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Abstract	 	 	 	 	 	 	 	 	 	 	 				.	

	

Diabetes	is	a	group	of	metabolic	diseases	that	affects	millions	of	people.	Despite	this,	little	is	

known	 about	 the	 underlying	 molecular	 mechanisms.	 	 Diabetes	 is	 characterised	 by	 an	

impaired	 blood-glucose	 regulation	 that	 can	 lead	 to	 severe	 consequences,	 such	 as	 kidney	

failure,	and	premature	death.	Pancreatic	 islets	are	one	of	the	major	tissues	to	understand	

diabetes	 pathogenesis	 as	 they	 produce	 insulin,	 a	 hormone	 central	 for	 blood-glucose	

homeostasis.	 Our	 previous	 work	 showed	 that	 studying	 epigenomic	 regulation	 is	 key	 to	

giving	 insight	 into	 the	 molecular	 mechanisms	 underlying	 diabetes,	 as	 risk-associated	

genomic	 variants	 are	 enriched	 at	 transcriptional	 regulatory	 regions	 named	 enhancers.	 To	

give	further	insight	in	pancreatic	islet	transcriptional	regulation,	I	aimed	to	decipher	the	3D	

chromatin	organisation,	an	aspect	of	epigenomic	regulation	in	human	pancreatic	islets	that	

remained	largely	unexplored	until	now.	

	

As	part	of	my	PhD	project	 I	have	studied	high-resolution	chromatin	 interaction	maps	 that	

characterise	3D	chromatin	organisation	at	different	levels,	from	single	interactions	between	

specific	 pair	 of	 genomic	 loci	 to	 large	 genomic	 topological	 domains	 known	as	 TADs.	 These	

high-resolution	 chromatin	 interaction	 maps,	 integrated	 with	 a	 large	 collection	 of	

epigenomic	 datasets,	 allowed	 me	 to	 describe	 several	 aspects	 of	 islet	 3D	 chromatin	

organisation,	such	as	the	identification	of	islet-selective	chromatin	structures	associated	to	

islet-specific	gene	expression.	Moreover,	I	identified	groups	of	enhancers	that	gather	in	3D	

space.	These	3D	enhancer	clusters	were	frequently	 found	 in	 loci	key	for	 islet	 function	and	

highly	enriched	in	diabetes	associated	variants.	

	

The	 results	 of	 this	 thesis	 allow	 us	 to	 have	 a	 more	 accurate	 picture	 of	 the	 epigenomic	

regulation	 in	human	pancreatic	 islets	 and	how	non-coding	diabetes	 risk	 variants	 could	be	

impairing	enhancer-promoter	communication.		
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Chapter	1	

Introduction	 	 	 	 	 	 	 	 	 	 					.		

	
The	 human	 body	 is	 formed	 by	 hundreds	 of	 cell	 types	 that	 are	 raised	 from	 a	 common	

pluripotent	cellular	 lineage.	The	differentiation	process	 from	a	pluripotent	cell	 to	any	cell	

type	 is	possible	because	the	genome	contains	all	the	 information	required	for	all	possible	

cell	fates.	As	the	genomic	information	is	the	same	for	all	cell	types,	cell	identity	and	proper	

cell	function	are	determined	by	cell-specific	transcriptional	programs.	

	

Precise	 gene	 regulation	 is	 managed	 by	 a	 broad	 collection	 of	 transcriptional	 regulatory	

elements	 located	 throughout	 the	 genome.	 These	 regulatory	 elements	 act	 as	 recruitment	

platforms	 for	 the	 transcriptional	 machinery	 and	 are	 formed	 by	 clusters	 of	 short	 DNA	

sequences	named	transcriptional	factor	binding	sites	(TFBS)	(Cooper	and	Hausman,	2007).	

Transcription	factors	(TFs)	are	key	proteins	for	transcription	regulation	as	they	bring	other	

factors	 required	 for	 the	proper	assembly	of	 the	 transcriptional	machinery	 to	specific	 loci.	

Therefore,	 it	 is	 not	 surprising	 that	 cell-specific	 transcriptional	 programs	 are	managed	 by	

small	groups	of	cell-specific	TFs	(Heinz	et	al.,	2015).	

	

It	 is	widely	known	that	gene	expression	misregulation	can	lead	to	abnormal	cell	functions	

and	 in	 ultimate	 instances	 to	 development	 of	 diseases.	 Several	 genome	wide	 association	

studies	(GWAS),	conducted	to	determine	the	genetic	factors	behind	a	certain	pathogenicity,	

have	 identified	 hundreds	 of	 non-coding	 genomic	 variants	 (McClellan	 and	 King,	 2010).	 In	

many	 cases	 these	 non-coding	 variants	 tend	 to	 occur	 in	 genomic	 regulatory	 regions,	

affecting	 their	 functionality	 and	 provoking	 alterations	 in	 gene	 expression.	 Therefore,	 a	

better	understanding	of	the	molecular	mechanisms	involved	in	cell-specific	gene	expression	

and	in	the	effect	of	non-coding	variants	could	provide	insight	in	the	genetic	factors	behind	

major	diseases	such	as	cancer	or	diabetes.	
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1.1. Regulation	of	gene	transcription	

	

The	human	genome	contains	more	than	40,000	coding	and	non-coding	genes	(Aken	et	al.,	

2016).	 Although	 the	 human	 body	 is	 formed	 by	millions	 of	 cells	 grouped	 in	 different	 cell	

types	that	take	care	of	a	broad	range	of	biological	 functions,	all	cells,	except	for	the	germ	

line,	have	virtually	the	same	information	encoded	in	their	genome.	Cell	identity,	therefore,	

is	 determined	 by	 gene	 expression	 programs	 or	 transcriptional	 circuitries	 that	 regulate	

specific	 groups	 of	 genes.	 The	 regulation	 of	 gene	 transcription	 is	 not	 only	 required	 to	

determine	a	specific	cell	stage	but	also	for	its	proper	biological	function.	

	

Eukaryotic	gene	expression	is	regulated	through	a	set	of	events	that	need	to	occur	in	order	

to	allow	gene	transcription.	This	process	begins	with	the	creation	of	an	active	epigenomic	

environment	conducted	by	key	proteins	known	as	transcription	factors	(TFs)	and	chromatin	

modifiers.	 It	 is	 then	 followed	 by	 the	 assembly	 and	 activation	 of	 the	 transcriptional	

machinery	 at	 the	 gene	 promoter;	 and	 it	 proceeds	 with	 gene	 transcription,	 transcript	

stability,	translation	efficiency	and	peptide	stability.	

	

	 	



	
15	

1.2. Chromatin	and	chromatin	regulators	

	

The	 biological	 information	 codified	 in	 the	 genome	 is	 localised	 in	 a	 cellular	 compartment	

called	nucleus.	The	haploid	human	genome	contains	3.2	billion	nucleotides	that	need	to	be	

compacted	 400,000-fold	 (Schneider	 and	 Grosschedl,	 2007)	 to	 fit	 within	 the	 nucleus.	 To	

achieve	this	high	degree	of	compactness,	double-helix	DNA	 is	wrapped	around	a	group	of	

proteins	called	histones,	forming	a	structure	named	nucleosome.	The	combination	of	DNA	

and	proteins	form	a	complex	of	macromolecules	named	chromatin	(Cooper	and	Hausman,	

2007).	

	

Due	 to	 the	 extension	 of	 the	 genome,	DNA	 is	 packed	 in	 nucleosomes	 creating	 a	 structure	

named	"beads	on	a	string".	The	distance	between	the	nucleosomes	determines	the	grade	of	

compactness	 that	 is	 not	 homogenous	 throughout	 the	 genome.	Highly	 compacted	 regions	

are	 named	 heterochromatin,	 while	 those	 more	 loose	 are	 known	 as	 euchromatin.	

Heterochromatin	 are	 loci	 in	a	highly	 condensed	state,	associated	with	gene	 repression	or	

inactivation,	 and	 highly	 repeated	 DNA	 sequences	 such	 as	 centromeric	 or	 telomeric	

sequences.	In	contrast,	90%	of	the	chromatin	of	non-dividing	cells	is	in	a	chromatin	state	of	

low	 compactness,	 named	 euchromatin.	 About	 10%	 of	 the	 euchromatin	 is	 in	 a	 specially	

decondensed	state	that	allows	the	transcriptional	machinery	to	access	genomic	information	

(Cooper	and	Hausman,	2007).	Thus,	 it	 is	clear	that	 local	chromatin	compactness	 limits	the	

reading	of	genomic	information	codified	in	a	locus.		

	

Chromatin	 accessibility	 is	 regulated	 through	 multiple	 mechanisms	 including	 post-

translational	histone	modifications	(PTMs)	produced	by	chromatin	modifying	factors.	These	

factors	can	be	classified	as	"readers",	 "writers"	or	"erasers"	depending	on	 their	 functions.	

Chromatin	factors	known	as	"writers"	and	"erasers"	have	opposite	functions	 incorporating	

or	 removing	 modifications	 such	 as	 histone	 post-translational	 acetylation	 or	 methylation.	

Histone	post-translational	modifiers	can	be	grouped	in	families	depending	on	the	resultant	

modification,	 such	 as	 histone	 acetyltransferases	 (HATs),	 histone	 deacetylases	 (HDACs),	

lysine	methyltransferases	(KMTs)	and	lysine	demethylases	(KDMs).	These	modifications	are	

recognised	 by	 the	 "readers".	 Some	 of	 these	 readers	 are	 chromatin	 remodelling	 factors,	

which	 are	 encompassed	 in	 4	main	 families:	 SWI/SNF,	 ISWI,	 chromodomain-helicase	DNA-
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bfindfing	 protefin	 (CHD)	 and	 INO80	 complexes	(Ho	 and	 Crabtree,	 2010).	 Chromatfin	

remodellfing	 factors	 use	 the	 energy	 of	 ATP	 hydrolysfis	 to	 restructure	 nucleosomes	 and	

consequently	alter	chromatfin	accessfibfilfity	(Chen	and	Dent,	2014)	(Ffig.	1).			

	

	
Ffig.	1:	Chromatfin	modfifyfing	and	remodellfing	factors.	Model	fillustratfing	how	chromatfin	accessfibfilfity	
and	gene	regulatfion	can	be	modulated	through	hfistone	PTMs	and	the	actfion	of	chromatfin	factors.	
Adapted	by	permfissfion	from	Macmfillan	Publfishers	Ltd:	Nature	Revfiews	Drug	Dfiscovery,	(Højfeldt	et	
al.,	2013),	copyrfight	(2013)	
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1.3. DNA	binding	transcription	factors	and	the	transcription	machinery	

	

In	 addition	 to	 chromatin	 and	 its	modifiers,	 there	 is	 an	 additional	 transcription	 regulation	

mechanism	formed	by	the	transcription	factors	(TFs)	and	the	transcription	apparatus.	

	
• DNA	binding	transcription	factors	(TFs)	

	

In	 response	 to	 cellular	 stimuli	 there	 is	 an	 increase	 of	 specific	 DNA	 binding	 transcription	

factor	(TF)	proteins	in	the	nucleus.	TFs,	as	other	proteins,	are	formed	by	multiple	domains	

with	 different	 functions.	 TFs	 present	 DNA	 binding	 domains	 that	 recognise	 specific	 DNA	

sequences,	 or	 motifs,	 in	 accessible	 chromatin	 regions	 known	 as	 TF	 binding	 sites	 (TFBS)		

(Maston	 et	 al.,	 2006).	 In	 addition,	 TFs	 also	 present	 protein	 interacting	 domains	 used	 to	

attract	other	proteins	to	the	same	genomic	locus.		

	

It	has	been	predicted	that	there	are	more	than	a	thousand	genes	in	the	human	genome	that	

codify	for	DNA	binding	TFs	(Vaquerizas	et	al.,	2009),	which	proteins	have	been	systemically	

studied	to	characterise	(in	vitro)	TF	binding	models	(Isakova	et	al.,	2017;	Jolma	et	al.,	2010,	

2013,	 2015).	 TFs	 can	 be	 grouped	 in	 almost	 200	 TF	 families	 based	 on	 their	 DNA	 binding	

domains	(e.g.:	Zinc-finger,	Homeodomain,	Helix-loop-helix)	(Wilson	et	al.,	2007),	and	some	

of	the	major	TF	families	are	extensively	reviewed	in	Luscombe,	Austin,	Berman,	&	Thornton,	

2000;	Pabo	&	Sauer,	1992;	Rohs	et	al.,	2010.		

	

As	 part	 of	 the	 mechanism	 that	 regulates	 gene	 expression,	 TFBS	 DNA	 sequences	 are	

frequently	 located	at	 transcriptional	 regulatory	genomic	elements	 	 (Maston	et	al.,	2006).	

These	elements	 serve	as	platforms	 to	 recruit	 the	molecular	machinery	 that	will	modulate	

gene	expression.	However,	there	is	not	perfect	correlation	between	the	presence	of	a	TFBS	

motif	and	the	degree	of	TF	binding,	which	means	that	further	mechanisms	might	contribute.	

	

TF	DNA	sequence	recognition	is	not	exclusively	driven	by	the	linear	DNA	sequence	but	also	

by	 its	 local	 topography.	 Thus,	 at	 linear	 level,	 protein	 –	 DNA	 interaction	 is	 based	 on	 the	

complementary	 recognition	 between	 hydrogen	 bond	 acceptors	 and	 donors	 from	 the	 two	

macromolecules.	However,	 this	 recognition	must	be	possible	 through	 the	3D	DNA-protein	

assembly	(Rohs	et	al.,	2010).	
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In	addition	to	DNA	sequence	composition	and	its	shape,	DNA	sequence	recognition	is	also	

governed	 by	 TF	 co-binding.	 In	 vitro	 experiments	 have	 shown	 that	 many	 TFs	 need	

cooperative	 interactions	 to	 bind	 their	 target	 sequence	 in	 nucleosomal	 DNA	 (Adams	 and	

Workman,	 1995;	 Zaret	 and	 Carroll,	 2011).	 Moreover,	 there	 is	 experimental	 evidence	 of	

combinatorial	 epigenomic	 marks,	 such	 as	 histone	 methylation	 (Bartke	 et	 al.,	 2010)	 and	

histone	acetylation	(Shogren-Knaak,	2006),	affecting	TF	binding.	

	

Although	most	TFs	are	only	able	 to	recognise	DNA	binding	motifs	 in	euchromatin	 regions,	

there	is	a	group	of	TFs,	such	as	FOXA	or	GATA	binding	factors,	known	as	pioneer	TFs	that	do	

not	have	this	limitation	(Cirillo	et	al.,	2002;	Hatta	and	Cirillo,	2007;	Zaret	and	Carroll,	2011).	

Although	 the	 full	mechanism	by	which	pioneer	TF	bind	 to	 compacted	DNA	 remains	 to	be	

elucidated,	 recent	 studies	have	 shown	 that	 they	 are	 able	 to	 recognise	partial	DNA	motifs	

that	are	exposed	on	the	nucleosomes	surface	(Soufi	et	al.,	2015;	Ye	et	al.,	2016).	However,	

as	previously	mentioned	for	non-pioneer	TFs,	the	presence	of	binding	site	sequences	is	not	

a	 good	predictor	of	 the	TF	occupancy	and	 the	 recognition	of	 these	DNA	motif	may	occur	

through	cooperative	binding.	

	

It	has	been	shown	that	pioneer	TFs	binding	precedes	the	occupancy	of	other	TFs	during	the	

activation	 of	 developmental	 regulatory	 regions	 (Zaret	 and	 Carroll,	 2011).	 These	 results	

suggest	 that	 pioneer	 TFs	 form	 part	 of	 the	 triggering	 mechanism	 that	 activates	 silenced	

regulatory	regions.	In	that	sense,	one	main	function	of	pioneer	TF	would	be	to	increase	local	

chromatin	 accessibility,	 by	disrupting	 local	 internucleosomal	 interactions	 and	destabilising	

the	 chromatin	 structure	 (Schalch	et	al.,	 2005).	 Thus,	by	 increasing	 chromatin	accessibility,	

pioneer	TFs	facilitate	the	binding	of	other	proteins.		

	

TFs	 are	 key	 elements	 on	 the	 regulation	 of	 transcriptional	 programs	 as	 their	 presence	

modulates	 the	 transcriptional	 machinery	 recruitment	 to	 target	 genes.	 However,	 not	 all	

expressed	 TFs	 are	 equally	 important	 to	 regulate	 a	 cell-specific	 transcriptional	 program.	 It	

has	been	shown	that	for	each	cell	type	there	is	a	specific	small	set	of	TFs	that	governs	and	

drives	 its	 transcriptional	 circuitry.	 These	 TFs	 are	 known	 as	master	 regulators	 or	 lineage-

determining	transcription	factors	(LDTFs)	(Heinz	et	al.,	2015).	Some	LDTFs	may	be	pioneer	

TFs,	 but	 not	 all	 pioneers	 are	 necessarily	 LDTF.	 Although	 LDTFs	 have	 only	 been	 recently	
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descrfibed	(Hefinz	et	al.,	2010;	Tronche	and	Yanfiv,	1992)	some	characterfistfics	are	already	well	

establfished.	Ffirst,	LDTFs	are	 hfighly	 expressed	 fin	 the	 relevant	 cell	 type.	Second,	a	LDTF	fis	

under	 an	 auto-regulatory	 loop,	 meanfing	 that	 fit	 fis	 able	 to	modulate	 fits	 own	 transcrfiptfion.	

Thfird,	 all	LDTFs	modulate	 the	 expressfion	 of	 the	 other	LDTFs	fin	 the	 relevant	 cell	 type,	

formfing	 a	 core	 regulatory	 cfircufit	(Lee	 and	 Young,	 2013).	 Ffinally,	LDTFs	are	 strongly	

assocfiated	 wfith	 tfissue-specfiffic	 dfistal	 transcrfiptfional	 regulatory	 elements	 known	 as	super-

enhancers	(SEs)	(Whyte	et	al.,	2013)	or	hfighly	bound	enhancer	clusters	(ECs)	(Pasqualfi	et	al.,	

2014).	

	

Part	 of	a	cell	 expressfion	 regulatfion	 occurs	 as	 a	 response	to	finternal	 and	 external	 sfignals.	

Thus,	many	 regulatory	 elements	 are	 also	 regulated	 by	sfignal-dependent	 transcrfiptfion	

factors	 (SDTFs),	 such	as	nuclear	 receptor	TFs.	Whereas	 LDTFs	expressfion	 tends	 to	 be	 cell-

specfiffic,	SDTFs	may	be	expressed	fin	a	broad	collectfion	of	cell	types.	However,	as	LDTFs,	the	

effect	on	expressfion	regulatfion	of	SDTFs	can	be	cell-specfiffic	(Hefinz	et	al.,	2015).	

	

In	 summary,	 fin	 addfitfion	 to	 other	 mechanfism,	 gene	 transcrfiptfion	 fis	 regulated	 through	 the	

cooperatfive	 bfindfing	 of	 dfifferent	 types	 of	 TFs	and	 other	 protefins.	 The	 cooperatfive	 actfion	

between	 TFs	 fis	 governed	 through	 a	hfierarchy	 that	 allows	 cell-specfiffic	 regulatfion	 durfing	

dfifferentfiatfion	and	fin	front	of	dfifferent	stfimulfi	(Ffig.	2)	(Hefinz	et	al.,	2015).		

	

	
	
Ffig.	2:	Regulatory	regfion	actfivatfion	through	TF	bfindfing.	Dfiagram	fillustratfing	the	cooperatfive	bfindfing	
between	 LDTFs,	 SDTFs	and	 cofactors	 (CTF,	 see	 followfing	 sectfion)	 to	 actfivate	 transcrfiptfional	
regulatory	elements.	The	 cooperatfive	 bfindfing	 between	 LDTFs,	 some	 of	 them	pfioneer	TFs,	 and	
cofactors	drfives	the	actfivatfion	of	regulatory	regfions	durfing	dfifferentfiatfion	allowfing	cell-specfiffic	gene	
expressfion.	Actfivfity	states	of	regulatory	regfions	tend	to	correlate	wfith	the	presence	of	hfistone	PTMs.	
In	 response	 to	 dfifferent,	 fintra	 or	 finter,	 cellular	 sfignals	 SDTFs	bfind	 to	 certafin	 regulatory	 regfions	
modulatfing	thefir	 actfivfity.	Adapted	 by	 permfissfion	from	 Macmfillan	 Publfishers	 Ltd:	Nature	 revfiews.	
Molecular	cell	bfiology,	Hefinz	et	al.,	2015;	copyrfight	(2015).	
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• TF	recruitment	of	regulatory	proteins	

	

One	of	the	main	functions	of	TFs	is	to	drive	the	genomic	localisation	of	other	proteins	that	

do	 not	 have	 a	 DNA	 sequence	 binding	 domain.	 By	 interacting	 with	 TFs’	 protein	 binding	

domains,	 other	 proteins	 known	 as	 cofactors	 are	 recruited	 to	 specific	 genomic	 locations	

where	 their	 action	 is	 required.	 Cofactors	 have	 two	 main	 functions,	 act	 as	 chromatin	

modifiers	or	facilitate	the	recruitment	and	assembly	of	the	transcriptional	machinery.		

	

A	 clear	 example	 of	 a	 chromatin	modifier	 cofactor	would	 be	 the	 histone	 acetyltransferase	

(HAT)	p300.	As	a	"writer",	p300	has	the	capacity	to	acetylate	the	lysine	27	of	the	histone	H3	

(H3K27ac);	 a	 histone	mark	 that	 correlates	with	 the	 presence	 of	 transcriptional	 regulatory	

elements	 known	 as	 active	 enhancers	 (Heintzman	 et	 al.,	 2007,	 2009).	 In	 contraposition	 to	

p300,	 the	 Polycomb	 repressive	 complex	 2	 (PRC2)	 contains	 the	 Enhancer	 of	 zeste	

methyltransferase	(E(z))	able	to	methylate	the	lysine	27	of	the	histone	H3	(H3K27me3).	The	

presence	of	H3K27me3	prevents	 the	deposition	of	H3K27ac	by	p300.	PRC2	as	part	of	 the	

Polycomb	 group	 (PcG)	 has	 been	 associated	 to	 gene	 expression	 repression,	 although	 the	

exact	mechanism	is	still	unknown	(Schwartz	and	Pirrotta,	2013).	

	

Another	relevant	cofactor	 is	the	Mediator	complex,	a	protein	complex	that	 is	essential	 for	

gene	 transcription.	 One	 of	 its	 main	 functions	 is	 to	 act	 as	 a	 scaffold	 for	 the	 recruitment,	

assembly	and	activation	of	the	RNA	transcription	machinery	required	for	gene	transcription	

(Hahn,	 2004).	 Mediator	 is	 recruited	 to	 specific	 regulatory	 regions	 by	 TFs,	 which	 do	 not	

interact	 directly	 with	 the	 RNA	 polymerase.	 Additionally,	 it	 has	 been	 observed	 that	 the	

Mediator	complex	 recruits	 chromatin	 remodelers,	 such	as	SWI/SNF,	which	are	 involved	 in	

nucleosome	 removal	 increasing	 chromatin	 accessibility	 (Allen	 and	 Taatjes,	 2015;	 Lemieux	

and	Gaudreau,	2004).	

	

• RNA	polymerase	II	transcriptional	machinery	

	

Transcription	 is	 carried	 out	 by	 an	 enzymatic	 class	 named	 RNA	 polymerase	 (RNA	 Pol).	 In	

eukaryotes,	 there	 are	3	 types	of	RNA	polymerases	 (RNA	Pol	 I-III)	 that	 transcribe	different	

classes	 of	 RNAs.	However,	 the	most	 relevant	 for	 this	 thesis	 is	 the	RNA	Pol-II,	which	 is	 in	
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charge	of	gene	transcription	by	producing	messenger	RNA	(mRNA)	(Cooper	and	Hausman,	

2007).	 Eukaryotic	 gene	 transcription	 generally	 begins	 with	 the	 recruitment	 of	 the	

transcriptional	 machinery	 containing	 an	 RNA	 Pol-II	 into	 the	 promoter,	 a	 transcriptional	

regulatory	 region	 located	 just	 in	 front	 of	 genes.	 The	 promoter	 acts	 as	 a	 platform	 for	 the	

assembly	of	the	transcriptional	preinitiation	complex	 (PIC)	(Hahn,	2004)	(Fig.	3).	Although	

the	 RNA	 Pol-II	 transcriptional	 machinery	 may	 be	 stably	 assembled	 at	 the	 promoter,	

transcription	 initiation	 cannot	 occur	without	 the	 formation	 of	 the	 transcriptional	 bubble.	

The	transcriptional	bubble	is	generated	by	an	ATP-dependent	DNA	helicase	able	to	separate	

the	two	DNA	strands,	which	allows	the	RNA	Pol-II	 to	migrate	through	a	single	strand	DNA	

template.	Once	the	transcription	start	site	(TSS)	is	recognised,	transcription	is	initiated.	After	

transcribing	 a	 few	 tens	 of	 base	 pairs	 (bp),	 the	 RNA	 Pol-II	 can	 leave	 the	 transcriptional	

machinery	complex	and	the	promoter	to	continue	with	the	transcription	elongation.	At	the	

end	 of	 this	 process,	 the	 polymerase	 will	 have	 produced	 a	 RNA	 copy	 of	 the	 genomic	

information	(Cooper	and	Hausman,	2007).	

	

	
	
Fig.	 3:	 Assembly	 of	 the	 transcriptional	 machinery	 on	 gene	 promoters.	 Diagram	 illustrating	 the	
molecular	processes	that	occur	at	gene	promoters,	which	lead	to	gene	transcription.	Transcriptional	
machinery	formed	by	the	RNA-pol	II	(Pol	II),	general	TFs	(II	A-H)	and	Mediator	(Med),	is	recruited	to	
the	 core	 promoter,	 formed	 by	 DNA	 sequences	 such	 as	 the	 TATA-box	 (TATA).	 Reprinted	 by	
permission	 from	 Macmillan	 Publishers	 Ltd:	 Nature	 structural	 &	 molecular	 biology,	 Hahn,	 2004;	
copyright	(2004)	
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1.4. DNA	regions	that	control	gene	transcription		

	
Gene	 transcription	 regulation	 can	occur	 in	 two	different	 levels,	 trans	 or	 cis.	Trans-acting	

factors	 encompass	 all	 proteins	 that	 regulate	 gene	 expression	 by	 binding	 (directly	 or	

indirectly)	to	DNA.		Cis-regulatory	elements	are	DNA	sequences	embedded	in	the	genome	

that	affect	gene	expression	by	recruiting	trans-acting	factors.	There	are	two	main	types	of	

cis-regulatory	regions,	promoters	and	enhancers.	

	
• Promoters	

	
Promoters	 are	 essential	 transcriptional	 regulatory	 regions	 located	 at	 5’	 end	 of	 genes.	

Promoters	are	required	to	define	the	RNA	Pol	transcription	start	site	(TSS),	and	determine	

the	direction	of	transcription	through	the	presence	of	core	promoter	DNA	sequences;	such	

as	 the	 TATA	 box,	 the	 TFIIB-recognition	 element	 (BRE),	 the	 Initiator	 element	 (Inr)	 and	

downstream	promoter	element	(DPE).	Therefore,	promoters	ensure	the	correct	location	of	

the	RNA	Pol-II	and	proper	transcription.	Although	these	sequences	are	not	essential	for	the	

functionality	 of	 the	 promoter,	 different	 combinations	 of	 these	 sequences	 are	 frequently	

found	in	different	promoters.	These	sequences	are	recognised	by	different	elements	of	the	

transcriptional	machinery	 such	as	 the	ubiquitously	expressed	general	TFs	 (TFIIA-H)	 (Hahn,	

2004).	 These	 TFs	 bring	 the	 RNA-Pol	 II	 and	 cofactors	 required	 for	 the	 transcriptional	

preinitiation	complex	formation,	such	as	Mediator	(Fig.	3).	Upstream	of	the	core	promoter	

there	 is	a	regulatory	extension	named	proximal	promoter.	Proximal	promoters	are	bound	

by	cell-specific	TFs,	which	modulate	the	cell-specific	expression	pattern	of	the	gene.		

	

A	 further	 layer	of	 promoter	 regulation	would	be	 the	presence	of	DNA	methylation.	 	 This	

epigenomic	 modification	 typically	 consists	 on	 the	 addition	 of	 a	 methyl	 group	 on	 CpG	

dinucleotides	(as	reviewed	in	Jones,	2012).	It	has	been	determined	that	(approx.)	70%	of	all	

promoters	contain	CpG-rich	 regions	of	DNA,	known	as	CpG	 islands	or	CGI	 (Saxonov	et	al.,	

2006).	 Although	 originally	 DNA	methylation	 at	 cis-regulatory	 regions,	 such	 as	 promoters,	

was	associated	with	silencing	(Deaton	and	Bird,	2011),	the	latest	reports	indicate	it	may	vary	

with	context.	 Initial	studies	showed	DNA	methylation	as	a	mechanism	to	block	TF	binding.	

However,	 recent	 publications	 have	 indicated	 that	 DNA	 methylation	 could	 also	 have	 the	

opposite	 effect,	 being	 required	 to	 allow	 TF	 binding	 (Zhu	 et	 al.,	 2016).	 	 It	 is	 important	 to	
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mention,	 that	 DNA	 methylation	 and	 CGI	 are	 not	 exclusively	 observed	 at	 promoters.	 In	

contraposition	to	its	repressible	role,	CpG	methylation	is	enriched	at	highly	transcribed	gene	

bodies.	 Despite	 the	 role	 of	 CpG	methylation	 at	 gene	 bodies	 remains	 largely	 unknown,	 a	

recent	 study	conducted	 in	S.	Oliviero’s	 lab	 indicates	 that	 intragenic	DNA	methylation	may	

prevent	spurious	transcription	initiation	(Neri	et	al.,	2017).	

	

It	has	been	proposed	that	there	are	3	promoter	classes	(type	I-III)	that	are	associated	with	

different	 types	 of	 genes.	 They	 have	 been	 extensively	 reviewed	 in	 Lenhard,	 Sandelin,	 &	

Carninci,	 2012	 (Table	 1).	 Briefly,	 they	 can	 be	 mainly	 differentiated	 by	 two	 features:	 TSS	

“shape”	 and	 CpG	 content.	 Next	 generation	 sequencing	 (NGS)	 techniques,	 such	 as	 cap	

analysis	 of	 gene	 expression	 (CAGE),	 have	 allowed	 the	 precise	 definition	 of	 gene	 TSSs	

(Carninci	 et	 al.,	 2006;	 Shiraki	 et	 al.,	 2003).	 It	 has	 been	 reported	 that	 some	 genes	 have	 a	

precise	TSS	that	initiates	from	a	single	nucleotide	position	(henceforth	named	“sharp”	TSS)	

while	other	genes	have	multiple	clustered	TSSs	(henceforth	named	“broad”	TSSs)	(Forrest	et	

al.,	 2014).	 Genes	 containing	 CpG	 islands	 can	 be	 further	 classified	 according	 to	 their	

extension.	 	CpG	islands	can	be	found	as	 just	a	few	nucleotides	 in	front	of	the	TSS	(“short”	

CpG	islands)	or	appear	as	large	regions	that	extend	throughout	the	gene	body	(“large”	CpG	

islands).	

	

Table	1.	Promoter	classification	based	on	TSS	shape	and	CpG	island	content.	*	

Promoter	class	 Gene	type	 TSS	 CpG	content	

Type	I	 Adult	tissue-specific	genes	 “sharp”	 absence	of	CpG	islands	
Type	II	 Ubiquitously	expressed	genes	 “broad”	 “short”	CpG	islands	
Type	III	 Developmental	genes	 “broad”	 “large”	CpG	islands	
	
*	Adapted	by	permission	from	Macmillan	Publishers	Ltd:	Nature	Reviews	Genetics,	Lenhard	et	al.,	
2012;	copyright	(2012).	
	
	
• Enhancers	

	
Spatiotemporal	 expression	 patterns	 of	 genes	 are	 determined	 by	 enhancers,	 regulatory	

regions	that	modulate	promoter	activity.	Enhancer	DNA	sequences	are	typically	composed	

by	 groups	 of	 clustered	 TFBS	 which	 recruit	 cell-specific	 TFs	 and	 cofactors	 that	 work	

cooperatively	and	determine	the	activity	of	the	enhancer	(Heinz	et	al.,	2015).	As	opposed	to	
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promoters,	enhancers	do	not	have	a	precise	genomic	position	in	relation	to	the	genes	they	

regulate.	Enhancer	activity	has	been	shown	to	be	independent	of	the	relative	linear	distance	

and	orientation	to	the	target	promoter	(Banerji	et	al.,	1981).	This	is	due	to	their	capacity	to	

gain	proximity	with	target	promoters	by	looping	over	long	genomic	distances	and	skipping	

untargeted	 regions.	 The	 mechanism	 of	 chromatin	 loop	 formation	 will	 be	 extensively	

discussed	 in	 further	 sections	but	 in	 general	 lines,	 the	 genome	 can	be	bent	by	 topological	

proteins	such	as	Cohesin	due	to	its	polymeric	nature	(Kagey	et	al.,	2010;	Tolhuis	et	al.,	2002)	

(Fig.	4).	Thus,	allowing	a	physic	interaction	between	two	distal	regulatory	regions.		

	

	
Fig.	4:	Enhancer-promoter	communication	through	chromatin	folding.	TFs	at	enhancers	are	able	to	
interact	with	the	transcriptional	machinery	assembled	at	promoters.	Despite	these	elements	being	
in	 large	 linear	distance	 they	can	communicate	due	 to	 the	combined	action	of	different	 interacting	
factors	such	as	CTCF,	Mediator	and	Cohesin.	
	
Although	 none	 of	 the	 known	 histone	 modifications,	 individually	 or	 in	 combination,	 are	

perfect	predictors	of	enhancer	activity	 (Shlyueva	et	 al.,	 2014a),	 there	 is	 some	correlation.	

For	 that	 reason,	 enhancers	 can	 be	 sub-classified	 in	 categories	 such	 as	 active,	 poised	 or	

repressed	based	on	the	presence	of	histone	marks.	

	

- Active	enhancers	 are	 typically	defined	as	open	 chromatin	 regions	 containing	H3K27ac	

(Heintzman	 et	 al.,	 2009).	 Active	 enhancers	 do	 also	 contain	 H3K4me1,	 a	 histone	

modification	associated	with	different	types	of	active	cis-regulatory	regions	(Heintzman	

et	al.,	2007).		
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Different	 sub-classes	of	active	enhancer	have	been	 reported	suggesting	 that	 they	may	

have	 different	 roles	 or	 relevance	 in	 tissue-specific	 gene	 transcription	 regulation.	

Enhancers	 are	 not	 evenly	 distributed	 through	 the	 genome;	 some	 are	 located	 in	 short	

linear	proximity	forming	what	has	been	named	enhancer	clusters	 (ECs).	Among	all	ECs	

active	in	a	specific	tissue,	a	fraction	of	them	tend	to	be	highly	bound	by	tissue	specific	

TFs.	These	highly	bound	ECs	are	frequently	located	near	tissue-specific	expressed	genes,	

suggesting	that	they	may	be	key	tissue-specific	gene	expression	regulators	(Pasquali	et	

al.,	2014).	Studies	have	shown	that	highly	bound	active	enhancers	tend	to	be	also	bound	

by	Mediator	complex,	a	cofactor	highly	relevant	for	gene	transcription	regulation	(Kagey	

et	 al.,	 2010;	Whyte	 et	 al.,	 2013).	 R.	 Young's	 lab	 identified	 a	 sub-set	 of	 stitched	 active	

enhancers,	 that	 expand	 large	 genomic	 regions	 (median	 size	 8.7	 kb),	 which	 are	 highly	

bound	 by	 Mediator.	 These	 elements	 were	 called	 super-enhancers	 (SEs).	 It	 has	 been	

observed	 that	 SEs	 have	 an	 exceptional	 enrichment	 for	 cell-specific	 key	 TFs	 and	

chromatin	marks	that	can	be	also	used	to	define	them	(Hnisz	et	al.,	2013;	Lovén	et	al.,	

2013;	Whyte	et	al.,	2013).	In	concordance	with	highly	bound	ECs	(Pasquali	et	al.,	2014),	

SEs	are	not	only	strongly	associated	with	tissue	specific	expressed	genes	but	also	disease	

associated	genomic	variants	(Hnisz	et	al.,	2013;	Lovén	et	al.,	2013;	Whyte	et	al.,	2013).		

	

Currently,	there	is	a	debate	regarding	if	all	enhancers	within	an	EC	are	equally	important	

for	gene	regulation	as	contradictory	result	have	been	recently	published	(Dukler	et	al.,	

2017).	 Some	 studies	 suggest	 that	 clustered	 enhancers	 work	 in	 synergy	 within	 a	

hierarchical	structure	(Shin	et	al.,	2016)	while	others	seem	to	indicate	that	all	enhancers	

within	 an	 EC	have	 an	 independent	 effect	 and	work	 in	 an	 additive	manner	 (Hay	et	 al.,	

2016).	 Although,	 it	 is	 possible	 that	 EC	 mechanism	 of	 action	 is	 different	 in	 several	

scenarios	 encompassing	 a	 broad	 variety	 of	 options.	 These	 contradictory	 results	 show	

that	further	work	is	needed	to	fully	understand	the	regulatory	role	of	enhancer	clusters.	

	

- Primed	 enhancers	 are	 characterised	 by	 the	 lack	 of	 H3K27ac	 and	 being	 functionally	

inactive,	although	they	contain	H3K4me1	and	may	be	bound	by	several	TFs.	It	is	widely	

considered	as	the	preliminary	state	before	enhancers	become	fully	active	as	a	response	

to	stimuli	(Heinz	et	al.,	2015).	
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- Repressed	 enhancers	 are	 distal	 cis-regulatory	 regions	 actively	 repressed	 by	 the	 PcG	

complex,	which	deposits	the	histone	modification	H3K27me3.	It	has	been	suggested	that	

repressed	 enhancers	 facilitate	 gene	 transcription	 repression	 by	 interacting	 with	 its	

promoter,	bringing	 the	PcG	complex	and	blocking	RNA	Pol-II	elongation	 (Schwartz	and	

Pirrotta,	 2013;	 Simon	 and	 Kingston,	 2009).	 However,	 further	 work	 is	 required	 to	

determine	the	PcG	silencing	mechanism.	

	

Despite	 H3K27me3	 and	H3K27ac	 are	mutually	 exclusive	 (Rada-Iglesias	 et	 al.,	 2011),	 it	

has	 been	 reported	 that	 a	 sub-set	 of	 enhancers	 actively	 repressed	 by	 PcG,	might	 also	

display	 features	 associated	 with	 active	 enhancers	 (e.g.	 p300	 binding,	 H3K4m1	 or	

H3K122ac;	 Pradeepa	 et	 al.,	 2016).	 This	 set	 of	 enhancers	 are	 commonly	 known	 as	

bivalent	or	poised	enhancers	(Rada-Iglesias	et	al.,	2011).	Poised	enhancers	are	present	

in	 a	 broad	 variety	 of	 tissues,	 and	 they	 seem	 to	 be	 especially	 relevant	 during	

development	 (Calo	 and	 Wysocka,	 2013;	 Rada-Iglesias	 et	 al.,	 2011).	 However,	 it	 is	

important	 not	 to	 overestimate	 the	 number	 of	 poised	 elements	 for	 a	 given	 sample	 as	

part	 of	 the	 data	 could	 be	 affected	 by	 sample	 heterogeneity.	 Thus,	 loci	 identified	 as	

bivalent	could	actually	be	monovalent	 in	distinct	cell	 sub-populations	 (Chen	and	Dent,	

2014).		

	

Although	primed	and	poised	enhancers	are	not	functionally	active,	the	main	view	in	the	

field	 is	 that	 upon	 specific	 stimuli	 they	 might	 be	 rapidly	 activated.	 This	 hypothesis	 is	

further	 supported	by	 the	 fact	 that	 these	enhancers	 are	preferentially	 bound	by	 signal	

dependent	factors	(Heinz	et	al.,	2015;	Shlyueva	et	al.,	2014b).		

	

• Enhancer	activity	reporter	assays	

As	 exposed	 in	 the	 previous	 sections,	 enhancers	 are	 highly	 relevant	 to	 understand	 gene	

expression	regulation.	Even	though	the	co-localisation	of	histone	marks	is	a	powerful	tool	to	

create	genome	wide	maps	of	cis-regulatory	elements,	the	presence	of	these	marks	does	not	

always	correlate	with	the	cis-regulatory	activity	of	a	specific	locus.	This	is	because	genome	

wide	maps	are	 subjected	 to	certain	 limitation	such	as	 sample	heterogeneity,	missing	data	

for	 known	 or	 unknown	 histone	marks	 and	 technical	 aspects	 such	 as	 arbitrary	 thresholds.	

Additionally,	human	genome-wide	maps	are	frequently	generated	using	a	small	collection	of	
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samples	 from	 healthy	 individuals,	 therefore	 they	 cannot	 be	 used	 to	 assess	 the	 effect	 of	

genomic	variants	 in	gene	regulation.	For	that	reason,	experimental	evidences	are	required	

to	support	genome	wide-maps	of	cis-regulatory	regions	and	 interrogate	the	effect	of	non-

coding	variants.		

	

Enhancer	activity	can	be	directly	determined	by	in	vivo	and	in	vitro	reporter	assays.		

	

Enhancer	 activity	 in	 vivo	 reporter	 assays	 consist	 on	 transgenic	 constructs	 in	 which	 a	

reporter	 gene	 is	 cloned	 downstream	of	 a	minimal	 promoter.	 As	 the	 promoter	 barely	 has	

transcriptional	activity,	 the	reporter	signal	 is	mainly	driven	by	the	enhancer	activity	of	the	

interrogated	DNA	fragment.	 In	vivo	assays	are	especially	powerful	to	detect	tissue	specific	

enhancer	activity	patterns	 in	an	animal	model	of	 interest.	However,	 these	assays	are	also	

subject	to	the	limitations	and	inconveniences	associated	with	animal	model	assays;	such	as	

cost,	necessity	of	ethical	approval	or	difficulty	to	extrapolate	results	to	human.	Moreover,	

these	assays	tend	to	be	semi-quantitative.	Enhancer	activity	transgenic	reporter	assays	are	

extensively	reviewed	in	Kvon,	2015.	

	

On	 the	 other	 hand,	 enhancer	 activity	 in	 vitro	 reporter	 assays	 frequently	 are	 more	

quantitative	and	cost-effective	than	in	vivo	assays.	One	of	the	most	frequently	used	reporter	

assays	 is	 the	 Luciferase	 reporter	 assay.	 It	 is	 frequently	 employed	 due	 to	 its	 easy	

performance.	 As	 in	 in	 vivo	 assays,	 the	 reporter	 gene	 is	 cloned	 downstream	 of	 a	minimal	

promoter,	 thus	 its	 expression	 is	 principle	 driven	 by	 the	 enhancer	 activity	 of	 the	 assessed	

DNA	fragment.	The	main	disadvantage	of	in	vitro	luciferase	reporter	assays	is	its	difficulty	to	

be	scaled	up,	as	each	interrogated	DNA	fragment	needs	to	be	tested	individually.	

	

To	 overcome	 this	 limitation,	 during	 the	 last	 years	 some	 labs	 have	 developed	 enhancer	

activity	 reporter	assays	based	on	high-throughput	detection	methods.	These	methods	are	

encompassed	 within	 the	 term	 "massive	 parallel	 reporter	 assays"	 (MPRAs),	 recently	

reviewed	in	Inoue	&	Ahituv,	2015;	Shlyueva,	Stampfel,	et	al.,	2014.	MPRAs	have	been	used	

during	the	last	few	years	not	only	for	massive	validation	of	enhancers	(Arnold	et	al.,	2013;	

Kheradpour	et	al.,	2013)	but	also	to	assess	how	enhancers	may	have	a	different	behaviour	

depending	on	metabolic	context	(Shlyueva	et	al.,	2014b)	or	sequence	variation	(Tewhey	et	
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al.,	2016;	Ulirsch	et	al.,	2016).	Among	all	MPRAs,	there	are	two	methods	based	on	NGS	that	

are	becoming	predominant,	named	STARR-seq	(Arnold	et	al.,	2013;	Vanhille	et	al.,	2015)	and	

CRE-seq	(Inoue	et	al.,	2016;	Kheradpour	et	al.,	2013;	Shen	et	al.,	2016)	(Fig.	5	and	Table	2).	

The	main	technical	differences	between	them	are:	(i)	the	relative	position	of	the	enhancer	

to	the	promoter,	(ii)	the	readout,	(iii)	the	promoter	type	and	(iv)	the	size	of	the	interrogated	

genomic	fragment.	

	

	
Fig.	5:	CRE-seq	and	STARR-seq	reporter	constructs.	Diagram	illustrating	the	different	elements	and	
relative	 positions	 on	 two	MPRAs	 systems,	 CRE-seq	 and	 STARR-seq.	 (left)	 In	 CRE-seq	 an	 enhancer	
(Enh)	is	cloned	in	front	of	a	minimal	promoter	(minP)	that	drives	the	expression	of	an	Open	Reading	
Frame	 (ORF),	 frequently	 a	 fluorescent	 protein,	 and	 a	 barcode	 (BC)	 with	 a	 polyA	 (pA)	 signal	 to	
increase	 mRNA	 stability.	 (right)	 On	 STARR-seq,	 a	 synthetic	 core	 promoter	 (SCP1)	 drives	 the	
expression	of	a	sgGFP,	that	acts	as	ORF,	and	enhancers.	
	

Table	2:	Comparative	between	CRE-seq	and	STARR-seq.	

	 CRE-seq	 STARR-seq	

Promoter	 Minimal	promoter	 Synthetic	core	promoter	
Enhancer	position	 Upstream	promoter	 Downstream	promoter	
Enhancer	size	 600	–	few	kb.	 (approx.)	200	bp.	
Read-out	 Barcode	(BC)	sequence	 Enhancer	sequence	
Scale	 hundreds	 thousands	

	
	
In	 the	 CRE-seq	 assay,	 the	 transcription	 of	 a	 barcode	 sequence	 located	 downstream	 of	

enhancer	and	a	minimal	promoter	 is	used	as	a	readout	of	the	enhancer	activity.	Thus,	the	

main	 limitation	 is	 the	 number	 of	 barcode	 sequences	 used	 during	 the	 library	 preparation.	

The	current	number	of	barcodes	that	can	be	synthesised	is	subject	to	the	desired	length	and	

sequence	complexity.	In	that	sense,	library	preparation	is	also	a	limitation.	In	some	CRE-seq	

variants,	 enhancers	 and	 barcodes	 are	 synthesised	 together	 limiting	 the	 enhancer	 size	 to	

100-200	 bp	 (Inoue	 et	 al.,	 2016).	 In	 others,	 a	 sub-set	 of	 enhancers	 are	 selected	 from	

fragmented	 genomic	 DNA	 using	 complementary	 RNA	 probes	 (Shen	 et	 al.,	 2016).	 In	 that	

case,	enhancers	and	promoters	are	cloned	as	a	pool.	Therefore,	to	ensure	that	a	sub-set	of	
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barcodes	 are	 uniquely	 associated	with	 an	 enhancer,	 it	 is	 important	 to	 use	 a	 collection	 of	

barcodes	several	times	larger	than	the	number	of	interrogated	enhancers.	

	

In	the	STARR-seq	method	the	enhancer	is	self-transcribed	as	a	result	of	its	own	activity.	This	

strategy	provides	more	flexibility,	increasing	the	number	of	enhancers	that	can	be	assessed	

and	simplifying	the	cloning	strategy	(Arnold	et	al.,	2013).	Nevertheless,	this	method	also	has	

its	 drawbacks.	 It	 can	 only	 interrogate	 small	 DNA	 fragments	 (~200bp),	 as	 their	 size	 could	

affect	 transcript	 stability.	 Moreover,	 the	 STARR-seq	 construct	 contains	 a	 synthetic	 core	

promoter	 instead	 of	 the	minimal	 promoter	 normally	 used	 in	 enhancer	 reporter	 assays.	 A	

minimal	 promoter	 is	 frequently	 preferred	 since	 its	 transcriptional	 activity	 per	 se	 is	 really	

low,	 while	 this	 synthetic	 core	 promoter	 exhibits	 higher	 rate	 of	 transcription	 that	 could	

disturb	 the	assessment	of	 the	enhancer	of	 interest.	However,	 researchers	 from	Alexander	

Stark's	lab	opted	for	this	synthetic	core	promoter	so	that	the	same	construct	could	also	be	

used	to	assess	repressive	activity.	

	

A	general	drawback	of	most	in	vitro	reporter	assays	is	that	due	to	their	episomal	nature	they	

are	 not	 able	 to	 reflect	 the	 chromosomal	 context	 of	 the	 enhancers.	 Although	 some	

researchers	have	tried	to	overcome	this	problem	using	integrative	viral	constructs	(Inoue	et	

al.,	2016)	it	still	does	not	represent	the	actual	enhancer	chromosomal	context.		

	

Fortunately,	due	to	the	recent	development	of	highly	efficient	genome	editing	tools,	such	as	

CRISPR–Cas9	(Mali	et	al.,	2013)	or	CRISPR-Cpf1	(Zetsche	et	al.,	2015),	some	work	has	been	

done	 to	 interrogate	 enhancers	 in	 their	 native	 chromosomal	 context.	 CRISPR-Cas9	 based	

strategies	 can	 be	 used	 to	 mutate	 (Rajagopal	 et	 al.,	 2016;	 Tewhey	 et	 al.,	 2016),	 activate	

(CRISPRa)	 (Hilton	 et	 al.,	 2015)	 or	 repress	 (CRIPRi)	 (Qi	 et	 al.,	 2013)	 a	 specific	 enhancer	 as	

reviewed	 in	Lopes,	Korkmaz,	&	Agami,	2016.	Moreover,	 this	method	has	been	adapted	to	

perform	genetic	screenings	interrogating	several	enhancers	in	a	single	experiment	(Diao	et	

al.,	2016;	Fulco	et	al.,	2016;	Korkmaz	et	al.,	2016).	However,	to	the	best	of	my	knowledge,	it	

has	not	been	design	a	CRISP-Cas9	based	strategy	that	allows	a	systematic	 interrogation	of	

single	nucleotide	variants	(SNV)	and	their	effect	on	enhancer	activity.	
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• Genome-wide	maps	of	gene	transcription	regulatory	regions	

	

In	2001,	as	part	of	the	human	genome	project,	the	whole	human	genome	was	sequenced.	

This	 study	 revealed	 that	despite	 the	 large	number	of	protein-coding	genes	codified	 in	 the	

genome	 (~20,000),	 these	 only	 occupied	 a	 small	 part	 of	 it	 (1-2%).	 It	 opened	 a	 big	 debate	

regarding	 the	 functionality	 of	 the	non-coding	DNA	 regions	 that	 some	 researchers	 named	

"junk	DNA"	(Chi,	2016;	Crow,	2016).	It	was	argued	that	these	regions	must	have	a	function,	

maybe	as	a	protection	for	transposable	elements	or	a	role	in	evolution.	But,	it	was	not	until	

2012	with	the	Encyclopedia	of	DNA	Elements	(ENCODE)	project	when	it	was	revealed	that	a	

large	proportion	of	the	non-coding	genomic	DNA	has	a	function.	

	

The	 ENCODE	 project	 aimed	 to	 identify	 all	 chromatin	 regulatory	 elements	 by	 generating	

more	 than	 1,500	 genomic	 datasets	 in	 almost	 150	 cell	 types	 (Dunham	 et	 al.,	 2012).	 To	

generate	that	large	number	of	datasets,	members	of	the	ENCODE	project	took	advantage	of	

the	 different	 high-throughput	 methods	 available	 at	 the	 time.	 A	 big	 proportion	 of	 those	

datasets	 were	 generated	 using	 chromatin	 immunoprecipitation	 followed	 by	 (next-

generation)	 sequencing	 (ChIP-seq).	 ChIP-seq	 consists	 on:	 fixation	 of	 protein-DNA	

interactions	 using	 a	 crosslinking	 reagent	 such	 as	 formaldehyde,	 selection	 of	 specific	

fragmented	genomic	regions	by	using	an	antibody	that	recognise	a	protein	of	interest	(e.g.	a	

TF	or	a	histone	with	a	specific	post-translational	modification)	and	finally,	determination	of	

the	 genomic	 positions	 that	 are	 frequently	 bound	 by	 the	 protein	 of	 interest	 via	 high-

throughput	next-generation	sequencing.	In	addition	to	protein	bound	genomic	regions,	the	

ENCODE	project	also	characterised	chromatin	accessibility	(by	FAIRE-seq,	DNAse-seq),	DNA	

methylation	 (by	 RRBS),	 gene	 transcription	 (by	 RNA-seq,	 CAGE,	 RNA-PET)	 and	 chromatin	

interacting	 regions	 (by	 5C	 and	 ChIA-PET).	 The	 overlap	 of	 these	 datasets	 allowed	 the	

segmentation	 of	 the	 genome	 in	 cell-specific	 chromatin	 states,	 presumably	 with	 different	

functional	properties.	

	

In	 addition,	 the	 NIH	 Roadmap	 Epigenomics	 Consortium	 generated	 111	 epigenome	 maps	

encompassing	a	broad	collection	of	human	tissues	and	cell	 lines	 (Kundaje	et	al.,	2015).	An	

integrative	analysis	revealed	that:	(i)	combinations	of	histone	modifications	correlate	better	

with	 gene	 expression	 patterns	 than	 if	 these	 marks	 are	 interrogated	 separately.	 It	 also	
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showed	 that,	 (ii)	 enhancer	 activity	 patterns	 across	 tissues	 are	 concordant	 with	 the	 gene	

expression	patterns,	suggesting	that	these	epigenome	maps	reflect	cis-regulatory	circuits.	A	

broad	collection	of	human	epigenomic	maps	like	this	is	especially	interesting	as	some	of	the	

tissues	are	interrogated	in	their	embryonic	and	adult	stage,	therefore	it	is	a	useful	resource	

to	understand	epigenomic	dynamics	during	tissue	differentiation.	Moreover,	as	 it	covers	a	

broad	 collection	 of	 human	 tissues,	 it	 can	 be	 used	 to	 interrogate	 overlapping	 tissue	

regulatory	circuits	and	to	study	tissue-specific	transcriptional	regulatory	elements.	Finally,	it	

provides	 a	 powerful	 resource	 to	 elucidate	 the	 effect	 of	 non-coding	 disease	 associated	

variants.		

	

These	epigenomic	regulatory	maps	show	that	chromatin	regulatory	elements	are	spread	in	

different	points	of	the	linear	genomic	sequence,	sometimes	several	kilobases	(kb)	away	one	

from	the	other.	However,	despite	their	genomic	linear	distance,	regulatory	elements	cluster	

in	 the	 3D	 space	 allowing	 the	 synergy	 between	 them	 to	 modulate	 gene	 transcription.	

Therefore,	 although	 epigenome	 maps	 are	 powerful	 resources	 to	 interrogate	 cell-specific	

gene	expression	and	the	effect	of	non-coding	variants	by	identifying	putative	cis-regulatory	

regions,	 they	 cannot	 be	 accurately	 interpreted	 without	 characterising	 the	 3D	 chromatin	

organisation	in	the	same	tissue	(Bonev	Boyan	and	Cavalli	Giacomo,	2016).	
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1.5. Compartmentalisation	of	gene	regulation	

	

Since	 1903,	when	Ramon	 y	 Cajal	 reported	 sub-nuclear	 structures	 named	 coiled	 bodies	 or	

Cajal	 bodies	 (Gall,	 2003),	 researchers	 have	 been	 studying	 the	 chromatin	 nuclear	

organisation.	 However,	 after	more	 than	 a	 century,	 the	 scientific	 community	 still	wonders	

about	the	tremendous	organisational	challenge	presented	by	nuclear	DNA	packing.	

	

Studies	 based	 on	 light	 microscopy,	 combined	 with	 hybridisation	 techniques	 or	 electron	

microscopy,	 revealed	 that	 chromatin	 is	 structured	 in	 compartments	 that	 occupy	 defined	

territories	within	the	nucleus	(Geyer	et	al.,	2011)	(see	Fig.	7	in	section	1.5).	Different	types	

of	territories	or	compartments	have	different	features	with	an	impact	over	gene	expression.	

An	evidence	of	how	3D	chromatin	organisation	affects	gene	expression	 is	 the	presence	of	

transcription	 factories	 (Iborra	 et	 al.,	 1996a,	 1996b;	 Sutherland	 and	 Bickmore,	 2009),	 loci	

with	 a	 focal	 accumulation	 of	 the	 transcriptional	 machinery	 on	 transcribing	 genes.	 It	 has	

been	 determined	 that	 although	 the	 presence	 of	 these	 structures	 is	 a	 common	 feature	

among	 cell	 types,	 the	 number	 of	 them	 vary	 from	 hundreds	 to	 thousands.	 Based	 on	

experimental	evidences,	a	model	has	been	proposed	in	which	the	transcriptional	machinery	

is	fixed	in	different	nuclear	loci	at	pre-assembled	transcription	factories	where	genes	move	

to	be	transcribed	(Iborra	et	al.,	1996a).	Moreover,	 it	has	been	suggested	that	the	function	

behind	 this	 3D	 organisation	 in	 transcription	 factories	 may	 be	 the	 enhancement	 of	

transcription	 efficacy	 and	 facilitate	 gene	 co-regulation	 (Sutherland	 and	 Bickmore,	 2009).	

Thus,	 despite	 the	 numerous	 questions	 still	 to	 be	 addressed,	 it	 seems	 clear	 that	 3D	

chromatin	organisation	may	be	an	additional	layer	of	gene	expression	regulation	that	needs	

to	be	studied.	

	

During	the	last	decade,	knowledge	on	chromatin	structures	and	DNA	packing	has	expanded	

rapidly	thanks	to	the	development	of	chromosomal	conformation	techniques.		
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• Methods	to	study	3D	chromatin	organisation	

	

Chromatin	organisation	can	be	studied	through	two	types	of	methods:	(i)	Microscopy-based	

technologies	using	fluorescence	probes	and	(ii)	NGS-based	methods	that	capture	chromatin	

conformation	through	DNA	ligation	products.	

- Fluorescence	in	situ	conformational	method	

DNA	fluorescent	 in	situ	hybridisation	 (FISH)	has	allowed	to	visually	 interrogate	chromatin	

interactions	 thanks	 to	 the	 co-localisation	of	 two	 sets	of	 fluorescent	DNA	probes	 targeting	

two	 different	 loci	 located	 in	 linear	 distant	 space.	 As	 each	 set	 of	 probes	 is	 label	 with	 a	

different	fluorochrome,	it	is	relatively	easy	to	determine	whether	the	two	loci	interact	in	the	

same	 focal	 space	 as	 the	 resultant	 colour	would	 be	 different.	During	 the	 last	 years,	 a	 few	

variants	 of	 this	 technique	 have	 been	 developed	 to	 increase	 its	 resolution	 like	 cryo-FISH	

(Branco	et	al.,	 2008),	or	 to	be	performed	 in	3D-preserved	nuclei	 (3D-FISH)	 (Cremer	et	al.,	

2008).	

- Chromosome	conformation	capture	methods	

All	 chromosome	 conformation	 capture	 methods	 are	 founded	 in	 the	 same	 principle.	 This	

principle	 is	 the	 formation	 of	 DNA	 ligation	 products	 that	 contain	 the	 sequence	 of	 two	

interacting	loci,	which	can	be	quantified.	The	process	consists	on	formaldehyde	cross-link	a	

sample	of	interest	in	order	to	fix	topological	chromatin	contacts.	Chromatin	is	isolated	and	

digested	with	a	restriction	enzyme,	creating	pairs	of	interacting	chromatin	fragments	linked	

by	formaldehyde	covalent	bonds.	Free	edges	of	two	chromatin	fragments	are	ligated	into	a	

piece	and	then	crosslink	reversed.	As	a	result,	the	DNA	sequence	of	two	interacting	genomic	

loci	 is	 contained	 in	 the	 same	 DNA	molecule.	 The	 abundance	 of	 a	 sequence	 specific	 DNA	

molecule	directly	correlates	to	the	interaction	frequency	of	the	two	ligated	regions.	

	

Different	 topological	 techniques	 have	 been	 developed	 based	 on	 this	 principle	 in	 order	 to	

provide	a	broad	spectrum	of	options	 in	terms	of	resolution,	coverage	and	cost.	Moreover,	

those	variations	might	answer	different	scientific	questions	 (Davies	et	al.,	2017;	Dekker	et	

al.,	2013;	Wit	and	Laat,	2012).	
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Chromosome	conformation	capture	(3C).	 In	2002,	Dekker	et	al.	described	a	conformation	

technique	 that	 was	 used	 to	 demonstrate	 that	 chromatin	 interaction	 between	 regulatory	

elements	and	 target	genes	exist	 in	vivo	 (Dekker,	2002).	 	At	 the	 same	 time,	 this	 technique	

established	 the	 principle	 previously	 mentioned	 in	 which	 most	 chromatin	 conformation	

techniques	 are	 based	 on.	 The	 technique	 was	 named	 chromosome	 conformation	 capture	

(3C),	 in	which	a	 specific	 chromatin	 interaction	 is	detected	and	quantified	by	PCR.	Primers	

are	designed	to	map	two	loci	of	interest	and	pairwise	interaction	frequencies	are	computed	

by	comparing	the	application	efficiency	of	different	primer	pairs.		

	

This	technique	allowed	the	experimental	validation	of	key	statements	of	current	molecular	

biology	such	as	that	chromatin	loops	are	driven	and	stabilised	by	TFs	(Drissen,	2004)	or	CTCF	

(Splinter,	2006;	Zhao	et	al.,	2006).	

	

Circularised	chromosome	conformation	capture	(4C).	Few	years	after	3C	was	developed;	it	

was	 combined	 with	 other	 quantification	 methods	 rather	 than	 PCR,	 such	 as	 microarrays	

(Simonis	et	al.,	2006)	or	NGS	 (Splinter	and	de	Laat,	2011),	 in	order	 to	 interrogate	a	 larger	

number	of	 possible	 target	 loci	 interacting	with	 a	 specific	 locus	of	 interest.	 This	 technique	

was	 	 originally	 called	 chromosome	 conformation	 capture	on-chip	 (4C)	 and	 its	 known	as	 a	

“one	vs	all”	strategy	in	contraposition	to	the	“one	vs	one”	strategy	carried	out	by	3C.		

	

Chromosome	conformation	capture	carbon	copy	(5C).	In	order	to	increase	the	interrogated	

space,	Dostie	and	colleagues	reported	a	technique	that	follows	a	“many	vs	many”	strategy	

and	 is	called	chromosome	conformation	capture	carbon	copy	 (5C)	 (Dostie	et	al.,	2006).	 In	

5C,	3C	templates	are	hybridised	with	a	collection	of	oligonucleotides	that	map	a	set	of	loci	

of	 interest.	 Pairs	 of	 nucleotides	mapping	 two	 interacting	 loci	 are	 located	 in	 enough	 close	

proximity	 to	 be	 ligated.	 Taking	 advantage	 of	 a	 universal	 sequence	 present	 in	 the	

oligonucleotides,	 ligation	 products	 are	 used	 as	 template	 in	 a	 multiplex	 PCR.	 As	 in	 4C,	

amplified	 ligation	 products	 are	 quantified	 by	 microarrays	 or	 NGS.	 Although	 it	 allows	 to	

interrogate	many	 interactions	 in	a	 single	experiment,	5C	presents	a	 lower	 resolution	 than	

other	chromatin	conformation	techniques	as	there	can	be	loci	to	which	no	primers	can	be	

designed	(Wit	and	Laat,	2012).	
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High-throughput	conformation	capture	(Hi-C).	In	2009,	Lieberman-Aiden	et	al.	developed	a	

conformation	 technique	 that	 has	 an	 “all	 vs	 all”	 strategy	 and	 led	 to	 the	discovery	of	 TADs	

(Dixon	et	al.,	2012;	Nora	et	al.,	2012)	named	Hi-C	(Lieberman-Aiden	and	Berkum,	2009).	This	

technique	 has	 a	 higher	 efficiency	 in	 comparison	 to	 the	 previously	 described	 3C	 based	

techniques.	 This	 is	 achieved	 by	 the	 labelling	with	 biotin	 of	 the	DNA	 fragments	 resultants	

from	a	 ligation,	which	 can	 be	 selected	 by	 biotin	 pull-down	before	 the	DNA	 amplification.		

The	 biotin	 selected	 DNA	 fragments	 are	 used	 as	 starting	 material	 for	 a	 NGS	 library	

preparation.	 The	 resultant	 Hi-C	 data	 is	 used	 to	 generate	 a	 genome-wide	 matrix	 of	

interaction	frequencies.		

	

One	major	limitation	of	standard	Hi-C	is	its	resolution.	Due	to	library	complexity	and	cost,	it	

is	 difficult	 to	 go	 lower	 than	 10-20	 kb	 of	 resolution	 (Wit	 and	 Laat,	 2012).	 A	 Hi-C	 variant,	

named	 in-situ	Hi-C,	 is	 capable	 to	 increase	 the	 resolution	 to	1-5	kb	 (Rao	et	al.,	2014).	This	

increase	 in	 resolution	 is	 achieved	 performing	 the	 DNA	 restriction	 and	 ligation	 in	 intact	

nuclei.	

	

Chromatin	 interaction	 analysis	 by	 paired-end	 tag	 (ChIA-PET).	 ChIA-PET	 is	 the	 result	 of	

pairing	 chromatin	 immunoprecipitation	 (ChIP)	 with	 3C.	 It	 allows	 the	 interrogation	 of	

chromatin	interactions	between	loci	bound	by	a	protein	of	interest	(Fullwood	et	al.,	2009).	

In	 this	 technique,	 after	 the	 digestion	 and	 re-ligation	 step	 and	 before	 the	 NGS	 library	

preparation,	a	sub-set	of	 ligation	chromatin	 fragments	are	selected	by	pull-down	using	an	

antibody.	 This	 technique	 allowed	 the	 scientific	 community	 to	 give	 insight	 into	 how	 key	

chromatin	structure	proteins	such	as	CTCF	or	Cohesin	may	act	(Dowen	et	al.,	2014;	Ji	et	al.,	

2016;	Tang	et	al.,	2015).	

	

Recently,	 a	 new	 method	 named	 HiChIP	 has	 appeared	 as	 an	 alternative	 to	 ChIA-PET	

(Mumbach	 et	 al.,	 2016).	 Following	 the	 same	 reasoning	 as	 in-situ	 HiC,	 sample	 fixation	 is	

performed	 in	 intact	nucleus	 to	 reduce	 the	 signal-to-noise	 ratio	and	 to	 improve	 chromatin	

interaction	 capture	 efficiency.	 These	methodological	 differences	 allowed	HiChIP	 a	 10-fold	

increase	in	coverage	and	at	the	same	time	it	required	100	times	less	starting	material	than	

ChIA-PET.	
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Promoter	capture	Hi-C	(pcHi-C).	Concerned	that	Hi-C	methods	may	not	be	able	to	reflect	all	

complexity	 involved	 in	 gene	expression	 regulation,	 as	 consequence	of	 their	 limitations	on	

spatial	 resolution;	 in	 2015	 Peter	 Fraser’s	 lab	 reported	 a	 new	 variant	 of	 Hi-C	 named	

promoter	capture	Hi-C	(pcHi-C).	This	variant	achieves	single	HindIII	restricted	DNA	fragment	

resolution	by	reducing	NGS	library	complexity,	allowing	a	higher	coverage	in	a	cost-efficient	

manner.	 As	 it	 happens	with	 ChIA-PET,	 this	 reduction	on	 library	 complexity	 is	 obtained	by	

selecting	a	sub-set	of	chromatin	interactions.	In	order	to	select	a	highly	informative	sub-set	

of	interactions,	Fraser	and	colleagues	used	a	collection	of	RNA	probes	against	almost	22,000	

annotated	promoters,	which	were	used	to	pull-down	promoter	centred	interactions	before	

NGS	library	preparation	(Mifsud	et	al.,	2015)	(Fig.	6).	Thus,	pcHi-C	maps	contain	almost	all	

gene	 regulatory	 circuitries	 in	 a	 specific	 cellular	 context,	 helping	 to	 understand	 how	

regulatory	regions	modulate	gene	expression	and	the	possible	effect	of	non-coding	genomic	

variants	(Javierre	et	al.,	2016;	Mifsud	et	al.,	2015;	Schoenfelder	et	al.,	2015).		

	
	
Fig.	6:	Promoter	capture	Hi-C	experimental	design.	The	sample	is	fixed	with	formaldehyde,	digested	
with	HindIII	and	re-ligated	to	generate	a	Hi-C	library	(steps	1-4).	The	Hi-C	library	is	hybridised	using	
biotin-RNA	 “baits”	 against	 annotated	 promoters	 (step	 5b).	 Chromatin	 interactions	 involving	
annotated	 promoters	 are	 selected	 by	 streptavidin	 pulldown,	 generating	 a	 pcHi-C	 library	 that	 is	
analysed	 by	 next-generation	 sequencing	 (NGS).	 Reprinted	 by	 permission	 from	 Genome	 Research,	
Schoenfelder	et	al.,	2015;	copyright	(2015).	
	
Following	a	similar	reasoning	and	design	as	pcHi-C,	there	are	2	other	methods	that	reduce	

library	 complexity	 using	 collections	 of	 probes	 against	 target	 regions	 named	 Capture-C	
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(Davies	et	al.,	2015)	and	HiCap	(Sahlén	et	al.,	2015).	These	methods	differ	in	which	Capture-

C	 uses	 DNA	 probes,	 theoretically	 with	 a	 higher	 efficiency	 than	 RNA	 probes;	 while	 HiCap	

implements	 a	 4-cutter	 enzyme	 instead	 of	 a	 6-cutter	 enzyme,	 that	 should	 give	 a	 higher	

resolution.	 However,	 to	 the	 best	 of	 my	 knowledge	 there	 is	 no	 published	 comparison	

between	the	3	techniques	to	determine	the	benefits	of	subtle	changes	from	the	pcHi-C.	

	

Genome	architecture	mapping	 (GAM).	Despite	 3C	based	methods	 are	 a	 powerful	 tool	 to	

study	 chromatin	 conformation,	 it	 is	 important	 to	 keep	 in	 mind	 their	 limitations	 due	 to	

technical	 aspects;	 such	 as	 bias	 due	 restriction	 sites	 density	 or	 limitations	 to	 quantify	

simultaneous	contacts	from	>2	loci.		

	

Recently,	 Ana	 Pombo	 and	 colleagues	 have	 combined	 ultrathin	 cryosectioning	 with	 laser	

microdissection	 and	 DNA	 sequencing	 to	 study	 chromatin	 conformation	 without	 the	

limitations	associated	 to	3C	methods.	This	method	has	been	named	 genome	architecture	

mapping	 (GAM)	 (Beagrie	et	 al.,	 2017).	 Thus,	 genome	wide	 chromatin	 contact	 frequencies	

are	inferred	by	determining	the	presence	of	any	genomic	loci	in	a	set	of	nuclei	cryosections	

through	 NGS.	 Hence,	 loci	 in	 close	 3D	 proximity	 are	 frequently	 detected	 in	 the	 same	

cryosection	despite	their	linear	genomic	distance.	

	

• 	Chromatin	compartments	

	

As	 previously	 mentioned,	 the	 knowledge	 on	 nucleus	 organisation	 has	 been	 extensively	

expanded	during	the	last	decade.	The	following	sections	summarise	the	current	knowledge	

on	 chromatin	 compartments	 (Dekker	 et	 al.,	 2013)	 (Fig.	 7)	 and	 chromatin	 interacting	

factors.	
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Fig.	 7:	 	 Nuclear	 chromatin	 compartmentalisation.	 Diagram	 exemplifying	 how	 chromatin	 can	 be	
compartmentalised	 in	 LADs,	 A	 (blue)	 and	 B(red)	 compartments	 and	 TADs.	 Adapted	 by	 permission	
from	Macmillan	Publishers	Ltd:	Nature	Reviews	Genetics,	Job	Dekker	et	al.,	2013;	copyright	(2013).	
	
The	 nucleolus	 and	 nucleolus-associated	 chromatin	 domains	 (NADs).	 The	 ribosome	 is	 a	

highly	 relevant	 protein	 complex	 required	 to	 translate	 the	 RNA	 to	 peptides,	 an	 essential	

process	for	cell	functionality.	An	average	growing	mammalian	cell	contains	several	millions	

of	 ribosomes	 that	must	be	 synthesised	 in	each	cell	division	 (Cooper	and	Hausman,	2007).	

Therefore,	 it	 is	 not	 surprising	 that	 to	 fulfil	 this	 high	 demand	 evolution	 has	 led	 to	 several	

strategies;	 such	 as	 the	 presence	 of	 hundreds	 of	 copies	 of	 the	 ribosomal	 genes,	 the	

combined	work	of	two	RNA	polymerases	(RNA	pol	I	and	III)	or	the	formation	of	a	specialised	

chromatin	compartment	named	nucleolus.	

	

This	nuclear	compartment	can	be	observed	by	electron	microscopy	(Pederson,	2011)	or	light	

microscopy,	 due	 to	 its	 peripheral	 heterochromatin	 enrichment.	 The	 nucleolus	 is	 the	 3D	

chromatin	 space	 where	 nucleolus	 organising	 regions	 (NORS)	 cluster.	 NORS	 are	 genomic	

regions	 that	codify	 for	 several	 tandem	copies	of	 the	 ribosomal	genes.	So,	 the	nucleolus	 is	

the	nuclear	 spherical	 compartment	where	 ribosomal	DNA	 transcription	 (rDNA),	 ribosomal	

RNA	(rRNA)	processing	and	ribosome	biogenesis	occur.	
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Recent	 studies	 (van	 Koningsbruggen	 et	 al.,	 2010;	 Németh	 et	 al.,	 2010),	 in	 which	 DNA	

sequences	 bound	 to	 the	 nucleolus	were	 characterised	 by	 NGS,	 reported	 the	 presence	 of	

nucleolus-associated	chromatin	domains	(NADs).	These	studies	showed	that	NADs	are	not	

only	enriched	in	rDNA	but	also	centromere	or	telomere	loci	with	a	high	density	of	repetitive	

sequences,	 gene	deserts	 and	heterochromatin.	 Thus,	 these	 studies	proved	 that	 there	 is	 a	

specific	 3D	 chromatin	 organisation	 around	 the	nucleolus	 periphery	with	 a	 likely	 effect	 on	

gene	expression	regulation	(Padeken	and	Heun,	2014;	Pombo	and	Dillon,	2015).	

	

Lamin-associated	 domains	 (LADs).	 It	 has	 been	 observed,	 that	 as	 it	 happens	 around	 the	

nucleolus,	 there	 is	 an	 enrichment	 of	 highly	 condensed	 chromatin	 contacting	 the	 Lamin	

meshwork	located	at	the	internal	side	of	the	nuclear	envelope.	Thus,	using	a	technique	to	

determine	 interactions	between	DNA	 fragments	and	nuclear	 Lamin,	named	Lamin-DamID,	

researchers	have	defined	Lamin-associated	domains	(LADs)	(Guelen	et	al.,	2008).		

	

Studies	 done	 by	 Susan	 Gasser	 and	 colleagues	 showed	 the	 key	 role	 of	 LADs	 on	 gene	

repression	 during	 differentiation	 (Gruenbaum	 and	 Foisner,	 2015;	 Mattout	 et	 al.,	 2015;	

Towbin	et	al.,	2010)	and	B.	van	Steensel	et	al.	reported	that	LADs	can	be	divided	in	two	sub-

categories:	(i)	constitutive	(cLADs)	which	are	conserved	among	tissues	and	species,	and	(ii)	

facultative	(fLADs)	that	are	tissue-specific	(Meuleman	et	al.,	2013;	Pombo	and	Dillon,	2015).	

Therefore,	 LADs	 are	 genomic	 regions	 with	 length	 size	 from	 10kb	 to	 100Mb	 located	 at	

nuclear	periphery,	frequently	delimited	by	CTCF	sites,	that	are	involved	in	gene	expression	

regulation	through	the	PcG	repression	and	heterochromatin	formation.	

	

A	 and	 B	 compartments.	 Based	 on	 Hi-C	 studies,	 Dekker’s	 lab	 confirmed	 the	 presence	 of	

chromosome	 territories	 and	 described	 the	 segmentation	 of	 the	 nucleus	 in	 several	mega-

base	compartments.	This	study	reported	that	there	are	two	types	of	compartments,	A	and	

B;	and	that	chromatin	interactions	tend	to	occur	between	regions	located	in	the	same	type	

of	compartment	and	depleted	between	compartment	A	and	B.	Lieberman-Aiden	et	al.	also	

reported	 that	 the	 A	 compartment	 is	 more	 frequently	 associated	 with	 active	 transcribed	

regions	 containing	 active	 epigenomic	 marks	 than	 compartment	 B.	 Moreover,	 although	

those	compartments	seem	to	be	quite	homogeneous	between	cell	types	(Lieberman-Aiden	
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and	 Berkum,	 2009;	 Schmitt	 et	 al.,	 2016)	 discrepancies	 between	 cell	 types	 tend	 to	 be	

coherent	with	cell–specific	epigenomic	states	and	gene	expression	patterns.	

	

A	recent	study	that	achieved	very	high	resolution	(Rao	et	al.,	2014)	reported	that	these	two	

compartment	types	can	be	further	divided	in	6,	A	1-2	and	B	1-4.		A1	and	A2	compartments	

are	still	enriched	in	active	chromatin	marks	and	one	of	the	main	differences	between	them	

seems	to	be	the	replication	timing.	Regarding	the	B	compartments,	B1	is	highly	enriched	in	

PcG	repression,	B2	and	B3	are	especially	enriched	in	heterochromatic,	NADs	and	LADs;	while	

B4	encompassed	many	genes	from	the	KRAB-ZNF	family	with	bivalent	marks.	

	

Topological	associating	domains	(TADs).	Studying	the	genome	3D	chromatin	organisation	in	

human	and	mouse	cells	using	Hi-C,	Dixon	et	al.	observed	that	chromatin	interactions	tend	to	

be	contained	within	domains	named	topological	associating	domains	(TADs)	(Dixon	et	al.,	

2012).	Therefore,	TADs	could	delimitate	the	genomic	space	 in	which	a	gene	promoter	can	

communicate	with	distal	regulatory	regions.		

	

As	in	LADs,	the	structural	protein	CTCF	is	highly	enriched	at	TAD	borders	as	it	is	present	in	

>75%	 of	 them	 (Dixon	 et	 al.,	 2012).	 This	 indicates	 that	 CTCF	 is	 involved	 in	 TAD	 border	

formation	 (Dixon	 et	 al.,	 2012;	 Nora	 et	 al.,	 2012)	 although	 it	 is	 probably	 not	 the	 sole	

mechanism.	 Moreover,	 disruption	 of	 CTCF	 at	 TAD	 borders	 has	 confirmed	 its	 role	 as	

insulator,	blocking	inter-TAD	chromatin	interactions	(Lupiáñez	et	al.,	2015,	2016;	Nora	et	al.,	

2012).		

	

It	has	been	observed	 that	TADs	borders	are	highly	conserved	between	 tissues	 (Schmitt	et	

al.,	2016)	and	species	(Dixon	et	al.,	2012)	and	that	co-regulated	genes	tend	to	be	contained	

in	the	same	TAD	(Le	Dily	et	al.,	2014;	Nora	et	al.,	2012).	Additionally,	several	studies	have	

revealed	that	 intra-TAD	chromatin	 interactions	can	be	tissue-specific	 (Javierre	et	al.,	2016;	

Phillips-Cremins	 et	 al.,	 2013;	 Rao	 et	 al.,	 2014;	 Schmitt	 et	 al.,	 2016),	 which	may	 result	 in	

tissue-specific	 gene	 expression.	 This	 is	 coherent	 with	 the	 observation	 of	 a	 hierarchical	

chromatin	organisation	formed	by	TAD,	sub-TADs	(Phillips-Cremins	et	al.,	2013)	and	meta-

TADs	(Fraser	et	al.,	2015).	
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Meta-TAD	organisation	is	defined	by	interactions	between	adjacent	TADs	and	it	extends	to	

encompass	 the	whole	 chromosome	 (Fraser	 et	 al.,	 2015).	 It	 has	 been	 observed	 that	 TADs	

within	the	same	meta-TAD	form	part	of	the	same	(A	or	B)	compartment.	Moreover,	meta-

TAD	hierarchy	 is	also	concordant	with	the	 localisation	on	LAD	borders.	As	 it	happens	with	

the	A	and	B	compartment	transition,	it	has	been	reported	that	the	organisation	of	the	meta-

TAD	 hierarchical	 tree	 changes	 during	 development	 correlates	 with	 changes	 on	 gene	

expression.		

	

Studies	 that	 achieved	higher	 resolution	 than	 standard	Hi-C	 revealed	 the	presence	of	 sub-

TAD	structures,	that	can	be	tissue-specific	or	constitutive	(Phillips-Cremins	et	al.,	2013;	Rao	

et	al.,	2014).	Phillips-Cremins	and	colleagues	performed	high-resolution	5C	in	mouse	neural	

progenitor	(NPC)	and	mouse	embryonic	stem	(mES)	cells	in	seven	genomic	loci.	In	this	study,	

Phillips-Cremins	et	al.	identified	260	constitutive,	165	NPC	and	86	mES	specific	interactions.	

A	 characterisation	 of	 those	 interactions	 revealed	 that	 the	 ones	 tissue-specific	 tend	 to	 be	

short	(<300	kb),	mediated	by	Cohesin	and	Mediator	complex,	and	occur	between	enhancer	

and	promoters,	whereas	constitutive	 interactions	are	 longer	(600bp-1kb)	and	mediated	by	

CTCF	and	Cohesin.	

	

Recently,	a	study	carried	out	 in	Bing	Ren’s	 lab	 in	which	they	performed	Hi-C	 in	21	human	

samples,	 covering	 14	 tissues	 and	 7	 cell	 lines,	 reported	 the	 presence	 of	 tissue	 specific	

structures	 within	 TADs.	 Schmitt	 and	 colleagues	 detected	 the	 presence	 of	 frequently	

interacting	 regions,	 or	 FIREs,	 by	 identifying	 loci	 with	 an	 unexpectedly	 high	 contact	

frequency.	 FIREs	 are	 highly	 tissue	 specific,	 as	 60%	 are	 only	 present	 in	 1	 or	 2	 of	 the	 21	

samples,	 and	 positioned	 near	 tissue	 specific	 genes.	 FIREs	 have	 a	 high	 overlap	 with	

annotated	 enhancers	 and	 especially	 super-enhancers.	 Thus,	 suggesting	 that	 the	 FIREs	 are	

the	 result	 of	 tissue-specific	 interactions,	 between	enhancer	 and	genes,	 conducted	by	 two	

well-known	structural	proteins,	Cohesin	and	CTCF.	This	study	provides	additional	evidence	

on	 how	 tissue	 specific	 chromatin	 interactions	 are	 associated	 to	 tissue-specific	 gene	

expression,	probably	by	allowing	the	co-localisation	of	promoters	and	enhancers	in	close	3D	

proximity	 (Schmitt	et	al.,	2016).	However,	 it	 is	 still	 limited	by	 the	 low	 resolution	obtained	

with	standard	Hi-C	due	to	the	low	sequencing	coverage	achievable.			
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• Chromatin	loops	and	regulatory	interactions	

	

The	smallest	structure	in	3D	chromatin	organisation	is	the	chromatin	loop.	Conceptually	it	is	

very	basic	but	biologically	it	is	becoming	a	very	active	and	complex	topic.	As	it	could	be	done	

with	a	string,	chromatin	can	be	folded	due	to	its	polymeric	nature;	 locating	two	loci	(from	

the	same	chromosome)	in	closer	tri-dimensional	proximity	than	in	linear	proximity.	

	

Chromatin	 loops	 can	 be	 defined	 as	 structural	 or	 regulatory	 (Krijger	 and	 de	 Laat,	 2016).	

Structural	chromatin	loops	are	formed	by	key	structural	proteins,	such	as	CTCF	and	Cohesin,	

and	 their	 role	 is	 to	 create	 the	 structures	 that	 sub-compartmentalise	 chromosomes	 into	

topological	domains.	 	As	chromatin	compartmentalisation	 is	similar	between	cell	 type	and	

species,	 it	would	 not	 be	 surprising	 for	 these	 interactions	 to	 be	 highly	 ubiquitous.	 On	 the	

other	 hand,	 enhancer-promoter	 regulatory	 loops	 seem	 to	 be	 driven	 by	 the	 cooperative	

work	of	ubiquitous	structural	proteins	and	tissue-specific	TFs.	Moreover,	these	interactions	

frequently	 occur	 in	 a	 tissue-specific	 manner	 within	 tissue-invariant	 TAD	 structures.	

Therefore,	 it	 is	 reasonable	 to	 hypothesise	 that	 tissue-specific	 chromatin	 loops	 may	 be	

involved	in	tissue-specific	gene	expression	regulation.	

	

Many	 models	 have	 been	 proposed	 to	 determine	 the	 mechanism	 of	 chromatin	 loop	

formation,	but	 recently	 the	extrusion	model	 is	 standing	out	 from	the	 rest.	As	 it	has	been	

reviewed	by	Professor	Matthias	Merkenschlager	and	Elphège	P.	Nora,	this	model	is	mainly	

driven	 by	 CTCF	 and	 Cohesin	 (Sanborn	 et	 al.,	 2015).	 The	 chromatin	 folding	 starts	 with	

Cohesin,	 which	 acts	 as	 an	 extruding	 factor.	 The	 chromatin	 fibre	 is	 slid	 through	 the	 ring	

structure	 formed	by	 the	Cohesin	complex	creating	a	 loop.	This	process	 continues	until	 (a)	

the	Cohesin	 complex	dissociates,	 unfolding	 the	 chromatin,	 or	 (b)	 the	 loop	 is	 anchored	by	

CTCF	sites	at	both	ends	(Fig.	8)	(Merkenschlager	and	Nora,	2016).	

	
	

Fig.	8:	Extrusion	model.	Diagram	illustrating	the	main	concepts	of	the	extrusion	model	in	which	the	
chromatin	fibres	slid	through	the	Cohesin	complex,	forming	a	loop.	This	process	continues	until	the	
loop	is	stabilised	by	CTCF	that	acts	as	anchor	points	at	both	ends	of	the	loop.	Adapted	by	permission	
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from	 Annual	 Review	 of	 Genomics	 and	 Human	 Genetics,	Merkenschlager	 &	 Nora,	 2016;	 copyright	
(2016).	
	
This	 model	 fits	 with	 experimental	 observations	 such	 as	 the	 fusion	 of	 two	 adjacent	

topological	domains	when	a	CTCF	boundary	 is	 lost	 (Nora	et	al.,	2012).	However,	 there	are	

questions	 that	 remain	unanswered:	 (i)	Which	 is	 the	 initiation	mechanism	of	 the	extrusion	

loop	formation?	(ii)	What	drives	it?	(iii)	Despite	CTCF	motifs	in	convergent	orientation	being	

preferentially	 used,	which	 could	 be	 the	 read-out	mechanism?	 (Merkenschlager	 and	Nora,	

2016).		

	

An	 aspect	 of	 this	 model	 that	 needs	 to	 be	 considered	 is	 that	 it	 is	 based	 on	 ubiquitously	

expressed	proteins	which	have	ubiquitous	genomic	localisation	among	cell	types	(Cuddapah	

et	 al.,	 2008;	 Kim	 et	 al.,	 2008;	Ong	 and	 Corces,	 2014).	 This	 aspect	 is	 concordant	with	 the	

observation	that	tri-dimensional	chromatin	conformation	can	be	surprisingly	similar	among	

cell	types	(Schmitt	et	al.,	2016).	However,	this	model	does	not	contemplate	the	role	of	other	

key	 actors,	 such	 as	 the	 Mediator	 complex	 or	 non-coding	 RNAs,	 which	 may	 have	 an	

important	task	on	tissue-specific	chromatin	loop	formation.				

	

• Role	of	interacting	factors	in	3D	chromatin	organisation	

	

Chromatin	 is	 bent	 in	 the	 3D	 space	 thanks	 to	 a	 broad	 collection	 of	 chromatin	 interacting	

factors,	such	as	CTCF,	Mediator	or	non-coding	RNAs;	which	are	reviewed	in	this	section.	

	

Lamin.	Lamin	is	a	family	of	filament	proteins	that	form	a	meshwork	in	the	internal	face	of	

the	 nuclear	 envelope.	 These	 scaffold-like	 proteins	 have	 been	 associated	 with	

heterochromatin	 formation	 and	 localisation	 within	 the	 nucleus,	 tissue-specific	 gene	

expression	 and	 3D	 chromatin	 organisation	 (Burke	 and	 Stewart,	 2013;	 Gruenbaum	 and	

Foisner,	2015;	Mattout	et	al.,	2015).	

	

CTCF.	 The	 CCCTC-binding	 factor	 or	 CTCF	 is	 one	 of	 the	most	 studied	 chromatin	 structural	

protein	 in	 invertebrates.	This	factor	 is	ubiquitously	expressed	and	40-70%	of	 its	chromatin	

binding	sites	are	conserved	among	cell	types	(Cuddapah	et	al.,	2008;	Kim	et	al.,	2008;	Ong	

and	 Corces,	 2014).	 Although	 originally	 it	was	 described	 as	 a	 barrier	 or	 enhancer	 blocking	
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insulator	 (Bell	et	al.,	1999;	Kellum	and	Schedl,	1991);	more	recent	studies	suggest	 that,	 in	

fact,	CTCF	may	act	as	a	chromatin	looping	facilitator	(Ong	and	Corces,	2014).	This	is	clearly	

exemplified	in	a	work	done	by	Felsenfeld	and	colleagues,	in	which	they	interrogated	the	3D	

chromatin	organisation	around	the	insulin	locus	in	human	pancreatic	islets.	In	this	study	the	

authors	 discovered	 a	 chromatin	 interaction	 between	 the	 insulin	 promoter	 and	 STY8,	 an	

important	 gene	 for	 insulin	 secretion.	 The	 authors	 also	 showed	 that	 the	 transcription	 of	

these	 two	 genes	 was	 regulated	 by	 their	 chromatin	 interaction;	 communication	 that	 was	

perturbed	by	CTCF	depletion	 (Xu	et	al.,	2011).	Thus,	 this	and	other	 studies	have	provided	

clear	 evidences	 that	 CTCF	 is	 required	 for	 at	 least	 a	 sub-set	 of	 chromatin	 interactions	

(Phillips-Cremins	and	Corces,	2013).	

	

It	 is	 also	 known	 that	 CTCF	 binds	 to	 a	 relatively	 long	 (~20bp)	 and	 well	 characterised	

consensus	sequence	(Kim	et	al.,	2008).	Although	the	precise	mechanism	is	unknown,	it	has	

been	 proposed	 that	 two	 CTCF	 molecules	 are	 able	 to	 interact	 forming	 a	 homodimer,	

preferentially	between	sequences	with	convergent	orientation	 (Merkenschlager	and	Nora,	

2016;	 Tang	 et	 al.,	 2015;	 de	Wit	 et	 al.,	 2015).	 Additionally,	 the	 CTCF	 consensus	 sequence	

contains	a	CpG	dinucleotide,	which	can	be	differentially	methylated	affecting	its	binding	and	

consequently	its	activity	as	structural	protein	(Engel	et	al.,	2004).	

	

Despite	DNA	methylation	being	able	 to	modulate	CTCF	activity,	 less	 than	50%	of	 the	 cell-

type-specific	CTCF	binding	sites	seem	to	be	DNA	methylation	dependent	(Wang	et	al.,	2012),	

proving	 that	 other	 factors	 must	 be	 involved	 in	 CTCF	 binding	 regulation.	 Among	 all	 the	

proteins	 interrogated	 on	 regulating	 CTCF	 activity	 only	 Cohesin	 seems	 to	 be	 essential	 for	

CTCF	function.	Therefore,	it	is	not	unexpected	that	more	than	50%	of	CTCF	binding	sites	are	

also	co-occupied	by	 it	 (Ong	and	Corces,	2014;	Phillips-Cremins	and	Corces,	2013;	Rubio	et	

al.,	2008;	Wendt	et	al.,	2008).	

	

Cohesin.	 Cohesin	 is	 a	 protein	 complex	 that	 forms	a	 ring-like	 structure,	which	was	 initially	

studied	 by	 its	 role	 in	 sister	 chromatin	 cohesion	 during	 cell	 division	 (Gause	 et	 al.,	 2008;	

Nasmyth	 and	 Haering,	 2009).	 Recently	 it	 has	 been	 described	 that	 this	 structural	 protein	

complex	may	have	an	 important	 role	 in	 chromatin	 loop	 formation	and	 stabilization	by	 its	

cooperative	 role	 with	 CTCF	 (Merkenschlager	 and	 Nora,	 2016).	 Moreover,	 it	 has	 been	
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reported	that	the	Cohesin	complex,	jointly	with	Mediator,	is	involved	in	tissue-specific	gene	

expression	through	the	formation	of	enhancer-promoter	loops	(Kagey	et	al.,	2010).	

	

Condensin.	A	 recent	 publication	 showed	 that	 Condensin	 could	 be	 as	 important	 as	 other	

structural	proteins	such	as	Cohesin	for	(yeast)	topological	organisation	(Kim	et	al.,	2016).	It	

was	already	known	that	Condensin	frequently	co-localises	with	Cohesin	and	it	is	involved	in	

chromatin	segmentation,	but	this	study	showed	that	their	role	may	occur	at	different	scales.	

The	authors	of	this	study	observed	that	in	S.	cerevisiae,	Condensin	is	involved	in	long	range	

interactions	creating	domains	with	a	300	kb	median	size.	In	contrast,	Cohesin	is	involved	in	

shorter	 interactions	creating	domains	with	a	70	kb	median	sizes	and	contained	within	the	

Condensin	 mediated	 domains.	 Moreover,	 Condensin	 mediated	 boundaries	 frequently	

interact	 with	 centromeric	 regions,	 suggesting	 that	 this	 organisation	 may	 be	 especially	

relevant	during	mitosis.		

	

Mediator.	Mediator	complex	facilitates	communication	between	enhancer	and	promoters,	

probably	 due	 its	 large	 volume.	 Mediator	 is	 used	 as	 a	 scaffold	 to	 accommodate	 the	

transcriptional	machinery	at	the	promoter	and	at	the	same	time	it	interacts	with	the	TFs	of	

multiple	 enhancers	 at	 different	 chromatin	 loci.	 Although	 it	 is	 not	 essential,	 Mediator	 is	

highly	 relevant	 for	 chromatin	 loop	 formation	 and	 stability	 (Allen	 and	 Taatjes,	 2015).	 In	

addition	 to	 Cohesin,	 it	 has	 been	 reported	 that	Mediator	 complex	 binding	 and	 chromatin	

loop	 formation	 is	 modulated	 by	 the	 interaction	 with	 a	 class	 of	 enhancer-like	 long	 non-

coding	RNAs	named	activating	lncRNAs	(Lai	et	al.,	2013).	

	

Non-coding	RNAs.	 It	has	been	observed	 that	a	 large	proportion	of	 the	 transcribed	RNA	 is	

not	translated	to	proteins	(Fantom	Consortium,	2005).	Non-coding	RNAs	(ncRNAs)	is	a	broad	

term	 that	 encompasses	 a	 large	 compendium	 of	 transcripts	 with	 different	 features	 and	

functions.	 Non-coding	 RNAs	 are	 involved	 in	 gene	 expression	 regulation	 through	 a	 wide	

spectrum	of	mechanisms,	from	interaction	with	TFs	and	chromatin	remodelers	(Rinn	et	al.,	

2007)	 to	 regulating	 mRNA	 stability	 (Kretz	 et	 al.,	 2012).	 Non-coding	 RNA	 have	 been	

extensively	 reviewed	 in	Rinn	&	Chang,	2012.	However,	 this	 section	will	 illustrate	how	two	

well-known	classes	of	ncRNAs,	lncRNA	and	eRNAs,	can	regulate	gene	expression	through	3D	

chromatin	organisation.	
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- lncRNAs.	 Long	 non-coding	 RNAs	 (lncRNA)	 are	 >200bp	 non-coding	 RNA	 low-

transcribed	molecules	preferentially	with	a	nuclear	localisation.	Currently,	more	than	

150,000	human	lncRNAs	have	been	identified	(Zhao	et	al.,	2016)	and	the	function	of	

the	 vast	 majority	 is	 still	 unknown.	 However,	 based	 on	 their	 characteristics	 it	 has	

been	proposed	that	some	of	them	may	have	a	role	in	gene	expression	regulation	and	

nuclear	architecture	organisation,	with	already	a	few	examples	(reviewed	in	Fatica	&	

Bozzoni,	2014;	Rinn	&	Chang,	2012).	

	

Prof.	 John	 Rinn,	 proposed	 the	 “Cat’s	 Cradling”	 model	 in	 which	 cell-type	 specific	

lncRNA	facilitate	 the	 formation	of	chromatin	compartments	by	acting	as	 landscape	

markers	 for	 architectural	 proteins	 (such	 as	 Lamin),	 which	 pull	 the	 DNA	 polymeric	

chromatin	 fibres.	 Therefore,	 by	 changing	 chromatin	 organisation,	 cell-type	 specific	

lncRNA	may	 participate	 on	 wiring	 cell-specific	 transcriptional	 programs	 (Melé	 and	

Rinn,	2016).	

	

- eRNAs.	eRNA	are	 short	non-coding	RNAs	with	 a	 short	 lifetime	and	generated	as	 a	

result	 of	 transcriptional	 process	 at	 active	 enhancers.	Most	 eRNA	 present	 a	 5’	 cap	

RNA,	 are	 not	 spliced	 or	 poly-adenylated	 and	 come	 from	 a	 bi-directional	

transcription.	 However,	 there	 is	 a	 small	 proportion	 of	 mono-directional	 poly-

adenylated	eRNAs	(Andersson	et	al.,	2014;	Djebali	et	al.,	2012;	Lam	et	al.,	2014).		

	

It	has	been	hypothesised	that	eRNA	may	have	3	possible	roles:	(i)	“noise”	generated	

as	 consequence	 of	 an	 enhancer-promoter	 interaction,	 (ii)	 by-product	 of	 a	

transcriptional	 process	 in	 the	 enhancer	 required	 for	 its	 activation	 or	 (iii)	 active	

element	 required	 for	 enhancer	 activity.	 Despite	 not	 been	 mutually	 exclusive,	 the	

latest	is	the	most	likely	as	recent	evidence	show	that	eRNA	can	have	an	active	role	in	

the	 formation	 and	 stabilisation	 of	 enhancer-promoter	 interactions,	 potentially	 by	

interacting	with	the	Cohesin	complex	(as	reviewed	by	Lam	et	al.,	2014).	
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1.6. Tissue-specific	transcriptional	circuitries	

	

The	 development	 of	 NGS	 techniques	 to	 measure	 gene	 transcription	 has	 allowed	 the	

characterisation	of	gene	expression	profiles	in	a	large	collection	of	tissues	and	samples.	The	

analysis	of	 these	gene	expression	datasets	has	 confirmed	 that	 cell	 types	and	 tissues	have	

characteristic	gene	expression	patterns.	Thus,	 it	suggests	that	gene	expression	is	managed	

by	 tissue-specific	 transcriptional	 circuitries,	 which	 form	 gene	 pathways	 that	 are	

interconnected	and	regulate	each	other	at	different	levels	(Graf	and	Enver,	2009;	Marbach	

et	al.,	2016;	Neph	et	al.,	2012;	Saint-André	et	al.,	2016)	(Fig.	9).	

	

	
Fig.	9:	Tissue-specific	gene	regulation.	Tissue-specific	gene	expression	is	driven	by	the	cooperative	
work	of	LDTFs	and	other	proteins	that	bind	to	different	cis-regulatory	elements	such	as	enhancers	
(enh.)	 or	 promoters.	 Adapted	 by	 permission	 from	 Macmillan	 Publishers	 Ltd:	 Nature	 Reviews	
Molecular	Cell	Biology,	Krijger	&	de	Laat,	2016;	copyright	(2016).	
	

Although	 complete	 transcriptional	 circuitries	 have	 not	 yet	 been	 described	 in	 most	 cell	

types,	 there	 are	 several	 lines	 of	 evidence	 (Graf	 and	 Enver,	 2009;	 Lee	 and	 Young,	 2013;	

Saint-André	 et	 al.,	 2016)	 that	 tissue-specific	 transcriptional	 circuitries	 are	 controlled	by	 a	

small	 number	 of	 TF,	 frequently	 named	 master	 regulators	 or	 lineage-determining	 TFs	

(LDTFs).	 LDTFs	bind	and	 facilitate	 the	binding	of	other	proteins	 to	different	cis-regulatory	

elements.	Among	all	types	of	cis-regulatory	elements	involved	in	transcriptional	circuitries	

regulation,	enhancers	and	specially	enhancer	clusters	seem	to	have	a	key	role	modulating	

tissue-specific	 gene	 expression	 (Heinz	 et	 al.,	 2015).	 Enhancers,	 as	 most	 cis-regulatory	

elements,	 are	used	as	 recruiting	platforms	 for	different	proteins	 that	are	able	 to	module	

gene	 transcription.	Additionally,	 it	 seems	 that	 there	 is	 certain	degree	of	 affinity	between	

types	of	enhancer	and	promoters.	A	study	using	a	massive	parallel	reporter	assays	(MPRA)	

with	a	collection	of	house-keeping	and	developmental	gene	promoters	paired	with	multiple	

enhancers	revealed	that	certain	enhancers	only	act	as	such	in	presence	of	certain	types	of	

promoters	(Zabidi	et	al.,	2014).	Thus,	due	to	enhancer-promoter	regulation,	a	gene	may	be	

expressed	in	different	tissues	and	at	different	levels	of	expression.		
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Moreover,	it	seems	that	a	subset	of	the	active	enhancers	in	a	cell-type	or	tissue	may	have	a	

stronger	control	on	gene	regulation	than	the	rest.	Although	different	labs	have	figured	out	

different	 arbitrary	 definitions	 and	 names	 to	 define	 them	 (CORES	 in	Gaulton	 et	 al.,	 2010,	

super-enhancers	 in	Whyte	et	al.,	2013,	stretch	enhancers	 in	Parker	et	al.,	2013,	enhancer	

cluster	 in	 Pasquali	 et	 al.,	 2014)	 some	 features	 seem	 to	 appear	 repeatedly,	which	 are:	 (i)	

close	 linear	 proximity	 between	 arrays	 of	 enhancers,	 (ii)	 located	 near	 tissue-specific	

expressed	genes,	frequently	bound	by	(iii)	LDTFs	and	(iv)	chromatin	interacting	factors	such	

as	 Mediator	 or	 Cohesin.	 Moreover,	 this	 subset	 of	 clustered	 enhancers	 is	 being	 actively	

characterised	in	different	tissues	not	only	by	its	role	in	gene	regulation	but	also	because	it	

frequently	contains	genomic	variants	associated	with	diseases.	
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1.7. Regulatory	genomics	and	diseases	

	

Studies	conducted	to	determine	the	genetic	factors	behind	major	human	diseases	observed	

that	these	can	be	caused	by	non-coding	variants	in	genomic	regulatory	regions.	It	has	been	

also	 shown	 that	 the	 molecular	 mechanism	 impaired	 and	 its	 severity	 may	 be	 different	

depending	 on	 the	 type	 of	 genomic	 variant	 (SNV	 or	 indel)	 and	 the	 affected	 cis-regulatory	

element	(enhancer,	promoter	or	insulator)	(Table	3).	

	
Table	3.	Effect	of	non-coding	variants	on	cis-regulatory	elements.	*	

Effect	 Mechanism	 References	

Modulate	activity	
of	cis-regulatory	
elements	

SNPs	 and	 small	 indels	 at	 enhancer	 or	
promoters	 can	 create	 or	 disrupt	 TFBSs,	
modifying	 TFs	 affinity	 for	 a	 local	 DNA	
sequences.	 Therefore,	 TFs	and	 co-TFs	bound	
to	 a	 specific	 cis-regulatory	 element	 may	
change,	affecting	its	activity.	
	

Gaulton	 et	 al.,	 2010,	
2015;	 Pasquali	 et	 al.,	
2014	

Modify	genes’	cis-
regulatory	
landscape	

Indels	 may	 delete	 or	 insert	 cis-regulatory	
elements	 at	 a	 gene’s	 vicinity	 altering	 its	
transcription	regulation.	
	

Van	 der	 Ploeg	 et	 al.,	
1980;	Weedon	 et	 al.,	
2014;	X.	Zhang	et	al.,	
2015	
	

Alter	3D	
chromatin	local	
conformation	

Genomic	 variants	 that	 affect	 the	 binding	 of	
structural	 proteins,	 such	 as	 CTCF,	 changing	
3D	 chromatin	 organisation.	 If	 the	 genomic	
variant	 occurs	 within	 a	 topological	 domain,	
its	effects	will	remain	contained	within	it	and	
creating	 or	 disrupting	 intra-domain	
interactions.	However,	if	the	genomic	variant	
occurs	 at	 a	 domain	 boundary	 region,	 its	
effects	 can	 be	 broader	 merging	 or	 creating	
two	 topological	 domains.	 In	 any	 case,	 it	
modifies	 genes	 cis-regulatory	 landscape	 by	
rewiring	the	3D	chromatin	organisation.	
	

de	 Wit	 et	 al.,	 2015;	
Lupiáñez	et	al.,	2016;	
Narendra	et	al.,	2015;	
Nora	et	al.,	2012	

	
*	 Adapted	 by	 permission	 from	Macmillan	 Publishers	 Ltd:	 Nature	 Reviews	Molecular	 Cell	 Biology,	
Krijger	&	de	Laat,	2016;	copyright	(2016).	
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• Systematic	strategy	to	identify	causal	non-coding	genomic	variants	

	
Genomic	 variants	 linked	 to	 a	 higher	 risk	 of	 developing	 a	 disease	 are	 frequently	 identified	

through	genome	wide	association	studies	 (GWAS).	These	are	genetic	 studies	 in	which	 the	

genome	 of	 two	 populations,	 one	 with	 the	 studied	 feature	 and	 a	 control	 population,	 are	

compared.	Normally	those	studies	are	carried	out	using	genotypic	arrays	that	cover	specific	

regions	of	the	genome.	However,	due	to	the	continuous	cost	reduction	in	NGS	techniques,	

recent	studies	have	been	applying	whole-genome	sequencing	(Flannick	and	Florez,	2016).	A	

major	limitation	of	these	studies	is	the	high	number	of	non-causal	variants	detected	due	to	

linkage	disequilibrium	(LD).	

	

Because	of	different	factors,	such	as	genomic	recombination	rates	or	genetic	drifts,	alleles	

of	two	genomic	variants	are	in	LD	when	their	observed	frequency	is	higher	than	randomly	

expected	 (Slatkin,	 2008).	 This	 is	 frequently	detected	between	genomic	 variants	 located	 in	

close	 linear	 proximity	 as	 the	 genomic	 information	 is	 inherited	 in	 haplotype	 blocks.	

Therefore,	GWAS	cannot	differentiate	between	causal	and	non-causal	 variants	 in	high	LD.	

Additionally,	the	general	trend	is	that	GWAS	variants	are	frequently	detected	in	non-coding	

parts	of	the	genome	(Flannick	and	Florez,	2016;	McClellan	and	King,	2010).	Thus,	it	is	highly	

challenging	to	hypothesise	which	variants	are	more	likely	to	be	causal	without	knowing	their	

potential	mechanistic	effect.	

	

In	 summary,	 lists	 of	 GWAS	 variants	 are	 a	 great	 resource	 to	 identify	 regions	 containing	

genomic	signals	associated	with	pathogenicity.	However,	due	to	their	limitations,	it	is	highly	

recommended	to	cross	them	with	maps	of	regulatory	regions	to	enrich	for	potential	causal	

variants	(Fig.	10).		
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Fig.	10:	Systematic	identification	of	causal	genomic	variants.	Diagram	illustrating	the	different	steps	
of	 systematic	 identification	 of	 causal	 variants.	 (1)	 Identification	 of	 genomic	 variants	 associated	 to	
disease.	 (2)	 Co-localisation	 of	 genomic	 variants	with	 genomic	 regulatory	 elements.	 (3)	 Implement	
chromatin	 territory	 maps	 to	 associate	 non-coding	 variants	 and	 possible	 target	 genes,	 (4)	
Associations	 that	 can	 be	 further	 validated	 with	 high-resolution	 chromatin	 interaction	 maps.	 (5)	
Associate	genomic	variants	and	target	genes	 interrogating	haplotype-resolved	expression	datasets.	
(6)	Experimentally	validate	non-coding	variants	by	MPRAs	and	genome	editing	assays.	Reprinted	by	
permission	from	Macmillan	Publishers	Ltd:	Nature	Reviews	Molecular	Cell	Biology,	Krijger	&	de	Laat,	
2016;	copyright	(2016).	
	

As	 exposed	 in	 previous	 sections,	 the	 genome	 is	 compartmentalised	 in	 domains	 that	may	

confine	the	effect	of	regulatory	regions	and	causal	non-coding	genomic	variants.	Therefore,	

maps	of	chromatin	interactions	and	domains	can	be	highly	informative	to	associate	genomic	

variants	 and	 target	 genes.	 If	 possible,	 this	 association	 can	 be	 further	 validated	 using	

expression	datasets	 comparing	 samples	with	 the	 risk-allele	and	 samples	with	 the	non-risk	

allele.	

	

A	challenge	that	researchers	frequently	need	to	face	is	the	selection	of	likely	causal	variants	

for	 experimental	 validation.	 Despite	 applying	 the	 previously	 mentioned	 steps,	 the	 list	 of	

likely	 causal	 variants	may	 often	 contain	 too	many	 to	 be	 interrogated	 in	money	 and	 time	

consuming	experimental	assays.	Thus,	computational	tools	have	been	created	to	prioritise	

non-coding	 variants	 based	 on	 their	 probability	 of	 being	 disease-causal	 variants.	 These	

methods	cover	a	broad	variety	of	approaches,	such	as	functional	annotations,	conservation	

and/or	machine	learning	(as	reviewed	in	Nishizaki	&	Boyle,	2016).	

  4- Physically link candidate variants to genes:
       high-resolution contact maps   

  5- Functionally link variant to gene:
       haplotype-resolved expression analysis

7- Genome editing 
     to confirm molecular 
     mechanism

Disease-associated variants

  1-  Impute/targeted haplotyping 
        to uncover all variants in LD 

  2- Candidate causal variants colocalise
       with potential regulatory sequences

All variants in LD

Sequences with regulatory epigenetic signature

3- Intersect with 3D genome information:
     identify genes in the same TAD
TAD1 TAD2

6- In vitro reporter assay 
     to test enhancer 
     capacity
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After	this	systematic	process,	a	much	shorter	list	of	likely	causal	variants	can	be	tested	in	in	

vitro	 or	 in	 vivo	 assays	 to	 determine	 the	 affected	 molecular	 mechanisms	 and	 their	

consequences.	

	

• Gene	regulation	in	pancreatic	islets	

	

As	mentioned	before,	understanding	gene	expression	regulation	in	disease-relevant	tissues	

is	especially	important	to	decipher	the	perturbed	molecular	mechanisms.	Among	all	human	

tissues,	pancreatic	islets	are	especially	important	to	understand	impaired	glucose	regulation	

associated	with	diabetes.	Despite	its	relevance,	this	tissue	is	specially	challenging	to	study	as	

human	pancreatic	islets	are	difficult	to	be	obtained	for	research	purposes.	

	

Pancreatic	 islets	or	 islets	of	 Langerhans	are	 spheres	of	 endocrine	 tissue	embedded	 in	 the	

pancreas	 and	 surrounded	by	 exocrine	 tissue.	 Pancreatic	 islets	 are	 formed	by	 5	 cell-types:	

alpha,	 beta,	 delta,	 gamma	or	 PP	and	epsilon.	However,	 among	all	 of	 them,	beta-cells	 are	

especially	relevant	as	they	compose	around	70%	of	the	human	islet	mass	and	they	produce	

insulin	(Scharfmann	et	al.,	2008)	(Fig.	11).		

	

	
	
Fig.	11:	Cell	heterogeneity	in	human	pancreatic	islets.	Section	of	human	pancreatic	islets	stained	for	
nuclear	DNA	(blue),	insulin-producing	beta-cells	(red)	and	glucagon-producing	alpha-cells	(green).		
Reprinted	by	permission	from	PLoS	ONE,	Scharfmann	et	al.,	2008;	copyright	(2008).	
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Insulin	 is	a	hormone	involved	in	blood	glucose	regulation	by	promoting	its	absorption	into	

liver,	fat	and	skeletal	muscle	cells.	Thus,	impaired	insulin	production	and	secretion	leads	to	

accumulation	of	glucose	 in	the	blood	stream.	Constant	high	blood	glucose	 levels	can	have	

severe	consequences,	 such	as	kidney	 failure	and	blindness,	and	premature	death	 (Wilcox,	

2005).	 Therefore,	understanding	 the	genome	 regulation	 in	pancreatic	 islets	 is	 essential	 to	

discover	regulatory	mechanisms	that	control	insulin	synthesis	and	secretion.	

	
Fig.	 12:	 Pancreatic	 cell	 differentiation	pathways.	 Diagram	 summarising	 the	 different	 steps	 during	
cell	differentiation	from	foregut	endoderm	to	endocrine	and	exocrine	pancreatic	cells.	Key	LDTFs	are	
specified	 in	 each	 step.	 Reprinted	 by	 permission	 from	 Stem	 Cells	 in	 Clinic	 and	 Research,	 Jiang	 &	
Morah,	2011;	copyright	(2011).	
	
To	better	understand	pancreatic	islets	gene	regulation	several	groups	have	performed	a	big	

effort	to	identify	key	TFs	for	islet	development	and	maintenance	of	cell	identity	(as	recently	

reviewed	 by	 Romer	 &	 Sussel,	 2015	 and	 summarized	 in	 Fig.	 12).	 This	 work	 is	 especially	

important,	not	just	to	identify	LDTFs	involved	in	tissue-specific	gene	expression	but	also	to	

give	 insight	 into	 the	 molecular	 mechanisms	 perturbed	 by	 disease	 associated	 genomic	

variants.	For	example,	a	recent	work	carried	out	by	Inês	Cebola	and	colleagues	revealed	that	

genomic	variants	in	a	distal	enhancer	can	alter	expression	of	a	key	developmental	TF,	PTF1a	
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(also	known	as	P48),	being	the	most	common	cause	of	isolated	pancreas	agenesis	(Weedon	

et	 al.,	 2014).	 Thus,	 illustrating	 how	 relevant	 can	 be	 the	 characterisation	 of	 LDTFs	 and	

transcriptional	regulatory	maps	in	combination	with	genetic	studies	of	diseases.	

	

Additionally,	 a	 transcriptional	 analysis	 done	 in	 beta-cells	 by	 I.	 Morán	 and	 colleagues	 has	

been	able	to	identify	more	than	a	thousand	lncRNAs.	This	study	found	that	islet	lncRNAs	are	

frequently	 cell-specific	 and	 active	 during	 pancreatic	 islet	 development,	 suggesting	 they	

could	be	involved	in	islet	tissue-specific	gene	expression	(Morán	et	al.,	2012).	In	fact,	a	more	

recent	study	showed	that	a	subset	of	these	beta-cell	specific	lncRNAs,	in	combination	with	

some	 TFs,	 form	 a	 core	 regulatory	 circuitry	 involved	 in	 gene	 transcriptional	 regulation	

(Akerman	et	al.,	2017).		This	is	especially	relevant	as	Morán	et	al.	showed	that	some	beta-

cell	 lncRNA	 have	 a	 mis-regulated	 expression	 in	 T2D	 patients	 and	 are	 located	 near	 T2D	

susceptibility	loci.	

	

Therefore,	 this	 exemplifies	 how	 characterising	 gene	 expression	 regulation	 in	 human	

pancreatic	 islets	 can	 provide	 insight	 into	 the	molecular	mechanism	 perturbed	 in	 a	major	

disease	such	as	diabetes.	

	
• Role	of	gene	regulation	in	Diabetes	Mellitus	

	

Diabetes	 Mellitus	 is	 a	 group	 of	 metabolic	 diseases	 characterised	 by	 an	 impaired	 blood	

glucose	regulation	that	can	lead	to	serious	health	complications.	

	

Currently,	diabetes	 is	 sub-classified	 in	3	main	categories:	Type-1	Diabetes	 (T1D),	Maturity	

Onset	Diabetes	of	the	Young	(MODY)	and	Type-2	diabetes	(T2D).	This	section	will	focus	on	

T2D	as	it	is	the	most	frequent	form	of	diabetes.	

	

T1D	and	MODY	are	 two	 forms	of	diabetes	 that	 follow	a	Mendelian	 inheritance.	T1D	 is	an	

autoimmune	 disorder	 characterised	 by	 a	 resultant	 reduction	 of	 the	 pancreatic	 islet	mass	

and	 insulin	 production	 rates.	 Different	 forms	 of	MODY	 (1-11)	 are	 due	 to	 loss-of-function	

mutations	 that	 affect	 key	 TFs	 (HNF1a,	 HNF4a,	 PDX1,	 …)	 or	 other	 key	 proteins	 such	 as	

Glucokinase	 (an	 enzyme	 involved	 in	 glycolysis),	 leading	 to	 impaired	 insulin	 secretion	 and	

fasting	glycemia	(Tallapragada	et	al.,	2015).	
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T2D	is	a	common	disease,	developed	due	to	the	combined	effect	of	risk-associated	genomic	

variants	and	environmental	factors,	that	affects	more	that	400	million	people	in	the	word.	In	

order	 to	 determine	 the	 genetic	 factors	 behind	 this	 pandemic,	more	 than	 50	 GWAS	 have	

been	conducted	during	the	last	15	years	(as	reviewed	in	Flannick	&	Florez,	2016)	collecting	

thousands	of	samples	from	different	ethnic	populations.	This	huge	effort	from	the	scientific	

community	 has	 allowed	 the	 identification	 of	 hundreds	 of	 common	 and	 rare	 (MAF	 <	 5%)	

genomic	 variants	 associated	with	 a	 higher	 probability	 of	 developing	 the	 disease,	most	 of	

them	 in	non-coding	 regions	of	 the	 genome.	However,	 as	 previously	mentioned	 in	 section	

1.7,	 due	 to	different	 factors,	 it	 is	 reasonable	 to	hypothesise	 that	not	 all	 genomic	 variants	

identified	in	GWAS	are	causal	variants.		Therefore,	it	is	important	to	cross	these	lists	of	risk-

associated	 variants	 with	 transcriptional	 and	 epigenomic	 maps,	 to	 enrich	 them	 for	 likely	

causal	genomic	variants.	Thereafter,	a	further	experimental	validation	would	be	required	to	

validate	them	and	give	insight	into	the	impaired	molecular	mechanisms.	

	

To	 fill	 the	 gap	 between	 the	 cataloguing	 of	 risk-associated	 variants	 and	 identification	 of	

causal	variants	with	an	effect	on	gene	regulation,	the	group	of	prof.	Jorge	Ferrer	generated	

a	map	 of	 regulatory	 regions	 in	 human	 pancreatic	 islets	 based	 on	 epigenomic	marks.	 This	

study	observed	that	enhancers	are	not	evenly	distributed	through	the	genome,	but	a	sub-

set	of	them	are	located	in	close	proximity	forming	cis-regulatory	regions	known	as	enhancer	

clusters	 (EC).	 This	 study	 also	 showed	 that	 EC	 are	 enriched	 on	 type-2	 diabetes	 (T2D)	 or	

impaired	fasting	glycemia	(FG)	associated	SNPs.	Pasquali	et.	al.	also	provided	evidences	that	

EC	highly	bound	by	key	islet	TFs	are	frequently	located	near	islet	specific	expressed	genes.	

These	 results	 indicate	 that	 EC	 are	 important	 for	 islet-specific	 gene	 expression	 and	 that	

disruption	of	their	functionality	by	non-coding	genomic	variants	is	likely	to	increase	the	risk	

of	 developing	 T2D	 or	 impaired	 FG	 (Pasquali	 et	 al.,	 2014).	 However,	 at	 that	 time,	 3D	

chromatin	 organisation	 data	 in	 human	 pancreatic	 islets	 was	 not	 available,	 therefore	 all	

associations	between	non-coding	elements	and	genes	were	based	on	linear	proximity	with	

the	limitations	and	inaccuracy	that	this	implies.	
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Chapter	2	

Rationale,	hypotheses	and	aims	 	 	 	 	 	 					 					.		

	

Linear	cis-regulatory	maps	do	not	reflect	gene	transcription	regulation	through	3D	

chromatin	organisation	

	

Cis-regulatory	elements,	 such	as	enhancers	and	promoters,	 are	key	 for	gene	 transcription	

regulation.	During	the	last	years,	big	efforts	have	been	made	to	create	cis-regulatory	maps	

in	several	cell	lines	and	tissues	(Dunham	et	al.,	2012;	Kundaje	et	al.,	2015).	These	maps	have	

been	 able	 to	 identify	 thousands	 of	 cis-regulatory	 regions	 in	 the	 linear	 chromatin	 space,	

being	 a	 great	 source	 for	 better	 understanding	 gene	 transcription	 regulation.	 These	 cis-

regulatory	 maps	 are	 especially	 important	 in	 disease-relevant	 tissues,	 such	 as	 pancreatic	

islets,	 since	 they	 could	 help	 to	 unveil	 the	 genetic	 factors	 underlying	 severe	 diseases	 like	

diabetes	(Krijger	and	de	Laat,	2016;	Pasquali	et	al.,	2014).	However,	such	linear	maps	do	not	

inform	on	how	distal	regulatory	elements	communicate	with	their	targets.	It	is	known	that	

distal	 cis-regulatory	 elements	 and	 gene	 promoters	 establish	 proximity	 interactions	 in	 3D	

space,	thus	modulating	gene	transcription	(Bonev	Boyan	and	Cavalli	Giacomo,	2016).		

	

Researchers	have	used	 several	 approaches	 to	overcome	 the	 lack	of	 interaction	maps	 that	

relate	 regulatory	elements	 and	 their	 target	 genes.	 For	example,	 enhancers	 are	 frequently	

assigned	to	the	closest	(active)	gene	assuming	this	would	be	its	most	likely	target.	However,	

those	 approximations	 do	 not	 ensure	 accurate	 associations.	 Distal	 cis-regulatory	 elements	

gain	proximity	with	target	genes	through	structural	proteins	that	bend	the	chromatin	in	3D	

space.	 Thus,	 3D	 chromatin	 conformation	 allows	distal	 cis-regulatory	 elements	 not	 only	 to	

interact	with	multiple	loci	but	also	to	skip	untargeted	genes	(Sanyal	et	al.,	2012).	Therefore,	

cis-regulatory	elements	cannot	be	precisely	associated	to	target	genes	relying	exclusively	on	

linear	chromatin	maps.	
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In	the	current	thesis,	I	propose	the	following	hypotheses:	

	

A. Integration	of	chromatin	interaction	and	epigenomic	cis-regulatory	maps	can	provide	

novel	insight	into	tissue-specific	gene	regulation	

Despite	the	big	efforts	to	generate	chromatin	 interaction	maps	 in	several	human	cell	 lines	

and	tissues	during	the	last	decade	(Dixon	et	al.,	2012;	Javierre	et	al.,	2016;	Nora	et	al.,	2012;	

Schmitt	et	al.,	2016),	genome-wide	chromatin	conformation	data	in	human	pancreatic	islets	

is	still	missing.	I	propose	that	3D	chromatin	interaction	maps	in	human	pancreatic	islets	are	

necessary	 to	 accurately	 interpret	 gene	 transcription	 regulation	 in	 this	 disease-relevant	

tissue.	Moreover,	I	hypothesise	that	the	characterisation	of	3D	chromatin	interaction	maps	

in	 combination	 with	 epigenomic	 datasets	 (Pasquali	 et	 al.,	 2014)	 will	 allow	 me	 to	 make	

precise	associations	between	cis-regulatory	elements	and	target	genes.	

	

It	has	been	shown	that	the	3D	chromatin	organisation	 leads	to	a	compartmentalisation	of	

genes	 and	 cis-regulatory	 elements	 in	 what	 is	 known	 as	 topological	 associating	 domains	

(TADs)	 (Dixon	 et	 al.,	 2012,	 2015;	 Nora	 et	 al.,	 2012).	 Achieving	 higher	 resolution	 than	

standard	 high-throughput	 chromatin	 conformation	 assays	 allowed	 the	 identification	 of	

interactions	within	TADs.	Tissue-specific	 intra-TAD	 interactions	were	 reported	 to	correlate	

with	 tissue-specific	 gene	 transcription	 (Javierre	 et	 al.,	 2016;	 Phillips-Cremins	 et	 al.,	 2013;	

Rao	 et	 al.,	 2014;	 Schmitt	 et	 al.,	 2016).	 However,	 the	 functional	 significance	 and	 the	

epigenomic	 factors	 underlying	 these	 tissue-specific	 chromatin	 structures	 remains	 poorly	

understood.		

	

These	considerations	led	me	to	propose	that	high-resolution	techniques,	such	as	promoter	

capture	Hi-C	(pcHi-C)	(Mifsud	et	al.,	2015),	could	be	used	to	define	chromatin	domains	and	

tissue-specific	chromatin	interactions	in	human	pancreatic	islets.	

	

Furthermore,	 I	 hypothesise	 that	 a	 systematic	 analysis	 of	 human	 pancreatic	 islet-selective	

chromatin	 structures	 and	 their	 associated	 epigenomic	 features	 would	 give	 insight	 into	

epigenomic	factors	behind	islet-specific	gene	expression.	
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B. High-resolution	chromatin	interaction	maps	can	define	3D	enhancer	domains	

Among	 the	 collection	 of	 active	 enhancers	 present	 in	 a	 specific	 tissue,	 there	 are	 many	

examples	where	 several	 enhancers	 are	 located	 in	 close	 linear	 proximity.	 This	 feature	 has	

been	used	 in	definitions	with	arbitrary	 thresholds	 to	 identify	 stretch	enhancers	 (Parker	et	

al.,	2013),	enhancer	clusters	 (Pasquali	et	al.,	2014)	or	super-enhancers	 (Hnisz	et	al.,	2013;	

Lovén	et	al.,	2013;	Whyte	et	al.,	2013).	These	elements	 	are	emerging	as	a	highly	relevant	

type	 of	 cis-regulatory	 regions	 as	 they	 have	 been	 linked	 to	 tissue-specific	 gene	 expression	

and	disease	susceptibility	(Hnisz	et	al.,	2013;	Lovén	et	al.,	2013;	Pasquali	et	al.,	2014;	Whyte	

et	al.,	 2013).	However,	how	3D	chromatin	organisation	could	 influence	 the	definition	and	

function	of	these	cis-regulatory	elements	remains	poorly	understood.	

	

As	 it	 is	 known	 that	 distal	 cis-regulatory	 elements	 communicate	 through	 3D	 chromatin	

interactions,	 I	 consider	 that	 it	would	 be	 coherent	 to	 group	 enhancers	 by	 3D	organisation	

rather	 than	 linear	 genomic	 proximity.	 Moreover,	 I	 hypothesise	 that	 large	 groups	 of	

enhancers	contained	within	the	same	chromatin	3D	domain	could	be	especially	relevant	for	

both	tissue-specific	chromatin	and	transcription	regulation.	I	speculate	that	high-resolution	

chromatin	 interaction	maps	 will	 provide	 novel	 insight	 into	 how	 epigenomic	 factors	 drive	

enhancer	 gathering	 in	 3D	 space.	 Furthermore,	 I	 propose	 that	 the	 interpretation	 of	 high-

resolution	 chromatin	 interaction	 maps	 will	 allow	 us	 to	 picture	 enhancer	 clustering	 with	

more	clarity.	

	

C. High-resolution	interaction	maps	could	associate	cis-regulatory	elements,	and	disease-

relevant	non-coding	variants,	with	their	target	genes	more	precisely	than	links	based	

on	linear	proximity	

Maps	 of	 cis-regulatory	 regions	 have	 been	 used	 to	 determine	 the	 molecular	 mechanism	

impaired	by	non-coding	genomic	variants	associated	with	major	diseases,	such	as	diabetes.	

A	 cis-regulatory	 map	 in	 human	 pancreatic	 islets	 revealed	 that	 enhancer	 clusters	 are	

enriched	in	type-2	diabetes	(T2D)	risk	and	fasting	glycemia	(FG)	variation	associated	variants	

(Pasquali	 et	 al.,	 2014).	 However,	 genomic	 variants	 and	 target	 genes	 cannot	 be	 precisely	

associated	by	linear	proximity.	Consequently,	the	target	genes	of	T2D	and	FG	risk	genomic	
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variants	will	remain	largely	unknown	until	the	characterisation	of	3D	chromatin	structures	in	

human	pancreatic	islets.			

I	 propose	 that	 high-resolution	 chromatin	 interaction	 maps	 in	 a	 diabetes-relevant	 tissue,	

such	as	pancreatic	islets,	would	be	highly	informative.	These	maps,	in	combination	with	the	

different	 epigenomic	 datasets	 generated	 by	 our	 lab	 and	 others	 (Bhandare	 et	 al.,	 2010;	

Pasquali	et	al.,	2014;	Stitzel	et	al.,	2010),	could	help	the	scientific	community	on	the	field	to	

hypothesise	 on	 the	molecular	mechanisms	 impaired	 by	 non-coding	 genomic	 variants	 and	

their	possible	effects	on	gene	expression	regulation.	Furthermore,	I	hypothesise	that	these	

high-resolution	chromatin	interaction	maps	could	provide	an	accurate	list	of	genes	linked	to	

diabetes-associated	non-coding	genomic	variants.	This	 information	will	give	further	 insight	

into	the	gene	pathways	impaired	in	diabetes.		

	

	

	
To	test	these	hypotheses	I	aim	to:	

• Determine	 chromatin	 organisation	 in	 human	 pancreatic	 islets	 by	 analysing	 high-

resolution	chromatin	interaction	maps.	

• Elucidate	 novel	 features	 underlying	 the	 formation	 of	 tissue-specific	 chromatin	

interactions	and	interaction	domains.	

• Associate	epigenomic	features	 including	3D	chromatin	organisation	with	tissue-specific	

gene	expression.		

• Associate	distal	cis-regulatory	elements	with	target	gene	promoters.	

• Identify	enhancers	that	cluster	due	to	3D	chromatin	organisation.	

• Use	 islet	 interaction	 maps	 to	 associate	 diabetes-associated	 non-coding	 variants	 with	

likely	target	genes.	
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Chapter	3	

3D	chromatin	organisation	in	human	pancreatic	islets	 	 	 	 				.	

	
3.1. Integrative	epigenomic	analysis	of	human	pancreatic	islets	

Understanding	 gene	 expression	 regulation	 is	 essential	 to	 interpret	 the	 effect	 of	 genomic	

variants	associated	with	major	diseases	such	as	diabetes.	For	that	reason,	there	has	been	a	

big	effort	to	study	gene	expression	regulation	 in	human	pancreatic	 islets	and	the	effect	of	

diabetes	 risk-associated	 variants	 (Flannick	 and	 Florez,	 2016;	 Gaulton	 et	 al.,	 2010,	 2015;	

Pasquali	 et	 al.,	 2014).	 However,	 an	 extensive	 characterisation	 of	 the	 3D	 chromatin	

organisation	in	this	tissue	is	still	missing.		

	

In	 order	 to	 fill	 this	 scientific	 gap,	 our	 group	 aimed	 to	 create	 a	 high-resolution	 chromatin	

interaction	map	in	human	pancreatic	islets	using	promoter	capture	Hi-C	(pcHi-C)	(Mifsud	et	

al.,	 2015;	 see	 section	 1.5),	 in	 collaboration	 with	 Professor	 Peter	 Fraser’s	 lab	 (Babraham	

Institute,	Cambridge,	UK).		

	

This	 dataset	 was	 combined	 with	 published	 epigenomic	 (Pasquali	 et	 al.,	 2014)	 and	 gene-

expression	(Morán	et	al.,	2012)	maps,	as	well	as	newly	generated	ChIP-seq	datasets	for	two	

key	regulatory	proteins	(Mediator	and	Cohesin	subunits)	(Allen	and	Taatjes,	2015;	Kim	and	

Shiekhattar,	2015;	Merkenschlager	and	Nora,	2016)	(Fig.	13).		
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Fig.	13:	Schematic	of	overall	strategy.	To	 increase	our	understanding	of	gene	regulation	 in	human	
pancreatic	islets,	I	analysed	the	relationship	between	transcriptional	and	epigenomic	landscapes,	3D	
chromatin	 organisation,	 and	 genomic	 variants	 associated	 with	 type-2	 diabetes	 (T2D)	 and	 fasting	
glycemia	(FG)	variation.	
	
	
Epigenomic	 maps	 in	 human	 pancreatic	 islets.	 A	 few	 years	 ago	 our	 group	 was	 able	 to	

identify	 candidate	 cis-regulatory	 elements	 in	 isolated	 pancreatic	 islets,	 including	 active	

enhancers	 and	 promoters,	 based	 on	 epigenomic	marks	 (Pasquali	 et	 al.,	 2014).	 That	work	

was	centred	on	open	chromatin	regions	(detected	by	FAIRE)	that	were	characterised	based	

on	 the	 binding	 of	 transcription	 factors,	 CTCF	 and	 the	 presence	 of	 histone	 modifications	

(H3K4me1,	HK4me3,	H3K27ac)	in	the	adjacent	nucleosomes	(Pasquali	et	al.,	2014).	Recently,	

we	 incorporated	new	datasets	 including	ATAC-seq	 to	define	open	chromatin,	ChIP-seq	 for	

H3K27me3	 and	 H3K9me3	 to	 define	 repressed	 chromatin,	 binding	 profiles	 for	 SMC1	 (a	

Cohesin	 subunit)	 and	MED1	 (a	Mediator	 complex	 subunit),	 as	 well	 CAGE	maps	 of	 active	

transcription	start	sites.	These	new	datasets	were	analysed	by	my	colleagues	(Irene	Miguel-

Escalada,	Goutham	Atla	and	Claire	Morgan)	following	two	independent	strategies:	clustering	
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of	 open	 chromatfin	 regfions	(Pasqualfi	 et	 al.,	 2014)	and	chromatfin	 segmentatfion	 through	

ChromHMM	(Ernst	and	Kellfis,	2012)	(see	sectfion	8.1	for	more	detafils).		

	

Clusterfing	of	open	chromatfin	regfions	was	based	on	genomfic	patterns	of	modfiffied	hfistones	

and	 DNA-bfindfing	 protefins.	 Thfis	resulted	 fin	 the	 annotatfion	 of	 16,313	 actfive	 promoters,	

45,683	 actfive	 enhancers,	 66,029	 finactfive	 enhancers	 and	 29,915	 CTCF	 strongly	 bound	

regfions.	A	subset	of	13,635	enhancers	(30%	of	all	enhancers,	whfich	we	called	class	I	actfive	

enhancers),	showed	a	very	strong	enrfichment	of	H3K27ac	and	MED1	bfindfing,	compared	to	

all	other	actfive	(H3K27ac-enrfiched)	enhancers	(Ffig.	46	fin	methods	sectfion	8.1).	I	note	that	

thfis	 clusterfing	 approach	 to	deffine	regulatory	 elements	 afimed	 to	 select	 open	 chromatfin	

regfions	 but,	 unlfike	 ChromHMM,	 fit	 avofided	 long	 stretches	 of	 adjacent	 regfions	 enrfiched	 on	

modfiffied	hfistones.	I	refer	to	the	fislet	open	chromatfin	maps	as	the	fislet	regulome.	

	

ChromHMM	segmentatfion	was	 used	 to	 characterfise	 the	 co-occurrence	 of	 12	 epfigenomfic	

features	fin	 the	 entfire	 genome,	 rather	 than	 only	focusfing	on	 open	 chromatfin	 regfions.	Thfis	

analysfis	provfided	15	states	that	were	manually	merged	finto	9	states	based	on	sfimfilarfitfies	on	

thefir	 epfigenomfic	 proffiles.	 These	 9	 ChromHMM	 states	 were:	 Polycomb	 repressed,	

heterochromatfin,	 transcrfiptfion,	 actfive	 enhancers,	 finactfive	cfis-regulatory	 regfions,	 bfivalent	

promoters,	actfive	promoters,	CTCF-rfich	regfions	and	qufiescent	genomfic	regfions	(see	sectfion	

8.1	for	more	finformatfion	regardfing	the	fislet	regulome	and	the	fislet	ChromHMM).	

	

	
	
Ffig.	14:	Schematfic	representatfion	of	chromatfin	states	at	the	MAFB	locus.	Screenshot	around	the	
MAFB	locus	exemplfifyfing	our	collectfion	of	datasets.	Tracks	from	top	to	bottom	are:	Ensembl	gene	
annotatfion;	 TADs	 deffined	 fin	 human	 ESC	 (taken	from	Dfixon	 et	 al.,	 2012);	fislet	 ChromHMM	
segmentatfion,	where	actfive	promoters	are	findficated	fin	blue,	actfive	enhancers	are	findficated	fin	red	or	
orange,	finactfive	cfis
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indicated	in	blue,	active	enhancers	in	red	and	orange,	and	inactive	enhancers	are	shown	in	yellow;	
pcHi-C	 RNA	 probes	 targeting	 annotated	 promoters;	 pcHi-C	 interactions	 detected	 in	 human	
pancreatic	 islets.	 For	 more	 information	 regarding	 the	 islet	 ChromHMM	 and	 the	 islet	 regulome	
analyses	see	section	8.1	
	
	
In	 summary,	 our	 integrative	 analysis	 allowed	me	 to	 interrogate	 different	 aspects	 of	 gene	

expression	 regulation	 including	 cis-regulatory	 elements,	 chromatin	 states	 and	 chromatin	

interactions	(Fig.	13,	Fig.	14).	These	datasets	were	also	combined	with	RNA-seq	datasets	in	

15	human	tissues,	to	determine	gene	expression	patterns,	and	a	list	of	type-2	diabetes	(T2D)	

risk	and	fasting	glycemia	(FG)	variation	associated	variants	(Fig.	13).	This	creates	a	starting	

point	 to	 study	 the	 role	 of	 3D	 chromatin	 organisation	 and	 non-coding	 variants	 on	 tissue-

specific	gene	expression.		
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3.2. Generation	 of	 a	 high-resolution	 chromatin	 interaction	map	 in	 human	 pancreatic	

islets	

To	 identify	 long	 range	 chromatin	 interactions	 in	 pancreatic	 islets,	 four	 pancreatic	 islet	

samples	 obtained	 from	 cadaveric	 donors	 (with	 a	 purity	 >	 70%)	 were	 used	 as	 starting	

material	 for	 Hi-C	 library	 preparation.	 Three	 Hi-C	 libraries	 were	 generated	 from	 each	

biological	 sample,	 and	 used	 as	 technical	 replicates.	 Then,	 the	 12	 Hi-C	 libraries	 were	

processed	 independently	 with	 SureSelect	 target	 enrichment,	 using	 37,608	 RNA	 probes	

against	21,177	human	annotated	promoters.	The	resultant	pcHi-C	libraries	were	sequenced	

on	an	Illumina	platform.	Raw	reads	from	3	technical	replicates	were	pooled	and	mapped	to	

the	human	genome	(GRCh37/hg19)	using	the	HiCUP	pipeline	(Wingett	et	al.,	2015),	filtering	

experimental	 artefacts	 such	 circularized	 reads	 and	 re-ligation	 products.	 This	 generated	 >	

600M	uniquely	mapped	pcHi-C	paired-end	 sequence	 reads	 (ditags).	 Statistically	 significant	

chromatin	interactions	were	determined	using	CHICAGO	(Cairns	et	al.,	2016),	as	in	(Javierre	

et	 al.,	 2016),	 a	method	 that	 builds	 a	 background	model	with	 an	 expected	 distribution	 of	

ligation	signals	for	each	bait,	and	identifies	ligation	fragments	that	exceed	this	expectation	

consistently	in	biological	replicates.	Chromatin	and	libraries	were	prepared	by	Xavier	Garcia	

(IDIBAPS)	and	Dr.	Biola	Javierre	(Babraham	Institute,	Cambridge,	UK),	respectively.	For	more	

information	regarding	pcHi-C	library	preparation	see	sections	1.5	and	8.3.		

	

CHICAGO	analysis	of	pcHi-C	libraries	yielded	a	total	of	175,784	statistically	significant	high-

confidence	 interactions	 (CHICAGO	 score	 ≥	 5)	 in	 human	 pancreatic	 islets.	 A	 descriptive	

analysis	of	human	islet	chromatin	interactions	map	is	shown	in	Table	4.		
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Table	4.	Descriptive	analysis	of	pcHi-C	interactions	in	human	islets.	

Number	of	Hind	III	fragment	baits	 22,076	
	 	
Baits	with	no	annotated	promoters	(%	of	all	baits)	 484	(2.2	%)	
Baits	with	one	annotated	promoter	(%	of	all	baits)	 14,362	(65.0	%)	
Baits	with	>1	annotated	promoter	(%	of	all	baits)		 7,230	(32.8	%)	
Baits	with	at	least	one	active	promoter	(%	of	all	baits)	 12,530	(56.7%)		
	
	

	
Total	number	of	interactions	 175,784	
Baits	with	≥	1	interaction	(%	of	all	baits)	 16,030	(72.6	%)	

	
	

Baits	with	active	promoters	with	≥	1	interaction	(%	of	all	interactions)	 9,796	(44.3	%)	
	 	
Median	number	of	interactions	per	bait	(IQR*)	 6	(2-14)	
Median	distance	of	cis-interactions	(kb,	IQR)	 289.4	(166.7-	479.4)	
Interactions	in	cis	 175,122	(99.6	%)	
Interactions	in	trans	 662	(0.4	%)	
	 	
Bait-to-bait	interactions	 13,386	(7.6	%)	
Bait-to-non-bait	interactions	 162,398	(92.4	%)	
	 	
Number	of	non-baited	promoter-interacting	regions	 97,285	
*IQR	Interquartile	range	

	

In	summary,	we	have	been	able	to	generate	a	high-resolution	map	of	long	range	chromatin	

interactions	in	human	pancreatic	islets.	This	map	is	formed	by	175,784	interactions	that	link	

annotated	promoters	with	distal	genomic	regions.	
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3.3. Analysis	of	promoter-interacting	regions	(PIRs)	

To	understand	the	nature	of	regions	that	are	 in	3D	proximity	with	annotated	promoters,	 I	

analysed	 the	epigenomic	 features	of	promoter-interacting	 regions.	To	 this	end,	 I	 analysed	

the	 overlap	 of	 interacting	 regions	 with	 the	 binding	 profiles	 of	 CTCF,	 Cohesin	 (SMC1),	

Mediator	 (MED1),	 as	well	 as	 active	enhancers	and	promoters	 that	were	annotated	 in	our	

islet	regulome.		

	

To	 assess	 this	 overlap,	 I	 first	 determined	 the	 resolution	 of	 interacting	 regions	 that	 were	

identified	through	pcHi-C.	I	found	that	epigenomic	factors	such	as	CTCF-bound	sites,	which	

are	expected	to	be	enriched	at	promoter-interacting	regions,	were	enriched	not	only	at	the	

latter,	but	also	at	the	adjacent	Hind	III	fragment.	The	results	of	this	analysis	are	presented	in	

greater	detail	in	section	3.6.	This	is	somewhat	expected,	because	if	an	interacting	fragment	

restriction	site	overhang	is	in	proximity	to	a	promoter	fragment,	the	overhanging	site	from	

the	 immediately	adjacent	 fragment	 should	also	be	 in	proximity.	 	 I	 thus	decided	 to	extend	

non-baited	interacting	regions	to	include	the	adjacent	Hind	III	fragments.		

	

For	all	analyses,	I	distinguished	interactions	occurring	between	two	pcHi-C	baits,	and	those	

occurring	between	a	baited	fragment	and	a	non-baited	fragment.		

	

I	 observed	 that	 promoter-interacting	 regions	 that	 did	 not	 contain	 baits	 showed	 a	 clear	

enrichment	 of	 elements	 known	 for	 driving	 structural	 and	 regulatory	 loops,	 such	 as	 CTCF,	

Cohesin	and	Mediator,	as	well	 as	active	enhancers	 (Fig.	15)	 (Krijger	and	de	Laat,	2016).	A	

similar	scenario	was	true	for	baited	interacting	sites,	although	there	was	an	expected	much	

greater	 enrichment	 for	 active	 promoters	 rather	 than	 for	 active	 enhancers	 (Fig.	 50	 in	

methods	section	8.5).		
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Ffig.	 15:	 Enrfichments	 at	 non-bafited	promoter-finteractfing	 regfions.	Densfity	 plot	 showfing	 the	
dfistrfibutfion	of	CTCF,	SMC1,	MED1,	actfive	promoters	and	enhancers	around	a	-/+25	kb	wfindow	of	all	
promoter-finteractfing	 regfions.	 The	 observed	 dfistrfibutfion	 fis	 shown	 as	 a	 black	 lfine.	The	 expected	
dfistrfibutfion	was	 generated	 after	 randomfisfing	 the	 posfitfions	 of	 the	 finterrogated	 epfigenomfic	 factor,	
and	fis	shown	as	a	red	lfine,	wfith	values	between	finterquartfile	ranges	are	shown	as	a	red	area.	Note	
that	the	observed	depletfion	at	posfitfion	0	for	actfive	promoters	and	MED1	(a	cofactor	hfighly	enrfiched	
at	actfive	promoters)	was	expected,	as	bafits	that	contafin	annotated	promoters	were	excluded	from	
thfis	analysfis.	
	
	

These	 ffindfings	 were	 conffirmed	by	 my	 colleague	 Delphfine	 Rolando,	 who	 finterrogated	 the	

enrfichments	of	fislet	 ChromHMM	 states	at	 fislet	 pcHfi-C	 finteractfing	 sfites	compared	 to	 an	

artfifficfial	 set	 of	 finteractfions.	 Thfis	 analysfis	replficated	the	 enrfichment	 of	 CTCF-bound	 sfites,	

actfive	enhancers,	and	promoters	at	finteractfing	regfions,	and	further	showed	enrfichment	of	

Polycomb-repressed	chromatfin	(data	not	shown).	

	
Characterfisatfion	 of	 CTCF-assocfiated	 finteractfions.	 CTCF	fis	 a	 key	 evolutfionary	 conserved	

structural	protefin	enrfiched	at	finteractfing	regfions	determfined	by	C-based	methods	(Dfixon	et	

al.,	2012;	Gómez-Marín	et	al.,	2015;	Ong	and	Corces,	2014;	Zufin	et	al.,	2014).	Therefore,	I	

decfided	 to	 more	 accurately	 quantfify	 the	 fimpact	 of	 CTCF	 bfindfing	 regfions	 on	cfis	chromatfin	

finteractfions	detected	by	pcHfi-C	(Ffig.	16).		

	

In	my	analysfis,	I	quantfiffied	the	presence	of	fislet	CTCF	bfindfing	sfites	at	fislet	cfis
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occurrfing	between	bafited	promoters	and	non-bafited	finteractfing	regfions.	Thfis	quantfifficatfion	

was	 done	 dfifferentfiatfing	 whether	 CTCF	 was	 observed	 at	 one	 specfiffic	 finteractfion	 edge	 or	

both.	 I	 further	 characterfised	 the	 mechanfism	 by	 whfich	 CTCF	 could	 be	 actfing	 as	 chromatfin	

facfilfitator	 by	 finterrogatfing	 the	 presence	 of	 a	 CTCF	 bfindfing	 motfif	 and	 fits	 orfientatfion	 when	

CTCF	was	bfindfing	both	edges	of	an	finteractfion.	
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Fig.	 16:	 CTCF	 as	 chromatin	 interaction	 facilitator.	 (A)	 Diagram	 illustrating	 the	 presence	 of	 CTCF	
among	 the	 161,752	 cis-interactions	 between	 baited	 and	 non-baited	 regions.	 Baited	 sites	 are	
indicated	with	a	small	 red	box.	 (B)	Diagram	representing	 the	orientation	of	CTCF	motif	among	the	
9,657	 interactions	 that	 showed	 a	 CTCF	 peak	 and	 motif	 in	 both	 interaction	 edges.	 Motifs	 with	 a	
forward	orientation	are	 indicated	with	a	blue	“>”	symbol	while	motifs	with	reverse	orientation	are	
shown	with	a	red	“<”	symbol.	
	
Coherent	with	previous	studies,	I	noticed	that	CTCF	was	present	in	a	major	fraction	(99,974,	

61.8%)	of	all	pcHI-C	interactions	(Fig.	16A).	Moreover,	when	CTCF	was	present	in	both	edges	

of	 an	 interaction,	 it	 was	 frequently	 bound	 to	 sequence	 motifs	 that	 were	 arranged	 in	

convergent	 orientation,	 in	 keeping	 with	 previously	 reported	 findings	 (Rao	 et	 al.,	 2014;	

Sanborn	et	al.,	2015;	Tang	et	al.,	2015;	de	Wit	et	al.,	2015)	 (Fig.	16B).	Thus,	 these	 results	

exemplify	the	 importance	of	this	protein	 in	chromatin	 interaction	formation.	 It	also	shows	

how	 pcHi-C	 maps	 can	 be	 used	 to	 confirm	 known	 aspects	 of	 topological	 chromatin	

conformation.	

	

Enhancer-promoter	 interactions	 detected	 through	 pcHi-C	 maps.	 There	 were	 35,286	

promoter-enhancer	 interactions,	 which	 represent	 20%	 out	 of	 all	 interactions.	 These	

interactions	 occurred	 between	 7,149	 baited	 regions	 (45.5%	 of	 all	 interacting	 baits)	 and	

21,414	 non-baited	 regions	 (22.0%	 of	 all	 bait-to-non-bait	 interactions).	 This	 observation	

shows	that	our	pcHi-C	map	can	associate	promoters	with	distal	cis-regulatory	elements.	
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In	summary,	these	results	demonstrate	that	our	high-resolution	chromatin	interaction	maps	

in	human	pancreatic	islets	can	recapitulate	known	features	of	3D	chromatin	organisation.	In	

addition,	 it	 illustrates	 how	 pcHi-C	 maps	 can	 associate	 distal	 regulatory	 regions,	 such	 as	

enhancers,	with	target	promoters	in	human	pancreatic	islets.	
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3.4. Identification	of	tissue-specific	chromatin	structures	

	

It	has	been	suggested	 that	chromatin	organisation	 is	 formed	by	 tissue-invariant	 structural	

interactions	and	tissue-selective	regulatory	interactions	(Krijger	and	de	Laat,	2016).	In	fact,	

previous	 high-resolution	 chromatin	 interaction	 maps	 have	 been	 able	 to	 associate	 the	

presence	of	tissue-selective	interactions	with	tissue-specific	gene	expression	(Javierre	et	al.,	

2016;	 Phillips-Cremins	 et	 al.,	 2013;	 Rao	 et	 al.,	 2014).	 However,	 the	 epigenomic	 factors	

driving	the	formation	of	tissue-selective	interactions	are	still	poorly	understood.	

	

Therefore,	 to	 define	 islet-selective	 chromatin	 structures	we	 compared	 our	 pcHi-C	map	 in	

human	 pancreatic	 islets	with	 publicly	 available	 pcHi-C	maps	 done	 in	 4	 hematopoietic	 cell	

types,	 namely	 Erythroblasts,	 Naïve	 CD4+	 T	 lymphocytes,	 Total	 B	 lymphocytes,	 and	 M1	

Macrophages	(Javierre	et	al.,	2016).	Although	this	collection	of	samples	does	not	cover	all	

human	tissue	complexity,	we	considered	it	would	reflect	a	representative	picture	of	tissue-

invariant	chromatin	organisation.	Thus,	through	this	comparison,	we	found	that	59,672	islet	

interactions	 (34%	 of	 all	 interactions)	 were	 present	 in	 at	 least	 three	 out	 of	 the	 four	

hematopoietic	 tissues,	 highlighting	 that	 a	 significant	 proportion	 of	 pcHi-C	 interactions	

represent	tissue-invariant	structural	 interactions.	 	By	contrast,	we	identified	53,839	(31	%)	

interactions	that	were	exclusively	present	in	pancreatic	islets,	and	henceforth	named	 islet-

selective	 interactions	 (Fig.	 17).	 In	 conclusion,	 these	 results	 indicate	 that	 pcHi-C	maps	 are	

composed	of	tissue-invariant	interactions,	from	which	probably	a	significant	proportion	are	

structural,	 and	 of	 tissue-selective	 interactions,	 which	 are	 potentially	 involved	 in	 tissue-

specific	gene	regulation	(Krijger	and	de	Laat,	2016).	

	

Fig.	17:	Tissue-selective	chromatin	interactions	in	the	FOXA2	 locus.	Screenshot	around	the	FOXA2	
gene.	Tracks	from	top	to	bottom	are:	Ensembl	gene	annotation;	islet	regulome	formed	by	different	
types	of	open	chromatin	sites	classified	 through	cluster	analysis	using	epigenomic	marks,	 in	which	
active	promoters	are	indicated	in	blue,	active	enhancers	in	red	and	orange,	and	inactive	enhancers	
are	shown	in	yellow;	virtual	digestion	of	the	hg19	genome	using	HindIII	restriction	enzyme;	virtual	4C	
showing	 the	 interaction	 frequencies,	 in	 human	 pancreatic	 islets,	 using	 FOXA2	 promoter	 as	 view	
point,	 statistically	 significant	 (CHICAGO	 score	 >=	 5)	 promoter	 interacting	 regions	 are	 indicated	 in	
black;	pcHi-C	RNA	probes	targeting	annotated	promoters;	and	finally	pcHi-C	interactions	detected	in	
human	 pancreatic	 Islets	 and	 total	 B	 cells	 (Javierre	 et	 al.,	 2016).	 Islet-selective	 interactions	 are	
highlighted	in	blue.	Figure	shown	in	the	following	page.	
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Islet-selectfive	chromatfin	finteractfions	are	assocfiated	wfith	fislet-specfiffic	gene	expressfion.	To	

systematfically	assess	the	relatfionshfip	between	fislet-selectfive	finteractfions	and	tfissue-specfiffic	

gene	expressfion,	I	deffined	fislet-specfiffic	expressed	genes	by	comparfing	RNA-seq	proffiles	fin	

18	human	tfissues.	To	do	so,	I	assessed	two	aspects	of	gene	expressfion:	tfissue-selectfivfity	and	

relatfive	 expressfion	 fin	 fislets	 compared	 to	 all	 tfissues.	Overall	selectfivfity	of	 gene	 expressfion	

across	tfissues	was	measured	computfing	the	coeffficfient	of	varfiatfion	(C.V.)	among	18	human	

tfissues.	Relatfive	expressfion	fin	fislets	compared	to	the	other	tfissues	was	assessed	applyfing	an	

fislet	 specfifficfity	Z-score	(Cebola	 et	 al.,	 2015).	 Thus,	 among	 21,177	 bafited	 genes,	 12,559	

(59.3%)	were	deffined	as	expressed	and	8,618	(40.7%)	non-expressed	fif	thefir	expressfion	fin	

human	 pancreatfic	 fislets	 was	 greater	 or	 lower	 than	 1.5	 transcrfipts	 per	 mfillfion	 (TPMs)	

respectfively.	Among	all	expressed	genes,	983	(4.6%)	had	a	C.V.	as	well	as	an	fislet-specfifficfity	

Z-score	 greater	 than	 the	 0.75	 percentfile	of	 both	 values,	and	were	 deffined	 as	fislet-specfiffic	

expressed	genes	(Ffig.	52	fin	 methods	sectfion	8.8).	The	 remafinfing	 set	 of	 11,497	 (54,3%)	

expressed	 genes	 were	 classfiffied	 as	expressed,	non-fislet-specfiffic.	Ffinally,	 as	 human	

pancreatfic	fislets	were	surrounded	by	exocrfine	tfissue	before	been	collected	and	thfis	can	be	a	

source	of	contamfinatfion,	79	(0.4%)	genes	wfith	an	expressfion	3	tfimes	hfigher	fin	acfinar	cells	

than	fin	pancreatfic	fislets	were	consfidered	as	lfikely	acfinar	contamfinants.	

	

I	 found	 that	genes	 contafined	 fin	 bafits	 showed	fislet-specfiffic	 expressfion	 wfith	 fincreasfing	

frequency	 as	 the	 number	 of	 fislet-specfiffic	 chromatfin	 finteractfions	 fincreased	 (Ffig.	 18).	

Therefore,	 thfis	 result	 demonstrates	 a	 clear	 correlatfion	between	 the	 presence	 of	 tfissue-

selectfive	chromatfin	finteractfions	and	tfissue-specfiffic	gene	expressfion.	
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Fig.	 18:	 Presence	 of	 islet-selective	 interactions	 correlates	 with	 islet-specific	 gene	 expression.	

Barplot	 indicating	 the	 enrichment,	 in	 a	 log2	 scale,	 of	 islet-specific	 expressed	 genes	 among	 those	
genes	associated	with	N	islet-selective	pcHi-C	interactions.	Statistical	significance	was	measured	in	a	
hypergeometric	test	and	the	resultant	p-value	is	indicated	on	top	of	each	bar.	
	

Islet-selective	 chromatin	 interactions	 are	 associated	 with	 co-binding	 of	 lineage-

determining	TFs,	islet-specific	CTCF	binding	sites	and	Mediator-bound	enhancers.	

	

Enhancer-promoter	 communications	 as	 a	 driving	 factor	 of	 islet-selective	 chromatin	

structures.	 As	 exposed	 before,	 little	 is	 known	 about	 the	 epigenomic	 factors	 involved	 in	

tissue-selective	chromatin	structure.	However,	it	is	well-stablished	that	enhancer-activity	is	

associated	with	tissue-specific	gene	regulation	(Javierre	et	al.,	2016;	Phillips-Cremins	et	al.,	

2013;	 Rao	 et	 al.,	 2014).	 This	 association	 is	 especially	 clear	 for	 a	 subset	 of	 enhancers	 that	

form	enhancer	clusters	(Pasquali	et	al.,	2014)	and	super-enhancers	(Hnisz	et	al.,	2013;	Lovén	

et	al.,	2013;	Whyte	et	al.,	2013),	both	of	which	show	high	binding	of	lineage-determining	TFs	

(LDTFs)	and	Mediator.	Thus,	 I	decided	 to	 study	 the	 relationship	between	enhancers,	 their	

occupancy	profiles,	and	tissue-selective	chromatin	structures.		

	

By	 interrogating	 the	co-occurrence	between	enhancers	and	 the	presence	of	 islet-selective	

chromatin	 interactions,	 I	 could	 observe	 that	 enhancers,	 especially	 Mediator-bound	

enhancers,	 were	 enriched	 at	 islet-selective	 interactions	 compared	 to	 non-islet-selective	

interactions	 (Fig.	 19).	Notably,	 the	 occurrence	 of	Mediator-bound	 enhancers	was	 1.3-fold	
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more	 frequent	 at	 non-baited	 interacting	 regions	 of	 islet-specific	 interactions	 than	 at	 non-

islet-selective	 interactions	 (p	 <	 1e-20,	 chi-square	 test).	 These	 results	 show	 that	Mediator-

bound	 enhancers	 were	 more	 specifically	 associated	 with	 islet-selective	 interactions,	 and	

suggest	 that	 islet-selective	 chromatin	 organisation	 could	 be	 partially	 driven	 by	 enhancer-

promoter	communication	through	the	Mediator	complex.		

	
Fig.	 19:	 Mediator	 bound	 enhancers	 are	 more	 frequently	 found	 at	 interacting	 regions	 of	 islet-

selective	 chromatin	 interactions.	 	 Bar	 plots	 comparing	 the	 fraction	 of	 enhancers	 (Enh.)	 at	 islet	
selective	 vs.	 non-islet-selective	 interactions.	 Interacting	 sites	were	 classified	 as	 “baited”	 (left)	 and	
“non-baited”	 interacting	 regions	 (right)	 and	 analysed	 separately.	 Interacting	 sites	 were	 further	
characterised	 and	 divided	 in	 3	 classes:	 (i)	 sites	 that	 did	 not	 overlap	with	 enhancers	 (No	 Ehn.),	 (ii)	
sites	 overlapping	 enhancers	 not	 bound	 by	 Mediator	 (Enh.	 MED1-)	 and	 (iii)	 sites	 overlapping	
Mediator-bound	enhancers	(Enh.	MED1+).	
	

Islet-selective	 chromatin	 interactions	 are	 partially	 driven	 by	 islet-specific	 CTCF	 binding	

events.	 To	gain	 further	 insight	 into	 the	 formation	of	 tissue-specific	 chromatin	 structures	 I	

decided	to	examine	the	role	of	CTCF,	as	it	has	been	proved	to	be	a	highly	relevant	chromatin	

interacting	factor	(Dixon	et	al.,	2012;	Gómez-Marín	et	al.,	2015;	Ong	and	Corces,	2014;	Zuin	

et	 al.,	 2014).	 CTCF	 is	 a	 chromatin	 structural	 protein	with	 a	 highly	 tissue-invariant	 binding	

profile	 (Cuddapah	 et	 al.,	 2008;	 Kim	 et	 al.,	 2008;	 Ong	 and	 Corces,	 2014).	 However,	 by	

comparing	CTCF	binding	with	its	profile	in	14	non-pancreatic	tissues	and	cell	lines,	I	was	able	

to	identify	>	2,000	highly	tissue-specific	sites	that	were	only	present	in	human	islets	and	at	

most	two	non-pancreatic	tissues	(Fig.	53	in	methods	section	8.10).		
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To	determine	whether	islet-specific	CTCF	binding	sites	could	be	involved	in	the	formation	of	

islet-selective	 chromatin	 interactions,	 I	 interrogated	 the	 co-occurrence	 of	 this	 structural	

protein	 at	 pcHi-C	 interacting	 points.	 I	 could	 observe	 that,	 similarly	 to	 Mediator-bound	

enhancers	(Fig.	19),	there	was	a	1.4-fold	higher	frequency	of	islet-specific	CTCF	binding	sites	

at	 non-baited	 interacting	 regions	 of	 islet-selective	 chromatin	 interactions	 vs.	 non-islet-

specific	 interactions	 (p-value	 <1e-9,	 chi-square	 test)	 (Fig.	 20).	 As	 it	 could	 be	 anticipated,	

non-islet-specific	CTCF	binding	sites	were	depleted	at	islet-selective	chromatin	interactions.		

	

I	noted	that	Mediator-bound	enhancers	at	non-baited	 interacting	regions	of	 islet-selective	

interactions	were	6	times	more	frequent	than	islet-specific	CTCF	binding	sites	at	the	same	

regions.	 Accordingly,	 Mediator-bound	 enhancers	 had	 a	 more	 significant	 p-value	 for	

enrichment	in	islet-selective	interactions	(Fig.	19,	20).	

	
Fig.	20:	Islet-specific	CTCF	binding	sites	are	more	frequent	in	islet-selective	chromatin	interactions.	

Bar	 plots	 comparing	 the	 fraction	 of	 CTCF	 binding	 sites	 at	 islet-selective	 over	 non-islet-selective	
interactions.	 Interacting	sites	were	classified	as	“baited”	(left)	and	“non-baited”	 interacting	regions	
(right)	and	analysed	separately.	Interacting	sites	were	further	characterised	and	divided	in	3	classes:	
(i)	 sites	 that	 did	 not	 overlap	 with	 CTCF	 (No	 CTCF)	 (ii)	 sites	 overlapping	 a	 non-islet-specific	 CTCF	
binding	site	and	(iii)	sites	overlapping	an	islet-specific	CTCF	binding	site.	
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In	 sectfion	3.7	I	present	 a	 more	 detafiled	 analysfis	 of	 the	 factors	 that	 could	 be	 drfivfing	 fislet-

specfiffic	CTCF	bfindfing,	and	show	that	there	fis	a	correlatfion	between	the	co-bfindfing	of	LDTFs,	

Medfiator,	and	the	presence	of	fislet-specfiffic	CTCF	bfindfing	sfites.	

	

A	clear	example	of	the	exposed	result	fis	the	ISL1	locus,	whfich	encodes	for	an	fislet	TF	that	fis	

essentfial	for	the	beta-cells	(Edfiger	et	al.,	2014)	and	shows	an	fislet-specfiffic	gene	expressfion	

pattern	(Ffig.	52	fin	methods	sectfion	8.8).	I	dfid	not	only	observe	that	the	ISL1	locus	presents	

an	 fislet-selectfive	 chromatfin	 organfisatfion,	 but	 also	 that	 these	 fislet-selectfive	 finteractfions	

occurred	frequently	between	the	ISL1	promoter	and	Medfiator-bound	enhancers.	Moreover,	

fin	other	few	cases,	these	finteractfions	occurred	between	fislet-specfiffic	CTCF	bfindfing	sfites	(Ffig.	

21).	

	
Ffig.	21:	Tfissue-selectfive	chromatfin	finteractfions	fin	the	ISL1	locus.	Screenshot	around	the	ISL1	gene.	
Tracks	from	top	to	bottom	are:	Ensembl	gene	annotatfion;	Medfiator	(MED1)	ChIP-seq	sfignal,	posfitfion	
of	CTCF	bfindfing	sfites;	fislet	regulome	formed	by	dfifferent	types	of	open	chromatfin	sfites	categorfised	
based	on	epfigenomfic	marks,	fin	whfich	actfive	promoters	are	findficated	fin	blue,	actfive	enhancers	fin	red	
and	 orange,	 and	 finactfive	 enhancers	 are	 shown	 fin	 yellow;	 pcHfi-C	 RNA	 probes	 targetfing	 annotated	
promoters,	 and	 ffinally	 pcHfi-C	 finteractfions	 detected	 fin	 human	 pancreatfic	 fislets	 and	 Macrophages	
(Javfierre	et	al.,	2016).	Islet-selectfive	finteractfions	are	hfighlfighted	fin	blue.	Islet-specfiffic	CTCF	bfindfing	
sfites	are	findficated	wfith	an	asterfisk.	For	more	finformatfion	regardfing	the	fislet	regulome	see	sectfion	
8.1.	
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Based	 on	 these	 results,	 fit	 fis	 reasonable	 to	 suggest	 that	 tfissue-selectfive	 chromatfin	

finteractfions	could	be	partfially	drfiven	by	the	collaboratfive	bfindfing	of	lfineage-determfinfing	TFs	

and	CTCF,	as	 well	 as	 by	actfive	 enhancers	bound	 by	 the	Medfiator	complex.	 These	 results	
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3.5. Identification	of	TAD-like	structures	in	human	pancreatic	islets	

It	 is	 widely	 accepted	 that	 chromatin	 interactions	 are	 compartmentalised	 in	 topological	

associating	 domains	 (TADs)	 (Dixon	 et	 al.,	 2012)	 (reviewed	 in	 section	 1.5).	 It	 has	 been	

observed	that	this	compartmentalisation	is	 important	for	gene	expression	regulation	as	 its	

perturbation	provokes	aberrant	gene	expression	patterns	(Franke	et	al.,	2016;	Lupiáñez	et	

al.,	2015,	2016).	

	

TADs	have	been	defined	in	several	tissues	using	Hi-C	(Lieberman-Aiden	and	Berkum,	2009),	

including	 whole	 pancreas	 (Schmitt	 et	 al.,	 2016).	 However,	 to	 the	 best	 of	my	 knowledge,	

there	 is	 not	 any	 published	 Hi-C	 dataset	 from	 human	 pancreatic	 endocrine	 islets,	 which	

represent	 less	 than	 4%	 of	 pancreatic	 cells.	 For	 that	 reason,	 I	 assessed	 the	 possibility	 of	

defining	TAD-like	structures	using	pcHi-C	data.		

	

Dixon	et	al.	noticed	that	interactions	detected	by	Hi-C	(Lieberman-Aiden	and	Berkum,	2009)	

tend	 to	 end	 abruptly	 at	 focal	 genomic	 regions,	 suggesting	 the	 presence	 of	 chromatin	

topological	boundaries	(Dixon	et	al.,	2012).	Most	interactions	tend	to	be	contained	between	

those	 boundaries	 that	 form	 the	 TADs.	 Dixon	 et	 al.	 also	 observed	 that	 at	 TAD	 boundaries	

there	is	an	enrichment	for	interactions	going	toward	the	centre	of	the	domain.	Thus,	Dixon	

et	at.	formulated	a	score	that	quantifies	the	degree	of	interaction	bias	for	a	given	locus	to	

systematically	identify	TADs.	This	score	was	coined	as	directionality	index	(DI)	score.	

	

As	TAD	organisation	has	been	described	in	several	tissues	(Dixon	et	al.,	2012;	Schmitt	et	al.,	

2016)	and	islet	pcHi-C	interactions	seem	highly	concordant	with	TAD	compartmentalisation	

in	other	human	cell	types	(Fig.	14),	I	hypothesised	that	the	same	DI	score	would	be	suitable	

to	define	TAD-like	structures	using	this	dataset.	However,	it	was	necessary	to	consider	that	

pcHi-C	 achieves	 a	 higher	 resolution	 than	 standard	 Hi-C	 by	 reducing	 the	 catalogue	 of	

detectable	interactions	(Mifsud	et	al.,	2015).	Therefore,	parameters	in	the	DI	formula	were	

modified	to	account	for	it	(as	summarised	in	Table	10,	section	8.13).	
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By	fimplementfing	the	DI	formula,	fit	was	possfible	to	fidentfify	locfi	wfith	an	finteractfion	bfias	and	

deffine	terrfitorfies	flanked	by	locfi	wfith	opposfite	DI	scores.	Those	terrfitorfies	were	named	DI	

domafins.	

	

A	 known	 feature	 of	 chromatfin	 organfisatfion	 fin	 TADs	 fis	 the	 low	 degree	 of	 finterconnectfivfity	

between	 domafins	(Dfixon	 et	 al.,	 2012).	 Thfis	 feature	 was	 also	 recapfitulated	 fin	 most	 DI	

domafins	as	 observed	 by	 computfing	 the	 ratfio	 between	 the	 number	 of	 finter-domafin	 and	

fintra-domafin	finteractfions	 (Ffig.	54	fin	 methods	 sectfion	8.13).	 However,	 a	 small	 fractfion	

(approx.	 10%)	 of	 DI	 domafins	 showed	 a	 hfigh	 degree	 of	 finterconnectfivfity.	 Therefore,	 as	 a	

post-analytfic	correctfion,	 adjacent	 DI	 domafins	 wfith	 hfigh	 degree	 of	 finterconnectfivfity	 (log2	

ratfio	 finter/fintra-domafin	 finteractfions	 >	0)	 were	 merged.	Thus,	I	deffined	chromosomal	

terrfitorfies	that	I	named	fislet	TAD-lfike	structures	(Table	5	and	Ffig.	22).	

	
	

Table	5:	Descrfiptfion	of	TAD-lfike	domafins.	

Number	 3,589	

Sfize	(kb,	IQR)	 472.5	(257.3-777.4)	

Medfian	number	finteractfions	per	TAD	(IQR)	 26	(9-60)	

Genome	coverage	 69.8	%	

	

	
Ffig.	 22:	 Islet	 TAD-lfike	 compartments.	Screenshot	 at	 chr11:1132582-4719948	 genomfic	 regfion	
exemplfifyfing	the	fidentfifficatfion	of	TAD-lfike	structures	based	on	fislet	pcHfi-C	finteractfion	dfirectfionalfity	
findex	(DI)	scores.	Negatfive	DI	scores,	findficatfing	finteractfions	loopfing	to	the	left,	are	shown	fin	 blue	
and	posfitfive	DI	scores,	findficatfing	finteractfions	loopfing	to	the	rfight,	are	shown	fin	red.	For	comparfison,	
TAD	deffined	fin	hESC	usfing	Hfi-C	data	(Dfixon	et	al.,	2012)	are	represented	fin	grey.	
	

TADs fin hESC

Islet TAD-lfike

DI score

pcHI-C

To	 ensure	 the	 bfiologfical	 fimportance	 of	 fislet	 TAD-lfike	domafins,	 I	 conffirmed	 that	 these	

structures	recapfitulate	known	 TAD	 features,	 such	 as	 (fi)	 the	 enrfichment	 of	 CTCF	 at	 TAD	

borders	(Dfixon	et	al.,	2012)	wfith	a	convergent	orfientatfion	(Rao	et	al.,	2014;	Sanborn	et	al.,	

2015)	(Ffig.	23A)	 or	 (fifi)	 the	 fact	 that	 TAD	 boundary	regfions	 are	 broadly	 conserved	 among	

tfissues	(Schmfitt	 et	 al.,	 2016)	(Ffig.	23B).	 Coherent	 wfith	tfissue-finvarfiant	TAD	

compartmentalfisatfion,	 most	 fislet	 pcHfi-C	 finteractfions	 were	 contafined	 wfithfin	TADs	 deffined	
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using	 Hi-C	 data	 in	 other	 tissues	 (Dixon	 et	 al.,	 2012)	 (Fig.	 23C).	 Therefore,	 although	 our	

promoter	centric	high-resolution	chromatin	 interaction	maps	are	not	reflecting	all	existent	

interactions,	 especially	 structural	 interactions	 where	 promoters	 may	 not	 be	 involved,	 it	

seems	that	these	maps	are	able	to	reflect	TAD	compartmentalisation.	
	

Fig.	23:	 Islet	 chromatin	 compartmentalisation	exhibits	known	 features	of	 topological	associating	

domains	 (TADs).	 (A)	 CTCF	 distribution	 towards	 islet	 TAD-like	 compartments	 accounting	 for	 CTCF	
motif	 orientation.	 CTCF	 binding	 sites	 with	 forward	 or	 reversed	 motif	 are	 shown	 in	 blue	 or	 red	
respectively.	(B)	Tissue-selectivity	of	islet	TAD-like	boundary	regions.	The	degree	of	tissue-selectivity	
was	determined	by	comparing	TAD	segmentation	in	human	pancreatic	islets	against	TADs	defined	by	
Hi-C	in	21	tissues	from	Schmitt	et	al.,	2016.	(C)	Intra	and	inter	connectivity	of	islet	pcHi-C	interactions	
regarding	 islet	 TAD-like	 structures	 and	 TADs	 defined	 in	 human	 ESC	 and	 human	 IMR90	 fibroblasts	
(from	Dixon	et	al.,	2012).	Expected	values	were	calculated	after	randomising	TAD	positions	5	times.	 	
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3.6. Resolution	of	pcHi-C	interacting	regions	

To	 identify	 long-range	 chromatin	 interactions,	 C-based	methods	 (like	 pcHi-C)	 quantify	 the	

frequency	of	re-ligation	events	between	distal	loci.	To	do	so,	the	sample	is	fixed	to	keep	its	

3D	chromatin	conformation,	 then	 it	 is	digested	with	a	restriction	enzyme	(like	HindIII),	 re-

ligated	and	des-crosslinked	(Fig.	24A).	This	generates	linear	genomic	fragments	that	contain	

the	sequence	of	two	interacting	loci	that	can	be	quantified	by	next-generation	sequencing	

(Bonev	Boyan	and	Cavalli	Giacomo,	2016;	Dekker	et	al.,	2013).		

	

Each	 restricted	 fragment	 has	 several	 potential	 ligation	 partners	 and	 their	 frequency	 of	

ligation	 is	 directly	 affected	 by	 their	 spatial	 proximity	 at	 the	 time	 of	 fixation.	 It	 has	 been	

determined	that	only	~5%	of	all	genomic	restriction	fragments	in	a	C-based	library	re-ligate	

with	their	adjacent	partner	in	the	linear	template	(Fig.	24B)	(Davies	et	al.,	2015).	Therefore,	

it	 is	 assumed	 that	 a	 large	 proportion	 of	 ligation	 events	 reflect	 3D	 chromatin	 contacts	

between	distal	 loci	 at	 the	 time	of	 fixation.	Thus,	 re-ligation	events	are	used	 to	determine	

contact	 frequency	 between	 loci.	 Chromatin	 interactions	 are	 defined	 as	 pairs	 of	 loci	 with	

higher	contact	frequencies	than	expected	(Fig.	24C).	However,	it	is	important	to	remember	

that	 the	 identification	 of	 confident	 chromatin	 interactions	 not	 only	 relies	 on	 contact	

frequency	 but	 also	 on	 sequencing	 coverage,	 so	 a	 specific	 re-ligation	 event	 is	 observed	 a	

minimum	number	of	times	(Davies	et	al.,	2017).		

	

To	 identify	 statistically	 significant	 interactions	 based	 on	 pcHi-C	 data,	 M.	 Spivakov	 ’s	 lab	

developed	 CHICAGO	 (Cairns	 et	 al.,	 2016).	 This	 algorithm	 identifies	 confident	 pcHi-C	 by	

considering	expected	frequency	of	random	collisions	between	proximal	genomic	fragments	

(Brownian	motion),	observed	contact	frequencies	and	sequencing	coverage.	However,	 it	 is	

not	 difficult	 to	 envision	 the	 challenge	 to	 differentiate	 between	 the	 actual	 non-baited	

interacting	 region	 and	 its	 adjacent	 fragments.	 Due	 to	 3D	 spatial	 proximity,	 overhanging	

edges	 of	 an	 interacting	 fragment	 may	 show	 similar	 re-ligation	 probability	 with	 a	 baited	

promoter	than	the	closest	overhanging	edges	from	the	adjacent	non-interacting	fragments	

with	the	same	baited	promoter	(Fig.	24D).	Nevertheless,	the	actual	interacting	fragment	will	

generally	 show	a	 high	 interaction	 frequency	 as	 both	 edges	will	 re-ligated	with	 the	 baited	
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fragment	while	the	adjacent	non-interacting	fragments	will	only	present	re-ligation	events	

for	the	closet	edge	to	the	interacting	fragment.	

	

	
Fig.		24:	Identification	of	chromatin	contacts	through	re-ligation	events.	(A)	Diagram	illustrating	the	
generation	of	re-ligated	genomic	fragments	during	the	generation	of	a	C-based	library.	(B)	Diagram	
illustrating	the	computation	of	interaction	frequencies	from	a	specific	viewpoint	(highlighted	with	a	
blue	circle)	and	all	genomic	fragments.	It	also	shows	that	it	has	been	determined	that	only	5%	of	re-
ligation	 events	 occur	 between	 fragments	 that	 are	 adjacent	 in	 the	 linear	 template.	 (C)	 4-C	 like	
representation	 of	 the	 contact	 frequencies	 from	 a	 given	 viewpoint.	 A	 dashed	 arrow	 indicates	 the	
association	 between	 the	 viewpoint	 and	 a	 distal	 interacting	 region.	 (D)	 Schematic	 indicating	 the	
possible	ligation	events	between	a	promoter	(viewpoint)	and	interacting	site.	Adapted	by	permission	
from	Macmillan	Publishers	Ltd	on	behalf	of	Cancer	Research	UK:	Nature	Methods	Davies	et	al.,	2017;	
copyright	(2017)	
	

Moreover,	 there	 is	 another	 technical	 aspect	 that	 needs	 to	 be	 considered	 regarding	 the	

identification	 of	 confidential	 interacting	 sites.	 Although	 CHICAGO	 estimates	 the	 effect	 of	

“bait-specific”	and	“other	end-specific”	bias	factors	coming	from	technical	sources	such	as	

library	 pull-down,	 to	 the	 best	 of	my	 knowledge	 the	 current	 algorithm	 does	 not	 consider	

Conformation at 
time of fixation

Digestion of chromatin
 with HindIII

Re-ligation and
de-crosslinking

Re-ligation

Contact frequencies from a single viewpoint

Interacting siteViewpoint

A

B C

D



	
81	

Brownian	motion	at	the	non-baited	interacting	sites.	This	may	be	causing	the	identification	

of	false	positive	interacting	sites	adjacent	to	actual	interacting	sites.		

	

I	 considered	 that	 the	 two	 previously	 mentioned	 aspects	 could	 have	 an	 impact	 over	

CHICAGO’s	 capacity	 to	 identify	 interacting	 sites	with	 statistical	 confidence.	 To	 assess	 this	

question,	 I	 considered	 that	 most	 confident	 interacting	 sites	 would	 overlap	 with	 an	

epigenomic	 factor	 known	 for	driving	 chromatin	 interactions.	 Therefore,	 I	 interrogated	 the	

overlap	 of	 interacting	 sites	 and	 a	 list	 of	 epigenomic	 factors	 that	 was	 formed	 by:	 CTCF,	

Cohesin,	Mediator,	 active	 promoters	 and	 active	 enhancers.	 (See	methods	 section	 8.6	 for	

more	details).	

	

It	was	noticeable	that	despite	the	clear	enrichment	of	chromatin	interacting	factors	at	non-

baited	 promoter-interacting	 regions	 (Fig.	 15),	 less	 than	 25	%	 of	 them	directly	 overlapped	

any	of	 the	 interrogated	 factors	 (Fig.	25A	 left,	Fig.	51	 in	methods	section	8.6).	 I	also	 found	

that	 most	 of	 these	 “empty”	 non-baited	 promoter-interacting	 regions	 occur	 near	 known	

interacting	factors	more	frequently	than	expected	(Fig.	25A	right).	Moreover,	this	was	only	

observed	 for	 non-baited	 interacting	 sites	 as	 most	 baited	 sites	 did	 overlap	 with	 an	

interrogated	feature	and	the	enrichment	was	restricted	to	the	baited	HindIII	fragment	(Fig.	

25B,	Fig.	51	methods	section	8.6).	

	

Based	 on	 these	 results,	 I	 considered	 that	 constraining	 our	 analysis	 to	 the	 non-baited	

interacting	HindIII	 fragment	could	mask	 interactions	between	distal	cis-regulatory	 regions.	

This	would	reduce	our	capacity	to	associate	baited	promoters	and	elements	located	in	non-

baited	 interacting	 regions.	 Therefore,	 I	 considered	 reasonable	 to	 extend	 non-baited	

promoter-interacting	 regions	 covering	 the	adjacent	HindIII	 fragment	 from	each	 side	when	

associating	distal	epigenomic	factors	and	promoters.	
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Fig.	25:	Distance	from	an	 interacting	site	to	the	closest	epigenomic	factor.	Histogram	showing	the	distance	
from	the	closest	epigenomic	factor	(any	of	them)	to	(A)	non-baited	promoter-interacting	regions	or	(B)	baited	
promoters.	The	list	of	interrogated	epigenomic	factors	encompassed	CTCF,	MED1,	SMC1,	active	promoters	and	
active	enhancers.	Distance	was	computed	as	the	number	of	HindIII	fragments	from	the	interrogated	point.	A	
distance	 equal	 to	 0	 means	 that	 the	 epigenomic	 factor	 overlaps	 with	 the	 interacting	 HindIII	 fragment.	 The	
expected	distribution	was	generated	after	randomising	the	positions	of	the	interrogated	epigenomic	factors	in	
human	 pancreatic	 islets.	 Enrichments	 over	 expected	 distributions	 at	 non-baited	 sites	 (top)	 and	 baited	
promoters	(bottom)	are	shown	on	the	right	panels.		
	

	

	 	

−10 −5 0 5 10
Distance from the
interacting point

(Number of
 HindIII fragments)

−2

−1

0

1

2

3

En
ric

hm
en

t o
ve

r e
xp

ec
te

d
(lo

g2
 fo

ld
)

Distance to the closest 
epigenomic feature

−10 −5 0 5 10
Distance from the
interacting point

(Number of 
HindIII fragments)

−2

−1

0

1

2

3

En
ric

hm
en

t o
ve

r e
xp

ec
te

d
(lo

g2
 fo

ld
)

Distance to the closest
epigenomic feature

−10 −5 0 5 10
Distance from the
interacting point

(Number of
HindIII fragments)

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n 

of
 n

on
-b

ai
te

d
pr

om
ot

er
 in

te
ra

ct
in

g 
re

gi
on

s

Distance to the closest
epigenomic feature

−10 −5 0 5 10
Distance from the 
interacting point

(Number of 
HindIII fragments)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n 

of
 b

ai
te

d-
pr

om
ot

er
s

Distance to the closest 
epigenomic feature

Observed
Expected

A

B



	
83	

3.7. Islet-specific	CTCF	binding	driven	by	lineage-determining	TFs	

As	previously	mentioned,	islet-specific	interactions	were	not	only	associated	with	Mediator-

bound	enhancers,	but	also	with	CTCF	binding	sites	that	are	only	encountered	in	pancreatic	

islets,	 or	 in	 islets	 and	 a	 minority	 of	 tissues	 (Fig.	 19,	 Fig.	 20	 in	 section	 3.4).	 I	 therefore	

examined	this	subset	of	 islet-specific	CTCF	binding	sites.	To	reveal	whether	5	 islet	 lineage-

determining	 TFs	 (FOXA2,	 PDX1,	MAFB,	 NKX6.1	 and	NKX2.2)	 could	 be	 driving	 islet-specific	

CTCF	binding,	 I	 interrogated	their	co-occurrence	with	CTCF.	 In	addition,	 I	also	interrogated	

the	co-occurrence	of	Mediator	(MED1)	and	Cohesin	(SMC1)	to	further	understand	if	there	is	

any	relation	between	all	these	factors	(Fig.	26A).		

	

Even	though	only	8%	of	all	CTCF	binding	sites	co-occurred	with	MED1	(Fig.	26A);	the	results	

indicated	that	this	overlap	is	likely	to	be	driven	by	lineage-determining	TFs	(LDTFs),	as	their	

co-occurrence	 increased	with	 the	 number	 of	 co-binding	 LDTFs	 (Fig.	 26C).	 This	 correlation	

was	 especially	 clear	 at	 islet-specific	 CTCF	 binding	 sites	 (Fig.	 26B-C).	 However,	 the	 same	

observation	 is	 not	 true	 for	 Cohesin	 (Fig.	 26D),	 which	 frequently	 co-occurred	 with	 CTCF	

independently	of	LDTFs	co-binding	or	CTCF	tissue	selectivity.	

	

Therefore,	 it	seems	that	despite	the	small	overlap	between	them,	CTCF	and	MED1	have	a	

high	degree	of	co-localisation	at	loci	highly	bound	by	LDTF.		
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Ffig.	26:	 Cooperatfive	 work	 between	 fislet	 LDTFs,	 CTCF,	 MED1	 and	 SMC1.	(A)	 Venn-Dfiagram	
fillustratfing	the	overlap	between	Medfiator	(MED1),	Cohesfin	(SMC1)	and	CTCF	consfistent	bfindfing	sfites	
fin	human	pancreatfic	fislets.	(B)	Stacked	bar	plots	showfing	the	fractfion	of	CTCF	sfites	fin	relatfion	to	the	
co-bfindfing	of	lfineage-determfinfing	TFs	(LDTFs).	CTCF	and	Medfiator	(C)	or	Cohesfin	(D)	co-occupancy	fin	
relatfion	 to	 the	 bfindfing	 of	 LDTFs.	 The	 finterrogated	 fislet	 LDTFs	 were:	 FOXA2,	 PDX1,	 MAFB,	 NKX2.2,	
NKX6.1.	CTCF	bfindfing	was	dfifferentfiated	between	fislet-specfiffic	(Isl.Sp.)	and	non-fislet-specfiffic	(Non-
Isl.Sp.).	
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Chapter	4	

Promoter	centric	chromatin	interaction	domains	 	 	 	 	 				.	

	

4.1. Identification	of	islet	promoter-associated	domains	(PADs)	

Although	TAD	compartmentalisation	has	been	proved	to	affect	gene	expression	regulation	

(Andrey	et	al.,	2013;	Gonzalez-sandoval	and	Gasser,	2016;	Guo	et	al.,	2015;	Lupiáñez	et	al.,	

2015,	 2016),	 it	 is	 not	 clear	 if	 TADs	 represent	 the	 smallest	 territorial	 unit	 that	 defines	 the	

genomic	 linear	space	able	to	modulate	gene	transcription.	 Indeed,	studies	that	achieved	a	

higher	 resolution	 than	 standard	 Hi-C	 revealed	 evidences	 of	 sub-structures	 within	 TADs	

(Phillips-Cremins	et	al.,	2013;	Rao	et	al.,	2014).	

	

To	interrogate	whether	pcHi-C	maps	are	able	to	detect	intra-TAD	chromatin	organisation,	I	

assessed	 the	 possibility	 that	 promoters	 have	 more	 constrained	 intra-TAD	 regulatory	

landscapes.	 Thus,	 per	 each	 baited	 promoter	 in	 pcHi-C,	 I	 grouped	 all	 intra-TAD	 interacting	

regions	 in	a	single	 linear	genomic	segment	 (Fig.	27).	These	genomic	 intervals	were	named	

promoter-associated	domains	(PADs)	(Table	6).	

	

Note	 that	 PADs	 are	 not	 necessarily	 meant	 to	 represent	 separate	 substructures	 of	 TADs	

(Phillips-Cremins	et	al.,	2013),	but	simply	define	the	genomic	space	that	is	likely	to	contain	

regulatory	 interactions	 with	 each	 annotated	 gene.	 Thus,	 different	 PAD	 segments	 can	

overlap	and	some	PADs	fully	cover	a	genomic	region	delimited	by	a	TAD	(Table	6,	Fig.	27,	

Fig.	49).	

	

Table	6:	Description	of	islet	PADs.	

Total	number	of	PADs	 16,030	
Median	size	(kb,	IQR)	 376.58	(211.43	–	624)	
Median	number	of	interactions	per	PAD	(IQR)	 5	(2-14)	
Median	number	of	PADs	per	TAD	(IQR)	 3	(2-6)	
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Ffig.	27:	KCNJ11	promoter-assocfiated	domafin	 (PAD).	 Screenshot	 around	 the	KCNJ11	gene	 locus	
exemplfifyfing	promoter-assocfiated	domafin	deffinfitfion.	Tracks	from	top	to	bottom	are:	Ensembl	gene	
annotatfion;	fislet	ChromHMM	where	actfive	promoters	are	findficated	fin	blue	and	actfive	enhancer	are	
findficated	fin	orange	and	red;	Islet	TAD-lfike	compartment;,	PADs	deffined	for	all	finteractfing	promoters	
fin	the	locus;	vfirtual	4C	showfing	the	finteractfion	frequencfies,	fin	human	pancreatfic	fislets,	usfing	KCNJ11	
promoter	as	vfiew	pofint,	statfistfically	sfignfifficant	(CHICAGO	score	>=	5)	promoter	finteractfing	regfions	
are	findficated	fin	black;	pcHfi-C	RNA	probes	used	to	target	annotated	promoters;	vfirtual	dfigestfion	of	
the	hg19	genome	usfing	HfindIII	restrfictfion	enzyme	and	ffinally	fislet	chromatfin	finteractfions	detected	
by	 pcHfi-C.	 For	 PADs,	 thficker	 lfines	 correspond	 to	 the	 HfindIII	 fragment	 that	 contafins	 the	 findficated	
gene	promoter.	PcHfi-C	chromatfin	finteractfions	orfigfinated	from	the	KCNJ11	promoter	are	hfighlfighted	
fin	 blue	 and	 used	 to	 deffined	 the	KCNJ11	PAD,	 also	 hfighlfighted	 fin	 blue.	 For	 more	 finformatfion	
regardfing	the	fislet	ChromHMM	and	fits	colour	code	see	sectfion	8.1.	

	

I	observed	that	a	large	proportfion	of	fislet	PADs	were	sfignfiffically	smaller	than	fislet	TAD-lfike	

structures,	as	44%	of	fislet	PADs	were	>25%	smaller	than	the	TAD-lfike	compartment	where	

they	were	contafined	(Ffig.	27,	Ffig.	28).	Sfince	a	bfig	proportfion	of	PADs	are	smaller	than	thefir	

respectfive	TAD-lfike	compartment,	thfis	suggests	that	some	promoters	do	not	finteract	wfith	

any	regfion	wfithfin	a	TAD	and	thefir	finteractfions	are	focalfised	fin	a	smaller	area.	

	
Ffig.	28:	Overlap	between	TAD	and	PAD	segmentatfion.	From	left	to	rfight:	Hfistogram	findficatfing	the	
percentage	of	PADs	that	dfid	occupy	a	gfiven	fractfion	of	TAD	space.		Cumulatfive	dfistrfibutfion	of	the	
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percentage	of	PADs	that	dfid	occupy	a	gfiven	fractfion	of	TAD	space.	Dashed	maroon	lfines	findficate	that	
44%	of	PAD	occupy	75%	or	less	of	a	TAD	space.	

	
Regulatory	states	 fin	 fislet	 PADs	 are	 concordant	 wfith	 gene	 expressfion.	To	understand	

whether	 fislet	 PADs	 could	 encompass	 the	cfis-regulatory	 space	 of	 gene	 promoters,	 I	

finterrogated	whether	the	chromatfin	states	contafined	wfithfin	the	PADs	were	coherent	wfith	

the	 gene	 expressfion	 patterns.	 To	 do	 so,	 I	 took	 advantage	 of	 our	fislet	 ChromHMM	 map,	 a	

genome-wfide	segmentatfion	 of	 chromatfin	 states	fin	 human	 pancreatfic	 fislets.	 Thfis	 map	 was	

formed	 by	 9	 states,	 whfich	 were	 deffined	 based	 on	 12	 epfigenomfic	 datasets	 generated	 fin	

human	 pancreatfic	 fislets	 (see	 sectfion	8.1.	 for	 more	 detafils).	 I	 computed	 the	enrfichment	 of	

each	ChromHMM	state	wfithfin	each	fislet	PAD	over	fits	genomfic	dfistrfibutfion.	I	then	grouped	

fislet	 PADs	 fin	 5	 bfins	 based	 on	 the	 expressfion	 levels	 assocfiated	 to	 the	 bafit.	 Thfis	 analysfis	

revealed	that	actfive	chromatfin	states,	such	as	actfive	enhancers,	were	enrfiched	at	fislet	PADs	

of	hfighly	expressed	genes	and	depleted	at	those	lfinked	to	lowly	expressed	genes.	Therefore,	

ChromHMM	states	wfithfin	PADs	were	coherent	wfith	gene	expressfion	patterns	(Ffig.	29).	

	
Ffig.	29:	Epfigenomfic	states	at	fislet	PADs	are	coherent	wfith	gene	expressfion.	Heatmap	findficatfing	the	
medfian	 enrfichment	 over	 genomfic	 dfistrfibutfion	 of	 a	 gfiven	 ChromHMM	 state	 fin	 a	 PAD.	 PADs	 were	
separated	fin	5	bfins	based	on	bafit	gene	expressfion	levels	fin	human	pancreatfic	fislets.	
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Next,	 I	 addressed	 fif	 epfigenomfic	states	fin	PADs	dfiffer	 from	 non-PAD	 space	 wfithfin	TAD	

compartments.	To	do	so,	I	selected	7,085	PADs	at	least	25%	smaller	than	the	TAD	fin	whfich	

they	were	contafined	(Ffig.	28).	I	compared	the	ChromHMM	states	at	PADs	and	the	remafinfing	

TAD	 space	 fin	 relatfion	 to	 gene	 expressfion.	 Thfis	 comparfison	 showed	 that	 fislet	 PADs	
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assocfiated	 wfith	 hfighly	 actfive	 genes	 were	 enrfiched	 fin	 actfive	 enhancers	 and	 depleted	 fin	

heterochromatfin	as	compared	to	the	remafinfing	TAD	space	(Ffig.	30).		

	
Ffig.	30:	Comparfison	between	chromatfin	states	at	PADs	and	remafinfing	TAD	space.	Graphs	showfing	
enrfichment	 of	 actfive	 enhancers	 (left)	 or	 heterochromatfin	 ChromHMM	 states	 (rfight)	 fin	 PADs	 over	
remafinfing	 TAD-lfike	 space.	 Thfis	 analysfis	 was	 performed	 usfing	 PADs	 that	 were	 at	 least	 25%	 smaller	
than	the	TAD	fin	whfich	they	are	contafined	(Ffig.	28).	Medfian	enrfichments	are	findficated	wfith	cfircles	
and	finterquartfile	ranges	are	showed	as	a	coloured	area.	Data	was	separated	fin	5	bfins	based	on	the	
gene	expressfion	level	of	the	bafited	gene	fin	human	pancreatfic	fislets.	

	

These	results	suggest	that	PADs	represent	a	more	restrficted	genomfic	lfinear	space	where	cfis-

regulatory	elements	have	a	regulatory	effect	over	a	specfiffic	gene	promoter.	
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	Interrogatfing	 our	 pcHfi-C	 map	 I	 could	

fidentfify	35,286	finteractfions	between	enhancers	and	promoters,	whfich	corresponded	to	40%	

of	all	45,683	candfidate	actfive	enhancers.	Thfis	findficates	that	a	large	proportfion	of	all	actfive	

enhancers	could	 be	 precfisely	 assocfiated	 to	 a	 promoter	 based	 on	 experfimentally	 detected	

chromatfin	finteractfions.	

	

Other	candfidate	enhancers	dfid	not	show	physfical	finteractfions	wfith	any	gene.	Thfis	could	be	

for	several	reasons.	For	example,	fit	can	be	that	enhancer-promoter	regulatory	finteractfions	

are	 dynamfic,	or	 only	 actfive	 fin	 specfiffic	 physfiologfical	 contexts,	and	therefore	dfiffficult	 to	

capture	wfith	current	experfimental	procedures.	Moreover,	due	to	background	modellfing	and	

hfigh	rate	of	random	collfisfions,	short	finteractfions	requfire	a	very	hfigh	sequencfing	coverage	to	

be	consfidered	as	statfistfically	sfignfifficant.	Therefore,	some	finteractfing	enhancers	may	be	too	
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close	to	the	baited	promoter	to	detect	confident	interactions	(CHICAGO	score	≥	5)	between	

them.	 Finally,	 some	 candidate	 enhancers	 defined	 by	 chromatin	marks	may	 not	 represent	

bona	fide	functional	regulatory	elements.	

	

Taking	into	account	these	considerations,	I	assessed	the	possibility	that	pcHI-C	data	could	be	

used	 to	 predict	 likely	 targets	 of	 candidate	 enhancers	 that	 did	 not	 show	 high	 confident	

interactions	to	any	gene	promoter.	My	previous	results	indicated	that	the	chromatin	state	in	

PADs	 was	 more	 coherent	 with	 gene	 expression	 patterns	 than	 simply	 considering	 TAD	

compartmentalisation	 (Fig.	30).	Thus,	 it	 suggested	 that	associations	based	on	PADs	would	

be	more	reliable	than	assumptions	based	on	either	linear	proximity	or	TAD	maps.	However,	

very	 often	 enhancers	 map	 to	 more	 than	 one	 overlapping	 PAD,	 and	 it	 was	 therefore	

necessary	to	consider	that	maybe	not	all	promoters	in	a	genomic	space	with	enhancers	are	

under	enhancer	regulation.	Therefore,	I	used	pcHiC	data	to	tentatively	associate	enhancers	

to	promoters	 that	were	not	 linked	by	direct	 interactions,	 using	 the	 following	 criteria	 (Fig.	

31):	

	

1. I	 reasoned	 that	 an	 enhancer	 that	 does	 not	 show	 any	 promoter	 interaction	 does	 not	

necessarily	 regulate	 the	gene(s)	 located	 in	 the	bait	of	 all	 PADs	 to	which	 the	enhancer	

maps.	 However,	 if	 a	 non-interacting	 enhancer	 is	 contained	 within	 one	 or	more	 PADs	

whose	 baits	 have	 active	 promoters	 that	 do	 interact	with	 other	 enhancers,	 I	 reasoned	

that	 these	 promoters	 are	 regulated	 by	 enhancers	 within	 their	 PADs.	 I	 therefore	

tentatively	 associated	 any	 non-interacting	 enhancers	 to	 their	 PADs	 if	 these	 had	

enhancer-interacting	active	gene	promoters.		

	

2. I	assumed	that	a	+/-10	kb	window	around	any	baited	promoter	encompasses	a	 region	

where	random	collisions	are	too	frequent	to	enable	the	identification	of	high	confidence	

interactions	above	background	noise.	I	also	assumed	that	the	close	linear	proximity	was	

indicative	 of	 physical	 3D	 proximity	 between	 putative	 enhancers	 and	 target	 genes.	

Therefore,	non-interacting	enhancers	(not	assigned	in	step	1)	that	reside	within	10kb	of	

a	baited	active	promoter,	were	automatically	assigned	to	them.	
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3. The	remaining	non-interacting	enhancers	were	associated	to	a	baited	active	promoter	if	

they	were	exclusively	contained	within	a	single	PAD.		

All	of	these	steps	of	our	assignment	strategy	required	an	active	promoter,	identified	either	

in	 the	 islet	 ChromHMM	or	 the	 islet	 regulome	 approaches,	 to	 associate	 a	 non-interacting	

enhancer	to	a	baited	promoter.		

	

This	 strategy	 allowed	me	 to	 assign	 80	%	 of	 all	 enhancers	 in	 human	pancreatic	 islets	 to	 a	

promoter	(Fig.	31).	

	
Fig.	31:	Enhancer	assignment.	Diagram	illustrating	the	different	steps	followed	to	assign	enhancers	
to	promoters.	First,	enhancers	were	linked	to	promoters	based	on	pcHi-C	interactions.	Second,	non-
interacting	enhancers	were	tentatively	assigned	to	active	promoters	that	showed	interactions	with	
other	 enhancers.	 Third,	 proximal	 (<10kb)	 enhancers	 and	 active	 promoters	 were	 linked	 based	 on	
linear	proximity.	Finally,	enhancers	were	assigned	to	an	active	promoter	if	they	did	not	overlap	with	
other	 PADs.	 PcHi-C	 interactions	 are	 indicated	 as	 solid	 black	 arcs,	 inferred	 enhancer-promoter	
associations	as	dashed	black	 lines,	PADs	are	 indicated	as	grey	horizontal	bars	and	enhancers	(E)	as	
red	boxes.	
	
To	validate	this	strategy,	I	asked	whether	the	assignment	of	any	given	enhancer	to	a	gene	A	

represented	 an	 improvement	 compared	 to	 a	 gene	 B	 whose	 PAD	 did	 overlap	 with	 the	

enhancer,	but	this	enhancer	was	not	assigned	to	the	gene	B	(see	Fig.	55	in	section	8.22).	 I	

assumed	that	the	real	target	of	any	islet	enhancer	is	expected	to	be	active	in	this	particular	

tissue.	 Moreover,	 a	 large	 proportion	 of	 these	 associations	 should	 involve	 islet-specific	

expressed	 genes,	 because	 enhancers	 are	 often	 found	 near	 islet-specific	 expressed	 genes	

and	 are	 generally	 thought	 to	 be	 important	 for	 lineage-specific	 expression.	 Therefore,	 I	
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computed	 the	enrichment	of	 islet-specific	 genes	 (section	8.8)	 among	genes	with	 assigned	

enhancers.	 To	 do	 so,	 I	 generated	 two	 lists	 of	 genes.	 The	 first	 list	 was	 named	 “assigned	

genes”	and	contained	all	genes	with	an	assigned	enhancer	(Fig.	31).	The	second	 list	called	

“control	 genes”	 contained	 all	 genes	 whose	 PADs	 overlapped	 with	 active	 enhancers	 but	

these	 were	 not	 assigned	 to	 them	 (Fig.	 55	 in	 methods	 section	 8.22).	 Per	 each	 gene	

expression	class	(non-expressed,	islet-specific	and	non-islet-specific	expressed),	I	computed	

the	enrichment	among	“assigned	genes”	compared	to	“control	genes”.	The	results	indicated	

a	clear	enrichment	of	 islet-specific	expressed	genes	 in	genes	with	assigned	enhancers	(Fig.	

32,	Fig.	56).	This	 is	 coherent	with	 the	notion	 that	 tissue-specific	gene	expression	 is	driven	

through	 enhancer-promoter	 communication,	 and	 suggests	 that	 most	 assignments	

differentiate	bona	 fide	 targets	 from	other	genes	 in	 the	vicinity	of	enhancers	 (Heinz	et	al.,	

2015;	Maston	et	al.,	2006).		

	
Fig.	 32:	 Enhancer	 assignments	 considering	 chromatin	 interaction	 maps	 accentuate	 their	

association	with	 islet-specific	 expressed	 genes.	 For	 the	 three	 different	 gene	 expression	 classes,	 I	
computed	 the	 log2	 ratio	 for	 enhancer	 “assigned	 genes”	 vs.	 genes	whose	 PADs	 also	 contained	 an	
enhancer	 but	 these	 were	 not	 assigned	 to	 them	 (“control	 genes”).	 Statistical	 significance	 was	
measured	 in	 a	 chi-square	 test	 comparing	 the	 frequencies	 of	 each	 gene	 expression	 class	 among	
“assigned	genes”	and	“control	genes”	and	the	resultant	p-value	is	indicated	on	top	of	each	bar.	
	
Moreover,	 a	 complementary	 analysis	 showed	 that	 assigned	 enhancer-promoter	 pairs	

present	 better	H3K27ac	 correlations	 than	 pairs	 associated	 purely	 by	 linear	 proximity	 (see	

section	8.23).	These	results	showed	that	our	pcHi-C	 interaction	maps	allowed	us	to	define	

the	target	genes	of	a	large	number	islet	enhancers	based	on	direct	physical	interactions,	and	

further	allowed	inference	of	an	extended	list	of	enhancer	target	genes.		
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Identification	 of	 PAD	 features	 that	 predict	 tissue-specific	 gene	 expression.	 To	 better	

understand	 the	 features	 of	 gene-specific	 regulatory	 landscapes	 that	 are	 associated	 with	

tissue-specific	 gene	 expression,	 I	 assessed	 the	 relationship	 of	 a	 compendium	 of	 15	

epigenomic	 features	 with	 the	 3	 previously	 mentioned	 gene	 expression	 classes	 (Fig.	 32).	

These	 features	 tried	 to	 cover	 many	 known	 aspects	 of	 gene	 regulation,	 including	 (a)	 the	

presence	of	regulatory	elements	(e.g.	assigned	enhancers),	(b)	chromatin	modifications	that	

are	functionally	meaningful	(e.g.	H3K27me3	at	TSS)	(c)	nature	of	chromatin	interactions	(e.g.	

fraction	of	 islet-selective	 interactions).	The	 interrogated	 features	are	 listed	 in	Table	7	 (see	

section	8.24	for	more	details).	

	

Just	 comparing	 the	 distribution	 of	 these	 regulatory	 features	 between	 the	 tree	 gene	

expression	 classes	 (non-expressed,	 expressed	 but	 not	 islet-specific,	 and	 specifically	

expressed	in	 islets)	already	revealed	that	some	features	were	especially	characteristic	of	a	

particular	gene	class.	As	expected,	promoter	activity	marked	by	H3K4me3	was	clearly	higher	

at	 expressed	 gene	 promoters,	 especially	 for	 non-islet-specific	 gene,	 and	 almost	 absent	 in	

non-expressed	 gene	 promoters	 (Heintzman	 et	 al.,	 2007).	 Moreover,	 the	 presence	 of	

repressive	marks,	 such	 as	 H3K27me3	 or	 H3K9me3	 (Schwartz	 and	 Pirrotta,	 2013),	 in	 non-

pancreatic	 tissues	 was	 coherent	 with	 patterns	 of	 tissue-specificity	 promoter	 activity	

determined	by	gene	expression	(Fig.	58	in	methods	section	8.24).		

	

I	considered	several	machine	learning	approaches	to	identify	the	most	informative	features	

to	predict	gene	expression	classes.	I	specifically	explored	machine	learning	algorithms	such	

as	 Gaussian	mixture	models,	 random	 forests	 and	multiple	 logistic	 regression.	 However,	 I	

found	that	 the	model	obtained	with	multiple	 logistic	 regression	was	 the	most	 informative	

and	 accurate	 one,	 as	 assessed	 with	 a	 confusion	 matrix	 and	 different	 metric	 scores	 (see	

section	8.24	and	Fig.	61	for	more	details).	I	will	therefore	only	discuss	the	results	I	obtained	

implementing	logistic	regression.	

	

Logistic	regression	is	a	type	of	machine	learning	classifier.	Therefore,	using	a	compendium	

of	 given	 features,	 the	 algorithm	 tries	 to	 find	 a	 pattern	 that	 correlates	 with	 a	 given	

categorical	classification.	This	machine	learning	classifier	determines	the	coefficients	(b)	for	

a	list	of	features	(c)	that	fits	a	logit	function	(Fig.	33).	This	function	computes	the	probability	
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(p)	 of	 a	 given	 gene	 to	 belong	 to	 a	 certain	 class	 (k)	 (Formula	 1).	 Thus,	 the	 higher	 the	

coefficient	the	bigger	the	weight	of	a	given	feature	has	in	the	logit	function	(Bewick	et	al.,	

2005).	

!"#$% &' = )* ∗ 	-* 	

Formula	1:	Logit	function.		
	

	
	

Fig.	33:	Logit	distribution	as	gene	probability	of	being	islet-specific	expressed.	Diagram	illustrating	
how	 a	 logit	 distribution	may	 represent	 the	 probability	 of	 a	 given	 gene	 of	 being	 classified	 as	 islet-
specific	 expressed	 based	 on	 the	 values	 of	 a	 given	 epigenomic	 feature.	 	 Genes	 classified	 as	 islet-
specific	 are	 indicated	 as	 green	 circles,	 while	 expressed	 non-islet	 specific	 are	 in	 blue	 and	 non-
expressed	are	 in	black.	Genes	are	sorted	 in	 the	x-axis	based	on	their	value	 for	a	given	epigenomic	
feature.	
	
In	 a	 logistic	 regression	 analysis	 independence	 is	 assumed	 between	 the	 features	 and	 it	 is	

known	that	the	use	of	highly	correlated	features	can	interfere	with	the	estimation	(Bewick	

et	 al.,	 2005).	 Thus,	 after	 computing	 pair-wise	 Pearson’s	 correlation	 among	 the	 15	

interrogated	 epigenomic	 features,	 12	 lowly	 correlated	 (Pearson’s	 correlation	 <	 0.65)	

features	 were	 kept	 for	 a	 logistic	 regression	 analysis	 (Table	 7,	 Fig.	 59	 in	methods	 section	

8.24).	

Table	7:	Epigenomic	features	interrogated	in	a	 logistic	regression	analysis	

to	determine	their	association	with	tissue-specific	gene	expression.		
	

H3K4me3	signal	at	TSS	in	human	pancreatic	islets	 P	
H3K27me3	signal	at	TSS	in	human	pancreatic	islets	 P	
H3K9me3	signal	at	TSS	in	human	pancreatic	islets	 P	
Number	of	H3K4me3	peaks	from	(139)	other	tissues	at	TSS	 P	
Number	of	H3K27me3	peaks	from	(139)	other	tissues	at	TSS	 P	
Number	of	H3K9me3	peaks	from	(139)	other	tissues	at	TSS	 	
TSS	length	determined	by	CAGE	in	human	islets	(bp)	 P	
CpG	island	(CGI)	length	(kb)	 P	
Number	of	islet	pcHi-C	interactions	 P	
Fraction	of	islet-selective	interactions	 P	
Fraction	of	promoter-enhancer	interactions	 P	
Distance	to	the	closest	TAD	borders	(kb)	 P	
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Number	of	islet	enhancers	overlapping	the	PAD	 	
Number	of	islet	assigned	class	I-III	enhancers	 	
Number	of	islet	assigned	class	I	enhancers	 P	
P:	features	used	in	a	logistic	regression	analysis	after	filtering	for	
correlating	features.	

	

An	 initial	 logistic	 regression	 analysis,	 comparing	 all	 3	 gene	 expression	 classes,	 confirmed	

that	 some	 features	were	 highly	 characteristic	 of	 a	 particular	 gene	 class.	 However,	 it	 also	

revealed	 that	 some	 features	 were	 shared	 among	 expressed	 genes	 and	 provided	 little	

information	 to	 differentiate	 between	 islet-specific	 and	 non-islet-specific	 expressed	 genes	

(Fig.	 61A	 in	 methods	 section	 8.24).	 Therefore,	 I	 decided	 to	 perform	 a	 second	 analysis	

comparing	 exclusively	 islet-specific	 and	 non-islet-specific	 expressed	 genes	 to	 further	

characterise	features	associated	with	tissue-specific	gene	expression	(Fig.	34).	

	

	
	

Fig.	34:	Feature	informativeness	to	identify	islet-specific	expressed	genes	among	expressed	genes.	

Dot	plot	showing	the	logistic	regression	coefficient	as	a	measurement	of	feature’s	informativeness	
to	differentiate	between	islet-specific	and	non-islet	specific	expressed	genes.	
	
This	analysis	 revealed	 that	among	all	 interrogated	 features,	 tissue-specificity	of	 repressive	

marks	(namely	H3K27me3)	at	promoters	was	the	most	informative	feature	to	predict	tissue-

specific	gene	expression.	This	is	interesting,	but	to	some	extent	redundant,	because	for	any	

gene	that	is	expressed	in	islets,	the	existence	of	H3K27me3	repressive	marks	in	many	non-

islet	tissues	is	expected	to	lead	to	an	islet-specific	expression	pattern.	However,	this	analysis	

also	showed	that	among	the	features	that	were	not	directly	associated	to	promoter	activity,	
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the	 number	 of	 assigned	 class	 I	 (H3K27ac	 and	 Mediator-rich)	 enhancers	 was	 the	 most	

informative	 one,	 followed	 by	 the	 fraction	 of	 islet-selective	 interactions	 (Fig.	 34).	 This	

unbiased	 analysis	 therefore	 provides	 a	 confirmation	 that	 enhancer	 assignments	 are	

associated	with	tissue-specificity	gene	expression	in	human	islets,	and	it	further	points	that	

the	tissue-specificity	of	interactions	is	also	important.				 	
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4.2. Identification	of	enhancer-rich	PADs	

My	observation	that	the	number	of	assigned	Mediator-rich	enhancers	as	well	as	the	fraction	

of	 tissue-specific	 interactions	 are	 informative	 features	 to	 predict	 tissue-specific	 gene	

expression	 (Fig.	 34)	 extends	 previous	 associations	 of	 tissue-specific	 gene	 expression	 with	

tissue-specific	chromatin	structure	(Javierre	et	al.,	2016).	Moreover,	it	is	also	coherent	with	

the	notion	that	tissue-specific	genes	are	located	in	proximity	to	enhancer	domains.	

	

Previous	studies	have	defined	enhancer	domains	as	genomic	regions	with	a	high	enhancer	

density	 and	 strongly	 bound	 by	 TFs,	 Mediator	 or	 H3K27ac.	 These	 domains	 are	 known	 as	

super-enhancers	 (Whyte	et	al.,	2013),	 stretch	enhancers	 (Parker	et	al.,	2013)	or	enhancer	

clusters	(Pasquali	et	al.,	2014).	As	mentioned,	these	studies	linked	the	presence	of	enhancer	

domains	to	tissue-specific	expression	of	nearby	genes.	Moreover,	it	has	been	reported	that	

enhancer	domains	tend	to	be	enriched	in	disease-associated	genomic	variants	(Hnisz	et	al.,	

2013;	Lovén	et	al.,	2013;	Pasquali	et	al.,	2014;	Whyte	et	al.,	2013).		

	

However,	 these	 definitions	 only	 group	 enhancers	 that	 are	 annotated	 in	 close	 linear	

proximity	 determined	 by	 arbitrary	 thresholds.	 Thus,	 a	 more	 accurate	 enhancer	 domain	

definition	needs	 to	consider	 the	extent	 to	which	enhancer	cluster	 in	 the	3D	space	of	 islet	

cell	nuclei.	For	example,	it	is	theoretically	possible	that	enhancers	that	do	not	cluster	in	the	

linear	genomic	 template	do	cluster	 in	3D	space.	 Furthermore,	previous	 studies	could	only	

attempt	to	assign	enhancer	domains	to	target	genes	through	linear	proximity,	which	recent	

studies	 have	 shown	 may	 often	 be	 incorrect	 (Sanyal	 et	 al.,	 2012).	 As	 I	 proposed,	 this	

limitation	 could	 be	 overcome	 through	 the	 interpretation	 of	 high-resolution	 chromatin	

interaction	maps.	

	

I	therefore	considered	that	our	integrative	analysis	of	high-resolution	chromatin	interaction	

and	cis-regulatory	maps	has	the	potential	to	identify	3D	enhancer	domains	by	defining	PADs	

with	a	high	enhancer	content.	PADs	were	therefore	classified	in	3	categories	based	on	their	

number	of	assigned	enhancers:	 (i)	PADs	without	assigned	enhancers	named	enhancer-less	

PADs;	 (ii)	 PADs	 with	 at	 least	 one	 assigned	 class	 I-III	 enhancer	 but	 less	 than	 3	 class	 I	
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enhancers,	named	enhancer-poor	PADs;	(iii)	PADs	with	3	or	more	assigned	class	I	enhancers	

named	enhancer-rich	PADs	(Fig.	35).		

	
Fig.	 35:	 PAD	 classification	based	on	 enhancer	 content.	 Diagram	 illustrating	 the	 PAD	 classification	
based	 on	 the	 number	 of	 assigned	 enhancers.	 Categories	 from	 top	 to	 bottom	 are:	 non-interacting	
promoter	 baits;	 PADs	 without	 assigned	 enhancers	 (enhancer-less	 PADs);	 PADs	 with	 at	 least	 one	
assigned	class	I-III	enhancer,	but	less	than	3	class	I	enhancers	(enhancer-poor	PADs),	PADs	with	3	or	
more	 assigned	 class	 I	 enhancers	 (enhancer-rich	 PADs).	 For	 more	 details	 regarding	 the	 different	
classes	(I-III)	of	active	enhancer	see	section	8.1.	PcHi-C	interactions	are	illustrated	as	solid	black	arcs,	
inferred	 enhancer-promoter	 associations	 as	 dashed	 black	 arcs,	 PADs	 are	 illustrated	 as	 grey	
horizontal	bars	and	enhancers	(E)	as	red	boxes.	Enhancer-rich	PADs	are	highlighted	in	blue.	
	
Note	 that	 this	PAD	classification	was	 centred	on	 the	assignment	of	 class	 I	 enhancers	 (Fig.	

35).	 Among	 all	 45,685	 open	 chromatin	 regions	 that	 had	 typical	 enhancer	 signatures	 in	

pancreatic	 islet	 islets,	 13,635	 class	 I	 enhancers	 were	 strongly	 enriched	 in	 epigenomic	

features	 associated	 to	 enhancer	 activity	 (H3K27ac	 and	 MED1)	 (Heintzman	 et	 al.,	 2009;	

Kagey	et	al.,	2010).	Thus,	I	considered	that	class	I	enhancers	as	a	highly-confident	subset	of	

active	 enhancers	 (see	 section	 8.1).	 Nevertheless,	 as	 a	 control	 of	 the	 proposed	

categorisation,	I	interrogate	the	number	of	assigned	class	I-III	enhancers	per	PAD	class	and	

their	association	with	gene	expression	patterns.	 I	determined	that	different	enhancer	PAD	

classes	 showed	 expected	 class	 I-III	 enhancer	 content	 distributions	 (Fig.	 36A).	 Moreover,	

among	 the	 different	 PAD	 categories	 only	 enhancer-rich	 PADs	 were	 frequently	 associated	

with	islet-specific	expressed	genes	(Fig.36B).	

	

E E

E E E E

6,046  non-interacting promoters

8,303  Enhancer-less PADs

5,104 Enhancer-poor PADs
>= 1 assigned class I-III  and <=2 assigned class I enhancers

2,623 Enhancer-rich PADs
>= 3 assigned class I enhancers



	
98	

	
Fig.	36:	Characterisation	of	PADs	with	different	enhancer	 contents.	 	 (A)	Panels	 showing	different	
features	per	PAD	class	based	on	their	number	of	assigned	enhancers.	 (B)	Gene	expression	pattern	
for	 different	 classes	 of	 PADs.	 For	 comparative	 purposes	 the	 same	 features	 are	 shown	 for	 non-
interacting	baits.		
	
	
Then,	in	order	to	determine	their	informativeness,	enhancer-rich	PADs	were	systematically	

compared	 to	 existing	 definitions	 of	 enhancer	 domains,	 namely	 islet	 enhancer	 clusters	

(Pasquali	et	al.,	2014)	and	super-enhancers	(Whyte	et	al.,	2013).	After	this	analysis,	I	could	

determine	that:		
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(i) Enhancer-rich	PADs	are	associated	with	islet-selective	chromatin	structures.	

Enhancer-rich	PADs	were	enriched	 in	 tissue-selective	 chromatin	 interactions,	 as	well	 as	 in	

direct	 interactions	occurring	between	promoters	and	enhancers	 (Fig.	37,	 top	panels).	 This	

enrichment	was	similar	to	the	one	observed	for	PADs	with	assigned	enhancer	clusters	and	

super-enhancers	 (Fig.	 37,	 bottom	 panels).	 These	 results	 were	 in	 concordance	 with	 the	

observation	 that	 super-enhancers	 are	 enriched	 at	 frequently	 interacting	 regions	 (FIREs),	

which	 are	 tissue-specific	 chromatin	 structures	 presenting	 an	 unexpected	 large	 number	 of	

chromatin	 interactions	detected	by	Hi-C	(Schmitt	et	al.,	2016).	However,	by	taking	a	gene-

centric	 approach,	 our	 enhancer-rich	 PADs	 associate	 3D	 enhancer	 domains	 to	 the	 likely	

target	gene	within	the	TAD,	extending	the	current	knowledge	on	gene	regulation.		

	
Fig.	37:	Enhancer-rich	PADs	showed	similar	structural	features	to	PADs	associated	with	enhancer	

clusters	 and	 super-enhancers.	Median	 values	 are	 presented	 as	 a	 dot,	 and	 interquartile	 ranges	 is	
indicated	as	a	line.	
	
(ii) Enhancer-rich	PADs	are	frequently	linked	to	islet-specific	gene	expression.		

I	also	observed	that,	although	there	were	nearly	a	two-fold	increase	in	the	number	of	genes	

associated	with	enhancer-rich	PADs	compared	to	the	number	of	genes	associated	with	PADs	

containing	 enhancer	 clusters	 and	 super-enhancers,	 the	 enrichment	 of	 islet-selective	

expressed	 genes	was	 comparable	 in	 all	 three	 classes	 (Fig.	 38).	 This	 could	 be	 because	 3D	

chromatin	interactions	maps	can	capture	enhancer	clusters	in	3D	that	are	not	visualised	in	

linear	maps,	 leading	 to	 the	 identification	of	 a	 larger	 number	 of	 genes	 linked	 to	 enhancer	

domains	without	a	significant	reduction	in	the	enrichment	of	islet-specific	genes.	
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Fig.	38.	Enhancer-rich	PADs	showed	a	similar	enrichment	for	islet-specific	expressed	genes	as	PADs	

associated	to	enhancer	clusters	and	super-enhancers.	The	panels	show	from	left	to	right:	number	
of	genes	associated	to	a	given	class	of	PADs,	enrichment	of	islet	specific	genes	computed	as	a	log2	
fold	 change	 over	 expected	 and	 enrichment	 statistical	 significance	 computed	 in	 a	 hypergeometric	
test.		
	
	

(iii) Most	enhancer	clusters	and	super-enhancer	are	assigned	to	an	enhancer-rich	PAD.		

I	next	examined	the	overlap	between	these	regulatory	domains	and	enhancer-rich	PADs.	 I	

assigned	 enhancer	 clusters	 and	 super-enhancers	 to	 promoters	 following	 the	 strategy	

previously	 proposed	 (Fig.	 35),	 and	 observed	 that	 86%	 of	 enhancer-clusters	 and	 91%	 of	

super-enhancers	 were	 assigned	 to	 enhancer-rich	 PADs	 (Fig.	 39A).	 However,	 a	 significant	

proportion	 of	 enhancer-rich	 PADs	 do	 not	 contain	 an	 assigned	 enhancer	 cluster	 or	 super-

enhancer	(Fig.	39B).		
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Fig.	 39:	Most	 enhancer	 clusters	 and	 super-enhancers	 were	 assigned	 to	 enhancer-rich	 PADs.	 (A)	
Horizontal	 bar	 plots	 indicating	 the	 number	 of	 enhancer	 clusters	 (EC)	 or	 super-enhancers	 (SE)	
assigned	to	enhancer-rich	PADs.	(B)	Horizontal	bar	plots	showing	the	number	of	enhancer-rich	PADs	
with	 an	 assigned	 enhancer	 cluster	 or	 super-enhancers	 compared	 to	 those	 enhancer-rich	 PADs	
without	an	assigned	element.	
	

	
(iv) Enhancers	at	enhancer-rich	PADs	are	enriched	in	type-2	diabetes	(T2D)	and	fasting	

glycemia	(FG)	GWAS	variants.		

Our	 previous	 study	 showed	 that	 common	 variants	 associated	 with	 type-2	 diabetes	 and	

fasting	 glycemia	 variation	 often	 map	 to	 islet	 enhancer	 clusters	 (Pasquali	 et	 al.,	 2014).	 I	

therefore	 performed	 variant	 set	 enrichment	 (VSE)	 analysis	 (Yang	 et	 al.,	 2011)	 to	 test	 if	

variants	 in	haplotypes	associated	with	type-2	diabetes	and	fasting	glycemia	were	enriched	

in	enhancers	forming	enhancer-rich	PADs.	The	results	showed	that,	although	there	were	a	

much	 larger	 number	 of	 enhancers	 in	 enhancer-rich	 PADs	 than	 enhancers	 composing	

enhancer	 clusters	 (“clustered	 enhancers”)	 or	 super-enhancers,	 enhancer-rich	 PADs	 had	 a	

highly	significant	enrichment	for	T2D	and	FG	risk	associated	variants	(Fig.	40).	
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Fig.	 40:	 Enhancers	 forming	 enhancer	 rich	 PADs	 showed	 strong	 enrichment	 for	 T2D	 and	 FG	 risk	

associated	variants,	as	previously	observed	for	super-enhancers	and	enhancers	forming	enhancer	

clusters.	Results	 from	a	VSE	 analysis	 computing	 the	 enrichment	 of	 type-2	 diabetes	 (T2D)	 risk	 and	
fasting	 glycemia	 (FG)	 variation	 associated	 variants	 in	 different	 sets	 of	 islet	 enhancers.	 Genomic	
variants	associated	to	breast	cancer	were	used	as	a	negative	control.	Enrichment	was	measured	as	a	
VSE	 score	 and	 an	 adjusted	 p-value	 in	 a	 –log10	 scale.	 The	 number	 of	 LD	 blocks	with	 at	 least	 one	
genomic	 variant	 overlapping	 an	 enhancer	 is	 indicated	 as	 the	 number	 of	 disease	 associated	 loci.	
Finally,	the	total	number	of	elements	interrogated	per	enhancer	set	is	showed	as	a	bar	plot.		
	
These	result	show	that	despite	enhancer-rich	PAD	encompass	a	larger	set	of	enhancers	than	

previous	definitions	(Fig.	40	right	panel),	these	3D	enhancer	domains	present	a	statistically	

significant	enrichment	of	disease-risk	variants	relevant	for	human	pancreatic	islets.	

	

In	 summary,	 these	 results	 define	 enhancer-rich	 PADs	 as	 meaningful	 3D	 cis-regulatory	

domains.	Furthermore,	 it	may	suggest	that	the	definition	of	enhancer	clusters	(Pasquali	et	

al.,	 2014)	 or	 super-enhancers	 (Whyte	 et	 al.,	 2013)	 is	 not	 able	 to	 fully	 reflect	 enhancer	

gathering	 in	 the	 3D	 chromatin	 space.	 Therefore,	 previous	 enhancer	 domain	 definitions	

based	on	linear	proximity	may	mask	relevant	aspects	of	enhancer	regulation.	
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4.3. Clusters	of	enhancer-rich	PADs	

Something	 to	 take	 into	 consideration	 was	 the	 fact	 that	 PADs	 in	 the	 same	 region	 had	 a	

tendency	to	overlap	with	each	other	(Table	6,	Fig.	27).	Therefore,	 I	wondered	 if	 in	a	 locus	

with	 a	 high	 enhancer	 density	 all	 PADs	 were	 classified	 as	 enhancer-rich	 or	 the	 locus	 was	

composed	by	PADs	with	different	enhancer	contents	(Fig.	41A).		

	

To	interrogate	this	question,	I	considered	the	regions	containing	at	least	one	enhancer-rich	

PAD.	In	loci	with	overlapping	enhancer-rich	PADs,	these	were	merged	into	a	single	genomic	

region	(Fig.	41A-B).	I	could	observe	that	although	enhancer-rich	PADs	overlapped,	they	also	

overlapped	 with	 enhancer-poor	 or	 enhancer-less	 PADs	 (Fig.	 41B-D).	 This	 observation	

occurred	 independently	 of	 the	 presence	 of	 enhancer	 clusters,	 super-enhancers	 or	 GWAS	

associated	 variants	 (Fig.	 41E-G).	 Therefore	 overlapping	 PADs,	 or	 even	 enhancer-rich	 PADs	

that	 overlap,	 probably	 do	 not	 reflect	 topological	 compartments	 where	 all	 genes	 are	

regulated	by	all	enhancers	the	enhancers	present	in	the	compartment.		

	

Nevertheless,	interconnectivity	between	enhancer-rich	PADs,	either	by	promoter-promoter	

interactions	or	through	shared	enhancers,	 is	a	highly	relevant	question	that	to	the	best	of	

our	knowledge	has	not	been	addressed.	For	 that	 reason,	we	are	currently	addressing	 this	

question	 by	 defining	 enhancer-promoter	 connectivity	 networks	 in	 PADs	 that	 could	

potentially	explain	gene	expression	co-regulation	and	cell	specificity.	

	

	

	

	

Fig.	41:	Overlap	between	enhancer-rich	PADs.	 (A)	Schematic	 illustrating	the	merge	of	overlapping	
enhancer-rich	PADs	into	a	single	locus.	Enhancer-rich	PADs	are	highlighted	in	blue.	(B)	Bar	plot	of	the	
number	 of	 loci	 regarding	 the	 number	 of	 enhancer-rich	 PADs	 per	 locus.	 (C)	 Boxplots	 showing	 the	
number	 of	 non-enhancer	 rich	 PADs	 regarding	 the	 number	 of	 enhancer-rich	 PADs	 per	 locus.	
Enhancer-less	are	shown	with	black	boxes	and	enhancer-poor	with	grey	boxes.		(D)	Boxplots	showing	
the	proportion	of	enhancer-rich	PADs	among	all	PADs	in	a	locus	regarding	the	number	of	enhancer-
rich	PADs	per	locus.	(E,F,G)	Bar	plot	showing	the	number	of	loci	containing	different	the	numbers	of	
enhancer-rich	PADs	 in	each	 locus,	as	 in	B,	differentiating	 if	 the	 locus	overlapped	with	an	enhancer	
cluster	 (E),	 a	 super-enhancer	 (F)	or	a	 LD	block	of	 variants	associated	 to	 type-2	diabetes	 (T2D)	and	
fasting	glycemia	(FG)	(G).	Figure	shown	in	the	following	page.	
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Chapter	5	

Experimental	identification	of	non-coding	functional	variants	 	 	 				.	
	
A	major	benefit	of	characterising	the	3D	chromatin	organisation	in	a	disease-relevant	tissue,	

such	as	human	pancreatic	islets,	is	that	it	allows	us	to	associate	non-coding	variants	in	distal	

cis-regulatory	regions	with	target	genes.	The	functional	 relevance	of	our	pcHiC	 interaction	

maps	 and	 promoter-associated	 domains	 (PADs)	 is	 being	 further	 interrogated	 by	 my	

colleagues	 Irene	 Miguel-Escalada	 and	 Inês	 Cebola,	 by	 applying	 CRISPR	 genome	 editing	

technology	 in	 human	 beta	 cells	 and	 human	 pancreatic	 islets.	 One	 of	 the	 aims	 of	 these	

experiments	 is	 to	 prove	 that	 our	 3D	 chromatin	 characterisation	 can	 be	 used	 to	 infer	 the	

effect	of	non-coding	variants	on	gene	expression	regulation	in	an	endogenous	chromosomal	

context.	 However,	 as	 previously	mentioned	 (in	 section	 1.7),	 genetic	 studies	 conducted	 to	

unveil	genomic	sequence	variations	 linked	to	complex	diseases	may	generate	 large	 lists	of	

variants	 with	 a	 large	 proportion	 of	 non-causal	 candidates	 due	 to	 several	 factors	 such	 as	

linkage	disequilibrium.	Therefore,	I	undertook	an	approach	that	has	the	potential	of	rapidly	

testing	a	 large	number	of	candidate	regulatory	variants,	which	can	 then	be	used	to	select	

putative	causal	variants	with	genome	editing	tools.	

	

Theoretically,	a	STARR-seq	library	(Arnold	et	al.,	2013)	containing	enhancers	with	T2D	or	FG	

risk	 alleles	 could	 be	 compared	 with	 a	 second	 library	 containing	 the	 non-risk	 alleles	 (see	

section	1.4-Enhancer	activity	reporter	assays).	This	comparison	would	allow	me	to	identify	

genomic	variants	able	to	modulate	enhancer	activity.	Thus,	based	on	this	criterion,	we	could	

greatly	reduce	the	number	of	likely	functional	variants.		

	

To	test	these	genomic	variants	in	a	human	beta-cell	line	(EndoC-βH3,	Benazra	et	al.,	2015),	

the	original	human	STARR-seq	vector	needs	 to	be	modified	 to	overcome	certain	 technical	

limitations.	For	example,	EndoC-βH3	are	highly	difficult	to	be	transfected	by	lipofectamine	

or	 nucleo-fection.	 Therefore,	 I	 determined	 that	 the	 best	 approach	 would	 be	 to	 combine	

STARR-seq	with	viral	 infection.	 I	 also	designed	an	 indexing	method	 to	enable	quantitative	

quantification	of	non-clonal	reads	from	independent	pooled	libraries.	As	STARR-seq	was	not	

implemented	 previously	 in	 our	 lab,	 I	 considered	 reasonable	 to	 perform	 a	 small-scale	

experiment	in	an	easier	cellular	model	as	a	proof	of	concept.	
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In	 our	 previous	work,	we	 found	 that	 a	 significant	 number	of	 predicted	human	pancreatic	

islet	active	enhancers	were	functional	in	a	mouse	beta-cell	line	named	MIN6	(Ishihara	et	al.,	

1993;	Pasquali	et	al.,	2014).	Thus,	I	selected	a	small	collection	of	regions	(aprox.	650bp	each)	

to	be	tested	by	STARR-seq	in	MIN6.	This	small	collection	was	formed	by	45	predicted	active	

enhancers,	4	inactive	enhancers,	5	open	chromatin	regions	lacking	other	epigenomic	marks.	

Moreover,	I	included	15	closed	chromatin	regions	that	are	highly	unlikely	to	have	enhancer	

activity	as	negative	controls.	This	small	collection	of	fragments	was	cloned	into	the	original	

human	 STARR-seq	 vector	 and	 tested	 in	 MIN6.	 The	 result	 of	 two	 independent	 biological	

replicates	 indicated	 that	 only	 3	 out	 of	 the	 45	 predicted	 active	 enhancers	 could	 be	

distinguished	from	the	negative	controls	by	STARR-seq	(Fig.	42).	

	
Fig.	42:	Enhancer	activity	detected	by	STARR-seq.	Dot	plot	showing	reproducible	enhancer	activity	
detected	 in	 two	 STARR-seq	 assays.	 Predicted	 active	 enhancers	 are	 indicated	 in	 orange,	 inactive	
enhancers	 in	 blue,	 open	 chromatin	 regions	 lacking	 other	 epigenomic	 marks	 in	 red	 and	 close	
chromatin	regions	 in	grey.	Background	signal	was	determined	as	the	mean	signal	from	all	negative	
control	regions.	Minimum	enhancer	activity	was	determined	as	two	standard	deviations	of	the	mean	
background	signal,	indicated	with	dashed	maroon	lines.	Correlation	between	biological	replicates	is	
indicated	as	r2	and	slope	of	a	linear	correlation.	
	
Surprised	 by	 the	 fact	 that	 few	 predicted	 enhancers	 acted	 such	 as	 by	 STARR-seq,	

contradicting	 our	 previous	 work	 (Pasquali	 et	 al.,	 2014),	 I	 decided	 to	 perform	 some	

validations	by	traditional	luciferase	reports	assays.	Thus,	12	predicted	enhancers,	including	

those	3	that	were	validated	by	STARR-seq	(Fig.	42,	Fig.	43A),	were	cloned	separately	in	the	

pGL4.23-GW	 (Pasquali	 et	 al.,	 2014;	 addgene	 #60323)	 and	 tested	 in	 the	 same	 cell	 line.	

Additionally,	 I	 included	4	closed	chromatin	regions	also	tested	by	STARR-seq	to	determine	
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the	background	signal.	In	opposition	to	my	STARR-seq	results	(Fig.	42,	Fig.	43A),	10	out	of	12	

predicted	enhancers	acted	such	as	in	a	traditional	luciferase	reporter	assay	(Fig.	43B).	

	

	
Fig.	43:	Comparison	between	STARR-seq	and	Luciferase	reporter	assay.	Bar	plot	showing	mean	and	
standard	deviation	for	2	biological	replicates.	Predicted	active	enhancers	are	indicated	with	orange	
bars.	 Close	 chromatin	 regions	 used	 as	 negative	 controls	 to	 determine	 the	 background	 signal	 are	
depicted	 as	 grey	 bars.	 The	 average	 negative	 control	 signal	 is	 represented	 as	 a	 black	 bar.	Minimal	
enhancer	activity	was	determined	as	two	standards	deviation	(maroon	dashed	line)	over	the	control	
mean	(black	line).	
	
By	comparing	the	two	constructs,	 the	human	STARR-seq	vector	and	the	pGL4.23-GW,	two	

features	appeared	as	clear	differences	(Fig.	44).	These	features	were	(i)	the	promoter	used	

in	 the	 construct	 and	 (ii)	 the	 relative	 position	 between	 the	 promoter	 and	 the	 tested	

enhancers.	 It	 has	 been	 shown	 by	 STARR-seq	 that	 enhancers	 behave	 differently	 with	

different	 types	 of	 promoters.	 A	 study	 done	 in	 Stark’s	 lab	 showed	 that	 developmental	

enhancers	only	act	such	as	in	the	presence	of	developmental	promoters.	The	same	was	true	

for	enhancers	associated	with	house-keeping	genes	(Zabidi	et	al.,	2014).	On	the	other	hand,	

it	 is	 well	 established	 that	 enhancer	 activity	 is	 independent	 on	 its	 orientation	 or	 relative	

position	to	the	promoter	(Banerji	et	al.,	1981).	Thus,	I	decided	to	assess	the	effect	of	both	

features.	
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Fig.	44:	Diagram	of	the	different	constructs	used	to	measure	enhancer	activity.	Diagram	indicating	
the	elements	and	their	order	in	4	enhancer	activity	reporter	constructs.	From	top	to	bottom	those	
constructs	 are:	 STARR-seq,	 pGL4.23-GW,	 pGL4.10-SPC1-GW	 and	 pGL4.23-GW-V2.	 The	 tested	
enhancer	 is	 illustrated	as	an	orange	box.	Luciferase	reporter	gene	 is	 indicated	as	a	yellow	box	and	
the	 open	 reading	 frame	 (ORF)	 present	 in	 the	 STARR-seq	 vector	 in	 a	 green	 box.	 The	 two	 types	 of	
promoters	tested,	SCP1	and	minP,	are	indicated	as	a	white	arrow.	SCP1	is	a	synthetic	core	promoter	
with	basal	activity	and	minP	is	a	minimal	promoter	with	a	very	weak	basal	activity.	
	
	
To	 test	 the	 effect	 of	 the	 enhancer’s	 relative	 distance	 to	 the	 promoter	 and	 the	 promoter	

type,	 I	 created	 two	new	vectors	 for	 traditional	 luciferase	 reporter	assays.	Both	 constructs	

contained	 a	 Gateway	 cloning	 cassette	 (GW)	 downstream	 of	 the	 reporter	 gene.	 Each	

construct	 contained	 a	 different	 promoter,	 the	 SCP1	 synthetic	 core	 promoter	 used	 in	 the	

human	 STARR-seq	 vector	 or	 the	minimal	 promoter	 (minP)	 present	 in	 the	 pGL4.23.	 These	

vectors	were	named	pGL4.10-SCP1-GW	and	pGL4.23-GW-V2	respectively	 (Fig.44).	As	none	

of	the	two	new	vectors	were	used	in	previous	assays,	I	validated	their	capacity	of	detecting	

enhancer	activity	using	the	CMV	enhancer	as	a	positive	control.	These	two	new	constructs	

were	used	as	backbones	to	assess	the	same	12	predicted	active	enhancers	previously	tested	

(Fig.	45).	
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Fig.	45:	 Impact	of	different	promoter	types	over	enhancer	activity	 luciferase	reporter	assays.	Bar	
plot	showing	mean	and	standard	deviation	for	2	biological	replicates.	Predicted	active	enhancers	are	
indicated	with	orange	bars	and	closed	chromatin	regions	used	as	negative	controls	to	determine	the	
background	 signal	 as	 grey	bars.	 The	average	negative	 control	 signal	 is	 represented	as	 a	black	bar.	
Minimal	enhancer	activity	was	determined	as	 two	standards	deviations	 (maroon	dashed	 line)	over	
the	control	mean	(black	line).	CMV	enhancer	(green)	is	used	as	positive	control.	
	
	

Table	8:	Summary	of	the	4	different	enhancer	activity	reporter	assays.		
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In	summary,	although	a	large	proportion	of	tested	enhancers	(9	out	of	12)	were	validated	in	

at	least	2	different	assays	(Table	8),	each	assay	gave	inconsistent	results	when	compared	to	

the	 others.	 Therefore,	 despite	 the	 difficulty	 of	 extracting	 a	 clear	 conclusion	 from	 them,	

these	results	may	suggest	that	several	 factors	 including	the	read-out	(luciferase	activity	or	

RNA-seq)	 or	 the	 promoter	 used	 (minP	 or	 SCP1)	 have	 a	 strong	 impact	 over	 the	 assay	

performance,	 at	 least	 in	my	hands.	Due	 to	 the	 inconsistent	 results	 and	 time	 restrictions	 I	

abandoned	the	possibility	of	testing	a	large	collection	of	enhancers	and	genomic	variants	by	

a	MPRA	in	benefit	of	more	promising	analyses.		

	
	 	



	
111	

Chapter	6	

Discussion	and	prospects	 	 	 	 	 	 	 	 					.		

	

During	my	PhD	project,	I	interrogated	high-resolution	chromatin	interaction	maps	in	human	

pancreatic	 islets.	 These	 maps	 characterise	 3D	 chromatin	 organisation	 at	 different	 levels.	

First,	 our	 pcHi-C	 interaction	 map	 allowed	 me	 to	 observe	 interactions	 between	 gene	

promoters	 and	 distal	 genomic	 regions	 with	 high-resolution.	 A	 comparison	 between	

chromatin	 organisation	 in	 human	 pancreatic	 islets	 and	 distant	 cellular	 lineages	 led	 us	 to	

identify	 islet-selective	 chromatin	 structures	 and	 the	 epigenomic	 factors	 underlying	 them.	

Second,	 as	 pcHi-C	 maps	 reflect	 both	 tissue-invariant	 structural	 interactions	 and	 tissue-

selective	 regulatory	 loops,	 I	 defined	 TAD-like	 structures	 in	 human	pancreatic	 islets.	 These	

islet	 TAD-like	 structures	 recapitulated	 known	 aspects	 of	 tissue-invariant	 TAD	

compartmentalisation.	 Third,	 I	 defined	 promoter’s	 cis-regulatory	 niches,	 that	 I	 named	

promoter-associated	 domains	 (PAD)	 (Fig.	 27	 in	 section	 4.1).	 This	 was	 possible	 as	 pcHi-C	

interrogates	 chromatin	 folding	 from	 a	 promoter	 centric	 perspective	 at	 a	 very	 high	

resolution.	 Finally,	 an	 integrative	 analysis	 of	 these	 pcHi-C	 maps	 and	 PADs	 with	 islet	 cis-

regulatory	maps	allowed	me	to	identify	genes	under	enhancer	regulation	(Fig.	35	in	section	

4.2).	 Enhancer	 regulation	 is	 especially	 interesting	 in	 disease-relevant	 tissues,	 like	 human	

pancreatic	islets,	not	only	because	it	has	been	associated	to	tissue-specific	gene	regulation	

(Heinz	et	al.,	2015;	Maston	et	al.,	2006)	but	also	because	it	has	been	shown	that	enhancers	

are	enriched	in	disease	associated	genomic	variants	(Calo	and	Wysocka,	2013;	Hnisz	et	al.,	

2013;	 Lovén	 et	 al.,	 2013;	 Pasquali	 et	 al.,	 2014).	 Therefore,	 picturing	 enhancer-promoter	

communication	through	3D	chromatin	organisation	can	help	us	to	better	understand	gene	

expression	regulation	and	hypothesise	on	the	impact	of	non-coding	variants	associated	with	

complex	traits.	

	

• Interpretation	of	pcHi-C	maps	

	

Although	promoter	capture	Hi-C	(pcHi-C)	(Mifsud	et	al.,	2015)	achieves	a	higher	resolution	

than	 standard	 Hi-C	 (Lieberman-Aiden	 and	 Berkum,	 2009),	 it	 is	 still	 subject	 to	 technical	

limitations	 generally	 associated	 to	 chromatin	 conformation	 assays.	 A	 major	 technical	
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limitation	 is	 the	 background	 correction	 to	 detect	 statistically	 significant	 interactions.	 To	

address	 this	 problem,	 researchers	 from	 M.	 Spivakov	 ’s	 lab	 developed	 CHICAGO,	 an	

algorithm	that	based	on	a	background	modelling	determines	reliable	chromatin	interactions	

(Cairns	et	al.,	2016).	

	

To	determine	 the	 resolution	of	pcHi-C	maps	generated	using	CHICAGO,	 I	 interrogated	 the	

distance	 between	 an	 interacting	 region	 and	 the	 closest	 epigenomic	 factors	 at	 HindIII	

fragment	 level,	 and	 its	 enrichment	 over	 the	 expected	 distribution.	 I	 found	 that	while	 the	

interrogated	epigenomic	 factors	were	precisely	 enriched	only	 at	 baited	HindIII	 fragments,	

this	 was	 not	 true	 for	 non-baited	 interacting	 regions.	 I	 determined	 that	 the	 closest	

interrogated	 epigenomic	 factors	were	 enriched	 at	 non-baited	 interacting	 regions	 and	 this	

enrichment	was	kept	on	the	adjacent	genomic	fragments	following	a	decreasing	distribution	

(Fig.	 25	 in	 section	 3.6).	 Based	 on	 these	 results,	 I	 determined	 that	 it	 was	 reasonable	 to	

extend	 non-baited	 interacting	 regions	 encompassing	 the	 adjacent	 HindIII	 fragments.	 This	

would	 accentuate	 our	 capacity	 to	 associate	 promoters	 and	 distal	 cis-regulatory	 elements	

through	chromatin	interactions,	providing	a	more	accurate	interpretation	of	pcHi-C	maps.	

	

• Identification	of	factors	underpinning	islet-selective	chromatin	structures	

	

It	 is	 well	 established	 through	 Hi-C	 (Lieberman-Aiden	 and	 Berkum,	 2009)	 that	 the	 human	

genome	is	folded	in	the	3D	space	in	globular	compartments,	named	topological	associating	

domains	 (TADs)	 (Dixon	 et	 al.,	 2012;	 Nora	 et	 al.,	 2012).	 It	 has	 been	 shown	 that	 TAD	

compartments	are	 important	 for	gene	 transcription	regulation	as	co-regulated	genes	 tend	

to	be	contained	in	the	same	TAD	(Le	Dily	et	al.,	2014;	Nora	et	al.,	2012)	and	the	disruption	of	

TAD	borders	 leads	to	aberrant	gene	expression	 (Franke	et	al.,	2016;	Lupiáñez	et	al.,	2015,	

2016).	However,	it	has	been	determined	that	TAD	compartmentalisation	is	highly	conserved	

among	 cell	 types	 (Dixon	et	 al.,	 2012;	 Schmitt	 et	 al.,	 2016).	 Therefore,	 it	 is	 likely	 that	 TAD	

compartmentalisation	is	mainly	driven	by	tissue-invariant	chromatin	interactions.	However,	

it	is	difficult	to	imagine	how	these	tissue-invariant	chromatin	structures	could	be	involved	in	

tissue-specific	gene	expression	regulation.		
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Recent	 advances	 on	 C-based	 methods	 allowed	 the	 generation	 of	 chromatin	 interaction	

maps	 with	 higher-resolution,	 which	 are	 able	 to	 characterise	 intra-TAD	 organisation.	 This	

gain	 on	 resolution	 led	 to	 the	 identification	 of	 tissue-selective	 chromatin	 loops	 and	 their	

association	 to	 tissue-specific	expressed	genes	 (Javierre	et	al.,	2016;	Phillips-Cremins	et	al.,	

2013;	Rao	et	al.,	2014).	These	studies	suggested	that	 tissue-specific	gene	regulation	could	

be	partially	driven	by	tissue-selective	chromatin	interactions.	However,	little	is	known	about	

the	epigenomic	factors	underlying	these	tissue-selective	chromatin	structures.	

	

As	part	of	my	PhD	project,	I	identified	some	epigenomic	factors	that	could	be	involved	in	the	

formation	 of	 tissue-selective	 chromatin	 structures.	 First,	 we	 identified	 islet-selective	

chromatin	interactions	through	a	comparison	between	our	pcHi-C	map	in	human	pancreatic	

islets	and	distal	cellular	 linages	(Fig.	17	and	Fig.	21	 in	section	3.4).	As	occurred	in	previous	

studies,	 these	 islet-selective	 chromatin	 structures	 were	 frequently	 associated	 to	 islet-

specific	 expressed	 genes	 (Fig.	 18	 in	 section	 3.4).	 Later,	 I	 integrated	 this	 information	with	

epigenomic	datasets	that	were	also	generated	in	human	pancreatic	islets.	I	was	then	able	to	

show	that	 islet-specific	CTCF	binding	 sites	and	especially	Mediator-bound	enhancers	were	

enriched	at	islet-selective	chromatin	structures	(Fig.	19,	Fig.	20	and	Fig.	21	section	3.4).	Both	

epigenomic	factors	have	been	associated	to	the	binding	of	lineage-determining	TFs	(LDTFs)	

(Fig.	26	in	section	3.6)	(Hnisz	et	al.,	2013;	Lovén	et	al.,	2013;	Whyte	et	al.,	2013).	This	lead	

me	to	hypothesise	that	the	co-occurrence	of	LDTFs,	CTCF	and/or	Mediator	at	cis-regulatory	

regions,	 especially	 at	 enhancers,	 could	 be	 involved	 in	 the	 formation	 of	 tissue-selective	

chromatin	 interactions.	 Additionally,	 previous	 studies	 have	 associated	 the	 presence	 of	

enhancers	or	tissue-selective	structures	with	tissue-specific	gene	expression.	Therefore,	my	

results	may	 act	 as	 a	 bridge	 between	 the	 two-previous	 independent	 observation	 showing	

that	enhancer	communication	may	partially	occur	through	tissue-selective	interactions.	

	

• Promoter-associated	domains,	gene-specific	niches	of	cis-regulatory	elements	

	

As	 already	 mentioned,	 previous	 studies	 characterised	 the	 chromatin	 conformation	 in	

different	tissues	by	Hi-C.	These	studies	reported	that	the	genome	is	compartmentalised	 in	

tissue-invariant	 domains	 named	 TADs.	 However,	 there	 is	 no	 published	 Hi-C	 dataset	

generated	 in	 human	 pancreatic	 islets.	 Therefore,	 although	 pcHi-C	 maps	 only	 reflect	
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promoter	 centric	 chromatin	 interactions,	 I	 attempted	 to	 define	 chromatin	 compartments	

using	 our	 islet	 pcHi-C	map.	 I	 was	 able	 to	 determine	 that	 pcHi-C	maps	 reflected	 TAD-like	

domains,	which	exhibit	known	features	of	tissue-invariant	compartmentalisation	(Fig.	22,	23	

in	section	3.5).		

	

Moreover,	 due	 to	 their	 high-resolution,	 pcHi-C	 maps	 allowed	 to	 study	 3D	 chromatin	

organisation	 within	 TAD	 compartments.	 I	 saw	 that	 promoters	 had	 their	 own	 chromatin	

interaction	landscape,	and	that	although	they	sometimes	covered	an	entire	TAD,	they	could	

often	 span	 considerably	 shorter	 distances	 (Fig.	 27,	 28	 in	 section	 4.1).	 I	 defined	 these	

genomic	 regions	 as	 promoter-associated	 domains	 (PADs).	 I	 also	 observed	 that	 chromatin	

states	 at	 PAD	 space	were	 coherent	with	 gene	 expression	 patterns	 and	more	 informative	

than	 at	 TADs	 (Fig.	 29,	 30	 in	 section	 4.1).	 These	 results	 support	my	 hypothesis	 that	 PADs	

encompass	 the	 cis-regulatory	 3D	 space	 associated	 to	 a	 given	 promoter	 and	 that	 these	

territories	do	not	necessary	correspond	to	tissue-invariant	TADs,	although	sometimes	they	

can	cover	the	same	genomic	space.	These	results	are	clearly	exemplified	in	the	KCNJ11	locus	

(Fig.	 27	 in	 section	 4.1),	 for	which	 the	 PAD	 is	 clearly	 smaller	 than	 the	 corresponding	 TAD.	

KCNJ11	PAD	encompasses	most	of	the	enhancers	in	the	locus	and	at	the	same	time	that	it	

trims	other	intra-TAD	genomic	segments	that,	based	on	their	epigenomic	“flavour”,	are	less	

likely	to	have	a	regulatory	effect	of	the	on	KCNJ11.		

	

In	summary,	characterisation	of	high-resolution	pcHi-C	maps	 led	me	to	 identify	promoter-

associated	 domains.	 	 These	 domains	 reflect	 promoter	 centric	 cis-regulatory	 landscapes	

defined	 by	 both	 tissue-invariant	 and	 tissue-selective	 chromatin	 interactions.	 The	

identification	of	promoter-associated	domains	provides	a	highly	 informative	 framework	to	

identify	 target	 genes	 of	 distal	 cis-regulatory	 elements	 and	 non-coding	 genomic	 sequence	

variants	with	a	likely	impact	over	gene	expression	regulation.	

	

• Enhancer-promoter	 associations	based	on	 chromatin	organisation	differentiate	bona	

fide	enhancers’	targets	from	other	genes	in	the	vicinity	of	enhancers	

	

I	observed	that	40%	of	all	mapped	active	enhancers	were	present	 in	promoter-interacting	

regions.	 This	 allowed	 a	 direct	 association	 between	 enhancers	 and	 promoters	 through	
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experimentally	detected	chromatin	interactions.	However,	it	also	implied	that	the	remaining	

60%	 of	 non-interacting	 enhancers	 could	 not	 be	 associated	 to	 a	 promoter	 based	 on	

statistically	significant	interactions.	Moreover,	it	raised	the	question	of	whether	the	lack	of	

possible	 enhancer-promoter	 interactions	 could	 be	 due	 to	 technical	 and/or	 biological	

reasons.		

	

There	 is	 evidence	 indicating	 that	 enhancer-promoter	 communication	 occurs	 in	 bursts	

(Fukaya	et	al.,	2016),	which	could	fit	 in	a	“hit-and-run”	model	 (Banerji	et	al.,	1981;	Freire-

Pritchett	 et	 al.,	 2017;	 Varala	 et	 al.,	 2015).	 Therefore,	 it	 suggests	 that	 enhancer-promoter	

interactions	 may	 be	 highly	 dynamic	 and	 in	 a	 constant	 process	 of	 formation	 and	

disassociation.	Although	I	studied	a	population	of	cells,	it	is	possible	that	these	interactions	

are	 not	 permanent,	 and	 very	 dependent	 on	 physiological	 states	 which	 can	 increase	 the	

likelihood	that	specific	sets	of	enhancers	establish	frequent	interactions.	Furthermore,	some	

enhancer-promoter	 interactions	could	be	only	present	 in	a	small	proportion	of	the	cells	at	

any	given	time.	On	the	other	hand,	it	has	been	described	recently	that	different	chromatin	

interaction	 factors	 (CTCF	 and	 Cohesin)	 have	 different	 residence	 and	 re-binding	 times	

(Hansen	 et	 al.,	 2016).	 Thus,	 it	 suggests	 that	 interactions	 driven	 by	 different	 interacting	

factors	may	have	different	dynamics.	Additionally,	it	is	known	that	structural	proteins,	such	

as	CTCF,	bind	in	a	much	more	stable	way	than	TFs	(Chen	et	al.,	2014;	Hansen	et	al.,	2016;	

Mazza	et	al.,	2012).	These	observations	 led	me	to	hypothesise	 that	structural	 interactions	

are	probably	more	stable	while	enhancer-promoter	interactions	may	be	more	dynamic.	This	

implies	 that	 it	 is	 practically	 impossible	 to	 detect	 all	 enhancer-promoter	 interactions	 in	 a	

“fixed	snapshot”	(obtained	with	most	conformational	techniques),	due	their	high	dynamism	

and	dependence	on	the	physiological	state.		

	

The	 inability	to	detect	dynamic	 interactions	could	be	further	accentuated	due	to	technical	

reasons,	 such	 as	 the	 requirement	 of	 a	 minimum	 number	 of	 reads	 to	 detect	 statistically	

significant	 interactions.	An	 interaction	present	 in	a	small	subset	of	cells	would	get	a	 lower	

sequencing	 coverage	 than	 a	 constitutive	 structural	 interaction	 present	 in	most	 cells,	 thus	

enhancing	 the	 detection	 of	 constitutive	 structural	 interactions	 over	 dynamic	 regulatory	

interactions.	
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Nevertheless,	 the	 integration	 of	 our	 high-resolution	 chromatin	 interaction	 and	 cis-

regulatory	 maps	 in	 human	 pancreatic	 islets	 allowed	 us	 to	 define	 an	 enhancer-promoter	

association	strategy.	Considering	islet	3D	chromatin	organisation	determined	by	pcHi-C,	the	

identification	 of	 PADs	 and	 published	 knowledge	 regarding	 enhancer-promoter	

communication,	I	attempted	to	associate	enhancers	and	promoters	that	were	not	linked	by	

direct	interactions.	Based	on	this	strategy	I	could	associate	80%	of	all	annotated	enhancers	

in	 our	 islet-regulome	 with	 at	 least	 one	 promoter	 (Fig.	 31	 in	 section	 4.1).	 Furthermore,	 I	

could	 determine	 that	 our	 assignment	 strategy	 accentuated	 the	 association	 between	

enhancer	and	tissue-specific	expressed	genes	(Fig.	32	in	section	4.1),	which	is	coherent	with	

the	 notion	 that	 tissue-specific	 gene	 regulation	 is	 partially	 driven	 by	 enhancer	 regulation	

(Heinz	 et	 al.,	 2015;	 Maston	 et	 al.,	 2006).	 These	 results	 suggest	 that	 high-resolution	

chromatin	 interaction	 maps	 allow	 better	 enhancer-promoter	 associations	 than	 the	

assignments	based	on	linear	proximity.	

	

Although	my	attempt	to	assigning	enhancer	to	promoter	may	provide	an	improvement	over	

associations	 based	 on	 linear	 proximity	 (Fig.	 32	 in	 section	 4.1),	 this	 type	 of	 assignments	

requires	 further	validation.	My	colleagues	are	 interrogating	our	high-resolution	chromatin	

interaction	maps	and	enhancer-promoter	assignments	further,	through	computational	and	

experimental	analyses.	To	do	so,	they	are	computing	enhancer-promoter	correlations,	such	

as	 human	 islet	 allelic-specific	 enhancer/gene	 expression	 correlations	 (Cowles	 et	 al.,	 2002;	

Gaur	 et	 al.,	 2013;	 Yan,	 2002),	 linkage	 of	 SNPs	 in	 regulatory	 elements	 with	 expression	

quantitative	trait	loci	(eQTL)	(Ardlie	et	al.,	2015;	Fadista	et	al.,	2014)	or	correlation	between	

enhancer-associated	histone	marks	and	gene	expression	among	different	human	pancreatic	

samples	 or	 human	 tissues.	 Moreover,	 my	 colleagues	 are	 experimentally	 establishing	 the	

effect	of	sequence	modification	at	cis-regulatory	elements	on	gene	transcriptional	levels	of	

predicted	 target	genes.	Preliminary	 results	 from	 Ignasi	Morán	already	highlighted	 the	 fact	

that	 PAD	 organisation	 is	 coherent	 with	 enhancer-promoter	 regulation	 detected	 through	

allelic-specific	gene	expression	and	that	it	is	more	informative	than	TAD	segmentation	(data	

not	 shown).	 Furthermore,	 Inês	 Cebola	 has	 already	 carried	 out	 a	 first	 set	 of	 experiments	

showing	 that	 CRISPR	 deletion	 of	 islet	 enhancers	 results	 in	 deranged	 expression	 of	 target	

genes	predicted	by	pcHi-C	(data	not	shown).	
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We	 expect	 to	 observe	 that	 the	 enhancer-promoter	 assignments	 that	 I	 have	 computed	

considering	 pcHi-C	 interaction	 maps	 truly	 reflect	 functional	 enhancer-promoter	

communication	and	that	these	assignments	provide	a	clear	improvement	over	associations	

based	on	genomic	linear	proximity	and/or	TAD	compartmentalisation.	I	also	expect	that	the	

results	from	both	computational	and	experimental	studies	will	provide	further	validation	to	

my	 hypotheses	 that	 PADs	 reflect	 enhancer-promoter	 communication	 and	 that	 our	 high-

resolution	chromatin	 interaction	maps	can	be	used	to	precisely	assign	distal	cis-regulatory	

elements	and	regulatory	T2D	variants	to	target	genes.	

	

• Enhancer-rich	 PADs	 reflect	 3D	 enhancer	 gathering	 and	 are	 relevant	 cis-regulatory	

domains	for	tissue-specific	gene	transcription	

	

It	 has	 been	 shown	 that	 among	 all	 active	 enhancers	 in	 a	 specific	 cellular	 context	 some	 of	

them	 may	 have	 a	 particularly	 relevant	 role	 driving	 tissue-specific	 gene	 expression	

regulation.	 These	 cis-regulatory	 elements	have	been	named	enhancer	 clusters	 and	 super-

enhancers.	 Both,	 enhancer	 clusters	 and	 super-enhancers,	 have	 been	 identified	 based	 on	

definitions	 that	 consider	 enhancer	 gathering	 based	on	 linear	 proximity	 and	 abundancy	 of	

key	regulatory	proteins	such	as	 lineage-determining	TFs	or	Mediator	(Gaulton	et	al.,	2010;	

Parker	et	al.,	2013b;	Pasquali	et	al.,	2014;	Whyte	et	al.,	2013).	

	

In	order	to	identify	large	groups	of	enhancers	that	gather	in	3D	space,	I	searched	for	PADs	

with	 a	 high	 enhancer	 content,	 which	 were	 named	 enhancer-rich	 PADs	 (see	 section	 4.2).	

Interestingly,	 enhancer-rich	 PADs	 exhibited	 features	 associated	 to	 enhancer	 clusters	 and	

super-enhancers.	Those	features	were:	(i)	association	with	tissue-specific	expressed	genes,	

(ii)	 formation	 of	 tissue-selective	 chromatin	 structures	 and	 (iii)	 enrichment	 for	 disease	

associated	 genomic	 variants	 (Fig.	 37-40	 in	 section	 4.2).	 This	 indicates	 that	 enhancer-rich	

PADs	may	reflect	a	3D	chromatin	structure	relevant	for	gene	expression	regulation.		

	

Moreover,	 most	 enhancer	 clusters	 and	 super-enhancers	 were	 assigned	 to	 enhancer-rich	

PADs.	 However,	 our	 high-resolution	 chromatin	maps	 allow	 us	 to	 group	 enhancer	 clusters	

and	 super-enhancers	with	 additional	 enhancers	 that	 they	were	 not	 previously	 associated	

with	through	linear	proximity.	Furthermore,	a	significant	proportion	of	enhancer-rich	PADs	
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do	not	contain	enhancer	clusters	or	super-enhancers	(Fig.	39	in	section	4.2).	Thus,	although	

enhancer-rich	 PADs	 have	 similar	 properties	 to	 enhancer	 clusters	 and	 super-enhancers,	

enhancer-rich	PADs	group	a	larger	number	of	enhancers	than	previous	definitions	based	on	

linear	 proximity.	 This	 suggests	 that	 as	 enhancer-rich	 PADs	 were	 defined	 based	 on	 3D	

organisation,	 they	may	reflect	enhancer	gathering	more	accurately	than	enhancer-clusters	

and	super-enhancers,	which	rely	exclusively	on	linear	proximity.	

	

I	 showed	that	 there	was	a	high	overlap	between	PADs	 located	 in	 the	same	 locus	 (Table	6	

and	 Fig.	 27	 in	 section	 4.1).	 I	 also	 showed	 that	 enhancer-rich	 PADs	 overlap	 with	 other	

enhancer-rich	 PADs.	 Furthermore,	 I	 noticed	 that	 this	 overlap	 did	 not	 reflect	 topological	

compartments	 in	 which	 all	 genes	 are	 regulated	 by	 many	 enhancers	 as	 those	 loci	 also	

contained	enhancer-less	and	enhancer-poor	PADs	(Fig.	41	in	section	4.3).	However,	whether	

overlapping-enhancer	rich	PADs	are	interconnected	though	promoter-promoter	interactions	

or	 shared	 enhancers	 remains	 to	 be	 interrogated.	 This	 is	 going	 to	 be	 answered	 through	 a	

network	analysis,	conducted	by	Delphine	Rolando,	which	could	provide	novel	knowledge	on	

how	3D	enhancer-promoter	regulatory	circuitries	modulate	gene	expression.	

	

In	summary,	the	integration	and	interpretation	of	high-resolution	chromatin	interaction	and	

cis-regulatory	 maps	 allowed	 me	 to	 define	 3D	 enhancer	 domains	 associated	 to	 gene	

promoters,	 named	 enhancer-rich	 PADs.	 These	 enhancer	 domains	 seem	 to	 be	 especially	

important	for	tissue-specific	gene	transcription	regulation	and	to	understand	the	molecular	

mechanism	underlying	major	disease	such	as	diabetes.	

	

• Tissue-selective	chromatin	structures	associated	to	tissue-specific	gene	repression	

	

Although	 there	 is	 a	 clear	 correlation	 between	 the	 presence	 of	 islet-selective	 chromatin	

structures	 and	 islet-specific	 expressed	 genes,	 it	 does	 not	 mean	 that	 tissue-selective	

chromatin	 interactions	 were	 exclusively	 observed	 near	 islet-specific	 expressed	 genes.	 In	

fact,	I	observed	the	presence	of	islet-selective	chromatin	interactions	in	Polycomb-rich	areas	

(data	not	 shown).	 Based	on	 these	observations,	 it	 is	 likely	 that	 tissue-selective	 chromatin	

structures	could	be	also	generated	 through	 tissue-selective	gene	 repression.	Other	 tissue-
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selective	 interactions	 were	 not	 associated	 with	 discernible	 epigenomic	 features,	 and	

warrant	further	attention	in	the	future.	

	

• Association	of	diabetes	susceptibility	regulatory	variants	with	target	genes	

	

The	 identification	of	target	genes	of	GWAS	signals	represents	one	of	the	most	challenging	

goals	 of	 current	 human	 genetics.	 The	 high-resolution	 chromatin	 interaction	 maps	

characterised	 in	 this	 PhD	 project	 give	me	 the	 opportunity	 to	 systematically	 identify	 likely	

target	 genes	 of	 diabetes	 associated	 non-coding	 variants	 annotated	 in	 distal	 cis-regulatory	

regions.	 This	 will	 supply	 a	 highly	 informative	 piece	 of	 information	 for	 the	 scientific	

community	devoted	to	give	insight	into	the	genetic	factors	underlying	diabetes.	

	

• Dynamic	nature	of	chromatin	organisation		

	

So	 far,	 I	 have	 examined	 chromatin	 interactions	 in	 islets	 cultured	 under	 standardised	

conditions.	 However,	 it	 is	 possible	 that	many	 components	 of	 3D	 chromatin	 structure	 are	

dynamic.	 Characterising	 chromatin	 organisation	 in	 pancreatic	 islets	 exposed	 to	 different	

metabolic	 stimuli,	 such	as	different	glucose	 levels,	could	help	us	 to	better	understand	the	

dynamic	changes	on	gene	transcription	occurring	in	this	tissue.	Based	on	previous	work	(Le	

Dily	 et	 al.,	 2014),	 I	 hypothesise	 that	 chromatin	 organisation	 in	 TADs	 (Dixon	 et	 al.,	 2012)	

would	not	present	a	drastic	change	under	metabolic	stress.	However,	the	epigenomic	state	

of	 invariant	 TADs	 could	 be	 different.	 Therefore	 these	 TADs	 would	 be	 switching	 between	

what	 it	 is	 known	 as	 A	 and	B	 compartments	 (Lieberman-Aiden	 and	Berkum,	 2009).	 I	 have	

shown	that	epigenomic	states,	especially	the	presence	of	active	enhancers	 in	combination	

with	 the	 presence	 of	 tissue-selective	 chromatin	 interactions	 are	 associated	 with	 tissue-

specific	 gene	 expression.	 Therefore,	 I	 would	 expect	 that	 epigenomic	 changes	 driven	 by	

metabolic	 stimuli	will	 concur	with	 the	 presence	 of	 stimulus-selective	 intra-TAD	 structures	

associated	to	relevant	stimulus-responsive	genes.		

	

Supporting	 this	 reasoning,	 a	 recent	 piece	 of	 work	 was	 published	 comparing	 pcHi-C	

interactions	maps	in	hESC	and	in	ESC-derived	neuroectodermal	cells	(NESC)	(Freire-Pritchett	

et	al.,	2017).	This	work	revealed	that	pcHi-C	interactions,	in	combination	with	cis-regulatory	
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maps	 defined	 based	 on	 epigenomic	 marks	 are	 able	 to	 reflect	 chromatin	 conformation	

changes	occurring	during	cell	differentiation.	These	results	already	provide	an	improvement	

over	similar	work	done	using	Hi-C	(Dixon	et	al.,	2015;	Schmitt	et	al.,	2016)	which	struggled	

to	 identify	major	 changes	 on	 3D	 chromatin	 organisation.	Nevertheless,	most	 of	 the	work	

done	 until	 now	 relies	 on	 identifying	 presence	 or	 absence	 of	 statistically	 significant	

interactions	among	fairly	different	cellular	states.	Therefore,	it	is	still	unknown	if	the	current	

interpretation	of	high-resolution	chromatin	maps	can	reflect	the	more	subtle	changes	that	

may	occur	in	a	single	cell	type	under	different	stimuli.	

	

• Discrepancies	between	episomal	enhancer	reporter	assays		

	

One	 of	 the	 components	 of	 my	 thesis	 was	 intended	 to	 implement	 STARR-seq	 to	 test	

enhancer	variants	(Arnold	et	al.,	2013;	Vockley	et	al.,	2015).	I	observed	a	low	concordance	

with	conventional	enhancer	reporter	assays,	which	led	me	to	question	the	biological	and/or	

technical	factors	behind	this	observation	(see	chapter	5).		

	

It	 has	 been	 observed	 that	 not	 all	 promoters	 respond	 equally	 to	 the	 activity	 of	 a	 given	

enhancer.	There	is	evidence	showing	that	some	promoters	only	respond	to	the	regulation	of	

a	 given	 type	 of	 enhancer.	 For	 example,	 work	 interrogating	 the	 relationship	 between	

housekeeping	 and	 developmental	 cis-regulatory	 elements	 revealed	 that	 promoters	 only	

respond	to	enhancers	that	belong	to	the	same	category	of	cis-regulatory	elements	(Zabidi	et	

al.,	 2014).	 Therefore,	 in	 concordance	 with	 my	 observations,	 it	 is	 possible	 that	 enhancer	

reporter	assays	based	on	different	promoters	provide	different	results.	

	

Moreover,	 it	 is	 possible	 that	 due	 to	 technical	 reasons,	 enhancer	 activity	 reporter	 assays’	

sensibility	depends	on	several	factors	such	as	the	read-out	system	or	the	promoter’s	basal	

activity.	

	

Additionally,	 it	could	be	that	enhancer	reporter	assays	in	which	an	enhancer	is	cloned	few	

bp	 upstream	of	 a	 target	 promoter	measure	 slightly	 different	 aspects	 of	 enhancer	 activity	

than	those	in	which	the	enhancer	is	cloned	a	few	kbs	downstream	(Fig.	44	in	chapter	5).	In	

the	first	scenario,	where	the	enhancer	is	cloned	in	close	linear	proximity,	it	is	probable	that	
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as	 far	 as	 the	 tested	 enhancer	 keeps	 its	 capacity	 to	 recruit	 TFs	 this	 would	 be	 enough	 to	

modulate	 the	 tested	 promoter.	Meanwhile,	 if	 the	 enhancer	 is	 in	 a	 distal	 position,	 it	 also	

needs	 to	 retain	 its	 capacity	 to	 loop	 and	 communicate	 with	 the	 promoter.	 Therefore,	

although	 reporter	 assays	 with	 distal	 enhancer	 cloning	 sites	 may	 be	 more	 faithful	 with	

enhancer	biology,	they	may	also	have	a	higher	false	negative	rate.	However,	to	the	best	of	

my	knowledge	there	is	not	any	experimental	evidence	that	supports	this	reasoning.	

	

Nevertheless,	 it	 is	 important	 to	 remember	 that	most	enhancer	 reporter	 assays,	 especially	

episomal	assays,	do	not	test	enhancer	activity	under	their	chromosomal	context.	Therefore,	

it	is	difficult	to	determine	whether	a	method	is	more	reliable	than	another.	For	that	reason,	

I	 would	 not	 be	 surprised	 if	 in	 a	 near	 future	 enhancer	 activity	 studies	 mainly	 rely	 on	

techniques	 such	 as	 CRISPR	 genome	 editing	 (Mali	 et	 al.,	 2013;	 Xie	 et	 al.,	 2017)	 or	 large	

studies	interrogating	the	correlation	between	histone	marks	at	cis-regulatory	elements	and	

gene	expression.	
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Chapter	7	

Conclusions		 	 	 	 	 	 	 	 	 	 				.	

	

• Tissue-selective	 chromatin	 interactions	 are	 associated	 with	 tissue-specific	 gene	

transcription.	A	systematic	analysis	revealed	a	clear	correlation	between	tissue-specific	

gene	 expression	 patterns	 and	 the	 formation	 of	 promoter-centric	 islet-selective	 3D	

chromatin	structures	(Fig.	18	in	section	3.4).	

	

• A	 subset	 of	 tissue-selective	 chromatin	 interactions	 is	 probably	 formed	 due	 to	

collaborative	 binding	 of	 lineage-determining	 TFs	 (LDTFs)	 and	 other	 regulatory	

proteins,	such	as	Mediator	and	CTCF,	at	cis-regulatory	elements.	It	has	been	suggested	

that	 chromatin	 organisation	 is	 formed	 by	 tissue-invariant	 structural	 interactions	 and	

tissue-selective	 regulatory	 interactions	 (Krijger	 and	 de	 Laat,	 2016).	 An	 extensive	

characterisation	 of	 high-resolution	 chromatin	 interaction	 maps	 in	 human	 pancreatic	

islet,	in	combination	to	other	epigenomic	datasets,	allowed	me	not	only	to	identify	islet-

selective	 chromatin	 interactions	 but	 also	 to	 elucidate	 novel	 features	 regarding	 their	

formation.	 My	 results	 indicate	 that	 tissue-selective	 chromatin	 interactions	 are	 likely	

partially	 driven	 by	 Mediator-bound	 enhancers,	 as	 well	 tissue-specific	 CTCF	 bound	

regions	associated	with	binding	sites	of	LDTFs	 (Fig.	19,	20	 in	section	3.4	and	Fig.	26	 in	

section	 3.7).	 These	 tissue-selective	 chromatin	 structures	 may	 be	 allowing	

communication	 between	 distal	 cis-regulatory	 elements,	 such	 as	 enhancers,	 and	

promoters.	

	

• Promoter-associated	domains	(PADs)	are	likely	to	encompass	most	of	promoters’	cis-

regulatory	space.	Chromatin	organisation	 is	known	to	be	compartmentalised	 in	tissue-

invariant	 topological	 associating	 domains	 (TADs)	 (Dixon	 et	 al.,	 2012;	 Schmitt	 et	 al.,	

2016).	Our	high-resolution	chromatin	interaction	maps	allowed	me	to	define	promoter-

centric	 intra-TAD	 chromatin	 territories,	 named	 promoter-associated	 domains	 (PADs)	

(Fig.	 30	 in	 section	 4.1).	My	 analysis	 suggests	 that	 PAD	 organisation	 reflects	 the	 3D	

chromatin	 conformation	 through	 which	 promoters	 communicate	 with	 other	 cis-

regulatory	elements	(Fig.	29,	30	in	section	4.1).	I	also	noticed	that	PADs	tend	to	overlap	
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(Fig.	 27	 in	 section	 4.1),	 indicating	 that	 they	 do	 not	 represent	 closed	 topological	

compartments	as	it	could	occur	with	TADs.	

	

• High-resolution	 chromatin	 interactions	 enable	 linkage	 of	 islet	 enhancers	 to	 islet	

expressed	 genes.	 The	 integration	 of	 islet	 pcHi-C	 interactions,	 PADs	 and	 islet	 cis-

regulatory	 maps	 allowed	 the	 association	 of	 a	 significant	 proportion	 of	 annotated	

enhancers	 (Fig.	 31	 in	 section	 4.1).	 My	 result	 suggests	 that	 enhancer-promoter	

assignments	 considering	 high-resolution	 chromatin	 interaction	 maps	 provide	 an	

improvement	over	previous	associations	that	rely	on	genomic	linear	proximity	(Fig.	32	in	

section	4.1).		

	

• Enhancer-rich	 PADs	 as	 tissue-specific	 regulatory	 domains.	 I	 could	 identify	 promoter-

associated	domains	 (PADs)	with	a	high	enhancer	content.	These	domains	were	named	

enhancer-rich	 PADs	 (Fig.	 36	 in	 section	 4.2).	 A	 systematic	 comparison	 revealed	 that	

enhancer-rich	 PADs	 exhibited	 features	 associated	 to	 enhancer	 clusters	 (Pasquali2014)	

and	 super-enhancers	 (Whyte	 et	 al.,	 2013).	 These	 features	 were:	 (i)	 association	 with	

tissue-specific	gene	expression,	(ii)	correlation	with	tissue-selective	chromatin	structures	

(Schmitt	et	al.,	2016)	and	(iii)	enrichment	for	disease-associated	genetic	variants	(Hnisz	

et	al.,	2013;	Pasquali	et	al.,	2014)	(Fig.	37-40	in	section	4.2).	However,	it	was	noticeable	

that	 enhancer-rich	 PADs	 were	 composed	 by	 a	 larger	 set	 of	 enhancers	 than	 using	

previous	definitions	that	rely	on	linear	proximity.	Therefore,	as	enhancer-rich	PADs	were	

defined	 considering	 high-resolution	 chromatin	 interaction	 maps	 and	 do	 present	 the	

same	features	as	enhancer	clusters	or	super-enhancers,	 it	 is	reasonable	to	hypothesise	

that	these	enhancer-rich	PADs	do	reflect	enhancer-promoter	regulation	more	faithfully	

than	 previous	 definitions	 based	 on	 linear	 proximity.	 Thus,	 providing	 a	 more	 precise	

picture	of	the	epigenomic	regulation	in	a	disease-relevant	tissue.	

	

In	 summary,	 the	 results	of	 this	 thesis	not	only	provide	a	compendium	of	useful	 resources	

but	also	novel	knowledge	regarding	 tissue-specific	chromatin	organisation	associated	with	

gene	 expression	 epigenomic	 regulation	 in	 human	 pancreatic	 islets.	 This	 is	 especially	

interesting	for	a	disease-relevant	tissue,	as	it	enables	the	identification	of	likely	target	genes	
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for	 disease	 risk	 genomic	 variants	 annotated	 in	 cis-regulatory	 regions	 beyond	 previous	

assumptions	based	on	linear	proximity	
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Chapter	8	

Methods	 	 	 	 	 	 	 	 	 	 	 					.		

	

8.1. 	Refining	cis-regulatory	annotation	in	human	pancreatic	islets	

	 	

- Islet	regulome	

	

Chromatin	 accessibility	 in	 human	 pancreatic	 islets	 was	 determined	 by	 Xavi	 Garcia	 and	

Nikolina	 Nakic	 using	 ATAC-seq	 (Buenrostro	 et	 al.,	 2013).	 Open	 chromatin	 sites	 in	 human	

pancreatic	 islets	 were	 in	 turn	 characterised	 based	 on	 a	 compendium	 of	 histone	 marks	

associated	 with	 active	 cis-regulatory	 regions	 (H3K4me3,	 H3K4me1,	 H3K27ac)	 and	

chromatin-bound	factors	(MED1/Mediator,	SMC1/Cohesin,	CTCF)	by	 Irene	Miguel-Escalada	

and	Goutham	Atla.	Briefly,	6	kb	windows	divided	in	100bp	bins	and	centred	around	157,940	

open	chromatin	sites	were	characterised	based	on	their	ChIP-seq	signal	distribution	of	the	6	

previously	mentioned	epigenomic	factors.	ChIP-seq	signal	(-log10	p-value)	was	determined	

using	MACS2	(Zhang	et	al.,	2008).	The	open	chromatin	sites	were	categorised	in	7	groups	by	

applying	a	k-median	clustering	using	flexClust	(Leisch,	2006).	These	7	clusters	were	manually	

merged	 into	 4	 major	 categories	 that	 were	 named:	 active	 promoters,	 (class	 I-III)	 active	

enhancers,	 inactive	enhancers	and	CTCF-enriched	sites.	Goutham	Atla	also	 found	 that	 the	

active	enhancers	category	was	formed	by	3	clusters	(class	I-III)	differentiated	based	on	their	

enrichment	for	H3K4me1,	H3K27ac	and	Mediator	(MED1)	binding,	 in	which	class	 I	showed	

the	strongest	enrichments	(Fig.	46).	
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Ffig.	46:	Islet	regulome.	Clusterfing	of	174,253	open	chromatfin	sfites	based	on	6	epfigenomfic	datasets.	
These	 epfigenome	datasets,	 from	 top	 to	 bottom,	 are:	 H3K27ac,	 MED1,	 H3K4me1,	 H3K4me3,	 CTCF,	
SMC1.	Thfis	analysfis	provfided	7	clusters	that	were	manually	merged	fin	4	categorfies:	actfive	promoter,	
actfive	 enhancers,	 finactfive	 enhancers	 and	 CTCF	 enrfiched	 sfites.	 Transcrfiptfion	 finfitfiatfion	 was	
determfined	 by	 CAGE-seq	(Kanamorfi-Katayama	 et	 al.,	 2011;	 Shfirakfi	 et	 al.,	 2003)	and	 used	 as	 a	
valfidatfion	 of	 our	 deffinfitfion	 of	 actfive	 promoters.	 The	 colour	 code	 used	 fin	 WashU	 browser	
screenshots	fis	findficated	on	top	of	each	cluster.	Note	that	a	subset	of	open	chromatfin	regfions	that	
dfid	not	show	dfistfinct	chromatfin	mark	enrfichments	and	dfid	not	fall	fin	any	of	these	clusters.	

	

• Islet	ChromHMM	
	
The	 epfigenomfic	landscape	 fin	 human	 pancreatfic	 fislets	 was	findependently	characterfised	 by	

my	colleague	Clafire	Morgan.	ChromHMM	(Ernst	and	Kellfis,	2012)	was	used	to	segment	the	

genome	 based	 on	 the	 co-occurrence	of	12	epfigenomfic	 marks	 fin	human	 pancreatfic	 fislets.	

These	fincluded	7	hfistone	modfifficatfions	assocfiated	wfith	efither	actfive	cfis-regulatory	regfions	

(H3K4me3,	 H3K9ac,	 H3K4me1,	 H3K27ac)	(Hefintzman	 et	 al.,	 2007,	 2009;	 Karmodfiya	 et	 al.,	

2012),	repressfion	 (H3K27me3,	 H3K9me3),	(Schwartz	 and	 Pfirrotta,	 2013)	or	 transcrfiptfional	

elongatfion	(H3K36me3)	(Barskfi	et	al.,	2007).	It	also	fincorporated	a	hfistone	varfiant	(H2A.Z)	

assocfiated	to	accessfible	chromatfin	regfions	such	as	actfive	promoters	and	enhancers	(Barskfi	

et	 al.,	 2007),	 and	 three	 chromatfin	finteractfing	factors	 (MED1/Medfiator,	SMC1/Cohesfin,	

CTCF)	(Allen	 and	 Taatjes,	 2015;	 Dekker	 and	 Mfirny,	 2016;	 Merkenschlager	 and	 Nora,	 2016;	

Ong	and	Corces,	2014).	
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To	facilitate	the	interpretation,	the	original	15	ChromHMM	states	were	merged	into	9	states	

based	 on	 similarities	 in	 their	 epigenomic	 profiles	 (Fig.	 47,	 Fig.	 48).	 Thus,	 for	 example	 4	

original	ChromHMM	states	(state	7-10)	representing	different	flavours	of	active	enhancers	

were	combined	in	one	single	category.	

Fig.	 47:	 ChromHMM	 segmentation	 in	 15	 states.	 Heatmap	 showing	 the	 enrichment	 of	 each	
interrogated	epigenomic	feature	for	a	given	ChromHMM	state	(data	generated	by	Claire	Morgan).	
Colour	codes	for	the	original	15	ChromHMM	states	defined	by	Claire	Morgan	are	showed	in	column	
“15	states”.	Colour	code	for	the	merged	9	ChromHMM	state	are	showed	in	column	“Merged”.		

Fig.	48:	ChromHMM	genome	coverage.	Pie	chart	illustrating	the	genomic	space	covered	by	a	given	
ChromHMM	state,	where	active	promoters	are	 indicated	in	blue,	active	enhancers	are	 indicated	in	
red,	inactive	cis-regulatory	regions	in	yellow,	repressed	regions	in	grey	or	black,	CTCF	binding	sites	in	
green	 and	 highly	 transcribed	 regions	 in	 purple.	 The	 ChromHMM	 states	 and	 percentages	 of	 the	
genome	covered	by	each	state	are	shown	in	the	adjacent	box.	
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8.2. Definition	of	super-enhancers	(SE)	based	on	Mediator	signal	

	
Active	 enhancers	 defined	 in	 the	 islet	 regulome	 (section	 8.1)	 were	 used	 to	 define	 super-

enhancers	 by	 Irene	Miguel-Escalada,	 based	 on	Mediator	 (MED1)	 occupancy.	 In	 summary,	

using	 the	 algorithm	ROSE	 (Lovén	 et	 al.,	 2013)	 as	 previously	 described	 (Hnisz	 et	 al.,	 2013;	

Lovén	et	al.,	2013),	active	enhancers	were	stitched	based	on	linear	proximity	(12.5	kb)	and	

ranked	based	on	MED1	occupancy.	The	elbow	of	the	MED1	occupancy	distribution	was	used	

as	a	threshold	to	define	774	super-enhancers	due	to	their	high	occupancy.	

	

8.3. Generation	of	pcHi-C	interactions	maps	

	

Human	 pancreatic	 islet	 preparations	 from	 four	 cadaveric	 donors	 were	 cultured	 for	 three	

days	 and	 formaldehyde	 crosslinked	 nuclei	 were	 prepared	 by	 Xavi	 Garcia.	 PcHi-C	 libraries	

were	 made	 by	 Dr.	 Biola	 Javierre	 from	 Professor	 Peter	 Fraser’s	 lab	 (Babraham	 Institute,	

Cambridge,	UK)	as	previously	described	 (Javierre	et	al.,	2016).	Hi-C	 library	generation	was	

carried	with	in-nucleus	digestion	with	HindIII	and	re-ligation	(Nagano	et	al.,	2015),	followed	

by	 chromatin	 de-crosslinking	 and	 purification	 by	 phenol-chloroform	 extraction.	 DNA	 was	

sheared	 to	an	average	size	of	400	bp	by	mechanic	DNA	 fragmentation	 (Covaris).	The	DNA	

fragments	were	end-repaired,	adenine-tailed	and	size-selected	ranging	from	250	to	550	bp	

DNA	 fragments.	 Ligation	 events	 marked	 by	 biotin	 were	 selected	 with	 Streptavidin	

DynaBeads	and	 ligated	to	paired-end	adaptors	for	 Illumina	sequencing.	Hi-C	 libraries	were	

amplified	 7–8	 PCR	 amplification	 cycles.	 3	 Hi-C	 libraries	 were	 made	 per	 pancreatic	 islet	

preparation,	 generating	 12	 Hi-C	 libraries.	 The	 resultant	 product	 was	 used	 for	 promoter	

capture	using	a	custom	RNA	 library	composed	of	37,608	RNA	baits	against	21,177	human	

annotated	gene	promoters.		After	library	enrichment,	a	post-capture	PCR	amplification	was	

performed	with	4	PCR	amplification	cycles	(Fig.	6	in	section	1.5).	

	
Each	pcHi-C	library	was	sequenced	in	3	lanes	from	Illumina	HiSeq2500	platform	obtaining	a	

total	 number	 of	 694,826,673	 paired-end	 reads.	 Raw	 reads	 from	 3	 technical	 replicates	

generated	 from	 each	 of	 the	 four	 islet	 samples	 were	 pooled	 and	 mapped	 to	 the	 human	

genome	 (GRCh37/hg19).	Additionally,	 reads	were	 filtered	out	 from	experimental	artefacts	

such	as	circularised	reads	and	re-ligation	products	by	using	the	HiCUP	pipeline	(Wingett	et	

al.,	 2015),	 generating	 600,112,182	 uniquely	 mapped	 pcHi-C	 paired-end	 sequence	 reads	

(ditags).	 Statistically	 significant	 chromatin	 interactions	 (score	 ≥	 5)	were	 determined	 using	
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CHICAGO	(Cafirns	et	al.,	2016)	accountfing	for	consfistence	between	bfiologfical	replficates.	Thfis	

generated	a	chromatfin	finteractfion	map	formed	by	175,784	finteractfions.	

	

8.4. Vfirtual	4C	usfing	pcHfi-C	data	

	

In	 order	 to	 better	 understand	 local	 3D	 chromatfin	 conformatfion,	 pcHfi-C	 data	 finvolvfing	 a	

gfiven	 promoter	 bafit	(or	 vfiew	 pofint)	was	 represented	 as	 a	 “vfirtual”	 4C	by	 my	 colleague	

Delphfine	 Rolando.	 Merged	read	counts,	computed	 usfing	CHICAGO	(Cafirns	 et	 al.,	 2016),		

were	vfisualfised	fin	a	hfistogram	centered	on	a	vfiewpofint,	showfing	the	frequency	fin	whfich	a	

gfiven	locus	was	observed	fin	the	same	read	as	the	finterrogated	bafited	promoter.	Promoter	

finteractfing	 regfions	 were	coloured	 based	 on	 CHICAGO	 scores	 for	 vfisualfisatfion	 purposes.	

Statfistfically	 sfignfifficant	 finteractfing	 regfions	 (CHICAGO	 score	 >=	 5)	 were	 findficated	 fin	 black,	

whereas	non-statfistfically	sfignfifficant	finteractfing	regfions	(CHICAGO	score	<	5)	were	shown	fin	

grey	(Ffig.	49).		

	

Ffig.	49:	Vfirtual	4C	around	KCNJ11’s	locus.	Screenshot	around	the	KCNJ11	gene	locus	characterfisfing	
fits	3D	chromatfin	organfisatfion.	Tracks	from	top	to	bottom	are:	Ensembl	gene	annotatfion;	collectfion	
of	 vfirtual	 4C	 from	 dfifferent	 vfiew	 pofints	 (NUCB2,	NCR3LG1,	KCNJ11,	ABCC8,	USH1C	and	OTOG	

promoter)	representfing	 the	 number	 of	 merged	 reads,	where	statfistfically	 sfignfifficant	 finteractfing	
regfions	 (CHICAGO	 score	 >=	 5)	 were	 findficated	 fin	 black;	pcHfi-C	 RNA	 probes	 used	 to	 target	
annotated	 promoters;	vfirtual	 dfigestfion	of	 the	 hg19	 genome	 usfing	 HfindIII	 restrfictfion	 enzyme	 and	
ffinally	fislet	chromatfin	finteractfions	detected	by	pcHfi-C.	
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8.5. Enrfichment	of	epfigenomfic	features	at	promoter-finteractfing	regfions	

	

To	 assess	 the	 epfigenomfic	 factors	 that	 could	 be	 finvolved	 fin	 the	 formatfion	of	 chromatfin	

finteractfions,	 I	 finterrogated	the	 presence	 of	 CTCF,	 Cohesfin	(SMC1),	 Medfiator	 (MED1)	fislet	

bfindfing	sfites,	as	well	as	actfive	promoters	and	enhancers	deffine	fin	the	fislet	regulome	at	pcHfi-

C	fintegratfing	sfites.	Thfis	characterfisatfion	was	done	dfistfingufishfing	for	bafited	fragments	and	

non-bafited	finteractfing	fragments.	

	

For	each	pcHfi-C	finteractfing	pofint	I	computed	the	dfistance	to	any	finterrogated	epfigenomfic	

feature	 (e.g.	 MED1	 peaks	 or	 actfive	 enhancers)	 wfithfin	 a	 +/-	50	 kb	 wfindow.	 The	 dfistance	

densfity	was	estfimated	usfing	Gaussfian	kernels	(python	2.7	functfion	scfipy.stats.gaussfian_kde)	

(Olfiphant,	2007).	

	

The	 expected	 dfistrfibutfion	 was	 computed	 usfing	10	 randomfizatfions	of	 the	 gfiven	 lfist	 of	

coordfinates.	 Each	 randomfizatfion	 was	 generated	 usfing	shuffleBed	from	 BedTools	(Qufinlan	

and	 Hall,	 2010)	avofidfing	non-overlappfing	random	 coordfinates	 and	 excludfing	 blacklfisted	

genomfic	regfions	(Kundaje,	2013)	(Ffig.	50).	

	
	
Ffig.	50:	Enrfichments	 at	 bafited	 promoters.	Densfity	 plot	 showfing	 the	 dfistrfibutfion	 of	 finteractfing	
factors	(CTCF,	SMC1	and	MED1),	actfive	promoters	and	enhancers	fin	a	-/+25	kb	wfindow	around	all	
promoter-finteractfing	regfions.	Expected	dfistrfibutfion	fis	generated	after	randomfisfing	the	posfitfions	of	
the	finterrogated	epfigenomfic	factor.	Observed	dfistrfibutfion	fis	shown	as	a	black	lfine.	Medfian	expected	
dfistrfibutfion	fis	shown	as	a	red	lfine,	and	values	between	finterquartfile	ranges	are	shown	as	red	area.	
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8.6. Association	between	epigenomic	factors	and	pcHi-C	interacting	points	

	
As	exposed	in	section	3.6,	I	considered	that	different	technical	aspects	could	be	influencing	

CHICAGO’s	resolution	to	determine	HindIII	genomic	interacting	fragments,	an	aspect	which	

needed	 to	 be	 considered	 for	 an	 accurate	 interpretation	 of	 pcHi-C	 interaction	 maps.	 To	

determine	 the	 resolution	 of	 our	 pcHi-C	 map	 I	 considered	 that	 the	 majority	 of	 confident	

interacting	 sites	 would	 overlap	 with	 an	 epigenomic	 factor	 known	 for	 driving	 chromatin	

interactions.	 Therefore,	 I	 interrogated	 the	 presence	 of	 5	 epigenomic	 factors	 (active	

promoters,	active	enhancers,	MED1,	SMCA1	or	CTCF	binding	sites)	at	baited	(Fig.	51A)	and	

non-baited	promoter-interacting	regions	(Fig.	51B).	For	each	epigenomic	factor	(Fig.	51)	or	

all	of	them	at	the	same	time	(Fig.	15),	I	computed	the	closest	site	to	each	interacting	point	

using	ClosestBed	(BedTools)	and	the	distance	between	two	elements	was	computed	as	the	

number	of	HindIII	fragments	using	a	custom	script.	The	expected	distribution	was	computed	

from	 10	 randomisations	 per	 element	 using	 shuffleBed	 from	 BedTools	 (Quinlan	 and	 Hall,	

2010)	as	described	in	section	8.5.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	 51:	 Distance	 from	 an	 interacting	 site	 to	 the	 closest	 interrogated	 epigenomic	 factor	 site.	
Histogram	showing	the	distance	from	the	closest	interrogated	epigenomic	factor	site	to	(A)	a	baited	
or	 (B)	 a	 non-baited	 interacting	 region.	 The	 list	 of	 interrogated	 epigenomic	 factors	 encompassed	
CTCF,	MED1,	SMC1,	active	promoters	and	active	enhancers.	Distance	was	computed	as	the	number	
of	HindIII	 fragments	 from	the	 interrogated	 interacting	point.	A	distance	equal	 to	0	means	that	 the	
epigenomic	 factor	 overlapped	 with	 the	 interacting	 HindIII	 fragment.	 	 Note	 that	 because	 baited	
regions	were	analysed	separately	(A)	active	promoters	are	depleted	at	position	0	of	the	non-baited	
interacting	 loci	 (B),	as	occurred	 in	the	previous	analysis	 (Fig.15	 in	section	3.3).	Figure	shown	in	the	
following	page.	
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For	baited	sites,	any	of	the	overlapping	epigenomic	factors	were	assigned	exclusively	to	the	

baited	 HindIII	 fragment.	 Non-baited	 promoter-interacting	 regions	 were	 extended	 +/-	 1	

HindIII	fragment	and	associated	to	any	overlapping	epigenomic	factor	within	these	3	HindIII	

fragment	window.	

	
8.7. Identification	of	islet-specific	interactions	
	
Islet-specific	 chromatin	 interactions	 were	 defined	 as	 those	 consistent	 pcHi-C	 interactions	

(CHICAGO	 score	 ≥	 5)	 exclusively	 present	 in	 human	 pancreatic	 islets	 in	 comparison	 to	 4	

hematopoietic	 cell	 types	 (Erythroblasts,	 Naïve	 CD4+,	 Total	 B	 and	Macrophages	M1	 cells)	

(Javierre	 et	 al.,	 2016).	 Based	 on	 this	 criterion,	 53,839	 (31%	 of	 all	 islet	 interactions)	 were	

classified	as	islet-selective.	
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A	set	of	59,672	(34%)	 interactions	that	were	consistently	detected	(CHICAGO	score	≥	5)	 in	

human	 pancreatic	 tissue	 and	 3	 out	 of	 4	 hematopoietic	 cell	 types	 was	 also	 defined	 as	

ubiquitous	interactions.		

	
8.8. Gene	classification	based	on	expression	selectivity	in	human	tissues	
	
A	 publicly	 available	 collection	 of	 RNA-seq	 datasets	 generated	 in	 18	 human	 tissues	 were	

obtained	 from	 The	 Human	 BodyMap	 2	 Project	 and	 ENCODE/LICR	 Project	 	 (Birney	 et	 al.,	

2007;	Dunham	et	al.,	2012)	as	well	as	human	pancreatic	 islets	and	acinar	tissue	(Morán	et	

al.,	2012).	Reads	were	aligned	and	processed	by	my	colleagues	Ignasi	Morán	and	Delphine	

Rolando.	 In	 addition	 to	 islets	 this	 collection	 included	 RNA-seq	 datasets	 generated	 in:	

pancreatic	 acinar,	 adipose,	 adrenal,	 brain,	 breast,	 colon,	 heart,	 kidney,	 liver,	 lung,	 lymph	

node,	muscle,	ovary,	prostate,	testes,	thyroid	tissues	and	white	blood	cells.	

	

The	 reads	were	aligned	using	STAR	aligner	version	2.3.0	 (Dobin	et	al.,	 2013).	Because	 the	

data	was	also	used	for	allelic	studies,	the	reads	were	aligned	against	a	modified	version	of	

the	 hg19	 genome	 in	which	 common	 SNPs	 (Global	Minor	 Allele	 Frequency>	 1%)	 from	 the	

dbSNP	 database	 142	 were	 masked	 (Sherry	 et	 al.,	 2001).	 A	 maximum	 mismatch	 of	 10	

nucleotides	was	used,	and	non-uniquely	aligned	reads	were	removed.	Quantification	of	the	

raw	 read	 count	was	 done	 using	 HTseq-Count	 version	 0.6.1	with	 python	 2.6.6	 and	 Pysam	

version	0.8.3	(Anders	et	al.,	2015).	Counts	were	then	converted	into	TPMs	using	the	formula	

described	in	(Wagner	et	al.,	2012).	

	

I	measured	overall	tissue	selectivity	of	expression	of	genes	across	tissues	as	a	coefficient	of	

variation	 (C.V.)	 among	 all	 18	 samples.	 Additionally,	 gene	 expression	 enrichment	 in	

pancreatic	islets	was	computed	as	a	Z-score,	comparing	the	gene	expression	level	in	human	

pancreatic	islet	against	the	mean	value	in	all	18	tissues	(Fig.	52A)	(Cebola	et	al.,	2015).	I	also	

defined	 expressed/non-expressed	 status	 among	 all	 21,117	 baited	 genes.	 12,559	 (59.3%)	

were	defined	as	expressed,	and	8,618	(40.7%)	as	non-expressed	if	their	expression	in	human	

pancreatic	islets	was	greater	or	lower	than	1.5	transcripts	per	million	(TPMs),	respectively.	

Among	all	expressed	genes,	983	(4.6%)	that	had	both	a	coefficient	of	variation	accros	tissues	

and	 an	 islet	 Z-score	 greater	 than	 the	 75th	 percentile	 were	 defined	 as	 “islet–specific”	

expressed	genes	(Fig.	52B).	Therefore,	the	remaining	set	of	11,497	(54,3%)	expressed	genes	
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were	 classified	 as	 expressed,	 non-islet-specific.	 Finally,	 as	 human	 pancreatic	 islets	 are	

surrounded	 by	 exocrine	 tissue	 before	 being	 collected	 and	 this	 can	 be	 a	 source	 of	

contamination,	 79	 (0.4%)	 genes	with	 an	 expression	 3	 times	 higher	 in	 acinar	 cells	 than	 in	

human	pancreatic	islets	were	considered	as	likely	acinar	contaminants.		

	

	
Fig.	 52:	Gene	 classification	based	on	 tissue-specificity	expression	patterns.	 (A)	Heatmap	 showing	
gene	expression	enrichment	in	human	pancreatic	islets	(Z-score)	and	tissue	selectivity	(coefficient	of	
variation)	 for	 all	 islet	 expressed	 genes	 (≥	 1.5	 TMPs).	 Those	 genes	 with	 an	 islet	 Z-score	 and	 a	
coefficient	of	variation	(C.V.)	greater	that	the	75th	percentile	(indicated	with	maroon	dashed	lines)	
were	 defined	 as	 “islet	 specific”	 expressed	 genes	 (top-right	 quadrant).	 The	 Z-score	 and	 CV	
distributions	 are	 shown	 in	 box	 plots	 parallel	 to	 their	 respective	 axes.	 As	 reference,	 Z-score	 and	
coefficient	 of	 variation	 (C.V.)	 values	 of	 5	 islet	 key	 genes	 (ISL1,	 PAX6,	MNX1,	 KCNJ11,	 FOXA2)	 are	
indicated	with	red	dots.	Values	for	5	conventional	“house-keeping”	genes	(GAPDH,	TBP,	B2M,	RPLP0,	
ACTB)	are	shown	with	white	dots.	(B)	Pie	chart	showing	the	proportion	of	each	gene	expression	class	
among	the	21,177	baited	genes.	
	
8.9. Association	between	islet-selective	interaction	and	islet-specific	gene	expression	

	
I	classified	genes	 in	baited	fragments	based	on	the	number	of	 islet-selective	 interactions.	

Later	 I	 computed	 the	 enrichment	 of	 3	 gene	 classes	 based	 on	 their	 expression	 in	 human	

pancreatic	islets	(non-expressed,	islet	specific-expressed	and	expressed,	non-islet-specific)	

(see	 section	 8.8).	 The	 enrichment	 of	 the	 3	 gene	 classes	 was	 computed	 as	 a	 log2	 fold	

difference	between	genes	with	≥	N	 islet-selective	 interactions	and	baited	genes	with	<	N	

islet-selective	interactions.	A	hypergeometric	test	was	computed	to	determine	if	the	given	

enrichment	was	statistically	significant.	
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8.10. Islet-specific	CTCF	binding	sites	

	
A	 collection	 of	 14	 ChIP-seq	 datasets	 for	 CTCF	 from	 the	 ENCODE	 project	 (Dunham	 et	 al.,	

2012)	covering	a	broad	list	of	human	tissues	(Table	9)	was	used	to	interrogate	CTCF	binding	

tissue-specificity.	 I	 defined	 as	 islet-specific	 those	 CTCF	 binding	 sites	 present	 in	 pancreatic	

islets	 and	up	 to	2	non-pancreatic	 tissues	 (Fig.	 53).	 I	 also	defined	a	 set	of	28,770	peaks	as	

highly	ubiquitous	as	they	were	observed	in	pancreatic	islets	and	at	least	12	non-pancreatic	

tissues.	Intersections	between	datasets	were	done	using	intersectBed	(BedTools;	Quinlan	&	

Hall,	2010).	

	

Table	 9:	 Summary	 of	 CTCF	 ChIP-seq	 datasets	 used	 to	 determine	 tissue-

specificity	of	CTCF-binding	sites	in	human	pancreatic	islets.			

Sample	ID	 Human	tissue	 Source	 Number	of	CTCF	peaks	

--	 Pancreatic	islets	 J.	Ferrer’s	lab	 40,003	
GSM733765	 Astrocytes	 ENCODE	 63,295	
GSM1003474	 B-cells	 ENCODE	 52,783	
GSM1022677	 Cardiac	myocytes	 ENCODE	 67,750	
GSM1003508	 CD14	 ENCODE	 44,999	
GSM822281	 Fibroblast	 ENCODE	 69,303	
GSM733672	 H1	hESC	 ENCODE	 104,538	
GSM733645	 HEPG2	 ENCODE	 69,097	
GSM733724	 HMEC	 ENCODE	 54,380	
GSM733762	 HSMM	 ENCODE	 78,134	
GSM1006886	 Kidney	 ENCODE	 73,464	
GSM1006882	 Lung	 ENCODE	 64,202	
GSM733636	 NHEK	 ENCODE	 73,625	
GSM733784	 Osteoblast	 ENCODE	 91,918	
GSM1006883	 Spleen	 ENCODE	 70,124	

	
	

	

	

	

	

	

	

	

	

Fig.	53:	CTCF	tissue-specificity.	(A)	Bar	plot	showing	the	number	of	islet	CTCF	sites	present	in	other	
14	non-pancreatic	tissues.	The	value	0	represents	CTCF	binding	sites	exclusively	observed	in	human	
pancreatic	 islets.	 (B)	 Chart	 showing	 the	 percentage	 of	 tissue-specific	 (green),	 non-tissue-specific	
(grey)	and	highly	ubiquitous	(black)	CTCF	sites	observed	in	human	pancreatic	islets).	Figure	shown	in	
the	following	page.	
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8.11. Chromatin	binding	factor	co-occupancy	at	CTCF	binding	sites	

	
Coordinates	of	5	islet	lineage-determining	TFs	(FOXA2,	PDX1,	MAFB,	NK6.1,	NKX2.2),	MED1	

(Mediator)	 and	SMC1	 (Cohesin)	were	 crossed	with	active	enhancers	or	CTCF	binding	 sites	

using	intersectBed	(BedTools;	Quinlan	&	Hall,	2010).	

	
8.12. Enrichment	 of	Mediator-bound	 enhancers	 and	 islet-specific	 CTCF	binding	 sites	 at	

islet-selective	interacting	points.	

	

The	presence	of	enhancers	or	CTCF	binding	sites	at	pcHi-C	interacting	points	was	computed	

grouping	 them	 by	 MED1	 binding	 or	 tissue-specificity	 respectively.	 Enrichments	 of	 these	

elements	at	islet-specific	interactions	were	computed	over	non-islet-specific	interactions	as	

a	fold	change	in	a	log2	scale.	

	

8.13. Definition	of	TAD-like	structures	

	

• DI	domains	

	
Directionality	Index	(DI)	score	was	computed	genome	wide	using	the	formula	proposed	by	

Dixon	et	al.,	2012.		

	
	

	

	

Formula	2:	Directionality	 index	 (DI)	 score.	Formula	 for	DI	 score	 as	originally	described	 in	
Dixon	et	al.,	2012	.	
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Table	10:	A	and	B	variables	from	the	DI	score	formula	adapted	to	pcHi-C.	

Variable	 Hi-C	(Dixon	et	al.	2012)	 	 pcHi-C	

A	 The	 number	 of	 reads	 that	 map	
from	 a	 given	 40kb	 bin	 to	 the	
upstream	2Mb.	

	 The	 number	 of	 intra-chromosome	
interactions	going	upstream	from	a	given	
sliding	window	of	5	HindIII	fragments.	
	

B	 The	 number	 of	 reads	 that	 map	
from	 the	 same	 40kb	 bin	 to	 the	
downstream	2Mb.	

	 The	 number	 of	 intra-chromosome	
interactions	 going	 downstream	 from	 a	
given	 sliding	 window	 of	 5	 HindIII	
fragments.	

	
The	original	definition	of	variables	used	for	calculating	the	DI	score	was	adapted	to	pcHi-C	as	

shown	in	Table	10.	DI	domains	were	defined	as	genomic	territories	flanked	by	regions	with	a	

negative	DI	score	on	the	5’	edge	and	a	positive	DI	score	on	the	3’	edge.	

	
• Chromatin	domains	interconnectivity	

	
Interconnectivity	between	DI	domains	was	computed	as	a	log2	ratio	between	the	number	of	

inter-domain	 and	 intra-domain	 interactions.	 Therefore,	 ratios	 lower	 than	0	 correspond	 to	

domains	with	more	intra-domain	interaction	than	inter-domain	interactions.	

	

Adjacent	 DI	 domains	 with	 interconnectivity	 ratios	 greater	 than	 0	 were	 merged.	 These	

merged	DI	domains	defined	3,598	islet	TAD-like	compartments	(Fig.	54).	
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Fig.	 54:	 DI	 domain	 interconnectivity	 distribution.	 Histogram	 showing	 interconnectivity	 ratios	
(number	of	inter-domain	interactions	over	the	number	of	intra-domain	interactions)	for	adjacent	DI	
domains	in	a	log2	scale.	Interconnectivity	threshold	(>	0)	is	indicated	as	maroon	dashed	line.	
	
8.14. CTCF	motif	mapping	

	
A	 de	 novo	 motif	 analysis	 was	 conducted	 using	 HOMER	 (Heinz	 et	 al.,	 2010)	 on	 a	 list	 of	

consistent	 CTCF	 peaks	 providing	 a	 highly	 accurate	 position	 weight	matrix	 (PWM)	 for	 the	

CTCF	 binding	motif.	My	 colleague	 Irene	Miguel-Escalada	 defined	 consistent	 CTCF	 binding	

sites	in	human	islets	as	those	reproduced	in	at	least	2	out	3	biological	replicates.		

	

Using	annotatePeaks.pl	from	HOMER,	the	CTCF	binding	sequence	was	mapped	at	consistent	

CTCF	 peaks	 requiring	 a	 minimum	 log	 score	 of	 5.	 In	 cases	 where	 multiple	 motifs	 were	

mapped	within	the	same	CTCF	peak,	only	 the	motif	with	the	highest	 log	score	was	kept.	 I	

thus	 determined	 the	 position	 and	 the	 orientation	 of	 the	 CTCF	 binding	motif	 within	 CTCF	

consistent	binding	sites.	

	
8.15. CTCF	occupancy	in	TAD-like	compartments	

	
The	 location	 of	 CTCF	 occupancy	 sites	 relative	 to	 TAD-like	 compartments	 was	 computed	

using	computeMatrix	scale-regions	and	plotProfile	from	DeepTools	2	(Ramirez	et	al.,	2014)	

grouping	CTCF	sites	based	on	the	orientation	of	their	binding	motif.	

	
8.16. Tissue-specificity	of	TAD	boundary	regions	

	

The	degree	of	TAD	boundary	tissue-specificity	was	determined	as	in	Schmitt	et	al.,	2016.	In	

summary,	 the	 genomic	 space	 was	 divided	 40	 kb	 bins.	 Thus,	 islet	 TAD	 boundaries	 were	

defined	as	40	kb	binned	genomic	regions	overlapping	an	 islet	TAD	edge.	This	was	done	to	

define	TAD	boundaries	similar	to	those	previously	defined	by	Schmitt	et	al.	using	Hi-C.	Later,	

islet	TAD	boundaries	were	combined	with	TAD	boundaries	from	21	additional	tissues	into	a	

single	 putative	 TAD	 boundaries	 reference	 file.	 Reference	 TAD	 boundaries	 within	 200	 kb	

window	were	merged	into	a	single	TAD	boundary	“region”	using	mergeBed	(BedTools).	

	

Merging	of	adjacent	boundary	bins	into	TAD	boundary	regions	was	performed	because	TAD	

boundaries	 defined	 in	 different	 tissues	may	be	 slightly	 shifted	 (by	 a	 few	bins).	 Therefore,	
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although	 TAD	 boundaries	 do	 not	 directly	 overlap,	 both	 borders	may	 be	within	 the	 same	

boundary	 region	 (Schmitt	 et	 al.,	 2016).	 Finally,	 the	number	of	 islet	 TAD	boundary	 regions	

overlapping	 TAD	 boundaries	 from	 the	 remaining	 21	 human	 samples	was	 computed	 using	

intersectBed	(BedTools).		

	
8.17. Degree	of	inter-TAD	connectivity	

	

The	degree	of	inter-TAD	connectivity	through	pcHi-C	interactions	was	determined	using	islet	

TAD-like	structures	(see	section	8.13)	and	TADs	previously	defined	in	human	ESC	and	human	

IMR90	fibroblasts	using	Hi-C	(Dixon	et	al.,	2012).		The	percentage	of	inter-TAD	and	intra-TAD	

interactions	was	computed	among	all	cis	pcHi-C	interactions	detected	in	human	pancreatic	

islets.	Expected	values	were	computed	after	shuffling	TAD	genomic	positions	5	times	using	

shuffleBed	(BedTools,	Quinlan	&	Hall,	2010).	

	
8.18. Definition	of	promoter-associated	domains		

	
Promoter-associated	 domains	 (PADs)	were	 defined	 as	 the	 linear	 space	 covered	 by	 all	 the	

interactions	 starting	 from	 a	 specific	 promoter	 bait	 and	 the	 most	 distant	 promoter-

interacting	regions	within	the	same	 islet	TAD-like	compartment.	A	total	number	of	16,030	

PADs	were	defined	in	this	manner.	

	
8.19. Fraction	of	TAD	spaces	occupied	by	PADs	

	
As	 PADs	 were	 limited	 by	 TAD-like	 boundaries,	 I	 computed	 the	 fraction	 of	 a	 TAD	 space	

occupied	by	a	given	PAD.	Therefore,	 if	both	elements	occupied	exactly	 the	same	genomic	

space,	the	fraction	of	occupied	space	was	equal	to	1.	

	
8.20. ChromHMM	enrichment	in	PADs	

	

ChromHMM	 segmentation	 (Ernst	 and	 Kellis,	 2012)	 is	 described	 in	 section	 8.1.	 The	

contribution	 of	 each	ChromHMM	state	was	 computed	 as	 a	 fraction	 of	 the	 genomic	 PAD	

space.	The	enrichment	of	ChromHMM	in	the	PAD	was	calculated	as	a	fold	difference	over	

genomic	 distribution	 in	 a	 log2	 scale	 (Fig.	 29	 in	 section	 4.1,	 Fig.	 48	 in	 section	 8.1).	 The	

enrichment	of	each	ChromHMM	state	in	an	islet	PAD	versus	the	remaining	islet	TAD	space	

was	also	computed	as	a	ratio	in	log2.	This	was	only	computed	for	7,085	PADs	that	were	at	

least	25%	smaller	than	their	corresponding	TAD	(Fig.	28,	Fig.	30	in	section	4.1).	
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8.21. Enhancer-promoter	assignment	

	

Enhancers	 were	 assigned	 to	 promoters	 based	 on	 a	 list	 of	 consecutive	 steps.	 Each	 step	

prevailed	over	the	following	steps.	Therefore,	each	step	was	only	performed	on	unassigned	

enhancers.	 Steps	 2-4	 were	 only	 applied	 for	 baited	 promoters	 that	 had	 a	 typical	 active	

promoter	state	 in	 the	 islet	 regulome	or	 islet	ChromHMM	(see	section	8.1).	The	enhancer-

promoter	assignment	steps	were:	

1. Interacting	enhancers	were	associated	to	promoters	based	on	the	presence	of	pcHi-

C	chromatin	 interactions.	 In	cases	where	 the	enhancer	 formed	multiple	 loops	with	

multiple	baited	promoters,	all	transcriptional	targets	were	considered.	

2. If	 a	 non-interacting	 enhancer	 was	 contained	 within	 a	 PAD	 of	 a	 baited	 active	

promoter	 that	 did	 show	 interactions	 with	 other	 enhancers,	 the	 non-interacting	

enhancer	was	tentatively	associated	to	that	PAD’s	promoter.	

3. I	assumed	that	a	+/-10	kb	window	around	any	baited	promoter	would	encompass	a	

region	where	random	collisions	are	too	frequent	to	enable	the	identification	of	high	

confidence	interactions	above	background	noise.	On	the	other	hand,	I	reasoned	that	

this	linear	distance	is	likely	to	provide	sufficient	3D	proximity	to	establish	functional	

enhancer	 –	 promoter	 communication.	 	 Therefore,	 non-interacting	 enhancers	 (not	

assigned	in	step	2)	residing	within	10kb	of	a	baited	active	promoter	were	tentatively	

assigned	to	them.	

4. The	 remaining	 non-interacting	 enhancers	 were	 associated	 to	 a	 baited	 active	

promoter	if	they	were	only	contained	within	a	single	PAD.		

	
8.22. Enhancer	assignment	validation	based	on	gene	expression	class	enrichments	

To	validate	enhancer-promoter	assignments	from	section	8.21,	I	computed	the	enrichment	

of	 islet-specific	 genes	 (section	 8.8)	 among	 all	 genes	with	 assigned	 enhancers.	 To	 do	 so,	 I	

generated	two	 lists	of	genes.	A	 first	 list,	named	“assigned	genes”	that	contained	all	genes	

with	an	assigned	enhancer	in	section	8.21.	The	second	list	was	named	“control	genes”,	and	

it	 contained	 all	 genes	 to	 which	 PADs	 overlapped	 with	 active	 enhancers	 but	 those	 active	

enhancers	were	not	assigned	to	those	genes	(Fig.	55).		
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Fig.	55:	Selection	of	genes	assigned	to	islet	active	enhancers	and	control	genes.	Diagram	illustrating	
the	 generation	 of	 two	 gene	 sets,	 assigned	 genes	 and	 control	 genes,	 to	 validate	 our	 enhancer	
assignment	 strategy.	 PcHi-C	 interactions	 are	 indicated	 as	 solid	 black	 arcs,	 inferred	 enhancer-
promoter	 associations	 as	 dashed	 black	 lines,	 PADs	 are	 indicated	 as	 grey	 horizontal	 bars	 and	
enhancers	(E)	as	red	boxes.	

	

Genes	 were	 classified	 in	 3	 categories	 based	 on	 their	 gene	 expression	 pattern	 as:	 non-

expressed,	 islet-specific	 and	 non-islet-specific	 expressed	 (see	 section	 8.8).	 Per	 each	 gene	

class,	I	computed	the	enrichment	among	“assigned	genes”	compared	to	“control	genes”	as	

log2	of	the	ratio.	The	statistical	significance	of	this	enrichment	was	assessed	performing	a	

chi-square	test	(python	2.7	function	scipy.stats.chi2_contingency)	comparing	the	frequency	

of	each	gene	class	among	the	two	lists,	“assigned	genes”	and	“control	genes”	(Fig.	32	and	

Fig.	56).	

	

Fig.	 56:	 Enhancer	 assignments	 considering	 chromatin	 interaction	 maps	 accentuate	 their	

association	with	 islet-specific	 expressed	 genes.	 For	 the	 three	 different	 gene	 expression	 classes,	 I	
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computed	 the	 log2	 ratio	 for	 enhancer	 “assigned	 genes”	 vs.	 genes	whose	 PADs	 also	 contained	 an	
enhancer	but	these	were	not	assigned	to	them	(“control	genes”).	 	This	analysis	was	done	per	each	
step	of	the	enhancer-promoter	assignment	strategy	(top)	or	grouped	in	interacting	enhancers,	non-
interacting	assigned	enhancers	(step	2-4	of	the	assignment	strategy)	or	all	assigned	enhancers	(step	
1-4	of	the	assignment	strategy)	(bottom).		
	
8.23. Enhancer	assignment	validation	based	on	H3K27ac	correlations.	

To	 validate	 enhancer-promoter	 assignments	 from	 section	 8.21,	 G.	 Atla	 and	 S.	 Bonas	

computed	 H3K27ac	 correlations	 between	 loci	 forming	 each	 possible	 enhancer-promoter	

intra-TAD	pair.	To	do	so,	they	selected	a	set	of	H3K27ac	ChIP-seq	datasets	with	at	least	15M	

of	 mappable	 non-clonal	 reads	 (Table	 11)	 covering	 abroad	 collection	 of	 human	 tissues.	

Human	 islet	 samples	were	down	samples	 to	30M	reads,	 to	 facilitate	 the	comparison	with	

the	 epigenome	 roadmap	 samples.	 Normalised	 read	 counts	 were	 computed	 per	 each	

enhancer	 (+/-	 750bp	 centred	 window)	 and	 promoter	 defined	 in	 the	 islet	 regulome	 (see	

section	8.1).	Finally,	spearman's	rho	values	(scipy.stats.spearmanr)	among	ChiP-seq	samples	

were	 computed	 as	 metric	 of	 intra-TAD	 enhancer-promoter	 correlation	 per	 each	 possible	

pair	defined	using	hESC	TADs	(Dixon	et	al.,	2012).		

Based	 on	 the	 enhancer-promoter	 strategy	 proposed	 in	 section	 8.21	 enhancers	 were	

classified	 in	 4	 categories:	 interacting	 enhancers,	 assigned	 non-interacting	 enhancers	 at	

enhancer	 interacting	 PADs,	 non-interacting	 enhancers	 assigned	 due	 to	 bait	 proximity,	

assigned	non-interacting	PAD	specific	enhancers	(yellow)	and	non-assigned	enhancers	(Fig.	

57A).	 Enhancer-promoter	 pairs	 based	 on	 pcHi-C	 data	 (“Assignment”)	 were	 compared	

against	enhancer-promoter	pairs	 found	 in	the	same	PAD	but	that	not	assigned	(“Control”)	

(Fig.	57B).	Enhancer-promoter	correlations	rho	values	per	each	enhancer	type	were	used	to	

compare	 the	 informativity	 of	 “assigned”	 enhancer-promoter	 pairs	 versus	 “control”	 pairs.	

The	results	showed	that	“assigned”	pairs	present	a	better	correlation	than	“control”	pairs,	

suggesting	that	enhancer-promoter	assignments	(section	8.21)	based	on	pcHi-C	interactions	

supposes	and	improvement	over	associations	based	on	linear	proximity.	

Fig.	 57:	 Enhancer	 assignments	 considering	 chromatin	 interaction	 maps	 are	 coherent	 with	

enhancer-promoter	H3K27ac	correlations.	(A)	Based	on	the	enhancer-promoter	strategy	proposed	
in	 section	 8.21	 enhancers	 were	 categorised	 as	 interacting	 enhancers	 (maroon),	 	 assigned	 non-
interacting	enhancers	at	enhancer	interacting	PADs	(red),	non-interacting	enhancers	assigned	due	to	
bait	proximity	(orange),	assigned	non-interacting	PAD	specific	enhancers	(yellow)	and	non-assigned	
enhancers	(grey).	(B)	Enhancer-promoter	assignments	were	assessed	based	on	H3K27ac	correlation	
among	 samples.	 Enhancer-promoter	 pairs	 based	 on	 pcHi-C	 data	 (“Assignment”)	 are	 compared	
against	 enhancer-promoter	 pairs	 found	 in	 the	 same	 PAD	 but	 that	 not	 assigned	 (“Control”)	 as	
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illustrated	 in	 the	 schematics.	 An	 array	 of	 density	 plots	 show	enhancer-promoter	 correlations	 (rho	
values)	per	each	enhancer	type	specified	in	Fig.	57A.	“Assignment”	values	are	show	with	a	solid	line	
and	“control”	values	with	a	dashed	line.	Figure	shown	in	the	following	page.	
	

	
	

Table	11:	Summary	of	H3K27ac	ChIP-seq	datasets	used	to	determine	enhance-promoter	correlations.	

Sample	ID	 Human	tissue	 Source	 Number	

of	reads	

E034	 Primary	T	cells		 Epigenome	Roadmap	 30	
E037	 Primary	T	helper	memory	cells		 Epigenome	Roadmap	 27.7	
E041	 Primary	T	helper	cells	PMA-I	stimulated	 Epigenome	Roadmap	 30	
E042	 Primary	T	helper	17	cells	PMA-I	stimulated	 Epigenome	Roadmap	 18.7	
E043	 Primary	T	helper	cells	 Epigenome	Roadmap	 16.7	
E045	 Primary	T	cells	effector/memory	 Epigenome	Roadmap	 16.1	
E047	 Primary	T	CD8+	naive	cells	 Epigenome	Roadmap	 30	
E055	 Penis	foreskin	fibroblast	primary	cells	 Epigenome	Roadmap	 27.1	
E056	 Penis	foreskin	fibroblast	primary	cells	 Epigenome	Roadmap	 28.4	
E058	 Penis	foreskin	keratinocyte	primary	cells	 Epigenome	Roadmap	 30	
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E059	 Penis	foreskin	melanocyte	primary	cells	 Epigenome	Roadmap	 30	
E061	 Penis	foreskin	melanocyte	primary	cells	 Epigenome	Roadmap	 30	
E062	 Primary	mononuclear	cells	from	peripheral	blood	 Epigenome	Roadmap	 30	
E063	 Adipose	Nuclei	 Epigenome	Roadmap	 16.6	
E065	 Aorta	 Epigenome	Roadmap	 21.2	
E066	 Liver	 Epigenome	Roadmap	 30	
E067	 Brain	angular	gyrus	 Epigenome	Roadmap	 30	
E068	 Brain	anterior	caudate	 Epigenome	Roadmap	 30	
E069	 Brain	cingulate	gyrus	 Epigenome	Roadmap	 30	
E071	 Brain	hippocampus	middle	 Epigenome	Roadmap	 30	
E072	 Brain	inferior	temporal	lobe	 Epigenome	Roadmap	 30	
E073	 Brain	dorsolateral	prefrontal	cortex	 Epigenome	Roadmap	 30	
E074	 Brain	substantia	nigra	 Epigenome	Roadmap	 30	
E075	 Colonic	mucosa	 Epigenome	Roadmap	 16.2	
E078	 Duodenum	smooth	muscle	 Epigenome	Roadmap	 30	
E079	 Esophagus	 Epigenome	Roadmap	 19.7	
E080	 Fetal	adrenal	gland	 Epigenome	Roadmap	 19.5	
E084	 Fetal	intestine	large	 Epigenome	Roadmap	 28.6	
E085	 Fetal	intestine	small	 Epigenome	Roadmap	 29.7	
E087	 Pancreatic	islets	 Epigenome	Roadmap	 16.7	
E089	 Fetal	muscle	trunk	 Epigenome	Roadmap	 17.5	
E090	 Fetal	muscle	leg	 Epigenome	Roadmap	 26.1	
E091	 Placenta	 Epigenome	Roadmap	 21.6	
E092	 Fetal	stomach	 Epigenome	Roadmap	 30	
E093	 Fetal	thymus	 Epigenome	Roadmap	 30	
E094	 Gastric	 Epigenome	Roadmap	 16.8	
E095	 Left	ventricle	 Epigenome	Roadmap	 30	
E096	 Lung	 Epigenome	Roadmap	 29.5	
E097	 Ovary	 Epigenome	Roadmap	 16.6	
E099	 Placenta	amnion	 Epigenome	Roadmap	 25.9	
E100	 Psoas	muscle	 Epigenome	Roadmap	 15.8	
E101	 Rectal	mucosa	 Epigenome	Roadmap	 17.7	
E102	 Rectal	mucosa	 Epigenome	Roadmap	 15.9	
E103	 Rectal	smooth	muscle	 Epigenome	Roadmap	 18.6	
E104	 Right	atrium	 Epigenome	Roadmap	 24.6	
E106	 Sigmoid	colon	 Epigenome	Roadmap	 30	
E108	 Skeletal	muscle	female	 Epigenome	Roadmap	 18.9	
E109	 Small	intestine	 Epigenome	Roadmap	 30	
E111	 Stomach	smooth	muscle	 Epigenome	Roadmap	 22.2	
E112	 Thymus	 Epigenome	Roadmap	 16.9	
E113	 Spleen	 Epigenome	Roadmap	 16.9	
HI_129_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_129_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_130_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_130_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_131_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_131_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_132_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_132_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_135_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_135_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_137_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_137_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_149	 Pancreatic	islets	 J.	Ferrer's	lab	 21.6	
HI_152_H	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_152_L	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_HI26	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_HI32	 Pancreatic	islets	 J.	Ferrer's	lab	 15.6	
HI_HI34	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_HI76	 Pancreatic	islets	 J.	Ferrer's	lab	 15.8	
HI_HI82	 Pancreatic	islets	 J.	Ferrer's	lab	 30	
HI_HI153	 Pancreatic	islets	 J.	Ferrer's	lab	 26.6	
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8.24. Promoter	characterisation	

To	 carry	 discover	 features	 that	 predict	 islet-specific	 gene	 expression	 through	 machine	

learning	 I	 characterised	 different	 types	 of	 gene	 promoters	 based	 on	 the	 following	 15	

features:	

• Number	of	pcHi-C	interactions	in	human	pancreatic	islets.	

• Fraction	of	islet-selective	interactions	originated	from	the	promoter’s	bait	(see	section	

8.7).		

• Fraction	 of	 promoter-enhancer	 interactions	 originated	 from	 the	 promoter’s	 bait	 (see	

section	8.6).	

• Number	of	enhancers	overlapping	the	promoter-associated	domain	(PAD).	The	number	

of	 overlapping	 enhancer	 defined	 in	 islet	 regulome	 (see	 section	 8.1)	 were	 computed	

using	 intersectBed	 (BedTools,(Quinlan	 and	 Hall,	 2010)).Number	 of	 enhancers	

overlapping	 the	 promoter-associated	 domain	 (PAD).	 The	 number	 of	 overlapping	

enhancers	 defined	 in	 the	 islet	 regulome	 (see	 section	 8.1)	 was	 computed	 using	

intersectBed	(BedTools;	Quinlan	&	Hall,	2010	).	

• Number	of	active	enhancers	assigned	to	the	promoter’s	bait	(see	section	8.21).	

• Number	of	class	I	active	enhancers	assigned	to	the	promoter’s	bait	(see	section	8.1).	

• Width	 of	 the	 TSS	 determined	 by	 CAGE	 (bp).	 CAGE	 shape	 was	 determined	 by	 my	

colleague	 Goutham	 Atla	 as	 previously	 described	 (Forrest	 et	 al.,	 2014).	 In	 summary,	

CAGE	 is	a	NGS	based	 technique	 to	 identify	Transcription	Start	Sites	 (TSS)	at	base-pair	

(bp)	 resolution	 (Kanamori-Katayama	 et	 al.,	 2011;	 Shiraki	 et	 al.,	 2003).	 CAGE	 tags	

starting	 sites	 (CTSS	 were	 clustered	 based	 on	 proximity	 (<	 20	 bp)	 and	 characterised	

based	on	interquartile	width	(q0.1	–	q0.9).	CTSS	can	be	classified	as	“sharp”	or	“broad”	

(≥	11	bp)	based	on	their	interquartile	width	(Forrest	et	al.,	2014)	(Fig.	58).	

• Length	of	the	overlapping	CpG	island.	A	list	of	bona	fide	CpG	islands	(Bock	et	al.,	2007)	

was	downloaded	from	UCSC	web	browser.	CGI	were	associated	to	Ensembl	annotated	

TSS	based	in	overlap	using	intersectBed	(BedTools).	

• H3K4me3,	H3K9me3	or	H3K27me3	signal	in	human	pancreatic	islets	was	computed	as	

area	under	the	curve	within	a	+/-	1kb	window	around	the	annotated	TSS.		This	data	was	

scaled	from	0	to	1	only	for	representative	purposes.	
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• Number	of	H3K4me3,	H3K9me3	or	H3K27me3	peaks	from	other	tissues	overlapping	the	

TSS.	 Per	 each	 histone	mark	 I	 downloaded	 a	 collection	 of	 peaks	 called	 in	 139	 human	

tissues	 as	 part	 of	 the	 Roadmap	 Epigenome	 project	 (Kundaje	 et	 al.,	 2015).	 These	

datasets	were	intersected	with	annotated	TSS	using	intersected	(BedTools).	

	

To	 assess	 the	 quality	 of	 our	map	 of	 CAGE	 TSSs	 in	 human	pancreatic	 islets,	 I	 interrogated	

whether	 previously	 reported	 features	were	 recapitulated	 in	 this	 dataset.	 I	 found	 that	 the	

CAGE	TSS	length	presents	a	bimodal	distribution	that	could	be	used	to	define	“sharp”	(<11	

bp)	and	“broad”	active	promoters	in	human	pancreatic	islets.	Moreover,	I	also	noticed	that	

islet-specific	 expressed	 frequently	 present	 a	 “sharp”	 promoter	 rather	 than	 a	 “broad”	

promoters	(Fig.	58).	Both	observations	were	coherent	with	previous	reports	(Forrest	et	al.,	

2014;	Lenhard	et	al.,	2012),	validating	CAGE	TSS	length	as	likely	informative	feature	for	gene	

expression	classification.	

	

	
	

Fig.	 58:	 TSS	 length	 distribution.	 Density	 plot	 showing	 the	 TSS	 length	 distribution	 for	 islet-specific	
(black)	 and	 non-islet	 specific	 expressed	 genes	 (grey).	 TSS	 length	 was	 determined	 as	 0.1-0.9	
interquartile	width	determined	by	Goutham	Atla	using	CAGE.	Length	equal	 to	11	bp	 is	highlighted	
with	 a	 dashed	 line,	 and	 it	 has	 been	 previously	 used	 as	 threshold	 to	 define	 “sharp”	 and	 “broad”	
promoters	(Forrest	et	al.,	2014).	
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Fig.	 59.	 Epigenomic	 characterisation	 of	 islet-specific	 expressed	 genes.	 Array	 of	 boxplots	
interrogating	epigenomic	 features	 listed	 in	 section	 in	 8.23	differentiating	by	gene	expression	 class	
(see	 section	8.8).	 Each	panel	 interrogates	 an	epigenomic	 feature	and	 contains	 a	boxplot	per	 gene	
class	(non-expressed;	expressed,	non-islet-specific	and	expressed,	islet-specific)	
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Correlation	between	the	15	epigenomic	features	was	determined	by	Pearson’s	correlation	

(computed	using	python	2.7	function	scipy.stats.pearsonr;	Oliphant,	2007).	A	list	of	12	non-

highly	correlated	features	(Pearson’s	score	<	0.65)	(Fig.	60,	Table	7)	was	used	for	a	logistic	

regression	 analysis.	 In	 logistic	 regression	 independency	 among	 the	 variables	 is	 assumed.	

Therefore,	was	important	to	use	a	compendium	of	lowly	correlated	features.	

	
Fig.	 60:	 Correlation	 between	 epigenomic	 features.	 Heatmap	 showing	 pair-wise	 Pearson’s	
correlation	scores	between	15	epigenomic	features.	
	
Logistic	regression	

	
A	 logistic	 regression	 (LR)	 analysis	 was	 conducted	 to	 determine	which	 epigenomic	 factors	

could	be	used	 to	predict	 gene	expression	patterns	 (see	 section	8.8)	using	python	2.7	and	

scikit-learn	 (Pedregosa	 and	 Varoquaux,	 2011).	 The	 model	 was	 generated	 using	 balanced	

class	weights,	 thus	 accounting	 for	 the	 fact	 that	 islet-specific	 expressed	 genes	were	much	

less	frequent	than	other	classes	of	genes	(Fig.	52).	The	machine	learning	(ML)	classifier	was	

trained	 50	 times	 with	 a	 random	 sampling	 containing	 70%	 of	 the	 full	 data	 set	 and	 the	

remaining	 30%	 was	 kept	 for	 validations.	 In	 each	 of	 the	 50	 rounds,	 LR	 coefficients	 were	

computed	 as	 a	 metric	 of	 feature	 importance	 for	 each	 gene	 class.	 In	 summary,	 the	 ML	

classifier	computes	the	coefficients	(b)	for	a	list	of	features	(c)	that	fits	a	logit	function	(Fig.	

33	in	section	4.1).	This	function	computes	the	probability	(p)	that	a	given	gene	belongs	to	a	

gene	 expression	 class	 (k)	 (Formula	 1	 in	 section	 4.1).	 Thus,	 the	 higher	 the	 coefficient	 the	

bigger	the	weight	of	a	given	feature	in	the	decision	function	(Bewick	et	al.,	2005).	

	
The	 ML	 model	 obtained	 in	 each	 of	 the	 50	 permutations	 was	 assessed	 computing	 its	
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accuracy	per	gene	category	(Fig.	61B,	D).	An	ideal	confusion	matrix	would	be	formed	by	1	at	

the	diagonal	and	0	on	the	remaining	positions	of	the	matrix	indicating	a	perfect	prediction.	

The	 4	metric	 scores	 assess	 the	 general	 performance	 of	 the	model,	 independently	 of	 the	

sample	categories,	each	score	ranges	from	0	to	1,	being	1	the	best	value	(Fig.	61C,	E).	The	

different	computed	metric	scores	were:	

- Accuracy:	fraction	of	corrected	predictions.	

- Recall:	the	model’s	ability	to	identify	all	positive	samples,	independently	of	the	number	

of	false	negative.	True	positive/	(true	positive	+	false	negative)	

- Precision:	 the	 model’s	 ability	 to	 identify	 all	 negative	 samples,	 independently	 of	 the	

number	of	false	positive.	True	positive/	(true	positive	+	false	positive)	

- F1	 score:	 Weighted	 average	 of	 the	 precision	 and	 recall.	 	 (2	 *	 (precision	 *	 recall))	 /	

(precision	+	recall)	
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Ffig.	61.	Logfistfic	Regressfion	analysfis	to	determfine	features	assocfiated	to	gene	classes.	(A).	Heatmap	
showfing	Logfistfic	Regressfion	coeffficfients	per	epfigenomfic	feature	and	gene	class.	(B	and	D)	Confusfion	
matrfix	 assessfing	 the	 proportfion	 of	 labels	 /	 gene	 classes	 correctly	 predficted,	 finterrogatfing	 all	 3	
classes	(C)	or	dfifferentfiatfing	between	expressed	genes	(D).	(E	and	C).	Values	for	4	metrfic	scores	were	
used	 to	 assess	 a	 logfistfic	 regressfion	 model	 to	 predfict	 all	 gene	 classes	 (C)	 or	 only	 dfifferentfiate	
between	expressed	genes	(E).	Those	metrfic	scores	were:	recall,	precfisfion,	accuracy	and	f1	score.	
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8.25. PAD	classification	based	on	enhancer	content	

	

PADs	were	classified	based	on	their	content	of	assigned	active	enhancers	(see	section	8.1,	

8.21).	 Among	 all	 active	 enhancers	 defined	 in	 the	 islet	 regulome,	 PAD	 classification	 was	

based	 on	 class	 I	 enhancers.	 Class	 I	 enhancers	 were	 markedly	 enriched	 in	 epigenomic	

features	associated	to	active	enhancers	(H3K27ac	and	MED1	signal)	and	were	most	enriched	

at	tissue-selective	interactions.		

Thus,	PADs	were	classified	as:	

- Enhancer-less.	PADs	without	any	assigned	enhancer.	

- Enhancer-poor.	PADs	with	one	or	more	assigned	class	I-III	enhancers,	but	less	no	more	

than	2	assigned	class	I	enhancers.	

- Enhancer-rich.	PADs	with	3	or	more	assigned	class	I	enhancers.	

	

8.26. Enrichment	of	genomic	variants	at	cis-regulatory	regions	
	

My	 colleague	 Irene	 Miguel-Escalada	 compiled	 an	 updated	 list	 of	 genomic	 variants	

associated	 to	 type-2	 diabetes	 (T2D)	 and	 fasting	 glycemia	 (FG)	 variation.	 I	 used	 this	 list	 to	

interrogate	 whether	 enhancers	 contained	 in	 different	 PAD	 classes	 were	 particularly	

enriched	in	disease	associated	variants	using	Variant	Set	Enrichmet	(VSE)	(Yang	et	al.,	2011).	

VSE	accounts	for	linkage	disequilibrium	(LD)	between	the	interrogated	genomic	variants	so	

that	the	biases	due	to	LD	structures	are	minimalised.	As	a	negative	control,	I	used	a	set	of	

breast	 cancer	 associated	 variants	 (obtained	 from	 the	 VSE	GitHub	 repository),	 as	 I	 do	 not	

expect	any	association	with	cis-regulatory	elements	active	in	pancreatic	islets.	

	
8.27. Overlap	between	enhancer-rich	PADs	
	

Enhancer-rich	PADs	were	merged	into	a	single	genomic	interval	using	mergeBed	(Bedtools).	

The	number	of	PAD	or	TAD	compartments	was	determined	by	overlap	using	 intersectBed	

(BedTools).	

	
8.28. STARR-seq	

	

Selection	of	candidate	regions	

	

I	selected	genomic	regions	of	approximately	650	bp	for	testing	enhancer	activity	by	STARR-

seq	 (Arnold	 et	 al.,	 2013).	 This	 pilot	 collection	 of	 69	 genomic	 regions	 included	 45	 active	
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enhancers,	4	primed	enhancers,	and	5	open	chromatin	regions	without	enhancer	marks,	all	

previously	identified	in	human	pancreatic	islets	based	on	epigenomic	marks	(Pasquali	et	al.,	

2014).	 Moreover,	 I	 included	 15	 regions	 that	 did	 not	 show	 evidences	 of	 chromatin	

accessibility	 in	 human	 pancreatic	 islets,	 neither	 in	 the	 different	 human	 cell	 line	

characterised	 as	 part	 of	 the	 ENCODE	project	 (Dunham	et	 al.,	 2012).	 It	was	 reasonable	 to	

hypothesise	 that	 these	15	compacted	chromatin	region	would	not	show	enhancer	activity	

therefore	were	used	as	negative	control	regions	to	determine	background	signal.		

	

Library	preparation	

	

This	 collection	 of	 69	 genomic	 DNA	 loci	 was	 amplified	 by	 PCR	 using	 the	 high-fidelity	 DNA	

polymerase	Q5	(NEB)	for	few	(12)	cycles	to	avoid	PCR	amplification	mistakes.	After	checking	

the	PCR	products	 in	an	agarose	gel,	PCR	products	were	pooled	and	purified	using	the	PCR	

purification	kit	(QIAGEN).	This	was	used	as	starting	material	to	create	a	STARR-seq	library	as	

described	 in	 Arnold	 et	 al.,	 2013	 with	 the	 exception	 that	 I	 used	 custom	 adaptors	 for	

sequencing.	 	These	custom	adaptors	 included	a	3bp	Unique	Molecular	 Identifier	(UMIs)	to	

facilitate	 the	 quantification	 and	 avoid	 bias	 due	 to	 PCR	 amplification	 artefacts.	Moreover,	

these	custom	adaptors	also	included	a	6bp	library	specific	index	(Note	1).	The	library	index	

did	 not	 have	 utility	 in	 the	 current	 experiment,	 but	 in	 the	 future	 it	 could	 be	 used	 to	

differentiate	between	libraries	containing	risk	or	non-risk	alleles	for	genomic	variants	as	the	

sequencing	reads	would	probably	not	cover	the	cloned	fragment	completely.		

	
Adaptor	1:	5’	-	ACACTCTTTCCCTACACGACGCTCTTCCGATC*TNNNXXXXXX*T	-	3’	
Adaptor	2:	5’	-	[Phos]XXXXXXNNNAGATCGGAAGAGCACACGTCT	-	3’	
	

Note	1:	Custom	STARR-seq	adaptors.		The	position	of	UMI	is	indicated	with	Ns	and	it	is	formed	by	3	
random	 nucleotides.	 Position	 custom	 library	 index	 is	 indicated	 with	 Xs	 and	 formed	 by	 6bp	
nucleotides	 following	 Illumina	 sequencing	 index	 list.	 	 Adaptor	 2	 contains	 a	 5’	 phosphatase	
modification	([Phos])	and	adaptor	1	phosphorothioate	bonds	(*).		

	
Briefly,	 purified	 PCR	 products	 were	 dA-tailed	 to	 allow	 adaptor	 ligation,	 which	 was	

performed	in	a	molarity	ration	10:1	in	favour	to	the	annealed	custom	adaptors	using	the	T4	

Ligase	 (NEB).	 Homologous	 regions	 to	 the	 STARR-seq	 vector	 were	 incorporated	 by	 PCR	 in	

order	 to	 enable	 vector	 ligation	 through	 isothermal	 in	 vitro	 recombination	 (Gibson	 et	 al.,	

2009)	using	 In-fusion	HD	kit	 (Clonatech).	The	 resultant	plasmid	 library	was	electroporated	

and	 amplified	 using	 Endura	 ElectroCompetent	 Cells	 (Cambridge	 bioscience)	 that	 were	
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cultivated	 in	 10	 LB	 +ampicillin	 plates.	 Bacteria	was	 collected	 and	 purified	 using	 PureYield	

Plasmid	Midiprep	System	(Promega).	 	The	presence	of	 the	69	elements	 in	 the	 final	 library	

was	confirmed	by	PCR.		

	
Cell	transfection	

	

4	million	Min6	cells	 (Ishihara	et	al.,	1993)	were	plated	 in	48	well	plates,	120.000	cells	per	

well.	 Each	 well	 was	 transfected	 with	 600	 ng	 STARR-seq	 library	 using	 lipofectamine	 2000	

(Thermo	 Fisher	 scientific).	 At	 48h	 after	 transfection	 cell	 were	 tripsinised,	 collected	 and	

stored	 at	 -80C	 until	 used.	 ¾	 of	 the	 pooled	 cells	 were	 used	 for	 RNA	 extraction	 and	 the	

remaining	¼	for	plasmid	DNA	extraction.	

	
RNA-extraction	and	preparation	for	sequencing	

	

Total	 RNA	 was	 extracted	 using	 RNAeasy	 Kit	 (QIAGEN),	 and	 mRNA	 enrichment	 was	

performed	 using	 Dynabeads	 Oligo	 (dT)25	 (Life	 technologies)	 following	 manufacturer’s	

instructions.	Contaminant	DNA	was	degraded	using	Turbo	DNAse	(Life	technologies).	After	

quantifying	the	RNA	concentration	by	Qubit	(Thermo	Fisher	scientific),	the	sample	was	used	

as	 template	 to	 generate	 cDNA	 by	 RT-PCR	 using	 the	 SuperScript	 III	 kit	 (Thermo	 Fisher	

scientific)	and	the	reporter-RNA	specific	primer	 indicated	 in	Arnold	et	al.,	2013.	 	Resultant	

cDNA	was	used	as	a	template	in	a	nested	PCR	in	which	the	first	set	of	primers	amplifies	the	

cloned	fragments	and	then	adds	Illumina	indexes	for	multiplexing.		

	
Plasmid	purification	and	preparation	for	sequencing	

	

Plasmid	 DNA	 was	 purified	 using	 the	 Mini-prep	 purification	 kit	 (QIAgen).	 The	 resultant	

material	was	amplified	and	indexed	for	NGS	as	described	in	Arnold	et	al.,	2013.	

	

Sequencing	
	

Each	sample	was	spiked	(1%)	in	a	lane	of	an	Illumina	Hiseq	2500	run	in	high	output	mode	by	

the	Imperial	BRC	Genomics	Facility	(Imperial	College	London).	The	number	of	100bp	single-

end	read	obtained	per	sample	is	indicated	in	Table	12.	
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Table	12:	Number	of	reads	obtained	per	sample.		
Sample	 Number	of	reads	

STARR	cDNA	replicate	1	 3.5	M	
STARR	cDNA	replicate	2	 2.83	M	
STARR	input	replicate	1	 1.95	M	
STARR	input	replicate	2	 2.13	M	

	
	

• Computational	analysis	

	

Low	 quality	 and	 low	 complexity	 reads	 were	 filtered	 out	 using	 Prinseq	 (Schmieder	 and	

Edwards,	 2011).	 Raw	 reads	 were	 mapped	 using	 Bowtie2	 (Langmead	 and	 Salzberg,	 2012)	

exclusively	 to	 the	 interrogated	regions.	Raw	counts	were	computed	per	 loci	and	UMI.	Per	

each	 locus,	 I	 computed	 the	 median	 signal	 among	 UMIs.	 The	 two	 biological	 replicates	

showed	high	correlations	(r2>	0.9,	Pearson’s	linear	correlation)	ensuring	reproducibility	(Fig.	

62).	

	

	
	

Fig.	62:	High	 correlation	between	STARR-seq	biological	 replicates.	Both	STARR-seq	cDNA	and	
input	 showed	 a	 high	 correlation	 between	 biological	 replicates	 tested	 by	 Pearson’s	 correlation	
(r2).	 No	 significant	 differences	 were	 observed	 between	 the	 tested	 genomic	 classes;	 active	
enhancers	(orange),	primed	enhancers	(blue),	open	chromatin	regions	(red)	or	negative	control	
regions	(grey).	
	

To	correct	for	possible	library	representation	bias	among	the	tested	fragments	RNA	STARR-

seq	raw	read	counts	were	divided	by	their	counterpart	in	input	STARR-seq	library	(Arnold	et	

al.,	2013).	
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Enhancer	 activity	 was	 assessed	 as	 fold	 change	 (F.C.),	 in	 a	 log2	 scale,	 over	 the	 mean	

background	signal	determined	using	all	negative	control	regions.	A	fragment	was	considered	

to	present	enhancer	activity	 if	 the	signal	was	greater	 than	2	standard	deviations	 from	the	

mean	background	signal	in	both	biological	replicates	(Fig.	42).		

	

8.29. Luciferase	assays	

	

• Cloning	

	

Forward	primers	used	to	amplify	genomic	 loci	 for	 the	STARR	seq	 library	were	adapted	for	

TOPO-cloning	(Thermo	Fisher	scientific)	by	adding	the	sequence	“CACC”	to	the	5’	edge.	PCR	

amplification	products	were	purified	and	cloned	into	the	pENTR/D-TOPO	vectors	following	

manufacturer’s	 instructions.	 	 	 Later,	 interrogated	 loci	 were	 cloned	 into	 the	 destination	

vector	by	applying	the	Gateway	method	(Thermo	Fisher	scientific).	

	

• Transfection	

	

Each	 vector	was	 tested	 in	 at	 least	 two	 biological	 replicates,	 each	 biological	 replicate	was	

formed	by	3	 technical	 replicates.	Each	 test	was	performed	 in	a	well	 from	a	48-wells	plate	

containing	 120.000	 cells.	 300	 ng	 of	 the	 tested	 plasmid	 were	 co-transfected	 with	 2	 ng	 of	

pCMV-Renilla	using	Lipofectamine-2000	and	following	manufacturer’s	instructions.	

	

After	48h	of	the	transfection,	cells	were	washed	twice	with	PBS	and	treated	with	the	Dual-

Luciferase	kit	(Promega)	following	manufacturer’s	instructions.	

	

• Read-out	

	

The	 plate	 was	 read	 with	 a	 GloMax®	 96	 Microplate	 Luminometer	with	 Dual	 Injectors	

(Promega).	

	
• Enhancer-activity	
	
After	normalising	for	the	loading	control	(pCMV-Renilla)	enhancer	activity	was	computed	as	

fold	change	over	the	mean	background	signal	determined	using	4	negative	control	regions.	
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