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Abstract 

This paper examines the processing of height and place contrasts in vowels in words 

and pseudowords, using mismatch negativity (MMN) to determine firstly whether 

asymmetries resulting from underlying representations found in the processing of 

vowels in isolation will remain in a word context and secondly whether there is any 

difference in the way these phonological differences manifest in pseudowords. The 

stimuli are two sets of English ablaut verbs and corresponding pseudowords 

(sit~sat/*sif~*saf and get~got/*gef~*gof) contrasting in vowel height ([HIGH] vs. 

[LOW]) and place of articulation ([CORONAL] vs. [DORSAL]). In line with previous 

research, the results show a processing asymmetry for place of articulation in both 

words and nonwords, while different vowel heights result in symmetrical MMN 

patterns. These findings confirm that an underspecification account provides the best 

explanation for featural processing and that phonological information is independent of 

lexical status. 

 

Keywords:  speech processing; lexical representation; featural underspecification; 
mismatch negativity; phonology 
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1. Introduction 

 

In the languages of the world, we find both symmetries and asymmetries. Although it 

may seem counterintuitive at first glance, asymmetries are not only common but seem 

to constitute a key mechanism in language processing. Evidence for asymmetrical 

patterns in phonological processing has been mounting and studies range from earlier 

work using gating paradigms (Lahiri & Marslen-Wilson, 1992; Nix et al., 1993; 

Marslen-Wilson et al., 1995) to more recent psycholinguistic and neurophysiological 

studies (Eulitz & Lahiri, 2004; Wheeldon & Waksler, 2004; Friedrich et al., 2006, 2008; 

Cornell et al., 2011, 2013; Roberts et al., 2012, 2014; Kotzor et al., 2016).  

The principle underlying these asymmetrical patterns is assumed to be one of economy. 

Spoken language comprehension is a complex task as the input is highly variable and 

the perceptual environment may contain a large number of possible options. For 

example, Turkish listeners need to distinguish four high vowels [i y ɯ u], German 

listeners three [i y u] and English only two [i u]. In an asymmetric system, certain 

sounds are easier to process and correctly detect since some features may be fully 

specified in the mental representation while others may be underspecified. As a 

consequence, the perceptual system has fewer decisions to make in certain situations, 

thus reducing the available options and increasing the detection rate. The most crucial 

prerequisite for such a processing strategy is a system which assumes different  amounts 

of stored information to identify particular speech sounds or phonemes made up of a 

combination of features. To enable this differentiation, it is necessary to assume that 

not all features are stored.  

One model assuming asymmetric representation is the Featurally Underspecified 

Lexicon (FUL) Model (Lahiri & Reetz, 2002, 2010; Lahiri, 2012), which proposes that 

not all features present in the surface representation of a sound (speech signal) are 

necessarily stored in its lexical representation. Unlike other models which propose rich 

storage of representations (such as exemplar models: Johnson, 1997; Goldinger, 1998; 

Pierrehumbert, 2002), FUL argues for an abstract representation. There is a select 

number of features in FUL which have been shown to be underspecified – most notably 

the place feature [CORONAL] (Eulitz & Lahiri, 2004; Friedrich et al., 2006, 2008; 

Cornell et al., 2011; Roberts et al., 2012, 2014) and the consonantal manner feature 
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[PLOSIVE] (Cornell et al., 2013). The consequence of asymmetry in representation is 

asymmetry in processing.  

The FUL approach allows for a degree of flexibility in speech processing which is 

necessary to deal with, for example, predictable place assimilations such as hand bag 

being pronounced as ha[mb]ag, where the [LABIAL] feature of [b] in bag is transferred 

onto the preceding nasal [n] of hand turning it into [m]. The reverse assimilation would 

be unusual: in lamb dish, the final [m] of lamb remains unaffected by the initial sound 

[d] of dish and would not change into *la[nd]ish. Thus, phonetic [m] activates /m/ and 

/n/ but phonetic [n] activates only /n/. 

In FUL, the assumption is that although /m/ and /n/ are both specified as [NASAL], /m/ 

is specified for its place of articulation [LABIAL] while /n/ is unspecified for [CORONAL]. 

The asymmetry in processing comes about in the following way. The [m] in ha[mb]ag 

can activate the unspecified /n/ of hand (no-mismatch). Thus, both ha[m] and ha[n] are 

accepted by the representation hand.  In contrast, if the [m] in lamb is mispronounced 

as [n], the output *la[n] would mismatch with the fully specified [LABIAL] /m/. 

Compared to mismatch cases where the features in question are both fully specified and 

thus do not tolerate a sound with a different feature, no-mismatch conditions have been 

shown to result in faster reaction times in behavioural experiments (Bölte & Coenen, 

2000; Roberts et al., 2012, 2014) and attenuated MMN responses in neurophysiological 

studies (cf. Eulitz & Lahiri, 2004; Cornell et al., 2011, 2013; Roberts et al., 2012). 

The same logic can be applied to vowels; earlier MMN studies showed that the German 

vowels [o ø e] resulted in asymmetric processing due to differences in the feature 

specifications in their representations (Eulitz & Lahiri, 2004). Most of the research on 

processing asymmetries, however, has focused on isolated vowel and consonantal 

phonemes or on pseudoword syllables (Cornell et al., 2013). The assumption has been 

that phonemes have representations independent of lexical entries for words. There are, 

of course, words consisting of a single vowel in many languages (cf. Bengali [o] 'he/she', 

French et [ɛ] 'and', Italian o [ɔ] 'or', but other languages, such as English, for instance, 

only allow diphthongs as single-phoneme words, e.g. I [aɪ] and Oh? [oʊ].  

In this paper, we examine the notion of asymmetric feature representation in vowels in 

both real words and pseudowords to determine whether lexical status affects the 

representation and processing of the individual phonemes. We examine the vowel 
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height contrast in the ablaut pair sit~sat (and the corresponding pseudoword pair 

*sif~*saf) where both vowels are fully specified for height, and the place of articulation 

contrast in get~got (and *gef~*gof) where /ɛ/, as it is [CORONAL], is underspecified for 

place. All real word stimuli comprise the present and past tense of highly frequent 

English verbs and the pseudowords are matched in structure as closely as possible. The 

questions we address are the following: (i) are feature representations for individual 

phonemes the same as those in existing words and in pseudowords?; (ii) do we see 

similar asymmetries and symmetries in processing for identical features in words vs. 

pseudowords? We examine these potential asymmetries using event-related potentials 

(ERPs), specifically mismatch negativity (MMN) to investigate the featural differences. 

It has been argued that pseudowords, as they do not have a stored representation and 

therefore are processed differently (Shtyrov et al., 2010) show different MMN patterns. 

In what follows, we first provide an overview of the relevant MMN literature and focus 

on previous evidence for processing asymmetries in vowels. 

While vowel height, which is assumed to be fully specified (cf. Lahiri & Reetz, 2002, 

2010; Lahiri, 2012), has not yet been examined, other fully specified contrasts, such as 

manner features [NASAL] /n/ and [STRIDENT] /z/ have resulted in symmetrical mismatch. 

In a study comparing medial consonants in nonwords in German (e.g. *eni~*ezi 

*edi~*eni), Cornell et al., (2013) found symmetrical mismatches for those comparisons 

which involved [NASAL] (*eni) and [STRIDENT] (*ezi) features (both features specified). 

However, those comparisons involving [PLOSIVE] (underspecified) and [NASAL] 

(specified) (*edi~*eni) showed the asymmetry typically resulting from featural 

underspecification as outlined above, with an attenuated MMN response when the 

underspecified item served as the standard. 

1.1 Mismatch negativity (MMN) 

The MMN, an ERP component mainly triggered by automatic pre-attentive change 

detection in auditory processing (cf. Näätänen & Picton, 1987; Näätänen, 2001; 

Näätänen et al., 2007 for a review), has previously shown sensitivity to differences on 

the level of phonological representation and has thus been a key component in 

establishing processing asymmetries such as those discussed above (cf. Eulitz & Lahiri, 

2004; Cornell et al., 2011; 2013; Roberts et al., 2013; de Jonge & Boersma, 2015; 

Kotzor et al., 2017; Højlund et al. 2019). 
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Differences in the MMN response have been demonstrated for several linguistic 

variables such as lexical status (i.e. the presence or absence of a lexical entry) with 

several studies reporting a larger (and sometimes earlier) MMN response for existing 

words (cf. among others Pulvermüller et al., 2001, 2004; Shtyrov & Pulvermüller, 

2002; Pulvermüller & Shtyrov, 2006; Näätänen et al., 2007; Shtyrov et al., 2010; 

Bakker et al., 2013), place of articulation (Eulitz & Lahiri, 2004; Cornell et al., 2011) 

and manner of articulation (Cornell et al., 2013).  

The lexical MMN (Shtyrov et al., 2010), in which lexical items elicit a larger MMN 

response than pseudowords, is based on the activation of a dense neural network in the 

case of the real word while pseudowords do not activate a stored representation but 

merely an acoustic neural network in addition to their phonemic information (cf. 

Pulvermüller et al., 2012, 2014). A ‘syntactic MMN’ response has also previously been 

demonstrated for morphologically illegal stimuli (e.g. flied) or ungrammatical 

combinations of items (e.g. incorrect determiner + noun phrase as in German die (fem.) 

Apfel (masc.) ‘the apple’) which has been proposed to be an indicator of 

morphosyntactic parsing (cf. among others Pulvermüller & Shtyrov, 2003; Hasting et 

al., 2007; Bakker et al., 2013) with ungrammatical sequences eliciting larger MMN 

responses. In addition, a priming effect has been observed which accounts for the 

reduction in the MMN when a deviant is presented after a morphologically related 

standard (cf. Pulvermüller & Shtyrov, 2003; Bakker et al., 2013).  

As crucial acoustic information is already being processed in the early 200ms time 

window of speech processing (cf. Marslen-Wilson, 1973; Marslen-Wilson & Welsh, 

1978; Rastle et al., 2000; Mohr & Pulvermüller, 2002), it is thus clear that the MMN, 

as an early component, is a useful tool to investigate the nature of the information which 

affects processing at this early stage. In addition, the MMN is not susceptible to 

attentional, task-related or strategic biases (Pulvermüller & Shtyrov, 2006: 51) and 

allows for precise control of stimuli to ensure minimal variation.  
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1.2. Previous evidence for processing asymmetries in vowels 

Evidence for processing asymmetries has been mounting over the last decade and 

studies employing several different methodologies have provided support for the 

underspecification of both [PLOSIVE] and [CORONAL]. Since this paper is concerned 

with the difference between place and height features in vowels, only the evidence for 

underspecification of place of articulation will be discussed in detail.  

In an MMN study, Eulitz and Lahiri (2004) compared the German vowels [e], [o] and 

[ø] in a standard oddball paradigm. In the underlying representations of these vowels, 

[e] and [ø] are underspecified for place as they are [CORONAL] while [o] is specified for 

[DORSAL] (cf. Table 1). As underspecified features are extracted from the speech signal 

but are not present in the underlying representation, the predicted MMN effect depends 

on whether a given stimulus is presented as a deviant or a standard. The assumption is 

that the frequently-occurring standard causes the underlying representation of the 

expected vowel to be pre-activated, and a mismatch occurs when the appearance of a 

deviant causes the listener to extract features from the incoming signal that may conflict 

with this underlying representation. Thus, based on FUL, Eulitz and Lahiri (2004) made 

the following predictions: both an [e] deviant in a context of an [ø] standard and vice 

versa should result in a no-mismatch response since both are underspecified for place 

and thus, even though [CORONAL] is extracted from the signal of the deviant, there is 

nothing to match it against in the underlying representation activated by the standard. 

In this case, MMN responses of equivalent amplitude are predicted regardless of which 

is the standard. In the case of [o] and [ø], however, a difference in MMN amplitude is 

expected depending on which of the two vowels is presented as the deviant. An [o] 

deviant in the context of [ø] would still be considered a no-mismatch situation as the 

standard ([ø]) is underspecified for place and thus the extracted [DORSAL] place feature 

does not mismatch. In the reverse case, however, the underlying representation of the 

[DORSAL] standard mismatches with the incoming [CORONAL] place feature extracted 

from the [ø] deviant.  
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Table 1 Feature specifications and asymmetries for German vowels 

 Surface  
representation 

 Underlying  
representation 

Vowel Place  Place 
o [DORSAL] [LABIAL] match [DORSAL] [LABIAL] 
ø [CORONAL] [LABIAL] no-mismatch [  —  ] [LABIAL] 
e [CORONAL] no-mismatch [  —  ]  [  —  ] 

 

Cornell et al. (2011) conducted an MMN study using the same vowels as Eulitz and 

Lahiri 2004 but embedded in both pseudowords and real words in German. Their results 

replicated the findings of Eulitz and Lahiri 2004 and showed the same processing 

asymmetry where an identical acoustic difference between standard and deviant elicited 

MMNs of different amplitudes depending on which of the stimuli was underspecified. 

This, again, supports coronal underspecification and highlights the MMN as a reliable 

detector of phonologically-based processing asymmetries.   

Processing asymmetries resulting from underspecified representations have also been 

found in vowels by de Jonge and Boersma (2015) in an MMN study investigating vowel 

height as well as place in the French vowels [y u ø o]. Their findings provide additional 

support for coronal underspecification where the change from a coronal standard to a 

dorsal or labial deviant elicited smaller MMN responses than that from a dorsal/labial 

standard to a coronal deviant. In terms of vowel height, de Jonge and Boersma (2015) 

found that French high-mid vowels are underspecified for vowel height and thus a 

similar asymmetric pattern is observed, with larger MMN responses for mid-high 

deviants in the context of high standards than in the reverse condition.  

Speech discrimination work by Polka & Bohn (2003, 2011) followed by Masapollo, 

Polka and Ménard (2017) suggests that vowel perception is asymmetric with respect to 

the concentration of acoustic energy. They propose that when the adjacent formants (F1 

and F2 in particular) of a vowel are closer in frequency, these vowels are considered 

more 'focal' (Polka & Bohn, 2003, 2011). In their experiments, listeners found it easier 

to discriminate between two vowels when the change was from a more focal to a more 

peripheral vowel. Under this description it is easier to perceive a change from [ɛ] to [i] 

than from [i] to [ɛ]. Such asymmetries are driven purely by the information, and the 

concentration of energy, in the acoustic space rather than any phonological 

representational differences. While these studies provide no direct comparisons of the 
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vowel pairs used in the present study, this view will be taken into account in our 

predictions presented below. 

1.3 Predictions 

The present study contrasts vowels with different featural specifications in a standard 

oddball paradigm. The target vowels are presented in two sets of English ablaut (strong) 

verbs: sit~sat and get~got. Thus, the same morpheme is used in the competing pairs. In 

the first pair, sit~sat, the FUL model would predict symmetry as both vowels share the 

same place of articulation ([CORONAL]) and while they differ in height, both [HIGH] and 

[LOW] are specified in the lexicon (see 2.1 for feature details). As indicated above, the 

MMN response can be affected by a number of factors and here we lay out our 

predictions for the most pertinent ones: featural differences, morphological relatedness 

and lexical status. 

In terms of the phonological predictions generated by the differences in specification 

of the features, there are two sets of predictions: one based on FUL (or any account 

assuming featural underspecification) and one based on models which assume full 

specification. If we assume a full-specification account (cf. for example Bybee, 2001; 

Gaskell and Marslen-Wilson, 1996, 1998; Johnson, 1997; Gaskell, 2003) with 

equipollent features for both place and height, the data should show MMN responses 

of similar amplitude and latency for all combinations of standards and deviants in our 

stimulus set as, if all features are fully specified, standards and deviants will always 

mismatch to the same degree.  

An underspecification account, however, while predicting the same symmetrical 

pattern for sit~sat which differ in vowel height, would make asymmetric predictions 

for get~got. If get is heard as the standard and got as the deviant, we would expect an 

attenuated MMN response since, while the incoming /ɔ/ is not a match for the 

underspecified /ɛ/, it does not result in a mismatch. In the opposite case, with got as 

standard and get as deviant, [CORONAL] is extracted from the acoustic signal and will 

mismatch with the [LABIAL] feature of the standard and we would expect an MMN of 

similar magnitude as that elicited by sit~sat.  

Although it is difficult to translate the discrimination evidence into predictions here, 

employing the Natural Referent Vowel framework (NRV; Polka & Bohn, 2011), we 



 10 

could render our standard/deviant distribution in terms of the referent vowels in their 

discrimination tasks. Thus, given the F1/F2 acoustic measures of our vowels, an NRV 

account would predict that [æ] to [ɪ] would be easier to discriminate than the reverse, 

while both an underspecification account and a full specification account would expect 

a symmetric pattern for [æ] vs. [ɪ]. The main acoustic difference between [ɛ] and [ɔ] is 

in F2, with [ɛ] displaying a larger difference between F1 and F2. Consequently, we 

would expect a change from [ɔ] to [ɛ] to be easier to discriminate than one from [ɛ] to 

[ɔ], which would fit with an underspecification account. We have summarised the 

predictions based on these three accounts in Table 2 below, which shows that the three 

accounts predict different patterns of MMN responses and thus our data will be able to 

lend support to only one of these theories.  

Table 2  Phonological predictions for full specification & underspecification accounts 
and NRV framework 

 /ɪ/[æ]* /æ/[ɪ] /ɛ/[ɔ] /ɔ/[ɛ] 
full specification 
account 

high MMN high MMN high MMN high MMN 
symmetry symmetry 

underspecification 
account 

high MMN high MMN lower/no MMN high MMN 
symmetry asymmetry 

NRV framework higher MMN lower MMN lower MMN higher MMN 
asymmetry asymmetry 

*/STD/[DEV] 

In terms of their morphological status, both real word pairs in this study are irregular 

but differ by the same magnitude as both are ablaut verbs with a change in the vowel. 

Thus, in terms of the predictions for the present study, any morphologically driven 

effects should be similar for both pairs as they display similar patterns of (ir)regularity. 

Both are highly frequent in the language and the only difference between the patterns 

is the magnitude of the phonological change in terms of the number of features which 

differ between the simple and complex forms.   

The last factor to be addressed here is that of lexical status. As discussed above, word 

stimuli which activate a stored representation have been shown to elicit earlier and 

larger MMN responses (Shtyrov et al., 2010, Bakker et al., 2013) and we would expect 

to see this effect in the form of a difference between the word and pseudoword stimuli. 

However, we are not primarily interested in word/pseudoword differences as such, but 

in the question of whether the predicted phonological processing (a)symmetry in 
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vowels will be reflected in both word and pseudoword stimuli or whether it is 

contingent on or affected by lexical status (and therefore the presence of an underlying 

lexical representation of the whole word rather than the individual sound). Therefore, 

our main aim is not to compare word and pseudoword stimuli directly in our analyses. 

There may, however, be a difference in the N400 component since we may see a 

priming-induced reduction in N400 in the related real-word pairs which we do not 

expect to see in the nonword pairs.  

To summarise, based on the phonological differences proposed by an 

underspecification account, we predict an asymmetry in the difference in amplitude for 

get~got and the corresponding nonword pair *gef~*gof depending on which item is the 

standard/deviant, while sit~sat and its matched nonword pair *sif~*saf should result in 

a symmetrical pattern regardless of which member of the pair is the standard/deviant.  

 

2. Methods and analysis 

 

2.1 Stimuli 

The stimulus set for this study consisted of four words and four pseudowords which 

only differed from the real words in the final consonant: real words sit~sat and get~got 

and pseudowords *sif~*saf and *gef~*gof.  

Table 3 Feature specifications for the four vowels used in the experiment 

  Surface  
representation 

Underlying  
representation 

 Vowel Place Height Place Height 

Experiment 1 ɪ [CORONAL] [HIGH] [      ] [HIGH] 
æ [CORONAL] [LOW] [      ] [LOW] 

Experiment 2 ɛ [CORONAL] variable [      ] [      ] 
ɔ [DORSAL] variable [DORSAL] [      ] 

 
The mid vowels [ɛ ɔ] are not specified for height and the phonetic context dictates 

which features the perceptual system extracts. See Figure 1 for average F1 and F2 

values across the four tokens for each of the stimuli.  
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Figure 1 Average formant frequencies (F1/F2) of all four tokens for /ɪ/, /æ/, /ɛ/ and /ɔ/  

2.1.1 Stimulus recording 

The stimuli were recorded by a female native speaker of Southern British English in a 

sound-attenuated room using a professional quality USB microphone (Røde NT-USB) 

at a sampling rate of 44.1 kHz. The words were presented in a list of unrelated words 

in a randomised order. The speaker provided eight tokens of each word. 

2.1.2 Stimulus construction 

We extracted and manipulated the stimuli using the speech analysis software PRAAT 

(Boersma & Weenink, 2012). As the aim was to keep natural variation in the vowels, 

we cut four tokens of each vowel from the original recordings. For the initial and final 

consonants, we chose one token for each of the four consonants /g, s, t, f/ to ensure they 

were identical across all stimuli. All individual sounds were taken from recordings of 

real words rather than pseudowords. The initial /g/ for get~got and *gef~gof was 

recorded in the context of a schwa (in gorilla) since cross-splicing any of the other 

tokens of /g/ from the test stimuli resulted in anomalous auditory effects due to the 

difference in place of articulation depending on the following vowel. All individual 

sounds were normalised before cross-splicing to ensure consistent volume.  

The individual sounds were cross-spliced using PRAAT to create four tokens of each 

of the eight stimuli. We then adjusted the duration of the vowel by cutting individual, 

non-consecutive glottal pulses to ensure all tokens occurring within one block of 

recording were of the same duration (see Table 4 for duration values). Finally, to ensure 

the naturalness of the stimuli, tokens were rated by five native speakers of Southern 

British English who were asked to listen to the stimuli and comment on any they 
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thought sounded unusual. The final set of tokens consisted only of those which were 

deemed to sound natural.   

Table 4 Durations (ms) for all stimuli1  

 Block Stimulus Vowel Token 1 Token 2 Token 3 Token 4 

Experiment 
1 

1 & 2 sit  /ɪ/ 550 551 549 550 
sat  /æ/ 550 550 550 550 

3 & 4 *sif  /ɪ/ 624 625 623 624 
*saf  /æ/ 624 624 625 622 

Experiment 
2 

1 & 2 get  /ɛ/ 379 378 378 379 
got /ɔ/ 379 379 378 379 

3 & 4 *gef  /ɛ/ 453 453 453 453 
*gof /ɔ/ 453 454 453 454 

  

2.2 Experimental design 

The study was constructed using a standard oddball paradigm with a standard-to-

deviant ratio of 85%/15% in blocks of 700 trials. The ISI was 600ms and stimuli were 

pseudo-randomised. Each of the eight stimuli was used once as a standard and once as 

a deviant, resulting in eight blocks with an average duration of fourteen minutes.  

2.3 Participants 

We recorded data from 24 native speakers of Southern British English who were all 

students at the University of Oxford (average age: 24.2). They did not report any 

hearing deficits or neurological conditions and all were right-handed (assessed using 

the Edinburgh Handedness questionnaire; Oldfield 1971). Participants were 

compensated for their participation.  

2.4 Procedure and recording  

Both experiments were conducted with the same participants. Due to the number and 

duration of blocks, data was acquired in two separate recording sessions. The order of 

blocks over the two sessions was randomised across both experiments with participants 

hearing both /g/ and /s/ blocks in each session.   

Participants were seated in an electrically shielded, sound-attenuated EEG booth at a 

comfortable distance from the screen. They first performed an electro-occulogram 

 
1 Stimulus duration was closely matched within blocks but not across blocks as these stimuli would never 

be compared directly.  
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(EOG) calibration task before the start of the experimental task. During the main task, 

participants watched a nature documentary without sound while the stimuli were 

presented through headphones (Sennheiser PX200). The volume of the auditory stimuli 

was kept constant across all participants. Participants were instructed to pay no 

particular attention to the auditory stimuli. No recording session exceeded 90 minutes 

(including set-up) and breaks were scheduled every 20 minutes during the recording 

(after every two blocks).    

2.5 Data acquisition 

A BiosemiActiveTwo amplifier was used to record EEG from 64 sintered Ag/AgCl pin 

electrodes arranged on the scalp in a 10-10 montage. The recording was online-

referenced to the mastoids. Four facial electrodes (IO1, IO2, LO1, LO2) were used to 

measure EOG activity. All electrode offsets (comparable to impedance) were kept 

below 20mV and signals were digitised at a sampling rate of 2048Hz. 

2.6. ERP analysis  

The acoustic difference between the initial consonants in the two pairs (/g/ vs. /s/) may 

result in latency differences in ERPs elicited by the two sets of stimuli and this was 

addressed by time-locking the analysis epoch to the beginning of the vowel. There was 

also no direct comparison between the two stimulus sets but a comparison within paired 

blocks with identical stimuli (both as standards and deviants).  

The continuous EEG data was filtered with a .03Hz High-pass and a 30Hz Low-pass 

filter. Pre-experimental EOG data was used to capture characteristic scalp topographies 

of eye artifacts, which were used in an EOG correction algorithm (Ille, Berg & Scherg, 

2002) applied across the experimental data. In order to remove other sources of non-

EEG noise, two procedures were applied. All data was visually inspected and any 

epochs containing noisy data or badly corrected eye artifacts were rejected by hand. In 

addition to this, trials at which at least one electrode exceeded an amplitude of 100 mV 

or a gradient of 75 mV/division were also rejected in a semi-automatic procedure. Any 

participant whose data showed too many artifacts (>20% of trials rejected in a single 

condition) was excluded from further analysis. EEG epochs were averaged time-locked 

to the onset of the vowel (deviance point) with a pre-stimulus baseline period of 100ms 

and a window of 600ms from vowel onset.  
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The time window for the MMN response was determined by averaging the latency of 

the maximum amplitude (averaged across all participants) at Fz in each condition per 

experiment and then selecting a window of 60ms centred around this latency. The 

window for the extraction of mean amplitude for the MMN in Experiment 1 (/s/-

stimuli) was 155-215ms while that for Experiment 2 (/g/-stimuli) was slightly earlier 

from 115-175ms. The ERP data was analysed using a linear mixed effects (LME) model 

(for a discussion, see for example Newman et al. 2012) with Subjects and Electrode as 

random effects (intercepts) and Condition as a fixed effect.  

 

3. Results 

3.1 Experiment 1 

The linear mixed model shows a significant main effect of Condition overall (F(11, 

827) = 107.04, p < .001) and individual planned comparisons within each block show 

significant MMN responses for all deviant stimuli compared to the standards (see Table 

5 for a summary of results). There is no difference in the MMN responses based on the 

role of each item (i.e. whether items were presented as standard or deviant). In both 

word and nonword pairs, [æ] deviants in the context of /ɪ/ standards (sit~sat (t(827) = 

2.56, p = .010; Est: 0.509; SE: 0.199) and *sif~*saf (t(827) = 4.67, p < .001; Est: 0.929; 

SE: 0.199)) resulted in significant MMN responses, as did [ɪ] deviants in the context of 

/æ/ standards (sat~sit (t(827) = 6.20, p < .001; Est: 1.231; SE: 0.199) and *saf~*sif 

(t(827) = 7.44, p < .001; Est: 1.478; SE: 0.199)). This pattern indicates symmetrical 

mismatches between the featural information of these items, in this case the features 

[LOW] and [HIGH] which are both fully specified.  

Table 5 T-test results for all conditions in Experiments 1 & 2 

 Block Std Amp Dev Amp t-test  

Exp 1 
1 & 2 

sit /ɪ/ -3.11µV sat [æ]   -3.62µV t(827) = 2.56, p=.010 * 
sat /æ/ -3.02µV sit [ɪ] -4.26µV t(827) = 6.20, p<.001 ** 

3 & 4 
*sif /ɪ/ -3.59µV *saf [æ] -4.51µV t(827) = 4.67, p<.001 ** 
*saf /æ/ -3.28µV *sif [ɪ] -4.76µV t(827) = 7.44, p<.001 ** 

Exp 2 
1 & 2 

get /ɛ/ 0.05µV got [ɔ] 0.35µV t(827) = 1.67, p=.096 ns 
got /ɔ/ 0.94µV get [ɛ] 0.13µV t(827) = -4.55, p<.001 ** 

3 & 4 
*gef /ɛ/ -0.11µV *gof [ɔ] -0.05µV t(827) = 0.35, p=.727 ns 
*gof /ɔ/ 0.31µV *gef [ɛ] -0.38µV t(827) = -3.85, p<.001 ** 
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/ ɪ/ [æ ]

/ ɛ / [ɔ ] / ɔ / [ɛ ]

/ ɪ/ [æ ] / æ / [ɪ]

sit – s at

[HI G H ][ L O W]

MI S M A T C H

[L O W][ HI G H]

MI S M A T C H

* sif – * s af
/ æ / [ɪ]
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/ ɛ / [ɔ ] / ɔ / [ɛ ]
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3. 2 E x p eri m e nt 2  

I n E x p eri m e nt 2, t h er e is a si g nifi c a nt diff er e n c e b et w e e n t h e r ol e of t h e t w o sti m uli 

(st a n d ar d or d e vi a nt) i n b ot h w or d a n d n o nw or d p airs. T h er e is a m ai n eff e ct of 

C o n diti o n (F( 1 1, 8 2 7) = 1 0. 4 0, p < . 0 0 1)  a n d pl a n n e d c o m p aris o ns s h o w a diff er e n c e 

b et w e e n t h os e bl o c ks w h er e t h e st a n d ar d c o nt ai ns t h e v o w el /ɔ / a n d t h os e w hi c h h a v e 

it e ms c o nt ai ni n g /ɛ / as t h e st a n d ar d. 

  

 

 

 

 

 

 

 

 

Fi g u r e 2   T o p o gr a p hi c m a ps f or all c o n dit io ns i n E x p eri m e nt 1 a n d 2 at Fz at 
m a xi m u m M M N a m plit u d e  

I n t h e p airs w h er e g ot  or * g of  is pr es e nt e d as t h e st a n d ar d, t h e p att er n is t h e s a m e as 

t h at s h o w n i n E x p eri m e nt 1. B ot h t h e w or d a n d n o nw or d p air, i. e. g ot ~ g et  (t( 8 2 7) = -

4. 5 5, p < . 0 0 1; Est: -0. 8 1 7; S E = 0. 1 7 9 6 )  a n d * g of ~ * g ef  (t( 8 2 7) = -3. 8 5, p < . 0 0 1; Est 

-0. 6 9 1; S E = 0. 1 7 9 6)  s h o w si g nifi c a nt M M N r es p o ns es f or t h e d e vi a nt c o m p ar e d t o t h e 

st a n d ar d. H o w e v er, t h e r es ults of t h e t w o bl o c ks w h er e t h e st a n d ar d is u n d ers p e cifi e d 

f or pl a c e, i. e. t h os e wit h a n /ɛ / as st a n d ar d a n d a n [ɔ ] as d e vi a nt, d o n ot s h o w a 

si g nifi c a nt M M N r es p o ns e f or t h e d e vi a nt c o m p ar e d t o t h e st a n d ar d. T his is t h e c as e 

f or b ot h t h e w or d p air g et ~ g ot  (t( 8 2 7) = 1. 6 7, p = . 0 9 6; Est 0. 2 9 9 7; S E = 0. 1 7 9 6) a n d 

t h e n o nw or d p air * g ef ~ * g of  (t( 8 27) = 0. 3 5, p =. 7 2 7; Est 0. 0 6 3; S E = 0. 1 7 9 6).  T his 

i n di c at es t h at t h e d e vi a nt [ɔ ] d o es n ot mis m at c h wit h t h e st or e d r e pr es e nt ati o n of t h e 

st a n d ar d /ɛ / si n c e /ɛ / is u n d ers p e cifi e d f or pl a c e a n d t h us t h e [D O R S A L ] pl a c e f e at ur e i n 

/ɛ / is a c c e pt e d. T h e diff er e n c es i n t h e t o p o gr a p hi c m a ps at F z  at m a xi m u m M M N 

a m plit u d e f or all e x p eri m e nt al bl o c ks ar e s h o w n i n Fi g ur e 2 a n d  t h e i n di vi d u al 

w a v ef or ms f or t h e t hr e e el e ctr o d es i n cl u d e d i n t h e a n al ysis ( F z, F C z, C z) p er sti m ul us 

p air c a n b e s e e n i n Fi g ur es 3  a n d 4 ). 
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Figure 3  Experiment 1 grand average waveforms at Fz, FCz and Cz for all blocks; 
negativity is plotted upwards and shaded area indicates the expected time-
window for the MMN component. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Experiment 2 grand average waveforms at Fz, FCz and Cz for all blocks; 
negativity is plotted upwards and shaded area indicates the expected time-
window for the MMN component. 
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4. Concluding Discussion 

In this paper, we present the results of two MMN experiments investigating asymmetric 

processing comparing vowel height and place of articulation differences in English 

vowels, within real words and pseudowords.  We compared MMN responses to two 

sets of ablaut (strong) verbs (sit~sat and get~got) and their corresponding pseudowords 

(*sif~*saf and *gef ~*gof). The vowels /ɪ/ and /æ/ mismatch in height, [HIGH] vs. [LOW], 

while the vowels [ɛ] and [ɔ] differ in place of articulation, [CORONAL] vs. [DORSAL].  

The height features are mutually exclusive and conflict with each other. In contrast, the 

place features are asymmetric in representation and therefore also in processing. The 

vowel [ɛ] is unspecified for place in its representation while [ɔ] is specified for 

[DORSAL].  Thus /ɔ/[ɛ] is a mismatch condition while /ɛ/[ɔ] is an instance of no-mismatch. 

The former is predicted to elicit a larger MMN while the latter may not result in an 

MMN at all. 

Our aim was to establish (i) whether the evidence found for processing asymmetries 

resulting from coronal underspecification in vowels in earlier studies (cf. Eulitz & 

Lahiri 2004), where vowels were presented in isolation, would also hold when the same 

featural combinations are examined within a syllable; and (ii) whether the lexical status 

of the item in which the vowel is embedded has an effect on the processing asymmetry 

previously found for individual vowel pairs where one item is underspecified for place 

of articulation. The real word pairs get~got and sit~sat are all verbs, present and past 

tense of the same root. Thus, there is no difference in meaning and both verbs are very 

frequent and deeply entrenched in the language, having been attested for centuries. The 

pseudowords are minimally different, only replacing the final consonant: *gef~*gof and 

*sif~*saf.  

Our results show that the asymmetry in place of articulation found in isolated vowels 

(Eulitz & Lahiri, 2004) is also found when these vowels are embedded in real words. 

Thus, the MMN for the deviant [ɔ] with respect to the standard /ɛ/ was smaller than that 

for the deviant [ɛ] when the standard was /ɔ/. The assumption was that the place feature 

[CORONAL] is unspecified for /ɛ/ and thus the phonetic feature [DORSAL] extracted from 

the deviant [ɔ] is tolerated (see Table 3). In contrast, the [DORSAL] feature of the 

standard /ɔ/ is specified and thus the extracted [CORONAL] feature information from the 
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deviant [ɛ] mismatches and results in a larger MMN. This also holds for the pseudoword 

pair *gef~*gof which shows an identical pattern. 

The real word pair which differed in vowel height (sit~sat) showed, as predicted, 

symmetrical large MMNs indicating full specification of height and thus conflict. This 

is in line with findings for other fully specified features such as [NASAL] /n/ and 

[STRIDENT] /z/, which also showed symmetrical mismatch (Cornell et al. 2013). Both 

the features [LOW] of /æ/ and [HIGH] of /ɪ/ are fully specified. Thus, the corresponding 

features mismatch with the representation in either combination of standard and deviant. 

Equally large MMNs are observed for /ɪ/[æ] and /æ/[ɪ]. As with the results for /ɛ/ and /ɔ/ 

above, this also holds for the pseudoword pair *sif~*saf.  

As discussed earlier (cf. 1.3), differing proposals of phonological representation (e.g. 

full-specification vs. underspecfication accounts) and phonetic-acoustic processing 

preferences (e.g. NRV framework) led to clear predictions for the MMN pattern in our 

data (cf. Table 2). Models which propose full specification of equipollent features (e.g. 

Bybee, 2001; Gaskell and Marslen-Wilson, 1996, 1998; Johnson, 1997; Gaskell, 2003) 

would predict symmetrically high MMN responses regardless of the distribution of 

standards and deviants. However, this is not borne out by our data. The NRV 

framework (cf. Polka & Bohn, 2011), which is based on the differences in the 

distribution of acoustic energy in vowels, would predict asymmetries in both cases 

since one vowel in each pair displays a greater concentration of acoustic energy in the 

F1/F2 space, which would result in a change from one vowel to another being easier to 

discriminate than the reverse direction. Again, our data only shows an asymmetric 

pattern in the vowel pair which is distinguished by place of articulation (i.e. 

get~got/*gef~*gof) but not for the pair with differences in vowel height 

(sit~sat/*sif~*saf). 

Thus, only an underspecification account (cf. Table 2) can explain our data, as the 

underspecification of [CORONAL] leads to an asymmetric pattern depending on which 

stimulus is presented as standard and which as deviant. This is not the case for the vowel 

height pair where both features are fully specified. In addition, it appears that the 

representation of features for vowels in the mental lexicon is independent of word status 

as the same pattern was observed for word and pseudoword pairs. This seems logical 

since any single vowel has the potential to be an independent word (e.g. Bengali [o] 
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'he/she', French et [ɛ] 'and', Italian o [ɔ] 'or'). This data thus supports accounts such as 

FUL (Lahiri & Reetz, 2002, 2010) which propose featural underspecifications and 

shows feature representations of sounds to be independent of the lexical status of the 

items they are embedded in.  
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