) gets set to the epoch Ct(t) when t reads from x.

To check for data races, a different check must be performed depending on the type

of the current and previous accesses. These are outlined as follows, where thread u is

accessing location x, c@t is the epoch of the last write to x and Rx represents the latest

read for x by each thread; if any check fails then there is a data race:

write-write: c ≤ Cu(t) write-read: c ≤ Cu(t)

read-write: c ≤ Cu(t) ∧ Rx ≤ Cu

Example An illustration of the VC-based race detection algorithm is provided using the

example of Figure 3.6, for the thread schedule in which the statements are executed in

the order A–F. Initially, the thread VCs are CT1 = (1, 0, 0), CT2 = (0, 1, 0), CT3 = (0, 0, 1),

and Rnax = Lx = ⊥V . Because nax has not been written to, Wnax has initial value 0@T1,

where the choice of T1 is arbitrary: epoch 0 for any thread would suffice [FF09].

Statement A writes to nax, which has not been accessed previously, no race check is

required. After A, Wnax := 1@T1, because T1’s epoch is 1. After T1’s release store at B,

Lx := Lx ∪ CT1 = (1, 0, 0), and CT1 := incT1(CT1) = (2, 0, 0). After T2’s acquire load C,
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Statement CT1 CT2 CT3 Lx Rnax Wnax

- (1, 0, 0) (0, 1, 0) (0, 0, 1) ⊥V ⊥V -
A 1@T1

B (2, 0, 0) (1, 0, 0)
C (1, 1, 0)
D
E (1, 0, 1)
F (1, 0, 1) 1@T1

Figure 3.7: Trace of the program in Figure 3.6, showing the value of the VCs after each
statement. Only updated values are shown, and those where race detection
checks are performed.

CT2 := CT2 ∪Lx = (1, 1, 0). The race analysis state is not updated by T2’s store at D since

relaxed ordering is used.

After T3’s acquire load at E, CT3 := CT3 ∪Lx = (1, 0, 1). Thread T3 then reads from nax

at statement F, thus a race check is required between this read and the write issued at A.

A write-read check is required, to show that c ≤ CT3(t), where Wnax = c@t. Because

Wnax = 1@T1, this simplifies to 1 ≤ CT3(T1), which can be seen to hold. The execution is

thus deemed race-free.

A sketch of this execution is shown in Figure 3.7. Only updates are shown, except where

a race condition check is performed, which is coloured red. A check is performed during

statement F, which shows that 1 ≤ CT3(T1) and so there is no race.

3.3 Data Race Detection for C++11

The rest of this section describes original work, that build upon the pre-existing work

outline in sections 3.1 an 3.2.

The traditional VC algorithm outlined in §3.2, and implemented in tsan, is defined over

simple release and acquire operations. It is unaware of the more complicated synchronisa-

tion patterns of C/C++11. This section describes an updated VC algorithm that properly

handles C/C++11 synchronisation, by showing where the original VC algorithm falls short

and how the updated algorithm fixes these shortcomings. The algorithm is summarised

as a set of inference rules in §3.3.3.

3.3.1 Release Sequences

As described in §3.1, release sequences are key to synchronisation in C++11. Event a will

synchronise with event b if a is a release store, b is an acquire load, and b reads from a
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Statement CT1 CT2 CT3 Lx Rnax Wnax

- (1, 0, 0) (0, 1, 0) (0, 0, 1) ⊥V ⊥V -
A 1@T1

B (2, 0, 0) (1, 0, 0)
C (1, 1, 0)
D ⊥V
E (0, 0, 1)
F (0, 0, 1) 1@T1

Figure 3.8: Trace of the program in Figure 3.6, showing the value of the VCs after each
statement. Only updated values are shown, and those where race detection
checks are performed. Blue updates show those that differ from the sketch
of Fig.3.7.

store in the release sequence headed by a. This subsection explains why the existing VC

algorithm does not accurately capture release sequence semantics, and how the new VC

algorithm will fix these shortcomings.

Blocking Release Sequences Recall the execution of Figure 3.4. The release sequence

started by event d is blocked by the relaxed write at event f . The effect is that when event

g reads from event e, no synchronisation occurs, as the release sequence headed by event

c does not extend to event e. In the original VC algorithm, synchronisation does occur,

as the VC for a location is never cleared. The effect is that release sequences will continue

unhindered until some thread performs a release store to the same location.

To adapt the VC algorithm to correctly handle the blocking of release sequences, each

location m will additionally store the id of the thread that performed the last release store

to m. Let Tm denote the mapping from location m to the thread id. When a thread

with id t performs a release store to m, the contents of the VC for m are over-written:

Lm := Ct, and t is recorded as the last thread to have released to m: Tm := t. This

denotes that t has started a release sequence on m. Now, if a thread with id u 6= Tm
performs a relaxed store to m, the VC for m is cleared: Lm := ⊥V . This has the effect of

blocking the release sequence started by Tm.

A similar sketch to that of Figure 3.7 is provided in Figure 3.8, showing that Lx is

cleared out on the store in statement D. This results in the non-atomic load in statement

D becoming racy with respect to the store in statement A.

This aspect of the memory model is often seen as a “bug”, and not intended, mostly

due to its unintuitiveness and lack of representation in real hardware memory mod-

els [VBC+15]. As such, there has been work on trying to improve the C/C++11 mem-
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c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=0

dr

rs

e:RMWrel x=1/2

rf,mo, rs

rs

f:Wrlx x=3

sb,mo, rs

g:Racq x=3
sw

rf sb

Figure 3.9: The release sequence started by d and continued by e is blocked by f ; thus
d does not synchronise with g, so c races with h.

ory model by removing these aspects [VBC+15]. Nevertheless, this work formalises the

C/C++11 memory model as it stands.

Example revisited Recall from Section 3.2 the worked example of the VC algorithm

applied to schedule A–F of Figure 3.6, in which a data race on nax is missed by the original

VC algorithm. Revising this example taking release sequence blocking into account, the

relaxed store by T2 at D causes Lx to be set to ⊥V . As a result, the acquire load by T3 at

E yields CT3 := CT3 ∪ Lx = (0, 0, 1). This causes the write-read race check on nax to fail

at F, because Wnax = 1@T1 and CT3(T1) = 0. The data race is detected, as required by

the C++11 memory model.

Read-Modify-Writes RMWs provide an exception to the blocking rule: an RMW on

location m does not block an existing release sequence on m. Each RMW on m with

release ordering starts a new release sequence on m, meaning that an event can be part

of multiple release sequences started by multiple threads. If a thread t that started a

release sequence on m performs a non-RMW store to m, the set of currently active release

sequences for m collapses to just the one started by t. In Figure 3.9, release sequences

from the left and middle threads are active on event e, before a relaxed store by the middle

thread causes all but its own release sequence to be blocked.

To represent multiple release sequences on a location m, Lm will now join with the VC

for each thread that starts a release sequence. An acquiring thread will effectively acquire

all of the VCs that released to Lm when it acquires Lm. Now consider the case of collapsing

release sequences when a thread t that started a release sequence on m performs a relaxed

non-RMW store. Lm must be replaced with the VC that t held when it started its release

sequence on m, but this information is lost if t’s VC has been updated since t performed

the original release store. To preserve this information, each location m will now have a

vector of vector clocks (VVC), denoted Vm, that stores the VC for each thread that has

started a release sequence on m.
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Statement CT1 CT2 CT3 Lx Vx Rnax Wnax

- (1, 0, 0) (0, 1, 0) (0, 0, 1) ⊥V ∅ ⊥V -
c 1@T1

d (2, 0, 0) (1, 0, 0) ((1, 0, 0),⊥V ,⊥V )
e (0, 2, 0) (1, 1, 0) ((1, 0, 0), (0, 1, 0),⊥V )
f (0, 1, 0) (⊥V , (0, 1, 0),⊥V )
g (0, 1, 1)
h (0, 1, 1) 1@T1

Figure 3.10: Trace of the program in Figure 3.9, showing the value of the VCs after each
statement. Only updated values are shown, and those where race detection
checks are performed.

How Vm is updated depends on the type of operation being performed. If thread t

performs a non-RMW store to m, Vm(u) is set to ⊥V for each thread u 6= t. If the

store has release ordering, Vm(t) and Lm are set to Ct. As the store heads a new release

sequence, and Ct ≥ Vm(t), the previous contents of Vm(t) are redundant, and so are

discarded. Thread t will now be the only thread for which there is a release sequence on

m. If instead the store has relaxed ordering, Vm(t) is left unchanged, and Lm is set to

Vm(t), which is the VC associated with the head of a release sequence on m started by t,

or to ⊥V if t has not started such a release sequence.

Suppose instead that t performs an RMW on m. If the RMW has relaxed ordering then

there are no changes to Lm nor Vm and all release sequences continue as before. If the

RMW has release ordering, Vm(t) is updated to Ct, and the VC for t is joined on to the

VC for m, i.e. Lm := Lm ∪ Ct. By updating Lm in this manner, when a thread acquires

from m, it will synchronise with all threads that head a release sequence on m.

In practice, the full generality of a VVC for each location is not needed, and would be

wasteful. An implementation would instead use a mapping from thread ids to VCs that

grows on demand when threads perform RMWs. For example, if a location only has two

active release sequences on it, the VVC for the location will only have two thread id to

VC pairs.

To give an example of how these new VVCs work, another sketch is provided in Fig-

ure 3.10. This time the sketch is on the program fragment of Figure 3.9, where the

statements are carried out in the order cdefgh. After statement f, the VC for thread T1

has been cleared out of both the VC and the VVC for location x.
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a:Wrel x=1
rs

b:Rrlx x=1
rf

c:Facq

sw sb

(a) Acquire fence.

a:Frel

b:Wrlx x=1

sb

c:Racq x=1
sw

hrs

rf

(b) Release fence.

a:Frel

b:Wrlx x=1

sb

d:Facq

sw

hrs

c:Rrlx x=1

rf

sb

(c) Acquire and release fences.

Figure 3.11: Synchronisation caused by fences.

3.3.2 Fences

Fences provide many of the same guarantees as the other atomic operations, with the

difference that they do not operate on any specific memory location. A fence is anno-

tated with a memory ordering like other atomic operations, and thus can be a release

fence and/or acquire fence. Fences with SC ordering have special meaning, discussed in

§3.4.4. As described in §3.2, the common VC algorithm uses VCs indexed by locations

for the purpose of synchronisation. By not considering fence synchronisation, a tool that

implements this algorithm is going to report false positives.

The three cases of synchronisation with fences are shown in Figure 3.11. Acquire fences

will synchronise if a load sequenced before the fence reads from a store that is part of a

release sequence, even if the load has relaxed ordering, as shown in Figure 3.11a. Release

fences use the hypothetical release sequence, described in §3.1. A release fence will syn-

chronise if an acquire load reads from a hypothetical release sequence that is headed by

a store sequenced after the fence, as shown in Figure 3.11b. Release fences and acquire

fences can also synchronise with each other, shown in Figure 3.11c.

Handling synchronisation from release sequences uses the VC associated with an atomic

location to convey VC information. With fences, as there is no atomic location, another

intermediate VC must exist. Furthermore, the fence itself does not start a hypothetical

release sequence, atomic stores do, and they can be blocked and restarted any number of

times. Using Ct in these cases is not correct, as Ct will have been updated since the release

fence. A similar issue exists with acquire fences, as synchronisation does not occur on the
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relaxed load, but the acquire fence that follows. To handle fence synchronisation, the VC

whence a thread performed a release fence must be known, as this VC will be released to

Lm if the thread then does a relaxed store to m. When a thread performs a relaxed load,

the VC that would be acquired if the load had acquire ordering must be remembered,

because if the thread then performs an acquire fence, the thread will acquire that VC. To

handle this, two new per-thread VCs will be introduced to track this information: the fence

release clock, Frel
t , and the fence acquire clock, Facq

t . The VC algorithm is then extended

as follows. When thread t performs a release fence, Frel
t is set to Ct; when t performs an

acquire fence, Facq
t is joined on to the thread’s clock, i.e. Ct := Ct ∪ Facq

t . When a thread

t performs a relaxed store to m, Frel
t is joined on to Lm. If t performs a relaxed load from

m, Lt is joined on to Facq
t .

To illustrate fence synchronisation, consider the four operations shown in the execution

fragment in Figure 3.11c. Let events a, b, c and d be carried out in that order. After a,

Frel
t = Ct. After b, Lx = Frel

t . After c, Facq
u
′
= Facq

u ∪Lx. Finally, after d, C′u = Cu∪Facq
u
′ ≥

Cu ∪ Frel
t = Cu ∪ Ct. Thus there is synchronisation between a and d.

3.3.3 Algorithm

The extended VC algorithm, combining the original VC algorithm of [FF09] with the

techniques described in §3.3.1 and §3.3.2 for handling release sequences and fences, is

summarised by the inference rules of Figure 3.12. The rules for non-atomic reads and

writes have been omitted, as these are unchanged.

For each thread t, a vector clock Ct, and fence release and acquire clocks, Frel
t and Facq

t

(see §3.3.2) are recorded. For each variable m, both a vector clock Lm and vector of vector

clocks Vm (see §3.3.1) are recorded. The symbols C, Frel and Facq , and L and V are used

to denote these clocks across all threads and locations respectively.

The algorithm shown in Figure 3.12 is just one of multiple possible variants, the choice

of which will be a trade-off between efficiency and convolution. The one chosen here is

simple, but always uses the VVC, Vm, even when there is only one active release sequence

or hypothetical release sequence active on m. Because the VVC is always in use, the

mapping from location to thread id shown in §3.3.1, Tm, is not needed.

Observe that Frel and Facq are only significant when relaxed ordering is used; they do not

introduce any new information in the presence of release and acquire semantics. The fence

VCs are never stored in the VVC, because if a thread performs a relaxed store requiring

the VVC to collapse, Frel will be joined onto the VC for the location regardless.

41



STATE:

C : Tid → VC
L : Var → VC
V : Var → (Tid → VC )

Frel : Tid → VC
Facq : Tid → VC

STORES and RMWs:

[RELEASE STORE]

L′ = L[x := Ct] V′ = V[x := ∅[t := Ct]]

(C,L,V,Frel ,Facq)⇒storerel (x,t) (C,L′,V′,Frel ,Facq)

[RELAXED STORE]

L′ = L[x := Vx(t) ∪ Frel
t ] V′ = V[x := ∅[t := Vx(t)]]

(C,L,V,Frel ,Facq)⇒storerlx (x,t) (C,L′,V′,Frel ,Facq)

[RELEASE RMW]

L′ = L[x := Lx ∪ Ct] V′ = V[x := Vx[t := Ct]]

(C,L,V,Frel ,Facq)⇒rmw rel (x,t) (C,L′,V,Frel ,Facq)

[RELAXED RMW]

L′ = L[x := Lx ∪ Frel
t ]

(C,L,V,Frel ,Facq)⇒rmw rlx (x,t) (C,L′,V′,Frel ,Facq)

LOADS (an RMW also triggers a LOAD rule initially):

[ACQUIRE LOAD]

C′ = C[t := Ct ∪ Lx]

(C,L,V,Frel ,Facq)⇒loadacq(x,t) (C′,L,V,Frel ,Facq)

[RELAXED LOAD]

Facq ′ = Facq [t := Facq
t ∪ Lx]

(C,L,V,Frel ,Facq)⇒loadrlx (x,t) (C,L,V,Frel ,Facq ′)

FENCES:

[RELEASE FENCE]

Frel ′ = Frel [t := Ct]

(C,L,V,Frel ,Facq)⇒fencerel (t) (C,L,V,Frel ′,Facq)

[ACQUIRE FENCE]

C′ = C[t := Ct ∪ Facq
t ]

(C,L,V,Frel ,Facq)⇒fenceacq(t) (C′,L,V,Frel ,Facq)

Figure 3.12: Semantics for tracking the happens-before relation with loads, stores,
RMWs and fences.
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3.4 Exploring Weak Behaviours

The C/C++11 memory model allows programs to exhibit various weak, non-SC be-

haviours, as described in §3.1. For a dynamic analysis tool it can be difficult to analyse

properties of programs with such behaviours. Typically a dynamic analysis tool resides

in a part of the program’s memory, and acts as a kernel through which the rest of the

program will interact at certain points. The tool becomes aware of events as and when

they happen, implying that there is some strict total order over the events of the program,

or strict partial order if the kernel allows concurrency between certain events. Any data

race that relies on non-SC behaviours to appear will be impossible for a race detector such

as tsan to detect. For example, the behaviour of Figure 3.5a cannot be exhibited under

sequential consistency, and so any race that depends on x = 0 and y = 0 will not be

detected.

The design of a novel library to address this issue is presented in this subsection. The

library allows a program to be instrumented, at compile time, with auxiliary state that can

enable exploration of a large fragment of the non-SC executions allowed by C++11. The

core principle is as follows: every atomic store is intercepted, and information relating to

the store is recorded in a store buffer. Every atomic load is also intercepted, and the store

buffer is queried to determine the set of possible stores that the load may acceptably read

from. The information for each store will be sufficient that it can be determined whether

the store can be read by a load when the load would occur.

By controlling the order in which threads are scheduled and the stores from which

atomic load operations are read, the instrumentation enables exploration of a large set of

non-SC behaviours. The buffering-based approach has some limitations, for example it

does not facilitate a load reading from a store that has not yet occurred. The fragment of

the memory model covered by this technique is formalised in §3.6.2. This instrumentation

forms the basis for an extension of the tsan tool for the detection of data races arising

from non-SC program executions by randomising the stores that are read from by atomic

loads. This extension is discussed in §5.2.

As stated in §3.1, the Post-Rapperswil memory model presentation of Batty et al. [BOS+10]

is followed in the design of the instrumentation library presented here. The notation

“§PRX” is used to refer to section X of the Post-Rapperswil formalisation.

Going back to the witness relations described in §3.1, it is these relations that differen-

tiate one run of a program from another. An ideal tool would be able to explore all the

possible arrangements of these relations, while ignoring those that are inconsistent. For

example, consider a program that has a single location written to four times, split between
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two threads. There are 24 (4!) ways in which the mo relation can be arranged, although

only 6 of these will be consistent. The different arrangements of mo and sc can be handled

by exploring different thread schedules, whereas the rf relation cannot. Exploring the rf

relation requires the tool to know all the stores that each load could read from. The rf

relation can be thought of as the source of weak behaviours.

Assume throughout that the operations issued by a thread are issued in program order;

this is a standard constraint associated with instrumentation-based dynamic analysis.

Under this assumption, the operations of each thread are ordered by the sb relation. This

is an axiom, and is referred to as AxSB. Also assume that the order in which sequentially

consistent operations are carried out conforms with the sc relation, and is referred to as

AxSC. Axioms that require showing conformance between certain relations are described

in brief, but nonetheless, these will be useful in showing that our instrumentation follows

the C++11 memory model.

3.4.1 Post-Store Buffering

Consider a thread that performs an atomic store to some atomic location, after which some

thread, possibly the same one, performs another atomic store to the same location. Now

consider a different thread performing an atomic load to the same location. Depending on

the state of the loading thread, and the memory ordering used, the atomic load should be

able to read from the first store, even though there are intervening stores to the location.

To facilitate this, each atomic store to each atomic location will be recorded in a buffer,

allowing an instrumentation library to search through and pick a valid store to read from.

The core idea is as follows. On intercepting a store to location m, the VC updates

described in §3.3 are performed, to facilitate race checking. The value to be stored to m is

then placed in the store buffer for m. Each individual store in the store buffer is referred

to as a store element, and contains a snapshot of the state of the location at the time the

store was performed. This snapshot includes the meta-data required to ensure that, upon

each load, the instrumentation library can be certain that reading from the store will lead

to a consistent execution. The meta-data required to ensure this is covered throughout

the rest of §3.4, and is guided by the C/C++11 consistency axioms. The store buffer is

formally defined in §3.5.

This approach is referred to as post-store buffering, as each store is buffered after the real

store has been performed. The alternative is pre-store buffering, which would speculatively

place stores in the buffer, on the assumption that threads would later perform them.

Atomic loads could then read from future stores, as in the example of Figure 3.5b. This

44



approach is very difficult to perform in a dynamic environment however. For example, what

would happen if a load reads from a store that does not end up happening? Rewinding

large applications is not trivial, and so is not considered in this work.

3.4.2 Consistent Modification Order (§PR6.17)

The consistent-mo axiom states: (1) mo is a strict total order over all the writes to each

location. (2) hb restricted to the writes at a location is a subset of mo, in other words,

mo conforms with hb. (3) Restricting the composition of (sb ; Fsc ‖
sc−−→ Fsc ; sb) to the

writes at a location is a subset of mo.

The store elements in each store buffer form an ordered list. When an atomic store to

m occurs, the store element for the store is pushed to the back of the list. This ordered

list represents the modification order for the location, and must be a strict total order,

satisfying (1).

To satisfy (2), it must be shown that mo conforms with hb, which is the transitive

closure of sb and sw , thus it must be shown that mo conforms with each of sb and sw .

The AxSB axiom already shows that mo conforms with sb. Synchronisation follows the

rf relation, and sb when fences are involved. As a load can only read from a store already

in the store buffer, due to the AxSB axiom, mo must conform with the composition

(sb ◦ rf ◦ sb), and so (2) is satisfied. The agreement between mo and hb shown here is also

referred to as coherence of write-writes (CoWW).

Due to AxSB and AxSC, (3) holds trivially.

3.4.3 Consistent SC Order (§PR6.16)

The consistent−sc axiom requires the following: (1) sc is a strict total order over all events

with sc ordering. (2) sc conforms with hb. (3) sc conforms with mo.

Rule (1) sounds trivial, and generally is, as the instrumentation will not weaken opera-

tions that have SC ordering. To preserve parallelism, only certain operations will compete

over locks, such as stores and loads that access the same location, and so the instrumenta-

tion will only enforce the sc ordering between certain pairs of operations. However, it can

be shown that for certain pairs, the ordering is irrelevant. One way to show this is through

the construction of a program execution. Figure 3.13 shows an execution gradually being

formed. Due to AxSC, SC events ordered by sb are also ordered by sc. Events a and e

remain unordered. Figure 3.13a shows events a and g both performing an SC store to the

same location which, due to the reasoning given in §3.4.2, will cause an sc edge to form

between them. Similar reasoning can be given for the two new events in Figure 3.13b.
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a:Wsc a=1

c:Wsc c=1

sc

g:Wsc a=2

sc,mo

b:Wrlx b=1

d:Wsc y=2

e:Wrlx x=1

f:Wsc y=1

sc

h:Rsc c=1

(a) Before d and h, only sc edges that the instru-
mentation would enforce have been shown.

a:Wsc a=1

c:Wsc c=1

sc

g:Wsc a=2

sc,mo

b:Wrlx b=1

d:Wsc y=2

sc

h:Rsc c=1

rf,sc

e:Wrlx x=1

f:Wsc y=1

sc,mo

sc

sc

(b) After d and h, the new sc edges conform
with mo and rf .

Figure 3.13: Construction of a program execution.

The result is that whenever two events would create an sb, mo or rf edge, and both have

SC ordering, an sc edge will also form. Because these edges form the candidate execution,

how other SC events are ordered cannot affect the execution. SC events such as a and f

will still be ordered by sc, as the instrumentation does not weaken their ordering, but the

direction of the ordering is immaterial to the instrumentation. Rules (2) and (3) are now

trivially satisfied.

3.4.4 Consistent Reads From Mapping (§PR6.19)

The rf requirements are the most complex among the consistency rules. These are broken

down into three groups. The methods described in this section collectively give rise to

an algorithm for determining the set of possible stores that a load can read from; this

algorithm is presented formally in Figure 3.22 and discussed in §3.5.

Coherence Rules There are three coherence rules with regards to reads, and one con-

sistency rule for RMWs.

(1) Coherence of Write-Reads (CoWR) states that a load cannot read from a store if

there is another store later in mo that happens before the load. This essentially cuts off

all of the modification order before such stores.

(2) Coherence of Read-Writes (CoRW) states that a load cannot read from a store if

there is another store earlier in mo that happens after the current load. This will cut off
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all of the modification order after such stores. More formally, this states that rf ∪hb ∪mo

is acyclic.

The following illustrates the behaviours these rules forbid:

a:W x=2 b:W x=1
mo

c:R x=2

rf hb

CoWR

a:W x=1 b:R x=1
rf

c:W x=2

hbmo

CoRW

These two rules leave a range of stores in mo that can potentially be read from.

The instrumentation automatically conforms to CoRW, as violating CoRW would re-

quire a thread to read from a store that has not yet been added to the store buffer for a

location, something the instrumentation does not allow. This is illustrated by the execution

fragment shown for CoRW above. This reasoning also assumes that the instrumentation

follows the hb relation.

For CoWR, each store element must record sufficient information to allow a thread

issuing a load to determine whether the store happened before the load. To enable this,

the id of the storing thread must be recorded when a store element is created, together

with the epoch associated with the thread when the store was issued. When a load is

issued, the instrumentation library can then search the store buffer to find the latest store

in mo that happened before the current load; all stores prior to the identified store are cut

off from the perspective of the loading thread. This is achieved by searching the buffer

backwards, from the most recent store. For a given store element, let c@t be the epoch

of the thread that performed the store. With C denoting the VC of the loading thread, if

c ≤ C(t), then the store will happen before the load, so the search is halted.

(3) Coherence of Read-Reads (CoRR) states that if two reads from the same location are

ordered by hb, the reads cannot observe writes ordered differently in mo. As a consequence,

if a thread performs a load from a location and reads from a particular store element, all of

the stores ordered before the store in mo will be cut off for future loads. Loads from other

threads will also be affected when synchronisation occurs. Consider the execution fragment

shown in Figure 3.14. The two loads c and f are ordered by hb due to synchronisation

between d and e. This means they must observe the two stores a and b in the same order,

or else read from the same stores. In this particular example, they do not, meaning the

fragment will lead to an inconsistent execution.

To ensure CoRR, it is necessary for a thread to be aware of loads performed by other

threads. To handle this, the instrumentation library will make use of software load buffers
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a:Wrlx x=1

b:Wrlx x=2

sb,mo,hb

f:Rrlx x=1

rf

c:Rrlx x=2

rf

d:Wrel y=1

sb,hb

e:Racq y=1

rf,hb,sw
sb,hb

Figure 3.14: Inconsistent execution fragment caused by lack of CoRR.

as follows. Every store element is augmented with a list of load elements. When a thread

reads from a store element, a new load element is created and added to the list of load

elements associated with that store element. Each load element records the id of the

thread that issued the load, and the epoch associated with the thread when the load was

issued. Whenever the instrumentation library is searching through the store buffer for the

earliest store that a load is allowed to read from, it must also search through all the load

elements associated with each store element. For a load element under consideration, let

c@t be the epoch of the thread that carried out the load, and C the VC of the thread

that is currently performing the load. If c ≤ C(t), then the load associated with the load

element happened before the current load, and the search is halted. Not every load that

has been issued needs to have an associated load element. For example, if a thread loads

twice from a location without issuing an intervening release operation, the first load will

not affect any other thread and thus can be pruned.

(4) Consistent RMW reads states that if an RMW event b reads from write event a,

then b must follow a in mo. With the instrumentation library, an RMW will read from

the back of the store buffer before adding a store element to the back. As the ordering of

the store elements follows mo, (4) is satisfied.

Sequentially Consistent Fences SC fences add a layer of complexity to what the

memory model allows. An SC fence will interact with other SC fences and SC operations

in a number of ways. These are outlined as follows, where ‖ sc−−→ denotes an inter-thread

sc edge:

(5) Wnon-SC
sb−→ FSC ‖

sc−−→ RSC : The SC read must read from the last write sequenced

before the SC fence, or any write later in modification order. Non-SC reads are unaffected.

(6) WSC ‖ sc−−→ FSC
sb−→ Rnon-SC : The non-SC read must read from the SC write, or a

write later in modification order. If there is no SC write, then the read is unaffected.

(7) Wnon-SC
sb−→ FSC ‖ sc−−→ FSC

sb−→ Rnon-SC : Any read sequenced after the SC fence

must read from the last write sequenced before the SC fence, or a write later in modification

order.
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a:Wrlx x=1 b:Wsc x=2
mo

d:Rsc x=1

rf

c:Wsc x=3

sb,sc,mo
sc

Figure 3.15: Consistency of sc-reads only forbids d reading from b.

Accommodating SC fences cannot be trivially solved using the existing machinery, and

requires additional VCs and VC manipulation on every SC operation. To start off, two

new global VCs will be defined: SF , representing the epoch of the last SC fence performed

by each thread, and SW , the epoch of the last SC write performed by each thread. Each

thread will update its position in these VCs whenever they perform an SC fence or SC

write.

Each thread t now has an extra three VCs: $F,t, $W,t and $R,t. Each VC will control

each of the three cases outlined above. These are updated when the thread performs an

SC operation. When a thread performs an SC fence, it will acquire the two global SC

VCs: $F,t := $F,t ∪ SF and $W,t := $W,t ∪ SW . When a thread performs an SC read, it will

acquire the global SC fence VC in the following way: $R,t := $R,t ∪ SF . To see how this

enforces the rules outlined above, consider a thread t that is performing an atomic load

on location x. While searching back through the buffer, assume it has reached a store to

x performed by thread u at epoch c@u. If the load is an SC load, and $R,t(u) ≥ c, then

the search is halted according to (5). If the store is an SC store, and $W,t(u) ≥ c, then

the search is halted according to (6). Regardless of whether the load or the store is SC, if

$F,t(u) ≥ c then (7) applies.

(8) WSC ; RSC : The SC read must read from the last SC write, a write later in mo

than the last SC write, or a non-SC write that does not happen before some SC write

to the same location. Figure 3.15 shows an execution fragment where the SC write of c

blocks the SC read of d from reading from b, but not a. This case does not involve SC

fences, and will not be covered by the machinery discussed earlier, as an SC write will

update SW , but an SC read will acquire SF .

To handle (8), each store element will additionally have an sc flag. The flag is initialised

to true if the store is SC, or false if not. When a thread performs an SC store, every store

element in the store buffer that happens before the current store has their sc flag set to

true. When a thread performs an SC load, it searches through the store buffer for a set

of possible stores to read from as usual, but out of all of those stores that are marked
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a:Wna x=0

b:Wrel x=1

mo,hb

e:Rrlx x=3

hb,vse,vsses

c:Wrel x=2

sb,mo

vsses

d:Wrel x=3

sb,mo

vsses

rf,vsses

f:Racq x=3

rf,hb,vse,vsses

Figure 3.16: Visible side effects and visible sequence of side effects.

sc, only the latest one in the modification order can be read from. The sc flag acts as a

marker indicating which stores have been hidden due to the effects of other SC stores.

Visible Side Effects One of the parts of the C/C++11 memory model that has not

been covered is the notion of visible side effects. This is fairly complex to describe, but

is mostly already covered by the instrumentation above, and so no special treatment is

provided for it in the instrumentation. A brief explanation is given here for the sake of

completeness.

Visible-side-effect (vse) relates stores and loads based on happens-before visibility. A

store a is a visible side effect for a load b if a happens before b and there is no intervening

store c such that a happens before c and c happens before b. This applies to both atomic

and non-atomic operations.

visible-sequence-of-side-effects (vsses) is a similar relation between stores and loads that

only applies to atomic operations. The vsses represents a contiguous part of the modifi-

cation order starting from the visible side effect and ending before the first store that the

load happens before.

Figure 3.16 shows an example of these relations. The vsses for the relaxed load of e

includes all of a, b, c and d. For the acquire load of f , as the load causes synchronisation,

d retroactively becomes the visible side effect for f , and thus the only store in the vsses

for f .

The remaining two consistency rules are as follows: (9) A non-atomic load must read

from a visible side effect. (10) An atomic load must read from a store that is a part of the

vsses. What isn’t apparent from these descriptions is that this addresses the initialisation
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problem, as opposed to there being too many things to read from. For the non-atomic

case, having two or more visible side effects would imply a data race between them, as

they would not be ordered by happens before. For the atomic case, the CoWR rule will

prevent the load from reading from a store that is mo ordered before the visible side effect,

and thus not a part of the vsses.

The problem these rules address is there being no visible side effects, and so no vsses.

For a non-atomic load either the location has not been initialised or the load and the

initialisation form a data race. In the atomic case, the load could potentially read from

a store that causes synchronisation, but there may be no stores to read from or all of the

stores have relaxed ordering with no preceding fences. A load that cannot read from a

visible side effect or vsses is called an uninitialised load.

In the context of C++, an uninitialised load on an atomic location is not usually an issue.

If an atomic has global scope, it will be constructed statically, and therefore initialised

before the program has begun. If it is a class member, it will be constructed as the object

is constructed. Only indirection could cause an issue, at which point there will likely be

several other memory issues. For these reasons, (9) and (10) have not been given much

consideration.

3.5 Operational Model

In order to make the instrumentation of §3.4 sufficiently precise such that it can be imple-

mented as a tool and reasoned about, a formalisation of the instrumentation is provided.

This formalisation is presented as an operational semantics for a core language, and then

used in §3.6 to argue that the instrumentation matches an axiomatically-defined fragment

of the C++11 memory model.

3.5.1 Programming Language Syntax

The formal operational model is presented with respect to a core language that captures the

atomic instructions defined by C++11, the syntax for which is described by the grammar

of Figure 3.17. A program is a sequence of statements that are executed by an initial

thread. Identifiers LocA and LocNA denote disjoint sets of atomic and non-atomic locations,

respectively. The forms of simple statement are: assigning the result of an expression over

non-atomic locations to a non-atomic location (the set of operators that may appear in

expressions is left unspecified); forking a new thread, capturing a handle for the thread in a

non-atomic location (similar to C++’s std::thread); joining a thread via its handle; and
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Prog ::= Stmt ; ε
Stmt ::= Stmt ; Stmt

| if (LocNA) {Stmt} else {Stmt}

| LocNA := Expr

| LocNA = Fork(Prog)

| Join(LocNA)

| StmtA

| ε
StmtA ::= LocNA = Load(LocA , MO)

| Store(LocNA , LocA , MO)

| RMW(LocA , MO, F)

| Fence(MO)

MO ::= relaxed | release | acquire

| rel_acq | seq_cst

Expr ::= <literal > | LocNA | Expr op Expr

Figure 3.17: Syntax for the core language.

performing an atomic operation. Atomic operations, described by the StmtA production

rule, consist of loads, stores, RMWs and fences. An RMW takes a function, F, to apply to an

atomic location, for example, the increment function. The language supports compound

if statements; loops are omitted for simplicity. An empty statement is represented by ε.

3.5.2 Operational Model Formalised

The structure of the state of a program is shown in Figure 3.18, which takes inspiration

from prior work [WBBD15]. It describes the set of possible states a program can be

in, and includes the machinery described in §3.5 that allows for the exploration of weak

behaviours. Figure 3.18b gives a pictorial representation of the state, giving an intuitive

view of how the state described formally in Figure 3.18a is laid out.

The state of the system comprises of the set of threads, global vector clocks for handling

SC fences, and mappings from memory locations to either the value stored in the location,

or the atomic information associated with the location, depending on whether the location

is atomic or not. The set of atomic and non-atomic locations are disjoint (LocA∩LocNA =

∅). ALocInfo holds the information for store buffering and race detection. Prog is a

program expressed using the syntax of Figure 3.17.

The initial state of the program will have empty mappings for atomic and non-atomic

locations, and the VCs for the SC fences will be ⊥V . There will just be a single thread

representing the program’s main function. Formally, let the main thread be denoted

M , the initial state will be Σ = ([M ], ∅, ∅,⊥V ,⊥V ). The initial state of M will have C
initialised to inct(⊥V ) and its three SC fence VCs initialised to ⊥V , t will be a random

identifier and P will be the entire program.
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The race detection machinery has been left out for clarity, but note that the race analysis

and store buffering both use the threads VC (C) and the VC for the atomic location (L).

3.5.3 Operational Semantics

Figures 3.19 to 3.20 show the state transitions for the operational model. These transitions

are defined for each atomic instruction in the simple language, and for a few internal

instructions that do not appear in source programs.

A system under evaluation is a triple of the form (Σ, ss, T ). The state of the system

is represented by Σ, as shown in Figure 3.18. The program being executed is ss, with

the ThrState of the thread running the program being T . A thread will only update its

own state when executing a program, so T will change as ss is executed. This will cause

the ThrState for the current thread in Σ to become stale, but will refresh upon a context

switch. Note that carrying T around is redundant, but simplifies the rules by not having

to repeatedly index into Σ.

Figure 3.19 gives the semantics for atomic statements. Each atomic function will call into

the appropriate sequentially consistent helper function of Figure 3.20, and the appropriate

buffer implementation functions. These SC helpers perform the updates described in the

SC fence section of §3.4.2, or nothing, if the memory ordering is not seq_cst. This

information is then used by the ReadsFromSet helper function shown in Figure 3.22 to

determine what stores can be read from. In particular, the thread local VCs $F , $W and

$R are checked against the epoch for each load element in the store element. The global

VCs SF and SW are used to convey SC information across threads. A simple way to view

this is that information is conveyed from fence to fence, from fence to load and from store

to fence.

Each atomic function will first call into the VC algorithm described in §3.3, as shown by

calls to functions of the form [X] that correspond with the inference rules in Figure 3.12.

The state used by the VC algorithm has a different representation that makes it easier

to compare with other VC algorithms, and is converted to this representation using the

interface in Figure 3.21.

The buffer implementation functions Store and Load carry out the store buffering and

load buffering. These are not directly used by the programmer; rather, they are used by the

other atomic functions to carry out shared functionality. The load implementation takes

a store buffer element to load from. If an RMW is being evaluated, then this element

is simply the last in the buffer. For atomic loads, an element is non-deterministically

chosen from a reads-from set, computed using the ReadsFromSet helper function shown
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Tid , Z Epoch , Z Val , Z

VC , Tid → Epoch

ThrState , (t : Tid)× (C : VC )×
(${F,W,R} : VC )× (P : Prog)

LoadElem , (t : Tid)× (c : Epoch)

StoreElem , (t : Tid)× (c : Epoch)× (v : Val)×
(sc : Bool)× (clock : VC )× (loads : LoadElem set)

StoreBuffer , StoreElem list

ALocInfo , (L : VC )× StoreBuffer

ALocs , LocA→ ALocInfo

NALocs , LocNA→ Val

State , ThrState set×ALocs ×NALocs × (S{F,W} : VC )

(a) Formal definition.

t : Tid
c : Epoch

LoadElem
StoreElem

t : Tid
c : Epoch
v : Val

sc : Bool
clock : VC

ALocInfo L : VC

t : Tid
C : VC
${F,W,R} : VC
P : Prog

ThrState LocNA Val

NALocs

LocA ALocInfo

ALocs

S{F,W} : V C

State

(b) Pictorial definition.

Figure 3.18: Operational State.
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in Figure 3.22, which formalises the consistent reads-from of §3.4.4. The ++ operator

represents list concatenation.

Each of the high level operations is followed by δ. This is the context switch operator,

whereby T and ss are switched out for one of the active threads in Σ. This shows that

atomic operations from multiple threads may be interleaved in a fine grained manner, but

two atomic operations may not update the state simultaneously.

To help with understanding the details of these rules, consider an example case, where

thread t performs an SC store to location x at epoch e. This is represented as Store(l, a,mo),

and matches with the [ATOMIC STORE] rule. The →store sub-rule updates Σ according

to the [SC ATOMIC STORE] rule, which updates the SC store VC with the current epoch,

Σ.SW (t) = e. The [RELEASE STORE] rule of Figure 3.3.3 is then performed. The Store

is then replaced by a Store followed by a context switch. This carries out the [ATOMIC

STORE IMPL], which simply creates a new store element and appends it to the back of

the store buffer for x. As this is an SC store, all of the store elements in the store buffer

that happen before this store have their sc flag set to true.

3.6 Characterising The Model Axiomatically

The instrumentation strategy shown in §3.4, and formalised by the operational model of

Section 3.5, is designed with consideration of the sorts of non-SC behaviours that would

be feasible to explore with an efficient dynamic analysis tool. However, the intricacy

of the operational rules makes it difficult to see, at a high level, which behaviours are

allowed versus forbidden by this operational model. To clarify this, the model can be

characterised as an axiomatic memory model, showing precisely the behaviours that the

operational model allows and how it relates to the C/C++11 memory model.

To compare the behaviours allowable by the operational model and the axiomatic model,

it is necessary to lift the traces given by the operational model to program executions.

This lifting procedure intuitively gives rise to an additional axiom to those of C++11.

Because this axiomatic model consists of the C++11 axioms plus an additional axiom, it

is strictly stronger than that of C++11. It can be shown that the executions given by

lifting the set of traces produced by the operational model exactly match the executions

captured by this more restrictive axiomatic model. The following diagram illustrates this:
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ATOMIC STATEMENTS:

[ATOMIC LOAD]

(Σ, T,mo)→load (Σ, T ′)
S ∈ ReadsFromSet(Σ.ALocs(a),mo, T ′) T ′′ = [LOAD](Σ, S,mo, T ′)

(Σ, l = Load(a,mo); ss, T )→ (Σ, l = Load(a,mo, S); δ; ss, T ′′)

[ATOMIC STORE]

(Σ, T,mo)→store (Σ′, T )
(A′, T ′) = [STORE](Σ′,Σ′.ALocs(a),mo, T ) Σ′′ = Σ′[ALocs := Σ′.ALocs[a := A′]]

(Σ, Store(l, a,mo); ss, T )→ (Σ′′, Store(l, a,mo); δ; ss, T ′)

[ATOMIC RMW]

(Σ, T,mo)→load (Σ, T ′) (Σ, T,mo)→store (Σ′, T ) l is fresh S = Σ.ALocs(a).SE .back
(A′, T ′′) = [RMW](Σ,Σ.ALocs(a),mo, T ′) Σ′′ = Σ′[ALocs := Σ′.ALocs[a := A′]]

(Σ, RMW(a,mo, F); ss, T )→ (Σ′′, l = Load(a,mo, S); l = F(l); Store(l, a,mo); δ; ss, T ′′)

[ATOMIC FENCE]

(Σ, T,mo)→fence (Σ′, T ′) T ′′ = [FENCE](mo, T ′)

(Σ, Fence(mo); ss, T )→ (Σ′, δ; ss, T ′′)

[ATOMIC LOAD IMPL]

ld.t = T.t ld.c = T.C(T.t) S′ = S[LD := S.LD ∪ {ld}]
Σ.ALocs(a).SE = L++[S]++R Σ′ = Σ[ALocs := Σ.ALocs[a := Σ.ALocs(a)[SE :=

L++[S′]++R]]] Σ′′ = Σ′[NALocs := Σ′.NALocs[l := S.v]]

(Σ, l = Load(a,mo, S); ss, T )→ (Σ′′, ss, T )

[ATOMIC STORE IMPL]

S.t = T.t S.c = T.C(T.t) S.v = Σ.NALocs(l) S.sc = (mo = seq_cst) S.clock = A.L
A = Σ.ALocs(a) A′ = A[SE := A.SE .pushback(S)] A′′ = A′[SE :=

map λX.X[sc := X.sc ∨ S.sc ∧X.c ≤ T.C(X.t)]A′.SE ] Σ′ = Σ[ALocs := Σ.ALocs[a := A′′]]

(Σ, Store(l, a,mo); ss, T )→ (Σ′, ss, T )

[CONTEXT SWITCH]

T ′ = T [T.P := ss]
Σ′ = Σ[ThrState := Σ.ThrState[T.t := T ′]] T ′′ ∈ Σ′.ThrState ss′ = T ′′.P

(Σ, δ; ss, T )→ (Σ′, ss′, T ′′)

Figure 3.19: Semantics for atomic statements.
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SC FENCE HELPERS:

[SC ATOMIC LOAD]

mo = seq_cst T ′ = T [$R := T.$R ∪ Σ.SF ]

(Σ, T,mo)→load (Σ, T ′)

[SC ATOMIC STORE]

mo = seq_cst Σ′ = Σ[SW := Σ.SW [T.t := T.C(T.t)]]

(Σ, T,mo)→store (Σ′, T )

[SC ATOMIC FENCE]

mo = seq_cst Σ′ = Σ[SF := Σ.SF [T.t := T.C(T.t)]]
T ′ = T [$F := T.$F ∪ Σ′.SF ] T ′′ = T ′[$W := T ′.$W ∪ Σ′.SW ]

(Σ, T,mo)→fence (Σ′, T ′′)

[NON-SC ATOMIC]
mo 6= seq_cst x ∈ {load , store, fence}

(Σ, T,mo)→x (Σ, T )

Figure 3.20: Semantics for sequentially consistent fence functions.
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Notation Let P denote a program written in the language of Figure 3.17. The set

of executions allowable for P according C++11’s axiomatic memory model is denoted

consistent(P ). The operational model takes program P and produces a set of traces,

denoted traces(P ). An individual trace is denoted σ, which is a finite sequence of state

transitions of the form s1 → s2 → ...→ sk. For a given trace σ, let lift(σ) denote the lifting

of σ to an axiomatic style execution. For a set of traces S, define lift(S) = {lift(σ) | σ ∈ S},
which is the application of lift to each trace in S. Therefore, lift(traces(P )) gives the set

of executions that can be obtained by running P on the operational model.
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Define: (A′, T ′) = [X](Σ, a,mo, T )

As: (C,L,V,Frel ,Facq)⇒Xmo(a,T.t)

(C′,L′,V′,Frel ′,Facq ′)

Where:

C = {(T.t, T.C)} L = {(a,Σ.ALocs(a).L)}
V = {(a,Σ.ALocs(a).V)}
Frel = {(T.t, T.Frel )} Facq = {(T.t, T.Facq)}

T ′ = T [C := C′,Frel := Frel ′,Facq := Facq ′]

A′ = Σ.ALocs(a)[L := L′,V := V′]
X ∈ {LOAD,STORE,RMW,FENCE}

Figure 3.21: Interface from operational model to VC algorithm of Figure 3.12. The
[LOAD] operation is slightly different, as a is a store element. For the
[FENCE] operation, the Σ and a parameters are omitted, and C, L and V
will be empty.

ReadsFromSet(A, mo, T ) {
if A.SE = ∅ then error

SS := {A.SE .back}
S := A.SE .back

FoundSC := S.sc

do {
if S.c ≤ T.C(S.t) then return SS

if ∃ld ∈ S.LD : ld.c ≤ T.C(ld.t) then return SS

if S.c ≤ T.$F (S.t) then return SS

if S.c ≤ T.$W (S.t) ∧ S.sc then return SS

if S.c ≤ T.$R(S.t) ∧mo = seq_cst then return SS

if S = A.SE .front then error

S := S.prev

if mo 6= seq_cst ∨ ¬S.sc ∨ ¬FoundSC then SS := SS ∪ {S}
FoundSC := FoundSC ∨ S.sc

}
}

Figure 3.22: Construction of the reads-from set

3.6.1 Lifting Traces

Before defining the new axiomatic model, it must be made clear how a trace is lifted to

an axiomatic program execution. The operational state is first extended with auxiliary

labels to track events. A label is defined as: Label , {a, b, c, . . . } ∪ {⊥}. Each load
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and store element will have a label representing the event id. Each ThrState will have

a last sequenced before (lsb) label, and the State a last sequentially consistent (lsc) label

that enables tracking of the sb and sc relations, as explained below. The ThrState will

additionally have a last additional synchronises with (lasw) label, that denotes the last

event a forking thread performed before creating the child thread, as lsb may have updated

before the new thread has begun. Including this information allows for the creation of an

execution by inspection of the trace and resulting state. This is presented in detail below.

To begin with, consider the four event types used in executions: R, W, RMW and F.

These correspond with the Load, Store, RMW and Fence instructions shown in Figure 3.17.

Reads and writes with non-atomic orderings correspond with Read and Write. The labels

inside the LoadElem and StoreElems created by the load and store instructions will match

the event ids of their corresponding events in the execution. The RMW instruction will

create both a LoadElem and a StoreElem, both of which will have the same label. Fences

do not create any state, but will be assigned an event and label upon inspection of the

trace.

An sb edge is created when a thread T performs an instruction and T.lsb 6= ⊥. The rf

edges can be created by inspection of the trace, by seeing which StoreElem a load reads

from. The mo can be easily seen from the order of the StoreElems in the store buffer. For

sc, an edge will be drawn from Σ.lsc to the next instruction with sequentially consistent

ordering, as long as Σ.lsc 6= ⊥.

The asw edges are created in a couple of ways: when a thread T performs a Fork,

creating thread T ′, T ′ stores T.lsb in T ′.lasw . When T ′ performs an instruction, T ′.lasw 6=
⊥ and T.lsb = ⊥, an asw edge is created. Alternatively, when thread T ′ has finished,

thread T created thread T ′ and performs a Join with T ′.tid , T ′.lsb 6= ⊥ and T performs

and instruction.

All other relations are derived from the events and these five relations, thus do not need

to be explicitly tracked with any auxiliary state or the lifting function.

3.6.2 Restricted Axiomatic Model

Now that it is clear how the operational model relates to executions, the behaviours that

the operational model exhibits can be easily reasoned about.

Notice that the direction of all the relations is in the order they are created:

s1 → s2 → ...→ sk
>

co, sb, asw , rf ,mo, sc

co represents the commitment order, it is the order in which events are added to an
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execution as a program is running [NMS16]. Assume that there is a partial trace, σi and

a corresponding partial execution, Ei. When σi is advanced to produce σi+1, possibly

adding event ei+1 to Ei to produce Ei+1, it can be seen from the lift function that there

can be no edges of the form (ei+1, ej≤i) in any of the relations, but there can be (ej≤i, ei+1),

hence all the relations must conform.

Let rConsistent(P ) be the set of executions allowable for P according to the new ax-

iomatic model. This is defined as follows:

rConsistent(P ) = consistent(P ) ∧

acyclic(sb ∪ asw ∪ rf ∪mo ∪ sc)

Acyclicity is due to all the relations conforming. For there to be a cycle, one of the edges

must go back in the commitment order. This extra axiom prohibits behaviours that require

a load to read from a store that has yet to be committed, such as load buffering.

3.6.3 Equivalence of Operational and Axiomatic Models

A sketch of the argument that the set of executions a program P can exhibit under the

restricted axiomatic model is equal to the set of executions gained by lifting the set of traces

that the operational model can produce for P is now provided. The formal statement of

this is:

∀P∀E(E ∈ rConsistent(P )↔ ∃σ ∈ traces(P ) . lift(σ) = E)

The forward case is shown by induction on the construction of an execution E, similar

to the reasoning given for the satisfaction of the consistent SC order in §3.4.3. Given a

partial execution graph Ei, that is composed of events ej for all 0 < j ≤ i, and trace σi

where lift(σi) = Ei, when Ei is extended to Ei+1 by adding event ei+1, the trace σi can

be extended to σi+1 such that lift(σi+1) = Ei+1. The backward case is similar, and shows

that by extending a partial trace for P that lifts to a partial execution of E, it will always

end up as either the same partial execution or a new partial execution.

As an example, consider a trace that is extended with an atomic store to location x. The

store buffer for x will have a store element appended to the back corresponding to this new

store. The partial execution that corresponds with the initial trace can now have a store

event for x added. By the inductive property that the lifted initial trace and the initial

partial execution are equivalent, the order of the store buffer for x and the modification

order for x match. An mo edge can be inserted between the last store event in mo for x

and the new store event. The lifted new trace and the new partial execution will therefore
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Figure 3.23: Visual representation of the proof of equivalence between program traces
and executions.

be equivalent.

The reverse case is also true, so long as the order in which events are added to the

partial execution follows the commitment order described in §3.6.3. Therefore, the events

of E must first be topologically sorted, which is always possible due to the union of the

events of E being acyclic.

A visual representation of this proof is shown in Figure 3.23. The partial execution Ei is

extended such that edges do not go from the new event back into an event in Ei; any new

edges involving the new event are incident on the new event. This is satisfiable because,

as mentioned before, the union of all of the events of E is acyclic. New statements are

added to the trace in program order, thus following sequenced-before. This is a must, as

going against sequenced before would result in a new event in the partial execution with

an sb edge going backward. Note that si+1 may contain more than one statement, as not

all statement create memory events.

3.7 Related Work

There is a large body of work on data race analysis, largely split into dynamic analy-

sis techniques (e.g. [SBN+97, PS03, PS07, EQT10, FF09, ISZ99]) and static approaches

(e.g. [EA03, PFH06, VJL07, Ora10, Ste93]). Unlike our approach, none of these works
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handles C/C++11 concurrency.

Several recent approaches enable exhaustive exploration and race analysis of small C11

programs. CDSChecker [ND13, ND16], which we study in §5.2.2, uses dynamic partial

order reduction [FG05] to reduce state explosion. Cppmem [BOS+11], and an extended

version of the Herd memory model simulator [AMT14, BDW16], explore litmus tests writ-

ten in restricted subsets of C11. Similarly, the Relacey tool supports thorough reasoning

about the behaviours of concurrency unit tests, accounting for C++11 memory model

semantics [Vyu16]. Our approach is different and complementary: we do not aim for full

coverage, but instead for efficient race analysis scaling to large applications.

Formulating an operational semantics for C/C++11 has been the subject of recent

work [KW15, PSN16, LGV16, NMS16, PS16, DV16]. A key work here presents an ex-

ecutable operational semantics for the memory model [NMS16], and we based our no-

tion of commitment order on this work. The main difference between our contribution

and that of [NMS16] is that the approach of [NMS16] provides complete coverage of the

memory model: the operational semantics is provably equivalent to the axiomatic model

of [BOS+11]. This is achieved by having the operational semantics track a prefix of a

consistent candidate execution throughout an execution trace. These prefixes can grow

very large and become expensive to manipulate, and it seems unlikely that the approach

would be feasible for instrumentation of large-scale applications such as the web browsers

that we study. In contrast, our semantics covers only a subset of the memory model, but

can be efficiently explored during scalable dynamic analysis.

A program transformation that simulates weak memory model behaviours is the basis of

a technique for applying program analyses that assume SC to programs that are expected

to exhibit relaxed behaviours [AKNT13]. Like our instrumentation, the method works

by introducing buffers on per memory location basis in a manner that allows non-SC

memory accesses to be simulated. The key distinction between this work and ours is that

we account for C++11 atomic operations with a range of memory orderings, whereas the

method of [AKNT13] only applies to racy programs without atomic operations, applying

a single consistency model to all memory accesses.

A limitation of our approach is that our instrumentation does not take account of

program transformations that might be applied due to compiler optimisations. The inter-

action between C/C++11 concurrency and compiler optimisations has been the subject

of several recent works [VBC+15, MPN13, CV16, PK16], as has the correctness of compi-

lation schemes from C11/C++11 to various architectures [BMO+12, vVZN+13, SMO+12,

BOS+11]. Future work could consider exploring the effects of program-level transforma-

tions during dynamic analysis.
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Randomising the reads-from relation during uncontrolled dynamic analysis has been

applied in other works [FF10a, CRSB16]. An alternative would be to explore this relation

systematically, similar to a recent approach for testing concurrent programs under the

TSO memory model [ZKW15], and a method for memory model-aware model checking of

concurrent Java programs [JYS12].

The KernelThreadSanitizer (ktsan) tool provides support for fence operations, which

are prevalent in the Linux kernel [Goo16], and source code comments indicate that an

older version of tsan provided some support for non-SC executions.1

3.8 Summary

With the introduction of a formal memory model and weak behaviours in C++11, a clear

gap has appeared with regards to dynamic analysis techniques. The work outlined in this

chapter introduces techniques that not only cover these issues, but will also scale to large

applications as required of dynamic analysis tools.

The traditional vector clock algorithm used for detecting data races has been fixed

in §3.3, such that it is aware of the C++11 definition of happens-before. Previously

undetected data races involving the misuse of relaxed atomics and RMWs will be detected.

Likewise, false positives that would occur due to fence operations will no longer occur.

The machinery for the exploration of weak behaviours covered in §3.4 allows for the

exploration of program executions that could not be found under sequential consistency,

which is typical of dynamic analysis tools. This machinery is not perfect however, as certain

types of behaviours are still not possible. Specifically, those involving load buffering. To

back up the accuracy of this machinery, an operational model, and its equivalence to the

axiomatic model provided by the C++11 standard is covered on §3.5 and §3.6.

An implementation of the techniques outlined in this chapter is discussed in §5.2, in

which the ThreadSanitizer tool has been extended.

1https://github.com/Ramki-Ravindran/data-race-test/commit/d71e69e976fe754e40cac13145ab31e593a2edd1
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4 Sparse Record and Replay with

Controlled Scheduling

Modern applications include many sources of nondeterminism, due to, for example, con-

currency, signals, and system calls that interact with the external environment. Finding

and reproducing bugs in the presence of this nondeterminism has been the subject of much

prior work in three main areas: (1) controlled concurrency-testing, where a custom sched-

uler replaces the OS scheduler to find subtle bugs; (2) record and replay, where sources of

nondeterminism are captured and logged so that a failing execution can be replayed for

debugging purposes; and (3) dynamic analysis for the detection of data races, as described

in §3.

Controlled concurrency testing has proven successful in finding subtle bugs in concur-

rent programs, by exploring a diverse set of schedules (see e.g. [God05, MQB+08, ND13,

YNPP12, TDB14]). However, such techniques are known to be limited by the assump-

tion that the thread scheduler is the only source of nondeterminism. For example, in an

empirical study of systematic scheduling algorithms, many benchmark programs, such as

Apache’s httpd, had to be excluded due to their reliance on external factors such as the

network [78].

In contrast, record and replay tools aim to capture the external factors that affect

the behaviour of a system as the system runs, so that an execution can be faithfully

replayed (see e.g. [47, 53, 57, 66]). The degree to which replay is faithful varies, but many

systems aim to be extremely thorough by monitoring, intercepting and facilitating replay of

virtually all sources of nondeterminism. Unlike controlled concurrency testing, these tools

typically leave threads to be scheduled by the regular OS scheduler, recording whatever

schedule results. This is fine if a bug happens to be triggered, but does not support

systematic or controlled-randomized exploration of thread schedules to find subtle bugs.

Faithful record and replay is also difficult from an engineering perspective, often requiring

surgical changes to the OS or underlying hardware, and demanding high resource usage

due to the many details that must be kept track of.

The aim of this work is to lift controlled concurrency testing so that it can be applied to
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larger and more realistic settings, by drawing on ideas from record and replay, sacrificing

faithfulness in order to keep overhead low. To do this, a sparse approach is taken: relevant

sources of nondeterminism affecting an application are assumed to come from (a) the

thread scheduler (including the handling of signals), and (b) input from the network,

peripherals such as keyboard and mouse, and well-understood system calls that can be

configured for particular applications of interest. This chapter presents a record and replay

mechanism that captures minimal information about these sources of nondeterminism that

suffices to enable efficient controlled concurrency testing for a range of applications. The

advantage of this is that execution is efficient and recording overhead is low. The price is

that the tool cannot handle systems whose behaviour is influenced significantly by other

sources of nondeterminism (e.g. memory layout) without programmer intervention. While

this work is distinct from the race detection work of §3, they can mutually benefit each

other: the control over the reads-from relation removes nondeterminism due to atomic

reads, and the controlled scheduling with record and replay helps to root out bugs and

deterministically replay them for the race detection to flag up.

The main research questions considered are: (1) Can an efficient and adaptive scheduler

be created, that maximises the expressiveness of the program while still allowing for par-

allelism? Expressiveness here means the ability for the program to explore any schedule

that the semantics of the underlying program permits. (2) Given a set of nondeterministic

aspects of a program, can a system be devised that efficiently stores these aspects during

program execution and then enforces these stored aspects, and only those that are stored,

on the program as a set of constraints during a later execution? (3) To what degree can

the stored constraints of (2) be minimised? This work takes a sparse approach to record

and replay, thus, is there a minimal set of behaviours that suffices to replay a wide set of

applications?

This chapter is structured as follows:

Background on controlled scheduling and record and replay §4.1 §4.2 These

first two sections give a short introduction on what is meant by controlled scheduling and

record and replay, along with why they are useful techniques to pursue.

Scheduler Protocol §4.3 This section outlines the scheduler, showing how it can be

easily adapted to new scheduling strategies, and how it maximises the expressiveness of

the underlying program. A description of the protocol through which threads interact

with the scheduler is provided.
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Sparse record and replay §4.4 Building on the scheduler detailed in §4.3, the record

and replay system is outlined. Unlike previous works on record and replay, the system

outlined here aims to record as little as possible, thus, an explanation of what needs to be

recorded, what must be ignored, and the trade-offs of recording some of the more indeci-

sive parts of the program is provided.

A detailed implementation and evaluation of the instrumentation described in this chapter

is provided in §5.3. The implementation is provided as an extension to ThreadSanitizer.

4.1 Controlled Scheduling

At the core of every modern operating system is a scheduler tasked with deciding the

order in which to run threads on available processors. This decision is usually based on

thread priorities and contention for resources, but there can be many additional factors

depending on the specific OS. The resulting choice of schedules is often very difficult to

make, and will have a large impact on performance; schedulers are thus very complex,

heuristically-driven components.

In the context of a program analyser, controlling the scheduling of threads, referred to

as controlled scheduling, allows for the exploration of interesting and unusual schedules.

Such schedules can reveal subtle bugs that the system scheduler would trigger with low

probability, and having control over which schedules are explored is important for replay

of bug-inducing schedules. This is typically handled by applying a scheduling strategy.

For example, a depth-first strategy would have a single thread run for as long as possible,

before switching to another thread.

Scheduling decisions are made at scheduling points, which correspond to visible oper-

ations: a visible operation is an operation performed by a thread that may influence the

behaviour of other threads.

As an example, consider the program fragment shown in Listing 4.1. A scheduler ap-

plying a depth-first strategy could produce the interleavings ABCDEF, CDEABF, or even

ABFCDEF, while a random strategy could produce CAFDEBF. According to the C11 memory

model explained in §3.1, all of these schedules can produce a data race, because if the load

of F reads from the store of E there will be no synchronisation between thread T1 and

thread T3. But for the machinery discussed throughout §3.3 to detect the race on nax ,

an ordering in which E is the most recent write to x before F is required. The number

of interleavings grows exponentially with the size of the program, therefore an exhaustive

search is not possible, and scheduling strategies must be used instead. Different strategies
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void T1() {

nax = 1;

x.store(1, std:: memory_order_release ); // A

y.store(1, std:: memory_order_release ); // B

}

void T2() {

if (y.load(std:: memory_order_relaxed) == 1 && // C

x.load(std:: memory_order_relaxed) == 0) // D

x.store(2, std:: memory_order_relaxed ); // E

}

void T3() {

if (x.load(std:: memory_order_acquire) > 0) // F

print(nax);

}

Figure 4.1: A racy C++11 program using atomic operations.

are effective at finding different sets of bugs [TDB14].

This work does not delve into the details of various scheduling strategies, instead,

scheduling is used to both facilitate record and replay, and demonstrate the variable nature

by which different strategies have on program overhead and bug finding ability. Usually

the interleaving of operations imposed by the default OS scheduler will be unpredictable,

and therefore introduce nondeterminism in the program. By enforcing a particular inter-

leaving on the program, that can be duplicated on separate executions, nondeterminism

caused by the OS scheduler will be removed.

4.2 Record and Replay

The ability to record and replay has many useful applications, notably allowing consist

reproduction of bugs in nondeterministic programs. In general, recording and replaying

involves identifying relevant sources of nondeterminism, and enforcing the same resolution

of this nondeterminism during replay as was observed while recording. The granularity at

which nondeterminism is controlled varies between approaches. To see how useful record

and replay is, consider the example program shown in Figure 4.2. The program receives

buffers from a server, processes them, and then sends them back. But what happens

if the connection fails or we get a “poll error”? Replaying an execution that shows an

error, without having to actually connect to a real server, allows us to reliably explore the

cause of the error. This is particularly useful for larger programs that utilise complicated

communication protocols, and have time consuming setups or hard to find bugs.

In general, a program can have many such sources of nondeterminism. Aside from the

thread interleaving and value of atomic reads, other sources include interaction with the

file system, system calls, certain libc functions (e.g. the conditions under which malloc
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void sig_handler () {

quit.store (1);

}

void Listener () {

while (!quit.load ()) {

int res = poll(&server_fds , 1, 100);

if (res == 0) continue;

CHECK(res > 0 && server_fds.revents == 1 && "poll error");

char *buf = new char [100];

recv(server_fd.fd, buf , 100, 0);

std:: unique_lock <std::mutex > lck (mtx);

requests.push(buf);

}

}

void Responder () {

while (!quit.load ()) {

std:: unique_lock <std::mutex > lck (mtx);

if (requests.size() == 0) continue;

char *buf = requests.front ();

requests.pop();

lck.unlock ();

Process(buf);

send(server_fd.fd, buf , 100, 0);

delete [] buf;

}

}

Figure 4.2: Generic client for processing and returning requests sent from some server.

can fail are not deterministic), instructions that query the state of the CPU (such as the

x86 RDTSC for reading the processor’s time-stamp counter), or in some cases even the

value of pointers (e.g. iterating through an ordered container of pointers)

The choice of what nondeterminism to record, and the method of recording and replay-

ing, is a substantial area of research. The current state-of-the-art tool is rr [OJF+16],

which achieves performance overheads as low as 1.5× native for some applications, as well

as low storage overheads. The recording strategy of rr is to record all sources of nonde-

terminism, including that of the filesystem, scheduler, system calls and memory layout.

The scheduling strategy of rr is priority-based first come first served, with each thread

given a time slice before yielding; execution is sequentialised so that only one thread runs

at a time. A thorough comparison between rr and the work presented in this chapter is

provided in §5.3, which details the implementation of this work in tsan.

The majority of the work that covers record and replay, attempts to do so by recording

as much of the nondeterminism of the program in question as possible. But this presents

a few problems. For example, the entire record and replay system can be thrown off if a

small and infrequent source of nondeterminism goes unnoticed, and the overheads involved

with such an extensive recording system can become a problem. The work presented here
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approaches the problem from the opposite end of the spectrum, by recording as little as

possible. This will be explained in detail later in §4.4.

4.3 Scheduling Protocol

One major source of nondeterminism within a multi-threaded program is the interleaving

of the operations in its threads. For a record and replay system to reliably replay an

execution for such a program, it must be able to control the interleaving of the operations

of its execution. A scheduler is therefore required, as a prerequisite to the record and

replay system. Having control over the scheduler can also be beneficial in other ways.

For example, a scheduling strategy can be enforced on the program to help root out

bugs [MQB+08].

The scheduler and the corresponding record and replay system will sit in user space.

This helps to ensure that the ensuing tool is easy to use, as modifications to the OS will

require some effort on the part of the user to set up. It will also allow it to be integrated

into the tsan tool outlined in §5.3, along with the race detection machinery outlined in

§3. This scheduler is not intrinsically tied to tsan however, and a separate standalone tool

could be created instead, but building on top of tsan helps with much of the code that

would otherwise have to be rewritten.

Enforcing an interleaving for every operation in a program will result in a significant

overhead. But not every operation must be ordered. A visible operation is one that can be

seen by another thread without the help of another operation [God05]. For example, an

atomic write to an atomic location can be read by another thread. An invisible operation,

such as a non-atomic write, cannot be seen by another thread, without some form of

inter-thread ordering—if it could, it would result in a data race. In this section, a visible

operation is extended to include any operation that can introduce nondeterminism into

the program, including I/O and certain system calls. This provides the first point: (1)

Only the visible operations need to be ordered, invisible operations may be left as is.

Given two visible operations in two different threads, these operations are said to be

independent if either ordering results in an identical execution. For a scheduler, this

means that the two operations do not need to be scheduled in any particular order, and

may run concurrently. Determining which sets of operations are independent and ignor-

ing all pairs of operations within said sets is known as dynamic partial order reduction

(DPOR) [ZKW15]. Determining sets of independent operations is non-trivial however,

and could even increase the time overhead associated with a scheduler. This work for-

goes DPOR for simplicity, providing the second point: (2) All visible operations will be
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sequentialised over a single abstract processor.

For a tool based around finding and explaining bugs, the ability for the scheduler to

exhibit bugs is of importance. While state space exploration is not the focus of this work,

the tool should be wary of unintentionally hiding bugs. To prevent this, the scheduler

should be capable of exploring, with non-zero probability, every possible interleaving of

the visible operations. This provides the third point: (3) A context switch must be possible

after every indivisible visible operation.

Rather than using an overarching scheduler thread, details of scheduling decisions are

stored in a designated piece of shared state. The threads interact indirectly via this shared

state using a protocol, to cooperatively determine when they should be scheduled. The

protocol has been designed so that new scheduling strategies can be easily added. This

section will focus on two strategies: random, which at each scheduling point chooses the

next thread to schedule at random, using a fixed seed thus provides controlled random

scheduling similar to that described in [TDB14]; and queue, which schedules threads in a

first-come-first-served manner.

4.3.1 Protocol Details

Rather than using an overarching scheduler thread, details of scheduling decisions are

stored in a designated piece of shared state. The threads interact indirectly via this

shared state using a protocol, to cooperatively determine when they should be scheduled.

This protocol has been designed so that new scheduling strategies can be easily added.

The scheduler acts as an instrumentation layer that is called into via a set of functions.

As with similar libraries, such as tsan, calls to these functions may be easily added to the

executable by the compiler on behalf of the user, removing the need for the user to modify

the program.

Scheduling is handled by two core ordering functions, Wait() and Tick():

Wait() – Block this thread until the scheduler activates it.

Tick() – Choose a thread to activate.

A thread enters Wait() right before it executes a visible operation. Depending on the

scheduling strategy used, the state of the scheduler may need to be updated when Wait

is called: the queue strategy requires the thread to enqueue itself; the random strategy

requires no action. If the thread already happens to be the next thread due for scheduling,

Wait() returns without blocking. A thread enters Tick() once it has completed a visible

operation. By executing Tick(), the thread applies the scheduling strategy (random or

queue) to choose the next thread to be scheduled and update the scheduler state to reflect
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Figure 4.3: Sequentialised critical sections and parallel invisible operations. Blue wavy
arrows represent scheduler-imposed ordering; black arrows represent program
order.

this. In the case of the queue strategy this involves incrementing the current queue posi-

tion; for the random strategy this involves choosing the next thread id at random. When

the thread returns from the Tick() function it is free to continue performing invisible op-

erations unhindered until it reaches the next visible operation, where it will enter Wait().

This allows for parallelism between threads, as sections of invisible code are unordered.

multiple invisible operations that can execute in parallel are illustrated in Figure 4.3.

The combination of a visible operation and associated scheduling-related code, wrapped

in a Wait() and Tick() pair, is called a critical section. The code inside a critical section

should be indivisible, or else split into multiple Wait() and Tick() pairs such that each

critical section is. By doing so, the scheduler can interleave visible operations in ways that

the program could do uninstrumented, maximising the expressiveness of the scheduler. As

an example, consider a mutex lock operation, where the mutex is already acquired. An

attempt to acquire the mutex will fail, and so will attempt to acquire the lock again at

a later point in time. Each acquire attempt can be considered its own critical section,

instead of the mutex lock operation as a whole. This example, and other such cases, are

described in more detail in §4.3.2.

4.3.2 Special Cases

The approach described in §4.3.1 of wrapping the visible operation in a critical section

works directly for most visible operations. We now discuss a number of operations that

require extra attention to detail, mainly because their semantics necessitate specific up-
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dates to the scheduler state, or because they cannot be represented as a simple critical

section.

Throughout this section, several functions will be introduced as part of the scheduler

instrumentation. Functions that begin with intercept_ will replace the intercepted func-

tions in the compiled program, such that these intercepted functions will be called instead

of the intercepted functions. For example, intercept_mutex_lock will replace all calls to

mutex_lock. These intercept functions exist for functions that require more work than a

simple scheduler function.

Thread management Thread creation, deletion and joining are all treated as visible

operations. This is because they must update the state of the scheduler, and as such will

affect the scheduling of threads going forward. To handle this, there will be three scheduler

functions: ThreadNew(tid), ThreadJoin(tid) and ThreadDelete().

The ThreadNew and ThreadJoin functions are added during the thread creation and

joining primitives. The ThreadNew(tid) function, called by the parent of the newly cre-

ated thread, will take the thread tid of the new thread and enable it within the scheduler,

allowing it to be scheduled. The ThreadJoin(tid) function will block itself until thread

tid has finished, and as such must instead disable itself in the scheduler, and also mark

itself as waiting on tid. Disabling itself within the scheduler is necessary as thread join

is a blocking operation, so if it is selected by the scheduler, it would cause deadlock. On

completion, a thread calls ThreadDelete, which involves (a) enabling the parent thread

within the scheduler if it is disabled waiting for this thread to finish, and (b) disabling

itself in the scheduler. All three operations are wrapped in a Wait() and Tick() pair.

Mutexes The mutex operations trylock, lock and unlock are all visible and require in-

strumentation. Trylock can simply be wrapped in a Wait() and Tick() pair as for regu-

lar visible operations. Unlock is similar to thread deletion in that it must also re-enable

threads that were blocked waiting on the mutex, although in this case only one of the

blocked threads needs to be re-enabled. The thread to be re-enabled can be chosen at

random.

Mutex lock poses an interesting issue in that a thread attempting to acquire a mutex

will block if the lock operation fails. To account for this, the mutex lock operation has

been intercepted to be as shown in Figure 4.4. This changes it to a trylock loop, where

each lock attempt is its own critical section. Note that this is the native trylock, there

is no instrumented version. The MutexLockFail(m) function is similar to ThreadJoin: a

thread calling this function disables itself in the scheduler and informs the scheduler that
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int intercept_mutex_lock(void *m) {

int res = EBUSY;

while (res == EBUSY) {

Wait ();

res = trylock(m); // native trylock

if (res == EBUSY) {

MutexLockFail(m);

}

Tick ();

}

return res;

}

Figure 4.4: Instrumented mutex lock. The real lock function is called inside a trylock

loop, where each lock attempt is a separate critical section.

it is waiting on m. The thread will then reenter Wait on line 4, but as it is disabled, it

will block until it is re-enabled and then scheduled to run. It will be re-enabled and then

scheduled later when some other thread calls MutexUnlock(m) on the same mutex. The

MutexUnlock(m) function is called when a thread releases a mutex, and will re-enable one

thread that is disabled due to waiting on m. The native version of mutex lock is never

called, because if a thread blocks while inside a scheduler critical section, the scheduler

will deadlock.

There is no Wait or Tick inside MutexLockFail(m) and MutexUnlock(m). Note that

it is possible for another thread to acquire the mutex between a thread being re-enabled

and it attempting the trylock. This is OK: a thread being pre-empted in such a way is

possible in an uninstrumented program, and so the thread will simply block itself again.

Condition variables Condition variables allow control over when certain threads will

wake up and try to acquire a mutex. When a thread initially acquires a mutex, it may

check a condition required for it to proceed, and if it fails, release the mutex and block itself

via the condition variable associated with the failed condition. This thread will only wake

up and try to reacquire the mutex when another thread notifies it via the same condition

variable. Checking the conditional is performed by the conditional wait function; waking

up one or all of the waiting threads is performed by the signal and broadcast functions

respectively.

The conditional wait accepts a timer, determining the length of time after which the

thread unblocks itself. This timer represents a physical time. This is in contrast to the

scheduler’s ticker, which represents a logical time. This difference between physical and

logical timing means that from the perspective of the scheduler, the conditional’s wakeup

timer is nondeterministic. Semantically speaking, a thread can wake up from the timer,

and acquire the conditional’s mutex before another thread can, even if the timer is very
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void intercept_cond_wait(void *m, bool timed) {

Wait ();

CondWait(m, timed);

mutex_unlock ();

MutexUnlock(m);

Tick ();

intercept_mutex_lock ();

}

Figure 4.5: Instrumented conditional wait. When the thread has released the mutex
and entered the intercepted mutex lock function, it will block waiting to be
signalled and reacquire the lock.

long. This is handled by not disabling the thread if it calls a conditional wait with a timer.

Despite not being disabled when timed, a thread can still eat a conditional signal, and so

should still mark itself as waiting on the conditional in the scheduler.

For the three conditional functions, there are three corresponding scheduler functions

CondWait(m, t), CondSignal(m) and CondBroadcast(m). CondSignal(m) and Cond-

Broadcast(m) simply wake up one thread and all threads waiting on m respectively, and

are both simply called from inside of a Wait() and Tick() pair.

Conditional wait is a little more involved, and details are shown in Figure 4.5. Between

the Wait and the Tick, a thread informs the scheduler that it is performing a conditional

wait via CondWait. This informs the scheduler that the thread is either blocked waiting

for a signal, or performing a timed conditional wait, so that while not blocked it can

nevertheless eat a signal. The thread then releases the mutex, informing the scheduler via

the MutexUnlock scheduler function described earlier that this has been done. Finally,

the thread enters the intercepted version of mutex_lock, described above. Because this

starts with a Wait, in the case of an untimed conditional wait, the thread will block until

it is re-enabled by a conditional signal or broadcast. By using distinct critical sections to

separate a thread marking itself as being blocked on a signal, and attempting to reacquire

the mutex, it allows for the possibility for another thread to be scheduled in between,

possibly acquiring the mutex.

Once a thread has reacquired the mutex, it will typically recheck the condition it was

originally waiting on. If it is not satisfied, it will call cond_wait again. This is where

the risk of deadlock comes in: if it was the only thread signalled and it re-enters inter-

cept_cond_wait, it will not signal other threads first, and all threads that are blocked by

the conditional will remain blocked. Preserving any potential deadlocks in the underlying

program is useful, and so the scheduler does not limit this from happening; it is also careful

not to introduce new deadlocks.
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Signals A brief description of signals and signal handlers is provided. It should be noted

that these are distinct from the signals associated with the conditional wait operations

described above. Only asynchronous signals need to be considered, as these can be received

by processes at any time, and thus contribute an additional source of nondeterminism.

This is distinct from synchronous signals, e.g. SIGSEGV, which are raised by the thread

as and when certain operations are performed. Unlike in the case of e.g. a memory load

operation, which has a designated program point that can be intercepted to facilitate

interaction with the scheduler, a signal can arrive at any time. The standard also specifies

a signal function, that binds a handler function to a specific signal.

There are several implementation-defined aspects to signals, such as whether a signal

handler is re-entrant or if a certain signal is ignored by default. Depending on how a

tool handles these may result in introducing new behaviours or restricting some. The

implementation of this work, as detailed in §5.3, piggybacks off of tsan’s implementation.

Scheduling with signals is handled by simply marking the entrance to the signal handler,

and the aforementioned signal function, as visible operations. From a scheduling per-

spective, besides the arrival of a signal, signals are not a problem. Recording and replaying

signals is where things become difficult, which is discussed in §4.4.3.

4.3.3 Liveness

While the scheduler strives to ensure that all possible program behaviours can be explored

in principle, in practice, depending on the strategy, this can lead to massive slowdowns

in particular cases. For example, suppose a thread is scheduled and undertakes a vast

number of invisible operations, or calls a sleep function for some duration, before finally

issuing a visible operation. If all other threads end up blocked waiting to perform visible

operations and the scheduler doesn’t give them a chance to run, the performance of the

program may be drastically impacted. This can become particularly problematic when

dealing with programs that rely on responsiveness, such as real-time applications.

To cope with this, the scheduler will sacrifice expressiveness slightly by allowing it to

force a reschedule in such cases. By expressiveness, this means the scheduler’s ability to

explore any possible schedule. By forcing a reschedule after n milliseconds, the probability

of exploring a schedule whereby a thread performs two visible operations consecutively

separated by more than n milliseconds is greatly reduced. To achieve this, a background

thread must be introduced that can periodically query the state of the scheduler by calling

Reschedule() every n milliseconds, for some given n.

To see the impact this may have on the expressiveness of a program, consider the
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std::atomic <int > gate (0);

int nax = 0;

void T1() {

nax = 1;

std:: this_thread :: sleep_for(std:: chrono :: milliseconds (10000));

gate = 1;

}

void T2() {

gate = 2;

}

void T3() {

int gate;

while ((gate = ::gate) == 0) ;

if (gate == 1) {

print nax;

}

}

Figure 4.6: Printing nax is semantically possible, and therefore the program contains a
data race. But by preserving the liveness of the program, the racy execution
will be very unlikely to occur.

program fragment shown in Figure 4.6. It is semantically possible for thread T1 to finish

the sleep, set gate to 1, and have thread T3 read 1 before threads T2 and T3 finish. By

forcibly rescheduling away from thread T1 while it is in the sleep, this behaviour is unlikely

to occur, and the data race on nax will go unnoticed.

In §4.3.2, it is mentioned that the physical timer for conditional variables is nondeter-

ministic according to the scheduler’s logical time. The Reschedule() function relies on

physical time also, and thus introduces nondeterminism into the scheduler.

4.4 Sparse Record and Replay

Record and replay is very broad concept, and can be implemented in a variety of ways.

Several key questions arise, for example: what does it mean to “record” an execution and

then “replay” its execution later? Ho do you formalise a recording? What makes replaying

an execution valid? What should be recorded and what should not be recorded?

When a program executes, most of the instructions will be carried out in a predictable

manner. However, certain visible operations will lead to nondeterminism. Recording an

execution therefore means capturing information about these visible operations in a form

that can be used to reproduce relevant aspects of the execution during replay. This cap-

tured information is called the demo file, or demo for short. An execution that is replaying

a demo is a replay, and the replay is synchronised, unless something has gone wrong with

the replay such that the execution has diverged, in which case it is desynchronised.

This leaves the question of what it means for an execution to desynchronise? A demo is
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defined as a series of constraints arising from the recorded execution, which the replay is

required to satisfy. The tool will enforce these constraints on the program during replay,

and as long as it can, the replay is deemed to be synchronised. If at any point the tool is

unable to enforce a constraint on the program, then the replay has hard desynchronised,

in which case the tool will abort. An example of this could be that a certain thread is

expected to run, but is disabled. In some cases, the replay may abide by the constraints,

but appear to diverge from the recorded execution, for example, by producing console

output in a different order. This is instead called soft desynchronisation. To illustrate

an extreme case of this, the empty demo is trivially synchronised for any replay, as there

are no constraints that need satisfying, but will lead to soft desynchronisation practically

everywhere unless the system under test is highly deterministic.

The record and replay mechanism is built into the scheduler discussed in §4.3. In cases

where a nondeterministic choice needs to be made that is unrelated to the scheduling of

threads, a PRNG is used, seeded by two calls to rdtsc(). Given the same two seeds, the

sequence of numbers produced by the PRNG will be the same, thus, the seeds will stored

in the demo and used in place of rdtsc() upon replay.

It is desirable for a tool to be as easy to use as possible, and for the most part, the

instrumentation outlined here is easy to use by avoiding the need for user annotation.

However, there are some cases where they are either unavoidable, or it is not currently

known how to avoid their use; this is shown in §5.3.6.

4.4.1 Motivating Example

To help lay out the reasoning and technical explanation given in the rest of this section,

an example program is provided. The program fragment in Listing 4.2 shows a simple

client that repeatedly receives char buffers from a server, applies a transformation to the

buffers, then sends the buffers back. There are several behaviours present in this program

that can affect how the rest of the program behaves, but which of those that needs to be

recorded and which do not depends on the properties of the program that needs to be

preserved during replay. A pragmatic approach is taken and discussed below.

What to record The obvious case here is the interleaving of threads. This will ensure

that the order of operations to the atomic locations quit and mtx, and the order of the

syscalls used throughout will be the same during replay. Other operations are invisible,

and thus will not affect other threads or introduce nondeterminism.

System calls that interact with the environment can be seen as inputs to the program,
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which in this case determines how many requests to handle and the contents of each

request. For example, poll informs the program on whether there is data to be read from

the server, and thus needs to be recorded, as do the system calls recv and send.

The signal handler in this example is used to trigger the end of the program. The arrival

of the signal is asynchronous, and comes from outside the program. During replay the

tool will need to ensure that the same signal arrives at the same point in logical time.

What to ignore The first, and likely most contentious element, is the layout of memory.

This will of course depend on the program in question, but in this example, and for many

programs in practice, the position of objects in memory will have no effect on the rest

of the program. If the request queue was instead an ordered set of char pointers, then

it would matter, as the pointer values would determine the order in which the requests

are iterated through. This is particularly important for programs such as SQLite and

SpiderMonkey, covered in §5.3.7

The control flow of the program is very much a defining factor of a program execution,

however, said control flow is usually a consequence of other elements, which in this example

will be the result of poll and the atomic operations.

4.4.2 Interleaving

As explained in §4.4.1, the ordering of visible operations must be preserved during replay.

There is no generic way of storing this information however, as each scheduling strategy

will require different demo data. To help illustrate this, a description of how the random

and queue strategies store their orderings is provided.

To recap the strategies described in §4.3: the random scheduler chooses which thread to

allow to run the next visible operation randomly after each visible operation has completed;

the queue scheduler is first come first serve for whichever threads attempt to perform a

visible operation.

For the random strategy, the entire thread interleaving is encapsulated in the PRNG.

Therefore, no information besides the two seeds used for the PRNG is required.

For the queue strategy, the ordering during record will depend on the order in which

threads happen to reach Wait(). The ordering of threads will therefore depend on physical

timing. Because relying on physical timings is not feasible, the ordering will be converted

into a logical form, and stored in a file called QUEUE. This file records (a) a map specifying,

for each thread id, the first tick at which the thread should be scheduled, and (b) an ordered

list of ticks to be consumed by threads each time they leave a critical section; the tick
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that a thread consumes on leaving a critical section informs the thread as to the next tick

at which it is to be scheduled. Run-length encoding is used to efficiently record the case

where a thread is scheduled multiple times in succession.

There is clearly a tradeoff between these strategies. Where the random strategy stores

no data, the queue strategy may need to store data on every visible operation. The queue

strategy will be much faster however, as a thread is unlikely to be blocked in Wait() unless

another thread is already critical.

4.4.3 Signals

Signals were mentioned briefly in §4.3.2, but deferred discussion to this section as most

of the difficulties with signals are in attempting to replay them. Synchronous signals

are ignored (e.g. SIGSEGV, SIGPIPE) as these should reoccur at the same point in the

execution without the help of a tool. To clarify, it is entering the signal handler that is

the visible operation. When inside the signal handler, the thread cannot interact with

the rest of the process except through atomic operations, which are themselves visible

operations. From this, it is clear that it does not matter at which point between a Tick()

and following Wait() that the signal handler is entered.

Any asynchronous signal that arrived during recording will become a synchronous signal

upon replay. When a thread receives a signal, it will record the value of the tick seen

during the most recent call of Tick(), along with the signal value in a file called SIGNAL.

For example, consider the case where the Responder thread in Fig. 4.2, T2, has just

performed the atomic load on tick 5, but has not yet attempted to acquire the lock. The

thread receives the signal and performs a Wait() and Tick() so that it can enter the

signal handler. The SIGNAL file will therefore have the line “2 5 15”, indicating that

thread T2 receives signal 15 at tick 5. During replay, when the Responder thread calls

Tick() during tick 5, it will raise signal 15 itself at the end of Tick(). It does not matter

at which precise point between Tick() and the following Wait() that the signal arrived

at during recording, it will float to the end of the most recent Tick() for that thread as

shown in Fig.4.7. Signal handling will be disabled inside of Tick(), but the thread will

attempt to enter the signal handler as soon as it returns from Tick().

4.4.4 System Calls

As shown in §4.3.2, system calls are a significant source on nondeterminism in an applica-

tion. To ensure that the relevant properties of an application are preserved during replay,

the results of relevant system calls must be recorded. This is a fundamental challenge that
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Figure 4.7: Signals are replayed immediately after the preceding tick.

any record-and-replay system must face, and state-of-the-art tools such as rr [OJF+17]

aim to be as comprehensive as possible in the system calls they support, so that they can

be applied directly to a wide range of applications. In contrast, the idea behind the sparse

approach presented here is to identify a minimal subset of system calls such that recording

these system calls suffices to enable faithful replay of particular applications of interest.

The high level approach to system call support is to incrementally add support for

system calls based on a trial-and-error process. For example, one can first run the program

using strace to understand the full set of system calls issued by an application, and then

repeatedly attempt to record and replay the application. Determining which additional

system calls to support is decided through analysis of the sources of replay failures. The

system calls discussed here were identified via this trial-and-error investigative process

using the tsan11rec tool and case studies described in §5.3. This process did require quite

some manual effort, and would need to be iterated further to handle applications with

significantly different system call requirements than those used to develop the current

iteration of the tool.

The term “system call” is a bit of a misnomer, as the instrumentation detailed in this

chapter and tools such as tsan will instead intercept the glibc wrappers around the system

calls, instead of the system call directly. These glibc functions are much easier to use on

behalf of the programmer, as they will take care of system specific details, pushing the

arguments onto the stack and interpreting the results returned by the kernel. The term

“system call” is still used throughout, as it is in the underlying system call where the

nondeterministic behaviours occur.

How the system call is executed is beyond the control of the scheduler—while the system

call is executed in kernel space, the scheduler sits in user space. Instead, the scheduler

must manipulate the information that is passed to and from the system call.

Each syscall takes a variable number of user allocated buffers, the contents of which will

be mutated by the system call, before setting errno and returning some value. The errno

80



location is provided by the environment and will be set by the system call to indicate

any problems that occurred during execution. During recording, the return value, errno

value, and the contents of any appropriate buffers will be compressed and stored in a file

called SYSCALL. During replay, the actual data returned will be overwritten by the data

in SYSCALL. Only the interaction with the SYSCALL file is part of the critical section,

which reduces contention inside the scheduler.

As an example, consider the Listener thread in Figure 4.2 performing the poll()

and recv syscalls in succession. The return value, error number and two elements in

the server_fds structure must be stored for poll; the return value, error number and

contents of the buffer must be stored for recv. Each of these elements will be treated as

character buffers and have a simple run length encoding applied.

One of the difficulties that arises from adding a system call is the knock-on effect it can

have with respect to other syscalls. Consider, for example, the system calls that interact

with the filesystem, create, open, read, etc. If you intercept open, on the assumption that

you may not have a valid file descriptor (fd) during replay where you did during record,

you will then have to intercept every syscall that works with that fd. What starts out

as a single interception becomes potentially hundreds of intercepted system calls. There

is a delicate balance to be struck between those system calls that need to be recorded to

make important execution features deterministic during replay, against those system calls

that are better left un-recorded because (a) determinism of replay does not depend on

them being recorded, and (b) recording them leads to a snowball effect where many other

system calls must also be recorded to avoid desynchronisation.

As mentioned earlier, system call support is determined through a trial and error inves-

tigative approach. Based on this, the current set of system calls supported includes read,

write, recvmsg, recv, sendmsg, accept, accept4, clock_gettime, ioctl, select and

bind. These have allowed a significant set of applications to be successfully recorded and

replayed (modulo a few workarounds detailed in §5.3.6). The applications supported will

typically issue many additional system calls that have shown to be unnecessary to record,

in the sense that simply re-issuing the system call during replay has no observable effect on

the application’s behaviour. Sometimes whether a call must be recorded depends on the

fds that the call receives. For instance, for all of the applications covered, it never proves

necessary to record read and write calls whose fds correspond to files in the file system,

but it is necessary to record these calls if the associated fds are associated with pipes used

for interprocess communication. Rather than this set of system calls being a starting point

towards full system call coverage, the idea is that efficient record and replay that preserves

parallelism can benefit from selective system call recording, based on application-specific
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void Scheduler :: SyscallBind(int *ret , int fd, void *addr , uptr addrlen) {

if (! SyscallIsInputFd(addr , addr_len )) {

input_fd_[sockfd] = false;

return;

}

input_fd_[fd] = true;

int replay_fd = fd;

int errno_ = *__errno_location ();

void *params [2] = {ret , &replay_fd , &errno_ };

uptr param_size [2] = {sizeof(int), sizeof(int), sizeof(int)};

Wait ();

DemoPlaySyscallNext("bind", 2, params , param_size );

fd_map_[replay_fd] = fd;

DemoRecordSyscallNext("bind", 2, params , param_size );

*__errno_location () = errno_;

Tick ();

}

Figure 4.8: Record and replay setup for bind.

knowledge, and that a tool supporting a core set of essential system calls is configurable

with support for further system calls to suit particular record and replay scenarios. For

example, to handle a program such as htop would require instrumentation of the interac-

tion with the /proc filesystem, but doing this in the general case would be wasteful, and

maybe even harmful if future calls depended on this interaction.

Many of the system calls are simple to record and replay, requiring just the user buffers

and nothing more. Some of them can become substantially more complicated, in partic-

ular, those that handle multiple fds. Because fds are assigned by the kernel, their values

are unpredictable, and so any behaviour that depends on multiple fds may also be unpre-

dictable. A detailed implementation and explanation of some of these has been provided.

Some parts of the implementation have been simplified or omitted for clarity. In each

example, the scheduler instrumentation function is called after the actual system call has

already been executed.

bind (Figure 4.8) The bind() system call is used to set up a socket fd to listen for

incoming request via some name. This is useful for servers that needs to listen for incoming

connections, such as web servers.

The address being bound is first checked to see if it is an input address, and therefore is

the associated fd is an input fd. For system call that handle fds, only those that act upon

input fds need to be recorded, as indicated by input_fd_. Because the value of the fds

will be different during record and replay, a mapping from recorded values to the current

values is maintained in fd_map_.
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// Identify input fds and add poll buffers to be recorded.

__sanitizer_pollfd *poll_fds = (__sanitizer_pollfd *)fds;

uptr icount = 0;

void *params [64] = {ret};

uptr param_size [64] = {sizeof(int)};

for (uptr p = 0; p < nfds; ++p) {

if (! input_fd_[poll_fds[p].fd]) {

continue;

}

params [2 * icount + 1] = &poll_fds[p]. events;

param_size [2 * icount + 1] = sizeof(poll_fds[p]. events );

params [2 * icount + 2] = &poll_fds[p]. revents;

param_size [2 * icount + 2] = sizeof(poll_fds[p]. revents );

++ icount;

}

// Attach error number to end of buffers. Quit if there were no input fds.

int errno_ = *__errno_location ();

params [2 * icount + 1] = &errno_;

param_size [2 * icount + 1] = sizeof(int);

if (icount == 0) {

*__errno_location () = errno_;

return;

}

// Critical section.

Wait ();

DemoPlaySyscallNext("poll", 2 * icount + 2, params , param_size );

DemoRecordSyscallNext("poll", 2 * icount + 2, params , param_size );

*__errno_location () = errno_;

Tick ();

Figure 4.9: Record and replay setup for poll.

poll (Figure 4.9) For a program with multiple fds that represent a variety of different

connections, the ability to check each of them for pending information is crucial. With

poll(), a program can check as many fds as necessary, and even block waiting for any of

them to receive data. Each fd will have an associated pollfd struct, which is used by the

kernel to indicate to the program the status of the fd. Within each pollfd struct, only

a couple of fields are used. These are extracted for recording, so long as the associated

fd is an input fd. There are some problems however, for example, what happens if there

is a mix of input and non-input fds? If the function was blocking waiting on a non-input

fd, should the function return immediately during replay? A general solution to many of

these system calls is not trivial, and one solution may not be acceptable in the general

case.

4.4.5 Asynchronous Events

Asynchronous events are specific events that do not fit in with any of the other categories

discussed. An important characteristic is that they are not wrapped in a Wait() and

Tick(), either because it was infeasible to do so during recording, or because it would
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Figure 4.10: Right diagram shows how reschedules on the left are floated above the
preceding Tick().

create a lot of unnecessary overhead. These events still need to be replayed to ensure the

replay remains synchronised. Currently there are two types of asynchronous events: the

Reschedule event and the Signal_wakeup event.

The reschedule event was discussed in §4.3.3. It is necessary to include this to ensure

that the PRNG will be called the same number of times in each critical section. To see

why the signal wakeup event is necessary, consider again a signal being received in the

context of the example of Figure 4.2. This time, suppose the Responder thread receives

the signal while it is disabled trying to acquire the lock. Assume that the thread disabled

itself on tick 10, the signal arrives and the thread re-enables itself during tick 12, and then

enters the signal handler on tick 14. It is not OK for the thread to simply not disable

itself on tick 10 during replay, as the pool of enabled threads for the scheduler to choose

from during ticks 10 and 11 is different between recording and replaying, which will affect

the choice the scheduler will make.

As with signals, all asynchronous events are replayed synchronously, with all events that

occur between a Tick() and the following Wait() floating up to the previous Tick(). This

is shown in Fig. 4.10. These events are stored in the ASYNC file.

4.5 Related Work

Controlled Scheduling A large amount of work has gone into the use of scheduling

strategies as a form of state space exploration (e.g. [MQB+08, YNPP12, FF10b, MQ07,

TDB14, FF10a]) and on techniques aimed at reducing the size of the state space, such

as dynamic partial-order reduction [FG05, ZKW15]). A particularly notable controlled

scheduling tool, in terms of successful practical application, is Microsoft’s CHESS [MQB+08],

which aims to systematically explore all interleavings of a test scenario. Similar to our

approach, each visible instruction has an associated custom wrapper that intercepts the

84



real instruction, calling into the CHESS scheduler. Interception is dynamic: the program

in test does not need to be modified to call the wrapper functions. The test scenario

is wrapped in a callback and given to the runtime library, allowing it to repeatedly run

the scenario and record information on the paths it takes. While CHESS is able to work

directly on binaries, circumventing many of the issues with setup that many tools face, it

is currently limited to unit tests.

Schedule bounding techniques, notably preemption- and delay-bounding [EQR11, MQ07],

have been shown to be successful in prioritising the order in which thread schedules are

explored during controlled concurrency testing. They prioritise exploring schedules that

exhibit small numbers of preemptions between threads, in line with empirical evidence

that bugs rarely require large numbers of preemptions in order to manifest [LPSZ08].

Combining such techniques with the tsan11rec algorithm is an appealing idea in principle,

but is hindered by the assumption that the program under test takes a fixed input and

that the scheduler is the only source of nondeterminism. This assumption allows running

the program again and again trying different schedules. In the context of tsan11rec, which

can be used to record and replay applications where the environment presents other forms

of nondeterminism, the manner in which the program interacts with its environment is

captured with respect to a particular thread schedule, and other thread schedules might in-

volve completely different environmental interactions. A more reasonable approach would

be to bring ideas from the probabilistic concurrency testing (PCT) algorithm [BKMN10]

to the tsan11rec setting, to introduce a degree of skewing to the random strategy so that

it explores more diverse schedules.

Record and Replay Record and replay has been a significant area of research, with

many tools being created to facilitate it [DCD+14, MGT+17, HZD13, VLW+11, HCH17,

LSW+18, HLZ10, LZTZ15, AS09, LWV+10, DKC+02, OJF+17, LVN10, TLH+07, BHCG10,

Sai05, GASS06, GWT+08, MGT+17, OJF+16, HT14, PPS+10]. The general premise be-

hind them is similar: identify order nondeterminism and input nondeterminism, and create

techniques to capture them while recording and control them during replay.

Various tools extend the OS in some way or require specific hardware [DCD+14, VLW+11,

AS09, LWV+10, DKC+02, LVN10, TLH+07, BHCG10, BG91, DLCO09]. This has the

benefit of giving the tool access to much more of the system, such as memory pages and

process information. For example, Scribe [LVN10] will directly modify the system sched-

uler, instead of coercing it, and achieves slowdowns as low as 1.05×. However, this severely

hits the usability of the tool, as it requires the user to deploy a modified OS.

Other tools reside entirely in user space [MGT+17, HZD13, HCH17, LSW+18, HLZ10,
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LZTZ15, OJF+17, Cha99, Sai05, GASS06, PPS+10, BCdJ+06, Und18, Got, LCFN12,

WPP+14, LKZ14]. This is the category that tsan11rec falls into, trading performance

for usability. Ease of use is particularly important in persuading users to adopt the tool,

rr [OJF+17] in particular allows the user to record a program by simply passing the binary

to rr as a parameter, and as such has become the definitive tool for record and replay. We

have performed an extensive comparison with rr in §5.3, and note that while rr outclasses

tsan11rec in some applications, and can handle applications that are out of scope for

tsan11rec (see §5.3.7), rr shows significantly higher overhead compared with tsan11rec for

a number of applications that rely on a high degree of parallelism for performance. Further,

the sparse approach, with suitable workarounds, enables record and replay for graphical

applications, for example, the SDL-based games of §5.3.6, that rr cannot currently handle.

Because it builds on tsan11, which itself uses compiler instrumentation and a modi-

fied libcxx, tsan11rec shares similarities with tools that depend on language implemen-

tation or library-level support [ACN+01, Mic18, Dev18, BBKE13, GWT+08, BBKE13].

Notable examples here include R2 [GWT+08], which requires manual annotation, and

IntelliTrace [Mic18], which is built into the developer environment.

Whole system replay aims to record all system nondeterminism [DCD+14, DKC+02,

LSW+18, DGHH+15, SJ12, EAW10, DLFC08, BJH+16]. Among these, the recent iRe-

player tool [LSW+18] performs record and replay in-situ, avoiding many of the problems

(e.g. memory layout issues) that otherwise come from running the record and replay exe-

cutions under different processes.

Some tools focus on the order-nondeterminism, allowing them to retain their parallelism

and thus reducing the overhead of multi-threaded application [DLFC08, XBH03, NPC05,

HH08, MCT08, PDP+13]. Castor [MGT+17] will provide each thread with its own buffer

for storing information, and serialize them at a later time. tsan11rec also fits into this

category, as it both preserves parallelism of invisible operations and applies a scheduling

strategy to resolve this nondeterminism.

An alternative to recording a program’s nondeterminism is to remove it, making some or

all aspects of the program deterministic [BAD+10, AWHF10, LCB11, CWG+11, CSL+13,

DNB+11]. For example, Dthreads [LCB11] ensures that memory accesses are deterministic

on each execution. Such approaches can have a significant probe problem by removing the

behaviour necessary for certain bugs to manifest, in return for avoiding the performance

overhead associated with handling order-nondeterminism.

Multi-version (or multi-variant) execution (MVE) is a method for concurrently running

multiple processes that are expected to behave in a semantically similar manner [HC15,

KBG16, PAC18, VCS+17, VCV+16]. MVE can be used to detect security vulnerabilities
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in applications: if a variant diverges, this could indicate that an attacker has modified

the process in some way [KBG16, VCS+17, VCV+16]. It can also be used for running

different analyses on identical processes, that would not work when run together on the

same process, such as the clang sanitizers [PAC18]. Most MVE systems hinge on a special

monitor thread that controls the generation an maintenance of a number of variants.

Keeping the variants in sync with respect to nondeterministic behaviours presents many

of the same problems that are associated with record and replay.

4.6 Summary

From the work shown in chapter 3, two issues became apparent: that the detection of

data races was at the mercy of the system scheduler, and that without diagnostics, the

root cause of the data races is difficult to pinpoint. The work shown in this chapter aims

to remedy these issues.

A method of scheduling has been created with the following strengths: (1) Parallelism

is preserved for sections of code that cannot interfere with other threads. (2) Different

scheduling strategies can be easily implemented. (3) The expressiveness of the program

under test is not diminished. As previous work has shown that different strategies can help

find different kinds of bugs [TDB14], the introduction of an easily modifiable scheduler

lays the groundwork for a dynamic analysis tool that can find a wide variety of bugs.

A record and replay system has been introduced that builds upon the scheduler. The

system focusses on sparseness, that is, recording as little as possible. This has the benefits

of keeping overheads low, and reducing the knock-on effect whereby recording one element

forces you to record even more elements that depend on the previous element.

An implementation of the techniques outlined in this chapter is discussed in chapter 5.3,

in which the ThreadSanitizer tool has been extended.
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5 Extending ThreadSanitizer

The works shown in chapters 3 and 4 have been described largely independently of any

implementation. This has kept them neutral with regards to any particular tool. The

upside is that each technique has been explained without the baggage that a tool would

typically bring. It also allows them to be more easily reasoned about and potentially

built upon than if they had been described with respect to a particular implementation.

Nevertheless, an implementation of some sort is crucial to see how well these techniques

perform in practice.

The tool of choice, for both pieces of work, is ThreadSanitizer (tsan), which is described

in detail in §5.1. The choice to extend tsan was made for several reasons: tsan scales well

to large applications, tsan is open source and maintained as a part of LLVM, and tsan

already provides instrumentation hooks for a rich set of primitives and system calls, so that

building on it saves a lot of effort. It also comes with a basic vector clock implementation,

which can easily be extended to accommodate the work of chapter 3.

The rest of this chapter is structured as follows: section 5.2 focusses on extending the

standard tsan with the dynamic race detection methods described in §3.3 and §3.4 to

produce tsan11. Section 5.3 discusses further extending tsan11 with the scheduling and

record and replay methods described in §4.3 and §4.4 to produce tsan11rec. There is no

related work section as relevant related work is already covered in sections 3.7 and 4.5.

Both implementation sections address common questions pertaining to the feasibility

of each technique, focusing especially on time and space overheads and the ability to

detect races. Both §5.2 and 5.3 aim to answer these questions by providing a detailed

experimental evaluation over several applications.

5.1 ThreadSanitizer

ThreadSanitizer (tsan) is an efficient dynamic race detector tool aimed at C++ pro-

grams [SI09]. The tool originally targeted C++03 programs using platform-specific li-

braries for threading and concurrency, such as pthreads. Tsan does support C++11 atomic

operations, but does not fully capture the semantics of the C++11 memory model when
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Figure 5.1: Each 8 bytes of application memory maps to 32 bytes of shadow memory,
which contains 4 shadow words. Each shadow word stores information on
a single access. The information stored in the shadow word is enough to
determine if two accesses form a data race.

tracking the happens-before relation. This imprecision was motivated by needing the tool

to work on large legacy programs, for which performance and memory consumption are

important concerns, and the tsan developers focused on optimising for the common case

of release/acquire synchronisation.

Tsan performs compile-time instrumentation of the source program, in which all (atomic

and non-atomic) accesses to potentially shared locations, libc functions and syscalls are

instrumented with calls into a statically linked run-time library. For example, the following

shows how the compiler instruments non-atomic accesses on x86:

nax = 1; −−−−→

push nax

call __tsan_write4

add esp, 8

mov [nax], 1

This will cause the compiled program to call __tsan_write4(void *), a tsan instrumen-

tation function that tracks non-atomic writes, just before performing the actual write.

The tsan library implements the Vector Clock (VC) algorithm outlined in §3.2. Shadow

memory is used to keep track of accesses to all locations. This will store up to four shadow

words per location. For a given location this allows tsan to detect data races involving

one of up to four previous accesses to the location. On each access to the location, all

the shadow words are checked for race conditions, after which details of the current access

are tracked using a shadow word, with a previous access being evicted pseudo-randomly if

four accesses are already being tracked. Older accesses have a higher probability of being

evicted. As only four of the accesses are stored, there is a chance for false negatives, as

shadow words that could still be used can be evicted. Each shadow word is laid out as

shown in Figure 5.1.

For glibc functions and syscalls, tsan will intercept each function to call into a specific

function within the tsan library. For example, the recv glibc function will call into in-
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terceptor_recv instead. This allows tsan to update its state, and will usually also call

into the real function that would have been called had the function not been intercepted.

The tsan tool is part of the compiler-rt LLVM project,1 and both tsan11 and tsan11rec

are extensions to SVN revision 272792.

Limitations of tsan Recall from §3.1 that under certain conditions, a release sequence

can be blocked according to the C++11 memory model. In tsan, release sequences are

never blocked, and all will continue indefinitely. This creates an over-approximation of the

happens-before relation, which leads to missed data races as illustrated by the example

of Figure 3.4 in Chapter 3. On the other hand, tsan does not recognise fence semantics

and their role in synchronisation, causing tsan to under-approximate the happens-before

relation and produce false positives. The example of Figure 3.11c in chapter 3 illustrates

this: tsan will not see the synchronisation between the two fences and so will report a data

race on nax.

The tsan instrumentation means that every shared memory atomic load and store leads

to a call into the instrumentation library, the functions of which are protected by memory

barriers. These barriers mean that tsan is largely restricted to exploring only sequentially

consistent executions. Only data races on non-atomic locations can lead to non-SC effects

being observed. If a program has data races that can only manifest due to non-SC inter-

actions between atomic operations (such as in the example of Figure 3.5), tsan will not

detect the race even if the instrumented program is executed on a non-SC architecture,

such as x86, POWER or ARM.

As tsan is a dynamic analysis tool, it is only aware of the properties of the program

during the current execution. For a data race to be detected, it must manifest itself. If

a data race relies on an unusual or improbable execution, it will most likely be missed.

Furthermore, tsan’s diagnostic capabilities are limited, simply providing the two stack

traces from the two threads at the point of the data race. This means that while tsan may

be good at finding a race, it probably won’t tell you why it happened.

5.2 Implementation of C++11 Data Race Detection

This section details the extension of tsan with the techniques outlined in §3. The extension

to tsan is called tsan11. An evaluation of the effectiveness of tsan11 in practise is included,

guided by the following research questions: (1) To what extent is tsan11 capable of finding

known relaxed memory defects in moderate-sized benchmarks, and how does the tool

1http://llvm.org/svn/llvm-project/compiler-rt/trunk
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compare with existing state-of-the-art in this regard? (2) What is the runtime and memory

overhead associated with applying tsan11 to large applications, compared with native

execution and application of the original tsan tool? (3) To what extent does tsan11

enable the detection of new, previously unknown errors in large applications, that could

not be detected using tsan prior to our work?

Details of the tsan11 extension of tsan are provided in §5.2.1. In §5.2.2, (1) is addressed

by applying tsan11, the original tsan tool and CDSChecker to a set of benchmarks that

were used in a previous evaluation of CDSChecker [ND13]. In §5.2.3, (2) and (3) are

considered via analysis of the Firefox and Chromium web browsers.

5.2.1 The tsan11 Tool

The goal of this work is to apply efficient C++11-aware race detection to large programs.

The enhanced VC algorithm of §3.3 and the instrumentation library described in §3.4

and formalised in §3.5 have been implemented as an extension to tsan. The original

tsan tool supports concurrent C++ programs and provides instrumentation for C++11

atomic operations, but, as illustrated in §5.1, does not handle these atomic operations

properly. Throughout this section, the original tsan is referred to as tsan03, due to the

previous C++ standard before C++11 being C++03, and the extended version of tsan,

that captures a large part of the C++11 memory model, as tsan11.

The implementation details of tsan11 have been largely omitted, as they are fairly trivial.

The enhanced VC algorithm builds on top of the original VC machinery by adjusting how

and when a VC is modified, and the store buffering simply attaches a list of store elements

to each atomic location. A few details and limitations will be clarified.

Bounding of store and load buffers In §3.4.1 and §3.5.2, a store buffer was introduced

to facilitate reading from an earlier store to a location than the most recent. However,

for each atomic location, there can potentially be an unlimited number of store elements.

Consider a thread that repeatedly performs an atomic store in a loop, and another thread

that performs an atomic load to the same location without synchronising with the storing

thread. This load can read from any of these stores. To prevent unbounded memory

overhead, the size of the store buffer must be bounded such that the oldest element of a

full buffer is evicted when a new element is pushed. This restricts the stores that loads

can read from, so the buffer size trades memory overhead for observable behaviours. This

evaluation uses a buffer size of 128 to allow a relatively wide range of stores to be available

to load operations. Load buffers need not be bounded. This is because at most one load
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element per thread is required for any store element: the oldest load has the smallest

epoch, so if a later load blocks a thread, so will the oldest.

Resolving load operations at runtime The instrumentation controls the reads-from

relation via the the algorithm of Figure 3.22, allowing for variety of randomised and

systematic strategies for weak behaviour exploration. The implementation favours reading

from older stores, choosing the oldest feasible store with 50% probability, the second-oldest

with 25% probability, and so on.

5.2.2 Evaluation Using Benchmark Programs

Benchmark programs To test the effectiveness of tsan11 on small benchmarks, a com-

parison was performed between tsan11, tsan03 and CDSChecker [ND13], another data

race detection tool discussed below. To compare tsan11 with tsan03 and CDSChecker at a

fine-grained level, each tool was applied to the benchmarks used to evaluate CDSChecker

previously [ND13]. These are small C11 programs ranging from 70 LOC to over 150 LOC.

These benchmarks had to be converted from C11 to C++11 for use with tsan, due to the

lack of a C11 threading library. Example benchmarks include data types and high level

concurrency concepts, such as Linux read-write locks. There are 13 benchmarks, however

some of these rely on causality cycles or load buffering to expose bugs and, as discussed

in §3.6, tsan11 does not facilitate exploration of these sorts of weak behaviour. Of the 7

benchmarks whose behaviours tsan11 can handle, only 2 have data races. Therefore, data

races were introduced into the other 5 by making small mutations such as relaxing memory

order parameters, reordering instructions and inserting additional non-atomic operations.

The benchmarks, both before and after our race-inducing changes, are provided online at

the URL associated with the experiments [LD17a].

Notes on comparing tsan with CDSChecker Comparing tsan11 and CDSChecker

is difficult as the tools differ in aim and approach. CDSChecker explores all behaviours

of a program, guaranteeing to report all races; tsan11 explores only a single execution,

determined by the OS scheduler and randomisation of the reads-from relation, reporting

only those data races that the execution exposes. The goal of CDSChecker is exhaustive

exploration of small-but-critical program fragments, while tsan11 is intended for the anal-

ysis of large applications. CDSChecker requires manual annotation of the operations to

be instrumented, and can only reason about C11 (not C++11) concurrency. This is a

practical limitation because, at time of writing, C11 threads were not supported by main-
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stream compilers such as GCC and Clang2 (C11 threads have since become supported by

GCC and Clang). In contrast, tsan11 automatically instruments all memory operations,

and supports C++11 concurrency primitives. Nevertheless, a best effort comparison is

provided as CDSChecker is the most mature tool for analysis of C11 programs.

Experimental setup These experiments were run on an Intel i7-4770 8x3.40GHz with

16GB memory running Ubuntu 14.04 LTS. A short sleep statement has been added to the

start of each thread in each benchmark in order to induce some variability in the schedules

explored by the tsan tools. The Linux time command is used to record timings, taking the

sum of user and system time. This does not incorporate the time associated with the added

sleep statements, thus the wall-clock time associated with running the tsan tools is longer

than what is reported. In §5.3.3, controlled scheduling is used instead of sleep statements,

giving a more accurate representation of wall-clock time on each benchmark. The tsan-

instrumented benchmarks were compiled using Clang v3.9. The revision of CDSChecker

used has the hash 88fb552.3

The results of the experiments are summarised in Table 5.1, where all times are in

ms, and discussed below. For each benchmark, the time taken for exploration using

CDSChecker (deterministic tool), averaged over 10 runs, and the average time over 1000

runs for analysis using tsan11 (which is nondeterministic) is reported. For tsan11, the rate

at which data races are detected, i.e. the proportion of runs that exposed races (Race

rate), the number of runs required for a data race to be detected with at least 99.9%

probability based on the race rate (No. 99.9%), and the associated time to conduct this

number of runs, based on the average time per run (Time 99.9%) is reported. The Runs

to match column shows the number of runs of tsan11 that could be performed in the same

time as CDSChecker takes to execute (rounded up), and Race chance uses this number

and the race rate to estimate the chances that tsan11 would find a race if executed for

the same time that CDSChecker takes for exhaustive exploration. The table also shows

the average time taken, over 1000 runs, to apply tsan03 on each benchmark and the

associated race rate. The configuration of CDSChecker flags used is what is recommended

in the CDSChecker documentation for all benchmarks. For tsan11, the default system

scheduler and the store buffer bound and reads-from strategy discussed in §5.2.1 is used.

2A recent Stack Overflow thread provides an overview of C11 threading support: http://stackoverflow.
com/questions/24557728/does-any-c-library-implement-c11-threads-for-gnu-linux.

3git://demsky.eecs.uci.edu/model-checker.git
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Results The results show that tsan11 was able to find races in all but one of the bench-

marks (barrier), but that the rate at which races are detected varies greatly, being par-

ticularly low for mpmc-queue. This is due to the dynamic nature of the tool: the thread

schedule that is followed is dictated by the OS scheduler.

For the remaining seven benchmarks, comparing the time taken to run CDSChecker with

the “Time 99.9%” column for tsan11 shows that for 2 benchmarks, exhaustive exploration

with CDSChecker is faster than reliable race analysis using tsan11, while for the other 5

benchmarks it is likely to be faster to use tsan11 to detect a race. Recall, though, that

these times exclude the time associated with the sleep statements added to the benchmarks

that tsan11 analyses, as discussed above.

The “Race chance” column indicates that overall, with the exception of barrier, repeated

application of tsan11 for the length of time that CDSChecker takes for exploration has a

high probability of detecting a race. Note however that the measured time is for the full

exploration using CDSChecker; if CDSChecker were modified so as to exit on the first race

encountered, the time it takes to find a race would likely be lower.

The race rate results for tsan03 show that in some cases the tool did not detect a

race, either because the race depends on weak behaviour (meaning that tsan03 would be

incapable of finding it) or is more likely to occur if non-SC executions are considered (for

example, tsan03 does find a race in mcs-lock, but with a very low race rate). The timing

results for tsan03 show that it is usually faster per execution compared with tsan11. In

general this is to be expected since tsan11 performs a heavier-weight analysis. However,

these benchmarks are so short-running that small differences, such as the fact that tsan11

is slightly faster for analysis of chase-lev-deque, may be due to experimental error.
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5.2.3 Evaluation Using Large Applications

Applications The programs being tested are Firefox and Chromium, two web browsers

with very large code bases. Both browsers make heavy use of threads and atomics: Firefox

can have upwards of 100 threads running concurrently, while Chromium starts multiple

processes, each of which will will run many threads. As tsan03 had already been applied

to both Firefox and Chromium, there were clear instructions on how to run both with

tsan.

Experimental setup These experiments were run on an Intel Xeon E5-2640 v3 8x2.60

GHz CPU with 32GB memory running Ubuntu 14.04 LTS, revision r298600 of Firefox4

and the Chromium version tagged“tags/54.0.2840.71”.5 The browsers were compiled using

Clang v3.9, following instructions for instrumenting each browser with tsan as provided by

the developers of Firefox6 and Chromium.7 The browsers were run in a Docker container

(using Docker v1.12.3, build 6b644ec) via ssh with X-forwarding.

Both browsers were tested with tsan03 and tsan11, and without instrumentation. For

brevity, FF, FF03 and FF11 to refer to Firefox without instrumentation, and instrumented

using tsan03 and tsan11, respectively; CR, CR03 and CR11 refer similarly to Chromium.

To make the evaluation as reproducible as possible, the browsers were tested using JS-

Bench v2013.1 [RGEV11].8 JSBench runs a series of JavaScript benchmarks, sampled

from real-world applications, presenting runtime data averaged over 23 runs. The peak

memory usage was recorded via the Linux time command, reporting the “Maximum res-

ident set size” data that this command records. For the browser versions instrumented

with race analysis, all details of reported data races are recorded in a file. In the case

of tsan11, during analysis, data on the number and kinds of atomic operations, including

their memory orders, that are issued during execution are also recorded.

Results Table 5.2 shows results on memory usage, execution time and races reported

running the browser configurations on JSBench. Recall that JSBench runs a series of

benchmarks 23 times. The “Peak mem” column shows the maximum amount of memory

(in MB) used throughout this process, as reported by the time tool. The “Mean time”

column shows the mean time, averaged over the 23 runs, for running the benchmarks.

4https://hg.mozilla.org/mozilla-central/
5Chromium was obtained according to the instructions at https://www.chromium.org/developers/

how-tos/get-the-code/working-with-release-branches.
6https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Thread_Sanitizer
7https://www.chromium.org/developers/testing/threadsanitizer-tsan-v2
8http://plg.uwaterloo.ca/~dynjs/jsbench/
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Browser Peak mem (MB) Mean time (ms) Races (#)

FF 1,159 128 N/A
FF03 3,092 1431 39
FF11 11,092 1819 52

CR 109 103 N/A
CR03 1,158 1148 1
CR11 1,481 1765 6

Table 5.2: Memory usage, runtime and number of races reported for the browser config-
urations running on JSBench.

The “Races” column shows, for all configurations except FF and CR, the number of races

reported during the entire JSBench run. The results for Firefox show that the increase

in memory usage associated with FF03 vs. FF is 2.7×, compared with 9.6× for FF11 vs.

FF. Thus, as expected, the tsan11 instrumentation leads to significantly higher memory

consumption. Performance-wise, the tsan11 instrumentation leads to a more modest over-

head: average JSBench runtime increases by 11.2× when using FF03 vs. FF, and by 14.2×
when using FF11 vs. FF. Interestingly, the memory overhead associated with tsan03-based

race instrumentation for Chromium is higher—a 10.6× increase with CR03 vs. CR—but

grows less significantly when tsan11 is used—a 13.6× increase with CR11 vs. CR. The

growth in runtime for Chromium follows a similar pattern to that for Firefox, with an

increase in average runtime of 11.1× for CR03 vs. CR, and 17.1× for CR11 vs. CR.

Examination of the tsan logs showed 39 race reports for FF03 vs. 52 for FF11, and 1

for CR03 vs. 6 for CR11. It is not yet known whether the higher rate of races detected

using tsan11 for both browsers is due to the additional behaviours that the tsan11 in-

strumentation exposes, or simply a result of the tsan11 instrumentation and its overheads

causing a more varied set of thread interleavings to be explored. A tsan race report shows

the stacks of the two threads involved in the race. It is hard to determine the root cause

of the race from this, and harder still to understand whether the race depends on weak

memory semantics; a deeper investigation of this (requiring significant novel research) is

left for future work.

When running FF11 and CR11 on JSBench, the number of each type of atomic operation

that tsan11 intercepted was recorded. The full data is provided online, but the results

are summarised in Table 5.3. The atomic operations row shows the total number

of atomic operations that were issued during the entire JSBench run, indicating that

both browsers, and especially Firefox, make significant use of C++11 atomic operations.

The table also shows the proportion of operations associated with each operation type—
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Browser Firefox Chromium

# atomic operations 437M 280M

loads 55.33% 74.73%
stores 9.39% 7.76%
RMWs 35.28% 17.51%
fences 0.00% 0.00%

relaxed 38.97% 77.59%
acquire 14.28% 13.46%
release 1.98% 0.68%
acq/rel 4.83% 1.64%
SC 39.94% 6.63%

Table 5.3: The number of atomic operations executed by the browsers during a complete
JSBench run, with a breakdown according to operation type and memory
order.

load, store, RMW and fence. This indicates that fence operations were so scarce that

they contribute negligible percentage (12,203 and 78 fence operations were intercepted for

Firefox and Chromium, respectively, and in all cases these were SC fences), that loads

significantly outnumber stores (expected if busy-waiting is used), that relaxed operations

are common, and that the other memory orderings are all used to a varying degree. The

results also confirmed that the consume ordering is not used. The heavier use of atomic

operations by Firefox perhaps explains the larger growth in memory overhead associated

with dynamic race instrumentation for this browser.

There is currently no data on the distribution of executed atomic operations throughout

the browser source code, nor the typical use cases for these operations; a detailed empirical

study of atomic operation usage in these browsers, and in other large applications, is an

important avenue for future work.

In summary: the experiments presented with the web browsers shows that (a) tsan11

is able to run at scale, with significant but not prohibitive memory and time overheads

compared with tsan03, (b) tsan11 reports a larger number of races compared with tsan03,

and (c) both web browsers make significant use of C++11 atomic operations. What the

evaluation does not settle is the question of which aspects of the extensions to tsan to

support C++11 concurrency are important in practice, for identifying new data races and

suppressing possible false alarms reported by tsan03.
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5.3 Implementation of Controlled Scheduling With Record

and Replay

This section details the extension of tsan11 with the techniques outlined in §4. Note that

this extends the tsan11 shown in §5.2.1, not the basic tsan. This further extension of

tsan11 is called tsan11rec. Like with tsan11, a number of research questions arise: (1)

Do the controlled scheduling techniques, in this case random and queue, help or hinder

the tool’s ability to detect data races? (2) What is the runtime overhead with respect

to either scheduling strategy, with and without record and replay? (3) What class of

programs does the record and replay work on? (4) For programs that cannot be recorded

“out of the box”, how much effort is required to get them to work, if possible? (5) How

reliable is the record and replay with regards to avoiding desynchronisation?

Details of the tsan11rec extension of tsan11 are provided in §5.3.1. (1) and (2) is covered

throughout §5.3.3, §5.3.4 and §5.3.5. In §5.3.6, tsan11rec is applied to several videogames,

and so covers all five research questions. These videogames make extensive use of I/O,

thus several considerations must be made. (4) was covered extensively in §4.4.4, but is

also touched on in §5.3.4 and §5.3.6, as neither Apache’s httpd or the videogames could

be played without modification to either tsan11rec or the program in question. In §5.3.7,

several program that cannot be recorded are detailed, thus covering (3) and (5).

5.3.1 The tsan11rec Tool

The tsan11rec tool builds upon the tsan11 tool, instead of the basic tsan tool. This allows

the scheduling and record and replay to work in tandem with the data race detection

provided by tsan11. It also allows us to control the reads-from relation, removing the

nondeterminism that comes with atomic reads.

The scheduling system and the record and replay system are built as a single system,

due to the replay systems heavy reliance on controlling the scheduler. The scheduler

can be thought of as an extra layer of instrumentation, on top of tsan’s layer, due to

tsan itself calling into parts of the scheduler. For example, if the user program performs

an atomic load, it is not the user program that calls the Wait() and Tick(), but tsan’s

instrumentation code for atomic load. This simplifies the implementation of the scheduler,

as it will mostly just interact with tsan.

Throughout §5.3, a description of how the tool evolved with respect to the sparse record-

ing facilities of tsan11rec, and many practical challenges faced along the way is provided;

these challenges, which seem fundamental to record and replay, are typically described
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int socket = get_socket ();

char buf [128];

int res = recv(socket , buf , 128, 0);

process(res , buf);

(a) User code fragment.

// Update tsan state before.

size_t res = REAL(recv)(fd, buf , len , flags);

scheduler.SyscallRecv (&res , fd, buf , len , flags);

// Update tsan state after.

return res;

(b) tsan instrumentation fragment code in __interceptor_recv.

void *params [3] = {ret , buf , &errno_ };

uptr param_size [3] = {sizeof(size_t), len , sizeof(int)};

Wait ();

DemoPlaySyscallNext("recv", 3, params , param_size );

DemoRecordSyscallNext("recv", 3, params , param_size );

Tick ();

(c) Scheduler code fragment in Scheduler::SyscallRecv.

Figure 5.2: Interception for syscall recv. The user call to recv will instead call __in-
terceptor_recv, which in turn will call the scheduler function for recv after
the real syscall.

only briefly if at all in the literature. It is intended that the exposition provided will be

valuable to other researchers.

Syscall interception As shown in §4.4.4, many syscalls introduce nondeterminism, and

so require recording. The basic tsan instrumentation already intercepts the majority of

syscalls, which can be further built upon. Most of these will be simple in that they call

the real syscall function, and then call a dedicated scheduler function for that syscall.

Figure 5.2 shows the interception for recv, one of the more simple syscalls to record.

Some syscalls require the real syscall to be called in a more controlled way. For example,

read and write may be used by multiple threads within a process to communicate through

a pipe. In such a case, instead of recording the contents of the data sent, the calls must

be ordered, and so called in between a Wait() and Tick(). The select syscall, covered

in §5.3.6, utilises fds extensively, and needs careful consideration.

5.3.2 Experimental Overview

To evaluate the controlled scheduling abilities of tsan11rec, the strategies were compared

on the CDSchecker benchmark suite (§5.3.3). Larger applications are used to compare
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tsan11rec with rr [OJF+17], a state-of-the-art record and replay tool with similar aims to

that of tsan11rec, and one of the only such tools to have been made publicly available.

The programs used involve real challenges related to networking, signals, I/O and real-

time constraints: Apache’s httpd web server (§5.3.4), the PARSEC benchmarks and pbzip

(§5.3.5), and two first-person shooter games built on the SDL library (§5.3.6). The SDL

case studies showcase applications that tsan11rec can handle that are out of scope for rr,

due to communication between the game and the OpenGL interface. In contrast, this

section also discusses the practical limitations of tsan11rec that rr does not face related

to the SQLite database application and Firefox’s SpiderMonkey (§5.3.7).

Common experimental setup All experiments were run under Ubuntu 14.04 LTS on

an Intel i7-4770 8x3.40GHz platform with 16GB RAM. The tsan11 and tsan11rec tools

were built on top of clang revision 286384. The version of rr used is 5.1.0. As a key goal

of this work is to apply race detection to record and replay with controlled concurrency

testing, most of the testing is done with race detection enabled, even when using rr. Times

are still given for rr without race detection for reference. For each result, native, rr, tsan11,

tsan11+rr and tsan11rec to refer to a program running without instrumentation, under rr,

with tsan11 instrumentation, under rr with tsan11 instrumentation, and under tsan11rec,

respectively.

5.3.3 CDSchecker Litmus Tests

Overview The small programs (roughly 100 LOC each) used in prior work to evaluate

CDSchecker [ND13], and used to compare tsan11 with tsan03 and CDSChecker in §5.2.2,

are useful to assess whether tsan11rec’s controlled scheduling improves on tsan11’s ability

to find races (including races related to weak memory). As these programs are closed, the

scheduler and memory model are the sources of nondeterminism.

Experimental setup The experiments are run in the following four modes: tsan11,

where tsan11 (which does not use controlled concurrency testing) finds races; tsan11 +

rr, where tsan11 finds races with rr recording; and tsan11rec rnd and tsan11rec queue,

where tsan11rec finds races using the random and queue strategies, respectively. The

results given show the runtime of each tool on each benchmark, averaged over 1000 runs,

reporting the standard deviation and remarking on the coefficient of variation (CV)—the

ratio of the standard deviation to the mean.
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Results and discussion Table 5.4 summarises the results. The Time columns show

mean execution times, with standard deviation. Because these are short-running tests,

whose behaviour depends intimately on the manner in which threads interleave, the vari-

ance across runs is fairly high, with the CV usually exceeding 1, with the exception of the

longer running results for rr, for which the CV is always less than 1 and usually less than

0.5. Rate columns show the percentage of all executions that exposed a data race.

Comparing the tsan11rec rnd results with the tsan11 and tsan11rec queue results shows

that randomized controlled scheduling allows tsan11rec to find more races across all bench-

marks, except chase-lev-deque and dekker-fences. This is because tsan11 runs at the mercy

of the OS scheduler, which tends to explore similar schedules on repeated runs, and in

these small programs typically causes the main thread to run to completion before other

threads are scheduled. The price for this is higher runtime, e.g. mcs-lock and ms-queue

suffer slow-downs of around 2× compared with tsan11; this can be attributed to the total

ordering of visible operations imposed by tsan11rec. The rr results show huge increases

due to a constant overhead applied to all programs. But as rr is designed for larger

applications, this overhead will usually become insignificant in more realistic examples.

An examination of a trace from chase-lev-deque shows why tsan11rec rnd detects fewer

races than tsan11. From the creation of thread 2 to the point of the race, thread 1 must

perform 29 operations before thread 2 performs just 4 operations in order for the race

to manifest itself. The probability of this happening under uniform random scheduling is

very low. A race report can be coerced from the program by moving the creation of thread

2 to later in the program. This shows that different scheduling strategies will affect how

effective we are at finding data races, and that probabilistic concurrency testing (PCT)

can be effective at prying out concurrency bugs.
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5.3.4 httpd

Overview Apache’s httpd [Apa18] is a widely-used modular http server that makes

heavy use of concurrency to handle many simultaneous connections. For record and replay

it is of further interest due to its dependence on external network input. tsan11rec is able

to handle httpd by capturing the system calls described in §4.4.4, with one workaround:

the accept system call, which listens for incoming connections, relies on epoll wait to

listen for events. This returns user-allocated pointers, file descriptors, and other data

in a union with no easy way of knowing the active member, something which tsan11rec

cannot currently handle. This problem can be avoided by using httpd’s option to switch

to a simpler but slightly less efficient syscall, poll, which instead simply listens to file

descriptors; the results presented here employ this workaround. A strength of rr is that

it can handle httpd without this workaround, due to its non-sparse record and replay

mechanism.

Experimental setup We tested httpd version 2.4.28 in single-process-multiple-thread

mode using ab, an Apache-provided program for server stress testing. We sent 10,000

queries across 10 concurrent threads to an httpd server for each of the setups shown

in Table 2, averaging results over 10 runs. We report on standard deviation and again

remark on the CV. In the table, rnd and queue refer to configurations of tsan11rec, and

the presence or absence + rec indicates whether recording was enabled.

The standard variation and CV is also shown. In the table, rnd and queue refer to con-

figurations of tsan11rec, and the presence or absence of + rec indicates whether recording

was enabled.

Results and discussion The results are shown in Table 5.5. The columns under Race

reports show regular results with race reporting enabled; the data under No reports shows

results where race-checking-capable tools do perform race checking behind the scenes, but

do not actually emit race reports. This distinction is necessary because tsan11 detects

such a large number of races that the overhead associated with generating reports notice-

ably affects performance; results when fewer races are detected are more representative

of the performance one would expect using a future version of httpd in which many race

issues are fixed. The Throughput columns indicate the mean number of queries the server

responds to per second. The Rate column is the mean number of race reports given dur-

ing execution (only relevant for tsan11-based configurations). For each configuration, the

standard deviation is shown in parentheses. Variance, as measured by CV, is low: below
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0.8 in all cases and usually less than 0.5. The Overhead columns indicate how much slower

performance is compared with native execution.

Without reporting, tsan11 already incurs a 3× overhead compared to native. Comparing

results for native with rnd and rnd+rec shows that adding controlled random scheduling

increase this overhead massively, by 79–89× depending on whether recording is enabled.

This is in the same ball park as the overhead associated with rr: 61× without race checking

and 160× with tsan11 instrumentation (but still with the actual reporting of race disabled).

In contrast, when the queue strategy is used, the overhead compared with native drops

to 9× and 21× with recording disabled vs. enabled. This can be attributed to the gap

between rr/rnd and queue to httpd’s heavy reliance on parallelism and frequent use of

shared mutexes. This parallelism is removed by rr because the tool sequentialises the

execution of threads, while tsan11rec’s random scheduler only allows the thread that it

has chosen to be scheduled next to execute a visible operation, even if many other threads

are ready to execute visible operations. In contrast, the queue strategy allows threads to

perform visible operations largely on demand. Turning to the results with race reporting

enabled, the queue strategy has the highest race detection rate, improving on uncontrolled

tsan11. All other race detecting configurations lower the race detection rate; it is likely that

this is because rr and rnd reduce the number of queries being responded to concurrently.

Comparing demo file sizes when recording is enabled, the tsan11rec demo files are around

48MB for both strategies, dropping to 4.8MB when only 1000 queries are issued, suggesting

that demo file size increases linearly with the number of requests at a rate of 4.8KB per

request. This could be reduced further with a more aggressive compression strategy, but

would likely increase the time overhead. The demo file for rr is significantly smaller: 6.6MB

for 10000 queries, which goes down to 3.9MB with 1000 queries, implying a rate of 0.3KB

per request plus a constant 3.6MB.

5.3.5 PARSEC and pbzip

Overview The PARSEC benchmark suite [BKSL08] and the pbzip application [pbz18]

are both widely used for evaluating concurrency analysis tools. For PARSEC, the bench-

marks used to evaluate iReplayer [LSW+18] have been used, however, three of these are

unusable (dedup and swaptions do not compile, and canneal crashes).

Experimental setup Each PARSEC (version 3.0) benchmark was run with the ‘sim-

large’ test size shipped with the benchmarks, using 4 threads. Pbzip (version 2-1.1.13)

was used to compress a 400MB file with 4 threads. Each benchmark was run 10 times
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Race reports No reports
Setup Throughput Overhead Rate Throughput Overhead

Native N/A N/A N/A 28895 (4622.56) 1×
rr N/A N/A N/A 475 (6.08) 61×
tsan11 3687 (294.28) 8× 113 (19.85) 9824 (1432.01) 3×
tsan11 + rr 86 (63.20) 336× 34 (16.80) 181 (46.37) 160×
rnd 141 (8.92) 205× 162 (38.78) 367 (33.26) 79×
queue 818 (310.33) 35× 381 (73.62) 3261 (843.67) 9×
rnd + rec 142 (11.85) 203× 155 (31.03) 326 (38.94) 89×
queue + rec 513 (85.34) 56× 360 (64.28) 1387 (249.61) 21×

Table 5.5: Comparison of throughput and race rate between native, tsan11, rr and
tsan11rec for Apache’s httpd. Results are averaged over 10 runs. “Through-
put” shows mean throughput in queries per second, “Rate” is the number of
races detected per run (where relevant). Standard deviations are shown (in
parentheses). Overhead is computed relative top native throughput.

per tool configuration, reporting average runtimes. As before, the standard deviation and

CV is provided and remarked upon. A small number of races were discovered for some

benchmarks, and the race detecting tools largely agreed on the number of races, this is

not detailed further.

Results and discussion Table 5.6 shows the average time taken to run each benchmark

with each tool configuration, with standard deviation. Variance, as measured by CV, is

reasonably low (CV is always below 1). For the tsan11rec results, + rec indicates whether

recording was enabled. Table 5.7 is computed from the data of Table 5.6, and reports the

overhead associated with running each tool configuration compared with native execution.

With the exception of bodytrack and fluidanimate, the overhead tsan11rec brings over

that of tsan11 is small, and for all benchmarks whether recording is enabled or not makes

little difference. However, the overhead associated with tsan11 + rr (i.e., running tsan11-

instrumented code under rr) is significant compared with the tsan11 overhead alone, de-

spite the fact that running under rr without race detection is generally efficient. Inter-

estingly, rr without race detection performs poorly on blackscholes compared with the

tsan11rec configurations. Digging into this reveals that the benchmark distributes work

between threads at the start of execution and then lets threads run with little interaction.

This high parallelism/low communication execution plays to the strengths of tsan11rec,

where invisible operations are left to run in parallel, but is bad for rr, which forces sequen-

tialisation across all operations. As discussed above, race reports (omitted) were few, and

similar between scheduling strategies, with the queue strategy faring best.
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5.3.6 SDL-based Games

Overview Simple DirectMedia Layer (SDL) is a library that consolidates input, graphics

and various other forms of I/O under a single interface [Sim18], and is typically used for

games. On Ubuntu 16.04, SDL communicates with X11 for I/O, pulseaudio for sound

and OpenGL for display. Two SDL-based games are investigated: Zandronum [Sam18],

a multi-player Doom port (≈400kLOC), and QuakeSpasm [Qua18] (≈88kLOC), a port

of Quake. While these games support custom record and replay by logging high level

commands, by working at the threading and system call level tsan11rec can facilitate

record and replay of bugs that rely on low-level interactions to manifest. One such example,

discussed below, is the successful record and replay of a bug in Zandronum that arises due

to communication of game data between the game client and server, which is not present

in the game’s native replay.

Initial attempts to replay these SDL-based games failed due to communication be-

tween the application and the closed and proprietary NVIDIA OpenGL module via ioctl

syscalls. This was worked around by ignoring ioctl during recording, and letting it run

natively during replay. This works because communication with the display driver has no

affect on the game logic. Display interaction led to further problems with initialization

of the input module. To handle this, the scheduler was adapted to let the application

run uninstrumented until the SDL module initialization had completed, adding a custom

scheduler hook to allow the application to notify the scheduler when this happens. These

problems are not specific to this approach or tool—indeed rr cannot handle these SDL-

based games for similar reasons—but are rather a fundamental limitation of recording and

replaying applications that make heavy use of I/O. To handle such applications, one either

needs to fully mock out I/O components, requiring a tremendous engineering effort, or

carefully determine those components that should not be instrumented and specify this

either within the instrumentation library or via program annotations.

With these workarounds tsan11rec is able to handle both games, with the nice property

that gameplay is displayed on screen during replay; something that would not be possible

if the I/O subsystem had been mocked out. This visibility might be useful in the human-

assisted debugging of bugs related to visual artifacts.

Experimental setup Measuring game performance in a way that allows us to com-

pare the overhead of the scheduling strategies is non-trivial. The only available metric

is the frame rate (fps), which is the number of frames drawn to the screen each second.

QuakeSpasm and Zandronum are capped at 60 fps, and will try to maintain this frame-
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rate, dipping if they cannot keep up. If the frame rate is reduced too much, the game

becomes unplayable. As a best-effort evaluation mechanism, the playability of the games

are analysed under various tool combinations. Additionally, it is possible to remove the

frame rate cap for Quakespasm, and thus find ball-park figures for the overheads of various

tool configurations when playing Quakespasm uncapped. Removing the frame rate cap for

Zandronum was not possible. As mentioned previously, there is no comparison with rr,

as it cannot record or replay the games. The Zandronum revision is 10013:dd3c3b57023f

updated to use SDL2, QuakeSpasm version is 0.93.0, and SDL version is 2.0.5.

Results and discussion With the random tsan11rec scheduler, Zandronum is un-

playable even with recording disabled, the frame rate drops to below 1 fps. This is due to

the random scheduler starving the main thread by frequently scheduling other less critical

threads (e.g. the audio thread). In contrast, the queue scheduler could maintain the full

60 fps with recording enabled; for 100 seconds of play the demo size grew to just under

8MB, of which 6.5MB was for syscalls.

To test tsan11rec’s ability to replay network communication, a previously fixed Zan-

dronum bug [Zan15] that relies on an error in this communication to manifest was rein-

troduced. This bug involves incorrect game state information being sent from the server

to the client during a map change. This bug was replicated with a server and two clients,

one of which was recording. After about 12 minutes the bug appeared and resulted in

a demo file of 43MB. The demo was then replayed and the bug appeared as expected.

This demonstrates that tsan11rec can be used to accurately capture and facilitate replay

of bugs in large networked applications.

For QuakeSpasm, it is possible to play the game without dropping below 60 fps using

tsan11 and all tsan11rec configurations. To further investigate the overhead of each tool

configuration on this case study, the fps cap is removed, and the game is then played 5

times per tool configuration, for 90 seconds per play, enabling a mode where the game’s

fps is periodically appended to a file. A best effort is made to play the game in a similar

manner on each run, but inevitably there will still be high variation in game activity

between plays. Indicative results are shown in Table 5. The rnd and queue configurations

refer to tsan11rec with the random and queue strategies, respectively, and with recording

disabled, while the “+ rec” tool configurations are similar but with recording enabled.

The “Overhead” column shows the overhead observed compared with native execution.

The take-away from these results is that the instrumentation overhead for both tsan11

and tsan11rec is surprisingly modest (generally less than 2×), and that the additional

overhead associated with enabling recording in tsan11rec is low.
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5.3.7 Limitations: SQLite and SpiderMonkey

A downside of the sparse approach to record and replay is that different applications

may have incompatible requirements regarding what should be recorded and what must

not be recorded. For example, recording memory layout and attempting to enforce the

same layout on replay would not only slow down the SDL games (see §5.3.6) to the point

of being unplayable, but would also cause problems related to communication with the

display driver. Yet, the behaviour of some programs will depend on the memory layout,

such as iterating over an ordered C++ container that holds pointers.

To demonstrate the limitations, tsan11rec was applied to the SQLite database man-

agement library [SQL18] and to SpiderMonkey, Firefox’s JavaScript management en-

gine [Moz18]. While tsan11rec was applicable for controlled scheduling of these appli-

cations, the replay would rapidly desynchronise due to memory layout nondeterminism

causing conditionals that rely on the values of pointers to evaluate differently during re-

play. Tools such as rr can handle these programs reliably by enforcing the same memory

layout. This is a trade-off: the non-sparse approach of rr can lead to higher overheads, as

demonstrated in §5.3.4 and §5.3.5. An alternative to adapting the record-and-replay tool

so that it always enforces memory layout determinism would be to adapt the application

of interest so that default memory allocation is replaced with a deterministic memory

allocator.

5.4 Summary

After the provision of two dynamic analysis techniques in chapters 4 and 5, this chapter

discusses the implementation of these techniques into an already existing dynamic analysis

tool, tsan. Each technique has been covered separately, but they do build on top of each

other.

The first technique covered is the C++11 aware data race detection, showing that it is

possible to have efficient dynamic race detection that can be scaled up to large applications

such as FireFox and Chromium, that is aware of many of the nuances of the C++11

memory model, and is capable is exhibiting many of the weak behaviours it allows.

The second technique is is way of applying a custom scheduling strategy to the execution

of a program, along with a method to record and replay such executions. This recording

mechanism is deemed sparse, due to it recording as little data as possible. Testing has

shown that different strategies are possible and give rise to variable time overheads and

data race rates. The reliability of this record and replay mechanism is not perfect however,
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with many programs requiring special attention to get work, if possible. For the program

that do work, space and time overhead varies wildly. In some case, these overheads are

lower than rr, but in others, they greatly exceed rr.
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6 Conclusion

The work presented in this thesis explores the area of dynamic analysis on concurrent

programs, particularly those that utilise weak memory models. These analysis have fo-

cussed in part on practicality, demonstrating their usability in real world tools, such as

ThreadSanitizer.

Reflections on the contributions of the thesis are presented in §6.1, ideas for future work

in §6.2, and a concluding summary in §6.3.

6.1 Thesis Reflections

The dynamic race detection work of Chapter 3 shows that dynamic race detection can still

be applied to weak memory models such as C++11, and that simple techniques such as

a software store buffer can be used to explore some of the weak behaviours that C++11

allows. This does not mean that catering to the full generality of the C++11 memory

model is trivial however, as there are still some aspects which have not been solved, such

as how to efficiently explore load buffering in a dynamic analysis. Regardless, the work

presented here provides the groundwork that can be extended or modified to work with

other weak memory models.

Chapter 4 takes a dive down the rabbit hole of record and replay. In particular, recording

and replaying with as little information about the program as possible, known as sparse

record and replay. The inspiration for this came from many of the old PC games from

the ’90s. For example, if you load up Quake on a modern system, you are immediately

greeted with a replay of a demo recorded in 1996. The demo files that allow this are small,

as they only contain information on which keys are pressed and when. It should be noted

however that this is only possible because these games have been carefully engineered such

that non-determinism only comes from the user input. Outside of games, many programs,

either deliberately or accidentally, make use of many forms of non-determinism. This can

be simple to record, e.g. requiring the results of certain system calls to be captured, or very

difficult, e.g. requiring communication with a closed source system driver to be modelled.

In some cases, recording the result of one system call will have a cascading effect on other
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system calls, requiring those to be recorded as well, which is the case for many of the file

operations. This has ultimately led to mixed results in terms of reliability. While some

programs required very little effort to get working, such as litmus tests and Apache httpd,

others required months of work, with some not working at all, such as SQL. This work

should therefore be considered as a guide, and not a formal technique, that future works

may use to avoid many of the problems involved in this field.

In Chapter 5, the tsan11 and tsan11rec tools demonstrate that the approaches of Chap-

ters 3 and 4 can in fact be implemented, and that they can scale to large applications.

While the results present some evidence that the techniques can help with finding bugs,

the focus of the analyses has mainly been on the performance overhead associated with the

instrumentation, and that there is a lot of room for more empirical work on bug finding

ability.

6.2 Future Work

Several avenues for future work related to the contributions of this thesis are now presented.

Full coverage of happens before in C11 The extended vector clock algorithm of

§3.3.3 almost fully covers the C11 memory model. The remaining part not covered concerns

the consume memory ordering. This is an unusual ordering that is only possible on certain

systems, and only utilised in places where speed is critical, such as the Linux kernel. Most

prior work in this area forgoes this ordering however, due to the esoteric nature and

difficulty of handling it. In order to include it, data dependency must be tracked, as

happens before is a superset of ((a, b) ◦ data-dependency+), where (a, b) ∈ reads-from, a

is a release store, and b is a load with consume ordering.

Full coverage of C11 exploration In §3.4, a technique for allowing the exploration of

certain weak behaviours under the presence of sequential consistency was shown. Specif-

ically, it showed that storing the stores to atomic locations in a buffer allowed for load

buffering. What was not covered however was load buffering, a behaviour whereby a load

reads from some future store. This is difficult to handle because enabling it would require

some degree of speculative execution, with the possibility of rolling back the execution if

the speculation proved to be wrong. With both load buffering and store buffering made

possible, even a system that enforces sequential consistency would be able to explore all

of the behaviours allowable in C11/C++11.
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Improving the reliability of sparse record and replay The main limitation of the

sparse record and replay idea presented in Chapter 4 is exposed by the evaluation in

§5.3, which shows that while sparse record and replay can replay programs that cannot

be recorded by current tools, it lacks the reliability and out-of-the-box functionality of

the current state of the art tool rr [OJF+16]. Further work on the tsan11rec would be

necessary for it to be considered a viable alternative to rr.

This is a difficult topic to approach, as the work shown in §4 and §5.3 suggests that

there is no generalised solution for the set of system calls that will make tsan11rec work

out-of-the-box for most applications. For example, recording the value of pointers returned

from memory allocation is necessary for applications such as SpiderMonkey, but would be

detrimental for the SDL games.

One possible idea would be to run the program normally, collecting data about the

program for later use during record and replay. For example, analysing control flow in-

formation to determine parts of the program that are affected by certain system calls, or

performing data flow analysis to determine where the data returned from certain system

calls is used.

This is both a technical and philosophical challenge for which it is clear there is no

perfect solution.

6.3 Summary

Given the difficult nature of finding and explaining bugs, the need for techniques to aid in

the discovery of such bugs is ever present. With programs becoming progressively larger

and more complicated, improving upon existing techniques is crucial. The work presented

here has demonstrated that the introduction of weak memory models is not impossible to

work around, and that there is still much room for improvement with regards to record

and replay. With a little determination, tools can be created to help stamp out bugs in

even the most complicated programs.
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[MGT+17] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazières, and

Mendel Rosenblum. Towards practical default-on multi-core record/replay.

125



In Yunji Chen, Olivier Temam, and John Carter, editors, Proceedings of the

Twenty-Second International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS 2017, Xi’an, China,

April 8-12, 2017, pages 693–708. ACM, 2017.

[Mic18] Microsoft. Understanding intellitrace part i: What the @#$% is intel-

litrace? https://blogs.msdn.microsoft.com/zainnab/2013/02/12/

understanding-intellitrace-part-i-what-the-is-intellitrace,

2018.

[Moz18] Mozilla. Spidermonkey. https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/SpiderMonkey, 2018.

[MPN13] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. Compiler test-

ing via a theory of sound optimisations in the C11/C++11 memory model.

In Boehm and Flanagan [BF13], pages 187–196.

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. In Ferrante and McKinley

[FM07], pages 446–455.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In Draves and van Renesse [DvR08],

pages 267–280.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads

programming - a POSIX standard for better multiprocessing. O’Reilly, 1996.

[ND13] Brian Norris and Brian Demsky. CDSchecker: checking concurrent data

structures written with C/C++ atomics. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming Sys-

tems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, In-

dianapolis, IN, USA, October 26-31, 2013, pages 131–150, 2013.

[ND16] Brian Norris and Brian Demsky. A practical approach for model checking

C/C++11 code. ACM Trans. Program. Lang. Syst., 38(3):10, 2016.

[NMS16] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational se-

mantics for C/C++11 concurrency. In Eelco Visser and Yannis Smaragdakis,

126



editors, Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOP-

SLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30

- November 4, 2016, pages 111–128. ACM, 2016.

[NPC05] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously

recording program execution for deterministic replay debugging. In 32st In-

ternational Symposium on Computer Architecture (ISCA 2005), 4-8 June

2005, Madison, Wisconsin, USA, pages 284–295. IEEE Computer Society,

2005.

[OJF+16] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,

and Nimrod Partush. Lightweight user-space record and replay. CoRR,

abs/1610.02144, 2016.

[OJF+17] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and

Nimrod Partush. Engineering record and replay for deployability. In 2017

USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,

CA, USA, July 12-14, 2017., pages 377–389, 2017.

[Ora10] Oracle Corporation. Analyzing program performance with Sun WorkShop,

Chapter 5: Lock analysis tool. http://docs.oracle.com/cd/E19059-01/

wrkshp50/805-4947/6j4m8jrnd/index.html, 2010.
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