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Abstract

The development of multicellular organisms requires the precise execution

of complex transcriptional programs. The demands posed by development,

coupled with the relatively late evolution of multicellularity, could have led

to a separate mode of gene regulation for gene involved in, and regulated

throughout development. I investigated the regulation of genes by enhancers

using histone modifications coupled to gene expression, based on the observa-

tion that developmental genes are surrounded by dense clusters of conserved

enhancers which act in concert. Genes regulated by enhancers are much more

likely to be developmentally regulated genes, and many enhancers at each

loci co-ordinate to direct transcription across multiple tissues.

CAGE-seq is a powerful tool for determining the structure of promot-

ers. I analysed promoters in Amphioxus using CAGE-seq to determine if

the diverse promoter architectures observed in vertebrates had ancestral ori-

gins. Promoters in amphioxus can be divided into developmental and house-

keeping promoters, which each have characteristic patterns of dinucleotide

enrichment. Housekeeping promoters in Amphioxus have a novel promoter

architecture, and a contain a high frequency of bidirectional promoters, which

represents the ancestral vertebrate state. This set of genes highlight the mal-

leability of promoter architecture during evolution. I developed a package

in R/Bioconductor ‘heatmaps’ to enable e↵ective visualisation of this, and

other, data.

Taken together, these results suggest a second mode of regulation in ver-

tebrates governing the regulation of developmental genes.
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Chapter 1

Introduction

1.1 Regulation of Gene Expression

1.1.1 Genes and Cellular Identity

Multicellular organisms consist of many types of specialised cells, from sim-

ple colonial organisms such as slime moulds, to higher vertebrates with huge

numbers of highly specialised structures. In all multicellular organisms, al-

most every cell contains a full copy of the genome within the nucleus, so

cellular identity is maintained by expressing only those genes required by

each cell. For development to unfold successfully, the genes determining cel-

lular identity must be precisely expressed at the correct stages and at the

correct location in the organism (Gurdon, 1992). Cells must integrate diverse

signals from their environment to commit to one of many possible paths of

di↵erentiation, and this process is tightly regulated and generally irreversible.

1.1.2 Regulation of Gene Expression

Expression of most genes results from the binding of RNA Polymerase II

(Pol. II) to the promoter region directly upstream of the main body of the

transcript, and the subsequent transcription of DNA to RNA (Thomas and

Chiang, 2006). RNA can itself can regulate the transcription of other genes

or take part in catalytic processes (Nissen et al., 2000; Ernst and Morton,
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2013; Bartel, 2004), but many genes require translation to form proteins,

which govern the majority of cellular processes.

Proteins influencing transcription at gene promoters are known as tran-

scription factors (TFs) (Maston et al., 2006). These include the general

transcription factors which form the pre-initiation complex alongside Pol. II

and are required for general transcription (Kadonaga, 2004), but the term

more often refers to cell-type specific DNA-binding proteins, which play a

major role in controlling cell-type specific expression. Transcription factors

frequently bind directly to proximal gene promoter regions, as distinct from

the core promoter region which binds Pol. II. Transcription factors binding

at the promoter can also direct the repression of particular genes (Kadonaga,

2004; Gaston and Jayaraman, 2003; Perissi et al., 2010).

Enhancers are short, cis-acting DNA sequences that promote transcrip-

tion of nearby genes independent of their orientation and position (Black-

wood and Kadonaga, 1998). Identified more than thirty years ago, they are

generally located in introns or intergenic space. Due to gaps displacement

of enhancers from promoters, which can be over a megabase (Lettice et al.,

2003), enhancers must form loops of chromatin in order to contact their tar-

get genes (Fraser et al., 2015). Elements which block this loop formation are

called insulators (Gaszner and Felsenfeld, 2006), although recent evidence

shows that canonical insulators themselves take part in looping interactions,

forming a complex overall picture of 3D genome organisation.

1.1.3 Developmental Gene Regulation

Genes required for cellular homeostasis, such as energy metabolism and tran-

scription of RNA, are expressed by all cells in an organism. Expression

of the genes that control cellular identity is mediated by the activation of

cell-type specific transcription factors (Spitz and Furlong, 2012). These are

frequently downstream of signalling pathways which transduce signals from

ligands binding to the cell surface. Cell-cell communication is vitally im-

portant in development for the formation of intricate patterns (Hafen et al.,

1984) based on relatively simple principles of regulation (Ilsley et al., 2013).
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Figure 1.1: An overview of gene regulation by cis-regulatory elements. Tran-
scription factors bind at both proximal and distal elements to influence tran-
scription from the core promoter. ‘CRM’ refers to a cis-regulatory module,
a set of closely linked TFBSs. This figure is adapted from Lenhard et al.
(2012)

Cell-type specific proteins may have specific roles for cellular identity, such

as myosin in muscle cells, or may themselves be transcription factors or sig-

nalling molecules expressed to communicate with nearby cells.

Enhancers play an important role in orchestrating precise spatio-temporal

gene expression (Long et al., 2016), and in the thirty-plus years since their dis-

covery, enhancers have been discovered in all metazoa studied (Sebé-Pedrós

et al., 2017). In fact, the evolution of enhancers may underlie the huge in-

crease in the complexity of body plans observed in the metazoan lineage

(Sebé-Pedrós et al., 2017).
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1.2 Identification of Transcription Start Sites

1.2.1 CAGE

Cap Analysis of Gene Expression (CAGE) (Shiraki et al., 2003; Kodzius

et al., 2006) is a genome-wide method for identifying transcript abundance.

This is achieved by first performing “cap-trapping” (Carninci et al., 1996):

the 7-methylguanosine cap of mature mRNAs is biotinylated, following re-

verse transcription of the RNA, and the resulting complex is treated with

RNAse I to degrade RNA not protected by synthesised cDNAs and isolated

using streptavidin-coated beads. A linker sequence is added to the 5’ end

of the transcript before second strand synthesis, and, utilising a restriction

site in the linker sequence, a short fragment of the 5’ end of the transcript is

cleaved. These fragments are then sequenced using next-generation sequenc-

ing technology, giving base-pair resolution of the start of each mRNA after

they are mapped to the reference genome. CAGE also provides quantification

of the number of transcripts initiated at each base pair, or CAGE-defined

transcription start site (CTSS).

Gene promoters typically initiate transcription over a range of base pairs,

rather than from a single nucleotide position. In order to estimate transcript

abundance, nearby tags at each locus are clustered to produce tag clusters

(TCs), e↵ectively recapitulating the promoter for a single transcript. Each

of these clusters also has a dominant TSS, the single base pair which has the

highest number of initiation events (as determined by tags mapping to it).

This is useful as it provides a single point for use in analyses which depend

on spatial features of promoters. The width of these clusters is commonly

estimated after first removing spatial outliers; typically, the first and last

10% of transcripts in the cluster, which would be referred to as the 10-90

Interquantile (IQ) width. In order to combine clusters across samples, an

additional clustering procedure is performed to combine TCs into consensus

clusters.
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1.2.2 Pervasive Transcription

Modern high-throughput technology has facilitated genome-wide identifica-

tion of promoters, replacing older methods which relied on identifying the

transcription start sites (TSSs) of known genes. These have produced exten-

sive maps of promoters in metazoa (for example, FANTOM Consortium and

the RIKEN PMI and CLST (DGT) et al. (2014)) which have led to increased

study of promoters, and given insight into general properties of promoters.

However, these have identified many more transcription start sites than can

be accounted for by annotated genes (Carninci et al., 2006).

Many regions of the genome are actively transcribed, without any known

biological purpose (ENCODE Project Consortium et al., 2007). In fact, some

researchers contend that no specific sequence is needed, but simply that any

open chromatin will be transcribed to some degree (Young et al., 2016).

In this case, any sequence made accessible by transcription factors binding

and opening up chromatin would classify as a promoter. Many of these

transcripts are unstable and are rapidly degraded, making detection di�cult.

Active enhancers frequently act as sites for transcriptional initiation, and

that bidirectional transcription at enhancers may be a hallmark of active

regulatory elements (Andersson et al., 2015b).

1.3 Promoter Architecture

The exact, minimal components necessary to form promoters in Metazoa are

not known. However, large-scale surveys of gene promoters using techniques

such as CAGE have identified many features of gene promoters that have been

robustly observed across many species. The term “Promoter Architecture”

is used to refer to these observations.

1.3.1 Sequence Analysis

Mapping the precise regions which make up gene promoters allows us to in-

vestigate properties of promoters at the level of DNA sequence. There are
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two complementary approaches to studying promoter sequence, and under-

standing biological sequences more generally.

A position weight matrix (PWM) represents a set of biological sequences

probabilistically (Stormo et al., 1982; Stormo, 2000). The set of sequences

is transformed into a position frequency matrix, which is simply a count of

how many times each DNA base (A, C, G or T) appears at each position

in the matrix. This is then transformed in a position probability matrix,

representing the probability of finding each base at each position. This is

then log-transformed to create the position weight matrix. PWMmatches are

scored by summing the log-probability of each observed base across the width

of the PWM, and this score approximates a normal distribution (Claverie and

Audic, 1996) allowing for statistical analysis of binding sites. Bases which

are unrepresented in the original set of sequences can cause problems for this

model, which would give a match a probability of zero and make the log-

probability score incalculable, so psuedocounts can be added to the position

frequency matrix to correct for this (Nishida et al., 2009). Motifs can be

visualised as sequence logos (Schneider and Stephens, 1990) based on the

information content at each position in the PWM.

PWMs are frequently used to represent the binding motif of particular

transcription factors. Curated databases of PWMs, both free (Sandelin et al.,

2004a; Mathelier et al., 2016) and commercial (Matys et al., 2003), allow the

downloading of known PWMs in order to identify potential binding sites

for specific factors. Another approach is to learn PWMs from collections of

sequences (Bailey et al., 2009), and then compare these with known motifs,

although this is computationally intensive, limiting the number of sequences

that can be used, and does not guarantee finding enriched motifs even when

they are known to be present. These methods will not always correctly

identify binding sites, partly due to technical di�culties in identifying motifs

(Simcha et al., 2012) and partly because motifs themselves are limited in the

complexity of features they can represent. Scoring sequence matches using

PWMs implicitly assumes each base in the motif is independent. Recent

approaches have sought to rectify this problems (Mathelier and Wasserman,

2013; Siebert and Söding, 2016) but are yet to gain widespread acceptance,
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and are harder to interpret. Additionally, PWMs do not take into account the

genomic context of matches, such as DNA shape or chromatin accessibility.

Another approach to studying biological sequences is to look at the dis-

tribution of short, exact sequence matches, known as k -mers. There are

aspects of promoter architecture that are not well captured by motifs; in

particular, PWM discovery methods focus on motifs that occur more fre-

quently than expected across whole sequences, rather than motifs that are

enriched in certain positions. Many short DNA sequences, such as dinu-

cleotides, have spatial patterns around promoters. CG dinculeotides are en-

riched around mammalian promoters (Bird, 1986) in a phenomenon known

as ‘CpG islands’ (Gardiner-Garden and Frommer, 1987). Periodic enrich-

ment in WW (A or T) and SS (C or G) dinculeotides contributes to the

positioning of nucleosomes ((Segal et al., 2006), see section Nucleosome Posi-

tioning). Quantification of spatial patterns is di�cult, and consequently the

focus of many statistical methods has been on identifying enriched regions

of k -mers(Gardiner-Garden and Frommer, 1987), an approach that has been

refined using hidden Markov models (Wu et al., 2010) which capture spatial

patterns accurately. An alternative statistical approach is to ignore the spa-

tial dimension of k -mer frequency and focus on k -mer occurrence, allowing

the use of powerful classifiers such as Support Vector Machines (Lee et al.,

2011; Ghandi et al., 2016). Direct visualisation of k -mer patterns is also an

e↵ective method for analysing promoter sequence (Haberle, 2015).

1.3.2 Core Promoter Motifs

The core promoter is the DNA region immediately surrounding the TSS,

where the pre-initiation complex is assembled. A number of motifs were

identified at promoters before the advent of high-throughput technologies,

such as the TATA-box (Lifton et al., 1978). The TATA-box is positioned

at -32 to -29bp from the dominant transcription start site (Ponjavic et al.,

2006), where it recruits TATA-binding protein (TBP) to the pre-initiation

complex (Kadonaga, 2004). This results in ‘sharp’ initiation of transcrip-

tion with the location of the TATA box as the chief determinant of TSS
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usage (Ponjavic et al., 2006). TATA-box promoters are associated with tis-

sue specific genes (Plessy et al., 2012), and mediate regulatory interactions in

Drosophila (Butler and Kadonaga, 2001). The old ‘textbook’ view of TATA-

box motifs accompanying most Pol. II. mediated transcription (Kadonaga,

2004) is flawed, however, since by no means all Poll. II. promoters contain a

TATA-box motif.

The INR element is present in most human genes (Yang et al., 2007)

and directly overlaps the TSS, and is also present in a modified form at

the same location in Drosophila (Kutach and Kadonaga, 2000). In humans,

INR consists of a pyrimidine base (C or T) followed by a purine (A or

G); in Drosophila, the INR consensus is TCA[G/T]TY. More recently, the

TCT was found to mark the transcription start sites ribosomal protein genes

(Parry et al., 2010), replacing the INR element at these promoters, which

may represent a ‘high performance’ TSS needed for highly transcribed genes

(Lenhard et al., 2012).

The downstream promoter element (DPE) was discovered in TATA-less

promoters in Drosophila (Burke and Kadonaga, 1997), but does not appear

conserved to be present in vertebrate genomes. It is located at +28 to +32

relative to the INR element. High-throughput analysis of Drosophila cDNAs

identified several other core promoter elements in Drosophila (Ohler et al.,

2002), bringing the total count of known Drosophila motifs to 10. Despite

numerous motifs, however, classifiers trained at the time could only detect

promoters with 50% sensitivity, underscoring the fact the motifs alone do

explain promoter function. Only the TATA, INR, TCT and BRE elements

are shared between Drosophila and vertebrates (Lenhard et al., 2012).

Other TFs are frequently bound at promoters, but are thought to be

cell-type specific factors directing expression, rather than core parts of the

transcriptional machinery. The YY1 (Ying-yang 1) protein a universally ex-

pressed transcription factor, named after its dual role in both repressing and

activating transcription (Shi et al., 1997). It has been implicated in diverse

processes including polycomb-mediated repression (Wilkinson et al., 2006),

neural induction (Satijn et al., 2001) and B-cell di↵erentiation (Kleiman

et al., 2016). It has also been shown to restrict downstream initiation of
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transcription in human LINE elements (Kleiman et al., 2016), hinting a role

in transcription beyond simple regulation.

1.3.3 CpG Islands and Dinucleotide Frequency

The first genome-wide studies of promoters revealed two classes of promoter,

determined by the relative density of CpG sites (Carninci et al., 2006). High-

CG promoters were distinguished by their overlap with CpG Islands. CpG

sites are generally depleted in vertebrate genomes, possibly due to greater

tendency to mutate: CpG islands are regions of the genome with a markedly

greater concentration of CpG sites. Low-CG promoters were associated with

narrower patterns of transcription initiation, however later studies showed

that high CG content was not a requirement for broad promoters across all

Metazoa, and that equally low-CG promoters can have broad initiation (Rach

et al., 2011).

CpG sites are important sites of methylation in mammalian genomes,

and 70-80% of CpGs are methylated genome-wide (Jabbari and Bernardi,

2004). DNA methylation is a key repressive epigenetic mark in vertebrates.

Large domains of demethylated CpGs are associated with developmental

genes (Jeong et al., 2014). Other dinucleotide patterns are enriched around

promoters, although not as significantly as CGs, and may be involved in

biological processes such as nucleosome positioning.

1.3.4 Promoter Types

The promoter features listed above do not occur independently, but segregate

into recurring patterns which form the basis for promoter ‘types’, and these

types are further associated with specific expression signatures. Lenhard

et al. (2012) identified three main types of Pol. II promoter in vertebrates,

with analogous types in Drosophila which do not always share the same

features.

Type I promoters are tissue specific, but not developmentally regulated,

representing genes stably expressed in terminally di↵erentiated tissues. The
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have a sharp TSS but disordered nucleosomes, and are enriched in TATA-

box motifs (Yamashita et al., 2005; Carninci et al., 2006; Rach et al., 2011).

Type II promoters are broadly expressed through the life cycle of an or-

ganism, including most ‘housekeeping’ genes, and have a broad TSS but

well-positioned nucleosomes. They are enriched in CpGs but depleted in

TATA-box motifs. Type III promoters are developmentally regulated, often

by the polycomb pathway, and have large CpG islands extending into the

gene body (Engström et al., 2007; Akalin et al., 2009). It is worth noting

that is not the individual tissues in which a gene is expressed that govern

promoter architecture, but the breadth of tissues. Minor promoter types

include the aforementioned TCT promoters driving highly expressed genes

essential for translation, and non-Pol. II promoters transcribing functional

RNAs.

Overlapping promoters provide a particularly striking example of pro-

moter architecture a↵ecting gene regulation in the developing zebrafish em-

bryo. (Haberle et al., 2014). One set of promoters, with a TATA-box, drives

expression in oocytes, while an independent promoter, marked by a broad CG

tract, drives expression after the mid-blastula transition, the point at which

developing embryos begin to express their own genes. This second class of

promoter aligns with upstream and downstream bands of TA enrichment,

with a CG-rich core promoter.

1.3.5 Bidirectional Promoters

Promoters occur in closely-spaced, back-to-back arrangements much more

frequently than would be expected by chance (Trinklein et al., 2004). How-

ever, these genes are not generally co-regulated (Engström et al., 2006),

and so gene regulation does not explain why such an arrangement would

be favoured. There is an ongoing debate concerning the intrinsic directional-

ity of gene promoters: Duttke et al. (2015) argue that human promoters are

intrinsically directional, i.e. generate transcripts primarily in a single direc-

tion along the DNA, while others have argued the exact opposite (Andersson

et al., 2015a). This debate may partly focus on terminology (Andersson
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et al., 2015a), as it is generally accepted that most promoters generate short,

upstream transcripts (PROMPTs) that are rapidly degraded (Xu et al., 2009;

Wei et al., 2011), and the directionality of promoters observed in functional

genomics data is mediated chiefly by RNA stability. These antisense tran-

scripts may then act as an opportunity for the emergence of new genes during

evolution (Gotea et al., 2013).

1.3.6 Nucleosome Positioning

Due to the quantity of DNA in eukaryotic cells, it must be e�ciently packaged

to fit inside the nucleus. The most basic unit of the chromatin fibre is the

nucleosome, a histone octamer which wraps 147bp of DNA in two loops

(Luger et al., 1997). These assemble into higher-order structures, aided by

the linker Histone H1, achieving compaction of 30-40 times over naked DNA

(Widom, 1989). This compacting process can occlude DNA-binding proteins

from contacting the DNA, making nucleosomes the primary factor regulating

DNA accessibility (Bassett et al., 2009).

Nucleosome positioning is commonly assayed by first digesting the DNA

using micrococcal nuclease, then sequencing the resulting fragments (MNase-

seq, (Cole et al., 2012)). This preferentially digests the linker regions between

nucleosomes, so the position of nucleosome centres can be recreated from the

position of the fragment centres. Recent studies have suggested that treat-

ment by varying concentrations of MNase reveals di↵erent patterns of nucleo-

some positioning (Chereji et al., 2016), indicating variation in the sensitivity

to MNase digestion between nearby nucleosomes.

NucleoATAC (Schep et al., 2015), a novel way of analysing ATAC-seq

(Buenrostro et al., 2015) data, has recently emerged as an alternative method

for identifying the positions of nucleosomes genome wide. Transposons are

added to cells and integrate into positions with accessible chromatin. Spe-

cific primers are used to sequence out from the insertions, generating short

fragments of DNA which are sequenced. Both the position and the length of

fragments are taken into account using ATAC-seq, which makes its estimates

of nucleosome position robust.
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Nucleosome positioning on the DNA is driven by a number of factors.

Several studies (Segal et al., 2006; Kaplan et al., 2009; Locke et al., 2010)

have identified DNA sequences which preferentially bind nucleosomes. The

strongest signal is produced by bendable WW (T or A) dinucleotides with

⇠10bp periodicity which directly contact the histones with each twist of the

double helix (Segal et al., 2006). However, active processes also control the

position of nucleosomes, leading to di↵erences between in vivo and in vitro

nucleosome positioning (Kaplan et al., 2009). These include ATP-dependent

remodellers, transcription factors and RNA Polymerase II (Struhl and Segal,

2013).

The correct position of nucleosomes at promoters is required for gene

expression. The first nucleosome downstream of the TSS at a promoter, the

‘+1’ nucleosome, is generally positioned precisely (Rach et al., 2011), with

following +2 and +3 nucleosomes showing increasing disorder independent

of sequence (Rube and Song, 2014). There are indications that the relative

order of nucleosomes around the TSS depends on the architecture of the

promoter (Rach et al., 2011; Nozaki et al., 2011; Lenhard et al., 2012).

1.3.7 Enhancers and 3D Genome Organisation

It is widely accepted that enhancers physically contact the promoters of genes

whose transcription they control. Given the large distances separating some

pairs of enhancers and promoters, some form of chromosome looping seems to

be the only plausible explanation for how enhancers can exert a regulatory

e↵ect on distal genes. However, physical contact between enhancers and

promoters does not necessarily lead to activation (Ghavi-Helm et al., 2014).

Ligation based methods assay chromatin contact frequencies by cross-

linking DNA, shearing the DNA using restriction enzymes and analysing the

resulting fragments for pairs of sequences which show a greater frequency

of ligation than expected by random chance, and are therefore closer to-

gether in space (de Wit and de Laat, 2012). 3C (Dekker et al., 2002) assayed

the interaction frequency of two predetermined fragments. Ligation-based

methods have since been extended to one-vs-many (4C, Zhao et al. (2006)),
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many-vs-many (5C, Dostie et al. (2006)), and combined with antibody pu-

rification (ChIA-PET, Li et al. (2010)). Ligation-based methods have been

used successfully to link promoters and enhancers in disease contexts (Let-

tice et al., 2003; Ragvin et al., 2010) and investigate the regulatory e↵ects of

promoter-enhancer loops (Guo et al., 2012; Ghavi-Helm et al., 2014).

Hi-C (van Berkum et al., 2010) is a ligation based method which iden-

tifies interactions genome wide. A key discovery of Hi-C is the existence of

topologically associating domains (TADs), regions of the genome which repre-

sent discrete compartments of self-interacting chromatin (Dixon et al., 2012).

TADs have been shown to restrict the action of enhancers, and disruption

of TAD boundaries can lead to ectopic gene activation and developmental

abnormalities (Lupiáñez et al., 2015).

The mechanisms underlying TAD formation are not yet fully understood.

CTCF is known to be associated with loops in chromatin (Guo et al., 2012;

Merkenschlager and Nora, 2016), but the ‘contact domains’ identified by

(Rao et al., 2014) are not su�ciently numerous to explain the phenomenon of

TADs genome-wide. CTCF is enriched at TAD borders (Dixon et al., 2012),

but TADs appear to be more complex structures than simple loops, based on

Hi-C data. It has been postulated that CTCF acts as a boundary element for

loops formed by cohesin, which are then ‘extruded’ by motor proteins, either

cohesin itself (Goloborodko et al., 2016) or by other factors, possibly RNA

Pol. II (Sanborn et al., 2015a). It has been shown in D. melanogaster that

transcription of the zygotic genome precedes the formation of TADs (Hug

et al., 2017).

1.4 Regulation by Long-range Enhancers

1.4.1 Identification of Enhancers

Next-generation sequencing technologies have produced many methods for

identifying enhancers genome-wide. Chromatin immunopreciptation followed

by sequencing (ChIP-seq) identifies enhancers bound by known transcription

factors. This identifies many sites which are not evolutionarily conserved,
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even in closely related species (Villar et al., 2015), questioning the usefulness

of purely sequence-based methods for identifying enhancers. It stands to

reason that DNA must ultimately define the location of enhancers, but we

may not fully understand the exact sequence determinants of enhancers, so

we cannot identify conserved functionality without homologous sequence.

ChIP-seq has also been applied to studying histone modifications. His-

tones, which wrap most DNA in eukaryotic cells, have flexible tails which

can be chemically modified, usually by the addition of an acetyl or methyl

group. Several studies have reported mono-methylation of Histone H3 Lysine

4 (H3K4me1) and acetylation of lysine 27 (H3K27ac) as important for en-

hancer activation. Other marks have been identified as important for certain

cell-type specific enhancers (Taylor et al., 2013), or contributing to enhancer

‘priming’ and ‘poising’ (Calo and Wysocka, 2013).

Self-transcribing enhancer assays allow the identification of enhancers

based on their ability to activate transcription from a nearby upstream pro-

moter, in Drosophila melanogaster (STARR-seq, Arnold et al. (2013) and

in embryonic stem cells (FIREWACh, Murtha et al. (2014)). This requires

cultured cells and is highly cell-type dependent, but has the advantage of

measuring enhancer activity directly rather than by a proxy such as TF

binding or histone modification. There is also evidence from STARR-seq for

multiple classes of enhancer, which enhance developmental and housekeeping

genes respectively (Zabidi et al., 2015).

1.4.2 Regulatory Landscapes

Enhancers can regulate multiple genes, and genes themselves are frequently

controlled by many enhancers (Lower et al., 2009; Montavon et al., 2011).

Understanding these complex loci has led to several models of gene regula-

tion by enhancers. The human �-globin locus has been studied extensively

as a model for gene activation by multiple enhancers (Levings et al., 2002).

“Super-enhancers” have been identified as clusters of nearby enhancers with

extremely high binding of mediator (Hnisz et al., 2013) that form around key

developmental genes (Whyte et al., 2013). Similarly, “stretch enhancers”,
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which are defined as long histone acetylation peaks which are enriched for

disease risk variants (Parker et al., 2013). It is not known whether these re-

gions represent a distinct regulatory mode (Pott and Lieb, 2014), or whether

the properties super- or stretch-enhancers are shared more generally by any

closely spaced, dense clusters of enhancers.

Lorberbaum et al. (2016) identified a number of enhancers at the Ptch1/patched

locus in both mouse and fly, which drive expression in independent tissues,

creating a complex overall pattern of Ptch1 expression. This behaviour may

underlie complex expression patterns in many genes, and explain why clusters

of enhancers, such as super-enhancer, stretch enhancers or Genomic Regula-

tory Blocks (see below), surround important developmental genes, which are

often expressed across many tissues.

1.4.3 Enhancers and Disease

Deletions or mutations within enhancers can have serious consequences for

gene expression, and there are many known examples of Mendelian genetic

disorders caused by mutated enhancers. Lettice et al. (2003) mapped sepa-

rate inherited mutations in multiple families to a very long-range (1Mb) to

an enhancer regulating SHH, in these cases leading to pre-axial polydactyly.

Other studies have linked mutations in enhancers regulating SOX9 to Pierre

Robin syndrome (Benko et al., 2009), and mutations in TBX5 enhancers to

congenital heart disease (Smemo et al., 2012).

The recent increase in genome-wide association studies has led to the iden-

tification of a large number of genetic variants implicated in disease, many of

which are found outside of coding genes (Maurano et al., 2012). Non-genic

mutations may be in linkage disequilibrium with causal genic variants absent

from single nucleotide polymorphism (SNP) panels, however it is likely a

significant fraction of these variants represent causal mutations in regulatory

elements, since many variants overlap with enhancer-associated chromatin

features, such as DNase I sensitivity (Maurano et al., 2012). This has created

di�culties in correctly assigning the variant to the misregulation of a partic-

ular gene or process. A variant strongly associated with obesity in humans
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Figure 1.2: An overview of the GRB model of gene regulation. Enhancers
target developmental genes, and do not regulate housekeeping genes. Regions
of high non-coding conservation (GRBs) coincide with TADs, which restrict
enhancers from regulating neighboring developmental genes

(Frayling et al., 2007) discovered in the first intron of the FTO gene, was

initially thought to regulate FTO because of its spatial proximity. However,

conserved enhancers in linkage disequilibrium with the lead SNP drive ex-

pression patterns similar to IRX3 (Ragvin et al., 2010). A later study used 4C

to show long-range functional connections with IRX3 (Smemo et al., 2014).

Weedon et al. (2014) investigated variants causing isolated pancreatic agen-

esis at the PTF1A locus by searching for overlaps with regulatory features,

linking several novel variants to PTF1A function. Systematic approaches to

studying enhancer mutations may represent an important method for under-

standing distal disease-causing variants (Miguel-Escalada et al., 2015).

Until recently, methods for studying chromosome conformation were lim-

ited to individual loci at high resolution. Novel methods have been developed

based on Hi-C, adding an additional step to enrich for specific fragments prior

to sequencing. These have substantially increased the resolution possible in

genome-scale analyses. These include Capture-C (Platt et al., 2016) and

promoter-capture Hi-C (Schoenfelder et al., 2015; Mifsud et al., 2015), which

has been used to study the ‘interactome’ of risk loci (Jäger et al., 2015).
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1.5 Genomic Regulatory Blocks

Conserved non-coding elements are an important feature of vertebrate and

insect genomes (Bejerano, 2004; Sandelin et al., 2004b; Siepel et al., 2005).

They were first identified as ultraconserved regions between mouse and hu-

mans, which were 200bp or more in length with perfect sequence identity

(Bejerano, 2004). The definitions were relaxed and extended to more distant

species, including invertebrates (Sandelin et al., 2004b; Siepel et al., 2005).

Many of these elements act as developmental enhancers in experimental as-

says (Visel et al., 2007), but the enhancer activity of CNEs does not explain

the full extent of their conservation (Harmston et al., 2013).

The elements do not occur randomly along the genome, but in large,

syntenically conserved arrays (Kikuta et al., 2007; Akalin et al., 2009), termed

“Genomic Regulatory Blocks”, or GRBs. The location of these arrays, and

CNEs in general, are strongly associated with important developmental genes

(Sandelin et al., 2004b; Woolfe et al., 2005), which suggests that CNEs act

as enhancers for these developmental genes. Other genes are present at the

loci, but these are frequently housekeeping genes, and in many cases are

lost from one copy of the GRB following genome duplication (Kikuta et al.,

2007). GRBs are deeply conserved, even when the individual elements within

them are not: high levels of non-coding conservation are observed around

homologous genes in D. melanogaster and humans, even though very few

conserved enhancers are identifiable between deuteresomes and protostomes

(Clarke et al., 2012; Maeso et al., 2012). GRBs are also associated with TADs

throughout evolution (Harmston et al., 2017).

Taken together, these observations lead to a model for developmental gene

regulation known as the GRB Model. Developmental transcription factors

require precise spatio-temporal regulation, and this is provided by the large

number of enhancers at GRB loci. Each enhancer may only be active in

very specific tissues, but the sum of these activities creates the complex pat-

tern of expression required to correctly form the developing embryo. Nearby

housekeeping genes are thought to be unresponsive to regulation by these en-

hancers. Ectopic activation of nearby genes is prevented by TAD formation
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around GRBs.
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1.6 Aims of the thesis

Multiple lines of evidence reviewed here suggest the regulation of developmen-

tal genes and tissue-specific genes di↵ers from the regulation of ubiquitously

expressed genes. In this thesis I investigate the role of both enhancers and

promoters in the regulation of developmental genes.

In Chapter 2, I plan to investigate how enhancer activation a↵ects gene

expression by analysing functional genomics data, using both visualisation

and statistical modelling or both. My main question is whether all genes are

regulated by enhancers, or if only a subset are. I am also interested in how

enhancer action is co-ordinated across genomic domains.

In Chapter 3, I plan to develop a new R/Bioconductor package, ‘heatmaps’,

with the aim of facilitating the analysis of spatial patterns in genomic data,

such as sequence features, histone acetylation and nucleosome occupancy.

In Chapter 4, I will analyse CAGE-seq data in the European Amphioxus,

in order to test whether promoters that are regulated di↵erently also show

di↵erences in their architecture. I will then compare this with CAGE-seq

data in other organisms to see whether these patterns are stable throughout

di↵erent lineages.
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Chapter 2

Detecting Long-range

Regulation

2.1 Introduction

Gene expression is controlled by the binding of transcription factors (TFs),

which bind at gene promoters, or at regulatory elements which are brought

into contact with promoters through chromosome looping (see Introduc-

tion). Enhancers can be located hundreds of kilobases, or more than even a

megabase away from their target gene. In this chapter I will refer to this as

‘long-range regulation’ (LRR), to distinguish regulation by distal enhancers

from regulation by TFs binding at or near the gene promoter. Long-range

regulation poses a challenge in studying regulation, because it is not always

possible to identify all enhancers for a given gene. Even in situations where

enhancers are known, we cannot be sure which gene is being regulated, since

enhancers frequently regulate genes at long distances and across other genes.

Methods for linking genes to enhancers include eQTL mapping, 3C-based

technologies which assay physical interactions, and enhancer knockouts. Ge-

netic evidence provides a gold standard, but does not provide genome-wide

answers to the question. Direct genetic manipulation is still generally low-

throughput, despite advances in CRISPR technology. eQTL studies require

large cohort sizes, and consequently very many experiments, to have su�-
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cient power to detect associations, and they are also dependent on known

SNPs located in regions of interest. Ultimately, we still lack methods for

assigning enhancers to genes genome wide, and a solution to this problem

would represent a significant breakthrough in regulatory genomics.

Interaction datasets provide a clear target for machine-learning tasks,

allowing researchers to use complex models and avoid overfitting using cross-

validation, although it has not been shown that physical interactions alone

are su�cient for promoter activation. In fact, it has been shown that loops

can form without gene activation (Ghavi-Helm et al., 2014), although in

this case the regulatory interactions were true, and gene expression followed

later in development. If the only mechanism for avoiding ectopic promoter-

enhancer interactions is that loops can only be formed between the correct

pairs, this raises a further question: what regulates these interactions? It is

not implausible that each enhancer also contains binding sites for architec-

tural proteins. Many architectural proteins are indeed present at the base of

chromatin loops, including CTCF (Phillips-Cremins et al., 2013) and ZNF143

(Bailey et al., 2015), which implies that these chromatin looping is actively

regulated. However, these proteins are not present at every enhancer, or ev-

ery loop anchor, and the formation of many static loops in chromatin is not

commensurate with current models for genome folding (Goloborodko et al.,

2016). If interactions are unregulated and permissive, then another explana-

tion is needed to explain enhancer-promoter specificity.

If a set of enhancers all regulate the same gene, they must all be able to

physically contact the gene promoter. It follows that they are likely to be

located in the same Topologically Associating Domain (TAD). TADs have

been proposed to constrain enhancer-promoter actions to within each domain

(Dixon et al., 2012), and disruption of TAD boundaries has been shown

to disregulate nearby genes (Lupiáñez et al., 2015). Additionally, a sub-

set of the strongest TADs coincides with of conserved non-coding elements

(CNEs) (Harmston et al., 2017) which can act as regulatory elements, further

strengthening the case that TADs represent important regulatory units.

Beginning with the ENCODE project (ENCODE Project Consortium

et al., 2007), there have been several e↵orts to generate large datasets com-
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prising ChIP-seq and RNA-seq in many cell types. This provides us with

matched samples containing data which can be used to investigate both gene

and enhancer activity. This has made statistical and machine-learning ap-

proaches possible, which generally seek to correlate epigenetic features to

predict regulatory interactions.

Cismapper (O’Connor et al., 2016) directly correlates histone acetylation

and gene expression. It uses the P-value of these correlations to compute the

positive predictive value (PPV) for links between enhancers and promoters

at various thresholds and distances, based on a ‘gold standard’ of Promoter

Capture Hi-C (Mifsud et al., 2015) contacts. The authors note that the recall

is low and that there is a significant tradeo↵ between PPV and FDR, but

show a significant improvement over simple distance-based metrics, where the

score is solely dependent on the distance between promoter and enhancers.

Ernst et al. (Ernst et al., 2011) used a similar strategy, but additionally

trained classifiers based on correlations of multiple marks with gene expres-

sion, and reported good agreement with known eQTLs.

Zhu et al. (Zhu et al., 2016) used a tensor-based algorithm to identify

spatial associations between 16 histone modifications, DNase-seq, and RNA-

seq. The authors identified associations after decomposing these 16 values

into ‘eigenloci’, a form of dimensionality reduction, calculating significance

through permutation tests. They reported that these associations were good

predictors of interactions, based on Hi-C data, and further validated selected

predictions using 3C.

Both Roy et al. (Roy et al., 2015) and He et al. (He et al., 2014) trained

random forest classifiers, using interaction datasets as a gold standard. Fea-

tures included epigenetic marks, correlations between marks and expression

and additional features derived from the underlying sequence, such as co-

occurring transcription factor motifs and synteny.

These methods all work to some degree, but both correlation- and interaction-

based approaches have some drawbacks. One problem faced by many meth-

ods is multiple testing. There are many genes and many enhancers at most

loci, therefore in all-vs-all comparisons, the number of tests scales as the

product of these two numbers. This means that the threshold for signif-
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icance is very di�cult to reach, and with noisy data detecting any signal

above background noise can be tricky.

Rationale

I aim to re-investigate the problem from the perspective that enhancers work

in concert, across set domains, to regulate specific target genes. Correla-

tions provide an alternative line of evidence to physical interactions: one

which complements method measuring physical chromatin contacts, as nei-

ther method alone can provide conclusive, causal evidence of regulation.

Testing enhancers acting together across broad genomic domains will help

to reduce the multiple testing burden, thereby increasing the power consid-

erably. There is also a strong biological rationale for this approach: in cases

where a single gene has multiple enhancers and a complex expression pattern,

we would not expect a single enhancer to correlate strongly with the overall

expression pattern. Instead, each enhancer might drive expression in a single

tissue, and combining these e↵ects creates the overall pattern of gene expres-

sion, which is a mosaic of individual contributions from enhancers. I will

look specifically at the co-ordination of enhancers across TADs, since TADs

are thought to restrict the limits of enhancer action (see Introduction).

I will apply this novel approach to selected datasets to produce a robust

list of genes under long-range regulation in these conditions. I also hope

to explore general mechanisms of enhancer action. My goal is to link en-

hancers to their target promoters by correlating enhancer activity and gene

expression.

Aims

1. Confirm that enhancers do in fact work together across broad domains.

2. Derive a statistical model for enhancer activation and gene expression.

3. Investigate the properties of genes identified as targets.

4. Contrast these results with 3D genome organisation data.

37



2.2 Results

A large panel of cell types with matching ChIP-seq and gene expression data

is needed to investigate correlations between enhancer activity and gene ac-

tivation. I used data from the Roadmap Epigenome Consortium (Roadmap

Epigenomics Consortium et al., 2015). The Roadmap project generated

epigenomic data, mostly in the form of ChIP-seq experiments, in over 100

human cell types. They also produced RNA-seq data in a subset of these cell

types. I chose to use Histone H3, lysine 27 acetylation (H3K27ac) ChIP-seq

data to measure enhancer activity, since this is reported in many studies

to be a mark of active enhancers (Calo and Wysocka, 2013), and defined

enhancers by calling peaks in this data (see Methods for details).

I validated the chosen enhancer set by comparison to the enhancers de-

fined using ChromHMM (Ernst and Kellis, 2012), a multivariate hidden

Markov model which uses a combination of epigenetic marks to define dis-

crete epigenetic states. The enhancers I defined overlapped with at least one

ChromHMM defined enhancer in 91.1% of cases. It is possible the minor dis-

crepancy between the two is due to the fact that my defined set of enhancers

is slightly more permissive, because it is defined only H3K27ac peaks, rather

than a broad spectrum of epigenetic marks. In ChromHMM, active enhancers

are defined H3K27ac in combination with H3K4 mono-methylation (and an

absence of other marks).

2.2.1 Enhancers Act in Concert Across Broad Genomic

Regions

First, I established whether or not enhancers act together, to make sure that

this is a valid assumption to use in later models. I started by calculating

the Spearman Rank Correlation Coe�cient (⇢) between H3K27ac levels at

enhancers, and expression levels (by RNA-seq) at gene promoters, across the

38 cell types. I did not assume a direct linear correlation between variables,

which would not be expected except in situations where a single enhancer

controlled a single gene, therefore I used Spearman correlation. There is no
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need to normalise signal between enhancers, since each correlation is indepen-

dent. I calculated these values across TADs, since I expected co-ordination

of enhancers to be present at this level (see Introduction).

To visualise these correlations, I plotted the value of ⇢ on the Y axis, and

genomic coordinates on the X axis. Each correlation value is plotted at the

coordinate of the enhancer (specifically, the centre of the acetylation peak).

Each TAD contains many genes, and so there are multiple values plotted at

each enhancer location, with the gene distinguished by colour. Therefore,

spatial patterns of enhancer/gene coactivation will be visible as stretches of

high or low correlations of the same colour.

Figure 2.1 shows the Frizzled-7 (FZD7) gene locus, including the TAD

containing FZD7 and 200kb flanking the TAD boundaries. Panel a illustrates

the di�culties in assigning genes based on individual correlations alone, be-

cause the signal-to-noise ratio is so high. Many enhancers show large posi-

tive and negative correlations with multiple genes, and these are distributed

considerably outside the expected values for random variables, due to the

correlation structure between the expression of genes in the TAD. The 95%

confidence interval for the Spearman correlation of 38 random variables is

±0.32 (permutation test, n = 106)).

However, if we simplify this graph to show only the enhancers for a sin-

gle gene, a clear pattern emerges: in this case for the FZD7 gene. There

are consistently high correlations between enhancer acetylation and FZD7

expression across most of the body of the TAD, and strikingly only two en-

hancers showing negative correlations in this region. This supports the idea

that the vast majority, if not all, of the enhancers in this region are indeed

enhancers for a single gene, FZD7, and that while there are individually high

correlations between enhancers and other genes, these are unlikely to be sig-

nificant. Significantly, FZD7 is an important developmental regulator (Finch

et al., 1997) and is surrounded by non-coding conservation, overlapping with

the GRBs identified in (Harmston et al., 2017).

Figure 2.2a illustrates many of the same features as Figure 2.1. It shows

the genomic region around two TADs, containing the genes Ikaros (IKZF1)

and Growth factor receptor-bound protein 10 (GRB10). Ikaros is also sur-
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Figure 2.1: Correlations between promoters and enhancers at the FZD7 Lo-
cus a. Correlations between enhancers and all promoters within the FZD7-
containing TAD. The dots represent individual correlations coloured by gene,
and positioned according to the enhancer. Coloured lines show LOESS
smoothed correlations for each gene. b. The same region, but with correla-
tions only displayed for the FZD7 gene. Black lines show LOESS smoothed
averages for other genes. CNE density is taken from Ancora ((Engström
et al., 2008), see Methods)
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Figure 2.2: a. Correlations between enhancers and promoters at the
IKZF/GRB10 locus, and annotation as for Figure 2.1. Only correlations for
these two genes are shown. b. Boxplot of enhancer correlations for IKZF1
and GRB10, split by TAD.
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Figure 2.3: Correlations between enhancers and promoters at the IRX3/5
locus, plus annotation as for Figure 2.1. Only correlations for IRX3, IRX5
and FTO are shown.

rounded by high levels of non-coding conservation (see the “CNE Density”

track). Around both genes (specifically, within their TADs), there is a strik-

ing local pattern in the correlations between enhancer activation and gene

expression. This pattern changes as the TAD boundary is crossed.

Most of the enhancers show high positive correlations for the gene in the

same TAD, and within the TADs there is again a strong reduction of negative

correlations. This is shown in Figure 2.2b., with a highly significant di↵erent

in correlations between enhancers and each gene (IKZF TAD, p < 2.2x10�16),

GRB10 TAD, p < 1.2x10�12).

Figure 2.3 shows the IRX3/5 locus, highlighting the genes IRX3, IRX5
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Figure 2.4: Correlations between enhancers and promoters at the RUNX2
locus, plus annotation as for Figure 2.1. Only correlations for RUNX2 are
shown.

and FTO genes. IRX3 and 5 are members of the Iroquois family of tran-

scription factors, which are important developmental regulators. FTO is an

RNA demethylase that was implicated in obesity through a variant present

in its first intron (Frayling et al., 2007), which was later linked to IRX3 by

long-range physical contacts (Ragvin et al., 2010). Across most of the TAD,

enhancers correlate more strongly with the two IRX genes, however across

the body of the FTO genes, many enhancers correlate better with expression

of FTO, therefore it is not clear from this analysis alone which genes are

likely to be the targets of long range regulation.

Figure 2.4 shows the RUNX2 locus. RUNX2 is a transcription factor in-

volved in osteoblast development osteoblast development (Lee et al., 2000)
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and implicated in cancer (Pratap et al., 2005). RUNX2 is present at a rel-

atively gene-poor locus, and across the length of its TAD shows an over-

representation of positive correlations with enhancers.

Based on visual inspection of Figures 2.1-2.4, and at many genomic loci,

I concluded that enhancer activity seems to be frequently co-ordinated to

the expression of particular genes across TADs, and that this would be a

reasonable assumption to add into models of enhancer activity.

2.2.2 Predicting Target Genes

Manual plotting of TADs and inspection of the results can provide qualitative

evidence, but I wanted to test my hypothesis using a quantitative model to

discover targets genes genome-wide. Using the same data as above, I fitted

a regression model between locus-wide acetylation levels at enhancers within

TADs and gene expression (see Methods). This model does make predictions

of expression, but I was less interested in the accuracy of these predictions

and more interested in the relationship between acetylation and expression:

can it be shown that locus-wide acetylation has a statistically-significant

correlation with gene expression?

Figure 2.5 shows the results of running the model on the Roadmap

Epigenome panel of cell lines in terms of the predicted p-values. A low

p-value indicates that the relationship between locus-wide enhancer activity

and gene expression is stronger than would be expected by chance. There is

a clear enrichment for low p-values above background, as indicated by the

dotted line. After multiple testing correction (Benjamini-Hochberg, FDR ¡

0.05), I identified 3086 genes under long-range regulation.

Genes under long regulation are more likely to overlap CpG islands (56%

vs. 52% for non-LRR, p < 3.35x10�4, Fisher test) and CpG islands over-

lapping genes under long-range regulation are longer on average (1284bp vs.

1023bp, p < 2.2x1016, Wilcoxon test). This is of note because previous

studies (see (Lenhard et al., 2012)) have associated longer CpG islands with

developmentally regulated genes.
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Figure 2.5: a. Unadjusted P-values for the correlation of enhancers with gene
expression across TADs. The red dotted line indicates “excess significance”,
above results that would be expected by random chance.

2.2.3 GO Enrichment

I decided to investigate which genes made up the set of predicted target

genes, and I started by looking at Gene Ontology enrichment. The ‘Biological

Process’ ontology clearly shows that this gene set is very significantly enriched

for developmental genes. This pattern of enrichment is strikingly similar to

GO enrichment of GRB-associated genes (Kikuta et al., 2007; Akalin et al.,

2009).

As is common with GO enrichment analysis, the most clearly enriched

terms are very general. Further down the in the list are “embryo devel-

opment” (p = 2.01 ⇥ 10�13), “regulation of developmental process” (p =

2.30⇥ 10�14), and intriguingly “cell adhesion” (p = 8.65⇥ 10�15). There are

also many specific terms relating to system development, such as “nervous

system development” (p = 5.4⇥ 10�12), “skeletal system development” (p =

1.07⇥ 10�11) and “heart development” (p = 9.83⇥ 10�8, see below).

The Molecular Function ontology paints a similar picture, with the high-
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GOBPID Ratio Count Size Term P-value

GO:0009653 1.72 890 2172 anatomical structure morph.* 7.49⇥ 10�25

GO:0048731 1.55 1458 3879 system development 7.37⇥ 10�24

GO:0044707 1.50 1900 5258 single-MCO§ P.† 9.89⇥ 10�24

GO:0048856 1.51 1728 4719 anatomical structure dev.‡ 1.31⇥ 10�23

GO:0044767 1.50 1808 4979 single-organism dev. P. 4.34⇥ 10�23

GO:0048869 1.56 1297 3403 cellular developmental P. 5.98⇥ 10�23

GO:0032501 1.49 2041 5722 MCO P. 7.23⇥ 10�23

GO:0032502 1.50 1831 5057 developmental P. 8.95⇥ 10�23

GO:0030154 1.56 1240 3246 cell di↵erentiation 5.81⇥ 10�22

GO:0007275 1.50 1595 4336 MCO dev. 8.73⇥ 10�22

Table 2.1: GO Enrichment (Biological Process ontology) for genes under
regulation by enhancers. P-values are Bonferroni corrected. *morphogenesis
§multi-cellular organism †process ‡development

est ranked terms indicating either transcription factor activity (e.g. “RNA

Pol II. Transcription Factor activity”, Adj. P-value 6.06x10�6) or receptor

activity (“Signal Transducer Activity”, Adj. P-value 2.79x10�4).

The Cellular Component ontology provides information about the loca-

tion of the protein within the cell. Many of the highly enriched terms in this

category relate to membrane-bound proteins, including the most significant

(“Plasma Membrane”, Adj. P-value 1.31x10�19) and the largest represented

category, “Membrane” (2369 genes, Adj. P-value 1.40x10�4), which indicates

that over half the genes controlled by long-range regulation are present in the

cellular membrane. This likely refers in the most part to receptor proteins,

as per the Molecular Function ontology.

In order to further investigate gene regulation within specific tissue, look-

ing at heart development. The Roadmap Epigenome dataset contains 3 heart

tissues: Aorta, Right Ventricle, and Right Atrium. Figure 2.6 shows 3 genes

with varying expression in all 3 tissues which are all key for heart develop-

ment. GATA6 is expressed throughout the heart at moderate levels, and

is a key transcription factor involved in heart development, and GATA6

mutations have been linked to heart defects(Chao et al., 2015). S1PR1

is a G-protein coupled receptor which is important for vascular develop-
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GOMFID Ratio Count Size Term P-value

GO:0000981 1.81 170 566 Pol. II TF†, DNA-binding 2.15⇥ 10�06

GO:0001228 2.17 99 290 Pol. II DNA-binding 7.07⇥ 10�06

GO:0008092 1.65 212 755 cytoskeletal protein binding 1.13⇥ 10�05

GO:0005198 1.79 148 496 structural molecule activity 4.37⇥ 10�05

GO:0004871 1.50 291 1116 signal transducer activity 5.63⇥ 10�05

GO:0003779 1.89 110 353 actin binding 2.69⇥ 10�04

GO:0004872 1.44 263 1035 receptor activity 2.92⇥ 10�03

GO:0060089 1.44 263 1035 molecular transducer activity 2.92⇥ 10�03

GO:0015026 5.15 20 36 coreceptor activity 4.30⇥ 10�03

GO:0038023 1.49 213 816 signalling receptor activity 4.55⇥ 10�03

Table 2.2: GO Enrichment (Molecular Function ontology) for genes under
regulation by enhancers. P-values are Bonferroni corrected. †Transcription
Factor

ment (Chae et al., 2004). MYL2 is the human smooth muscle myosin heavy

chain(Matsuoka et al., 1993), and so is vitally important for heart function,

and is very highly expressed in the Right Ventricle.

2.2.4 Enhancers can a↵ect multiple genes in a TAD

The majority of TADs analysed contain only a single gene predicted to be

regulated by enhancers. In fact, there are more TADs containing only a

single gene under long-range regulation than a random sample obtained by

permuting TAD labels (p < 10�5), which indicates there may be an under-

lying biological reason. Intuitively, this arrangement would mean that each

enhancer only regulates one gene, permitting fine-grained control of gene

expression.

However, significant numbers of TADs contain more than one gene pre-

dicted to be regulated by enhancers. There are many possible reasons for

this, which I will explore below. First of all, this e↵ect might be due to sta-

tistical artefacts. Using a relatively permissive FDR of 0.05, we would expect

to see some TADs with more than one gene predicted simply by chance. We

would expect such false positives to occur more or less randomly throughout

the data, so we can calculate the expected baseline by repeatedly re-sampling
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GOCCID Ratio Count Size Term P-value

GO:0071944 1.66 1054 4087 cell periphery 5.69⇥ 10�27

GO:0005886 1.67 1032 3986 Plasma Membrane (P.M.) 7.03⇥ 10�27

GO:0044459 1.62 589 2202 P.M. part 1.33⇥ 10�15

GO:0005887 1.68 376 1339 integral comp. of P.M. 5.02⇥ 10�12

GO:0031226 1.64 385 1395 intrinsic comp. of P.M. 3.83⇥ 10�11

GO:0043292 2.67 76 194 contractile fibre 2.58⇥ 10�07

GO:0005578 2.18 107 311 proteinaceous ECM† 6.05⇥ 10�07

GO:0016021 1.31 950 4153 integral comp. of M. 9.63⇥ 10�07

GO:0031012 1.94 136 428 extracellular matrix 1.34⇥ 10�06

GO:0030016 2.60 71 184 myofibril 2.17⇥ 10�06

Table 2.3: GO Enrichment (Cellular Component ontology) for genes under
regulation by enhancers. P-values are Bonferroni corrected. †Extracellular
Matrix

our data after permuting TAD labels. This is shown in figure 2.7, as an av-

erage of 100 resamples: TADs containing 3 or more target genes are in fact

depleted in the data when compared to the values which would be expected

were target genes distributed randomly, which indicates that it is extremely

unlikely that we see so many multi-target TADs because of statistical e↵ects

alone.

Secondly, it might be the case that two genes are truly co-regulated and

are generally expressed in the same tissues. In this case, the method would

correctly identify both genes as targets. One possible example of this are

the IRX3/5 genes, which are shown in Figure 2.3. These genes are closely

related transcription factors which are active in a wide range of tissues, with

functions conserved across vertebrates and invertebrates, making their co-

regulation highly plausible (Kerner et al., 2009). Their expression is tightly

coupled across cell types, with an R2 value of 0.86 (Pearson correlation co-

e�cient). However, using correlation alone cannot distinguish this from the

possibility that are independently regulated, and that this e↵ect is not seen

by chance in this specific case. Many other highly correlated gene pairs also

share evolutionary history, such as DLX1/2 (Homeobox transcription fac-

tors, R2 = 0.98), CD5/6 (T-cell surface receptors, R2 = 0.97) and CAV1/2

(voltage-dependent calcium channel sub-units, R2 = 0.84).
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Figure 2.6: Expression patterns of 3 genes involved in heart development,
across the 3 Roadmap samples from heart tissue.

In order to test co-regulation more generally, I compared the correlation

between target gene pairs within TADs with exactly 2 target genes predicted

(n=430), with the correlation values obtained from gene pairs chosen at ran-

dom from each TAD (n=2431). The median correlation value for predicted

target genes was 0.38, vs 0.03 for random genes, and based on subsampling

the randomly selected genes, p < 10�5 for this comparison. However, this is

probably to be expected given that pairs of target genes are already known

to correlated independently with acetylation levels at the locus.

Despite the over-representation of TADs containing 1 or 2 target genes,

there are also regions which contain high numbers of genes are predicted as

targets. According to 2.7, there are no more of these regions in the dataset

than would be expected by chance. However, The regions with the highest

number of coregulated genes (and frequently the most significant p-values as

well) are in many cases arrays of closely related genes, which are thought to

be coregulated based on existing literature. This suggests there may be a

biological rationale behind these arrangements, even if they are not enriched

statistically.

The Protocadherin-↵ gene cluster, containing 16 putative target genes,

is of particular interest. These genes have been extensively studied due to

their striking organisation (Wu and Maniatis, 1999) and association with

CTCF binding (Monahan et al., 2012; Guo et al., 2012). Protocadherins are
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Figure 2.7: a. The distribution of the number of genes under long-range
regulation in individual TADs. A single TAD containing 16 genes under
long-range regulation is not shown. b. The log-ratio of of the observed
values in (a) to the expected value if target genes were randomly assigned
(calculated from 100 permutations).
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TAD Co-ordinates Predicted Targets Gene Family
Chr5:140.1Mb-140.5Mb 16 Protocadherin-↵
Chr1:247.7Mb-248.9Mb 10 Olfactory Receptor
Chr14:104Mb-106Mb 10 Unknown
Chr1:152.9Mb-153.3Mb 9 Small Proline Rich Protein Family
Chr6:31.5Mb-32.9Mb 9 Human Leukocyte Antigen
Chr17:38.5Mb-39.8Mb 9 Keratins
Chr19:19.7Mb-21.3Mb 9 Zinc Fingers
Chr1:154.1Mb-155.2Mb 8 Unknown
Chr11:118Mb-118.5Mb 8 Unknown
Chr1:152Mb-152.9Mb 7 Unknown

Table 2.4: The 10 TADs containing the largest numbers of genes under long-
regulation. The predominant gene family at the locus is indicated, although
other genes are present in some cases.

stochastically expressed, with each cell only expressing a limited number of

Protocadherins, and this enables them to act as cell surface markers which

give cellular identity to developing neurons. Activation by enhancers is key

to promoter selection (Guo et al., 2015), and all three key enhancers correlate

with the expression of all Protocadherin-↵ genes. In this particular example,

it is unlikely that all of the genes are expressed in a single cell due to the

switch-like regulatory system elucidated in (Guo et al., 2015). However, they

are all expressed in the same tissue (developing neurons in this case), and

since the resolution of our data is well below the single-cell level there is no

way to distinguish this from the current data.

2.2.5 TAD boundaries restrict the e↵ects of enhancers

Running the model as described provides results on a per-gene, not a per-

enhancer basis, which means that it is not possible to investigate directly how

regulation by enhancers varies across tads, or across TAD boundaries. To

do this, I derived a statistic for the contribution of each individual enhancer

within a TAD, across the cell types in the Roadmap dataset (see Methods).

I re-ran the model using TADs extended by 200kb either side to test

whether TAD boundaries had the expected e↵ect on enhancer regulation.
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Figure 2.8: Average enhancer contributions, �r, were calculated for en-
hancers inside TADS vs. those up to 200kb from the boundary, outside
of the TAD. Genes are divided into those which had a greater average con-
tribution from enhancers within the TAD, and those which had a greater
contribution from enhancers outside the TAD. Genes are also split by LRR
class.

The vast majority of genes under long-range regulation showed a greater

average contribution by enhancers inside their respective TADs than those

outside, but with little di↵erence for those not predicted to be regulated by

enhancers Figure 2.8.

However, this result could easily be explained as purely a function of

distance, rather than TAD boundaries. To check for this possibility, I plotted

enhancer contribution for enhancers inside and outside of TADs, which is

shown in Figure 2.9. This clearly shows a greater contribution of within-TAD

enhancers to the regulation of LRR genes, compared to those outside, at all

distances, demonstrating that TAD boundaries exert a considerable e↵ect

on the ability of enhancers to regulate genes across those boundaries. The

negative values stem from the fact that a small random change in prediction

is more likely to have a negative e↵ect on the correlation (r) for a good

prediction than a bad prediction. Enhancers very close to the gene, but over
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Figure 2.9: The average contribution of enhancers shown as a function of
distance from promoters of possible regulatory partners. Di↵erent lines in-
dicate the LRR status of the putative target gene, and the position of the
enhancer relative to the TAD containing that gene.

a TAD boundary, have a more positive impact on the model than we expect.

This is possibly due to poorly called TAD boundaries.

2.2.6 Genes under long-range regulation are enriched

for long-range contacts

As discussed in the introduction, a popular explanation for the specificity of

enhancer-promoter regulation is that the promoters only form 3D contacts

with specific enhancers, so enhancers cannot regulate other genes. I decided

to explore using high-resolution interaction data from Promoter-capture Hi-

C (see Methods). Promoter-capture Hi-C is an experimental technique which

allows enhancer-promoter contacts to be examined genome-wide through the

use of hybrid-capture baits to enrich contacts of interest surrounding promot-

ers (Schoenfelder et al., 2015), which gives greater resolution for interactions

at regions of interest without requiring additional sequencing.

Promoter Capture Hi-C is not available in a wide variety of cell lines, but

it is available in CDC34+ cells (Mifsud et al., 2015), which is fortunately also
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Figure 2.10: Number of significant chromatin contacts with enhancers for
LRR and Non-LRR genes.

present in the Roadmap Epigeome data used in this analysis, which means

that the predictions made should be valid. CD34+ cells in this context refers

to hæmatopoietic progenitor cells which express the CD34 transmembrane

protein. These are generally found in the umbilical cord and bone marrow,

and can give rise to a number of di↵erentiated cell types. CD34 itself may

be a marker with importance outside of the hæmatopoietic lineage (Sidney

et al., 2014).

Figure 2.10 shows the number of unique interactions between enhancers

(as defined in the earlier analysis) and genes predicted to be either targets of

or unresponsive to long-range regulation (designated ”LRR” and ”Non-LRR”

respectively) using Promoter Capture Hi-C data from (Mifsud et al., 2015).

Genes are split by expression quintile (expression data also from (Mifsud

et al., 2015)), which guards against potential confounding (for example, it is

possible that this particular assay enriches fragments with open chromatin)

and allows us to investigate the relationship between enhancer contacts and

expression.

It is clear from the figure that target are, in general, enriched for enhancer

contacts compared to non-target genes, and that this e↵ect is stronger for

highly expressed target genes. This is confirmed using a Wilcoxon rank-sum
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test: for highly expressed (quintiles 4 and 5) genes, target genes are enriched

in contacts vs non-target genes (mean 13.4 vs 9.2, p < 10�15).

Equally, non-target genes do not show any trend for increased (or de-

creased) interactions across expression quintiles, suggesting that this set of

genes is not responsive to the e↵ect of enhancers (or at least that, for these

genes, contact with enhancers is not the dominant form of gene regulation).

The di↵erences between the 1st quintile of expression and the 5th quintile

are not statistically significant despite the large number of genes tested (p

= 0.12, n = 2298).

Interestingly, there is no di↵erence in the number of contacts for target

and non-target genes in the lowest expression quintile (p < 0.55). This may

represent an average background level of chromatin contacts, in the absence

of any regulatory events (e.g. distal binding and activation of enhancers by

transcription factors). This relatively high background level of chromatin

contacts (shown in the lowly-expressed target genes and in all non-target

genes) suggests that 3D genome conformation alone might not be su�cient

to explain why some promoters, and not others, are sensitive to regulation

by enhancers, which is discussed further below.

2.3 Discussion

In this chapter I have presented a new method for using functional genomics

data to link enhancers to promoters, a long-standing problem in regulatory

genomics. This has produced a list of putative target genes, which are very

strongly enriched for developmentally regulated genes, which appear to be

the primary targets of long-range regulation. I have also shown that the

actions of enhancers are co-ordinated across TADs, and that TADs restrict

enhancer activity to inside their borders. Genes inside TADs, however, con-

tact enhancers but do not show evidence of regulation.

This poses an interesting question for current models of gene regulation.

We know that the 3D structure of the genome is highly regulated, It is well

established that TADs restrict enhancer action across boundaries (Lupiáñez

et al., 2015). However, TADs represent broad domains of association, rather
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than tightly regulated loops, and the current, widely supported theory of loop

extrusion fits this model (Sanborn et al., 2015b; Goloborodko et al., 2016).

Rather than specific anchors fixed together in space, this model supports a

continuous process whereby loop of chromatin are continuously broken and

reformed. Very high-resolution Hi-C has identified examples of CTCF-bound

loops, but these appear to be exceptions rather than the rule (Rao et al.,

2014).

This creates a ‘last mile’ problem of how enhancers di↵erentiate be-

tween neighbouring genes within TADs. Many previous papers on enhancer-

promoter interactions have focused on physical interactions exclusively, and

suggest a model where physical interactions are causally responsible for se-

lecting enhancer targets (Fraser et al., 2015). For loci with many genes and

enhancers in close proximity, this model of individually regulated interactions

starts to seem overly complex. Loop extrusion does not create topologies

where overlapping loops create distinct territories; rather, this would simple

create a highly compacted domain. Cross-referencing my results with the

available high-resolution Hi-C data indicates that, at least in CDC34+ cells,

enhancers are not in fact physically prevented from contacting the promoters

of other genes.

The regulation of specific classes of genes o↵ers one solution to this prob-

lem. I propose a model in which strong TAD borders prevent enhancers from

contacting promoters outside of their domain, but within TADs interactions

can take place at random, perhaps driven in part by open chromatin regions.

In this model, the ‘last mile’ problem is not such an issue, because promoters

which are not regulated by long-range regulation are not responsive to the

contact from enhancers, whereas other promoters, primarily developmentally

regulated genes, can respond to input from enhancers. The mechanisms un-

derlying this process are not at all clear, but there are several lines of relevant

evidence.

Firstly, we know that the promoters of di↵erent classes of genes have

markedly di↵erent characteristics when considered en masse (Lenhard et al.,

2012), even if these di↵erences are hard to detect at the level of individual

promoters. This might simply be because we lack su�cient understanding
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of the biological sequence at promoters, as studies are generally restricted

to looking at enriched motifs. PWM-based motifs do not always accurately

characterise transcription-factor binding sites, and promoters may have sig-

nificantly more complexity, since initiation requires simultaneous binding of

a great number of factors. Even if motifs explain a good deal of the varia-

tion, current methods may lack the power to detect them in many situations

(Simcha et al., 2012), particularly if they are rare.

Secondly, in vitro models have shown that promoters can indeed have a

di↵erential response to regulation by enhancers (Zabidi et al., 2015), and al-

though the work was carried out in Drosophila melanogaster it is relevant to

humans as a proof of concept. Their discoveries also follow the housekeeping

vs. developmental gene dichotomy which I have shown here. Fundamental

mechanisms of gene regulation are generally conserved even between distant

metazoan clades, and there are indications that this is true for some mecha-

nisms of long-range regulation (Harmston et al., 2017).

Finally, the conclusions of this chapter are in agreement with models of

regulation derived from GRBs (Harmston et al., 2013). GRBs are large ar-

rays of conserved non-coding elements, of which many have been shown to

function as enhancers (Visel et al., 2007), and there is evidence from both

genome-wide association and genome duplications that these arrays regu-

late developmental genes, ignoring nearby “bystanders” which are frequently

housekeeping genes.

GRBs also have an underlying connection to TADs (Harmston et al.,

2017), which supports the idea that enhancers must be confined to a local

topological compartment, both to ensure contact with their target and pre-

vent ectopic gene activation. GRBs are frequently larger in size than TADs,

although this may simply be an artefact of the algorithm used to call TADs,

which can be sensitive to small, local changes in interactions. These errors in

calling TAD boundaries may explain the result in Figure 2.9, which showed

that even over TAD boundaries, some enhancers appear to contribute to gene

expression.

As we any statistical method, correlations within the data present a prob-

lem for this method, and are to have consequences for this experiment. Gene
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expression patterns are not random, so the chance of two genes having a

correlation higher than expected by the model is probably underestimated.

For example, a transcription factor active in heart cells that is (assuming

our model to be correct) regulated by enhancers, would likely appear to be

co-regulated with a nearby gene if that gene was also active in heart tissue,

even if there was no direct causal link. Without perturbation experiments

we cannot see if genes with similar expression patterns are truly coregulated.

There are regions, such as the proto-cadherin and olfactory receptor loci,

which have strong evidence for coregulation, but this is unlikely to be the

case universally.

The model assumes total independence of enhancers, and that each en-

hancer contributes equally. This is a key statistical assumption, as it stops

the model from overfitting, however it is somewhat unrealistic. There is some

evidence that enhancer do act independently in a flexible, modular fashion

(see Introduction), however there may well be cases where more complex

relationships exist. It is also very likely that di↵erent enhancers exert more

or less influence on gene expression, possibly based on proximity (in either

linear genome space or in 3 dimensions), the various factors which bind to

the enhancer, or some unknown factor a↵ecting ”enhancer strength”.

The metric we are using for enhancer activation (H3K27 acetylation)

might also lead to false positives. I have tried to filter as conservatively as

possible for acetylation peaks around promoters (using Ensembl data), but

unannotated transcripts or small RNAs could be present in the peak set

used, and it is likely that these genes would produce false correlations in

some circumstances due to the issues outlined above.

Equally, the correlations I have analysed might also produce false nega-

tives in some cases. It has been conjectured that H3K27 acetylation does not

mark all enhancers, and other marks have been proposed as being important

(for example (Taylor et al., 2013)), which could result in false negatives in

regions with many such enhancers. The method outlined is also unable to

detect long-range regulation outside of the cell types assayed, if the genes are

not active in our panel of cell types which, while extensive, is nowhere near

exhaustive. In fact, genes which are only active in a single cell (within the
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panel) may not be called as target genes due to a lack of statistical power.

TAD boundaries may also shift between cell types, which I am not able to

account for in the model, nor is Hi-C data, required to define TADs, available

in most of the cell types assayed.

There is also a question of what exactly the correlation between gene

expression and acetylation is measuring. Due to the modular nature of en-

hancer activity (see Introduction), individual enhancers are likely to be active

only in single tissues. This is not a problem for the method, since in the case

of a gene which is active in several tissue but driven by di↵erent enhancers,

the activity of these various enhancers would be considered together. How-

ever, in this case we would expect each enhancer to be either on (in one

particular tissue) or o↵ (in all other tissues), and this kind of binary data

is not well approximated by regression modelling. It is possible that in this

data, what we actually see are binary features (as described) which appear

to be continuous, because we are using ChIP-seq and RNA-seq performed on

bulk samples. Therefore, ”high” expression and ”high” enhancer acetylation

might be better interpreted as a sample containing a high proportion of cells

in which the genes and enhancers are active. In any case, it does appear

that the model is finding signal from these features, even if it is not certain

exactly what we are looking at at the single-cell level. It would be very inter-

esting to re-examine this question as more and more single-cell data becomes

available.

These results may be of great interest to researchers who want to iden-

tify the e↵ects of distal, non-coding SNPs. Many examples exist of disease

associations in which SNPs regulate a gene which is not the closest, even if

the SNP is located within an intron of that gene (Ragvin et al., 2010; Lettice

et al., 2003). The provisional list of genes targeted by enhancers provides

a strong set of first candidates for further experiments, and is preferable to

the frequently-employed nearest-neighbour rule, or ad-hoc theories relating

genes to diseases. In complex loci with tens of genes located within megabase-

scale regions, it could prove invaluable for prioritising targets for downstream

analysis.
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2.4 Data

I defined enhancers by calling peaks on the ChIP-seq data, using the MACS

peak caller (Zhang et al., 2008). Any peak identified in any of the sam-

ples would be used as an enhancer region, and these regions were merged

across cell types using the Di↵Bind package (Ross-Innes et al., 2012), and

normalised using Trimmed Mean of M-values (TMM) normalisation, as im-

plemented in the package.

RNA-seq data was obtained from Roadmap as RPKM (Reads Per Kilo-

base of transcript per Million mapped reads), which I converted to TPM

(Tags per million mapped reads), which has been shown to be more appro-

priate for comparisons between samples (Wagner et al., 2012). I defined

promoters as the transcription start site (TSS), using annotation from En-

sembl 82 (Aken et al., 2016). H3K27ac is also present at active promoters,

and so retaining peaks at active promoters would confound my results by

e↵ectively correlating two di↵erent measures of promoter activation (Histone

acetylation and expression). It is di�cult to exactly define the exact extent

of promoter regions, and transcript models can also have some margin of

error, so I excluded all peaks within 5kb of an annotated TSS.

This resulted in a dataset with defined enhancers and promoters for 38

cell types, listed in table 2.5. In order to investigate spatial patterns of

enhancer action, I also needed pre-existing, independent genomic domains

to define regions of co-operating enhancers. I used TADs defined in (Dixon

et al., 2012). TADs are thought to vary little between cell types (Dixon et al.,

2015; Battulin et al., 2015), so I used only the embryonic stem cell data to

represent TADs for all cell lines. These data are summarised in table 2.6.

The ”CNE density” track used for plotting is taken from the Ancora

browser (Engström et al., 2008). Conserved Non-coding elements (CNEs)

are short streteches of genomic DNA outside of protein-coding genes which

exhibit very high levels of conseravtion. The track is formed by taking CNEs

with a minimum identity of 96% over 50bp (i.e. 48 out of 50 bases matching

exactly) from human (hg19) to mouse (mm10), and then applying a smooth-

ing algorithm (see (Engström et al., 2008) to visualise the distribution of
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these elements: higher density areas indicate a greater local concentration of

conserved elements.

2.5 Methods

2.5.1 Modelling Enhancer-Promoter Interactions

The rationale for an automated approach here is clear: there are far too many

TADs to sensibly examine by hand, and that approach risks introducing bias.

Without a statistical, unbiased approaches, researchers might limit their in-

vestigation to genes already implicated in disease processes, or though to be

more likely to be under long-regulation by prior knowledge, missing alterna-

tive possibilities. It is possible to perform statistical analyses on individual

correlations, but calculating significance using positive/negative correlations

alone throws away potentially useful data, reducing power. It is possible to

calculate the mean correlation across TADs, but this is very susceptible to

outlying high correlations. It is not known exactly how gene expression de-

pends on activation by enhancers, so in order to model co-ordinated enhancer

action I had to make several assumptions.

Activation of enhancers is correlated across TADs, but I assumed that

the e↵ect of each enhancer on gene expression was independent. The bio-

logical rationale for this is that each enhancer drives expression in a specific

population of cells, and it is the combination of these individual patterns of

enhancer activation which combine to form the overall expression of a gene

(for examples, see (Lorberbaum et al., 2016)). I also assumed this a↵ect

is linear on expression. Enhancers, represented by H3K27ac peaks, varied

considerably in size, so comparing acetylation signal directly is not reason-

able. I normalised H3K27ac signal at enhancers to between 0 and 1, as a

proportion of the maximum observed signal across all cell types. However,

this assumes that the e↵ect of each enhancer is equal. This is certainly an

approximation of the biological reality, but allowing enhancer strength to

vary means that the system is underdetermined in most cases, because there

are more enhancers than conditions. Variable selection methods, such as
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LASSO (Tibshirani, 1996), can address this, but this is also a distortion of

biological reality, since we do not expect a large fraction of enhancers to have

zero e↵ect.

Posed in this way, we can model total gene expression (EPred) as a func-

tion of basal expression (EBasal) and expression driven by enhancer acetyla-

tion. Expression driven by enhancers is modelled as a gene’s sensitivity to

long-range regulation (SLRR), times the H3K27 acetylation levels (Ac) at all

n enhancers within the same TAD:

EPred = Ebasal + SLRR ⇤
nX

1

Aci

This way we estimate both Ebasal and SLRR, which is the sensitivity of a

promoter to enhancer activation within its TAD. SLRR provides a measure of

how sensitive genes are to regulation by enhancers, but this is not normalised

between genes. We can instead calculate the statistical significance of the

fit, which is straightforward since the model is e↵ectively a simple linear

regression. These p-values still require correction, since many tests have been

performed, but only for the number of genes, not the number of possible gene-

enhancer interactions. This results in a list of genes that show statistically

significant evidence of regulation by enhancers.

An example of the output of this model for one of the best-predicted

genes, KLK8, is show in Figure 2.11. The top panel shows the predicted

RPKM values plotted against the observed values, which show a very strong

correlation. The model has predicted the expression pattern both qualita-

tively and quantitatively, correctly predicting high expression in 2 cell types,

with one much higher than the other. The lower plot visualises the contri-

bution of each enhancer in a separate colour. The sum of each contribution

defines the final prediction, as outlined in the equations above. The observed

expression is indicated by a black outline. It is interesting to note that more

individual enhancers are active in the highly expressed cell type than in the

lower-expressed cell type, it is not that the same enhancers are active at

lower levels (this is particularly obvious for the ”pink” enhancers towards

the bottom of the graph)
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Figure 2.11: a. Predicted RPKM vs. Observed RPKM b. Predictions visu-
alised as contributions of individual enhancers
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Figure 2.12: a. Predicted RPKM vs. Observed RPKM b. Predictions visu-
alised as contributions of individual enhancers
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Figure 2.12 shows a di↵erent gene, RNF180, which is still predicted as

a target gene but with a much lower significance than KLK8. Here, the

model broadly makes the correct qualitative predictions (i.e. high vs low

expression), but also makes several mistakes, and is not accurate in predicting

exact expression levels (except in cases which are most likely due simply to

luck). Again, the lower enhancer contribution figure does show accurate

predictions being made with disjoint subsets of enhancers, in E058 and E065

(the two leftmost highly-predicted genes).

2.5.2 Measuring Enhancer Contribution

We can assess the relative individual contributions of enhancers under this

model by subtracting their contribution from the predictions and comparing

the modified prediction to the original. The modified prediction (E 0) for gene

expression leaving out enhancer j is therefore:

E 0
PRed = Ebasal + SLRR ⇤

nX

1

Aci � SLRRAcj

From here we can then calculate the di↵erence in correlation, should the

contribution of that enhancer be removed from the model. This is similar to

leave-one-out testing used to assess the contribution of individual features in

complex, hard-to-interpret models such as random forests.

�r = Cor(EActual, EPred)� Cor(EActual, E
0
Pred)

In theory, this represents the e↵ect on gene expression of removing a single

enhancer. For genes under long-range regulation, this should make a large

di↵erence, whereas for genes which do not respond to enhancers, this would

make little di↵erence. Therefore, the fit between the model and observed

gene expression should decrease much more for LRR genes, measured as the

change in correlation (�r). Note that I have not re-calculated the predictive

equation, as would be normal in other circumstances, such as calculating

variable significance in a machine learning task. This is for the same reasons

as stated earlier: I am not trying to select the most predictive enhancers, but
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estimate the contribution of each. Since enhancers often appear redundant

(Hong et al., 2008; Cannavò et al., 2016), interpretation would be di�cult.
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Table 2.5: Cell types used in the experiment for RNA-seq and Huston Acety-
lation data

ID Name Anatomy Type
E003 H1 Cells ESC Primary Culture
E004 H1 BMP4 Mesendoderm ES-deriv ESC Derived
E005 H1 BMP4 Trophoblast ES-deriv ESC Derived
E006 H1 Derived Mesenchymal ES-deriv ESC Derived
E007 H1 Derived Neuronal Progenitors ES-deriv ESC Derived
E011 CD184+ Endoderm ES-deriv ESC Derived
E012 CD56+ Ectoderm ES-deriv ESC Derived
E013 CD56+ Mesoderm ES-deriv ESC Derived
E016 HUES64 Cells ESC Primary Culture
E037 Primary T helper Blood & T-cell Primary Cell
E038 Primary T helper naive Blood & T-cell Primary Cell
E047 Primary T CD8+ naive Blood & T-cell Primary Cell
E050 Primary hematopoietic stem cells HSC & B-cell Primary Cell
E055 Foreskin Fibroblast Epithelial Primary Culture
E056 Foreskin Fibroblast Epithelial Primary Culture
E058 Foreskin Keratinocyte Epithelial Primary Culture
E059 Foreskin Melanocyte Epithelial Primary Culture
E061 Foreskin Melanocyte Epithelial Primary Culture
E062 Primary Mononuclear Cells Blood & T-cell Primary Cell
E065 Aorta Heart Primary Tissue
E066 Liver Other Primary Tissue
E071 Brain Hippocampus Middle Brain Primary Tissue
E079 Esophagus Digestive Primary Tissue
E084 Fetal Intestine Large Digestive Primary Tissue
E085 Fetal Intestine Small Digestive Primary Tissue
E087 Pancreatic Islets Other Primary Tissue
E094 Gastric Digestive Primary Tissue
E095 Left Ventricle Heart Primary Tissue
E096 Lung Other Primary Tissue
E097 Ovary Other Primary Tissue
E098 Pancreas Other Primary Tissue
E100 Psoas Muscle Muscle Primary Tissue
E104 Right Atrium Heart Primary Tissue
E105 Right Ventricle Heart Primary Tissue
E106 Sigmoid Colon Digestive Primary Tissue
E109 Small Intestine Digestive Primary Tissue
E112 Thymus Thymus Primary Tissue
E113 Spleen Other Primary Tissue
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Table 2.6: Summary of data sources used in the experiment
Data Type Total Post-filtering Data Source
Enhancers 486902 382021 H3K27ac

Genes 19443 19443 RNA-seq
TADs 3117 3117 Hi-C
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Chapter 3

The heatmaps.R Package for

R/Bioconductor

3.1 Introduction

Data visualisation is an important tool at all stages of the scientific process.

It is frequently used at the start of an experiment, for quality assurance; in

early stages, as a means of generating hypotheses; and, of course, in clearly

showing the results of a study in an e↵ective manner. A graph, or image,

is almost always preferable to a table or description conveying the same

information.

Visualisation is most important in cases where it is di�cult to neatly

summarise the data in a statistical form. This can be in the preliminary

stages, when it is not known if the data conform reasonably to a given

model (see Anscombe’s warnings for statisticians who fail to graph their

data (Anscombe, 1973)), or as a first look to see if it is worth investing time

in generating a complex model. In some cases, however, patterns in the

data that are easy to spot with the human eye can be exceedingly tricky to

model accurately. This applies particularly to spatial patterns in data. For

example, CAGE data is often represented by clusters of nearby TSSs (see

Introduction), but this is a simplification, and often more features are visible

at the level of individual loci.
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The term ‘heatmap’ confusingly refers to several plots commonly used

in genomics. The term in general refer any bivariate plot in which x and

y are independent variables, which can categorical or spatial, and the value

of z is mapped to a colour. The first, and arguably more common usage,

is in plotting correlations between many variables, where each correlation

is represented by the colour (or shading) of the panel at the confluence of

two variables. Another use is for a plot which displays data from genomics

experiments over many separate windows as a single plot. For example, a

heatmap could show the histone H3 Lysine 27 acetylation levels at a set

of enhancers, sorted by the strength of the signal. This directly visualises

spatial patterns in the data, and often combines multiple experiments (for

example, di↵erent histone modifications) to show common patterns. For the

rest of this chapter, ‘heatmap’ refers exclusively to the second type of plot.

These plots can provide valuable insights which would di�cult to discover

through summary statistics alone. However, their usage is perhaps not as

common in the literature as it should be.

3.1.1 Existing Work

Packages do already exist for producing a wide variety of heatmap plots, from

diverse data sources. Genomation (Akalin et al., 2015) produces plots very

easily, but lacks an easy way to include user-defined data. EnrichedHeatmap

(Gu, 2017) produces complex plots, combining many di↵erent panels, but

this process is tricky and the results would generally require editing before

inclusion in a manuscript. ‘ngs.plot’ (Shen et al., 2014) produces many useful

metrics for analysing NGS data alongside the ability to create heatmaps, but

the plots produced are not of high quality. ‘deepTools’ (Ramı́rez et al.,

2016) provides a comprehensive suite for analysing NGS data, producing

attractive multi-panel figures, but is embedded with the Galaxy platform

(Goecks et al., 2010), making use di�cult for those who use R/Bioconductor.

In addition, none of these packages provide functions for manipulation of

biological sequence, which I believe is an important factor to consider in

many analyses.
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‘seqPattern’ (Haberle, 2015) provides functions to manipulate sequence

data, but does not provide tools for plotting NGS data in the same package.

The plots are e↵ective, since the package provides smooths the raw image (a

binary matrix of hits), allowing easier visual identification of patterns in the

data. However, they are always produced as individual files so multi-panel

figures require combining in an editor to visualise more than one pattern

simultaneously.

In summary, many packages e↵ectively plot heatmaps, and taken together

cover almost all potential use cases, and a wide variety of plot styles. How-

ever, this means that users must choose, and learn, di↵erent packages for

working with di↵erent kinds of data. Beyond mere inconvenience, this com-

plicates data integration considerably: for example, plotting transcription

factor binding sites alongside ChIP-seq data for the same factor would in-

volve the use of multiple packages.

3.1.2 Requirements

I set out to write a new package in R/Bioconductor to fulfil what I perceived

as a gap in the currently available packages. The core requirement is to

have a package that enables data integration, particularly between functional

genomics and sequence-led approaches. There are also a number of other

concerns that are common to most plotting packages, which I have outline

below.

The ideal for any plotting package is to produce publication-ready plots

programmatically, removing the need for extensive modification using image-

manipulation programs and encouraging rapid exploration and validation of

new hypotheses. This requires e↵ort on the part of the package author to

ensure that layouts, text scaling and colour schemes are chosen e↵ectively. In

addition, the package must be flexible, so the user is not forced into particular

design choices by the author. This can be a problem for packages that focus

on initial ease of use: while they can produce one particular design of figure

with very small amount of code, modifying this design is not possible.

Creating multi-panel figures programmatically (i.e., without collating im-
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ages after plotting using an external program such as Adobe Illustrator) is

also an important goal, since visualising multiple sources of data alongside

each other is a standard use case for heatmaps. This functionality is available

using the graphics engine in R, but control of these functions is not always

available to the user.

This flexibility should also extend to the input data. Functions should be

provided for common operations, but it should also be simple to plot arbitrary

data, in case certain use cases are not anticipated. Visualising biological

sequence data requires functions to interrogate biological sequences. This

includes both exact matching of sequences, and scanning sequences using

PWMs. In addition, the results of these analyses need to be processed to be

displayed informatively. which most easily achieved by smoothing the results

of pattern matching.

Any program dealing with the next-generation sequencing data, or the

results of genome-wide analyses needs to be e�ciently written, so that simple

operations do not take large amounts of time to complete. Writing the pack-

age in R (Ihaka and Gentleman, 1996), and using the packages and software

infrastructure for manipulating genomic sequence and annotations available

through the Bioconductor platform (Gentleman et al., 2004; Huber et al.,

2015) provides fast performance for bioinformatics workflows.

3.2 Results

3.2.1 Structure of the heatmaps.R packages

The core philosophy of the heatmaps package, that will help to realise these

ideas, is that the heatmaps class should only try to represent the plot itself,

not the underlying data. This has a number of advantages.

Most importantly, this allows the raw input data, potentially spanning

megabases of sequence, to be compressed down into a smaller, representative

image, making plotting much faster. This allows new hypotheses to be tested

more easily, and is invaluable for combining plots into multi-panel figures and

experimenting with formatting. While this may seem obvious, some packages
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Figure 3.1: The structure of a heatmap.

tie data extraction to plotting so that even small graphical changes require

considerable data processing. See the Performance section for benchmarks.

It also provides easier manipulation of the data, since the image is repre-

sented by a single matrix. This makes it simple to apply arbitrary transfor-

mations to the data, such as smoothing, logarithm or winsorization (capping

values at a certain quantile), without losing the plotting abilities of the pack-

age, or having to ‘hack’ the package’s source code.

For programming purposes, a heatmap is just an image matrix (image),

with metadata. I based my packages around a central ‘Heatmap’ class, which

would provide a self-contained data structure with the all the information

needed to produce a plot. A heatmap needs co-ordinates for the X-axis

(coords), and to keep track of the number of rows in the image for Y-axis

co-ordinates (nseq). Since we might want to normalise the values between

images, there is also a slot to store the numerical scale used for plotting

(scale). Finally, there is also a label field (label). Figure 3.1 illustrates

this structure.

3.2.2 Workflow

The raw data required to plot a heatmap consist of a set of windows onto

the genome (Figure 3.2a), representing the regions to be plotted, and the

73



A T A G T C G T A G G C G A A T A T A C T C G G C T A G A A T A G 

GRanges 

CoverageHeatmap PatternHeatmap 

plotHeatmap 

plotHeatmapList 

a. b. c. 

d. 

e. 

Figure 3.2: The workflow involved in creating a heatmap. Predefined genomic
intervals (a) and used to select regions of the genome and retrieve data on
functional genomics experiments (d) or sequence data (e), combined into
matrices (b) and then displayed using functions in the package (c).

annotations to be plotted. These generally takes the form of a linear track

along the genome (Figure 3.2d), such as would be displayed in a genome

browser, or annotation of the underlying sequence (Figure 3.2e). These are

then combined into heatmaps (Figure 3.2b), which can display any data, and

can be plotted with the plotHeatmap or plotHeatmapList functions (Figure

3.2c).

Bioconductor provides libraries which allow e�cient storage and manip-

ulation of genomics data. This includes reading in the data represented in

panels d and e, and combining this linear data into matrices as shown in

panel c (Figure 3.2). These manipulations are not always simple for the

user, however, and in any programming environment, small mistakes in code

can lead to hundred-fold decreases in speed. The R language is particularly

vulnerable to this, since operations carried out by the interpreter are many

orders of magnitude slower than those delegated to compiled subroutines.

The heatmaps package includes high-level functions for many common oper-

ations which remove obstacles from the user, so results are always generated

in the fastest possible time.
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Figure 3.3: The sequence of Zebrafish promoters at 24h. a. Matches to TA

visualised at dots. b. Matches to TA visualised by smoothing out those
dots. c. Exact matches to TATA, smoothed. d. Matches to the consensus
TATA-box PWM. e. Visualisation of the TATA-box PWM score at every
point across the loci.

3.2.3 Visualising Sequence Data

Sequence data is rarely displayed directly, as raw ACGTs, as the resulting

figures would be all but impossible to interpret. Sequence features are usu-

ally summarised using either k -mers or PWMs. k -mers are exact matches

with a specified sequence of k base pairs. These are generally short, since

longer sequences become increasingly rare. They often include degenerate

base pairs, specified using the IUPAC ambiguity codes: Y for a pyrimidine

(either an A or G), a W for ‘weak’ bases (A or T), S for ‘strong’ bases (C

or G), or an N for any base at all. Longer or more complex features are com-

monly specified as PWMs, since they allow for probabilistic matches. Both

of these inputs can be used to create heatmaps directly, either from sequence

data input by the user or fetched automatically from Bioconductor’s genome

packages (BSgenome, Pagès et al. (2017)).

Exact matches to k -mers, or thresholded matches to PWMs, produce

binary data. It is di�cult for the eye to see patterns in binary data repre-

sented as a series of dots on the page. In addition, no figure will have su�-

cient resolution to accurately visualise individual base pairs within kilobases

of sequence. Applying a smoothing function to this binary data produces

an image with continuous values representing the local density of matches,

a far more e↵ective way of displaying sequence data. This also solves the
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resolution problem.

Figure 3.3 shows all of these methods, applied to a set of zebrafish pro-

moters defined by CAGE (see Methods). In order to investigate the presence

of the TATA motif at promoters, I have looked at exact matches to TA and

TATA, PWM matches at over 80% of the maximum score, and additionally

the PWM score over each locus.

Figure 3.3a shows the raw data for an exact match to TA, before smooth-

ing. Each dot represents a match to the exact pattern. While all the informa-

tion is displayed here, it is very di�cult for the eye to make out the patterns.

Figure 3.3b shows this data smoothed using kernel smoothing (see Smooth-

ing section for details), which is more easy to interpret. Figure 3.3c shows an

exact match to the extended sequence, TATA, which is has markedly fewer

matches, even at the expected TATA-box location. By comparing panels b

and c, it appears that many TATA-box motifs actually do not contain the

exact TATA sequence.

Figure 3.3d shows sites where the PWM score exceeds a specified thresh-

old. In this case, the threshold is 80% of the maximum possible score. This

is more sensitive than the exact matching method. This is expected, since

there are a greater number of informative bases in the TATA motif, allowing

for greater flexibility in matching true TATA-boxes.

Figure 3.3e shows how this value varies across each window. This is a

PWMScan heatmap, where the individual log-likelihood of a match is evaluated

at each point in the sequence and displayed according to a colour legend.

This second plot is more informative, since it not only shows the enrichment

of TATA at the expected location, but clearly shows exclusion outside this

region.

3.2.4 Visualising Functional Genomics Data

Functional genomics data is often specified as a linear track along the genome,

for example counting the number of ChIP-seq reads mapping to each location

along the genome. This is handled in Bioconductor by the RleList class,

which in run-length encoded, so that runs of repeated values do not take
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Figure 3.4: a. H3K4me3 ChIP-seq signal at a subset of Zebrafish 24h pro-
moters. b. ATAC-seq signal at the same set of promoters.

additional memory. This data can be directly converted to a heatmap by

intersecting the track with a GenomicRanges object. Any data that can be

displayed as a continuous track along the genome can be handled in this way,

as can binary data specified as ranges, such as CpG islands. File handling is

not provided by the package, since Bioconductor already provides methods

for reading in almost all commonly used formats.

Figure 3.4 shows an example of functional genomics data plotted at the

same promoters as Figure 3.3. The panel a shows ChIP-seq for H3K4me3, a

histone modification associated with active promoters. The two nucleosomes

downstream of each promoter are clearly visible as the source of the signal.

The panel b shows ATAC-seq, an assay for accessible chromatin. The nucleo-

some free region upstream of the dominant TSS is visible as an enrichment in

ATAC fragments, which is also visible, but much less clear, around +200bp,

between the nucleosomes. Both panels have been smoothed, and the ATAC-

seq signal has been cut o↵ at 80% of the maximum observed, so a greater

dynamic range can be visualised. This is easily accomplished by modifying

the scale property in a heatmap, rather than changing the original data.
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Figure 3.5: a. H3K4me3 ChIP-seq at 24h Zebrafish promoters. The value
displayed is the coverage on the plus strand with the negative strand coverage
subtracted. b. The same signal, but following k-means clustering. c. An
illustration of how the phased ChIP-seq signal is calculated.
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Figure 3.6: a. Time taken to plot a heatmap, in seconds, versus the number
of pixels in the image. b. The time taken to smooth and downsample a 40
Megapixel image, based on the smoothing method used and the degree of
downsampling.

3.2.5 Clustering

The package provides a method for displaying clusters in the data, although

it does not provide clustering methods. This is a deliberate choice, because

clustering is a complex process and limited, built-in routines may not be the

most appropriate choice for many examples. Instead of implementing many

common clustering algorithms, users are free to cluster their data using any

approach, and heatmaps.r will display the clusters they have defined. This

also allows users to display clusters derived from external data, such as prior

annotation, for example di↵erentially expressed genes or ChIP-seq peaks.

It is possible to visualise nucleosome positioning by subtracting plus-

strand ChIP-seq reads from negative-strand ChIP-seq reads (Figure 3.5c),

rather than using ATAC-seq data. This is shown in Figure 3.5a, however

the signal is unclear. Figure 3.5b shows the same data following kmeans

clustering, which reveals the pattern in the data. This is actually equivalent

to clustering based on positive and negative strand promoters, which is a

somewhat contrived example, but illustrates the functionality of the package.
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3.2.6 Performance

Performance is a critical concern for plotting heatmaps. A heatmap cover-

ing 20,000 windows of 10kb each contains 200 million individual observations,

which approaches gigabyte of data. This makes it very di�cult to perform op-

erations on such data in memory on anything other than a high-performance

cluster. Keeping operations in memory is desirable, since it is much faster

and simplifies programming. Even on such machines, the time taken to per-

form even basic operations can exceed the patience of a researcher carryout

out interactive data analysis. The plotting of these figures also takes a sig-

nificant amount of time, which can be particularly frustrating when trying

to change cosmetic details or comparing multiple plots.

The package takes several steps to combat performance concerns. With

images of the size described above, it is not possible for practical purposes to

view the figure at full resolution, either on the page or on screen. Therefore,

with the proper tools to reduce the size of these images, performance can be

dramatically increased without su↵ering any loss in final image quality. In

fact, using the package it is possible to perform such analysis easily on most

recent commercially available laptops. The standard approach to downsizing

images used in image processing is to first smooth the data, and then reduce

the size, referred to as downsampling in image processing. The smoothing

avoids unwanted artefacts created by the downsampling process, which can

adversely a↵ect the quality of the final image.

Figure 3.6a shows that the plotting time increases roughly linearly with

the number of pixels in an image. As we can see, larger plots can take up

to minute to plot. However, 106 pixels, which plots very quickly, is a high

enough resolution to fill an average figure panel at the 300dpi resolution

required by most journals. Performance would deteriorate further at larger

sizes, since the dataset would increase beyond the size easily stored in RAM.

3.2.7 Smoothing

Two smoothing methods are included in heatmaps.r. These are vital for

displaying sequence data, as shown above, and are also useful in plotting
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functional genomics data.

The first is a binned kernel density smoothing, which operates on binary

data. Kernel smoothing replaces individual points in data with a continuous-

valued function, a “kernel”. In this case, a Gaussian kernel is used. The

implementation is taken from the KernSmooth (Wand, 2015) package, using

a binned kernel density estimator as described in Wand (1994). The binned

approach is key, because it computes the kernel density estimate only for

a subset of points. This provides both downsampling and smoothing for

binary data in a single step, and so under these conditions it is faster than

the alternative Gaussian blur function (Figure 3.6b) when downsampling is

required.

The Gaussian blur function provides smoothing for continuous-valued

data, such as ChIP-seq. The implementation is provided by the EBImage

(Pau et al., 2010) package. This is slower than the kernel smoothing method

when downsampling is also required (Figure 3.6), but works on any data,

and is faster in some cases when used on large images with no downsam-

pling (Figure 3.6). Another option provided in heatmaps.r is to create the

heatmap using binned data. This would also reduce the resulting size by a

significant margin straightforwardly: if one value is calculated every 10bp

rather than for every point, then the resulting image is a tenth of the size.

3.2.8 Plotting Options

In order to provide the maximum flexibility for users, I have provided two sep-

arate interfaces for drawing heatmaps. The more basic function, plotHeatmap,

is responsible for drawing the image itself, and all the extra features required,

such as axis ticks or labels. I have included as many options as is sensible so

that these plots can be fully customised, and a selection of these is outlined in

Table 3.2.8. However, the plotHeatmap is designed so that additional data or

labels can be plotted by the user, whilst keeping the desired functionality of

package. This could include highlighting specific features on the plot, which

is aided by the fact that the co-ordinates used by plotHeatmap track the orig-

inal windows used to create the plot, even after downsampling or smoothing.
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Option Function

color Specifies the colour scale
label Plot a label, e.g. “TATA”

label.xpos, ypos Position the label precisely
label.col Colour for label, useful for dark plots
legend Include a legend indicating numerical values

partition Specify ration of cluster sizes
partition.lines Plot lines delineating clusters

box.width Width of the box around the heatmap
refline Draw dashed line at x = 0

Table 3.1: Example options available for heatmaps

Therefore, +200bp in the 1000th sequence in the list is represented by the

point x = 200, y = 1000.

The other function provided is plotHeatmapList. This is a wrapper

for plotHeatmap which also controls the layout of panels for multiple fig-

ures, as well as the margins and legends. This means that users can plot

multiple heatmaps in one figure, without having to control the arrangement

themselves. All of the options available to plotHeatmap can be passed to

plotHeatmapList, and separate options can be passed to each figure by spec-

ifying these options as a list. plotHeatmapList also normalises figures that

are grouped together, so separate datasets can be compared quantitatively.

3.2.9 Multi-panel Plots

A central aim of the package was to produce complex, multi-panel figures

directly from R that would be suitable, with minimal modification, to appear

as journal figures or in presentations. One such example, Figure 3.7, is shown

below. This figure is reproduced from the central figure of Haberle et al.

(2014). The arrangement of the panels, the labelling of individual features

and the labelling of axes is all done directly from R. The figure shows the

same promoters as in Figure 3.3, but aligned to the dominant TSS (as defined

by CAGE) at two di↵erent time points during development, before and after

zygotic genome activation (ZGA). The di↵erences in promoter architecture
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at each time point are visible from the dinucleotide frequencies: the maternal

TSS in defined by a strong TA signal slightly upstream of the promoter (a

TATA-box motif), and the zygotic TSS is defined by a broader band of CG

enrichment.

3.3 Discussion

I have written a package, heatmaps, in R which fulfils all of the requirements

I outlined in the introduction. It provides plotting methods for both next-

generation sequencing data, such as ChIP-seq, alongside methods for plotting

DNA sequence features such as exact k -mer matches and PWMs. To the best

of my knowledge, this is the first package to include both these features ”out

of the box”. All of this is built on a flexible environment which allows easy

creation of multi-panel figures, including normalising between panels and

plotting clusters in the data.

Additionally, the package allows users to control lower-level plotting func-

tions, which simplify the creation of complex plots. This is targeted at those

users whose needs are not met by the basic functions of the package. All of

the data manipulation performed by the package uses Bioconductor infras-

tructure to maximise e�ciency.

The package was accepted into Bioconductor (Version 3.5), which shows

that it meets the rigorous quality requirements of Bioconductor (Biocon-

ductor Core, 2017). These include guidelines for correct use of R classes,

“robust and e�cient code”, and documentation covering all aspects of the

package. I hope that, with the acceptance of the package into Bioconductor,

more researchers will include heatmaps as part of their regular workflow, and

in particular include sequence features in their analysis. I believe that this

method of looking at biological data has advantages, and that heatmaps are

currently under-utilised by the genomics community, and that my package

can help to address this.

The heatmaps package removes many of the programming challenges in-

volved in creating heatmaps. Even for experienced bioinformaticians, mak-

ing these plots can be time-taking exercise with no code readily available,
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Figure 3.7: TA and CG frequencies around 8369 zebrafish promoters, aligned
to CAGE transcription start sites for maternal transcripts (left) and zygotic
transcripts (right). The blue arrowhead indicates the TATA-box motif. The
red arrowhead indicates the CG-TA boundary. Asterisks indicate GC enrich-
ment between nucleosomes.
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for reasons outlined below. For primarily experimental researchers, this may

be a step too far unless clearly demanded by the data. For any user, having

a fully-featured package which handles the technical di�culties in making

these plots will encourage quick experimentation with di↵erent hypotheses,

and yield better-looking final figures.

The package also encourages users to look for spatial patterns in the data,

particularly sequence data. This aspect of biological data analysis is often

overlooked in favour of summary statistics. However, many common anal-

ysis methods are not capable to detecting certain patterns. ChIP-seq data

is generally analysed using peak callers, which may ignore local depletions

inside of larger peaks, which can be around important features. PWM mo-

tif enrichment, the most common sequence analysis tool, does not capture

patterns of spatial enrichment for shorter sequences, such as those shown in

Figure 3.7. The k -mers themselves may not be enriched overall in the sam-

ple, but patterns are clearly visible at the level of individual loci. In e↵ect,

it is possible to see patterns by eye which are di�cult to detect with statis-

tical methods. It should be noted that revealing these patterns often takes

significant insight or intuition on the part of the researcher, since the correct

ordering of windows, or selection of features, is paramount. This is some-

thing of a double-edged sword, since results based purely on visual patterns,

rather than quantified data, may be seen as less rigorous. However, I believe

that, until methods are developed to accurately capture these patterns, data

visualisation remains a powerful tool for studying biological systems.

3.4 Methods

3.4.1 Zebrafish Promoters

Zebrafish promoters were taken from the set of shifting promoters in Haberle

et al. (2014). Except where otherwise noted, they were aligned by the ma-

ternal dominant TSS, as defined by CAGE. H3K4me3 data were used from

the same paper. ATAC-seq data were taken from Gehrke et al. (2015).
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3.4.2 Pattern Matching

The TATA-box motif was taken from the JASPAR Vertebrate database

(Mathelier et al., 2016).
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Chapter 4

Amphioxus Promoterome

4.1 Declaration

Amphioxus tissue isolation, RNA extraction and genomic DNA extraction

were performed by collaborators at the CABD institute in Seville. Analysis

of genomic DNA and RNA-seq was performed by collaborators in Barcelona,

led by Manuel Irimia and Ferdinand Marelatz. I have used both the genome

assembly and the predicted gene models from RNA-seq, including homology

prediction based on human proteins.

CAGE library preparation and sequencing were performed at the RIKEN

institute in Japan. All further analyses were performed by me.
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4.2 Introduction

Despite their central importance to gene regulation, it is still not known

precisely what determines promoter activity at the sequence level in higher

organisms. We have many reasons to believe that key aspects of promoter

function are conserved across large evolutionary distances: deeply conserved

enhancers, transcription factors, promoter motifs, and the conservation of

the transcriptional machinery itself. Despite this, promoter features vary

significantly between di↵erent clades (Lenhard et al., 2012). If we can pin-

point which DNA sequence features are conserved, they might provide clues

to the mechanisms which underlie shared promoter biology across metazoa.

Branchiostoma lanceolatum, commonly known as the European amphioxus,

is a small (up to 6cm) chordate which is local to the North East Atlantic and

the seas around Europe. The amphioxus lineage diverged from vertebrates

close to the root of the vertebrate clade. For a long time amphioxus was

thought to be the closest extant relative of the vertebrates, but molecular

methods have placed the Tunicate branch closer (Delsuc et al., 2006). Tuni-

cates share little in morphology with vertebrates outside their larval stage,

with adults taking on astonishingly diverse morphologies. Amphioxus shares

many morphological features with vertebrates, and so may be more rep-

resentative of the vertebrate last common ancestor. These features make

amphioxus an attractive species for investigating vertebrate evolution, since

it could allow us to distinguish vertebrate-specific innovations from earlier

evolutionary changes.

In this chapter, I use CAGE data to investigate promoter architecture in

the European amphioxus. This will identify promoter features that are com-

mon between amphioxus and vertabrates, features that are shared between

all metazoa and lineage-specific features in amphioxus.
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4.3 Results

4.3.1 Data

RNA was isolated from 7 amphioxus developmental stages and tissues by col-

laborators working at the CADB in Seville. In collaboration with RIKEN, we

performed Cap Analysis of Gene Expression followed by sequencing (CAGE-

seq, (Shiraki et al., 2003)), on these samples, producing genome-wide maps

of transcription initiation at single base-pair resolution. Whole-embryo RNA

was isolated from amphioxus at the 32 cell stage, 8 hours and 15 hours post

fertilisation, and also for the neural tube, hepatic system, muscle and female

gonads.

4.3.2 CAGE Data Processing

CAGE tags were aligned using Bowtie and processed using CAGEr (see Meth-

ods for details). I aggregated signal at individual nucleotides into tag clusters

(TCs), which represent the range of initiation for a single promoter. Each

promoter is also assigned a dominant transcription start site (TSS), the nu-

cleotide at which initiation is most frequent. The widths of these clusters

form a bimodal distribution in six samples 4.1a, which shows that amphioxus

has the expected mixture of broad and sharp promoters as seen in other Meta-

zoa (Carninci et al., 2006; Hoskins et al., 2011). This was not observed in the

muscle sample, which means that many of the clusters observed in the data

are likely to be artefacts; as such, the muscle sample was excluded from fur-

ther analysis. Figure 4.1c illustrates how sharp and broad promoters appear

at individual loci. To increase the robustness of this measurement, I used

the distance between the 10th and 90th percentiles of initiation, known as

the inter-quantile (or IQ) range. The data from the three embryonic stages,

as well as female gonads, neural tube and hepatic system, passed quality

control and were analysed further.
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Figure 4.1: a. CAGE Clusters show a bimodal distribution in width between
“broad” and “sharp” promoters, which have characteristic patterns of initi-
ation in six samples. b. This distribution is not observed in the muscle sam-
ple. c. Top: CAGE tags in Embryo 15h from the region Sc0000001:7714823-
7714902. Broad promoters initiate from multitude of sites over dozens of base
pairs. Bottom: CAGE tags in Embryo 15h from the region Sc0000240:29994-
30073. Sharp promoters usually initiate dominantly from a single base pair.
In both cases, the strongest initiation nucleotides are purines (R) that are
immediately preceded by a pyrimidine (Y).
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Figure 4.2: Consensus Clusters arranged in a self-organising map (SOM)
according to their expression between samples, with representative clusters
chosen for further analysis highlighted. Each box represents one SOM clus-
ter, with series of beanplots showing distribution of scaled expression values
(logarithm of normalised number of CAGE tags per million) at di↵erent time
points for all promoters belonging to that cluster. The dotted line indicates
the mean expression. The co-ordinates above each cluster illustrate the posi-
tion of each cluster within the SOM, as spatial arrangement is significant for
this method. The numbers in brackets indicated the number of promoters in
each cluster.
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4.3.3 Categorising Promoters by Expression Profile

Each box represents one SOM cluster, with series of beanplots showing distri-

bution of scaled expression values (logarithm of normalised number of CAGE

tags per million) at di↵erent time points for all promoters belonging to that

cluster.

Tissue specificity is a major determinant of promoter architecture in

Metazoa (Carninci et al., 2006; Hoskins et al., 2011). To compare gene

expression between di↵erent developmental stages and tissues, TCs were ag-

gregated between stages to form consensus clusters. This is necessary as

the tag clusters from separate stages can have di↵erent coordinates, even if

they represent the same gene promoter. Gene expression profiles across all

stages were clustered using a self organising map ( see 4.2), and I selected 5

representative clusters to analyse further: genes specifically expressed in the

embryo, hepatic system, neural tube or female gonads, and genes expressed

at stable levels across all samples (ubiquitous genes). The goal here was not

to categorise all promoters, but to to find robust clusters to analyse further.

4.3.4 Promoter Analysis

I investigated the di↵erences and similarities between these groups using a

variety of data sources known to be important for promoters (see Introduc-

tion). Exact matches for short sequences of nucleotides, or k -mers, can neatly

display general patterns in nucleotide content across regions. Matches to po-

sition weight matrices (PWMs) provided a more accurate picture of potential

binding by transcription factors. The strength of a match can be measured

in many ways, but here I used a threshold based on the maximum possible

score. Gene models based on RNA-seq were used to show the first exons of

each transcript. Interquantile (or IQ) range is a robust measure for the range

of initiation at each promoter, and promoters were aligned by the dominant

TSS, which is the single base pair with the largest number of transcripts ini-

tiating from it. This allows us to make precise spatial comparisons between

promoters. Nucleosome occupancy was determined from NucleoATAC signal

(see Methods), and is known to be important for promoter function (see In-
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Figure 4.3: Heatmaps of the first two promoter clusters identified in by
CAGE expression clustering, aligned by dominant TSS. TA and CG show
the smoothed density of exact dinucleotide matches. N.ATAC is smoothed
nucleosome occupancy in 15h Embryo. IQ is the 10-90 interquantile range
of the consensus clusters. Exons are displayed as smoothed gene models
predicted from RNA-seq. TATA and YY1 are matches to PWMs at 80%
of the maximum score, again displayed as smoothed density. a. Ubiquitous
cluster b. Embryonic

93



troduction). All of these data except IQ range are displayed following kernel

smoothing (see Methods) to improve the ability to visualise overall trends in

the data, and therefore the exact values displayed at any point in the image

are arbitrary and dependent on the smoothing parameters. Interesting values

are visualised more quantitatively in additional figures.

In the ubiquitously expressed cluster there is a well-defined band of TA

dinucleotides upstream of gene promoters (Figure 4.3a, TA). Downstream of

the dominant TSS, there are two periodic GC enrichment bands (Figure 4.3a

CG), which become less clear at broader promoters. These promoters show

strongly positioned nucleosomes at all widths. This contrasts with vertebrate

promoters, which show strong GC and CG enrichment in the nucleosome

free region from -60 to +40 (Carninci et al., 2006; Rach et al., 2011); in fact,

this pattern is unique among species in which CAGE data is available. Ad-

ditionally, broad promoters of increasing width are increasingly asymmetric,

since their IQ range extends downstream from the most commonly used TSS

position (Figure 4.3a), which is not observed in vertebrates.

The two GC enrichment bands are positioned either side of the +1 nu-

cleosome. Closer inspection reveals repeating WW and SS dinucleotides at

1̃0bp intervals, flanking the ‘+1’ nucleosome (Figure 4.5a), which constitutes

a very strong nucleosome positioning signal. It is also possible that the TA

enrichment band upstream of the promoter contributes to positioning the -1

nucleosome.

Promoters that are specific to embryonic development, neural tube or

the hepatic system share many features that contrast with ubiquitously ex-

pressed genes. They lack both the upstream WW enrichment band and the

asymmetry of ubiquitously expressed promoters, and the precise +1 nucleo-

some positioning signal is not evident (Figures 4.3b, 4.4 TA and CG). Despite

the loss of this signal, NucleoATAC shows that the nucleosome positioning

is very similar to ubiquitous promoters in embryonic promoters (Figure 4.3b

N.ATAC), where ATAC-seq is available.

Promoters specific to female gonads share features of both ubiquitous

and tissue-specific genes. Based on the SOM clustering 4.2, they are closer

to ubiquitous genes in terms of gene expression. There is some evidence of
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Figure 4.4: Heatmaps of the remaining promoter clusters identified in by
CAGE expression clustering, aligned by dominant TSS. TA and CG show
the smoothed density of exact dinucleotide matches. N.ATAC is smoothed
nucleosome occupancy in 15h Embryo. IQ is the 10-90 interquantile range
of the consensus clusters. Exons are displayed as smoothed gene models
predicted from RNA-seq. TATA and YY1 are matches to PWMs at 80%
of the maximum score, again displayed as smoothed density. a. Hepatic b.
Neural Tube c. Female Gonads
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Figure 4.5: a. Meta-region plot visualising mono-nucleotide density (S and
W) around the +1 nucleosome. b. IQ width of ubiquitous promoters con-
taining a YY1 motif vs. those that do not.

the TA enrichment band and nucleosome-flanking GC bands, but not at the

narrowest promoters, which may be have tissue-specific architecture.

4.3.5 De novo Motif Analysis

De novo motif analysis identified many motifs at tissue-specific promoters.

These di↵ered significantly between the tissue-specific clusters, and a num-

ber of motifs were recognisable by their similarity to tissue-specific vertebrate

transcription factors, indicating that both transcription factor binding sites

(TFBSs) and the roles of transcription factors (particularly those important

for development) are highly conserved. However, no new core promoter mo-

tifs were discovered in any of the clusters.

The amphioxus homologue of Grainyhead, an important TF in early de-

velopment, is found at over 300 promoters in the embryonic cluster, and the

motif very strongly matches the motif in the database (Jolma et al., 2013).

Neural tube promoters had a 140 very strong JDP2 (TGACGTCA) sites

(with several positions invariant across all binding sites), as well as NFYA

(CCAAT) motifs and YY1. Hepatic promoters contained many Hepatocyte
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nuclear factor 4 alpha (HNF4) binding sites. Female Gonad promoters con-

tain many NR2F1 binding sites, which is a steroid hormone receptor.

All three clusters contain a significant minority of TATA promoters, and

these are concentrated at the top of the heatmap (Figures 4.3b, 4.4, TA),

indicating that the sharpest promoters are frequently TATA-dependent like

in other metazoan promoteromes (Lenhard et al., 2012). In general, however,

they lack the fine structure seen in ubiquitous promoters, and it is not at all

clear how the promoter is defined at the sequence level in the non-TATA

promoters. No clear distinctions were observed in the heatmaps between

promoters in the di↵erent clusters.

Many ubiquitous promoters are followed by a YY1 motif between 10 and

30 bp downstream from the dominant TSS (Figure 4.6a YY1), and YY1 mo-

tifs are concentrated at the top of the panel, indicating that YY1-containing

promoters are also the narrowest. It appears that initiation is limited to

the region upstream of the YY1 motif at YY1-containing promoters, as seen

by the smaller IQ ranges of these promoters which do not extend far down-

stream of the dominant TSS (Figure 4.6a IQ, Figure 4.5b). These promoters

also have shorter first exons (Figure 4.6a Exons), which suggests a role for

YY1 in preventing ectopic initiation after the first splice junction. YY1 is

also present at Female Gonad promoters, where they are also present at nar-

rower promoters (Figure 4.6b YY1). However, YY1 promoters are not the

narrowest: this may be due to YY1 promoters having ubiquitous promoter

architecture, which is generally not as sharp.

The YY1 motif has previously been linked to the precise control of ini-

tiation of human LINE elements (Athanikar et al., 2004), and genes with

short 5’ untranslated regions (UTRs) where it may fulfil a similar role (Xi

et al., 2007), but this is the first demonstration of these combined e↵ects at

non-repeat loci and the potential role of YY1 as a possible core promoter

element throughout metazoa deserves further study.
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Figure 4.6: Heatmaps of promoter clusters identified in by CAGE expression
clustering, aligned by dominant TSS. IQ is the 10-90 interquantile range
of the consensus clusters. Exons are gene models predicted from RNA-seq.
YY1 is the density of matches to the PWM at 80% of the maximum score.
a. Ubiquitous b. Female Gonads
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Figure 4.7: a. A schematic of a bidirectional promoter, showing the back-
to-back arrangement of the plus-strand promoter (blue) and the negative
strand promoter (red), the maximum distance between them (<1kb) and the
requirement to be protein coding (AUG codon) b. Promoters distribution
by representative CAGE expression clusters. The height of the bar shows
the number of promoters in each category, and the fill denotes those which
are bidirectional. c. Width between bidirectional promoters visualised as a
histogram, showing the periodicity in width which corresponds to integral
nucleosome positions.
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4.3.6 Bidirectional Promoters

Bidirectional promoters are pairs of gene promoters arranged in a closely

spaced back-to-back configuration (Figure 4.7a). I defined bidirectional pro-

moters as head-to-head promoters with a distance of less than 1kb between

dominant CTSSs, using consensus clusters. This is the furthest at which

we see an enrichment of promoters close together in this orientation in Am-

phioxus. I restricted the analysis to protein coding genes, since bidirectional

initiation is a common feature of many promoters, and does not always result

in functional transcripts. Using these criteria, I identified 3950 bidirectional

promoters in Amphioxus.

The majority of the genes in bidirectional promoters were from the ubiq-

uitously expressed gene cluster (Figure 4.7b), with significant enrichment vs.

all other clusters (binomial test, see Figure 4.7b). Bidirectional promoters

are enriched in housekeeping genes and depleted in developmentally regulated

genes (Table 4.1), which is expected given that many bidirectional promoters

are ubiquitously expressed, a defining feature of housekeeping genes. This

could be a result of the lack of space for proximal upstream regulatory ele-

ments at closely-spaced promoters, which are necessary for complex patterns

of expression. The genes which require complex patterns of expression, such

as developmental genes, are excluded from bidirectional promoters (Table

4.1). Bidirectional promoters in amphioxus are not significantly co-regulated,

in line with previous studies (Engström et al., 2006).

The distance between bidirectional promoters in Amphioxus is strikingly

periodic (Figure 4.7c). and the distance between peaks is roughly the space

occupied by a single nucleosome.

Bidirectional promoters have a shared architecture with ubiquitously ex-

pressed genes, comprising of an AT-rich band upstream of the promoter,

which is occupied by the -1 nucleosome, and a CG band downstream of

the promoter, which positions the +1 nucleosome. The periodicity in inter-

promoter distance can be seen in the AT-rich upstream signal (Figure 4.8),

which changes from a single enriched region to two as the width between pro-

moters increases. This is reminiscent of a ‘phase-transition’, as it is a discrete
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Figure 4.8: Heatmaps of TA, CG and nucleosome occupancy (by Nu-
cleoATAC) around bidirectional promoters in Amphioxus, arranged by dis-
tance between the two CTSSs. Both TA and NucleoATAC signal clearly
indicate regions where 0, 1 or 2 nucleosomes separate promoters

change rather than a gradual one. This is recapitulated in the nucleosome

positioning (Schep et al., 2015) derived from the ATAC-seq data (Figure

4.8), which shows that the AT-rich regions are indeed occupied by nucleo-

somes, and that there is a clear transition from 1 to 2 nucleosomes between

the two promoters as the distance increases. The depletion of non-integral

nucleosome spacing between promoters indicates that these promoters can

“share” -1 or -2 nucleosomes, but configurations in which the nucleosomes

are out-of-phase are disfavoured.

4.3.7 Bidirectional Promoters in other species

We have identified a larger number of bidirectional promoters than previ-

ously reported in mouse (Engström et al., 2006), despite a lower number of

genes overall in Amphixous. We hypothesised that this could reflect a high

number of bidirectional promoters in the vertebrate-amphixous last common

ancestor, and that the rapid reduction in number of bidirectional promoters
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Table 4.1: Top 10 Gene Ontology (GO) Terms enriched in Amphioxus bidi-
rectional promoters, and top 5 excluded terms P-values are Bonferroni cor-
rected. *Process §Ribonucleoprotein Complex †Single-organism organism
‡Multicellular organism
GOBPID Ratio Count Size Term P-value

GO:0006396 2.39 332 559 RNA Pr.* 6.84E-19
GO:0034660 2.64 234 376 ncRNA metabolic Pr. 8.54E-16
GO:0022613 2.73 189 299 RNPC§biogen. 3.63E-13
GO:0034470 2.69 172 273 ncRNA Pr. 1.63E-11
GO:0016071 2.23 228 391 mRNA metabolic Pr. 1.34E-10
GO:0042254 2.81 136 212 ribosome biogenesis 2.22E-09
GO:0006364 2.84 113 175 rRNA Pr. 1.33E-07
GO:0016072 2.82 114 177 rRNA metabolic Pr. 1.38E-07
GO:0006397 2.26 161 273 mRNA Pr. 3.71E-07
GO:0006281 2.13 172 299 DNA repair 1.32E-06

GO:0044707 0.52 725 2414 Single-MCO†Pr. 1.63E-30
GO:0032501 0.53 804 2610 MCO Pr. 4.54E-29
GO:0007275 0.54 606 2028 MCO development 6.57E-24
GO:0048856 0.56 690 2232 Anatomical struct. dev. 9.51E-22
GO:0051239 0.48 270 1037 reg. of MCO Pr. 1.32E-19
GO:0032502 0.59 764 2401 Dev. Pr. 2.96E-19
GO:0048731 0.56 542 1804 system dev. 2.98E-19
GO:0044767 0.59 754 2371 SO‡developmental Pr. 6.01E-19
GO:0044700 0.61 706 2203 SO signalling 1.49E-15
GO:0023052 0.61 708 2207 signalling 1.90E-15
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Table 4.2: The number of bidirectional promoters in several species, and the
number of whole genome duplications between each species and the verte-
brate last common ancestor

Organism Bi-proms WGD to LCA

Amphioxus 3950 0
Mouse 1752 2
Zebrafish 1098 3
Fly 4036 N/A

in the vertebrate lineage could be a result of the two rounds of whole-genome

duplication (WGD) which occurred at the base of the vertebrate tree, after

Amphioxus diverged from the vertebrate last common ancestor (LCA). Many

genes rediploidise following WGD, and if the genes comprising each bidirec-

tional pair rediploidise independently then we can expect a significant drop

in the number of bidirectional promoters following WGD. Using the same

criteria, we found 4036 promoters in fly (Drosophila melanogaster), 1752 in

mouse, and 1098 in zebrafish (see Table 4.2), which is consistent with this

hypothesis.

These bidirectional promoters also share similar gene ontology enrichment

as those in amphioxus (Table 4.3), which is to say they are predominantly

housekeeping genes involved in basic cellular processes. This provides further

evidence that these distinct sets of bidirectional promoters represent a single

set of genes through evolution.

4.3.8 Estimating the the rate of loss of bidirectional

promoters

The hypothesis that bidirectional promoters will reduce in number follow-

ing successive rounds of WGD is based on the observation that most genes

rediploidise following WGD (Kikuta et al., 2007). We can use the relative

numbers of bidirectional promoters across the vertebrate lineage to estimate

both the rate of loss of bidirectional promoters, and the rediploidisation rate

of the genes within them.

Immediately following WGD, each bidirectional promoter will exist in two
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Table 4.3: Top 5 GO Ontology Biological Process terms enriched in bidirec-
tional promoters in mouse, zebrafish and fly.
GOBPID OddsRatio Count Size Term P-value

Mouse

GO:0006396 2.39 332 559 RNA processing 6.84E-19
GO:0034660 2.64 234 376 ncRNA MP 8.54E-16
GO:0022613 2.73 189 299 RNPC biogenesis 3.63E-13
GO:0034470 2.69 172 273 ncRNA processing 1.63E-11
GO:0016071 2.23 228 391 mRNA MP 1.34E-10

Zebrafsh

GO:0006396 3.04 70 337 RNA processing 1.53E-09
GO:0034470 4.12 42 157 ncRNA processing 1.84E-08
GO:0034660 3.49 48 204 ncRNA MP 8.73E-08
GO:0042254 3.74 39 156 ribosome biogenesis 9.57E-07
GO:0022613 3.09 45 209 RNPC biogenesis 7.78E-06

Fly

GO:0044260 2.12 1414 2712 cell. macromol. MP 3.39E-52
GO:0009987 2.10 2496 5493 cell. process 1.59E-45
GO:0044237 1.82 1696 3523 cell. MP 1.32E-35
GO:0010467 1.99 904 1692 gene expression 1.61E-32
GO:0034641 1.88 1117 2178 cell. nitrogen MP 4.10E-32
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WGD 

OR OR 

a. b. 

c. d. e. 

Figure 4.9: A single ancestral bidirectional promoter (a) is duplicated fol-
lowing a WGD event (b). If neither gene rediploidises, both bidirectional
promoters are preserved (c), if one gene rediploidises, 1 bidirectional pro-
moter is preserved, and if both genes rediploidise (e), there is a probability
of 1

2 that one bidirectional promoter remains. f. The observed number of
bidirectional promoters (bp) after each WGD, vs the number expected un-
der our model (line).
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copies in the new, tetrapoid genome (Figure 4.9b). After a period of time,

each of the two genes comprising the original bidirectional promoter may have

rediploidised. If neither gene rediploidises, then 2 bidirectional promoters

will remain after WGD, as shown in panel c. If one gene rediploidises, then

1 bidirectional promoter will remain (Panel d). If both genes rediploidise,

there is a 1/2 chance of a bidirectional promoter remaining, which is the

probability that the remaining copies of both genes are at the same locus

(Panel e).

Given a reploidisation rate R, the probabilities of 0, 1 or 2 genes rediploi-

dising are (1 � R)2, 2R(1 � R) and R2 respectively. Combining this with

the expected number of bidirectional promoters remaining after each possi-

ble event (2, 1 or 1
2), the ratio of bidirectional promoters remaining (or rate

of loss, L) as a function of the rediploidisation rate (R) will be:

L = 2(1�R)2 + 2(1�R)R +
R2

2

which simplifies to:

L =
R2

2
� 2R + 2 (4.1)

If this hypothesis is correct, and the ration of bidirectional promoters lost

at each WGD is constant, then the number of bidirectional promoters in each

generation will follow a geometric distribution with the equation:

n = a⇥ LWGD (4.2)

where n is the number of bidirectional promoters, a is the ancestral num-

ber and L is the rate of loss. Using the numbers from Table 4.2, L = 0.66.

The curve was fitted assuming the number of bidirectional promoters in Am-

phioxus to be the ancestral number and using the non-linear least squares

(nls) optimisation function in R. The resulting fit is shown in Figure 4.10b.

With L equal to 0.66, we estimate R to be 0.85 from the quadratic

equation above. This means that most genes in bidirectional promoters

rediploidise, which is in line with previous studies reporting that housekeep-
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Figure 4.10: Number of bidirectional promoters as a function of WGD since
the vertebrate LCA. The line is equation 4.2 fitted to the three points. r is
the rediploidisation rate inferred from this analysis from equation 4.1
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ing genes are more likely to undergo rediploidisation following WGD (Kikuta

et al., 2007). The comparison of this estimate with our observed values shows

a good fit with the observed data (Figure 4.9f), supporting the hypothesis

that amphioxus is representative of the ancestral state.

4.3.9 Promoter Evolution

Following the set of genes at bidirectional promoters through vertebrate evo-

lution also allows us to trace the changing architecture of housekeeping pro-

moters. Neither zebrafish nor mouse promoters show the same precise nu-

cleosome positioning signal or constrains on bidirectional promoter width

that is seen in Amphioxus, even though within each genome the promoter

structure is very consistent (Figure 4.11).

Zebrafish bidirectional promoters (Figure 4.11b) show a strong TA en-

richment between bidirectional promoters, for those pairs of promoters more

than a nucleosome width apart. This correlates with nucleosome binding, ac-

cording to ATAC-seq data. There is also a slight CG band at the promoter

itself. Mouse bidirectional promoters (Figure 4.11a) show no TA enrichment,

but have a broad CG band extending into the transcript of each promoter.

Drosophila melanogaster bidirectional promoters (Figure 4.11c) have a sim-

ilar TA enrichment between promoters, but also have a second TA band

downstream of the dominant TSS. All promoters show disordered, rather

than in-phase, nucleosomes between bidirectional promoters.

This suggests that the sequence features of this subset of chordate pro-

moters are highly malleable and undergo concerted evolution, which is coun-

terintuitive given that the transcriptional machinery is almost unchanged

across this clade. These bidirectional promoters also share the same gene

ontology enrichment as those in amphioxus, providing further evidence that

these distinct sets of bidirectional promoters represent a single set of genes

through evolution.
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Figure 4.11: Bidirectional Promoters in Model Organisms a. Smoothed TA
and CG dinucleotide densities and nucleosome positioning signal from Nu-
cleoATAC bidirectional promoters in mice. b. As a. but for zebrafish. c.
Smoothed TA and CG dinucleotide densities and nucleosome position for
bidirectional promoters in Drosophila melanogaster. MN H is high concen-
tration MNase digestion, MN L is low concentration MNase digestion, data
from (Gehrke et al., 2015) 109



4.4 Discussion

I used CAGE data to show that promoters in Amphioxus conform to two

distinct structures, which show both lineage-specific innovation and pan-

Metazoan features. Ubiquitously expressed, or “housekeeping”, promoters

have a divergent architecture, and are frequently found in back-to-back pair-

ings, which appears to be the ancestral state. These bidirectional promoters

also exhibit tight control of nucleosome positioning between each TSS, al-

though the mechanism underlying this novel arrangement remains unclear.

Developmental and tissue-specific promoters in amphioxus have highly con-

served features, such as a narrow range of initiation at a subset of promoters

and TATA-dependent transcription. These features are not particular to cer-

tain tissues; the breadth of expression matters more than the exact tissue

in which a promoter is active. These results highlight the underappreciated

role of promoters in gene regulation.

Manual inspection of the data shows that the CAGE signal at promoters

is robust, despite the low number of uniquely aligned reads. This is likely due

to the di�culty in adapting protocols to a novel organism, possible resulting

in low RNA stability, and equally the relatively poor quality of the genome

when compared to reference genomes, such as those of zebrafish and mouse.

This experiment demonstrates, for the first time using CAGE, the e↵ect

of YY1 on transcription initiation, and suggests an expanded role for YY1.

Given its ubiquity in our sample, it could be considered a core promoter

element with similar importance to other well-characterised motifs like the

TATA box. Its unique distribution just downstream of the dominant peak of

transcription initiation hints at a mechanistic function in restricting initiation

to favourable regions, particularly as this associates with short first exons

where precise initiation is required for correct RNA processing.

Nucleosome positioning at most promoters in amphioxus is stable relative

to the dominant TSS, as expected from studies in other organisms. This hap-

pens both in the presence and absence of clear nucleosome positioning signals

in the DNA, and the mechanisms by which clear +1 nucleosome positioning is

established, in the absence of both nucleosome positioning signal or a TATA
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box, is worth further investigation. Bands of TA enrichment upstream of

ubiquitous promoters appear to function as a nucleosome positioning signal

distinct from the familiar periodic enrichment bands.

At bidirectional promoters, a di↵erent pattern is observed. The ‘phased’

nucleosome positions at closely spaced back-to-back promoters are a novel

observation. Bidirectional promoters in mouse, zebrafish and fly appear to

tolerate either a nucleosome free region, or a region of disordered nucleo-

somes, quite happily. Promoter sequences in these organisms do not show

such clear evidence of nucleosome positioning signals, so it is possible that

precise control of nucleosome position is of greater importance to amphioxus,

and therefore disordered nucleosome at promoters are not tolerated as well.

Bidirectional promoters also provide an interesting set of genes to study

promoter evolution, since there is strong evidence from both GO ontology and

whole genome duplication events that bidirectional promoters in all species

come from a single set of ancestral promoters. Gene promoters are intrinsi-

cally bidirectional (Andersson et al., 2015a), and it is possible that transcrip-

tion on the reverse strand encouraged evolutionary innovation by providing

a ready-made promoter for any gene translocating to the correct position,

or for genes to arise de novo. On the other hand, this hypothesis does not

explain why more bidirectional promoters have not arisen since the base of

the vertebrate lineage.

These results point to a high level of malleability in the structure of

promoters in metazoa. Housekeeping genes, as shown elegantly by the con-

served set of bidirectional promoters, underwent concerted evolution in sev-

eral clades dispute well-conserved transcriptional machinery, and are quite

di↵erent in all species examined. Further research is needed to elucidate the

mechanisms underlying these changes, and their consequences (if any) for

gene regulation.
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4.5 Methods

4.5.1 CAGE-seq

RNA from 32-cell, 8hpf and 15hpf developmental stages and female gonads,

muscle, neural tube and hepatic diverticulum from adult individuals were

obtained as described above. CAGE was performed on these samples using

the nAnT-iCAGE (non-amplifying non-tagging Illumina CAGE) protocol, as

described in Murata et al. (2014) , with 7 micrograms of RNA per sample and

a single replicate for each condition. Following library preparation, samples

were sequenced in a single multiplex lane on a HiSeq 2500, with 50bp read

length.

Mouse CAGE data was taken from FANTOM5 (FANTOM Consortium

and the RIKEN PMI and CLST (DGT) et al., 2014). The samples used were

whole body (E11) and heart, liver, thymus and uterus (E14). These were

obtained as bed coordinates from the FANTOM data repository, through

CAGEr (Haberle et al., 2015). Zebrafish CAGE was obtained from Nepal

et al. (2013), comprising 12 stages of a developmental timecourse from unfer-

tilised egg to Prim20. This was obtained through the ‘ZebrafishDevelopmen-

talCAGE’ R package available at http://promshift.genereg.net/CAGEr/. Drosophila

melanoagester CAGE was obtained from ModEncode (Celniker et al., 2009),

also through CAGEr.

4.5.2 CAGE alignment

CAGE tags were aligned to the Amphioxus genome using Bowtie v. 1.1.2

(Langmead et al., 2009) with a seed length of 25, allowing 2 mismatches in

the seed region and discarding multi-mapping reads. The following mapping

e�ciencies were obtained:

The resulting alignments were processed to remove leading G nucleotides

where this did not map to the reference. The tag counts at each nucleotide

was normalised to follow a power-law distribution (Balwierz et al., 2009).

All samples except for muscle passed quality control, showing the expected

power-law distribution of tag counts and bimodal distribution of cluster
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Table 4.4: Read count and alignment e�ciency for CAGE samples
sample #reads #aligned #!aligned #multimappers

Fem Gonads 24,458,864 9,762,213 11,133,520 3,563,131
(39.91%) (45.52%) (14.57%)

Embryo @8 h 27,837,581 9,341,470 9,932,848 8,563,263
(33.56%) (35.68%) (30.76%)

Embryo @15 h 20,280,947 7,760,395 6,862,480 5,658,072
(38.26%) (33.84%) (27.90%)

Embryo @36 h 7,780,414 2,726,242 2,394,206 2,659,966
(35.04%) (30.77%) (34.19%)

Hepatic 17,684,847 5,447,194 5,755,835 6,481,818
(30.80%) (32.55%) (36.65%)

Muscle 1,348,544 278,466 309,141 760,937
(20.65%) (22.92%) (56.43%)

Neural Tube 5,087,538 2,027,998 1,575,573 1,483,967
(39.86%) (30.97%) (29.17%)

widths 4.1. The muscle sample was dominated by width 1 TCs, which are

not indicative of biologically meaningful promoters, and so was excluded from

further analysis.

4.5.3 CAGE Tag Clustering

Single base-pair CAGE transcription start sites (CTSSs) were clustered into

tag clusters (TCs) using the distance-based clustering in CAGEr (Haberle

et al., 2015), taking the 10th and 90th of percentile of tags to improve ro-

bustness. Each TC was also assigned a dominant CTSS, with the highest

expression.

TCs were further clustered across cell types to produce comparable pro-

moter regions. TCs without support greater than 1 TPM in at least one cell

type were excluded from further analysis.

CAGE transcription start sites (CTSSs) map initiation at single base-pair

resolution. CTSSs commonly occur in clusters which reflect the activity of a

single gene promoter and give rise to functionally equivalent transcripts 4.1.

Therefore, nearby individual CTSSs were combined using the distance-based
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clustering method in CAGEr (Haberle et al., 2015) to produce tag clusters

(TCs), which are summarise expression at individual promoters. To reduce

sensitivity to outlying CTSSs and improve robustness, the width of each TC

was calculated by discarding the first 10% of CAGE signal, and the last 10%.

This is referred to as the Inter-quantile (IQ) range (Haberle et al., 2015). TCs

were also assigned a dominant CTSS, which is the individual CTSS with the

highest expression level. TCs with expression of less than 1 tag per million

(TPM) were filtered out.

4.5.4 Expression clustering

The consensus tag clusters were further clustered by expression patterns us-

ing a self-organising map (SOM) (Wehrens et al., 2007), using a 5x5 ar-

rangement. The SOM produced both defined clusters and a topographic

relationship between clusters (Figure 2).

The topographic relationship of clusters in the SOM allows us to group

similar clusters together to produce sets of consensus tag clusters (concep-

tually, sets of promoters) which are expressed in similar tissues during the

course of development. The groups which emerged most clearly were “Em-

bryonic”, “Neural Tube”, “Hepatic”, “Female Gonads” and “Ubiquitous”

(see Figure 4.2).

4.5.5 Feature enrichment and visualisation

We investigated the relative presence and enrichment of the following fea-

tures: TATA box, YY1 motif, GC and AT content, SS and WW dinu-

cleotides, first exons and nucleosome positioning signal. Heatmaps were

plotted for visualisation by scanning either for exact dinucleotide matches

or PWM matches at 80maximum score. PWMs for TATA and YY1 were

taken from the JASPAR vertebrate collection (Mathelier et al., 2016). The

binary matrix resulting from sequence matches (either PWM-based or exact)

was then smoothed and down-sized using a binned Gaussian kernel density

approach. Nucleosome positioning signal was winsorised to the 99th per-

centile, and smoothed using a Gaussian blur. Promoters were sorted by IQ
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width, unless otherwise specified. All plots were made using R/Bioconductor,

specifically with my heatmaps package, which is included in Bioconductor 3.5

(Huber et al., 2015).

4.5.6 ATAC-seq Data

The amphioxus ATAC using the ATAC- seq data from this paper, and ATAC-

seq data for mouse and zebrafish were taken from (Gehrke et al., 2015),

using the limb and whole-body 24hpf respectively. Additional datasets were

aligned using Bowtie (25bp seed region allowing 2 mismatches). To calculate

nucleosome positioning from aligned ATAC-seq data, we used NucleoATAC

v0.3.2 (Schep et al., 2015) run using default parameters.

4.5.7 Gene Annotation and GO Enrichment

Gene names were assigned to CAGE peaks based on the transcriptome as-

sembly. Genes were assigned to CAGE peaks if they were within 1kb of a

TSS. Gene ontology enrichment was performed using the human gene an-

notations of the amphioxus transcriptome assembly, through the GOstats

(Falcon and Gentleman, 2007) and human genome annotation packages in

Bioconductor. Gene annotations for other species used the same criteria,

using Ensembl 67 gene annotation (Aken et al., 2016). GO enrichment was

calculated from species-specific annotation in the bioconductor annotation

packages (Carlson, 2017).
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Chapter 5

Discussion

In this thesis I have investigated the role of both promoters and enhancers

in gene regulation: in particular, the di↵erences in gene regulation between

developmental genes and housekeeping genes. In Chapter 2, I showed that

enhancers work together in large arrays to direct the expression of their tar-

gets, and that these targets are very strongly enriched in developmental and

signalling genes. I also presented evidence that physical contacts important

for enhancer regulation, but may be insu�cient to explain the specificity

of enhancer targeting alone. In Chapter 3, I presented an R/Bioconductor

package ‘heatmaps’, written with the aim of visualising spatial associations

between DNA sequence and experimental assays. In Chapter 4, I used this

package, alongside other analyses, to show that CAGE-defined promoters

in the European Amphioxus have at least two major architectures, the first

corresponding to tissue-specific, or developmentally regulated genes, and the

second to ubiquitously expressed housekeeping genes. I also identified a set of

bidirectional promoters which appear to be conserved throughout vertebrate

evolution.
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5.1 Developmental Promoters in Amphioxus

are Defined at the Sequence Level

I have identified major di↵erences in promoter architecture between genes

that are regulated specifically during development, and genes with more sta-

ble expression. These housekeeping promoters are defined by a TA-rich band

upstream of the promoter, which marks the -1 nucleosome, and two periodic

GC-rich bands which flank the +1 nucleosome. Both of these features may

have consequences for nucleosome positioning, which is worth investigating

further. It is also not clear what role, if any, this precise positioning of nu-

cleosomes plays in gene regulation, although it appears that configurations

of back-to-back genes where this nucleosome is absent are disfavoured.

Developmentally regulated promoters contain neither of these features,

but have a band of CG enrichment at the dominant TSS and a significant

minority of TATA-containing promoters. In addition, very few developmen-

tally regulated promoters are in closely-spaced bidirectional arrangements.

Intuitively, this relate to the constitutive expression (i.e. largely unregulated)

of housekeeping genes, since there is little space for transcription factors to

bind. Additionally, enhancers physically contacting such promoters could be

assumed to contact both promoters in the bidirectional pair, which would

hinder precise control of gene expression. Looking ahead, bioinformatics ap-

proaches are unlikely to resolve these questions entirely, and I believe that,

were the European Amphioxus to one day become a major laboratory model

organism, they would be very much worth further investigation.

5.2 Developmentally regulated genes in hu-

mans respond preferentially to enhancers

In humans, developmental genes show a much greater sensitivity to enhancers

compared with housekeeping genes, based on a model of enhancers working

together to produce complex expression patterns across multiple tissues. The

genes identified are very strongly enriched for developmental processes, tran-
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scription factors and cell-surface receptors involved in signalling. These genes

are more likely to overlap CpG islands, and when they do overlap CpG is-

lands, the islands are longer, indicating that the promoters of genes under

long-range regulation are meaningfully di↵erent to those of other genes.

However, these results are far from conclusive. There are many unex-

plained aspects to this model, such as how gene regulation can work in

TADs containing many target genes. The model is also quite susceptible

to noise (as with any statistical model), and so there exist a large number of

indeterminate cases where there is neither conclusive evidence for or against

long-range regulation.

The role of DNA-DNA interactions or enhancer looping is also unclear.

From a purely physical point of view, complex loci containing many genes

present a challenge to looping-based models of promoter-enhancer interac-

tions. Wit many TADs containing hundreds of enhancers, it would be topo-

logically di�cult to arrange each enhancer to contact a di↵erent promoter

using discrete loops in every case. On the other, promoters do show increased

contact with their enhancers at highly expressed genes, and it stands to rea-

son that promoter-enhancer loops are necessary for enhancer regulation, if

not entirely su�cient.

I would conjecture that a mechanistic model whereby housekeeping genes

are, at some level, immune to the regulatory e↵ects of enhancers resolves

many of these problems. Enhancers within a TAD would be free to contact

any genes, but would have an e↵ect only at a subset of these genes. These

other genes would be controlled by transcription factors binding directly

at the promoter, or constitutively expressed. This is in line with experi-

mental observations made using self-transcribing enhancer assays. Zabidi

et al. (2015) showed a markedly di↵erent response of several D. melanogaster

promoters to regulation by enhancers, and that core promoter architecture

di↵ered between the two groups.
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5.3 Revisiting the GRB model of gene regu-

lation

The di↵erential response of developmental and housekeeping genes was pro-

posed alongside the discovery of Genomic Regulatory Blocks (GRBs), based

on evidence from conserved non-coding elements (CNEs) (Kikuta et al., 2007;

Akalin et al., 2009; Harmston et al., 2017). I believe that, when taken to-

gether, the ideas presented in this thesis make up significant evidence in

favour of this model of gene regulation. Di↵erences in promoter architec-

ture and di↵erential response to enhancers by certain classes of genes could

be linked, because it is di↵erences in promoter sequence which govern the

response of specific genes to enhancers. In turn, the e↵ect of enhancers is

limited by strong TAD boundaries.

Underlying these observations, there is a simple but fundamental ratio-

nale for why developmental genes require di↵erent regulation: their expres-

sion patterns are much more varied and complex. Many key developmental

transcription factors and signalling pathways are expressed across diverse tis-

sues, performing di↵erent roles within each. If the total expression patterns

for each gene are determined by a mosaic of individual enhancers, which

may be bound by many di↵erent factors, this would provide modular, flex-

ible control of gene expression, as suggested by Lorberbaum et al. (2016),

and this behaviour may shed light on the link between enhancer clusters and

developmental genes (Whyte et al., 2013; Parker et al., 2013).

However, mechanistically there are still many gaps in this picture. Pro-

moter architecture is, in general, not well understood at a quantitative level

while many promoter features have been described and show significant as-

sociations with patterns of regulation, these cannot in general be translated

into predictive tools. If these features can be understood at a deeper level,

this might provide a starting point for the elucidation of the mechanisms

driving this behaviour. There is even less understanding of the biology of

enhancers, and the level of conservation at enhancers remains completely

unexplained (Harmston et al., 2013).
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5.4 Promoters have characteristic features which

change over time

The bidirectional promoters I identified in Chapter provide a unique opportu-

nity to study the evolution of a single set of promoters through the vertebrate

lineage. While it is possible to trace the evolution of an individual gene pro-

moter by comparing coding sequences using BLAST or a similar program, it

is hard to derive promoter features from a single example: they follow general

patterns rather than specific rules in most cases. The co-ordinated changes in

nucleotide frequencies throughout this set of promoters appear to represent

concerted evolution at multiple loci. However, despite these changes, the

core promoter machinery, and the fundamental mechanisms of gene regula-

tion, have not undergone significant divergence across the vertebrate lineage,

which raises an interesting question as to why such a divergence has occurred,

and how such changes are tolerated by the core promoter machinery.

Intuitively, any changes at the core promoters of housekeeping genes

would be deleterious, since mis-expression of these genes would likely cause

dis-regulation of vital cellular process. Secondly, how is function conserved

at gene promoters when the sequence features are not? It is possible that

corresponding changes in promoter machinery bu↵er these changes slowly

over time. For example, the nucleosome positioning which appears to be

very important at Amphioxus promoters may be more relaxed in mammals,

or the function carried out by the sequence to position nucleosomes may

have been taken over by DNA-binding proteins. Alternatively, the function

could be conserved in the sequence in a very similar manner, but not one

that is understandable with current tools. This is analogous to conservation

of small RNAs: the secondary structure can be conserved between elements

even when the sequences diverge significantly (Gruber et al., 2008).
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5.5 Understanding biological sequence

Di↵erences in promoter structure are better captured by visualising nu-

cleotide and dinucleotide frequencies than by analysing over-represented mo-

tifs. This may be caused in part due to the di�culty of de novo motif

discovery; on the other hand, few motifs have been discovered which func-

tion as core promoter elements in vertebrates, and none of them are essential

for all functional gene promoters. This represents a significant gap in our

understanding of promoters, and possibly our understanding of biological

sequences in general, since our current tools are not capable of elucidating

the minimal requirements to form a promoter. Alternatively, there may be

no unique factors determining the capability of DNA sequence to act as a

promoter, and that transcription at most promoters is driven by a range of

cell-type specific transcription factors.

Recent advances in machine learning have opened up new possibilities for

biological sequence analysis. Tools such as artificial neural networks are able

to model complex spatial patterns, such as those found through the plotting

of heatmaps in Chapter 4. This allows for the automatic detection of patterns

that were previously di�cult to quantify, which currently require visual in-

spection to detect. The ability to model more complex, and potentially more

biologically relevant, sequence patterns may lead to major advances with the

next-generation of sequence analysis tools.
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a toolkit to summarize, annotate and visualize genomic intervals. Bioinformat-
ics, 31(7):1127–1129, Apr. 2015.

B. L. Aken, S. Ayling, D. Barrell, L. Clarke, V. Curwen, S. Fairley, J. Fer-
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H. Pagès, A. Reyes, P. Shannon, G. K. Smyth, D. Tenenbaum, L. Waldron, and
M. Morgan. Orchestrating high-throughput genomic analysis with bioconductor.
Nat. Methods, 12(2):115–121, Feb. 2015.

C. B. Hug, A. G. Grimaldi, K. Kruse, and J. M. Vaquerizas. Chromatin archi-
tecture emerges during zygotic genome activation independent of transcription.
Cell, 169(2):216–228.e19, Apr. 2017.

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. J.
Comput. Graph. Stat., 5(3):299–314, Sept. 1996.

G. R. Ilsley, J. Fisher, R. Apweiler, A. H. De Pace, and N. M. Luscombe. Cellular
resolution models for even skipped regulation in the entire drosophila embryo.
Elife, 2:e00522, Aug. 2013.

K. Jabbari and G. Bernardi. Cytosine methylation and CpG, TpG (CpA) and
TpA frequencies. Gene, 333:143–149, May 2004.
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V. Matys, E. Fricke, R. Ge↵ers, E. Gößling, M. Haubrock, R. Hehl, K. Hornischer,
D. Karas, A. E. Kel, O. V. Kel-Margoulis, and Others. TRANSFAC R�: tran-
scriptional regulation, from patterns to profiles. Nucleic Acids Res., 31(1):374–
378, 2003.

132



M. T. Maurano, R. Humbert, E. Rynes, R. E. Thurman, E. Haugen, H. Wang,
A. P. Reynolds, R. Sandstrom, H. Qu, J. Brody, A. Shafer, F. Neri, K. Lee,
T. Kutyavin, S. Stehling-Sun, A. K. Johnson, T. K. Canfield, E. Giste,
M. Diegel, D. Bates, R. S. Hansen, S. Neph, P. J. Sabo, S. Heimfeld,
A. Raubitschek, S. Ziegler, C. Cotsapas, N. Sotoodehnia, I. Glass, S. R. Sunyaev,
R. Kaul, and J. A. Stamatoyannopoulos. Systematic localization of common
disease-associated variation in regulatory DNA. Science, 337(6099):1190–1195,
Sept. 2012.

M. Merkenschlager and E. P. Nora. CTCF and cohesin in genome folding and
transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet., Apr. 2016.

B. Mifsud, F. Tavares-Cadete, A. N. Young, R. Sugar, S. Schoenfelder, L. Ferreira,
S. W. Wingett, S. Andrews, W. Grey, P. A. Ewels, B. Herman, S. Happe,
A. Higgs, E. LeProust, G. A. Follows, P. Fraser, N. M. Luscombe, and C. S.
Osborne. Mapping long-range promoter contacts in human cells with high-
resolution capture Hi-C. Nat. Genet., 47(6):598–606, June 2015.

I. Miguel-Escalada, L. Pasquali, and J. Ferrer. Transcriptional enhancers: func-
tional insights and role in human disease. Curr. Opin. Genet. Dev., 33:71–76,
Aug. 2015.

K. Monahan, N. D. Rudnick, P. D. Kehayova, F. Pauli, K. M. Newberry, R. M.
Myers, and T. Maniatis. Role of CCCTC binding factor (CTCF) and cohesin in
the generation of single-cell diversity of protocadherin-↵ gene expression. Proc.
Natl. Acad. Sci. U. S. A., 109(23):9125–9130, June 2012.

T. Montavon, N. Soshnikova, B. Mascrez, E. Joye, L. Thevenet, E. Splinter,
W. de Laat, F. Spitz, and D. Duboule. A regulatory archipelago controls hox
genes transcription in digits. Cell, 147(5):1132–1145, Nov. 2011.

M. Murata, H. Nishiyori-Sueki, M. Kojima-Ishiyama, P. Carninci, Y. Hayashizaki,
and M. Itoh. Detecting expressed genes using CAGE. In E. Miyamoto-Sato,
H. Ohashi, H. Sasaki, J.-I. Nishikawa, and H. Yanagawa, editors, Transcription
Factor Regulatory Networks: Methods and Protocols, pages 67–85. Springer New
York, New York, NY, 2014.

M. Murtha, Z. Tokcaer-Keskin, Z. Tang, F. Strino, X. Chen, Y. Wang, X. Xi,
C. Basilico, S. Brown, R. Bonneau, Y. Kluger, and L. Dailey. FIREWACh:
high-throughput functional detection of transcriptional regulatory modules in
mammalian cells. Nat. Methods, 11(5):559–565, May 2014.

C. Nepal, Y. Hadzhiev, C. Previti, V. Haberle, N. Li, H. Takahashi, A. M. M.
Suzuki, Y. Sheng, R. F. Abdelhamid, S. Anand, J. Gehrig, A. Akalin, C. E. M.
Kockx, A. A. J. van der Sloot, W. F. J. van Ijcken, O. Armant, S. Rastegar,
C. Watson, U. Strähle, E. Stupka, P. Carninci, B. Lenhard, and F. Müller.

133



Dynamic regulation of the transcription initiation landscape at single nucleotide
resolution during vertebrate embryogenesis. Genome Res., 23(11):1938–1950,
Nov. 2013.

K. Nishida, M. C. Frith, and K. Nakai. Pseudocounts for transcription factor
binding sites. Nucleic Acids Res., 37(3):939–944, Feb. 2009.

P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz. The structural basis of
ribosome activity in peptide bond synthesis. Science, 289(5481):920–930, Aug.
2000.

T. Nozaki, N. Yachie, R. Ogawa, A. Kratz, R. Saito, and M. Tomita. Tight
associations between transcription promoter type and epigenetic variation in
histone positioning and modification. BMC Genomics, 12:416, Aug. 2011.

T. O’Connor, M. Bodén, and T. L. Bailey. CisMapper: predicting regulatory
interactions from transcription factor ChIP-seq data. Nucleic Acids Res., Oct.
2016.

U. Ohler, G.-C. Liao, H. Niemann, and G. M. Rubin. Computational anal-
ysis of core promoters in the drosophila genome. Genome Biol., 3(12):
RESEARCH0087, Dec. 2002.

H. Pagès, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String objects
representing biological sequences, and matching algorithms, 2017.

S. C. J. Parker, M. L. Stitzel, D. L. Taylor, J. M. Orozco, M. R. Erdos, J. A.
Akiyama, K. L. van Bueren, P. S. Chines, N. Narisu, NISC Comparative Se-
quencing Program, B. L. Black, A. Visel, L. A. Pennacchio, and F. S. Collins.
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor
human disease risk variants. Proceedings of the National Academy of Sciences,
110(44):17921–17926, Oct. 2013.

T. J. Parry, J. W. M. Theisen, J.-Y. Hsu, Y.-L. Wang, D. L. Corcoran, M. Eustice,
U. Ohler, and J. T. Kadonaga. The TCT motif, a key component of an RNA
polymerase II transcription system for the translational machinery. Genes Dev.,
24(18):2013–2018, Sept. 2010.

G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber. EBImage—an R package
for image processing with applications to cellular phenotypes. Bioinformatics,
26(7):979–981, Apr. 2010.

V. Perissi, K. Jepsen, C. K. Glass, and M. G. Rosenfeld. Deconstructing repression:
evolving models of co-repressor action. Nat. Rev. Genet., 11(2):109–123, Feb.
2010.

134



J. E. Phillips-Cremins, M. E. G. Sauria, A. Sanyal, T. I. Gerasimova, B. R. La-
joie, J. S. K. Bell, C.-T. Ong, T. A. Hookway, C. Guo, Y. Sun, M. J. Bland,
W. Wagsta↵, S. Dalton, T. C. McDevitt, R. Sen, J. Dekker, J. Taylor, and V. G.
Corces. Architectural protein subclasses shape 3D organization of genomes dur-
ing lineage commitment. Cell, 153(6):1281–1295, June 2013.

J. L. Platt, R. Salama, J. Smythies, H. Choudhry, J. O. J. Davies, J. R. Hughes,
P. J. Ratcli↵e, and D. R. Mole. Capture-C reveals preformed chromatin inter-
actions between HIF-binding sites and distant promoters. EMBO Rep., page
e201642198, 2016.

C. Plessy, G. Pascarella, N. Bertin, A. Akalin, C. Carrieri, A. Vassalli, D. Lazarevic,
J. Severin, C. Vlachouli, R. Simone, G. J. Faulkner, J. Kawai, C. O. Daub,
S. Zucchelli, Y. Hayashizaki, P. Mombaerts, B. Lenhard, S. Gustincich, and
P. Carninci. Promoter architecture of mouse olfactory receptor genes. Genome
Res., 22(3):486–497, Mar. 2012.

J. Ponjavic, B. Lenhard, C. Kai, J. Kawai, P. Carninci, Y. Hayashizaki, and
A. Sandelin. Transcriptional and structural impact of TATA-initiation site spac-
ing in mammalian core promoters. Genome Biol., 7(8):1–18, 2006.

S. Pott and J. D. Lieb. What are super-enhancers? Nat. Genet., 47(1):ng.3167,
Dec. 2014.

J. Pratap, A. Javed, L. R. Languino, A. J. van Wijnen, J. L. Stein, G. S. Stein,
and J. B. Lian. The runx2 osteogenic transcription factor regulates matrix
metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion.
Mol. Cell. Biol., 25(19):8581–8591, Oct. 2005.

E. A. Rach, D. R. Winter, A. M. Benjamin, D. L. Corcoran, T. Ni, J. Zhu, and
U. Ohler. Transcription initiation patterns indicate divergent strategies for gene
regulation at the chromatin level. PLoS Genet., 7(1):e1001274, Jan. 2011.

A. Ragvin, E. Moro, D. Fredman, P. Navratilova, Ø. Drivenes, P. G. Engström,
M. E. Alonso, E. de la Calle Mustienes, J. L. Gómez Skarmeta, M. J. Tavares,
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S. A. Rodŕıguez-Segúı, C. Shaw-Smith, C. H.-H. Cho, H. L. Allen, J. A.
Houghton, C. L. Roth, R. Chen, K. Hussain, P. Marsh, L. Vallier, A. Murray,
International Pancreatic Agenesis Consortium, S. Ellard, J. Ferrer, and A. T.
Hattersley. Recessive mutations in a distal PTF1A enhancer cause isolated
pancreatic agenesis. Nat. Genet., 46(1):61–64, Jan. 2014.

R. Wehrens, L. M. C. Buydens, and Others. Self-and super-organizing maps in r:
the kohonen package. J. Stat. Softw., 21(5):1–19, 2007.

W. Wei, V. Pelechano, A. I. Järvelin, and L. M. Steinmetz. Functional conse-
quences of bidirectional promoters. Trends Genet., 27(7):267–276, July 2011.

W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, C. Y. Lin, M. H. Kagey,
P. B. Rahl, T. I. Lee, and R. A. Young. Master transcription factors and
mediator establish super-enhancers at key cell identity genes. Cell, 153(2):307–
319, Apr. 2013.

J. Widom. Toward a unified model of chromatin folding. Annu. Rev. Biophys.
Biophys. Chem., 18:365–395, 1989.

F. H. Wilkinson, K. Park, and M. L. Atchison. Polycomb recruitment to DNA
in vivo by the YY1 REPO domain. Proc. Natl. Acad. Sci. U. S. A., 103(51):
19296–19301, Dec. 2006.

139



A. Woolfe, M. Goodson, D. K. Goode, P. Snell, G. K. McEwen, T. Vavouri, S. F.
Smith, P. North, H. Callaway, K. Kelly, K. Walter, I. Abnizova, W. Gilks,
Y. J. K. Edwards, J. E. Cooke, and G. Elgar. Highly conserved non-coding
sequences are associated with vertebrate development. PLoS Biol., 3(1):e7, Jan.
2005.

H. Wu, B. Ca↵o, H. A. Ja↵ee, R. A. Irizarry, and A. P. Feinberg. Redefining CpG
islands using hidden markov models. Biostatistics, 11(3):499–514, July 2010.

Q. Wu and T. Maniatis. A striking organization of a large family of human neural
cadherin-like cell adhesion genes. Cell, 97(6):779–790, June 1999.

H. Xi, Y. Yu, Y. Fu, J. Foley, A. Halees, and Z. Weng. Analysis of overrepresented
motifs in human core promoters reveals dual regulatory roles of YY1. Genome
Res., 17(6):798–806, June 2007.

Z. Xu, W. Wei, J. Gagneur, F. Perocchi, S. Clauder-Münster, J. Camblong, E. Guf-
fanti, F. Stutz, W. Huber, and L. M. Steinmetz. Bidirectional promoters gen-
erate pervasive transcription in yeast. Nature, 457(7232):1033–1037, Feb. 2009.

R. Yamashita, Y. Suzuki, S. Sugano, and K. Nakai. Genome-wide analysis reveals
strong correlation between CpG islands with nearby transcription start sites of
genes and their tissue specificity. Gene, 350(2):129–136, May 2005.

C. Yang, E. Bolotin, T. Jiang, F. M. Sladek, and E. Martinez. Prevalence of the
initiator over the TATA box in human and yeast genes and identification of
DNA motifs enriched in human TATA-less core promoters. Gene, 389(1):52–65,
Mar. 2007.

R. S. Young, Y. Kumar, W. A. Bickmore, and M. S. Taylor. Bidirectional tran-
scription marks accessible chromatin and is not specific to enhancers. Jan. 2016.

M. A. Zabidi, C. D. Arnold, K. Schernhuber, M. Pagani, M. Rath, O. Frank,
and A. Stark. Enhancer-core-promoter specificity separates developmental and
housekeeping gene regulation. Nature, 518(7540):556–559, Feb. 2015.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,
C. Nusbaum, R. M. Myers, M. Brown, W. Li, and X. S. Liu. Model-based
analysis of ChIP-Seq (MACS). Genome Biol., 9(9):R137, Sept. 2008.
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