
A Multi-Key Transactions Model for NoSQL Cloud
Database Systems

Adewole Ogunyadeka
Department of Computing &

Communication Technologies
Oxford Brookes University,

Oxford, UK
adewole.ogunyadeka-
2013@brookes.ac.uk

Muhammad Younas
Department of Computing &

Communication Technologies
Oxford Brookes University,

Oxford, UK
m.younas@brookes.ac.uk

Hong Zhu
Department of Computing &

Communication Technologies
Oxford Brookes University,

Oxford, UK
hzhu@brookes.ac.uk

Arantza Aldea
Department of Computing &

Communication Technologies
Oxford Brookes University,

Oxford, UK
aaldea@brookes.ac.uk

Abstract— NoSQL cloud database systems are new types of
databases that are built across thousands of cloud nodes and are
capable of storing and processing Big Data. NoSQL systems have
increasingly been used in large scale applications that need high
availability and efficiency but with weaker consistency.
Consequently, such systems lack support for standard
transactions which provide stronger consistency. This paper
proposes a new multi-key transactional model which provides
NoSQL systems with standard transaction support and stronger
level of data consistency. The strategy is to supplement current
NoSQL architecture with an extra layer that manages
transactions. The proposed model is configurable where
consistency, availability and efficiency can be adjusted based on
application requirements. The proposed model is validated
through a prototype system using MongoDB. Preliminary
experiments show that it ensures stronger consistency and
maintains good performance.

Keywords—NoSQL databases, cloud, multi-key, transactions,
consistency, availability, efficiency

I. INTRODUCTION
The concept of Big Data has led to an introduction of a new

set of databases used in the cloud computing environment, that
deviate from the characteristics of standard databases. The
design of these new databases embraces new features and
techniques that support parallel processing and replication of
data. Data are distributed across multiple nodes and each node
is responsible for processing queries directed to its subset of
data. Each subset of data managed by a node is called shard.
This technique of data storage and processing using multiple
nodes improve performance and availability [1]. The
architecture of these new systems, also known as NoSQL (Not
Only SQL) databases, is designed to scale across multiple
systems.

In contrast to traditional relational databases which is built
on sound mathematical model, NoSQL databases are designed
to solve the problem of Big Data which is characterised by 3Vs
(Volume, Variety, Velocity) or 4Vs (Volume, Variety,
Velocity, and Value) model. As such, NoSQL systems do not
follow standard models or design principles in processing Big
Data. Different vendors provide proprietary implementation of
NoSQL systems such that they meet their (business) needs. For
instance, unlike traditional relational database systems which
rely heavily on normalization and referential integrity, NoSQL
systems incorporate little or no normalization in the data
management.

The primary objective of NoSQL systems is to ensure high
efficiency, availability and scalability in storing and processing
Big Data. NoSQL systems do not ensure stronger consistency
and integrity of data. They therefore do not implement ACID
(Atomicity, Consistency, Isolation, Durability) transactions.
However, it is important to provide stronger consistency and
integrity of data while maintaining appropriate levels of
efficiency, availability and scalability.

In this paper we propose a new model that takes into
account transactional principle of standard database systems.
The objective is to provide consistency and to maintain the
ACID properties while taking into consideration the
availability and efficiency of NoSQL databases. The proposed
model is built on the concept of Multi-Key transactions and is
referred to as M-Key transactions model. It aims to overcome
the challenges of implementing ACID transactions in NoSQL
databases. The proposed M-Key model follows a loosely
coupled architecture in order to separate transaction processing
from underlying data storage and to ensure transparency and
abstraction. In order to implement concurrency, the proposed
approach exploits snapshot isolation technique [5]. Snapshot
isolation is an optimistic concurrency control technique which
allows for higher concurrency.

The potential contributions of the proposed model are
summarized as follows.

• The design of a new Multi-Key transaction model for
NoSQL systems that maintains ACID properties of
transactions in order to ensure stronger consistency.

• Development of a loosely-coupled architecture that
separates the transactional logic from underlying data thus
ensuring transparency and abstraction.

• Development of a prototype system using real NoSQL
system, MongoDB, which is evaluated using the YCSB+T
benchmark based on standard Yahoo! Cloud Services
Benchmark (YCSB). The results show enhanced
consistency and performance.

The paper is structured as follows. Section II describes
research issues related to NoSQL systems. Section III reviews
related work. Section IV presents the theoretical model of the
proposed approach. Section V describes the architecture.
Section VI presents the transaction protocol. Section VII

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/327068641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

provides implementation details and a proof concept. Section
VIII concludes the paper and identifies future research work.

II. NOSQL DATABASE SYSTEMS AND RESEARCH ISSUES
The requirements and characteristics of NoSQL systems

force them to deviate from adopting the principles of standard
SQL database systems. Though this deviation brings in
improvements such as high efficiency, availability and
scalability, it also ends up in various issues. These include:

• The adoption of simple data model with little or no
normalization of data: NoSQL data do not follow standard
principles of normalization. But de-normalised data result
in inconsistency and lack of integrity among data entities.

• Lack of support for join operations and the inadequacy
for formulating complex but useful queries: The
implication of de-normalizing and flattening out data into
a single table implies that there is no support for join
operations. Though this simplifies query processing it
lacks the power and flexibility of designing useful queries
which are available in relational databases.

• Relaxation of consistency and referential integrity and
lack of multi-key (and cross tables) transactions: As
discussed above, ACID transactions are not supported in
NoSQL database. This affects the consistency and
integrity across replicas of data.

The above issues make it difficult to implement
transactions in NoSQL systems. In this paper we present a new
model that provides transactional support for NoSQL systems
in order to enhance data consistency without severely
impacting availability and efficiency.

III. RELATED WORK
Various approaches have been proposed to address

transaction management in NoSQL databases. However,
because of the diverse flavours and kinds of NoSQL databases,
there has been no accepted standard approach of managing
transactions in NoSQL databases. Deuteronomy [6] is an
approach towards transaction processing in NoSQL databases.
Deuteronomy separates the transactional component (TC) from
the data component (DC). The TC manages transactions and
transactions can span multiple DCs. In contrast to the approach
proposed in this paper, Deuteronomy makes use of locking
mechanism to manage concurrency and ensure consistency.
Locking is useful but it has negative effects on the performance
of transactions.

G-Store [7], introduces a key grouping protocol to group
keys for applications that need multi-row transactions. Groups
within G-store are dynamic and have a life span. Thus groups
will be deleted after their life span. Transactions are limited to
within a group and G-Store cannot provide transactions across
groups. Megastore [4], uses entity groups formation similar to
G-store. But in Megastore, group formation is static and an
entity belongs to a single group throughout the life span of that
entity. As such, ACID transactions can only take place within
specified groups.

COPS (Cluster of Order Preserving Servers) [8], introduces
two variables called dependencies and versions to preserve

order across keys. It is implemented using a distributed key-
value NoSQL database. CloudTPS [9], like Deuteronomy,
make use of two layers architecture which includes LTM
(Local Transaction Manager) and the cloud storage.
Transactions are replicated across LTMs to preserve
consistency in the presence of failures.

IV. THE PROPOSED APPROACH: THEORETICAL MODEL
A NoSQL transaction NST is defined as the execution of a

(cloud) application which comprises different operations that
provide transitions between consistent states of the shared data.
In other words, NST is a sequence of operations which are
executed in a way such that all of them are successfully
completed or none at all. NST is required to follow the ACID
(atomicity, consistency, isolation, durability) properties.

NST is a multi-key transaction as it involves more than one
data key item. Most NoSQL systems, do not perform multi-
key operations.
Definition 1: A NST can be formally defined as a tuple, NST =
(OP, PaO), where OP is a set of operations, OP = {OPi | i =
1...n}, and PaO is a partial ordering of the operations which
determines their order of execution. For instance, OPi > OPj
represents that OPi is executed before OPj.
In the proposed model, OPi

r[DE] represents a read operation of
NST; meaning that NST reads data entity, DE, from a NoSQL
database. Similarly, OPi

w[DE] represents a write operation of
NST; meaning that NST writes (updates) a data entity, DE, to a
NoSQL database.

The above read and write operations (OPi
r[DE] and

OPi
w[DE]) are used to model the CRUD (Create, Read, Update

and Delete) operations. In the proposed model, OPi
r[DE] is

simply to read data without any modification to the data.
OPi

w[DE] is to write data meaning that data can be modified
through Create, Update or Delete operation.

In addition, to data read/write operations, NST is also
associated with (control) operations, begin or start, commit and
abort. These are explained as follow.

Begin or start operation: The execution of each NST must
be marked through a begin or start operation. That is, NST
should begin first before any of its operations (OP = {OPi | i =
1...n} ∈ NST) can be executed.

Commit and Abort operations: If NST is successfully
executed then it terminates with a ‘commit’ operation. If NST
cannot be successfully executed then it terminates with an
abort operation.

NST can be of type seq (Begin | OPi | Cmt | Abt) but with the
condition that either Cmt (commit) or abort (Abt) occurs only
once within the sequence.
A NST comprises different read/write operations but it can
have either one commit or abort operation. This is denoted as:
• NSTi = {Begin} ∪ {OP1

r[DE], …,OPn
r[DE]} ∪

{OP1
w[DE], …,OPn

w[DE]}∪ {Cmti, Abti}
Where DE is Data Entity.

• Cmti, ∈ NSTi iff Abti ∉ NSTi
i.e., If NSTi is committed then abort operation cannot be
executed.

• Assume a (control) operation, cti, is Cmti or Abti
(transaction commits or aborts), then for any read/write

operation OP
i[DE] ∈ NST i , OPi[DE] < cti. In other words,

commit or abort operation must be after the read/write
operation.

• If OPi
r[DE], OPi

w[DE] ∈ NSTi, then such read/write
operations should be ordered either as OPi

r[DE] < OPi
w[DE]

or OPi
w[DE] < OPi

r[DE]. That is, data entity, DE, should be
read and written in a proper order.

V. SYSTEM ARCHITECTURE
The proposed M-Key transactions model is to be

implemented in a loosely coupled architecture. It follows
loosely-coupled architectural style in order to separate the
implementation of transactional logic from the underlying data
and to ensure transparency and abstraction. Figure 1
diagrammatically represents the proposed architecture at the
higher level of abstraction. It comprises three main
components: Transaction Processing Engine, Data
Management Store, and Times Stamp Manager.

The fuller implementation of the proposed architecture is
still under development. But the main functions of each of
these components are briefly described as follows.

Transaction Processing Engine (TPE): The TPE is
responsible for implementing M-Key transactions in the
proposed system. The main functions which are to be
performed by the TPE include:
- Receiving transactional requests from clients and

managing such transactions
- Storing of schema information (as NoSQL systems do not

provide facilities for schema information)
- Defining relationships between different entities of data
- Provide support for join operations (as NoSQL do not

support such operations)

Data Management Store (DMS): This component represents
the actual NoSQL system such as MongoDB. DMS stores all
(Big) data persistently. This component is highly scalable in
order to meet Big Data storage requirements. Further, it
replicates data in terms of different replicas in order to ensure
improved efficiency, high availability and fault tolerance.
Replication is the common approach across all NoSQL
systems. In the proposed system, the DMS layer will
implement snapshot isolation protocol in cooperation with the
Time stamp manager (TSM) in order to provide concurrency
of transactions.

Times Stamp Manager (TSM): The TSM is to manage the
ordering and scheduling of transactions in the proposed
system. It interacts with DSM and TPE in order to schedule
the execution of the different operations of a transaction. The
objective is to maintain consistency of data when concurrently
accessed by different transactions. The proposed concurrency
technique is to implement Snapshot Isolation which is non-
blocking and provides higher concurrency and high efficiency
in transactions processing.

VI. TRANSACTION PROTOCOL
This section presents the proposed transaction protocol in

order to illustrate the different steps involved in transaction
processing. Figure 2 depicts the flow of requests which are
communicated between the client, TPE, DMS and TSM. Client
represents user’s cloud application that submits transactions to
the proposed system.

The different steps involved in the protocol are explained as
follows. Note that these steps must adhere to the specification
(definitions and constraints) specified in Section IV.

1. A client initiates a request to start a new NoSQL
transaction (NST).

2. TPE receives client’s request and generates an ID for the
NST which is to be executed on NoSQL data. TPE then
sends the NST’s ID and related information to the DMS.

3. DMS receives the NST’s ID and related information in
order to know which data entities are to be accessed
(read/updated) by the NST. DMS then sends the NST’s ID
and related information about data entities to the TSM in
order to ensure scheduling of NST and other transactions.

4. TSM saves the information about NST and it responds with
a start-time of a transaction. This time serves as a start
time-stamp, which is to determine the order of execution
and also the commitment of the NST.
As in Section IV, if OPi

r[DE], OPi
w[DE] ∈ NSTi, then

these read/write operations should be ordered either as
OPi

r[DE] < OPi
w[DE] or OPi

w[DE] < OPi
r[DE]. That is, data

entity, DE, should be read and written in a proper order
following the time-stamp information.

5. Based on the above, DMS releases the required data
entities to the TPE where NST is actually taken place. Note
that the proposed architecture separates transaction
processing from the actual NoSQL database system in
order to ensure abstraction and transparency.

Fig 1. The Proposed System Architecture

6. Once NST is completed, TPE sends the updates (made to

data entities) to the DMS. This means that if NST updates a
data entity (modify, delete) then DMS has to reflect this in
the data store in order to ensure that data is consistent.

7. The DMS contacts TSM to request a commit timestamp.
TSM checks if another transaction has updated data after
its start timestamp of the requesting transaction. If this
happens, then the NST aborts and sends the information to
the client through the TPE. Otherwise, it continues.

8. The TSM responds to the DMS with a commit timestamp.
The DMS then stores the data in the data store.

9. The DMS responds with a commit message to the TPE.
This means that NST is successfully committed using the
commit operation, Cmti.

VII. PROOF OF CONCEPT

A. Evaluation Benchmark
One of the major issues in evaluating NoSQL database

systems is that there is no standard benchmark yet. According
to our research, Yahoo! Cloud Services Benchmark (YCSB) is
the most commonly used cloud services benchmark in order to
evaluate the performance of NoSQL systems. However, YCSB
benchmark does not support transactions. Instead it is limited
to evaluating single NoSQL operation rather than group of
operations as in transactions. For the evaluation of the
proposed approach, we therefore adopt the YCSB+T
benchmark which is developed for web-scale transactional
systems [10]. Basically, the YCSB+T benchmark is an
extension of the YCSB benchmark and it remains the only
benchmark for cloud systems with support for transactions.

Our preliminary experiments take into account the
following elements in the evaluation.

(i) Transactional overhead: This is to evaluate the overhead
caused by the proposed M-Key transactions model in
introducing ACID transactions into NoSQL database systems.
As described above, majority of the NoSQL do not support
ACID transactions

(ii) Consistency: This is to show how the M-Key transactions
model guarantees stronger consistency in NoSQL database
systems while maintaining acceptable level of performance.

We use the closed-economy workload (as in [10]) to
evaluate the (i) Number of transactions per second, and (ii)
Consistency (or correctness) of transactions.

B. Experimental Setup and Results
The proposed model is implemented as a prototype system

using the NoSQL MongoDB which does not support multi-key
transactions. In the proposed model, transactional logic is
implemented using Python language. The implementation is
carried out on a 16GB RAM Windows PC system.

Running one client, the time taking for one transaction to
complete is about 0.2 seconds. With one client, experiments
show that the system can handle between 30-40 multi-key
transactions/second. With respect to correctness, the system
showed 100% correctness for every transaction. Read
transactions take just 0.04 seconds for each read. These
experiments show that the proposed system maintains good
level of performance while ensuring stronger consistency of
the data in NoSQL databases.

VIII. CONCLUSION
We proposed a new model, called M-Key transaction

model, for NoSQL database systems. It provides NoSQL
databases with standard ACID transactions support that ensures
consistency of data. The paper described the design of the
proposed model and the architecture within which it is
implemented. As a proof of concept the proposed approach is
implemented using real NoSQL database system of the
MongoDB. Evaluation is carried out through the YCSB+T
benchmark. Preliminary experiments show promising results in
terms of ensuring consistency and performance.

Future work includes full implementation of the proposed
system and with detailed experimentation.

REFERENCES
[1] D. DeWitt and J. Gray, “Parallel Database Systems: The Future of High

Performance Database Systems,” Commun. ACM, vol. 35(6), Jun. 1992.
[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. a. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” 7th Symp. Oper. Syst.
Des. Implement. (OSDI ’06), Nov. 6-8, Seattle, USA, 2006.

[3] A. Silberstein, A. Silberstein, B. F. Cooper, B. F. Cooper, U. Srivastava,
U. Srivastava, E. Vee, E. Vee, R. Yerneni, R. Yerneni, R.
Ramakrishnan, and R. Ramakrishnan, “PNUTS: Yahoo!’s Hosted Data
Serving PLatform,” Proc. 2008 ACM SIGMOD Int. Conf. Manag.
data - SIGMOD ’08, 2008.

[4] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore: Providing
Scalable, Highly Available Storage for Interactive Services.,” Proc. of
the Conference on Innovative Data system Research (CIDR 2011), 2011.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A Critique of ANSI SQL Isolation Levels”, 2007.

[6] J. J. Levandoski, “Deuteronomy : Transaction Support for Cloud Data,”
Conf. on Innov. Data Systems Research (CIDR), California, USA.vol.
48, 2011.

[7] S. Das and A. El Abbadi, “G-Store : A Scalable Data Store for
Transactional Multi key Access in the Cloud,” In: Proc. of the 1st ACM
symposium on Cloud computing. Indianapolis, USA, ACM, 2010.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don ’ t
Settle for Eventual : Scalable Causal Consistency for Wide-Area Storage
with COPS. In: Proc. of the 23rd ACM Symposium on Operating
Systems Principles. Cascais, Portugal. 2011.

[9] Z. Wei, G. Pierre, and C. H. Chi, “CloudTPS: Scalable transactions for
web applications in the cloud,” IEEE Trans. Serv. Comput., vol. 5, 2012.

[10] A. Dey, A. Fekete, R. Nambiar, and U. Rohm, “YCSB+T:
Benchmarking web-scale transactional databases,” Proc. - Int. Conf.
Data Eng., 2014.

Figure 2. Interaction of System’s Components

	I. Introduction
	II. nosql database systems and research issues
	III. related work
	IV. the proposed approach: Theoretical Model
	V. system architecture
	VI. Transaction protocol
	VII. proof of concept
	A. Evaluation Benchmark
	B. Experimental Setup and Results

	VIII. conclusion
	References

