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Abstract

Relatively little attention has been given to the short-term load forecasting problem of pri-

mary substations mainly because load forecasts were not essential to secure the operation

of passive distribution networks. With the increasing uptake of intermittent generations,

distribution networks are becoming active since power flows can change direction in a some-

what volatile fashion. The volatility of power flows introduces operational constraints on

voltage control, system fault levels, thermal constraints, systems losses and high reverse

power flows. Today, greater observability of the networks is essential to maintain a safe

overall system and to maximise the utilisation of existing assets. Hence, to identify and

anticipate for any forthcoming critical operational conditions, networks operators are com-

pelled to broaden their visibility of the networks to time horizons that include not only

real-time information but also hour-ahead and day-ahead forecasts. With this change

in paradigm, progressively, large scales of short-term load forecasters is integrated as an

essential component of distribution networks’ control and planning tools.

The data acquisition of large scale real-world data is prone to errors; anomalies in

data sets can lead to erroneous forecasting outcomes. Hence, data cleansing is an essential

first step in data-driven learning techniques. Data cleansing is a labour-intensive and

time-consuming task for the following reasons: 1) to select a suitable cleansing method

is not trivial 2) to generalise or automate a cleansing procedure is challenging, 3) there

is a risk to introduce new errors in the data. This thesis attempts to maximise the

performance of large scale forecasting models by addressing the quality of the modelling

data. Thus, the objectives of this research are to identify the bad data quality causes,

design an automatic data cleansing procedure suitable for large scale distribution network

datasets and, to propose a rigorous framework for modelling MV distribution network

feeders time series with deep learning architecture. The thesis discusses in detail the

challenges in handling and modelling real-world distribution feeders time series. It also

discusses a robust technique to detect outliers in the presence of level-shifts, and suitable

missing values imputation techniques. All the concepts have been demonstrated on large

real-world distribution network data.
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Chapter 1

Introduction

‘It is very difficult to predict, especially the future’. Nils Bohr

1.1 Motivation and objectives

1.1.1 The Kent Active System Management project

The motivation for this work originated from a year and a half collaboration with UKPN

in the KASM project. The KASM project is a LCNF tier 2 project. The project aimed to

carry out a range of technical innovation trials to demonstrate more advanced operations

and planning techniques for 132 and 33 kV East Kent’s networks. The East Kent area in

the South East of England region is a good example of how the uptake of distributed gen-

eration is changing the way electricity networks operate. In the area, electricity networks

face increasing operational and planning challenges due to large amounts of intermittent

wind and solar generation being connected to the distribution network where local de-

mand is limited. Since 2013, the region has experienced increasing volumes of renewable,

with wind and PV generation connecting to transmission and distribution networks. Be-

sides, the area is home to three HVDC interconnectors to mainland Europe, with one

1
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Figure 1.1: Chronology of intermittent generation connection in South East of England

more planned in 2020. Distribution and transmission networks are highly interconnected

in the region, which has resulted in significant interdependence between transmission and

distribution networks in the area. Since 2016, more than 800MW of wind and solar gen-

eration are connected to the distribution network, as reported in Fig. 1.1. However, since

2014, UKPN has been able to provide only a few connections, and new offers can only be

scheduled beyond 2020. The main reason for new connections being difficult to accom-

modate in the South East of England is the system congestion that part of the network

experiences under N − 1 operating constraints. In the area, distribution and transmission

networks are highly meshed and interconnected. A large portion of the 132kV distribu-

tion networks operates in parallel with the 400kV transmission network as exhibited in

Fig. 1.2. As a result, power flows on either network can lead to post-fault overloads on

the other. Additionally, the transmission network in the area has three HVDC intercon-

nections with continental Europe, over which market forces almost exclusively determine

the flows. One future HVDC connection is planned in the area for 2020. The variability

of power flows of intermittent, and interconnector flows introduce various operational con-
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Figure 1.2: Distribution and transmission networks interdependency in East Kent operat-
ing area.

straints in the area such as voltage control, system fault levels, thermal constraints and

high reverse power flows. The last few years have seen several GSP come under pressure

due to high levels of reverse power flow. In practice, the reverse power flow capability of

primary transformers is limited to 66.3% of the rated capacity of the transformer. The

reverse power flow constraint is the main driver for curtailing ‘green power’ during the

outages maintenance season. Hence, the following section investigates the causes of the

reverse power limitations imposed on grid-transformers.

Reverse power flow is the active power flowing from the MV winding to the HV

winding of a distribution network power transformer. Transformers have a thermal rating

limit that should not be exceeded; this rating being symmetrical, it does not depend on

the direction of the power flow. Therefore, in theory, the reverse power flow capability of

HV and primary transformers should be limited by the nameplate rating of transformers

and post-fault short-term overloading considerations. However, additional limiting factors

such as OLTC mechanism and DOC protection settings prevent power transformers from

carrying their full reverse power capability. The OLTC mechanism often found in primary

transformers (33/11kV) can constrain the transformer’s reverse power flow. The OLTC
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is used for voltage regulation (i.e. load drop compensation) and/or phase shifting. It

varies the transformer ratio during energised condition using the make before break contact

concept. The transformer’s ratio is changed by varying the numbers of turns either on

the primary or secondary winding of the transformer. A transition impedance is used as

an adjacent bridging tap to transfer load from one tap to the other without disruption or

noticeable change in the load current. There are two types of OLTC: the reactor type and

the high-speed resistor type [42]. The high-speed resistor tap-changers are categorised as

either double-resistors or single-resistor arrangements. The resistor and reactor are used

as an impedance to limit the circulating current generated at bridging positions. While

the reactor and double-resistors tap-changer type do not alter the inherent symmetrical

attribute of transformers, the single-resistor type used in the asymmetrical pennant cycle

transition method reduces the transformer reverse power flow capability [65].

In [87], non-linear optimisation models are used to compute the reverse power

flow capability for one type of single-resistor tap changer which is installed on the HV

side of a primary transformer. The optimised reverse power flows were computed for

various bridging resistors, HV side windings configurations, transformers sizes and vector

groups. The study shows that reverse power capacity can be reduced as little as 20% of the

transformer nameplate rating. Also, the results demonstrate that Dy11 transformers have

greater reverse power flow capability than Yy0 transformers. Depending on the resistance

value and the size of the transformer, the optimised reverse power flow capability for Dy11

transformers can reach 90% of the transformer nameplate rating while the reverse power

for Yy0 transformers only extends as far as 66% of the transformer nameplate rating. In

mesh or ring networks with multiple infeed points, DOC relays are placed in locations

where the direction of fault currents is likely to change. They also play an essential role as

back-up protection, sensing high impedance fault currents (currents that are lower than the

nominal current). The pick-up settings of DOC relays can impose very challenging reverse

power flow constraints. These relays are designed to operate for the minimum expected

fault level at their location point. Since DOC relays typically use SI IDMT characteristics,

the relay current setting is selected to sense for at least half of the minimum expected fault
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level, which can be very low in some grid locations [121]. The reverse power restriction

for accommodating distributed generation on 33kV to 132kV distribution networks was

investigated in [120]. UKPN trialled a solution that combines load blinding scheme with a

DOC relay. A Directional Voltage-Dependent Overcurrent (DVDO) scheme was added to

the solution to prevent the maloperation of the scheme in the presence of high resistance

fault.

1.1.2 Research motivation

The large amount of distributed generation connecting to the East Kent network has

eroded the capacity margin that existed in the region. The congestion management issue

on this complex and interconnected network has become increasingly challenging due to

the high volatility of power flows on this part of the network. To overcome the congestion

problem during N − 1 operating conditions, UKPN investigated several technical solu-

tions. The cost associated with most of the asset-based solutions were prohibitive or the

solutions ineffective. For instance, the reinforcement of the Canterbury North site with

the installation of a third SGT was found to exceed £20m mainly due to time constraints.

The transfer of the excess power to the nearest SGT site was investigated, and the asso-

ciated cost was estimated at £45m. Other technical solutions such as adding additional

N−1 intertrip circuits were investigated and rejected due to their prohibitive costs. Active

impedance devices and quad-boosters were studied and found to be an ineffective solution.

In addition to the congestion management issue, control engineers and planners

have expressed concerns in managing the network in short-term and near-real-time due

to lack of system visibility. The range of operating scenarios has increased as well as the

uncertainties related to intermittent generation, the power injection from interconnector

and the local demand. Short-term planning studies have become challenging and time-

consuming when performed in the usual manual way. The impacts on system operation

have affected the regional DNO, the TSO and the renewable generators of which the output

is occasionally constrained as a preventive action. This has led UKPN, the regional DNO,
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to develop the innovative project KASM.

The project integrates a new Inter-Control Centre Communication Protocol (ICCP)

link which enables real-time data exchange between National Grid Company (NGC), the

TSO and UKPN. A new CA engine was integrated alongside the DMS in the UKPN control

room. The CA computes online power flows on the 400 kV, 275 kV, 132 kV, 33 kV, and

11 kV networks in East Kent area and prepares contingency analysis studies within near

real-time operational time frames. The KASM solution also incorporates new forecasting

modules that provide STLF and short-term wind and solar generation forecasts [74]. Ini-

tially, the project was planned to span over a three years period starting February 2015 but

was extended for six months. During the project development, many unexpected difficul-

ties arose, and while the project was evolving from the conceptualisation and specification

stage to the implementation and integration stage, various data quality issues transpired.

By nature, KASM was a data-driven project, and its success lied essentially on two data

properties: 1) the data consistency between the network planning tool (Power Factory)

and the operational DMS (PowerOn); the data from these two systems are merged in the

CA engine to create a complete dynamic model of the network (significant development

time shared between UKPN and the CA’s manufacturer, was spent to handle inconsis-

tencies and discrepancies between systems) 2) The accuracy of the measurements used to

estimate the state of the network in near-to-real-time and to train and produce accurate

forecasts. The data quality issues which were described as in [74] have greatly motivated

the present work.

The STLF modules were entirely developed by the CA’s manufacturer commis-

sioned to deliver the project. However, emerged the need for a UKPN’s team member

to design the factory acceptance tests (FAT) for the STLF modules. Soon, it transpired

that no one within the organisation, including within the innovation team was qualified

or had any prior experience (even in broad terms) with forecasting. Thereof, the situation

revealed a knowledge gap. Since someone was required to initiate the investigation on

the subject to plan some proven and efficient factory tests, this research project took off.

While the manufacturer did not communicate to the team the technology that was used to
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develop the forecasters, intuitively, the ANN technology was investigated first. Later on,

it appeared that the intuition was good since the manufacturer did use ANN to develop

the STLF module.

KASM and the Electricity Flexibility and Forecasting System (EFFS) project

conducted by Western Power Distribution (WPD) are two innovation projects that imple-

ment STLF at the distribution level. The latest is due for completion in January 2021.

There is no doubt that future innovation projects will also require short-term load and

generation forecasting at various timescales and in diverse applications. Thus, predic-

tive analytics will become an integral part of distribution networks control and planning

tools soon. Predictive analytics is essential to make the grid smarter, and the range of

innovation that can be built on the energy industry Big Data is unlimited.

1.2 Literature review

The electric power industry uses the term STLF to refer to the estimation of the system

demand over a time horizon ranging from less than one hour to one week. System demand

concerns the electricity consumption of a large geographical area where the load is aggre-

gated across an entire region. STLF has been used for decades by transmission system

operators TSOs, and since the late sixties, significant research has been devoted to the de-

velopment of methodologies for the short-term forecast of system load [23]. STLF plays an

essential role in load dispatching, reserve allocation, security assessment, generation plant

scheduling and unit commitment decisions. Various techniques were developed starting

in the mid-sixties to predict system load power grids. STLF techniques were divided into

five broad categories: multiple linear regression, spectral analysis, stochastic time series,

exponential smoothing, and state-space methods (see e.g. reviews in [1, 97]). Except for

spectral analysis and multiple linear regression, these techniques fell in the realm of statis-

tical methods and rely on the assumptions of stationarity and linearity of the underlying

process. Thanks to Box and Jenkins’ works, a class of models capable of handling nonsta-

tionary processes were developed (see e.g. [20]). Soon, ARIMA, Kalman filter [25,76] and
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general exponential smoothing [32] became the preferred modeling approaches for elec-

tricity demand. Nowadays, short-term load forecasting statistical models are built upon

two main modeling frameworks, the seasonal ARIMA class models [28,92,98] and the ex-

ponential smoothing class models [36,55,75,114]. Meanwhile, short-term load forecasting

based on artificial intelligence (AI) approaches took on momentum with ANN receiving

the largest share of attention due to their universal ability to learn complex nonlinear

functions. Nonlinear modelling of electricity load data has long been claimed to be useful

because hourly and temperature dependencies are assumed nonlinear. In [68], Hipper et

al provide a comprehensive list of references on ANN applications with the review of 40

journal articles that reported the investigation and application of neural network to the

short-term load forecasting problem. Recently, ANNs have evolved into DNN with the

emergence of powerful learning architectures such as LSTM and CNN. With the advent

of smart metering, large amounts of high dimensional data are available to the research

community which has dedicated most recent studies in the implementation of frameworks

to advance the challenging problem of short-term forecasting volatile energy demand of

loads connected to low voltage distribution network.

In [108], Shi et al. made a first attempt in addressing household load forecasting

by proposing a pooling-based deep recurrent neural network framework. The proposed

framework can be assimilated to a data augmentation technique. It aims to tackle the

overfitting issue associated with DNNs by utilizing correlations and interactions between

neighbouring households as a mean of compensating for insufficient sample sizes. Although

it involves a data cleaning process, the steps are taken and its effect on the results are

not clearly described. In [81], a framework based on LSTM technology is proposed to

address the short-term load forecast of individual residential households. An interesting

attempt to visualize the internal states of the LSTM and track daily consumption patterns

is presented in the paper. Although it was not discussed, it would have been interesting

to investigate if LSTM internal states could potentially be an artificial disaggregation of

the electricity demand to individual appliances consumption. Here again, there was no

indication regarding the cleaning of the data.
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In [24], Mengmeng et al. propose an interesting study that sets the problem of

multistep forecasting strategies rigorously by formulating the day-ahead load forecast of

commercial buildings with both, recursive and direct strategies. The study compares the

results of the 24-h forecasts when forecasts are generated with SARIMAX, LSTM and

CNN models. Both architectures, CNN and LSTM, were configured into recursive and

direct multistep strategies. The direct multistep implementation of CNN is reported to

perform best on average, but an equally important outcome is that LSTM performs better

in a recursive configuration than in direct multistep implementation. A one-year period of

historical data with 5% missing data was used to predict consumption on weekdays only.

Missing values were handled by listwise deletion. Listwise deletion consists of removing

all time-stamped rows for which one or more observations are missing. In the context of

time series, listwise deletion produces an irregular spaced time series which can affect the

structural dependencies of the series. The author overcame the aforementioned issues by

creating multiple sections of time series bounded by the missing observations.

Demirhan et al. [38] were specifically concerned with the impact of missing data

estimation on the accuracy of solar irradiance short-term forecast, identifying the im-

putation methods that generate the best estimations of solar irradiance missing values.

They performed a comparison and evaluation of 36 univariate imputation strategies to

real complete solar irradiance datasets. Imputation strategies include simple imputation

with mean, mode and median, interpolation, Kalman filtering, Kalman smoothing, ran-

dom sampling, persistence, weighted moving average and seasonal decomposition. Several

rates of missing data were achieved artificially, and the localization of missing observa-

tions was spread strategically across complete data. The study has identified interpolation,

weighted moving average, and Kalman filtering as the most suitable imputation strate-

gies for solar irradiance dataset. In addition, Kalman filtering, Kalman smoothing and

interpolation imputation are reported to be the methods that achieve the most accurate

estimates for hourly solar irradiance. The authors did not consider structural breaks in

the investigation but suggested the topic as a direction for future research.

In [104], Rahman et al. address the problem of training medium to long-term resi-
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dential and commercial building electricity consumption forecasting models in the presence

of small and large gaps (segments) of missing observations in the hourly training dataset.

Small gaps are imputed using linear interpolation while segment imputation is performed

using a scheme based on LSTM model. The algorithm identifies the segment of missing

values then estimates the missing observations as the weighted average of predictions pro-

duced by training two LSTM models: one with the data before the segment and the other

with data after the segment. The main issues with this approach are that 1) the data

is assumed to experience a unique segment of missing values and 2) the location of the

segment must be such that the two training datasets have a decent sample size to capture

the features of the underlying process.

One of the few studies investigating the impact of outliers and level-shifts on one

day ahead forecast of system load can be found in [34]. The authors identified outliers to

be the aftermaths of abnormally low demand due to a slackening of industrial output while

level-shifts were associated with the winter load growth. The authors proposed a robust

filtering algorithm based on the Kalman filter, which allows outliers to be filtered and

replaced with estimates generated by the filter. The robustification of the filter is achieved

by using the one-sided Hampel function, which filters only large negative residuals that

were identified as the most dangerous contamination for the predictive model.

Recently, Akouemo et al. proposed in [3] two data cleansing procedures tested

on natural gas consumption series. Their implementations are based on ARX models

and ANN models. The cleansing algorithms consist of two phases; first, an iterative

process identified outliers one-by-one using a hypothesis testing procedure on residuals.

At each iteration, the outlier is replaced using a ‘naive interpolation’. The iterative process

continues until no outlier can be found, and is followed by a second phase where all outliers

are removed and imputed using either ARX or ANN.

Relatively little attention has been given to the short-term load forecasting prob-

lem of primary substations, probably due to the fact that load forecasts were not essential

to secure the operation of passive distribution networks. Nowadays, with the increasing
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uptake of intermittent generations, distribution networks are becoming active since power

flows can change direction in a rather volatile fashion. High shares of solar PV and wind

generation are connected at all voltage levels in distribution networks, resulting in sub-

stantial uncertainty in their planning and operation routine [44]. The volatility of power

flows introduces operational constraints on voltage control, system fault levels, thermal

constraints, systems losses and high reverse power flows [44,73]. To maintain a safe overall

system and maximize the utilization of existing assets, greater observability of the net-

works is required. DNOs are compelled to broaden their visibility of the networks to time

horizons that include not only real-time information but also hour-ahead, day-ahead up to

week-ahead forecasts. Also, distribution networks operators are investigating innovative

ways of operating their networks such that the delivery of electricity to consumers remains

secure and reliable, networks remain resilient to fault conditions while connection fees are

kept as low as possible. With this change in paradigm, short-term load forecast technology

is becoming an essential tool that can assist network operators and planners in identifying

and anticipating any future critical operational conditions.

In [33], an earlier application of distribution feeder load forecasts is described.

The article addresses the volt/var control problem and proposes a scheme that makes use

of one-step-ahead forecast to optimize capacitors switching time. In the article, Civanler

et al. adopted a time series decomposition approach for the modelling of industrial and

residential feeder load. The article highlights the salient features associated with residen-

tial and industrial loads data with the main focus being on the design of a suitable model

for the two types of feeders.

In [46], the treatment of bad real-time load readings is raised. Bad observations

are said to be caused by thunderstorms or communication transmission outages. These

outliers are detected and corrected based on specified upper/lower limits defined by offset

tolerances for the normal load profiles. Chen et al. [31] describe an investigation of forecasts

improvement of HV substation load where data quality enhancement is at the centre of

the study. The article reports up to 20% of bad data and inaccurate measurements in the

substation load historical data. A feeder load data correction framework is proposed; bad
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data are classified in two categories: outliers that are easy to detect (null data points or

consecutive constant measurement) and those that are difficult to detect (subtle spikes). A

detection strategy is developed for each type of outliers. The first outlier detection method

uses thresholds built upon Chebyshev’s inequality while the second compares typical daily

and weekly patterns extracted by Fourier Transform from the partially cleaned data and

compare the typical load curve to the raw data. Removed outliers are imputed using a

linear transformation of the typical daily pattern. Forecasts are produced for raw and

preprocessed testing datasets, and accuracy is reported for both data. It was applied to a

scenario with a limited test set and in the absence of network configuration events.

In [41], Ding et al. focus on providing a steps-by-steps model design procedure

to proficiently train and test ANN-based STLF for medium and low voltage distribution

feeders. Its main contributions are twofold. The authors introduced an input variable

selection methodology based on Gram-Schmidt orthogonalization and random probe tech-

niques and a model selection based on virtual leave-one-out. The problem of missing

values is handled by replacing missing observations with data from a similar day. In this

study, 24-h ahead forecasts for two MV distribution feeders are produced using a recur-

sive forecasting strategy. Forecasts accuracy are evaluated with the MAPE metric and

reported as 15.5% and 10.3%. Outlier detection, structural breaks or level-shifts were not

considered.

Today, short-term load forecasters are deployed at a large scale where hundreds

of primary substation load time series data are to be modelled and forecast. In [73],

Huyghues-Beaufond et al. provide an example of a real-world solution where a large num-

ber of MV distribution feeders forecasts are used for look-ahead contingency analysis

studies. Real-world time series modelling is known to be a challenging task and MV

distribution feeders time series are no exception. First, there are practical challenges asso-

ciated with the manipulation of time series data (i.e. timestamps format issues, duplicate

data points, timezone and daylight saving issues, diverging sampling, etc.). In addition,

primary substation load profiles are mixtures of industrial, commercial and residential

customers [77, 110]. Feeder data also have typical time series characteristics, such as a
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Figure 1.3: Real-world MV distribution feeders training and testing datasets

slow trend due to load growth over the years, several seasonal effects, annual cycle and

pronounced dips around holidays periods [68]. Beside complex seasonal patterns, the data

structure might change over time due to load transfer requirements or network reconfig-

uration operations [11]. Network reconfiguration is bound to happen from time to time

since it is essential for 1) securing the operation of the network and 2) ensuring reliable

energy delivery to the end consumer. Structural breaks in feeder time series affect the level

of the data and occasion level-shifts; these features are present in historical data, and they

will arise in future data. Thus, level-shifts have a double contribution to decreasing STLF

accuracy. Their presence in the training and the testing datasets can affect, respectively,

the estimation of the model parameters and impact on the accuracy of forecasts [34]. An-

other difficulty arises when one or multiple level-shifts occur in feeder series during the

data preprocessing stage, particularly during the cleaning process, during which outliers

are detected and removed from raw data and missing observations are estimated and im-

puted. Level-shifts affect outlier detection effectiveness if the detection procedure does

not explicitly account for them. An example of real-world data is shown in Fig. 1.3.



14 Chapter 1. Introduction

1.3 Organisation of the thesis

Following this introduction and literature review, the remaining chapters of the thesis are

organised as follows:

Chapter 2 provides a brief overview of statistical time series modelling tech-

niques with a focus on modern methods. Hence, Prophet and TBATS models used for

gaps of missing value imputation are discussed in detail.

Chapter 3 introduces the various components of deep network architectures in

the context of regression problems. Also, the LSTM model used to produce point-forecasts

is described.

Chapter 4 discusses the challenges that practitioners face when choosing a data

cleansing strategy for real-world data. It also presents the missingness mechanism concept

introduced by Little and Rubin. The assumption made on the missingness mechanism in

this work is given, and the three main imputation techniques used to impute missing values

in MV feeders’ load data are described.

In Chapter 5, the MV feeders load datasets and weather datasets are introduced

and explored. The operations used to prepare the datasets for short-term load forecasting

are discussed, in particular, the challenges associated with the formatting of date-time

objects (i.e. time-zone and DST) are described. Also, the root cause of the missing

observations in the MV feeders load datasets is investigated in detail. GIS and domain

knowledge are used to provide a possible root of the cause of the missing observations in

the MV networks datasets.

Chapter 6 presents an automatic approach to detect and remove outlying ob-

servations in large scale MV feeders’ time series, at an unknown location. The method

combines two algorithms: a robust design of the binary segmentation algorithm which

detects level-shifts in the data and, the Tukey’s standard rule. The performances of the

proposed method’s and, an adapted version of outlier detection by hypothesis testing pro-

posed in [4], are compared. The results have been submitted for publication. In addition,
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a semi-automatic outlier detection algorithm is proposed and described, it is applied to a

few MV feeders data, and the algorithm’s performance is demonstrated.

In Chapter 7, the framework used for designing and training 342 MV feeders

short-term load forecasting models is described step-by-step. All the choices made during

the design process are explained. The implementations of the NROV and NAk-foldV, two

rigorous model evaluation procedures adapted for time series data, are described. The

MV feeders data are preprocessed with eight data cleansing strategies and used to train

short-term load forecasters; the performance of 24-hours-ahead forecasts are evaluated and

discussed using robust statistics. The results have been submitted for publication.

In Chapter 8, TBATS and Prophet modelling techniques, and, Imputation by

windows, a novel imputation approach, are used to fill gaps of missing values in train-

ing datasets. The imputation strategies impacts on one-step-ahead and 24-step-ahead

forecasts are discussed.

Finally, Chapter 9 summarises the findings in this work with a brief overview

of the future research directions.

1.4 Contributions of the thesis

This thesis investigates the challenges associated with the STLF of large scale MV distri-

bution feeders. It describes a detailed study of data cleansing and short-term forecasting

for a large-scale MV distribution feeder dataset. To the best of author knowledge, the

proposed study has not been conducted before. The paper also introduces two robust and

computationally efficient data cleansing approaches for STLF of distribution feeders and

performs and extensive analysis. The contributions of the thesis can be summarised as

follows:

• It provides an in-depth discussion of the challenges associated with producing accu-

rate short-term load forecasts at the medium voltage distribution level using real-
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world data.

• All studies are performed on real-world datasets comprising 606 (reduced to 342 MV)

feeders, with measurements spanning two years and one half. The analysis simulta-

neously addresses outlier detection, missing values imputation, level-shift detection

and short-term forecasting.

• An unsupervised automatic outlier detection for univariate time series data is pro-

posed. It combines binary segmentation and an adapted version of the boxplot

labelling rule to detect outliers in the presence of unknown numbers of level-shifts in

the data. It is robust and has low computational complexity. The description of the

method also includes a general formulation for the stopping criterion of the binary

segmentation algorithm that is suitable for fitting L1-norm models. In addition,

a semi-automatic outlier detection technique is introduced. The proposed method

uses the median filter technique.

• An adaptation of Nested Cross-Validation to time series data named NROV, is pro-

posed to tune the parameters and evaluate the models’ generalisation performance.

A comparison has been performed against a NAk-foldV.

• The performance of three missing data imputation techniques (Unconditional mean,

Kalman smoothing and Hot Deck) is compared in combination with the outlier

detection framework.

• The accuracy of short-term load forecasts is quantified and compared across the full

ensemble of MV distribution feeders. Consistency of performance across different

feeders and its dependence on outlier and imputation methods is analysed.

1.5 List of Publications

Journal
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Chapter 2

Overview of modern statistical

time series models

‘The best qualification of a prophet is to have a good memory’.

Marquis of Halifax

2.1 Introduction

Single observations y = {yt}t∈ZZ recorded sequentially over regular time increments are

referred as univariate time series. Most time series are stochastic in that the future is

only partly determined by past values. Many time series forecasting procedures are based

on a statistical model that provides a stochastic data generating process which may be

used to produce an entire probability distribution for a future time period n + h with h

referred as the forecasting horizon. An intrinsic feature of a time series is that adjacent

observations are usually statistically correlated thereof not independent.

Univariate time series models come under different classes of stochastic frame-

works. ARIMA are autoregressive processes that provide a wide class of generative mod-

els for describing stationary time series. Stationary stochastic processes are processes for

18
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which the statistical properties of the underlying model do not change over time. There are

two forms of stationarity: strong stationarity and weak stationarity. A discrete stochastic

process y = {yt}t∈ZZ is strongly stationary if its associated probability densities are unaf-

fected by time translation. A stochastic process is said to be weakly stationary if its mean

E[y] and autocovariance Cov(yt, yt+k) are finite and constant through time. The variance

Var[y], is a special case of the latter when the lag k is zero. A process is second-order

stationary if E[y] and Var[y] are a finite constants for all t. In real-world applications and

particularly, in the electrical power industry, the stationarity assumption does not hold,

which has led to the development of more flexible generative models that can account for

nonstationarity in the underlying stochastic process.

Central to the statistical treatment of nonstationary time series are the state

space models which provide a flexible framework that captures many of generative models

as special cases, including autoregressive models, structural time series models and linear

innovations state-space models. Structural time series models take full advantage of state-

space frameworks [62]. In these frameworks, univariate time series models are formulated

in terms of unobserved (latent) components for which a stochastic model is assumed. The

level, trend and seasonal patterns are the unobserved components which represent the

salient features of univariate time series. Similarly, the innovation state space approach

of exponential smoothing describes a class of stochastic models that decompose univari-

ate time series on weighted combinations of past unobserved components, with recent

observations given relatively more weight than older [75].

Thus, Bayesian modeling plays an important role in relation to the prediction

and filtering of time series since conditional distributions contain all available information

about future values [43]. In Bayesian modeling, one aims to specify a posterior distribution

by defining a conditional density function given in Eq. 2.1 conditioned on the data (obser-

vations) y with a set of parameters θ explored by a Markov Chain. Hence, the Kalman

filter has been widely advocated for time series filtering, prediction and smoothing. It

is a powerful algorithm for the statistical treatment of structural time series models. It

provides a framework for prediction error decomposition using a straight application of
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Bayes rule

p(α0:n|y1:n) =
p(y1:n|α0:n)p(α0:n)

p(y1:n)
(2.1)

p(α0:n|y1:n)∝p(y1:n|α0:n)p(α0:n) (2.2)

where p(α0:n) is the prior distribution defined by the dynamical mode, p(y1:n|α0:n) is the

likelihood model for the measurements and p(y1:n), is the normalization constant. The

next sections introduce Prophet and TBATS models and the general formulation of state

space models for discrete signals. These models are stochastic by nature; they are used in

this work either to impute gaps of missing values in MV distribution feeders data or to

short-term forecast the load data. While TBATS is a univariate model, Prophet handles

exogenous variables such as weather data and dummy variables. Furthermore, Prophet

accommodates change-points in its formulation. Because periodic movements are an im-

portant feature of feeder time series, it was essential to consider in this experiment, models

that are capable of modelling data with multiple seasonalities. It is common knowledge

that electricity data exhibit repeating intraweek and intraday cycles. The methods that

were considered aim to capture this feature of double seasonality. Multiple seasonal time

series models divide in two main categories as displayed in Fig 2.1: regression and state

space. Multiple linear regression (MLR), generalized additive model (GAM) and Prophet

models belong to the regression category. Multiple seasonal ARIMA, double seasonal

Holt-Winters (DSHW) and TBATS models are classified in the state space category. As

shown in Fig 2.1, Prophet and TBATS are the most recent multiple seasonality models

available in the two aforementioned model categories. Both model are from generative

modeling approach. Nevertheless, before getting in the details of the model, it is essential

to recall the state-space framework.
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Models for multiple seasonality time series

Figure 2.1: Chronology of time series models

2.2 Linear Gauss-Markov state-space model

The Bayesian inference provides the set of equations for computing the posterior distri-

butions given the set of measurements once the model specifications have been identified.

The state space form provides the key to the statistical treatment of dynamic structural

models assumed to be Markovian. Let {y}nt=1 be a univariate nonstationary time series

generated by the state space model αt ∈ IR
p×1 for which equation are provided in Eq. 2.3

and Eq. 2.4.

yt = Ztαt + εt, εt ∼ N(0, ht), observation equation (2.3)

αt = Ttαt−1 +Rtηt ηt ∼ N(0,Qt), transition equation (2.4)

α1 ∼ N(a1,P 1), seed vector (2.5)

where the matrices and vectors Zt,Tt,Qt, Rt are the system matrices [43] and they are

usually time invariant in filtering and smoothing applications. In many cases Rt is the

identity matrix. The essence of state space models approach is to regard the observations

as made up of some latent (hidden) components and a irregular term. The state space

model associates each observation yt with a latent states vector αt ∈ IR
p×1, p being the

number of non-observable states and Tt ∈ IR
p×p the transition matrix. The transition

equation is the mechanism for creating the inter-temporal dependencies between the val-

ues of a time series. The irregular term εt describes the stochastic part of yt, it is assumed

to be from a Gaussian white noise. An assumption is that the state and observation

disturbance εt ∼ N(0, ht) and η ∼ N(0,Qt) are uncorrelated Cov(εt, ηt) = 0 and inde-
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pendent, observations are conditionally independent given the latent states and yt and αt

are jointly Gaussian processes. The system variables Zt,Tt,Qt and ht are chosen to repre-

sent a particular model and depend upon parameters that need to be estimated. Usually,

parameters are estimated by maximizing the Gaussian Likelihood function of the chosen

model. The seed states of the random vectors α1 are usually treated as random vectors

with a Gaussian distribution as indicated Eq 2.5. The Kalman filter provides a mean to

compute the conditional mean value at|t−1 = E[αt|y1, . . . , yt−1] and the covariance matrix

Pt|t−1 = Cov(αt|y1, . . . , yt−1) of state vector αt at each time step [7].

2.3 Prophet model

The generative model Prophet was proposed in [115] by Facebook to address the chal-

lenges of most stochastic time series models: the parameters tuning and the lack of model

flexibility. Prophet is a configurable model designed for non-experts forecasters that have

domain knowledge about the data-generating process but little or no experience with time

series models and methods. Prophet adopts a curve-fitting approach and decomposes the

series in three main components: the trend function gt, the seasonality function st and

the effects of holidays ht. The model accommodates piecewise trends, multiple seasonality

and exogenous regressors. The general form of Prophet model is

yt = gt + st + ht + εt (2.6)

where εt is the error term, accounting for changes to the signal not accommodated by the

model. The model combines the advantages of the generalized additive model (GAM) and

exponential smoothing formulation to create a robust and flexible model, with fast fitting

and easily interpretable parameters.
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Trend components

There are two models of the trend function available within the Prophet framework’s; a

piecewise logistic growth model g
(1)
t and a linear trend model g

(2)
t . Both formulations of

the trend accommodate S change-points at times sj with j = [1, . . . , S], where the growth

rate is allowed to change. The models are given with the following forms

g
(1)
t =

Ct
1 + exp(−(k + a(t)′δ)(t− (m+ a(t)′γ)) (2.7)

g
(2)
t = (k + a(t)′δ)t+ (m+ a(t)′γ) (2.8)

In the logistic growth model, Ct defines the expected capacity of the system at any point

in time, k is the base growth rate and m an offset parameter. Base growth rate and

offset are adjusted following each change-point. The vectors containing the rate and offset

adjustments are respectively δ ∈ IR
S and γ ∈ IR

S impose the signal continuity between

endpoints. The vector a(t) ∈ {0, 1}S is represented as follow

a(t)j =











1, if t ≥ sj

0, otherwise
(2.9)

The rate growth at any point t is given by k +
∑

j:t>sj
δj . The offset parameter m is also

adjusted for each change-points using the adjustment values in γ ∈ IR
S as follow

γj =



sj −m−
∑

i<j

γi





(

1−
k +

∑

i<j δi

k +
∑

i≤j δi

)

(2.10)

By default, Prophet detects automatically the change-points however, forecasters may also

finer control over the change-points detection process using dedicated input arguments.

Seasonal components

Prophet relies on classical Fourier series for modelling multiple seasonal patterns contained

in time series. Fourier series method is particularly convenient to model seasonalities
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because of the simplicity and periodicity of trigonometric functions, of course, the Fourier

series method is only defined for periodic functions. The Fourier transform is used to

convert a series into frequency components or harmonics. Typically, only a few frequencies

are needed to reconstruct the main features of a discrete signal. Seasonal effects are

approximated with the following expression

s(t) =

N
∑

n=1

(an cos(ωnt) + bn sin(ωnt)) (2.11)

where an and bn are independent and normally distributed random variables with mean

zero and standard deviations σn and ωn = 2πn/P are harmonics over period P (number

of cycles per units time i.e for yearly seasonality and hourly data P = 8766). A matrix

of seasonality vectors β = [a1, b1, . . . , an, bn]
T is constructed with 2n parameters to be

estimated. Each vector corresponds to the seasonal term computed at time t of the

historical or future data. Even though Prophet was initially designed to fit daily data,

if sub-daily data are used, daily seasonality will be fit automatically. Yearly, weekly and

daily seasonalities are fit with n = 10, n = 3 and n = 4 Fourier terms respectively.

Seasonality is selected depending on the historical data granularity and length.

Holidays and other regressors

A matrix of regressors is generated to include the effect of holidays in the models is

computed in a similar way as seasonality. Days surrounding the holiday (within a defined

window) are treated as holidays. A list of holidays needs to be provided to Prophet. An

indicator function is used to indicate if time t is during holiday i so that a parameter Ki

can be estimated to account for holiday effect on past and future values.

Model fit

Prophet model is set as a full probability model where the model of the observations and

the model of the parameters are both probabilistic. Prophet uses the Limited-memory
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Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) available in Stan code [26] to find the MAP

to specify the optimal parameters for the historical data. Stan code is a probabilistic

programming language for statistical modelling that offers users a suite of inference tools

for fitting models. It provides full Bayesian inference through No-U-Turn Sampler (NUTS),

an adaptive form of Hamiltonian Monte Carlo (HMC) sampler [71].

2.4 TBATS model

TBATS acronyms stand for Trigonometric seasonality, Box-Cox transformation [21], ARMA

errors, Trend and Seasonal components which are the key features of the models [37].

TBATS models are rooted in the exponential smoothing innovations state-space modelling

framework based on a trigonometric formulation. These models are capable of modelling

time series with complex seasonalities features [36]. The Box-Cox transformation is a class

of parametric power transformation used to normalize the data and correct skewness of

the data. Box-Cox transformation helps to constrain non-negativity conditions, normalize

variation in the seasonality, and linearise the trend. Let y
(λ)
t be the one-parameter Box-

Cox transformations on parameter λ ∈ [−5, 5] of the positive observation yt and described

as follow

y
(λ)
t =























(yt)
λ − 1

λ
, λ 6= 0

log yt, λ = 0

(2.12)
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The TBATS models are described as follow

y
(λ)
t = lt−1 + φbt−1 +

T
∑

i=1

s
(i)
t−mi

+ dt, (2.13)

lt = lt−1 + φbt−1 + αdt, (2.14)

bt = (1− φ)b+ φbt−1 + βdt, (2.15)

dt =

p
∑

i=1

ϕidt−i +

q
∑

i=1

θiet−i + et (2.16)

where s
(i)
t−mi

is the ith seasonal component, the components lt and bt represent the level

and the trend with damping time t respectively, b represent the long-run trend dt is the

ARMA(p,q) process for residuals to model correlated error process, et is a Gaussian white

noise. Each seasonality is modeled by a trigonometric representation based on Fourier

series. One major advantage of this approach is that it requires only two seed states

regardless of the length of period. Another advantage is the ability to model seasonal

effects of non-integer lengths. For example, given a series of hourly observations, one can

model leap years with a season of length 24 × 365.25. The seasonal part is given by the

following trigonometric equations:

s
(i)
t =

ki
∑

j=1

s
(i)
j,t , (2.17)

s
(i)
j,t = s

(i)
j,t−1 cos(wi) + s

∗(i)
j,t−1 sin(wi) + γ

(i)
1 dt, (2.18)

s
∗(i)
j,t = −s(i)j,t−1 sin(wi) + s

∗(i)
j,t−1 cos(wi) + γ

(i)
2 dt, (2.19)

wi = 2πj/mi (2.20)

where T is the number of seasonalities, mi is the length of ith seasonal period, ki is the

amount of harmonics for ith seasonal period, λ is the Box-Cox transformation parameter,

α, β are smoothing factors, φ is the trend damping, ϕi, θi are the ARMA(p, q) coefficients

and γ
(i)
1 , γ

(i)
2 are the seasonal smoothing. Trigonometric seasonality is advantageous as

it is more flexible, it reduces parametrization problem and supports non-integer seasonal

periods. ARMA processes are added in state space models to correct for correlation
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structure remaining in the residuals. Seasonal factors with frequency s are defined by

rotating states. For identification, the seasonal states set to sum to 0, reducing the required

states by 1. Seasonal Fourier terms with frequency s using q harmonics where q ≤ [s/2].

As a forecasting tool, optimizing over the full length series is unnecessary. Only the tail

of the series is necessary for producing good forecasts

2.5 Summary

This section has described the formulation of the generic linear state-space framework and

two generative models: TBATS and Prophet. Both models are fairly recent time series

models, they are used in later sections because of the models’ capability to fit seasonal

intraday time series that exhibit repeating intraweek and intraday cycles. Here, the term

‘seasonal’ refers to a set of periods for which demand is assumed to be identical. In both

formulations, seasonalities are modeled by a trigonometric representation based on Fourier

series.
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Deep regression

‘Artificial Intelligence is the new electricity’. Andrew NG

3.1 Problem statement

A learning problem is primarily defined upon the nature of its output. A regression

problem computes a target function f : IRn → IR that predicts a quantitative output. A

supervised learning algorithm receives two sets of data: a training set S of input and

target pairs {(x(i), y(i))}ni=1 where x(i) and y(i)are elements of the input space X and the

target space Y respectively and a test set S ′. While both sets S and S ′ are disjoints, they

are assumed to have been drawn independently from the same input-target probability

distribution DX ,Y . The goal of the learning algorithm is to find a hypothesis fS :X → Y

in the hypothesis space H that minimizes the training error with respect to the unknown

DX ,Y and the target function. Given a function f , a loss function L, and a training set S

consisting of n examples, the empirical risk minimization (ERM) problem select fS as

fS
.
= argmin

f∈H

1

n

n
∑

i=1

L(f(x(i)), y(i)) (3.1)

28
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The empirical error measures the average of discrepancies over all set of training pairs and

the output produced by the learning algorithm. In deep-learning, the learning algorithm

constructs a function f(x,Φ) that approximates y where Φ represents a collection of

adjustable parameters. Hence, the learning problem consists of finding the values of Φ

that minimizes LS [f(x,Φ)].

In practice, the performance of the algorithm on the training set is of little

interest since it must perform well on previously unseen inputs. Consequently, the testing

error LS′ [f(x′,Φ)] measures the generalisation performance of the learning algorithm on

a sample of pairs {(x′(i), y′(i))}mi=1 that were collected separately. A extra validation set is

drawn from the training set to validate the performance of the learning algorithm during

training.

3.2 Artificial neuron

Deep neural networks are non-parametric estimators that have become invaluable tools

for supervised learning. The building block of deep neural networks is the processing unit

called artificial neuron represented in Fig. 3.1 . Its model was motivated by a model from

neuroscience in which a cell receives multiple signals via synapses that fire (or not) with

a certain intensity depending on the input signals [105]. An artificial neuron with weights

{wj}nj=1 ∈ IR, bias b ∈ IR and activation function ψ: IR → IR is defined as the function

f : IRn → IR given by

f(x1, . . . , xn) = ψ

(

n
∑

i=1

xiwi − b
)

= ψ(〈x,w〉− b) (3.2)

where x = [xi]
n
i=1 and w = [wi]

n
i=1 are vectors. Nonlinear activation functions give neural

networks their universal approximation capacity. However, the choice of activation func-

tions affects heavily the performance of gradient descent-based optimization methods [105].
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Figure 3.1: Artificial neuron

3.3 Activation functions

Activation functions with monotonic variation, zero centred nature and suitable gradient

range are desirable properties of an activation function for improving training time and/or

guarantee the learning algorithm convergence [96]. At present, the most popular activation

function ψ is the ReLU, a non-saturating function defined as ψ = max(0, x). In past

decades, ANN used smoother bounded non-linearities such as σ(x) = (1 + e−x)−1 and

tanh(x) = (e2x − 1)(e2x + 1)−1 but ReLU typically learns much faster [85].

ReLUs are one-sided piecewise linear units that enable sparse propagation of

activation (by firing only a subset of neurons). This addresses the saturation problem

of the hyperbolic and logistic function and the resulting vanishing gradients [99]. Their

use improve gradients flow in the active part of the neural network and lead to better

generalization performance and faster computation time [5, 53]. The activation function

at the output layer often depends on the loss function L to be minimised. In regression

tasks, there is typically one linear unit at the output layer. Linear units are more suitable

for gradient-based learning algorithms because they do not saturate [54].
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Figure 3.2: FDNN

3.4 Deep feedforward networks

Deep neural networks are used for data modelling as an alternative to standard nonlinear

regression. Deep-learning methods have taken advantage of increasing amount of available

computation (with the advent of faster hardware such as GPU and data (with larger

training sets) and better learning regularization procedures (i.e. dropout). Deep learning

methods learn very complex functions by extracting multiple levels of features from raw

input data in a hierarchical fashion. Each level of features is obtained automatically by

composing elementary non-linear modules that each transform input data into a higher

level of features [85]. There are two mains type of deep-learning architectures: the feed

forward neural network is a directed graph whose connections are acyclic and the recurrent

neural network. Feed forward neural networks are hierarchical and parametric models

that apply at each layer an affine transformation to their inputs followed by a point-wise

nonlinear activation function. A representation of a FDNN architecture is provided Fig 3.2.

The network’s neurons are arranged in L∈ IN layers which are connected by weighted edges



32 Chapter 3. Deep regression

with each layer l ∈ {1, . . . , L− 1} containing Nl number of neurons and the dimension of

the input layer being d∈ IN, . The affine transformation W l : IR
Nl−1 → IR

Nl is defined by

the weighted edges matrix Ml ∈ IR
Nl×Nl−1 and the offsets or biases bl ∈ IR

Nl . Weighted

edges matrix and biases form the neural network architecture Φ given as

Φ = {(Ml, bl)}Ll=1 (3.3)

Let L(Φ) := L be the number of layers, Φ is a FDNN if L(Φ) is large. Given a nonlinear

activation function ψ : IR→ IR, the realisation of Φ with activation function ψ maps

Rψ(Φ) : IR
d → IR

NL , Rψ(Φ)(x) := xL (3.4)

where x0 := x is the vector of inputs with dimension d, xl = ψ(Mlxl−1 − bl) and xL =

MLxL−1− bL. Given a FDNN architecture where d, L and {Nl}Ll=1 are provided, training

the network consists of learning the affine-linear functions {W l}Ll=1 = {M l(·) − bl}Ll=1

yielding the network Φ : IRd → IR
NL such that

Φ(x) =W Lψ(W L−1ψ(. . . ψ(W 1(x)))), (3.5)

3.5 Training deep neural networks

Training deep neural networks involves solving difficult optimization problems where cost

surfaces are typically non-quadratic and high dimensional, with many local minima and

many saddle points surrounded by flat regions [54]. The full training procedure is illus-

trated in Fig. 3.3. Typically, regardless the initial conditions, poor local minima are rarely

a problem with large networks since the training algorithm reaches solutions of very sim-

ilar quality. The learning difficulties rise because of large number of saddle points and

the surface curves up in most dimensions. Gradient descent and quasi-Newton methods

are almost prevalently used to train deep networks and find satisfying minimum. The

most popular method for performing supervised learning tasks with gradient descent is
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backpropagation introduced by Rumelhart in [105]. The backpropagation algorithm is

used to computed the gradient of the loss function with respect to all network parameters

by applying the chain rule for gradients. The algorithm determines how to nudge the

parameters of the networks to cause the most rapid decrease to the loss function. Let

S = {xi, yi}ni=1 ⊆ IR
d× IR

NL be the training set made of n samples pairs. Let d = N0 ∈ IN,

N1, . . . , NL, L ∈ IN and ψ the activation function. Considering the hypothesis space de-

fined as

H := {Rψ(Φ) : Φ = {(Ml, bl)}Ll=1, Ml ∈ IR
Nl×Nl−1 , bl ∈ IR

Nl} (3.6)

We wish to find the empirical target function Φ(x) ≈ f such that

F (Φ) := fH,S = argmin
f∈H

n
∑

i=1

L(fΦ(x(i)), y(i)) (3.7)

where L : C(IRd, IRNL)× IR
d × IR

NL is the loss function. In practice, deep neural networks

are commonly trained with the backpropagation learning method that is based on gradient

descent algorithm [86, 122]. Backpropagation learning methods differ with the amount

of data used to compute the gradient of the objective function. Batch learning takes the

entire training set to perform an unique update at each iteration (or epoch) of the gradient

of the loss function w.r.t. the parameters Φ = {(Ml, bl)}Ll=1. The gradient is computed

as ∇ΦF (Φ) =
∑n

i=1∇ΦL(fΦ(x(i)), y(i)), the algorithm is guaranteed to converge to the

global minimum or a local minimum depending on the surface convexity. Backpropagation

adjusts the parameters Φ at each iteration t as follows

Φt+1 ← Φt − η∇ΦtF (Φt) for t ∈ IN (3.8)

where η ∈ IR is the learning rate, a hyperparameter that determines the size of the steps

to take to reach a minimum. Hyperparameters are parameters that appear in the training

objective function, but not in the network architecture. The learning rate η can be either

a constant or adaptive. Batch gradient descent can be very slow and intractable for large
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datasets that do not fit in memory. In contrast, the SGD updates the parameters for a

single training example i∗ ∈ {1, . . . , n} chosen uniformly at random at each iteration t.

The update is given as follow

Φt+1 ← Φt − η∇ΦtL
(

fΦt
(x(i

∗)), y(i
∗)
)

(3.9)

SGD is usually much faster than batch learning and often results in better solutions be-

cause the noise in the parameters updates enables the SGD to jump to new and potentially

better local minima [72]. SGD is recommended for process which the function being mod-

eled changes over time. Unlike, batch learning which does not detected changes, SGD can

track the changes and yield good approximation results. Nevertheless, the stochastic up-

dates of the parameters causes weight fluctuations around the local minimum preventing

full convergence to the exact minimum. The variance of the fluctuations is proportional to

the learning rate η. To reduce the fluctuations, mini-batches are used is practice. Batch

sizes are either fixed or gradually increased starting form a small size and an update is

performed for every mini-batch of p training examples.

ADAM: a first order gradient method

ADAM is an adaptive gradient method that performs a form of learning rate annealing [79].

It has become the default algorithm used across many deep learning frameworks due to its

computational efficiency. The method computes adaptive learning rates for each parameter

using exponential moving averages of the gradient mt and the squared gradient vt where

the smoothing parameters β1 ,β2 ∈ [0, 1) control the decay rates of these moving averages.

The moving averages are initialised with zero vectors causing their statistics to be biased

toward zero. Hence, Adam computes bias-corrected estimates m̂t and v̂t to counteract

the biases. ADAM is appropriate for non-stationary objectives and problems with very

noisy and sparse gradients. Given gt = ∇ΦtF (Φt,x
(k), y(k)), the gradient of loss function

F computed on a batch of data x(k), y(k) at iteration t, Adam updates the parameters as
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follow

Φt+1 ← Φt − η ·
m̂t

(
√
v̂t + ǫ)

(3.10)

where m̂t = mt/(1− βt1) is the bias-corrected first moment estimate and mt = β1 ·mt−1 +

(1− β1)gt is the updated biased first moment estimate,v̂t = vt/(1− βtv) the bias-corrected

second moment estimate and vt = β2 · vt−1 + (1 − β2) · g2t is the updated biased second

moment estimate. In [79], Kingma et al. propose default values for β1 = 0.9, β2 = 0.999

and ǫ = 10−8 (βt1 and βt2 denote β1 and β2 at the power t).

3.6 Bias and variance trade-Off

Any learning algorithm must be used in conjunction with procedures that maximise its

ability to generalize. Generalization is the estimator capability to predict well on test

data. As previously discussed, given the sample data S drawn from Dx,y, a natural

measure of the effectiveness of the hypothesis f(x;S) as a estimator of y can be com-

puted as the expectation of the mean-squared error (test error) over the training set S:

E
[

(y − f(x;S))2|x;S
]

[50]. The sources of error of the estimation f(x;S) can be assessed

via the bias/variance decomposition given as

E
[

(y − f(x;S))2|x;S
]

= (3.11)

E
[

(y − E[y|x])2|x;S
]

(noise) (3.12)

(ES [f(x;S)]− E[y|x])2 (squared bias) (3.13)

+ ES [(f(x;S)− ES [f(x;S)]]2 (variance) (3.14)

where E[y|x] is the expected estimator. Detailed derivation of the bias/variance decom-

position can be found in [50]. As can be seen in Eq. 3.13 and Eq. 3.14 respectively, the bias

term measures the expected deviation of an estimator from the true value of regression

function. It is a persistent error that the learning algorithm is expected to make when



36 Chapter 3. Deep regression

trained on a sample of fixed size n. The variance term provides a measure of the deviation

from the expected estimator value that any particular training data is likely to produce.

It is the uncertainty of the predictor. Hence, knowing that a finite sample S is used to

compute the regression estimator, the model is intrinsically uncertain as the estimate may

differ with a different training sample S ′′ ⊂ DX ,Y . Also, as the model complexity increase,

the estimator is prone to overfit the training sample which increase the model’s variance.

It exists a trade-off between the bias and variance contributions to the estimation error,

that gives minimum expected test error [63].

As the size of training samples grows, the convergence in probability that model

fit converges to the true function holds. This is called consistency, it is ensures that the

bias error diminishes as the training sample. Consistency is formally stated by

lim
n→∞

f(x;Sn) p−→ E[y|x] (3.15)

If optimal performance and low bias is relevant to deep-learning methods, it comes at the

price of high variance [54] as the model complexity increases with larger number of hidden

units. A key technique for controlling the bias/variance trade-off for noisy problem is

to select the size and architecture of the network such that the model stay stable under

small variation of the training data. In general, model that presents a large variance has

high sensitivity to training data noise. In the other hand, a large bias term means that

the function f(x;S) one wish to approximate modelled does not belong to the family of

function that the favour of other models in F.

3.7 Regularization

Regularisation techniques are designed to reduce test error and enhance the generalisa-

tion capability of deep models. In principle, generalisation increases with the size of the

training set, the larger the training set, the better the generalisation. Thus, regularisation

methods are designed to improve generalisation with fixed training sets. Although in [125],
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explicit and implicit regularizers are found to contribute only partially to DNN’s improve

generalisation performance, there is a vast interest in the deep learning community in

finding efficient strategies that identify suitable learning stopping criterion.

There are various methods to prevent deep models overfitting the noise of the

data: regularisation techniques(i.e. weight decay, dropout), data augmentation, ensem-

ble training and early stopping are among the most known. Regularisation techniques

encompass all procedures that 1) smooth the cost function by introducing curvature in

low curvature region 2) reduce variance by introducing extra bias in the cost function. A

common regularization technique replaces the training error Ltrain with Ltrain + λR(φ)

where R(·) is a function that penalizes overly complex models. A common choice for

R(φ) is ‖φ‖2 /2. Ultimately, regularisation aims to reduce model variance at the cost

of increasing the bias error; however, increasing generalisation performance decrease the

speed of learning. This is particularly the case with regularisation technique such as early

stopping. Early stopping is widely used because it is simple to implement. The method

uses the validation data to estimate the generalization error during training. The valida-

tion set is never used for weight adjustment, and a stopping criterion determines when to

stop the training process. The optimisation continues until the validation error has not

improved by a least a tolerance value tol during several iterations niter. In any case, a prior

good model selection (i.e. model architecture) via cross-validation contributes equally to

improve the generalisation capability of a model. In this work, we use early stopping.

3.8 Inputs representation

Neural networks are robust to the choice of inputs representation [56]. However, stan-

dardising the components of the input vector improves performance by putting the input

values in a range more suitable for standard activation functions. It turns out that when

the inputs are not normalised, the mean of the inputs often makes the largest eigenvalue of

the Hessian even larger. Normalising the inputs reduces the largest curvature, and makes

the Hessian better conditioned. Also, by restricting the input vector values to unity vari-
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ance using a z-score scaling, the main assumption that is taken in the Xavier initialisation

discussed in the following section is guaranty.

3.9 Weights initialization

The initialisation of networks’ weights can have a significant effect on the training process.

A good weights initialization procedure is expected to ensure that activation function out-

puts do not induce ‘vanishing or exploding’ gradients during backpropagation. Gradients

that are not too small or too large compromise the convergence of the training algorithm.

The multiplicative effect of weights matrices through layers causes the vanishing or ex-

ploding gradient effect that is also the main challenge encountered in training RNNs. The

problem is discussed at length in [124] and will be reviewed in a later section. It was

found that the ‘vanishing/exploding’ gradient problem can be avoided if the distribution

of the outputs of each neuron has a variance close to 1. Prior to the wide adoption of

ReLU, the Xavier initialization proposed in [52] was widely used since it favours training

algorithms to reach faster convergence. In Xavier initialization, layer weights are ran-

domly drawn from a uniform distribution φl ∼ U(0, 1√
Nl−1

) where Nl−1 is the size of the

previous layer. In [64], the He initialization was proposed to address converging ReLU

activation function nonlinearities preventing very-deep network to converge at all. He’s

initialization overcomes the shortcoming of Xavier initialisation by setting the variance of

weights initialisation as φl ∼N (0,
√

2
Nl
) .

3.10 Long Short-Term Memory

LSTM is a family of RNNs which are powerful devices designed for tasks such as natural

language processing. The grounding foundation behind the RNN structure was born in the

’80s when machine learning researchers expressed the idea of sharing parameters across

different parts of the model to extend and apply the model to examples of different length

and generalize across them [54]. [45, 83]. They use iterative function loops to store infor-
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mation. They have proven to perform well at sequences prediction and tasks which involve

sequential inputs. RNNs process an input sequence xt one element at a time, maintaining

a state vector that contains an implicit historical of all the past timesteps of the sequence

in their hidden units ht. They differ from linear dynamical systems and Hidden Markov

Models (HMMs) in that 1) they are deterministic models 2) they have distributed hidden

states that allow them to store lots of past information efficiently 3) they are nonlinear

dynamics systems. In Fig 3.4, a simple RNN is represented; on the left-hand side, it re-

ceives on its input the vector xt at timestep t of the sequence. Its output that represents

the state in which the RNN is at a timestep t causes neuron activities to reverberate as

time passes, it is back-fed unto its input. On the right hide the RNN is unfolded across

time, the weighs matrices for the inputs are W x,W y and W the weighs matrices for the

inputs, outputs and hidden states respectively. The power of RNNs architectures holds in

this idea of sharing parameters across different parts of the model in order to extend and

apply the model to examples of different length and generalize across them [54]. They

selectively summarize an input sequence in a fixed-size state vector via a recursive update.

RNNs develop a layer at each timestep where weights are shared across time. The state
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vector ht and the output vector xt equation of a RNN are given as

ht =Wψ(ht−1) +W xxt (3.16)

yt =W yψ(ht) (3.17)

However, RNNs have proved to be difficult to train on problems with long and complicated

sequences for which they have been designed in the first place. Since RNNs potential has

not been realized with their standard architecture, methods that address the difficulty

of training RNNs have been proposed. The vanishing/exploding gradient problem, which

causes the RNN to fail during the network training process, was investigated by Hochreiter

et. al in [70] who proposed the vanilla LSTM block illustrated in Fig.3.5. The block

features three gates (input, forget and output), a single Constant Error Carousel (CEC)

cell, and peephole connections. The output of the block is recurrently connected back to

the block input and all of the gates. Since LSTM has become the state-of-the-art model

for a variety of machine learning problems such as handwriting recognition [56].

The output goes to every unit in the next layer. The recurrent output goes to

this memory block and every other memory block in this layer. All inputs and recurrent

inputs shown are the same signals (same input goes to the memory block and to the three

gates).
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The state of every cell is updated in an additive way

zt = g(Wzx
t +Rzy

(t−1) + bz) block input (3.18)

it = σ(Wix
t +Riy

(t−1) + pi ⊙ c(t−1) + bi) input gate (3.19)

f t = σ(Wfx
t +Rfy

(t−1) + pf ⊙ c(t−1) + bf ) forget gate (3.20)

ct = it ⊙ zt + f t ⊙ c(t−1) cell state (3.21)

ot = σ(Wox
t +Roy

(t−1) + po ⊙ ct + bo) output gate (3.22)

yt = ot ⊙ h(ct) block output (3.23)

where W are rectangular input weight matrices, R are square recurrent weight matrices,

p are peephole weight vectors and b are bias vectors.

3.11 Summary

Two of the most appealing deep neural network architectures used for deep regression,

the FDNN and the LSTM, and their main components are described in this section.
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The design of both architectures require making choices of the type and the number of

neurons (activation function) and the number of layers. Although the design of deep

neural networks is heuristic, it exists some level of theory which can assist the practitioner

in making better choices. Deep neural networks learn by minimising a cost function for

a particular set of examples, the most successful learning approaches are categorised as

gradient-based learning methods. The section discusses the strategies used for improving

the error minimisation process while maximising the deep neural network’s ability to

generalize. The effect of the bias/variance trade-off on the generalisation capability of

deep learning methods are explained. Backpropagation is the learning algorithm used

to train deep neural networks. The issues related to its convergence are summarised in

this section; the practical tricks used to improve the performance of the backpropagation

learning algorithm (i.e. regularisation, input representation, weights initialisation) are

discussed.



Chapter 4

Data cleansing

‘Garbage in, garbage out’

4.1 An overview

The analysis of large real-world data sets takes an ever-increasing role in the modernisation

of electricity networks. Bad data quality asphyxiates innovation on some occasions, adding

uncertainties at all stages of analytic procedures. Errors and anomalies in real-world data

can lead to data analytics erroneous outcomes conducting users in making non-effective

decisions that ultimately increase operating costs and beget unhappy customers. Data

cleansing is an attempt to address data quality issues by detecting and correcting errors

in data sets. Also referred to as data scrubbing or data cleaning, it is regarded as the

essential first step in data analytic techniques [22].

In [103], data cleansing relates to the methods performed on data to enhance

the quality and reliability of the data. Fox et al in [48] propose four quality dimen-

sions for data: accuracy, completeness, consistency, and timeliness. In most applications,

data cleansing procedures can only address the completeness and consistency dimensions.

43
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Identifying the root causes of error is difficult; the cause of errors can be both simple and

complex. Since there is no substitute for high-quality data, most efforts should focus on

addressing data quality at the moments of data creation. Processes that fully embrace data

quality enhancement must ensure the data quality persistence, which requires dedicated

data quality programs planned at business level [93].

Instead, practitioners are often forced to spend a significant amount of time in

attempting to understand and address anomalies and errors found in the data. Data

cleaning is a labour-intensive and time-consuming task for the following reasons: 1) to

select a suitable cleaning method is not trivial 2) to generalise or automate a cleansing

procedure is challenging, 3) there is a risk to introduce new errors in the data. The

definition of data cleansing is strongly dependent on the process under analysis. Since

data cleansing activities require specific domain knowledge and expertise, errors detection

and correction techniques are intrinsically either manual or semi-automatic.

Most data cleansing procedures incorporate domain knowledge and statistical

techniques. Domain knowledge contributes to setting rules or constraints that the data

must satisfy. Statistical techniques are used to screen the data, identify patterns, de-

tect inconsistencies and outliers, and, eliminate contamination. A comprehensive data

cleansing procedure defines error types, identifies and corrects the uncovered errors and,

measures improvement in the data quality. Data cleaning operations encompass data ex-

ploration, data formatting, missing values imputation, eliminating duplicates, and outliers

detection [93].

4.2 Missing Values Imputation

The quality of knowledge extracted from empirical data is dependent mainly on the quality

of the data. Samples with missing values have a significant negative impact on the accuracy

of predictive analytics. Missing values vanish due to a multitude of reasons: human

errors, storing capacity restriction, malfunctioning data collection application, defective
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hardware, system errors, and communication interference or breakdown. Given the volume

of data generated in modern electricity networks, missing data can go unnoticed for long

periods; if not addressed, missing data could result in severe biases in the analyses.

Standard computational intelligence techniques such as neural networks fail to

process input data with missing values. Hence, missing observations is a major obstacle to

the design of predictive models. The problem of missing data imputation in time series has

been vastly researched in microeconomics, and it was established that an understanding

of the process of data missingness is required if reliable imputation is to occur. The

treatment of missing data is independent of the learning algorithm, but it relies heavily on

the mechanisms that lead the observations going missing. Missingness analysis can assist

in selecting a suitable missing imputation technique.

In [89], Little and Rubin first established a classification system to differenti-

ate between missingness mechanisms in survey data. The classification aims to describe

the relationship between the observed data and the probability of missing values to deter-

mine if the missingness mechanism is Ignorable or Non-Ignorable. Three basic missingness

mechanisms were identified: Missing Completely at Random (MCAR), Missing at Ran-

dom (MAR) and Missing Not At Random (MNAR). Let be y = {yt}nt=1, a vector of

random variables for the complete data which contains both the observed data yobs and

the missing values ymiss with probability density function fθ(θ). The vector of parameters

θ is unknown and needs to be estimated. Let us define M = {mt}nt=1, a vector of binary

variables that indicates whether the corresponding value in the complete data is missing

or not. The random variable M can be assumed to be generated by a model described by

a density function fφ(M|φ) indexed by the vector of unknown parameters φ .

In practice, it is impossible to establish fφ(M |φ) with exactitude but the condi-

tional distribution f(M |Y,φ) is used in the literature to identify the missing data mech-

anisms. Data are said to be missing completely at random (MCAR) if

p(M |yobs,ymiss, φ) = p(M |φ) (4.1)
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Here, missingness of data does not depend on either the observed values yobs or the

unobserved values ymiss. In most case, particularly in time series data logging process,

it is naive to assume the data being MCAR. The second type of missing assumption is

Missing at Random (MAR). Under MAR mechanism, the probability the variable M is

missing depends only on the values of the observed data which translates as

p(M |yobs,ymiss, φ) = p(M |yobs, φ) (4.2)

Here, the likelihood of missing observation is entirely scrutinized by observed variables.

If the probability than an observation is missing depends on observed and unobserved

values, the data are said Missing Not At Random (MNAR). Under this assumption the

probability that an observation is missing depends only on the values of the unobserved

data which translates as

p(M |Yobs, Ymiss, φ) = p(M |Ymiss, φ) (4.3)

The MNAR mechanism is unlikely to happen in distribution feeder data collec-

tion; the contrary would indicate a malicious activity which would need to be further

investigated. We understand domain knowledge is of a substantial tool in the diagnosis of

the randomness mechanism of missing values. In practice, it is challenging to determine

the mechanism that led to the missing data, but if missing data can be assumed to be

MCAR or MAR, then the missingness mechanism is said to be ignorable. Most of data

imputation techniques found in the literature lie under the assumption that the missing

data are MAR, and this will be our prior assumption in this work.

In practice, it is challenging to determine the mechanism that actually led to the

missing data. However, if MCAR or MAR holds, the missingness mechanism is said to be

Ignorable meaning missing data and observed data come from the same distribution and

a model can be derived from the observed data to impute missing data. In the context

of statistical inference, imputation means filling in the data. Most of data imputation
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techniques found in the literature build their very foundations under the ignorability as-

sumption, and it is our prior assumption for the rest of this work. Imputation methods

for time series have been researched, and algorithms such as expectation maximisation,

multiple imputations, cold deck and hot deck imputation techniques are presented and

discussed in [39, 40, 89, 90, 94]. The following introduced the imputation techniques that

we use to handle missing observations in the MV/LV feeders series.

As standing assumption for the rest of this work, the missingness mechanism in

feeders load data is assumed to be Missing at Random (MAR) as per Little and Rubin

[89] classification system. Under this assumption, the precise mechanism underlying the

missing data can be ignored, and missing data and observed data are assumed to come

from the same distribution. The imputation techniques used in this work to handle missing

observations in the MV feeder time series are listed below.

4.2.1 Simple imputation: mean substitution

The simplest univariate imputation technique is mean substitution. Mean substitution

is a heuristic method that substitutes missing observations by the unconditional mean

of the observed data. Mean imputation is naive and should be cautiously used since it

can severely distort the empirical distribution of the data and insert bias in analytic or

statistical inference especially if the data is nonstationary [49,90].

4.2.2 Hot Deck imputation: k-Nearest Neighbour

Hot Deck class of imputation techniques is widely used because it makes only minimal

assumptions on the data. The procedure replaces missing values (recipient) by values

extracted from responding covariates (donors) that most resembles the recipient. The

algorithm widely used for matching donors to recipients is the k-Nearest Neighbour (kNN).

The imputed value is either a single observation drawn from another variable (1-NN) or the

weighted average of k observations drawn from k variables (k-NN) [16]. In standard kNN
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Figure 4.1: k-NN imputation technique illustration for k = 2. hm = feeders, i, lk = time

imputation, the similarity between recipient and donors is measured with the Euclidean

or Manhattan distance [111]. In this work, the optimistic knn algorithm available in

the python’s fancyimpute library was used to impute the feeders’ data. The imputation

procedure is illustrated in Fig. 4.1. Feeder data sets are represented as a matrixM ∈ Rn×m,

where each column is a time series of n regularly spaced measurement values. There are

m such columns (features), one for each feeder. Missing observations are imputed on a

row-by-row basis; the k-NN algorithm selects each row’s k nearest neighbours (i.e. times

with similar measurements) and computes their weighted average to impute the missing

observations. The nearest neighbours of the ith row are identified as being the k rows

with the smallest normalized Euclidean distances

d(i, j) =
1

n0(i,j)

∑

h∈Ωi,j

(Oi,h −Oj,h)2 (4.4)

where Oj,h is the observed value for feeder h at timestamp j and the set Ωi,j is defined as

the set of common features between i and j (i.e. the feeders for which data is available

at both timestamps) with n0(i,j)
.
= |Ωi,j | ≤ m. Note that d(i, j) = d(j, i) holds for all

i, j ∈ {0, . . . , n−1}. Let us define the set Dki of k indices with the smallest distance from i

as Dki
.
= {j 6= i : d(i, j) ≤ dki , j = 0, . . . , n−1} with dki = mindx{dx :

(

∑

j Id(i,j)≤dx

)

≥ k}

in which I[.] denotes the indicator function. The imputed value x̂(i,h) of feeder h at time
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stamp i is given by

x̂(i,h) =

∑

l∈Dk
i
wi,lOl,h

∑

l∈Dk
i
wi,l

(4.5)

wi,l =
1

d(i, l)
(4.6)

The weight wi,l controls the influence of the observed values Ol,h in the computation of

x̂(i,h).

4.2.3 Kalman smoothing imputation

Kalman Filter is rooted in the field of recursive optimal linear filtering of discrete-time

linear processes model in state space. It is an efficient algorithm that belongs to the

Bayesian filters family; it is used to estimate the state of a system from noisy measure-

ments. Gauss-Markov and Rao-Markov theorems are the stones of estimation theory

which aims to find an estimator that minimizes the variance between prior information

and posterior information. The history of optimal filtering starts from the Wiener filter

which is a frequency domain solution to the problem of least squares optimal filtering of

stationary Gaussian process which is also its main disadvantage as it cannot be applied

to non-stationary. The Kalman filter comes ten years after the Wiener filter and extend

the theory of filtering to the non-stationary process. It is a closed-form solution to the

linear Gaussian filtering problem which provides the basis for prediction error decompo-

sition. Because of the linear Gaussian model assumptions, the posterior distribution is

exactly Gaussian. Let w
.
= {yt}st=1, given Zt,Tt,Qt, ht and w, the Kalman filter provides

a means to compute the conditional mean value at|t−1 = E[αt|wt−1] and the covariance

matrix Pt|t−1 = Cov(αt|wt−1) of αt at each time step [7].

yt = Ztαt + εt, εt ∼ N(0, ht) (4.7)

αt = Ttαt−1 + ηt ηt ∼ N(0,Qt) (4.8)



50 Chapter 4. Data cleansing

In theory, any time series model that fits the data well can be used as long as the number

of parameters to be estimated is kept down to a manageable size. We adopt a simple

local linear trend model as suggested in [61, 100]. The structural model takes the general

following form:

yt = µt + εt (4.9)

µt = µt−1 + βt−1 + ηt (4.10)

βt = βt−1 + ζt (4.11)

where εt ∼ N(0, σ2ε), ηt ∼ N(0, σ2η) and ζt ∼ N(0, σ2ζ ) are white noise disturbances mutu-

ally uncorrelated . The local trend model can be cast in state space form as follow

yt =

[

1 0

]
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(4.12)

For this work, we use the Kalman smoother imputation available in pykalman 0.9.2 li-

brary in python 3.6. The algorithm is used in four variants. The first variant consists of

smoothing the entire raw univariate time series so that the filter performs two actions: it

smooths the entire signal (all observed data) and interpolates the missing observations. In

the second variant, the outliers are flagged and removed using the proposed outlier detec-

tion technique, and the remaining cleaned data are smoothed while all missing observations

are interpolated by the smoother. In the third and fourth variants, missing values and re-

moved outliers are replaced by interpolated values. No smoothing is performed on healthy

raw data.



Chapter 5

Data exploration

‘Exploring missing data is difficult, because it is an iterative process with many dead ends

and often no clear answer’. [116]

5.1 General information

UK Power Networks control and monitor all aspects of the distribution networks via a

ADMS. A schematic of the communication systems between the ADMS and the network’s

remote equipment is provided in Fig. 5.1. The ADMS communicates with primary and

secondary substations and any other automated pieces of equipment installed on the LV

networks. The ADMS operates on private and dedicated WAN,LAN upon which com-

munication transactions between the FEP and RTUs and IEDs are facilitated. LANs are

typically used to connect a set of hosts within the same building. RTUs are computer-based

devices installed at remote sites (i.e.primary and secondary substations) that monitor and

control the equipment on the network. They are the interface between the ADMS and

the network’s plants. RTUs gather information about analogue values, equipment status

signals and alarms collected from the field. FEP and RTUs communication are governed

by a Master-slave protocol. The data gathered from remote sites are transferred to the

51
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ADMS via the FEP which continuously polls the RTUs (typically every 10 seconds), for

any changes, such as alarms, analogue values and circuit breaker and switch statuses.

When it is required, the FEP instructs RTUs to control the remote actuators that com-

mand the valves, the motors, the electromagnetic switches and set analogue control values.

The communication between the substations and the FEP is based on a broadcast model

that dispersed messages via a shared WAN, network privately owned by the DNO. The

WAN is built on fibre-optic and DSL communication mediums. A high bandwidth VSAT

is used as a stand-by communication system. The interoperability between RTUs and the

FEP is achieved using mainly DNP3, a standard communication protocol that operates

over the TCP/IP, TCP being a packet-switching protocol. At the control room, all data

are centralised and stored into the real-time data historian developed by OSIsoft. The ‘PI’

historian records the operational monitoring data over time in a proprietary time-series

database. Each data entry is known as a PI tag. Data are passed from the PowerOn

Fusion server to the PI historian server via the LAN.

This chapter describes the load and the weather datasets used to train and test

the forecasting models. The load data were collected from UKPN’s Data Historian. Load

and weather data span two years and one half starting from January 2014 and ending in

September 2017. The data sets are divided into training, and testing sets with the testing

set starting in May 2017. The chapter outlines the prior processes of transforming the

raw data into a usable format with the intent of making it suitable for further analytics.

It discusses the need to format ‘naive datetime’ object to time zone-aware datetime. It

details the procedure that was undertaken to allocate the weather features to the feeders’

time series. Finally, the chapter discusses the identification of the missing observation

patterns in the feeders’ time series. It proposes a direction for further investigation with

regard to the cause of bad data quality.
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Figure 5.1: Advanced Distribution Management System Network
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5.2 Load datasets

Almost three years of historical time series load data are used for this work. The data

were collected from the field as current measurements. The feeders (from which the data

have been collected) are connected to primary substations or grid substations. They feed

6.6 kV, 11 kV, 22 kV, 33 kV and 132 kV busbars. Feeders’ time series were queried from

UKPN’s OSIsoft proprietary database. An initial list of 606 feeders’ tags was used to

query the load data. Tags are the identification numbers of feeders connected to primary

and grid substations located in the East Kent area. The raw data were queried with 30

min granularity; thereafter, the half-hourly timestamps were filtered to keep only hourly

observations to match the weather data granularity. Table 5.1 shows the distribution of

feeders by voltage level. Some feeders are missing because their voltage level information

was not available. The table indicates that the majority of the time series in the data

were collected at 11 kV. This is not unexpected because it is known that the density of

substations connected to the power system increases as the voltage level reaches the load

centres. The training data of one feeder was randomly selected at each voltage level and

plotted in Fig 5.2.

The plots are organised in voltage ascending order from top to bottom starting

with 6.6 kV and ending with 132 kV. Fig 5.2 indicates that the feeders connected at 6.6 kV,

11 kV and 22 kV present similar load curve and similar features. For instance, one can

notice the ‘dip’ in energy consumption around the winter holiday period for those feeders.

The ‘dips’ are highlighted in pink. The 11 kV experiences a gap of missing observations; all

feeders contain sporadic values that differ in amplitude to the rest of the time series. From

these plots, one may anticipate that feeders connected at 6.6 kV, 11 kV and 22 kV will

be relatively easy to model in comparison to the feeders connected at 33 kV and 132 kV.

The 33 kV time series data is heteroscedastic and displays a major change in April 2016.

The level of the data seems to have dropped as well as the ‘baseload’. The plots in Fig 5.3

zoom in the 33 kV’s feeder load consumption for a period of approximatively two months

at a year interval. The top plot shows the load curve in July and August 2015 before
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Table 5.1: Numbers of feeders by voltage level

Voltage 6 kV 11 kV 22 kV 33 kV 132 kV

No of feeders 64 433 4 41 2

Nov 01 00:00 May 01 00:00 Nov 01 00:00 May 01 00:00 Nov 01 00:00 Apr 30 23:00

Feeder connected at 6.6 kV (few entries) 2014✁11✁01 / 2017✁04✁30 23:00:00
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Figure 5.2: Plot of historical load data at different voltage levels

the change occurs while the bottom plot displays the load curve a year later. The shape

of the load curve has significantly changed between both periods as well as the level of

the time series. A general statement regarding the forecastability of each type of feeder

cannot be made at this point, but the visualisation aims to highlight some of the difficulties

encountered when facing large datasets with disparate or unexpected behaviours. The two

132 kV time series in the dataset was collected at the Euro-tunnel. The data exhibited

what looks like a constant level with sporadic energy peaks, ramps, and gaps of missing

values. This project will not attempt to analyse the 132 kV data further; consequently,

these data have been discarded.
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Jul 01 00:00 Jul 13 00:00 Jul 20 00:00 Jul 27 00:00 Aug 03 00:00 Aug 10 00:00 Aug 17 00:00 Aug 24 00:00
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Figure 5.3: Zooming at one 33kV feeder data

5.3 Weather datasets

Observational weather data and daily weather forecast data are delivered every six hours

via File Transfer Protocol (FTP) by theMeteorological Office. The Metropolitan office also

issued one year of historical weather forecasts to train the KASM’S forecasting models.

The data were collected from 11 weather stations spread across the South East of London.

Weather data have hourly granularity. Forecasts for solar irradiance (W/m2), dry-bulb air

temperature (C), humidity (%), wind speed (m/s) and wind direction (Deg) are pushed to

UKPN’s server every six hours (four times a day). Only weather weather forecast data were

used to train the STLF models and generate 24-step ahead forecasts. Available historical

data were concatenated for each substation, which gave rise to duplicated timestamps in

the data. Therefore, the most up-to-date records were retained for the experiment. Each

feeder was allocated a closest weather station using the procedure illustrated in Fig. 5.4. A

list of geographical coordinates (latitude, longitude) was provided for each weather station

and each of the primary and grid substations in the East Kent Area. The identification of

the feeders’ closest weather station required a two-stage computation procedure. During

the first stage, the weather station at the vicinity of each substation was identified using
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Weather stations 
geolocation information

MV substations
 geolocation information

Longitude Latitude Longitude Latitude

Compute MV substations 
closest weather station

MV Substation Identification
number

SID  

Feeder Identification
number

00 + SID + CB + String

Allocate weather station
to feeders

Feeder�s hosting substation
Identification      

Figure 5.4: Flow chart to assign the closest weather station to each feeder

geographical coordinate information. At the second stage, each feeder was allocated to

its hosting substation by extracting the substation’s identification number embedded in

each feeder tag. Finally, each feeder was allocated the same closest weather station as its

hosting substation.

5.4 Data manipulation

Processing data collected from the real-world can present considerable challenges if the

raw data have not been pre-processed prior to the statistical inference. Processing a given

data set implies one’s familiarisation with the data and its entries by capturing its content

and its shape through exploration. This step is time-consuming but remains essential for

successful analytics.
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5.4.1 Data coercion

The raw feeder data contained many unidentified strings that cast the entire data set as

object data type, rendering the data unusable for data exploration or numerical compu-

tation. Sequence of characters such as ‘error’, ‘No data’, ‘Bad Data’, ‘No Sample’, ‘Bad

Total’,‘Pt Created’, ‘Shutdown’ or ‘empty cell’ were spread across the full dataset at un-

known locations. Before data wrangling, the data were coerced to the ‘float’ data type.

From the implicit conversion of the object data type to float data type, all instances were

converted to float, and the aforementioned strings were replaced by NAN.

5.4.2 Time-zone and Daylight Saving Time

Time-zone and DST are considered the most challenging problems in time series manipu-

lation. The UKPN’s OSIsoft proprietary database returns naive ‘datetime’ objects. Naive

‘datetime’ objects are easy to work with but ignore some important aspects of reality.

They do not contain enough information to explicitly locate themselves in relation to

other ‘datetime’ objects. In addition, time-series manipulation issues arise when naive

‘datetime’ objects are subjected to DST. In practice, naive ‘datetime’ may be stored in

local time or in any time-zone. With no time-zone/DST information attached to them,

‘naive’ datetime objects do not provide enough context and can be considered irrelevant,

depending on the application they are used for.

UK observes DST, the mechanism by which clocks are moved one hour forward in

spring and one hour backwards in autumn. The DST mechanism is a measure to reduce

electricity consumption by using daylight hours more efficiently. The concept aims to

better-aligning waking hours with hours of daylight. Observing DST results in having

ambiguous times at the end of DSTs with days that are comprised of 23 or 25 hours. For

example, in the UK/Eastern time-zone on the last Sunday morning on October, 01:00 BST

occurs and one hour later, instead of 2:00 am the clock turned back 1 hour and 01:00

happens again, this time 01:00 UTC.



5.4. Data manipulation 59

The usual strategy adopted by practitioners when they are facing time-zone and

DST issues is to use non-DST-aware time-zones for both; current and historical datetime

objects. Ideally, datetime information should be stored in UTC and converted back and

forth for the localised user interfaces. UTC, also referred to as standard time, is the

time standard commonly used across the world, UTC uses the measurement of a second

as defined by TAI. This allows for accurate measurement of time while introducing leap

seconds. Alternatively, timestamps should embed time-zone information by being made

time-zone aware to provide users with the necessary context and useful information. An

aware datetime object has sufficient knowledge of applicable algorithmic and political

time adjustments to locate itself in relation to other time-zone aware datetime objects.

Governments define the standard offset from the UTC that a geographical position follows,

effectively creating a time-zone. Offsets refer to the number of hours that time-zones are

from UTC. Localised times subtract the offset of its time-zone from UTC time.

For this work, the naive datetime objects of the feeders’ time series were converted

to UTC to avoid any DST related issues when producing forecasts. Regrettably, the

conversion process did not happen smoothly since Python failed to process more than one

DST change automatically. The presence of ambiguous multiple times in the data set was

inexhaustibly failing Python’s localize method that localises naive datetime objects in a

given time-zone. A series of test were implemented until a satisfying outcome was reached,

following the order of this procedure:

1. Create time-zone object ‘Europe/London’

2. Localise datetime objects to ‘Europe/London’ time-zone (disambiguate ambiguous

timestamps with NAT argument)

3. Convert datetime objects to UTC

4. Eliminate duplicated timestamps and keep the first timestamp

5. Filter only non-NAT timestamps

6. Resample
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To illustrate the contrast between manipulating naive datetime objects and time-zone

aware ones, one propose to visualise the impact of DST change on the load curve of an

11kV feeder. In Fig 5.5, the feeder’s load pattern is plotted for the week preceding and

succeeding the summer’ and winter’ DST changes of the year 2015. There are two plots

for each of the change: the top plot uses naive datetime objects while the bottom plot

uses UTC. In Fig 5.5, the UTC plots to display a shift in the energy consumption for each

season which does not appear in the naive plots. Thus, the UTC plots convey valuable

information that is overlooked by the naive plots. Focusing on UTC plots from now on,

the plot in Fig 5.5 indicate that summer and winter DST effects are consistent with daily

activities in which the energy consumption shifts one hour backwards in summer and one

hour forwards in winter. DST also dampens evening peak demand.

Further analysis of the plots reveals that the energy consumption falls by ap-

proximatively 10% across the entire week that follows the DST summer’s change. At

first, this drop in energy consumption might be associated with a decrease in the usage of

electricity for lighting. This decrease in electricity consumption is prominent throughout

the weekend, maybe due to business activities cease. However, the top plots (summer

plots’) exhibit an energy demand reduction around midday. This depletion in the energy

usage could be the consequence of the PV generation that supplies the load locally (down-

stream the 11kV busbar) which modifies the standard load curve to what is referred as

the duck curve. In a matter of fact, there are two impacts of DST that are indisputable:

1) the morning activities’ shift one hour backwards and 2) the peak load reduction in the

evening. Nevertheless, it is contentious to assert with confidence that the 10% drop in

energy consumption (for the week understudy) are due to DST effects only. Because the

production of PV generation is higher during summertime, both effects are coupled, so

they both contribute to some proportion to potential energy savings.

One can extend the analysis to most of the feeders by computing the median

of the load across all 433 feeders connected to an 11kV busbar. Using the median to

represent the general tendency is a natural choice to discard outlying hourly observations.

Data used for this analysis is the raw data, meaning that missing values have not been
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imputed at this stage. The median load is plotted for the two weeks that follow the DST

changes in Fig 5.6. The analysis is done for the years 2015, 2016, and 2017. The plots

show that all aforementioned remarks derived for one feeder can generalise to all feeders.

These observations relate to the load curve shifting, the load curve changing to duck curve

at midday and the energy consumption damping in the evenings. The plots in Fig 5.6 also

show that the median load has dropped by 9.7% between 2015 and 2017. It is most likely

that this load reduction is caused by the increasing utilisation of DERs downstream of the

11kV busbars. One side effect of DERs adoption is known as the load masking effect. It

contributes to challenging some of the conventional voltage control schemes such as load

drop compensation (LDC). Because a share of the load is supplied locally or behind the

meter rather than through the substation, some of the total load information is lost. By

providing inaccurate load information to the automatic voltage control device, the load

masking effect can cause the automatic selection of non-optimal tap positions resulting in

non-compliant end-users voltage excursions.

Although consumers tend to shift backwards their energy consumption pattern

during the mornings following the DST change, the plots in Fig 5.6 display a natural

re-synchronisation of the morning activities happening later in the week during the first

weekend. The plots also show that DST reduces not only the evening’s load peak but

also its duration. The median load plot for the second week that follows DST, provides

further information with respect to the 11kV feeders’ load behaviour. Generally, a further

decrease in energy consumption occurs during the second week in 2015. That year, the

median energy consumption fluctuate during the week, which represented approximatively

10% energy decrease on average. In 2016 and 2017, the second week’s load curve behaviour

varies across the week. The contrast between the year 2015 and the years 2016 and 2017

could be the result of different weather conditions. This hypothesis can be verified by

looking at the daily load curves around midday; the presence of a duck curve should

provide unambiguous information on weather conditions. One sees that larger feeders’ load

depletion manifests alongside with significant ‘dips’ around midday. This only confirms

that the intraday curve is very much influenced by the uncertain level of PV generation
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production. The plots in Fig 5.6 cast certitudes that energy conservation during the

periods of the day affected by the clock shifting is real. However, with the increasing level

of PV generation connected to the system, the quantification of energy savings caused by

DST is made even more challenging. Also, this suggests that up-to-date studies based on

empirical evidence should be considered to better inform on nowadays DST’s effects on

energy consumption.
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Figure 5.5: DST effect on the consumption of one 11kV feeder in 2015

In countries like Australia, India and Argentina, fairly recently studied were con-

ducted to assess DST’s effects on electricity consumption. Those studies were based on the

analysis of empirical evidence. The evaluation of energy savings due to DST’s effects were

mostly computed using a common approach known as the difference-in-differences (DID)

technique [60, 78, 82]. The method uses observational data collected from experiments

or trials to partition the electricity demand into treatment group (periods during which

DST is implemented) and control group (periods during which DST is not implemented).

Treatment and control groups should be taken from the same country or neighbouring
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regions with similar features (i.e. load curve, weather conditions, holidays). The em-

pirical evidences from the analysis published by Kellogg et al. in [78], Kotchen et al.

in [82] and Hancevic et al. in [60] are contradictory with the expected outcomes by which

DST occasioned energy savings. In [82], it was estimated that DST increases the energy

consumption by 1% in India. In Argentina, the article in [60] reveals an increase in the

electricity consumption in the order of 0.4% to 0.6%, the report estimated at $14.5 million

USD in average the yearly cost of extra generation. In [78], Australia conducted an empiri-

cal study taking advantage of the extension of DST to facilitate the 2000’s Olympic Games

in Sydney. The study concluded that the potential DST’s extension over an additional

month would not reduce overall electricity consumption.

Similarly, the UK’s parliamentary members debated on a three-year trial period

of single/double summer time (SDST) in 2010. In fact, this is an ongoing debate since the

early ’90s. SDST would set clocks one hour forward from UTC in the winter and by two

hours in the summer as those in the majority of Western European countries. This debate

motivated the preparation of independent consultancy reports mostly based on literature

reviews [15]. In the UK, most of the studies were conducted from simulations. The rare

time when DST’s impacts could be measured based on observational data was from the

trial period in 1968 to 1971 during which British Summer Time (BST) was extended

through the winter. British Summer Time (BST) can be traced back to the Summer

Time Act 1916. After a few periods of deviation, DST change has been in continuous

operation since 1972. At the time, Her Majesty’s Stationary office found that under

DST, mornings’ energy consumption increased by 2.5% approximatively and decreased

by 3.0% in the evenings’, resulting in 0.5% energy savings [67]. In 2010, a study based

on regression analysis was conducted by Hill et al. in [66] to assess potential energy

savings in extending BST year-round. The analysis used National Grid data from 2001 to

2008 to train a support vector regression (SVR) model that estimates energy consumption

reduction during winter. The analysis concluded that an extension of DST over the entire

year would approximatively damp winter’s energy consumption by 0.30% with daily peak

load reduction ranging up to 4%.
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Between 4 July and 16 August 2018, the European Commission conducted a

public consultation on a proposal to end the seasonal clock changes. The consultation

generated 4 million of replies1 for which 84% was in favour of the revocation of Directive

2000/84/EC. The motivation behind the proposal to abolish DST changes is to ease of the

European’s internal market. Based on studies conducted across the Member States, the

European Commission communicated that the overall energy savings caused by summer-

time were marginal. An impact assessment of ceasing the DST change revealed that

transitional costs would be generated as IT systems and smart technologies would have to

be reprogrammed and reconfigured. The European Directive will be implemented in 2021,

in which case the last transition would occur on the last Sunday of March 2021. Each

Member States will decide whether they apply summer-time or winter-time year-round.

The European Commission has planned to assess the impacts of the new Directive by 31

December 2024. Thereof, there will be opportunities for academics to conduct studies on

the effects of DST on energy savings based on real observational data, providing the UK

remains a Member State. Thus, the difference-in-difference approach could be used with

the new data made available.

5.5 Missing values investigation

In this section, an attempt is made to find the cause(s) of missing observations in the load

data. A full investigation would require to have: 1) a good domain knowledge in data

transmission networks and data communication protocols, 2) physical access to RTUs,

IEDs, communication routers and switches, 3) full access to the database, particularly

to past event logs. Hence, the analysis of the missing value is carried out with objective

not to assert with exactitude the sources of missing data but rather, to discard the most

improbable causes and provide plausible lines of approach for further investigations.

1https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52018PC0639&from=EN
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Figure 5.6: DST effect on the median consumption of 433 11kV feeders in 2015.

5.5.1 Vertical analysis

The raw data sets contained 606 variables and 25560 hourly observations per variable.

The missing data are represented as a missingness matrix M ∈ IR
n×m displayed using a

heatmap in Fig. 5.7. The matrix uses a ‘shadow matrix’ bounded column-wise to the raw

data. The matrix is computed using R package naniar for which each data point d with

ith row and jth column, the value mij is given by

mij =











0, if dij is missing

1, if dij is observed
(5.1)

The missingness matrix covers the load data set for the period starting the 01 November

2014 and ending the 30 September 2017. Each column is a time series of n = 25560

regularly spaced measurement values; there are m = 606 such columns, one for each

feeder. Missing observations are displayed in black; observed data are displayed in grey.
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The exploration of missing observations in the data sets can be driven vertically and

horizontally.

The vertical exploration of the matrix is concerned with the analysis of missing

measurements for individual feeders. In Fig. 5.7, the feeders highlighted in the red colour

present a large number of missing measurements. There are five feeders’ time series for

which all values are missing while only one feeder (connected at 33 kV grid substation)

has a complete data set. Those feeders are either not supplying to a load or might have

been decommissioned. The overall distribution of feeders’ percentage missing values are

displayed in Fig. 5.8. The statistics of this distribution is described via a boxplot on the

same figure. The median percentage of missing values in feeders’ data is 0.81% and the

first and third quartiles are Q1 = 0.54% and Q3 = 1.44% respectively. Any feeder for

which the percentage of missing observations exceeds 2.75% qualifies as an outlier; there

are 66 such feeders in the data set. In Fig. 5.10, the percentage of missing values for each

feeder is placed on a map of South East of England using QGIS. The map shows that

the feeders (substations) heavily affected by missing measurements are mostly located

on the south-west periphery of the London area. Furthermore, the map shows that the

substations located outside the areas delimited by the M25, M26 and M2 are less prone

to a high percentage of missing observations.

5.5.2 Horizontal analysis - Part I

The horizontal analysis of the matrix is concerned with the investigation of simultaneous

missing measurements at individual timestamps. Fig. 5.7 exhibits horizontal patterns of

interrupted grey lines. The lines display feeders for which measurements are simultane-

ously missing. The red rectangles highlight several timestamps for which multiple feeders

were affected by missing measurements. In Fig. 5.9, the distribution of missing values

across timestamps is given, and its statistics are described via boxplot. The median of

missing coincident observations across the period spanning from 01 November 2014 to

30 September 2017 is 13. Any timestamps that experienced more than 27 simultaneous



5.5. Missing values investigation 67

0

10
00

0

20
00

0

M
is

si
ng

 
(2

.7
%

)
P

re
se

nt
 

(9
7.

3%
)

Figure 5.7: Missing values matrix 11/2014 to 09/2017
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Figure 5.8: Statistics of missing values across feeders

Figure 5.9: Statistics of simultaneous missing observations across timestamps
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Figure 5.10: Feeders percentage missing values on map
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missing measurements is an outlying event. These rare events are further analysed in the

Sec.5.5.3.

The aim of this investigation is to determinate when and why many feeders’

measurements are missing simultaneously. For this study, the full load datasets are plotted

three different timestamps. The timestamps are selected from those that present the most

significant number of simultaneous missing observations. The first event occurred on 11

November 2015 at 05.00 am, the data lost the largest count of feeders information, 558.

The event is plotted in Fig 5.11, the analysis starts the 10 November 2015 at 22:00 to end

on 11 November 2015 at 08:00 am. The plot displays the full dataset for eleven hours:

seven hours before the most extensive loss of the feeders’ measurements and five hours

later. The numbers placed above the signals are the count of observations simultaneously

missing at each hour (i.e. −21 indicates that 21 feeders values were lost at 22.00).

The analysis of missing hourly values in Fig 5.11 indicates that the loss of infor-

mation occurred sequentially, the phenomenon could be described as a cascade effect ; each

hour, the number of vanishing records increases until its reaches a maximum of 558 miss-

ing records. Hence, most of the South East of England’s electricity load information was

lost at 05:00 am on 11 November 2015. The sequence of the feeders’ record losses spanned

nearly seven hours. The same phenomenon transpires in Fig. 5.12 which reports on a

similar event that took place on 08 September 2016. On that date, a maximum number

of 479 records were simultaneously lost at 20:00. The full sequence also lasted for seven

hours. Fig. 5.13 illustrates two similar events on 16 August 2016, which were separated by

fours hours. The first event occurred in the early morning and the second around sunset.

Here again, both events spanned approximatively seven hours. One pattern that repeats

across the four events is that the two last hours of the sequence experience the most dras-

tic loss of measurements. The timestamps that display the maximum loss of information

in Fig 5.11, Fig 5.12 and Fig. 5.13 were further examined in the original raw load data

(the data prior to coercing them into numerical data type). It was found that most of the

missing observations are shown as either ‘Bad Data’, ‘Bad Total’ or ‘No Sample’.
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The previous analyses suggest that the events happen sequentially and, not all

feeders information are lost at the end of the sequences. Since it exists a physical commu-

nication link between the Data Historian and the Front-End Processor (FEP), the events

described by the plots might not be caused by a communication failure between both

systems. Thus, a physical communication link between Data Historian and the Front-End

Processor (FEP) is a single point of failure and therefore, all feeders measurements should

be lost at once. In addition, since most of the measurements spontaneously come back

online after the event, the missing values phenomenon cannot be attributed to a hardware

failure (i.e.RTUs, for instance).

To pursue the investigation on the cause(s) of coincident missing data, a time

versus space analysis is proposed, supported by three geolocation maps. The 11 November

2015 event is geo-located in Fig 5.15, Fig 5.17 covers the 08 September 2016 event and

Fig 5.16 displays the second event on 16 August 2016. On those maps, the feeders are

identified by coloured circles; each circle is associated with a timestamp in the vicinity of

the maximum loss of data points. For each timestamp, the colour and the size of the circle

differ. Only the feeders for which the load information is available at the given timestamp,

are identified by a sized/coloured circle. When the load value vanishes from the data set,

the corresponding timestamped circle does not appear. The beginning of the sequential

event in Fig 5.15, Fig 5.17 and Fig 5.16 is represented with the smallest circle in red, the

end of the sequence appears in yellow with the largest circle.

The analysis approach that combines temporal and spacial features aims to de-

termine if temporal and spatial correlations exist in the missing values phenomenon. Even

though there is not an easy way to approach the analysis of 2D maps, there are few re-

marks that can be made from them. For instance, in Fig 5.15, the event is mapped

between 23:00 and 05:00 am. At 02:00 am, only the feeders identified with the red, black,

white and blue circles were still ‘online’. One can see that the vanishing measurements

are spread across the entire region, at various locations that can be closed to each other

or diametrically opposed. This last remark applies to each timestamp; it may indicate a

random component to the cause of the measurements’ loss. Although there is no obvious
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pattern in the disappearance of the data, measurements collected from the rural areas (at

the centre of the map) seem to be more affected than the ones collected from the London

area or near the coast. Nevertheless, there is one pattern that arises from the three maps;

it concerns the measurements that stay online during the entire sequence. It seems that

the feeders for which loading information is available during the entire event are more or

less the same. These feeders are identified with yellow circles on all three maps.

At this stage, it is difficult to clearly identify a cause of the cascade effect of

the feeders’ measurement loss. One hypothesis which can almost certainly be rejected is

some potential hardware failures (isolated or synchronised) since the measurements come

back after the event with no human intervention. Therefore, a communication issue is

most probably causing such an event. The cascade effect needs to be further investigated

for several reasons. As will be demonstrated later, these events are not sparse. In future,

such data issues could affect real-time control strategies (i.e. active network management);

these events also affect PV measurements as it is shown in Fig.5.14. Also, the mechanism

that creates such events could be intentionally triggered; it would be safer to investigate in

any case and solve the problem if it can be. An in-depth investigation requires significant

domain knowledge such as expertise in network communication infrastructure and the

procedure used to report communication failures.

5.5.3 Horizontal analysis - Part II

To further the study on coincident observations loss, one intends to explore the load data

before November 2014. For this purpose, a new matrix with a longer span is provided

in Fig. 5.19. The matrix comprises approximatively eight years of data spanning from

November 2010 to May 2018. The same 606 feeders are considered, but their series consists

of 60384 regularly spaced measurement instead of 25560. The black columns in the new

matrix, correspond to entries for feeders that were tardily loaded. Alternatively, which

have never been connected to a load. The most appealing outcome from Fig. 5.19 is

that the data prior to 26 April 2014 did not experience so many missing values, not to
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Figure 5.11: Patterns of simultaneous loss of load observations on 10-11 Nov 2015
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Figure 5.12: Patterns of simultaneous loss of load observations on 08 Sep 2016
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Figure 5.14: Patterns of simultaneous loss of PV observations on 10-11 November 2015
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Figure 5.15: Spacio-temporal feeder information observation loss on GIS (10 to 11 Nov
2015)
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Figure 5.16: Spacio-temporal feeder information observation loss on GIS (08 Sep 2016)
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Figure 5.17: Spacio-temporal feeder information loss on GIS (16 August 2016)
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mention that the cascade effect occurred only rarely as compared to the period after 26

April 2014. In a matter of fact, any count of missing coincident observations before 26

April 2014 includes all the non-loaded feeders. The plot in Fig. 5.18 displays the count of

coincident observations loss thought time. It shows that posterior to 26 April 2014, the

count of simultaneously observations loss becomes significant and much more frequent.

The frequency and the distribution over time of these events are further analysed in

Fig. 5.20. The plots report only the events for which the simultaneous loss of feeders’

information exceed 100. Such event occurred only once prior to April 2014; thus, the plots

concern essentially the period posterior to April 2014. In Fig. 5.20, plot (a) and plot (b)

provide a ‘zoom’ into Fig. 5.9’s outliers. In total, the events occurred 213 times between

April 2014 and May 2018 with the median of coincident feeders information loss being 167.

Plots (c) and (d) inform on how these phenomenons span across the years and the months.

Plot (e) displays its intra-day distribution. In average, these events occurred between 40

and 50 times in 2014, 2015 and 2017 but 2016 experienced more than 100 of these events.

The phenomenon can take place at any time during the year, but, July, September, and

November are the most affected periods. The phenomenon happens mostly between 9.00

am and 8.00 pm, but there is also a high occurrence of these events at midnight.

5.5.4 Conclusion and discussion

The above analyses have made use of a matrix representation which has facilitated the

visualisation of the full load data set. The analysis of the matrix was approached from a

vertical and horizontal standpoints. The vertical analysis concerned the level of missing

values in each feeder. It has shown that feeders connected at the vicinity of the urban area

of the South East of England were experiencing higher percentage of missing observations.

Plausible causes of data transmission error could be interferences from the environment

surrounding the data transmission medium. Twisted pair copper wiring and optical fibre

are the physical media used by the network; the data are transmitted as electrical pulses.

There are three possible sources of interference that can attenuate, distort or corrupt the

electrical signals: electromagnetic, radio frequency or crosstalk interferences [13]. Errors
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Figure 5.18: Count of coincident observations loss through time

in data transmission can also be caused by a loose cable/connector at one end of the

communication link (i.e. loose connection at the RTU terminals), by a faulty cable, or

by a RTU’ or IED’ defective communication hardware. A rigorous troubleshooting would

help to investigate all potential point of failures in the data transmission path.

The horizontal analysis looked at the number of feeders that coincidently experi-

enced a loss of information in the data set. The analysis has revealed that significant loss

of feeder’ values have occurred from time to time. A joint analysis of three timestamps

was carried out to identify similarities between events. It was found that the loss of data

points follows a sequence that spans approximately seven hours. During the sequences,

feeders’ information would be lost increasingly until reaching a maximum. Thereafter,

the feeders’ information start to be recorded again in the database. The ‘events’ could

occur at anytime during the year but were more prone to happen in July, September, and

November. The analysis has also shown that these events present diurnal pattern that is

strongly correlated with human activity. Three geolocation maps that combine temporal

and spacial features of feeders’ information were used in an attempt of identifying if any

pattern in the data vanishing process excited. No clear motif or correlated factors were
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Figure 5.19: Missing values matrix from Nov 2010 to May 2018



5.5. Missing values investigation 81

Figure 5.20: Seasonal analysis of coincident missing observations for simultaneous missing
feeder > 100 (total occurrence: 213 times)



82 Chapter 5. Data exploration

highlighted from the maps but one observed that a few feeder’ values, in alike geograph-

ical locations, were less affected by the data loss sequence. It was established that the

coincident data loss was unlikely to be related to some simultaneous nodes’ breakdown

(i.e.RTU). Ergo, it is more sensible to assume that the coincidental missing values issue

results from a single cause. This assumption only narrows the sphere of possible roots of

the problem (i.e. slow processor (CPU), limited flash memory (RAM)), nevertheless, it

could be interesting to investigate if any connection exists between the sequence of missing

values and the congestion control algorithm used by TCP protocol.

TCP is the transport layer used by most ADMS’s applications. TCP has a built

network congestion avoidance algorithm in which packet loss is the primary mechanism

for signalling network congestion. Congestion arise in packet-switched networks because

of insufficient buffers space, latency, timeout, packet retransmission, slow processor and,

low bandwidth. In congested networks, a bottleneck link will space packets out in time,

according to its service rate. Thereof, packets will be dropped when its buffer approaches

its full capacity. Dropping of packets causes the sender to throttle back and stop flooding

the bottleneck point with data [91]. TCP’s congestion control is achieved with the AIMD

algorithm. The algorithm adapts the size of a congestion window to regulate the data

traffic and prevent or alleviate network congestion [95]. The algorithm combines linear

growth of the congestion window when the sender receives an acknowledgement (before

timeout) with an exponential reduction when congestion is detected. The approach taken

is to increase the congestion/transmission window until a loss occurs. The additive increase

may increase the window by a fixed amount every round-trip time (RTT). If congestion

is detected, the sender decreases the window by a multiplicative factor. Let w(t) be

the congestion window at time t, a the additive increase parameter with a > 0 and b,

the multiplicative decrease factor with 0 < b < 1. The AIMD algorithm controls the

congestion window as follows

w(t+ 1) =











w(t) + a, if congestion is not detected

w(t)× b, if congestion is detected
(5.2)
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with the multiplicative decrease factor b being typically 0.5. Recalling Fig. 5.20 that shows

the diurnal character of the missing data events, it could reinforce the above assumption

upon which the data are missing is the result of network congestion due to a full buffer

somewhere on the network. However, this assumption can only hold if the duration of

a TCP/IP connection between the sender and receiver exceeds the duration of the data

missing sequences.



Chapter 6

Outlier detection techniques for

MV feeders time series

‘Naive’ designs usually are more robust and better than ‘optimal’ designs.

Peter J. Huber

6.1 Introduction

Most of the time, real-world data are noisy and corrupted with outliers. To make a dis-

tinction between noise and anomaly, Aggarwal defines outliers as those data points that

are significantly inconsistent with the remaining data [2]. Outliers relate to gross measure-

ment errors, blunders and, measurement errors. Depending on the context, the proportion

of gross errors in data is between 0.1% to 10% [59]. Most outlier detection methods are

model-based, assuming the typical pattern of the data. It renders the choice of a suitable

model determinant. To avoid poor fit, the model must capture the data’s main properties

which are closely related to the field and application domains. The criteria to choose a

suitable model are the data type, data size, domain knowledge and most importantly, the

interpretability of the model. Models that work directly on the attributes of the raw data

with few data transformation have higher interpretability. The oldest outlier detection

84
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techniques use traditional tail inequalities such as Markov’s and Chebyshev’s to discrimi-

nate data points in the outer boundary of the data [6]; These techniques fall in the realm

of Extreme Value Analysis.

Before the ’70s, outlier detection relied on the assumption of an underlying known

distribution of the data, which was assumed to be identically and independently distributed

(iid). Besides, procedures for detecting outliers lied on a prior choice of the number of

outliers in the data. Fox proposed the first work devoted to the detection of outliers in

univariate time series in [47]. In [19, 119], Box and Tiao identified four types of outliers:

additive outlier (AO), which affects only a single observation, and innovational outlier (IO)

which may affect all subsequent observations, level shifts (LS) and temporary change (TC).

Later, in [29,30], Chang et al proposed an iterative method which applies statistical tests

on the residuals to identify multiple outliers in time series. Outlier detection techniques

used for time series are essentially model-specific, based on the assumption of temporal

dependency, these procedures apply regression diagnostics.

The following procedure identifies outliers or inconsistent variations in a data set.

The approach used avoids the need to specify the number of possible outliers in advance

which is essential when the number of time series to be analysed is large.

6.2 Robust detection of outliers in univariate time series

There are two common approaches for dealing with outliers in regression problems, the

regression diagnostics and the robust regression. A diagnostic approach identifies and re-

moves the outliers from the data first and then fit the model to cleaned data, whereas

a robust approach fits first a model to the entire dataset and then identifies the outliers

as those data points which present large residuals. Robust regression approaches are se-

quential, and model parameters are re-estimated once the found outliers are removed. In

a recent publication, Akouemo and Povinelli [3] adopt a robust regression approach for

the treatment of outliers in daily natural gas data, based on work in the statistics com-
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munity on outliers detection in time series data [19,29,47,119]. Statistical techniques are

parametric, relying either on prior knowledge of the data distribution or on estimating un-

known parameters of an assumed family of statistical distributions. The salient downsides

of parametric strategies are 1) their model dependency, 2) the estimation of the model

parameters is biased by outliers, 3) they often assume stationarity of the model. Robust

outlier detection procedures are classified together with non-parametric and distribution-

free procedures [14]. The density-based techniques with the kNN (k nearest neighbour),

the LOF (local outlier factor) and Tukey’s rule are among the most popular.

Tukey’s rule is a robust method that is visually related to boxplots to identify

outliers. Potential outliers are flagged based on upper and lower hinges that are related to

quartiles of a batch of measurements rather than distributional assumptions. To estimate

the width of the central part of the data, the first quartile q1 (25% percentile) and third

quartile q3 (75% percentile) are computed. The interquartile range (iqr = q3 − q1) has

a breakdown point of 25% [58], indicative of high robustness against outliers. In Tukey’s

method, an observation is classed as an outlier when its value lies outside the outer fences,

defined using the parameter r such that data points below (q1 − r × IQR) or above

(q3+ r× IQR) are viewed as being too far from the median. The value r = 1.5 referred to

as the main resistant rule by Tukey, and its performance is discussed in [69]. It is used in

routine data analysis because it avoids the swamping effect in which the procedure tends

to flag too many outliers. The resistant rules r = 2 and r = 3 were also proposed later for

heavy tail distribution.

6.3 Robust off-line change-point detection in univariate time

series

6.3.1 Binary segmentation

Change-point detection is the challenging problem of detecting the existence of abrupt

changes in time series data. For an extensive overview of change-point methods, we refer
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to [12] and Truong et al. [117]. Change-points are those points in a data sequence where

statistical properties such as mean, median, variance or distribution change significantly.

A common strategy for change-points detection is to define a cost for a given segmentation

of the data. Typically, the cost is based on defining a segment specific cost function. The

sum of this specific cost function is computed over all the segmentations. To estimate

the number and position of the change-points, the resulting cost is minimized. Among

multiple change-points detection techniques, the Binary Segmentation (BS) is selected for

its conceptual simplicity and its low computational complexity O(n log n) [117]. The BS

is a forward selection algorithm introduced by Scott and Knott in [107]. Let y = {y1:n}

denote a sample of observations from a nonstationary random process assumed to be

piecewise stationary with k change-points at τ = {τ1, . . . , τk} ⊂ {1, . . . , n}, the sequence

of change-points is ordered such that τi < τj if, and only if i < j. The dummy variables

τ0 = 0 and τk+1 = n are implicitly available. The segmentation refers to the automatic

decomposition of y = {y1:n} into k + 1 weakly stationary segments with the ith segment

containing si = {yτi−1+1:τi}.

6.3.2 Description of the algorithm

Initially, the entire dataset is searched for one change-point, typically via a cost function to

be minimized. Once a change-point is detected, the data are split into two sub-segments,

defined by the detected change-point. A similar search is then performed on either sub-

segment, possibly resulting in further splits. The recursion continues until a given criterion

is satisfied. Here, to identify multiple unknown change-points in the data, the method

adopts a general form where a contrast function V (τ ,y) (that penalizes a high amount

of change-points in order to avoid overfitting) is minimized with respect to k and τ =

{τ1, . . . , τk}. As discussed in [84,118], we assume the penalty term to be linear in k = |τ |.

Under this assumption, the cardinality constrained problem to be solved can be written
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as

min
τ ,|τ |

V (τ ,y) + β|τ | with β > 0 (6.1)

V (τ ,y) :=
k
∑

i=0

c(yτi−1+1:τi) (6.2)

c(yτi−1+1:τi) :=

τi
∑

t=τi−1+1

|yt − yτi−1+1:τi | (6.3)

The parameter β controls the balance between model complexity and goodness of fit. Low

values of β favour overfitting with too many change-points and high values of β discard

most true change-points. The cost function c(.) in Eq. (6.3) measures the homogeneity of

the sub-signal si = {yτi−1+1:τi}. Thus, the cost is expected to be low when the sub-signal

does not contain any change-points and large when it does. Various cost functions are

found in the existing literature among which piecewise linear models.

The Least Absolute Deviation (LAD) that was proposed by Bai in [10] for the

estimation of level-shift points in autoregressive signals and noisy distributions is used.

He considered the L1-norm because of its robustness against heavy tails distribution.

[10]. In our case study, the L1-norm approach we have chosen to estimate change-point

localization. The cost function is given as where c(yτi−1+1:τi) is the sum of absolute

deviations for each t from the empirical median y(τi−1+1):τi of sub-signal yτi−1+1:τi .

The Binary Segmentation approach iteratively inserts change-points in segments

si = {yτi−1+1:τ} of the entire signal y = {y1:n}. The elementary operation is the single

change-point method, it tests if a split of the segment exists such that the cost function

over the two sub-segments plus the penalty term is smaller than the cost function across

the entire signal y = {y1:n}. Under the linear assumption, the penalty term β|τ | is reduced

to β for a single change-point search and the algorithm tests whether it exists a time index

τ ∈ {1 . . . n} that satisfies

c(y1:τ ) + c(yτ+1:n) + β < c(y1:n) (6.4)
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If no change-point is detected, no additional change point is created and the algorithm

stops. The binary segmentation is illustrated in Algorithm 1.

6.3.3 Proposed stopping penalty

In the literature, penalty terms have been proposed and justified either from theoretical

assumptions or inferred from data [118,123]. The two most common penalties used in the

literature were tested, namely the Akaike and Schwartz penalties, but in combination with

the L1-norm cost function, the binary segmentation failed to detect any change-points.

After experimentation, the value β = 4 × log(n) was selected as a suitable choice that

allows the binary segmentation algorithm to approximate the number of change-points for

a wide range of feeder data. A sensitivity analysis on the parameter β was carried out to

assert that its value was suitable for feeder data with and without level-shifts. In addition,

the proposed choice of β has been tested against scaling and shifting of the data, showing

invariance properties with respect to the problem under consideration.

Algorithm 1 Binary segmentation

Input: {yt}nt=1where yt ∈ IR, cost function c(.), penalty constant β
Output: B set of estimated level-shifts indexes

1: Initialize B ← {}
2: repeat
3: p← |B|.
4: τ0 ← 0 and τp+1 ← n
5: if p > 0 then B = {τ1, . . . , τp}
6: end if
7: Initialize array length G = p+1
8: for i = 0, . . . , p do
9: G[i]← c(yτi...τi+1)− min

τi<τ<τi+1

[c(yτi...τ ) + c(yτ ...τi+1)].

10: end for
11: î← argmaxiG[i].
12: τ̂ ← argminτ

î
<t<τ

î+1
[c(yτ

î
...τ ) + c(yτ ...τ

î+1
)]

13: B ← B ∪ {τ̂}
14: until max(G[i]) < β



90 Chapter 6. Outlier detection techniques for MV feeders time series

6.4 Automatic outlier detection algorithm

In [2], Aggarwal asserts that the most effective methods for outlier detection are dataset

specific and make use of contextual information to develop strategies tailored to the data

in hands. The proposed strategy integrates the load seasonal features, namely, typical

days of the week and the yearly cycle, in the outlier detection procedure. It is a single-

step automatic procedure which identifies all outliers in a “segment” at once as opposed to

the recent recursive method proposed in [4], which requires many model fits. The method

proposes to adapt Tukey’s univariate rule method illustrated Fig. 6.1 to detect and remove

outliers from piecewise stationary segments. Segments are bounded by time indexes of

detected change-points if any exists, otherwise the full dataset is processed. A segment

must contain at least a complete day to be processed. The method compares observations

to suitable upper bound and lower bounds at each time step. Let S be a segment of raw

data to be processed. S is divided into Sw,sp , where p is the hour of day, p depends on the

granularity of the data, i.e. p = 24 for hourly data, p = 48 for half-hourly data, w is the

typical day, weekday (WD) or weekend (WE) and s is the season. We implement Tukey’s

method to construct one Upper Bound (UB) vector and one Lower Bound (LB) vector,

one for each typical days at all seasons |s| in S. Let [Lb

(1)
s ,Ub

(1)
s ] ∈ Rp×2, the UBs and

LBs be vectors for WD and [Lb

(2)
s ,Ub

(2)
s ] ∈ Rp×2 the UBs and LBs vectors for WE. We

compute the 5th and the 95th percentiles q5
(i)
s [j] and q95

(i)
s [j] respectively, and iqr

(i)
s [j]

with i ∈ [1, 2], j ∈ [1, . . . , p], then we update the UBs and LBs vectors for both typical

days as follow:

Lb
(i)
s [j] = q5(i)s [j]− 1.5× iqr(i)s [j] (6.5)

Ub
(i)
s [j] = q95(i)s [j] + 1.5× iqr(i)s [j] (6.6)

Once Tukey’s hinges are computed for WD’s and WE’s for each season, daily observations

in S are compared against the UB
(i)
s and LB

(i)
s vectors and outliers are flagged then

removed from the data. Data are classified as outliers/non-outliers based on whether or

not they fall outside the given bounds. Algorithm 2 illustrates the full outlier detection
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Figure 6.1: Tukey’s Boxplot

procedure in the presence of level-shifts (change-points).

Algorithm 2 Outlier detection in presence of level-shifts

Input: {yt}nt=1where yt ∈ IR, cost function c(.), penalty constant β

Output: {y(c)t }nt=1 cleaned data.

1: k ← 0. ⊲ break-points to be estimated
2: % Binary segmentation
3: B ← {τ1, . . . , τk}. ⊲ output k indexes of estimated level-shifts in y
4: % Adapted boxplot labelling rule
5: l← {y1:τ1 , . . . , yτk:n} ⊲ form k + 1 consecutive segments
6: y(c) ← {}
7: for s in l do
8: s(c) ← Remove outliers from s
9: y(c) ← y(c) ∪ s(c) ⊲ Store cleansed s(c)

10: end for

6.5 Case Study

6.5.1 Results and discussions

The results of the segmentation and cleaning process are illustrated in Fig.6.2. The top

figure exhibits the raw data from Feed 3 (see Table 7.8) prior to application of the outlier
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cleansing framework to the data. This feeder data presents multiple structural breaks and

multiple outliers; piecewise stationary segments 1 to 4 are indicated with red horizontal

arrows. The bottom figure illustrates the data after the outliers being removed. Table

6.1 reports the count and the percentage of removed outliers in each segment. On average

less than 1% errors were detected in the training datasets with a maximum of observa-

tions removed not exceeding 2%. For distributions close to normal, the masking (false

negatives) and swamping (false positive) effects on the detection error using the Tukey

rule should not exceed 0.6% as per the study carried out by Hoaglin et. al in [69]. The

forecasting performances associated with this feeder following outlier removal and missing

values imputation process are presented in Table 7.8 and Table 7.9 and discussed in the

case study section.

Figure 6.2: Outlier detection and removal with BS-Tukey Feeder 3 data - the data contain
multiple structural breaks - top plot (before detection), bottom plot (after detection).

Table 6.1: Count of removed outliers in each segment of Feeder 3 training data

segment 1 segment 2 segment 3 segment 4

sequence [0, 6150] [6151, 9380] [9381, 18450] [18451,21641]

No of outliers 70 18 87 23

(%) outliers 0.32 0.08 0.4 0.1
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6.5.2 Computational time

The proposed cleansing procedure consists of the combination of the binary segmentation

algorithm and the Tukey rule. Both procedures have a complexity of O(n log n) which

gives to our procedure a complexity of O(n log n). Fig. 6.3 and Fig. 6.4 illustrate the

performance of the outlier detection procedure for a half-hourly and hourly resolution. The

boxplots show the statistics of the running time and the percentage of removed outliers

relative to 342 MV feeders. In practice, however, the running time rarely exceeds one

minute, which is easily doable for the size of the datasets.

Introduction to hypothesis testing

A statistical hypothesis testing is an assertion concerning one or more populations, it is

formulated in terms of two statistical hypotheses: H0, the null hypothesis and H1, the

alternative hypothesis. The null hypothesis H0 asserts that there is no difference between

one or two parameters and a specific value. The alternative hypothesis H1 states the

contrary. The aim of hypothesis testing is to determine whether the null hypothesis is

likely to be true given a sample data. If there is little evidence against the null hypothesis

given the data, the null hypothesis is accepted. If the null hypothesis is unlikely given the

data, it might be rejected in favour of the alternative hypothesis. In hypothesis testing,

the level of significance α is a probability threshold used to determine whether to reject

H0 in favour of the H1. The level of significance α = 0.01 relates to 99% confidence

level for rejecting H0. Incorrect conclusions made from hypothesis tests fall in one of two

categories: type I error and type II error. Type I error describes a false positive situation

where H0 is true, but is rejected. Type II error describes a false negative situation where

H0 is false, but erroneously fails to be rejected.
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Outlier detection by hypothesis testing

The proposed outlier detection using Turkey’s method is compared to the algorithm pro-

posed by Akouemo and Povinelli in [3]. In the following, the hypothesis procedure is

refereed to as H-test. Akouemo and Povinelli adopt a robust regression approach for the

treatment of outliers in daily natural gas data. The methods identifies those observations

that lie in a so-called outlier region. Hypothesis testing is used to detect outlier upon fore-

casting residuals results where outliers correspond to the residuals in the tail of a normal

distribution. The H-test procedure is recursive; it fits unhealthy data to a given model and

runs a hypothesis testing procedure on the forecast residuals to establish if an extremum

is an outlier. When the probability of an extremum to be an outlier exceeds the level of

significance set to α = 0.01, the corresponding data point is removed from the dataset,

imputed, and the model is retrained on healthier data. The procedure repeats until no

outliers are found in the residuals.

The method proposed in [3] was adapted in a few ways to make a direct com-

parison possible. The authors of [3] propose to fit the data to ANN and NARX models,

instead, we used the same FDNN architecture and inputs vector described in the previous

section to fit the data. Moreover, we have modified the procedure in to accommodate the

data in hands in three ways. First, all missing values in the raw data had to be imputed

prior to train the FDNN models, they were imputed using unconditional mean. Secondly,

to ensure a fair comparison, the change-points detection procedure was included in the

full H-test algorithm. For each of the detected segments, we trained a model and detect

outliers in the one-step-ahead forecast residuals. Lastly, we imputed the outliers using

the median of segments instead of an interpolation method since the feeder data exhibit

groups of consecutive outliers but not isolated outliers as it was the case with the natural

gas data used in [3]. We run the H-test augmented with change-points detection as fol-

lows; outliers were searched one-by-one and temporarily imputed with the median of the

segment. Outlier indices were recorded during the search. Once the algorithm had found

all the outliers, we imputed all outliers with mean and we trained the FDNN forecasters so
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that we could compare the forecasting results with no m (no outliers + mean imputation)

datasets for Tukey and H-test method.

Tukey method vs Hypothesis testing

Both procedures are compared in terms of running time and detection accuracy, by ap-

plying them to load time series of two feeders: Feed 1 and Feed 3 (see Fig. 7.4). We first

used both Tukey’s procedure and the H-test to detect outliers in the training and testing

data of the two aforementioned feeders. We then trained two forecasters per feeders with

the cleaned data and compare the predictions from each models. In Table 6.2, the number

of outliers found in the training and testing datasets by both procedures are reported.

We have recorded the running time for each outlier detection procedure. Running time

and 24-h ahead forecasts MAPE results are also reported in the table. Note that Tukey’s

method on average is 65 times faster than H-test.

Table 6.2: Outlier detection and MAPE(%) results : Tukey method vs
Hypothesis testing (H-test)

Feed 1 Feed 3
H-test Tukey H-test Tukey

number of outliers in training data 199 191 52 198

Running time (min) 50.51 0.37 8.33 0.33

number of outliers in testing data 22 39 35 76

Running time (min) 2.23 0.055 3.60 0.061

MAPE(%)

no m r 5.33 4.11 10.40 8.38

no m no 4.11 4.02 10.34 6.22

Looking at the running time performance of both procedures, it is obvious that

Tukey’s method is much faster than H-test. If we compare the MAPE results for Feed

1 between both procedures, the performance of dataset preprocessed with Tukey and H-

test are similar although H-test omitted a number of outliers in the testing data which

has sightly penalized the forecast accuracy. In Feed 3 case, H-test was significantly less

successful at identifying harmful outliers. The discrepancies in the number of found outliers

by the H-test algorithm can be explained; the binary segmentation only approximates the
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number of change-points, hence, the number of level-shifts detected in the data might

not always be optimal. If the segmentation is not optimal then the residual normality

assumption does not hold and the H-test cannot perform well. This demonstrates the

robustness of the Tukey method. In addition, the H-test method relies on the model’s

parameters estimation, therefore each time the method runs, the total number of found

outliers varies as opposed to Tukey method that always flagged the same observations as

outliers. In definitive, both methods are relatively easy to implement, but H-test may be

less suitable for large data sets, due to computational requirements. Tukey’s approach is

fast and robust and will be a better choice for voluminous data.

6.6 Semi-Automatic Outlier Detection

6.6.1 Description of the algorithm

In few instances, the automatic outlier detection procedure failed to cleanse the data. The

failure was caused by the presence of data gaps in the historical datasets. Two examples of

feeders’ time series F1 and F2 for which the cleaning process has not provided satisfactory

results are displayed in Fig 6.5 and Fig 6.7. The presence of these bad observations in the

data occasion two issues: 1) their presence might bias the network’s parameters estimation

2) some gaps are not entirely accessible for a complete missing values imputation. The

presence of those strange variations at each extremity of the gaps sometimes prevent to

operate an effective imputation with more accurate estimates. To overcome these issues,

a semi-automatic cleaning procedure was implemented. The proposed cleansing approach

applies the median filtering technique, a nonlinear method used to remove noise from

image [101] and as a smoothing technique in time series analysis .

The median of m observations y = {yt}mt=1 is denoted by med(yt) and is given by

med(yt) =











y(k+1), m = 2k + 1

1
2(y(k) + y(k+1)) m = 2k

(6.7)
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where y(t) denotes the tth order statistic. The one-dimensional median filter computes the

moving median of all windowsW ν
i = {yt}i+νt=i of length ν, sliced along the signal yt where

i ∈ ZZ. The output of the filter mν
j is given by

mν
j = med(W ν

j ) =











y(j+k+1), ν = 2k + 1

1
2(y(j+k) + y(j+k+1)) ν = 2k

(6.8)

where j = k, k + 1, . . . , n− k. The one tuning parameter of the filter is the window half-

width k which makes its, implementation simple. The strengths of the median filter lie in,

1) its high resistance to local outliers, this allows the filter to preserve the signal edges, and

2) its low computational cost, O(n log n), for sorting n observations. The proposed semi-

automatic outlier detection uses the median filter technique to form a bounding envelope

that encloses the time series yt from above and below as illustrated in Fig.6.8 and Fig.6.6.

The procedure takes three parameters: ru and rl adjust the upper and lower bounds, Uj

and Lj respectively with Uj > mν
j > Lj and ru and rl ∈ IR>0 . The window size ν tunes

the smoothing rate of the envelope’s bounds. The upper bound Uj and the lower bound

Lj are given by

Uj = mν
j + ru × ȳ (6.9)

Lj = mν
j − rl × ȳ (6.10)

where ȳ can be set as the mean or the median of the entire sequence y.

6.6.2 Performance

The values of parameters adjusted to clean the two feeders are provided in Table 6.3. In

Fig.6.6 and Fig.6.8, the raw data is plotted in colour blue and set behind the cleaned data

plotted in green. The procedure is semi-automatic since the fine-tuning of the envelope’s

bounds position is achieved manually supported by visual appreciation. The main objec-

tive during the parameters adjustment is too eliminate the maximum of bad observations
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while avoiding the discard of too many good values.

Table 6.3: Semi-automatic outliers detection parameter settings
and computational time

Feeders ν ru rl No of outliers running time (s)

F2 168 0.7 0.6 64 9.0

F3 1000 0.6 0.6 503 8.89

6.6.3 Conclusion

An outlier detection technique is subjected to two effects: swamping effect (false positive)

and masking effect (false negatives). Choosing an outlier detection mechanism involves

a trade-off between false positives and false negatives. Two outlier detection procedures

are proposed: an automatic and a semi-automatic. Both procedures are developed based

on robust statistics (median and interquartile range) and have a complexity of O(n log n).

The fully automatic procedure computes lower bound and the upper bound using Tukey’s

and its main resistant rule r = 1.5. The rule is frequently used as a value that balances

false positives and false negatives. For distributions close to normal, Tukey main resistant

rule’s is expected to have a detection error percentage not exceeding 0.6%. The automatic

outlier detection procedure can also accommodate the presence of level-shifts in the data;

it implements a robust version of the binary segmentation algorithm. The semi-automatic

outlier detection uses the median filter technique to form a bounding envelope that encloses

the time series from above and below. Both procedures were tested on large real-world data

and have demonstrated good performances in cleansing the data from harmful observations

while avoiding the swamping effect.
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Figure 6.5: F1 feeder’s data with inaccessible data gaps
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Figure 6.6: F1 feeder’s data cleaned with median filter bounds
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Figure 6.7: F2 feeder’s data with inaccessible data gaps
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Figure 6.8: F2 feeder’s data cleaned with median filter bounds



Chapter 7

Short-term load forecasting

Since the emergence of competition in the energy sector, the need for accurate and reli-

able energy forecasts has significantly increase across all layers of the industry: generation,

transmission, distribution and energy market. STLF is essential for planning, operation

and financial activities. Despite an active research, load forecasting remains a challenging

task due to the multi-level time dependencies that exhibit load time series and the exoge-

nous variables that must be taken into consideration when developing forecasting models.

Forecasting model depend on geographic, climate, economic, and social characteristics.

Selecting the most suitable algorithm usually is achieved by testing the algorithms on

real-data.

There is not a single model or algorithm that outperforms for all utilities. Usu-

ally, companies use several load forecasting methods conjointly since there is no known

mechanism that indicates prior conditions for identifying which forecasting method would

be more suitable for a given load area. The accuracy evaluation of STLF models requires

that the forecasting error which represents the difference between the estimated value and

the target value, be computed for each timestamp of the forecasting horizon. The accuracy

of STLF predictions relies on three key factors: the class of model that is being used, the

quality of the historical input data set used to train the model, and the suitability and

quality of the predictor data.

102
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The methodology adopted in this work to forecast large-scale MV feeders’ time-

series axes on balancing the use of state-of-the-art models with computational resource

and time constraints. All algorithms have been implemented in Python 3.5 and 3.6 and

R. All studies were carried out on Windows 10 operating system with an Intel Xeon CPU

E5-2630 2.4GHz processor.

7.1 Methodology

7.1.1 Datasets

In this study, 342, MV/LV feeders time series are forecasted. Feeders’ load and weather

time series data cover the period starting from January 2014 and ending in September

2017 at hourly granularity. Datasets are divided into training, and testing sets with the

testing set starting in May 2017. The testing datasets are not used during the models’

selection and evaluation procedures but only to generate the final forecasts. The number

of missing observations averages 1.08% across (training and testing data combined) with

a standard deviation across feeders of 1.25%. The notation 1.08±1.25% will be used to

report mean and variation across feeders. After outlier removal, the fraction of missing

data increases to 2.0±1.41%.

Feeders’ series were preprocessed with eight preprocessing strategies producing

eight training/testing datasets. The first set of four training/testing datasets r m, r knn,

r kf imp, r kf smo was obtained following the imputation of the raw data (r) with no de-

tection and removal of outliers; the missing values were imputed using either unconditional

mean (m), 10-nearest neighbour (knn), Kalman imputation (k imp), Kalman smoothing

(k smo). The other set of four training/testing datasets no m, no knn, no kf imp,

no kf smo was processed by performing a detection/removal outliers procedure (no) to

the raw data before imputing all missing values using the aforementioned imputation

strategies. Note that training and testing data are always preprocessed with the same

strategy.
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7.1.2 Forecast Error Metrics

To evaluate forecasting performance, the mean absolute percentage error (MAPE) given

Eq. 7.1 is computed as the forecast performance metric.

MAPE =
1

n

n
∑

t=1

| ŷt − yt
yt

| × 100% (7.1)

where n = 24 for 24-steps ahead forecast. The relative error percentage (RPE) given

Eq. 7.2 measures one-step ahead forecast performance.

RPE = | ŷt − yt
yt

| × 100% (7.2)

MAPE and REP are computed using two ground truth datasets; the raw testing data

(r) and the testing data cleansed from outliers (no). The latter allows obtaining ‘clean’

accuracy results since the forecast performances reduce when the ground truth data contain

outliers. Note that training and testing data are always preprocessed with the same

strategy.

The median and the median absolute deviation (MAD) are used as robust alternatives to

the mean and the standard deviation respectively in the case study section. The MAD is

defined as

MAD = median|Xi − X̃| with X̃ = median X. (7.3)

7.1.3 Inputs Selection

Endogenous variables

The time series forecasting problem is difficult because of the autocorrelation between

observations. The temporal dependency adds a complexity to the forecasting problem

that requires specific handling of the data when fitting and evaluating models. Typically,

the temporal dependency is unknown and must be uncovered from a detailed analysis;
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these endogenous input variables refereed as lag inputs must be diagnosed and specified.

Lag inputs selection is part of model identification in classical time series modeling. This

selection is usually achieved via an analysis of the autocorrelation function which measures

the extend that a time series is related with a delayed copy of itself. Fig. 7.1 and Fig. 7.2

display the lag plots of one MV feeder load time series. The horizontal axis shows lagged

values of the feeder’s data, each graph shows yt plotted against yt−k for 48 values of k

split across the two figures. The autocorrelation between yt and yt−k is given by

rk =

n
∑

t=k+1

(yt − ȳ)(yt−k − ȳ)
n
∑

t=1
(yt − ȳ)2

, (7.4)

where n is the length of the time series. In Fig. 7.1 and Fig. 7.2, the lines connect points in

chronological order and the dotted blue lines represent the 95% confident threshold. The

linear relationship between lagged values is strongly positive at lags 1, 24 and 48. The

corresponding autocorrelation coefficients rk calculated with Eq. 7.4 are as follow: r1 =

0.954, r24 = 0.919 and r48 = 0.769. These coefficients highlight the critical importance of

lagged values in this particular case of STLF. The strong linear relationship between lagged

values proves that passed observations of feeder’s load highly influence future demand. In

particular, lag 1, for which the autocorrelation coefficient is r1 = 0.954, underlines the

strongest lagged value that most influences future load behaviour; this is a determinant

criterion in the selection of the recursive forecasting strategy, which is discussed in the

following section. Besides, the next section will confirm that weather variables are not

prominent in the forecasting problem addressed in this thesis. The autocorrelation function

analysis signifies that historical load values are the best predictors of future load values

and the most important.

Exogenous and dummy variables

Besides the lagged values series, additional contextual data are fed to the network that

provides exogenous information related to the environment in which the feeder’s load
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Figure 7.1: Lag plots for the first 24 lags
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Figure 7.2: Lag plots for the 25th to 48th lags
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Figure 7.3: Scatterplot matrix of MV feeder load and weather predictors

evolves. Dummy variables are used to represent the calendar cycles (month and days of the

week) and the day-type (weekday, weekend and holidays). High dimensional input space

leads to an excessive number of input weights and poor performance [56]. To reduce the

input space, dummy calendar variables are encoded with sinusoidal functions rather than

using one-hot encoding as in [80, 104]. Weather inputs were selected based on correlation

analysis between weather and load variables. The matrix provided in Fig 7.3 displays the

scatterplots for one feeder’s series against the weather data variables; this helps to visualise

the relationship between the variables. In general, the matrix reveals a low correlation

between the feeder’s load and the weather variables. This agrees with recent studies that

report 80% of heating and cooling systems in the UK are supplied with gas energy. The

Pearson’s correlation coefficients provided on the plot indicate that the temperature and

the humidity variables as the most linearly correlated to the load with -0.235 and 0.233

correlation factors.
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7.1.4 Inputs normalisation and specification

Table 7.1 provides details on the model inputs used to model the MV feeders load time

series. The input vector x contains 13 inputs reported in Table 7.1. Each input is stan-

dardized with zscore such that each xi was computed as x̂i := (xi − µi)/σi, where µ is the

input mean and σ is its standard deviation.

Table 7.1: Network Inputs

Variables Inputs (*)

Load lags (current) yt−1 or ŷt−1

yt−24, yt−48

Weather forecast temp(t+h), hum(t+h)

Calendar cycles
cos(2πh/24), sin(2πh/24)
cos(2πd/7), sin(2πd/7)

cos(2πm/12) , sin(2πm/12)

Day-type (DT)
Weekday/Weekend = 0|1

Holidays = 0|1
(*) Notes : t is the current time, y denotes the current and ŷ denotes one-step-
ahead forecast, h ∈ H = {0, . . . , 23} for time of day, d ∈ D = {0, . . . , 6} day of
week with Monday = 0 and Sunday = 6, m ∈ M = {1, . . . , 12} month of year
with January = 1 and December = 12.

7.1.5 Multistep-ahead forecasting strategy

The autocorrelation analysis of feeder’s data has shown the significance of lag values in

the short-term load forecasting problem. The highest correlation coefficient, r1 = 0.954,

was calculated for lag k = 1. Hence, this indicates that the feeder observation yt−1 is the

most influential input in the STLF problem. The measurement at yt−1 will be available in

the database if the prediction target is to produce one-step-ahead forecast, however, if the

forecasting horizon h > 1, the yt−1 value will not be directly accessible from the historical

data. It must be either estimated or not included in the network input vector. This

finding has motivated the implementation of a recursive prediction strategy to produce

24-step-ahead forecasts (24 values) where predictions are generated at midnight (12 am).

Let y = {y1:n} be a univariate feeder time series comprising n observations, and the aim

is to forecast the next 24 values of the time series. The underlying process is estimated
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by a model of the form m and an error term ǫt given by

yt = m(yt−1, z
P
t ;θ) + ǫt (7.5)

where ǫt ∼ N(0, σ2t ), θ are the model parameters, yt = [yt, yt−23, yt−47]
′ and zPt is the

vector of the exogenous inputs (either known or forecast for time t) depending on the

current hour, day, month and day type as reported in Table 7.1 and summarised with the

parameter P := (h, d,m,DT). For simplicity, from hereon, we drop the dependence on θ

in m(yt−1, z
P
t ;θ) and use the shorthand notation m(yt−1, z

P
t ). The recursive prediction

consists of repeating one-step-ahead prediction several times using the previous forecast

as input [24]. We compute forecasts recursively for h = 0, . . . , 23 as

m̂(h)(yt−1:t−47, z
P
t:t+h) = m([m̂(h−1)(yt−1:t−47, z

P
t:t+h−1), yt+h−24, yt+h−47], z

P
t+h) (7.6)

where the recursion is initialized by m̂(−1)(yt−1:t−47, z
P
t−1) := yt−1, and we use the con-

ventions yt−1:t−47 := [yt−1, . . . , yt−47] and zPt:t+h := [zPt , . . . , z
P
t+h]. Training and testing

datasets are processed either by imputing missing values only or by detecting and remov-

ing outliers first followed by the imputation of all missing observations.

7.1.6 Learning algorithm selection

The learning algorithm selection was carried out through a preliminary investigation of

three types of multivariate models: Prophet, LSTM and FDNN. The algorithm was chosen

based on two criteria: the model’s training computation time and forecast accuracy. All

three algorithms were trained on five feeders’ time series to produce a one-step-ahead

prediction. The forecast accuracy results are reported in Tables 7.2, 7.3 and 7.4. The

feeders’ raw training and testing data are plotted in Fig. 7.4. The datasets’ naming

convention used in this work are reminded at the bottom of Tables 7.2, 7.3 and 7.4. For

each of the modelling technique, the best point-forecast performances are highlighted in

blue.
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Figure 7.4: Time plots for the training (left) and testing (right) raw datasets of ”Feed 1”
to ”Feed 5”

The forecast accuracy results described in Tables 7.2, 7.3 and 7.4 provide sev-

eral key outcomes: 1) the automatic outlier detection can potentially improve forecast

accuracy whichever of the three modelling algorithms is used, 2) outlier removal does not

always improve one-step-ahead forecast accuracy, particularly with the FDNN, 3) the deep

learning algorithms outperform Prophet on these datasets. However, based on Tables 7.3

and 7.4 results, FDNN outperforms LSTM on most of the time series (4 out of 5) which

disagree with the recent claims concerning the excellent results of LSTM’s on time series

forecasting problems. In addition, FDNN seems to be more robust against outliers than

LSTM. The results in the tables are not further discussed here as they are only shown to

support the choice that was made for the algorithm selection.

LSTM has been advocated in a few recent articles as to be the state-of-the-art

technology for short-term load prediction. In 2017, a comparative performance analysis

of RNN’s architecture applied to the short-term load forecasting problem was proposed

in [18]. At the time of publication, there was no existing study reporting on the imple-
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Table 7.2: Prophet- One-step-ahead forecast RPE(%) results
for 5 feeders

Datasets Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

r m no 6.69 4.89 6.14 12.06 2.15
no m no 5.21 5.01 4.73 9.44 2.44

r knn no 6.36 4.51 6.47 11.60 2.08
no knn no 5.37 4.45 4.73 9.41 2.43

r kf imp no 6.04 4.47 5.76 11.60 2.09
no kf imp no 4.22 4.27 4.77 9.58 2.23

r kf smo no 4.79 4.25 5.42 11.76 1.91
no kf smo no 4.59 4.06 4.64 9.88 2.09

Table 7.3: LSTM - One-step-ahead forecast RPE(%) results

Datasets Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

r m no 2.41 4.60 5.72 3.08 2.24
no m no 2.01 4.73 6.06 3.66 2.30

r knn no 3.11 4.39 4.74 3.32 2.28
no knn no 2.15 5.02 5.31 2.72 2.06

r kf imp no 2.69 4.32 4.97 4.12 2.51
no kf imp no 2.03 4.21 6.14 3.04 2.38

r kf smo no 2.24 4.41 4.80 2.72 2.21
no kf smo no 2.61 4.36 4.54 3.95 2.15

Table 7.4: FDNN - One-step-ahead forecast RPE(%) results

Datasets Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

r m no 2.91 3.35 6.42 3.11 2.21
no m no 2.92 3.80 4.04 3.04 2.08

r knn no 2.68 3.08 3.52 2.85 2.15
no knn no 2.31 3.19 3.56 2.94 2.05

r kf imp no 2.57 3.34 3.32 3.33 2.15
no kf imp no 2.41 3.15 3.53 2.57 2.07

r kf smo no 3.40 3.26 3.59 3.52 2.10
no kf smo no 2.59 3.39 4.16 2.67 2.08

Note : Training and testing data preprocessing strategies are indicated in black; ground
truth data are indicated in grey (r:raw data, no:no outliers, m: Unconditional mean imputa-
tion, kf imp:Kalman filter imputation, kf smo:Kalman smoother imputation, knn: 10-Nearest
Neighbour )
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mentation of LSTM for real-world load time series prediction. Since, only a few articles

analysed and reported on the subject [81, 108]. After careful reading of these studies, it

transpired that the proposed frameworks only addressed one-step-ahead forecasts. Consid-

ering that STLF relate to the problems of up to one week ahead forecasts, a clear statement

on the targeted forecasting horizon is a piece of essential information that should not be

omitted. For instance, in [108] and [81], the one-step-ahead load forecast of residential

house-hold is addressed with LSTM, but regrettably, the authors did not emphasise this

critical point.

Multistep-ahead prediction is a more challenging problem that requires thought-

ful consideration of the forecasting strategy to adopt. The only articles that address the

implementation of LSTM to predict day-ahead load forecasts can be found in [35] and [24].

Both articles report on multistep-ahead forecasts of building electricity consumption using

a recursive strategy and an encoder-decoder (known as sequence to sequence) architecture.

Direct and recursive strategies are discussed in Sec. 7.1.5. The forecasting problem pre-

sented in these studies differ from the one discussed in this thesis from two key aspects:

1) the number of time series to be modelled and the targeted type of load. In [24], the

authors show the strong correlation between the outdoor temperature and the building’s

electricity load demand, which emphasises the importance of having weather variables in

the model’s input vector. Since weather predictors are the main influences on buildings’

load behaviour, the decoder necessitates weather forecasts and dummy variables essen-

tially to generate multistep-ahead forecasts. The main issue with both studies is they only

compare the forecast performances against those produced by other complex LSTM-based

architectures or classical statistical methods; none of the studies included a FDNN or a

standard multilayer perceptron network in their study. Yet, one of the main outcomes

provided in the review proposed in [18] states the following: ‘LSTM and GRU achieve

outstanding results in many sequence learning problems, the additional complexity of the

complicated gated mechanisms seems to be unnecessary in many time series predictions

tasks.’. In [51], Schmidhuber Jurgen (one of the developers of the LSTM architecture)

and his collaborators even suggested using LSTM ‘only on tasks where traditional time
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window based approaches have failed’.

Nevertheless, the preliminary focus of this work was to efficiently train these

models and assess the feasibility of using them for multistep-ahead forecasts. The im-

plementation of LSTM models was done with the Keras deep learning library. Training

large-scale LSTM-based models turned-out to be very much time-consuming, involving

the tuning of many parameters. Furthermore, the automated architecture selection pro-

cess through a rigorous model evaluation added more complexity to the problem. And

besides, the implementation of the recursive approach with LSTM and the time taken to

produce 24-step-ahead forecast discarded the technology conclusively. In a matter of fact,

the strength of LSTM stands in its capability to remember single events for a very long

time, if such extended memory is not required for the forecasting problem at hand, there

is no requisite that justify the use of such complex technologies. Depending on the time

series forecasting problem, complex architectures such as LSTM or CNN might not even

be adequate. In definitive, the FDNN algorithm was adopted for the rest of this work as

the architecture largely satisfied the two criteria mentioned above.

On a side note, the forecast accuracy results reported in Table 7.4 have raised

some concerns regarding the suitability of removing outliers from the data, particularly in

the training datasets. To dissipate the uncertainty raised by Table 7.4, a robust analysis

of forecast accuracy is reported in Table 7.5. The robust statistics relate to one-step-

ahead forecast accuracy performance across 342 feeders. The results highlighted in blue in

Table 7.5 show that models that were trained on a fully cleansed dataset (i.e no knn no)

perform better than those trained on imputed data only. Nevertheless, the results also

reveal a slight increase in model variance; this will be discussed in later sections.

7.1.7 Robust loss functions

The choice of the loss function is a key part in deep neural network model training, Lp-norm

losses are commonly used in supervised learning [54]. During the learning process, neural

networks are optimised with a stochastic backpropagation algorithm which computes the
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Table 7.5: FDNN - Robust statistics for one-step-ahead
forecast accuracy across 342 feeders

MEDIAN RPE(%) MAD RPE(%)

r m no 4.53 2.21

no m no 4.50 2.46

r knn no 3.98 2.14

no knn no 3.86 2.26

r kf imp no 4.06 2.07

no kf imp no 3.85 2.15

r kf smo no 4.20 2.14

no kf smo no 4.06 2.05

gradient g of a loss function L(Φ) with respect to parameters Φ, the weights of the deep

neural networks. Given a training set S := {(x(i), y(i))}ni=1 of inputs and target pairs , the

parameters Φ are learned by minimising the empirical risk function given as

Φ̂ = argmin
Φ

1

n

n
∑

i=1

L
(

fΦ(x
(i), y(i))

)

+ λR(Φ) (7.7)

where f is a nonlinear function such that for i ∈ [1, . . . , n], f(x(i),Φ) = ŷ(i), L is a

particular loss function and, λR(Φ) a regularization term.

The gradient gΦ =
∑n

i=1∇ΦL(fΦ(x(i)), y(i)) is used to update the parameters Φ

in that direction such that Φ← Φ− η × h(gΦ), η ∈ [0, . . . , 1] being the learning rate and

h(.) varies upon the applied stochastic optimization algorithm. Hence, the parameters are

updated in proportion to the product of the residual error and inputs, which causes the

backpropagation algorithm to be heavily dependent upon the quality of the training data.

Robust training of ANNs in the presence of gross errors was investigated by

Liano [88] and Khamis [9]. Liano studied the mechanism by which outliers affected ANNs

outcome using M-estimators. Khamis conducted an analysis of variance (ANOVA) tests

on training and test data, to evaluate the influence of the percentage-outliers factor and

the magnitude-outliers factor on the ANNs performance. The study reported that both,

the magnitude of outlier observations with respect to the unconditional mean and their

percentage in the data are two contributing factors to the decrease of ANNs prediction
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accuracy. The square loss L(y, ŷ) = (y − ŷ)2 is one such function that is well-suited

for the purpose of regression problems, however, it suffers from one critical weakness:

outliers in the data are penalized heavily by the squaring of the error. The absolute loss

L(y, ŷ) = |y − ŷ| avoids the problem of weighting outliers too strongly by scaling the

loss linearly instead of quadratically. Thus, a first design decision the analyst can make

to reduce the bad effects of outliers on the model’s parameter estimation is to choose a

robust loss function. It exists other loss functions than the absolute loss that are less

popular but robust against outliers. The Log-Hyperbolic Cosine loss (LOGC) in Eq. 7.8

and Huber loss (HL) in Eq. 7.9 are those to guarantee robustness towards outliers.

L(y, ŷ) = log[cosh((y − ŷ)] (7.8)

Lδ(y, ŷ) =











1
2(y − ŷ)2 for |y − ŷ| ≤ δ

δ|y − ŷ| − 1
2δ

2 otherwise
(7.9)

Table 7.6 reports on the impact of the loss function on forecasts accuracy. The table dis-

plays the statistics of one-step-ahead forecast across 342 MV feeders trained with FDNN.

The data are preprocessed with mean imputation only (no outliers removal). The best

forecasts are produced by the models trained on MAE loss function; these results are

highlighted in colour blue. The results show that the models trained with mean square

error (MSE) perform the worst; their corresponding results are highlighted in colour red.

TensorFlow is a powerful and flexible deep learning library. It offers a wide range of

Table 7.6: Statistics of one-step ahead forecasts distribu-
tion with 4 different loss functions

Loss functions MSE HL LOGC MAE

No feeders 342 342 342 342

mean MAPE (%) 8.679 8.677 8.712 7.981

variance MAPE (%) 10.234 9.595 9.627 8.137
note: mean square error (MSE), mean absolute error(MAE), Huber loss (HL), and
logistic cosh loss

preprogrammed loss functions and users also have the option to implement customised

functions. However, we have found TensorFlow to be computationally less efficient than

Scikit-learn on this large scale problem [109]. Therefore, the FDNN models were imple-
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mented with the Scikit-learn Python library because it is computationally very efficient.

Scikit-learn offers a class of deep learning models for regression problems that are fast

to train; however, the only loss function available to train the models is the mean squared

error (MSE).

7.1.8 Model’s architecture

FDNN are hierarchical and parametric models composed of neurons arranged in L ∈ IN

layers which are connected by weighted edges. There are three types of layers: the vector

of inputs x ∈ IR
d, multiple hidden layers l ∈ [1, . . . , L − 1] containing each Nl number of

neurons and the output layer where NL = 1. Given a FDNN architecture where d, L and

{Nl}Ll=1 are provided, training the network consists of learning the affine-linear functions

{W l}Ll=1 = {M l(·)−bl}Ll=1 yielding the network architecture Φ : IRd → IR
NL given by Eq.

7.10 and, the model given by Eq. 7.11

Φ = {(Ml, bl)}Ll=1 (7.10)

Φ(x) =W Lψ(W L−1ψ(. . . ψ(W 1(x)))), (7.11)

In this work, FDNN models were trained to forecast load for each feeder. Network ar-

chitectures were optimised by grid search via a nested-rolling-origin-validation procedure

which is discussed in Sec. 7.1.9. Table 7.7 provides details on the network architecture

and training algorithm specifications.

7.1.9 Model training and evaluation

Cross-validation is a statistical procedure that has two goals: 1) compare the perfor-

mance of multiple models and find the best for the available data and, 2) estimate the

generalisation performance of a model. Common cross-validation techniques found in the
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Table 7.7: Specification of models’ architecture and training algorithm

Tuning parameters method Grid search

Inputs standardization z-score

Hidden layers [1, 2, 4, 6, 8]

Cells (per layer) [2, 4, 6, 8, 10]

Batches [16, 32, 64]

Activation ReLU

Solver ADAM

ADAM hyperparameters default settings
η= 0.001, β1 = 0.9
β2 = 0.999, ǫ = 10−8

Cost function MSE

Early stopping True

STLF literature are out-of-sample (OOS) evaluation and k-fold cross-validation. In gen-

eral, cross-validation techniques yield to good model selection performances. However,

particular care should be taken when the aim is to estimate the generalisation error of a

model [8]. The out-of-sample method is a simple cross-validation technique that suffers

from issues of high variance which can lead to overfitting in model selection due to in-

formation leak [27]. Hence, a resampling method such as k-fold cross-validation, is more

suitable. However, k-fold cross-validation implementation is not straightforward when it

comes to time series forecasting. Because of the serial correlation between errors in the

training and testing datasets of time series data, training and testing sets are not inde-

pendent, which invalidates the cross-validation [17]. In addition, the traditional setting of

k-fold cross validation used future observations to predict the past.

To overcome the shortcomings of the standard k-fold cross validation, two pro-

cedures are proposed to tune the parameters and evaluate the models’ generalisation per-

formance: the NROV and the NAk-foldV illustrated in Fig. 7.6 and Fig 7.7 respectively.

Each procedure implements a pair of nested loops which offers an unbiased and robust

model performance evaluation technique. Model selection and model fitting procedures

are integral parts of the entire model evaluation process, unlike the standard algorithm

which infer hyperparameters and parameters separately. The NROV makes uses of the

basic rolling-origin evaluation discussed in [113], also known as anchored walk-forward

evaluation in financial optimisation. The nested validation procedure is described in the
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flow chart provided in Fig. 7.5. Feeders’ time series are partitioned multiple times in

training, validation and testing sets. Each time, the training period is moved further

ahead with its origin fixed at the beginning of the series. The advantages of NROV are 1)

several out-samples errors referred to as forecast origin in [113] are obtained which gives

a better understanding of how the models perform, 2) the strategy mimics the production

scenario where forecasting models are retrained on new coming historical data, and 3) the

procedure output multiple optimum model architectures.

After each training period pi, i = [1, . . . ,m], an optimum architecture is selected

out of k pre-selected architectures. The selection is made based on the best one-step-ahead

forecast performance achieved on the validation data of each period. The optimum archi-

tecture is retrained, and forecasts are produced on the test data (out-of-sample). At the

end of the NROV, there are p optimum architectures available; in Fig. 7.6, Model selection

1 compares the relative percentage error (RPE) achieved by each optimum architecture

on the out-of-sample data and picks the best model that achieved the best performance.

Arguably, model selection 1 carries the risk of biasing the model selection because

different test sets are used to quantify the performance of the various optimal architectures.

As a comparison, two alternative approaches are proposed: Model selection 2 and Model

selection 3. In Model selection 2, the best architecture is selected over all possible models

k as illustrated in Fig. 7.6 at the bottom of the figure. The performance of each k

architecture on all m validation period is averaged, compared, and the best model is

selected. Model selection 3 applies an adapted k-fold strategy to split the training data

in twelve equal splits. The procedure keeps the two last splits as validation and test data,

and these remain identical for each of the 10 periods. The best architecture selection is the

same as Model selection 1. The statistics for the performance of 24-steps ahead forecast

across 342 MV feeders using Model selection 1, Model selection 2 and Model selection 3

are shown in Fig. 7.8. The preprocessed data used for this model evaluation study is

the fully cleaned 10-nearest neighbours dataset (NO KNN). The results show that NROV

and NAk-foldV are both good model evaluation procedures that offer a robust measure

of forecasts uncertainty through narrow confidence bands and a performance distribution
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close to normal.

In the remainder, NROV is used because the procedure does not depend on a

single choice of testing data (i.e. the most recent time window). Once the best models have

been identified, they are retrained on the entire training data and forecasts are produced

on the new sets of test data.

7.2 Case study

7.2.1 24-step-ahead forecast analysis for individual feeder

To evaluate forecasting performance, the mean absolute percentage error metric referred

to as MAPE in Eq. (7.1) is used. The MAPE was computed using two ground truth

datasets; the raw testing data (r) and the testing data cleansed from outliers (no). The

latter provides a ‘clean’ forecast accuracy because accuracy results are reduced when

the ground truth data contain outliers. Note that training and testing data are always

preprocessed with the same strategy.

The achieved accuracies for 24h-ahead forecasts of five feeders are reported in

Table 7.8 and Table 7.9. In both tables, the left-hand-side column indicates in black the

data preprocessing strategies and in gray which ground truth data were used to compute

the MAPE (i.e. r kf imp no must be understood as the model is trained and tested with

raw data imputed with the Kalman filter and the ground truth has been cleaned from

outliers). Table 7.8 describes the accuracy results obtained for the forecasters trained and

tested on raw data with the missing values imputed. Table 7.9 outlines the performances

achieved by the forecasters trained and tested on data fully processed (outliers removal +

imputation). The results highlighted in red indicate the worst forecasting performances

between Table 7.8 and Table 7.9.

Fig. 7.4 shows the time plots of the training and testing raw datasets for each of

the five feeders under consideration. The plots help highlight the presence of gross errors
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3
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Table 7.8: 24-h ahead forecast MAPE(%) results for 5 feeders - Train-
ing/testing datasets preprocessed with imputation only (no outliers cleaning)

Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

r m r 5.34 6.13 10.37 5.77 6.11
r m no 4.06 5.99 8.39 5.67 6.11

r knn r 5.46 6.30 9.46 6.19 6.27
r knn no 4.17 6.17 7.25 6.07 6.27

r kf imp r 5.22 6.17 9.70 5.72 6.31
r kf imp no 3.94 6.06 7.56 5.61 6.30

r kf smo r 6.17 6.44 9.01 5.70 6.14
r kf smo no 4.88 6.31 6.92 5.59 6.14

missing values train (%) 0.80 1.05 1.28 1.17 0.30

missing values test (%) 0.24 0.32 0.22 0.508 0.07

Table 7.9: 24-h ahead forecast MAPE(%) results for 5 feeders-
Training/testing datasets preprocessed with imputation and outlier cleaning

Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

no m r 5.31 6.35 8.38 4.92 5.70
no m no 4.02 6.10 6.22 4.80 5.69

no knn r 5.06 6.12 8.24 4.98 5.31
no knn no 3.76 5.98 6.08 4.87 5.30

no kf imp r 4.89 6.36 9.05 5.57 5.98
no kf imp no 3.59 6.13 6.96 5.47 5.98

no kf smo r 4.89 6.37 8.42 5.14 5.96
no kf smo no 3.58 6.25 6.30 5.03 5.96

missing values train (%) 1.68 1.82 2.75 2.73 2.02

missing values test (%) 1.82 1.70 1.0 1.58 0.32

Note : Training and testing data preprocessing strategy is indicated in black; ground truth data are indicated in
blue (r = raw data, no = no outliers, m = unconditional mean imputation, kf imp = Kalman Filter imputation,
kf smo = Kalman smoother imputation, knn = 10-Nearest Neighbour)
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and level-shifts in the datasets. The plots also inform that Feed 1 and Feed 4 present no

structural breaks in the training data and behave alike in terms of overall shape; both data

contain outliers of varying amplitudes spread across the full dataset (training and testing),

however, Feed 4 has two large outliers at the end of the training data. The training and

testing data of Feed 2 and Feed 3 contain multiple structural breaks and gross errors of

various amplitude. Feed 5 presents only one significant structural break in the middle of

the training data, but there are no significant data quality issues in its testing data. At

the bottom of Tables 7.8 and 7.9, the percentage of missing values (mv) in the feeders’

training and testing data are reported. Note that missing values can only be logged before

any imputation is performed.

The forecasts performances are now discussed considering the five feeders one-

by-one, the feeders’ MAPE reported in Table 7.8 (imputed raw datasets) and Table 7.9

(cleaned and imputed datasets) are compared. The focus in this analysis is to assess how a

given data cleaning procedure improves the modeling performances, ergo, the forecasting

accuracy improvement is computed as the difference between the best performances found

in Tables 7.9 and 7.8.

Feed 5 ’s raw data present a modest percentage of missing observations and con-

sequently, most of the missing values in Table 7.9 are due to outliers being removed. The

forecasts results obtained with the raw data imputed with mean outperformed the three

other techniques. Following the outliers cleaning procedure, forecasts accuracy has im-

proved for all imputation techniques, but the knn imputation did a better job on cleaner

data and surpassed all the other imputation methods. Because the testing data had very

few outliers, the MAPE results obtained with both type of ground truth data (r and no)

are almost identical. With Feed 5, we achieve a 0.80 reduction of the MAPE.

Feed 4 performs better than Feed 5 despite the level of missing values in Feed 4

data being larger than in Feed 5 data and despite the presence of many large gross errors

in its series. This may indicate that the only presence of the level-shift in Feed 5 training

data has biased the estimation of the model parameters. Feed 4 model’s performances
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indicate that Kalman smoothing was the best imputation procedure used on the raw data.

These good performances are a consequence of the filtering of some of the noisy data in

both training and testing data. Note that imputing Feed 4 raw training data with knn

produced the worst forecasts possibly because contaminated observations have been used

to impute missing observations. Overall, Feed 4 forecasts accuracy has improved following

outliers removal and best forecasts are achieved with mean imputation on cleansed data.

The accuracy improvement was reported based on the MAPE obtained with the cleaned

ground truth data (no) since Feed 4 testing data contained several outliers. Feed 4 Feed

4 forecasts were improved by 0.8

Feed 3 performed the worst among all five feeders. These poor results are due to

the presence of multiple level-shifts in the training data and one in the testing data. In ad-

dition, the feeder’s raw data contain the highest level of missing observations exacerbated

by the outlier cleansing procedure. Similar to Feed 4, Feed 3 ’s model performed best on

smoothed raw data while knn imputation outperformed mean and Kalman on cleaned

data. With Feed 3, we also achieved 0.80 accuracy improvement. Forecast results for Feed

2 show that outlier cleansing does not always help FDNN models to perform better. The

results also emphasise the analysis done for Feed 5 and Feed 3 ; level-shifts in the training

data affect negatively the model fit consequently the performance of the forecasters. Feed

2 accuracy results indicate that the forecasts produced by the models trained on cleaned

data only and imputed with knn or Kalman smoothing are approximately equal.

The forecaster trained on Feed 1 data achieved the best forecasts among the five

feeders with the lowest MAPE = 3.59% against 6.08% for Feed 3. As a reminder, all

accuracy results reported in this section relate to 24-h ahead forecasts. Feed 1 ’s models

achieved 0.33 accuracy improvement with Kalman filter imputation outperforming the

other strategies.

Next, the carry-over effect of outliers on short-term forecasts is discussed. This

effect occurs because lagged values of feeder load data are used as inputs to the forecast

model. Fig. 7.9 and Fig. 7.10 illustrate the carry-over effect. The red areas in the plots
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highlight the contaminated observations in the testing data and their carry-over effect on

predictions while the green areas outline the improved forecasts produced with the testing

data cleaned from contaminated data. Level-shifts not only affect the model parameters

estimation, but they also alter the forecast accuracy as illustrated in Fig. 7.9. Although

in Fig. 7.9 the level does not jump significantly, the 5th day experienced a drop in level

which could not be predicted by the forecaster. In closing, several factors that contribute

to deteriorate forecast performance have been identified; level-shifts, outliers in historical

and future data, the level of missing values and the applied imputation strategy.

7.2.2 24-step-ahead forecasts analysis at scale

In this section, the forecasting results of all 342 MV distribution feeders for which, accuracy

performances are compiled in Tables 7.10, 7.11 and 7.12, are discussed. Similarly to the

previous section, the forecasts relate to 24-h ahead prediction of feeders loads. In Table

7.10, the forecasting models are identified by the strategies used to preprocess the training

and testing datasets. For each model (8 models per feeder), two MAPEs are computed:

one uses raw ground truth data, the other uses cleaned ground truth data. The daily

MAPEs were averaged across the full testing data so that a unique accuracy value per

feeder is reported, giving a total of 342 values per model (each model accuracy being

evaluated twice). The MAPEs of each model are reported in terms of their distribution

on the histograms displayed in Fig. 7.11.

In Table 7.10, the distributions are summarized in terms of their mean and

standard deviation. Because these statistics are highly sensitive to outliers, the median

and the Median Absolute Deviation (MAD) as used as robust alternatives to the mean

and the standard deviation, respectively.

Table 7.10 is organised as follows: the first two columns report on the distribution

of the MAPEs for the models that were trained on raw datasets (missing values are

imputed) while the two last columns provide MAPEs’ statistics for models trained on

data fully preprocessed (outliers removal + missing values imputation). In the table,
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Figure 7.9: 9×24-step-ahead forecasts. Testing data contain outliers (top) while outliers
are removed and missing value are imputed
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Figure 7.10: 9×24-step-ahead forecasts. Testing data contained outliers (top) while out-
liers were removed and missing value imputed
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Figure 7.11: Histograms of the MAPEs distributions for raw imputed data and fully
cleansed data
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each block of four rows refers to a different imputation strategy. Comparing the mean

and median of each model, they are quite dissimilar, which indicates significant skewness

in the results (see Fig. 7.11). Consequently, the rest of the analysis is based on the

median and the MAD. The robust statistics of the MAPEs are highlighted in colour blue

in the 2nd and the 4th columns of Table 7.10. These statistics correspond to the accuracy

performance computed with cleaned ground truth data; the following discussions always

refer to them.

Table 7.10: MAPE(%) statistics of 24-h ahead forecasts across 342 feeders

r m r r m no no m r no m no

mean 13.08 9.35 12.98 9.14
std 12.66 6.93 13.53 7.56

median 8.48 7.50 8.06 6.99
mad 7.89 3.72 8.21 3.98

r knn r r knn no no knn r no knn no

mean 13.15 9.46 12.85 9.04
std 12.57 6.84 12.99 6.85

median 8.42 7.69 8.04 7.26
mad 7.89 3.69 7.97 3.73

r kf imp r r kf imp no no kf imp r no kf imp no

mean 13.15 9.46 12.9 9.15
std 12.42 6.54 12.77 6.70

median 8.48 7.63 8.02 7.33
mad 7.83 3.64 7.84 3.68

r kf smo r r kf smo no no kf smo r no kf smo no

mean 13.13 9.44 13 9.24
std 12.49 6.67 12.71 6.61

median 8.35 7.59 8.09 7.28
mad 7.87 3.70 7.92 3.71

Note : Training/testing data preprocess strategy is in black - ground truth data are in blue with r = raw data,
no = no outliers, m = unconditional mean imputation, kf imp = Kalman Filter imputation, kf smo = Kalman
smoother imputation, knn = 10-Nearest Neighbour

Several outcomes can be drawn from the statistics provided in Table 7.10: the

outlier cleaning procedure did improve the median performance of the forecasters regard-

less of which imputation strategy was adopted. Nonetheless, the removal of outliers tends

to slightly increase the dispersion of the MAPEs (as evidenced by the MAD), which

indicates an increase in the models’ performance uncertainty. Overall, the imputation

techniques used for the study perform alike on the MV feeders datasets. Surprisingly, the
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simple unconditional mean imputation technique achieved a good score with the lowest

median of the MAPEs.

To contrast between the performance of each cleansing strategy, the counts of

feeders for which the accuracy does not exceed the upper bounds of 5%, 7.5%, 10% and

15% is provided in Table 7.11. Feeders for which the MAPE exceed 15% are considered to

be outliers; these represent approximately 8.80% of all feeders. The experimental results

indicate that most of the feeders for which forecasts accuracy were notably improved had a

raw performance not exceeding 7.5%. The imputation strategy for which outliers removal

has been the most beneficial are knn and mean with 32 feeders and 18 feeders respectively

that were led under the 7.5% upper bound performance. Table 7.11 shows that the mean

strategy presents more models that perform below 5.0 % MAPE accuracy.

Table 7.11: Models performances - count of feeders per data
preprocessing

MAPE (%) upper bounds

Data preprocessing ≤ 5 ≤ 7.5 ≤ 10.0 ≤ 15.0 > 15

r m no 19 171 264 311 31

no m no 34 189 263 312 29

r knn no 17 158 258 312 30

no knn no 26 190 266 313 29

r kf imp no 14 160 265 312 30

no kf imp no 19 185 266 313 28

r kf smo no 15 165 260 312 30

no kf smo no 17 179 265 312 30

Table 7.12: MAPE’s adjustment after full data
cleansing

∆median ∆MAD

r m –> no m 0.49 0.26

r knn –> no knn 0.43 0.04

r kf imp –> no kf imp 0.30 0.04

r kf smo –> no kf smo 0.31 0.01
Note : In blue is the best trade-off between improving the accuracy across
all feeders while maintaining the variability of MAPE to a low level

The results in Table 7.11 also show that automatic outliers detection has suc-

ceeded in improving the forecasts whenever it was possible without deteriorating the overall
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accuracy. The main drawback with removing outliers in the training set is the increased

level of missing observations to be estimated. Thus, it exists a bias-variance trade-off

associated with the choice between cleaning contaminated observations and creating ad-

ditional missing values to be estimated. The outcomes of the study are summarized in

Table 7.12 where the variations in MAPE distributions between models trained and tested

on raw data and models trained and tested on cleaned data are showed. Although mean

imputation exhibits the best performance improvement with 0.49 MAPE improvement,

the statistics show that it is at the cost of an increase in the variability of the mod-

els’ performance. Hence, mean displays the highest MAD increase even if the increased

model variability remains low. In conclusion, the knn algorithm enhanced with the pro-

posed cleaning strategy achieves the best compromise between improving the forecasters’

performance and keeping the uncertainty of the model as low as possible.

7.2.3 Further performance investigation

The 30 feeders for which the MAPE exceeded 15% were further investigated. By inspect-

ing the feeders’ data and the produced forecasts, three main reasons for obtaining lousy

prediction performances were identified. 1) The quality of the testing data was poor;

hence, it may be difficult to assess the out-of-sample performance of the forecaster from

test datasets that are unreliable. 2) The model was fitted on poor quality training data;

therefore, the model was misspecified. In that case, the model must be retrained on better

quality data. 3) The features selection was inappropriate. Generally, any issues related to

the model specification should be identified and solved during the model evaluation.

To investigate the outlying forecast performances, a comparison analysis between

forecasts collected during the nested-rolling-origin-validation and those obtained during

the final testing phase is conducted. As it is reported in Table 7.13, the MAPE performance

of the 30 outlying feeders differ significantly from training to testing phases. The analysis

from the table shows that only nine feeders performed with a MAPE exceeding 15% during

the training; the remaining feeders (21) were tested on bad quality data. Table 7.13 also
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shows that two feeders performed badly during both the training and testing phase; the

quality of the historical data cause these performances. In definitive, only nine feeders

require more in-depth investigation.

Table 7.13: Distribution of training and testing MAPE (binned) for 30
feeders with testing MAPE> 30%

Upper bounds

MAPE(%) ≤ 5 ≤ 7.5 ≤ 10 ≤ 15 ≤ 30 ≤ 60 ≤ 200 ≤ 1000

Training 3 9 4 5 6 1 1 1

Testing 0 0 0 0 23 5 2 0

7.2.4 Conclusion

The key outcomes drawn from these experiments and results are 1) there is no perfect

missing values imputation technique that works well for any datasets. It was found that

mean imputation outperforms the Kalman smoothing method despite the latter being

highly recommended in the literature given its optimality properties. 2) The knn is

an effective imputation technique that generally performed well on the studied dataset

but, to take full advantage of the method, the data must be cleaned from contaminated

observations. 3) Structural changes lead to biased parameter estimates and forecasts.

However, the forecasters handle level-shifts well by adapting quickly to changes. 4) The

past 24-h lagged values are significantly weighted in the short-term forecasts problem,

which creates the need for an online data cleaning procedure.

The study has identified several factors that contribute to deteriorating forecast

performance: level-shifts, outliers in historical and future data and the imputation of the

missing values strategy. The results reported in Table 7.11 show that automatic outlier

detection has succeeded in improving the forecasts whenever it was possible without dete-

riorating the overall accuracy. The main drawback with removing outliers is the increased

level of missing observations to be estimated. Thus, there exists a bias-variance trade-

off associated with the choice between cleaning contaminated observations and creating

additional missing values to be estimated. The outcomes of the analysis are summarised
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in Table 7.12 where the variations in MAPE distributions between models trained and

tested on raw data and, models trained and tested on cleaned data are displayed. Al-

though mean imputation exhibits the best performance improvement with 0.49 MAPE

improvement, the statistics show that it is at the cost of an increase in the variability of

the models’ performance. Hence, mean displays the highest MAD increase even if the in-

creased model variability remains low. A comparison of MAPE distributions is provided in

Figure 7.11. The results show that the knn algorithm enhanced with the proposed clean-

ing strategy achieves the best compromise between improving the forecasters’ performance

and keeping the uncertainty of the model as low as possible.

Residuals analysis

A careful analysis of residuals helps to assess adequately the risks associated with the use

of forecasts on decision making or control strategy. Fig. 7.12 is used to investigate the

average performances of the 24-steps-ahead forecasts across the full forecasting horizons.

The hourly forecast residuals and hourly percentage error have been clustered using all

the forecasts. The boxplots at the top of Fig. 7.12 display the distribution of the hourly

MAPE the bottom plot exhibits the median of hourly residuals of the forecasts.

Because feeder loads vary in magnitude, the residuals were normalised using the

feeders’ load median as base-load. The fully cleansed knn datasets were chosen for the

analysis. The forecast horizons for which forecasts are the most uncertain are highlighted

in yellow (top panel); these hours correspond to the morning peak-hours of the day. The

corresponding forecast residuals shown on the bottom panel indicates that most of the

time, the models underestimate the load. These results corroborate the analysis found

in [34] where the authors stipulate that robust models penalise the prediction of peak

demand by down-weighting their estimation.
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Figure 7.12: Hourly analysis of 24-steps-ahead forecasts across 342 MV/LV feeders for the
NO KNN training dataset. Hourly boxplots of the MAPE (top) and median normalised
hourly forecast residuals (bottom)



Chapter 8

Forecasting with gaps imputation

8.1 Description of the imputation strategies

The prospect of producing accurate forecasts by filling gaps of missing values with ad-

vanced imputation techniques is investigated. This experiment assesses, in particular, the

impact of imputation on one-step-ahead and 24-step-ahead forecasts when different impu-

tation strategies are used to fill gaps in the training data. The study is conducted on four

training datasets, namely F1 to F4 are used; each data experience multiple gaps for which

the time intervals are reported in Table 8.1; the table indicates the number of missing

values in each gap and the corresponding count of consecutive missing days. Note that

the gaps arise after a yearly cycle in each feeders’ data except for F4 (see bottom plots

in Fig 8.1 to Fig 8.4). F3 experience the largest gap with 24.5 consecutive missing days.

F2 experience the largest number of gaps; most of the gaps spread along the second half

of the data. F4 is the single feeder for which the biggest gap resides in the first half of

the training set. The concept of a ‘gap’ as it is understood in this experiment is described

below. Prior to imputation, F1 to F4 training data were cleaned from outliers using the

semi-automatic procedure discussed in Sec. 6.6. The missing values are imputed with

three main strategies as it is reported in Table 8.2 and Tables 8.3 : Standard Imputation,

Imputation by windows and Model-based Imputation.

136
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Table 8.1: F1 to F4 sequences of missing values in historical training data (l = 12)

Start gap End gap missing values count in days

F1 2015-06-22 13:00:00 2015-06-24 00:00:00 36 1.5
2016-04-20 13:00:00 2016-05-10 00:00:00 468 19.5

F2 2015-06-02 13:00:00 2015-06-03 00:00:00 12 0.5
2016-04-06 13:00:00 2016-04-19 00:00:00 300 12.5
2016-05-04 13:00:00 2016-05-14 00:00:00 228 9.5
2017-02-21 01:00:00 2017-03-02 00:00:00 216 9
2017-03-17 01:00:00 2017-03-17 12:00:00 12 0.5

F3 2016-01-26 13:00:00 2016-02-20 00:00:00 588 24.5
2016-08-18 01:00:00 2016-08-18 12:00:00 12 0.5

F4 2015-05-20 01:00:00 2015-06-08 12:00:00 468 19.5
2016-09-26 13:00:00 2016-09-28 00:00:00 36 1.5
2017-02-21 13:00:00 2017-02-22 00:00:00 12 0.5

The Standard Imputation implements two methods: full knn and full mean

where all missing observations (gaps and non-gaps) are imputed with knn and uncon-

ditional mean respectively. For these methods, the testing datasets are imputed alike

the training data. The Imputation by windows is a procedure proposed for this study; the

procedure is only used to impute gaps; the remaining of the missing observations are filled

using either knn, mean or kf imp imputation strategies. Similarly, F1 to F4 testing

datasets that did not contain gaps were imputed as the remaining data of the training

data. Hence, the Imputation by windows (iw) consists in three hybrid strategies: iw mean

and iw knn and iw kf imp. The Model-based Imputation holds two hybrid strategies:

tbats knn and prophet knn. The tbats knn strategy uses TBATS model to impute

the gaps; the remaining of missing values are imputed using knn. TBATS is a univariate

model that filters through the training data sequentially and produces h forecasts at the

end of the training set. A computationally efficient implementation of TBATS model is

available in the R’s forecast library. TBATS was fit to the multi-seasonal time series

object msts for all feeders’ time series. Because the gaps occur after a full yearly cycle,

the msts’s seasonal periods were set to daily, weekly and yearly seasonality for feeders

F1 to F3. For feeder F4, the seasonal periods were set two daily and weekly patterns

only because of the position of the gap; however, the TBATS model failed to produce rea-

sonable estimates. Likewise, the prophet knn procedure imputes gaps using Prophet,
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the remaining of missing values are estimated with knn. As a multivariate time series

forecasting procedure, Prophet was configured to use the input variables described in Ta-

ble 7.1. The knn imputation is carried out as described in Sec. 4.2.2. When gaps have

been filled, the feeders’ data are concatenated alongside the other 342 cleansed data, and

the knn imputation is computed. Once the F1 to F4’s training sets were fully imputed,

one-step-ahead forecasts and 24-step-ahead forecasts were generated using FDNN. The

models’ selection and evaluation were performed as rigorously as described before using

the NROV procedure.

Description of Imputation by windows

A gap consists of a minimum of l > 1 consecutive missing observations. To determine the

position of each gap in the data, a moving average procedure is applied to a shadow vector.

Let {yt}nt=1 be the feeder’ time series, where yt ∈ IR, the shadow vector is defined as {ȳt}nt=1

where, ȳt ∈ {0, 1}; ȳt = 1 indicates a missing observation a time t and ȳt = 0, indicates the

presence of a measurement. The moving average uses a sliding windows procedure with

a windows of size l and step-size=1 across yt to identify gaps. The top plots in Fig. 8.1

to Fig. 8.4 display the moving average for {y(j)t }nt=1 standardized with zscore and {ȳ(j)t }nt=1

where j ∈ {1, . . . , 4} for F1 to F4 and l = 12. The windows size was chosen based on the

assumption that for gaps of size l < 12, any of the imputation methods used previously

would be sufficient. Imputation by windows fills feeder’s data gaps with a neighbouring

data sample borrowed from the feeder’s own series. Let G(j) be the set of gaps in feeder j

and g
(j)
i = {y(j)t }si+pt=si

= Ø the ith gap of length p ≥ l, p ∈ ZZ and i ∈ [1, . . . , |G(j)|]. The left

and the right windows used for imputation are defined respectively as lw
(j)
i = {y(j)t }sit=si−p

and rw
(j)
i = {y(j)t }si+2p

t=si+p
where si − p ≥ 0 and si + 2p ≤ n, |lw(j)

i | > 3p
4 and |rw(j)

i | > 3p
4 .

Each gap is filled as follow

g
(j)
i = argmin

x
std(x) (8.1)

x ∈ {lw(j)
i , rw

(j)
i } (8.2)
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where std(x) denote the standard deviation of x.

8.2 Case study

All the results reported and discussed in this section concern F1, F2, F3 and F4 feeders.

In this study, imputation methods are used to training a model. Hence, seven models are

compared to one another. On the plots which are described in more details below, the

yellow colour highlights unpredictable variations of the load, places in the ground truth

data where missing values were imputed are highlighted in green and, blue rectangles that

surround the name of a dataset indicate the model performs the best for a give imputation

strategy. These exact performance values are reported in Tables 8.2 and 8.3.

8.2.1 Results description

Gaps’ estimate visualisation

The bottom plots in Fig 8.1, 8.2, 8.3 and 8.4 show the Imputation by windows of data

gaps. Prophet and TBATS gaps’ imputation are shown in Fig 8.5, 8.6, 8.7 and 8.8. Each

of the figure shows the TBATS imputation at the top plot and Prophet imputation at

the bottom. In every figures, non-imputed and imputed data are superimposed with the

non-imputed data appearing at first ; this allows gap’s estimates to be shown in dark-green.

Summary of forecasting performance

Tables 8.2 and 8.3 report the forecast accuracies for all feeders and for each one of the

imputation strategies introduced in this study. Table 8.2 and 8.3 show the one-step-ahead

and 24-step-ahead forecast results for forecasts generated with the FDNN models; Best

forecasting performances are highlighted in blue. The results highlighted in red are further

discussed in Sec. 8.2.2.
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Figure 8.1: Gaps imputation with ‘Imputation by windows’ strategy - F1
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Figure 8.2: Gaps imputation with ‘Imputation by windows’ strategy - F2
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Figure 8.3: Gaps imputation with ‘Imputation by windows’ strategy - F3
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Figure 8.4: Gaps imputation with ‘Imputation by windows’ strategy - F4
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Figure 8.6: Gaps imputation with TBATS (top plot) and Prophet(bottom plot) - F2
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Figure 8.7: Gaps imputation with TBATS (top plot) and Prophet(bottom plot) - F3
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Forecasts analysis by visualisation

For each one of the feeders, one-step-ahead and 24-step-ahead forecasts models are plotted

against the ground truth; only a small part of the testing data are reported (testing data

are described in Sec. 7.1.1). Fig 8.9 and Fig 8.10 display F1 forecasts, Fig 8.11 and Fig 8.12

report F2 forecasts, Fig 8.13 and Fig 8.14 exhibit F3 forecasts and Fig 8.15 and Fig 8.16

display F4 forecasts. In each figure, the plots are organised by imputation strategies. The

two methods used in Standard imputation are plotted at the top of the figures, the middle

plots report the three methods used in the Imputation by windows, and the bottom plots

relate the two imputation methods found in the Model-based Imputation strategy.

8.2.2 Results and discussion

One-step-ahead forecasts

The forecasting performances are disparate from one feeder to another, therefore, the

results reported in Table 8.2 must be juxtaposed to the forecasting plots in Figs 8.9, 8.11,

8.13 and 8.15 to perform an effective analysis. The plots provide information on the quality

of the testing data. These data reflect on the lagged values that were used by the models

to produce the forecasts. On the plots, ground truth data represent the raw version of the

testing data; there are drawn in colour black consistently.

The table displays consistent best one-step-ahead forecasts performances for

models trained on Imputation by windows imputed data. Hence, this suggests that the

Imputation by windows strategy is a good option for repairing training datasets. Besides,

looking at the one-step-ahead forecast plots, the models trained on these data demonstrate

good abilities to forecast base-load with precision. This heuristic strategy outperforms the

more sophisticated strategies, TBATS and Prophet on these datasets. Also, it seems that

Imputation by windows provides some ‘damping’ capability to the models. This can be

seen on F1 and F3 plots. By taking into account that the models are uncertainty, a fair

evaluation of results in Table 8.2 establishes that all the imputation strategies have pro-
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vided good forecasts for F2 feeder. However, F3 accuracy results show without a doubt

that Imputation by windows outperformed all other imputation strategies with Prophet

achieving a similar level of performance.

In general, the forecasts performances (tables and plots) show that all the models

perform well on raw and on persistent testing data. When an ‘unpredictable’ variation of

the load shape occurs, or, if the raw data have missing observations, the forecast accuracy

decreases. Any deviation from the expected load profile leads the models to perform poorly.

Unexpected variations in the testing data affect the 24-step-ahead forecast accuracy more

than the point forecasts. The results also show that, whenever the load lagged values

are generated from imputation, it affects the forecasts shape noticeably; especially when

estimate are generated form meanimputation. Hence, not surprisingly, feeder F2 reaches

the best forecast performances, its data are pure through the entire testing sample. There

is only one place where the ground truth required to be imputed. The feeders that perform

the worst one-step-ahead forecasts are F3 and F4 where feeder F3 performing really badly

in some occasion. For instance, it is not clear why the F3 performance is 10.7% for the

Imputation by windows with knn while the two Imputation by windows conjoint methods

perform relative well. Most likely, these bad results can be granted to the knn imputation.

Among all the feeders, the plots show that F3 is the feeder that contains the most missing

values in its ground-truth data. This emphasizes the critical importance of choosing

suitable online imputation methods.

24-step-ahead forecasts

The day-ahead forecasts general performances follow those of point forecasts with the

best accuracies achieved with the Imputation by windows imputed models. The accuracy

decreases because of the greater time horizons to be forecasted and the lack of hourly

update on the system latest state. The experimental results in the table indicate that a

model which produced the best one-step-ahead forecasts might not necessarily perform

the best in producing multistep-ahead forecasts. However, here again, this comment has
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to be put into perspective with the uncertain nature of any models. Therefore, generally,

the models’ performances are consistent whenever the models are used to produce point

forecasts or 24-step-ahead forecasts.

Table 8.2: FDNN - One-step-ahead forecast ac-
curacy with gaps imputation RPE (%)

F1 F2 F3 F4

Standard Imputation

full knn 6.59 2.71 11.09 6.39

full mean 4.13 2.87 10.43 6.34

Imputation by window (iw)

iw mean 4.26 2.81 4.61 6.41

iw knn 3.89 2.83 10.70 5.81

iw kf imp 3.70 2.35 6.18 5.55

Model-based Imputation

tbats knn 6.87 2.63 8.36 5.92

prophet knn 6.60 2.55 4.74 6.09

Table 8.3: FDNN - 24-step-ahead forecast accu-
racy with gaps imputation RPE (%)

F1 F2 F3 F4

Standard Imputation

ful knn 9.54 4.99 11.93 9.18

full mean 7.91 4.77 11.96 9.01

Imputation by window (iw)

iw mean 8.66 4.82 7.15 8.96

iw knn 8.05 4.64 11.44 8.89

iw kf imp 7.97 5.31 9.08 8.6

Model-based Imputation

tbats knn 9.75 4.82 10.74 9.25

prophet knn 9.54 4.64 7.35 9.06
Best performances are highlighted in colour blue for each feeder

8.3 Conclusion

In this experiment, gaps of missing observations in training datasets are imputed with

one of the following strategies: knn, mean, Prophet, TBATS and, Imputation by win-

dows which was designed for this study. The proposed Imputation by windows strategy

has demonstrated consistently better performances than those achieved by standard and



8.3. Conclusion 147

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

One✁step✁ahead forecast 2017!06!12 / 2017!06!27 23:00:00

50

100

150

ground_truth full_knn full_mean

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

2017!06!12 / 2017!06!27 23:00:00

50

100

150

ground_truth iw_kf_imp iw_knn iw_mean

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

2017!06!12 / 2017!06!27 23:00:00

50

100

150

ground_truth tbats_knn prophet_knn

Figure 8.9: F1’s OSA forecasts with FDNN
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Figure 8.10: F1’s MSA forecasts with FDNN



148 Chapter 8. Forecasting with gaps imputation

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

One✁step✁ahead forecast 2017!06!12 / 2017!06!27 23:00:00

100

200

300

400

ground_truth full_knn full_mean

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

2017!06!12 / 2017!06!27 23:00:00

100

200

300

400

ground_truth iw_kf_imp iw_knn iw_mean

Jun 12 00:00 Jun 15 00:00 Jun 18 00:00 Jun 21 00:00 Jun 24 00:00 Jun 27 00:00

2017!06!12 / 2017!06!27 23:00:00

100

200

300

400

ground_truth tbats_knn prophet_knn

Figure 8.11: F2’s OSA forecasts with FDNN
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Figure 8.12: F2’s MSA forecasts with FDNN
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Figure 8.13: F3’s OSA forecasts with FDNN
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Figure 8.14: F3’s MSA forecasts with FDNN
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Figure 8.15: F4’s OSA forecasts with FDNN
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Figure 8.16: F4’s MSA forecasts with FDNN
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sophisticated imputation techniques. The method fills feeder’s data gaps with a neigh-

bouring data sample borrowed from the feeder’s series. The promising performances of

this technique might suggest that the algorithm should be extended to the entire dataset.

However, the study also demonstrates the negative impact that imputation techniques can

have on short-term load forecasts. It highlights the complexity in finding a method which

can provide the best results for any data if it is even possible. This emphasizes the critical

importance of choosing suitable online imputation methods. The best strategy is to avoid

missing values imputation by ensuring quality data at their creation whenever possible.



Chapter 9

Conclusion

9.1 Summary of thesis achievements

Today, data quality issues draw much more attention than they were in the past be-

cause data have properties, unlike other assets. Data quality issues of electricity networks

datasets can be real bottlenecks to the smooth implementation of innovation projects.

Moving forward in smart-grid paradigm, data quality is key to delivering benefits from a

smart grid. The development of applications for advanced analytical studies relies on the

integrity of the data input; therefore, it becomes increasingly important to ensure that

data-quality issues are monitored and mitigated. Identifying the root causes of error is

difficult; the cause of errors can be both simple and complex.

This thesis attempted identifying the roots causes of missing observations in large

scale MV feeder load datasets. The analysis made use of a shadow matrix of the raw data

to facilitate the visualisation of the full load dataset. The analysis of the matrix was

approached from a vertical and horizontal standpoint. The vertical analysis has shown

that feeders connected at the vicinity of the urban area of the South East of England

experience a higher percentage of missing observations. The horizontal analysis revealed

that simultaneous loss of network measurements could occur from time to time. This

thesis stated the hypothesis that some congestions in communication networks could be
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the source of coincidental loss of observations.

Also, this thesis identified potential future opportunities to conduct studies on

the effects of DST on energy savings based on real observational data. The European

Commission has planned to implement a new directive in 2021 that abolishes DST changes;

it has also planned to assess the impacts of the new Directive by 31 December 2024.

This thesis found that the difference-in-difference approach could be used with if new

observational data are made available.

Data quality and good practices in model design and evaluation are key features

to achieve good forecast performances. A comprehensive investigation into the problem

of short-term load forecasting for large numbers of MV distribution network feeders was

proposed in this thesis. Multiple data cleansing strategies suitable for the MV feeders time

series were investigated. The thesis implemented an automatic approach to detect and

remove outlying observations placed at an unknown location in the modelling datasets.

The hybrid method combines two algorithms: a robust design of the binary segmentation

algorithm which detects level-shifts in the data and, the Tukey’s standard rule. In addition,

a robust semi-automatic outlier detection algorithm is also proposed and described. Both

procedures were implemented on real-world datasets.

The thesis considered three major imputation techniques for the estimation of

missing observations : Unconditional Mean, Hot Deck (k-NN) and Kalman smoothing.

Outlier detection and missing values imputation techniques were combined to preprocess

342 MV feeders. MV feeders data were modelled with feed-forward deep neural networks.

Two rigorous model evaluation techniques tailored for time series data, were proposed to

evaluate the performance of the models.

A recursive forecasting strategy was preferred to a direct forecasting strategy for

to forecast day-ahead. It has the advantage of reducing the problem of 24-step-ahead

forecasting to the training of a single model. The thesis found that a bias and variance

trade-off existed in the data quality enhancement problem. Ideally, the problem should ad-

dress low bias and variance simultaneously, but in practice, a decrease of the bias generates
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an increase of the variance and vice versa.

Finally, this thesis proposed a robust framework for developing and reporting

large scale short-term forecasting projects at MV distribution network level. It provided

guidelines on how to address the challenges related to producing multistep-ahead forecasts

with real-world datasets.

9.2 Future work

• In this thesis, several unsuccessful attempts were made to automate the selection of

the preprocessed dataset. The impact of various data cleansing procedures on time-

series forecastability was investigated but not addressed. Ideally, an automated data

cleansing procedure would select the most suitable data imputation strategy for a

given time series prior to the modelling stage. With this objective in mind, a fair

amount of time was spent in identifying a suitable index to quantify the complexity

of time series and therefore its forecastability. Among the time series irregularity

evaluation indexes, approximate entropy (ApEn), sample entropy and permutation

entropy were investigated but did not provided conclusive results [102,106]. Further

research studies should be carried in that direction.

• This work has demonstrated that the production of good forecasts highly relies on

healthy load measurements. Therefore, suitable online cleansing strategies should

be developed.

• In this thesis, forecasts are computed recursively. The recursive formulation is com-

putationally more efficient than the direct method, which requires to train one model

per forecasting horizon h. The advantage of using a recursive strategy, therefore,

grows when a large number of time series and multiple forecast horizons are involved.

If the model’s parameters θ are chosen adequately during the model evaluation, the

one-step-ahead prediction is unbiased. However, in [112], Taieb et al. show that the

same unbiasedness property does not hold for forecast horizons h ≥ 2, mainly when
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the model is nonlinear. The authors show that bias increases with the curvature

of the nonlinear function. In future works, we should consider the impact on the

bias of this recursive strategy. Additionally, if computational resources are available,

one should consider using a direct strategy or a hybrid recursive-direct strategy to

improve forecast accuracy possibly.

• The Nested Rolling-Origin-Validation (NROV) returns multiple optimum models.

An improved model selection procedure would involve ensemble learning as a model

averaging technique. Of course, it would require substantial computational resources.

• A full structural model consisting of a trend, two seasonal components, cycle com-

ponent and white noise should be implemented to model the MV feeders’ time series

for Kalman filter imputation. Stan code should be used to estimate Zt,Tt,Qt, ht,

the state-space parameters as given as bellow

yt = Ztαt + εt, εt ∼ N(0, ht) (9.1)

αt = Ttαt−1 + ηt ηt ∼ N(0,Qt) (9.2)

The observation equation is given as

yt = µt + γ
(1)
t + γ

(2)
t + ψt + εt (9.3)

where yt is to the observation at time t, µt is to the trend component, γ
(1)
t and γ

(2)
t are

to the daily and weekly seasonal components respectively, ψt is to the yearly seasonal

component, and εt is the observation irregular term. Each component state-space

expressed are discussed below

The local linear trend model

The trend component represents the long-term evolution in the generative process

modeled by a slope. It is a dynamic extension of a regression model with a a

generalization of the time-trend that can dynamically vary across time, It can be
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written:

yt = µt + εt (9.4)

µt = µt−1 + βt−1 + ηt−1 (9.5)

βt = βt−1 + ζt−1 (9.6)

where ηt ∼ N(0, σ2η) and ζt ∼ N(0, σ2ζ ) are uncorrelated. The trend model can be

written in the state space form

yt =

[

1 0

]







µt

βt






+ εt







µt

βt






=







1 1

0 1













µt−1

βt−1






+







ηt−1

ζt−1







(9.7)

The seasonal components

It is common practice to model seasonal patterns by a set of trigonometric cycles.

To fully model all seasonal variations of periodicity, the seasonal pattern is formed of

a sum of harmonics λj , multiple of seasonal fundamental frequency s. The seasonal

components can also be made stochastic by including an error terms allowing for the

seasonal effects to vary over time. The parameters of γt is given as

γt =

[s/2]
∑

j=1

γj,t

γj,t = γj,t−1 cosλj + γ∗j,t−1 sinλj + ωj,t−1

γ∗j,t = −γj,t−1 sinλj + γ∗j,t−1 cosλj + ω∗
j,t−1,

ωj,t−1 ∼ N(0, σω2)

ω∗
j,t−1 ∼ N(0, σω2)

(9.8)

with λj = 2πj/s for j = 1, . . . , [s/2] and t = 1, . . . , n. From a practical

point of view, it is preferable to let the parameters variances be the same although
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different variances would allow each harmonic to evolve at difference pace. The

seasonal model can be written in the state space form as follow







γj,t

γ∗j,t






=







cosλj sinλj

− sinλj cosλj













γj,t−1

γ∗j,t−1






+







ωj,t−1

ω∗
j,t−1






(9.9)

The number of harmonics for daily and weekly pattern should be investigated. Be-

cause seasonal patterns change relatively smoothly over the year, it might be possible

to use only the fundamental or drop few higher-order harmonics.

The cycle component

The cyclical component is intended to capture cyclical effects at time frames much

longer than captured by the seasonal components. It frequency is substantially

greater than the daily and weekly periods s1 and s2. In its simplest form, the cycle

component is a pure sine wave of frequency λc and period 2π/λc . Likewise to the

other components, the cycle can be made stochastic and is described as follow:

ψt = ψt−1 cosλc + ψ∗
t−1 sinλc + ω̃t−1 (9.10)

ψ∗
t = −ψt−1 sinλc + ψ∗

t−1 cosλc + ω̃∗
t−1 (9.11)

where t = [1, . . . , n] ωt, ω
∗
t are assumed to be uncorrelated white noises with same

variance. This yields to the state-space form







ψt

ψ∗
t






=







cosλc sinλc

− sinλc cosλc













ψt−1

ψ∗
t−1






+







ω̃t−1

ω̃∗
t−1






(9.12)

Finally, the hidden state of the feeder’s load process at time step t is given by

αt =

[

µt βt ψt ψ∗
t γ

(1)
1,t γ

∗(1)
1,t γ

(1)
2,t . . . γ

(2)
1,t . . .

]′

(9.13)



158 Chapter 9. Conclusion

and the system matrices

Zt =

[

Zµ, Zψ, Zγ(1) , Zγ(2)

]

, Tt = diag

(

Tµ, Tψ, Tγ(1) , Tγ(2)

)

Rt = diag

(

Rµ, Rψ, Rγ(1) , Rγ(2)

)

, Qt = diag

(

Qµ, Qψ, Qγ(1) , Qγ(2)

)

(9.14)

where

Zµ =

[

1 0

]

, Zψ =

[

1 0

]

Zγ(1) =

[

1 0 1 0 . . . 0

]

, Zγ(2) =

[

1 0 1 0 . . . 0

] (9.15)

Tµ =







1 1

0 1






, Tψ =







cosλc sinλc

− sinλc cosλc







Tγ(1) = diag







cos 2πj
s sin 2πj

s

− sin 2πj
s cos 2πj

s






for j = 1, . . . , s/2 and s = s1

Tγ(2) = diag







cos 2πj
s sin 2πj

s

− sin 2πj
s cos 2πj

s






for j = 1, . . . , s/2 and s = s2

(9.16)

Rµ = I2, Rψ = I2

Rγ(1) = Is1 , Rγ(2) = Is2 ,

(9.17)

Qµ =







σ2η 0

0 σ2ζ






, Qψ =







σω̃2 0

0 σω̃2







Qγ(1) = σ2
ω(1)Is1−1, Qγ(2) = σ2

ω(2)Is2−1

(9.18)

The state prior distribution should be set as αo ∼ N(µ0,Σ0).
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