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Abstract 

 During bend sprinting athletes are unable to reach the same maximal speeds 

achieved on the straight. Since over half of the race distance is run on a curved portion 

of track, this has implications for race performance. This thesis aims to understand the 

biomechanical aspects of technique and performance in the acceleration phase of bend 

sprinting. 

 Chapter 3: The accuracy of two reduced marker sets (lower limb and lower 

limb and trunk) were evaluated in comparison to a full-body marker set in the 

calculation of the centre of mass location and associated variables (velocity, 

touchdown distance and turn of centre of mass). Intraclass correlation coefficients 

demonstrated excellent agreement between all marker sets. However, the lower limb 

and trunk model was favoured and recommended for future use due to the marginally 

better agreement observed and the requirement for only four additional markers 

compared with the lower limb model. 

 Chapter 4: The within- and between-day reliability of a lower limb and trunk 

marker set was established during bend sprinting. The results demonstrated that, where 

possible, data for each participant should be collected in the same session to increase 

reliability and reduce the required minimum detectable difference. The minimum 

detectable difference was used in subsequent studies to aid in the interpretation of 

results. 

 Chapter 5: This marker set was used to identify the biomechanical adaptations 

of the lower limb during the acceleration phase of bend sprinting with a 36.5 m radius 

(lane one). Whilst the left limb demonstrated a greater peak hip adduction, peak hip 

internal rotation and peak ankle eversion on the bend compared with the straight, the 

right limb was characterised by an increase in peak hip abduction. In addition, with 

regard to spatio-temporal variables, there was a reduction in left step frequency and 

touchdown distance.  

 Chapter 6: The use of statistical parametric mapping revealed a lower 

propulsive force at 38 - 44 % of stance on the bend than straight. In the left limb, this 

coincided with the use of the oblique axis for push-off at the metatarsophalangeal joint. 

In addition, mediolateral force was higher on the bend than the straight for the majority 

of the stance phase (3-96%).  

 Chapter 7: No changes in extensor moment were observed at the hip and knee 

joints. Large effect sizes suggest a trend towards an increase in left step peak ankle 

plantar flexor moment. This increased plantar flexor moment may be due to a greater 

need for stabilisation as a consequence of non-sagittal plane adaptations of the lower 

limb.  
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Chapter One:  THESIS INTRODUCTION 
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1. Thesis Introduction 

 The rectangular running tracks in Ancient Greek stadia and the nature of the 

‘there and back’ sprint events meant it was neither possible nor required to run on a 

bend. Coinciding with the introduction of the oval running track at Panathinaiko 

Stadium (Athens, 1896), the 400 m has been an ever-present feature at the modern 

Olympic Games. The 200 m event made its first appearance at the Paris 1900 Olympic 

games. Unlike the 100 m race that takes place entirely on the straight, the 200 m and 

400 m races include a portion on the bend that accounts for approximately 58% of the 

total distance covered (Meinel, 2008). The longer distance run on the bend during the 

200 m, and 400 m races suggests that performance on the bend makes a substantial 

contribution to overall race performance. More recently, events such as the Great City 

Games provide a unique opportunity to compare athletes' performance across the same 

distance on the bend and the straight. The current male record for the 200 m straight 

is held by Tyson Gay at 19.41 s (Manchester, 2010) – 0.17 s faster than his personal 

best on the bend (19.58 s, New York, 2009). The difference between first and second 

place at the London (2012) Olympics in the men's 200 m was 0.12 s, demonstrating 

the effect small improvements on the bend can have on race performance. These 

figures provide some limited anecdotal evidence that sprinting on the bend is 

detrimental to overall race time. 

 The mechanics of human and animal motion intrigued scientists long before 

the inception of the modern Olympics. Aristotle’s De Motu Animalium (On the 

movement of animals, Aristotle & Barnes, 1984) is potentially one of the first 

recordings to consider the general principles of motion in animals. From 

approximately 1489, Leonardo da Vinci meticulously observed the human body. The 

process was not just a means to create his famous anatomical drawings, but more to 
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discover, understand and document anatomical structures and their relation to human 

movement. Technological advances have not only confirmed the inconceivable 

accuracy of da Vinci’s work but also aided the progress of human motion analysis.  

 Early studies of human movement were performed using observations from the 

human eye (Weber, 1836). Whilst this was a welcome contribution to the body of 

literature, further progress was halted until the introduction of innovations such as the 

use of several cameras with electro-magnet shutters (Muybridge, 1887) and manually 

advanced, hand-cranked film (Fenn, 1931). Now commonplace, cinematographically 

collected data became fully established in sports performance research after the 

publication of Thomas Cureton’s 1939 guide ‘Elementary Principles and Techniques 

of Cinematographic Analysis as Aids in Athletic Research’ (Cureton Jr, 1939).  

 Motion capture using optoelectronic systems is now considered the gold 

standard (Hood, McBain, Portas, & Spears, 2012). Optoelectronic systems use the 

location of markers placed on bony landmarks to reconstruct three-dimensional (3D) 

body segments and have been utilised to answer a variety of sports-related research 

questions (e.g., Alt, Heinrich, Funken, & Potthast, 2015; Vanrenterghem, Gormley, 

Robinson, & Lees, 2010). More recently, proposals have been put forward for methods 

of markerless motion capture (Choppin & Wheat, 2013; Mündermann, Corazza, & 

Andriacchi, 2006), demonstrating further advances in methods of human motion 

analysis. 

 Current biomechanical sprint research largely concentrates upon on the 

mechanics of straight-line sprinting. Consequently, the biomechanical demands of the 

100 m are well understood (e.g., Girard, Brocherie, Tomazin, Farooq, & Morin, 2016; 

Krell & Stefanyshyn, 2006; Krzysztof & Mero, 2013; Morin et al., 2012). At present, 

the same cannot be said for bend sprinting. Whilst there is a growing body of literature 
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focussed upon the maximal speed phase of bend sprinting (e.g., Alt et al., 2015; 

Churchill, Salo, & Trewartha, 2015), the acceleration phase is yet to receive sufficient 

attention. This is despite the fact that maximal velocity is dependent upon the ability 

to accelerate. Given the importance of bend sprinting in events such as the 200 and 

400 m, further research is required to increase understanding of bend sprinting 

mechanics. Advancing knowledge in this field would enable the development of 

strategies to aid race performance and tactics alongside strength and conditioning 

programmes to prevent injury and improve performance. 

 A recent review of plantaris injuries in elite British track and field athletes over 

four years demonstrated a high incidence of right-sided plantaris injuries in bend 

sprinters (Pollock, Dijkstra, Calder, & Chakraverty, 2016). Of the 19 injuries reported 

in bend sprinters, 15 were right-sided (Pollock et al., 2016). In addition, most athletes 

who presented with a plantaris injury also suffered from Achilles tendinopathy 

(Pollock et al., 2016). Moreover, asymmetric differences in the strength of hindfoot 

invertor and evertor muscle groups in indoor athletes have also been reported 

(Beukeboom, Birmingham, Forwell, & Ohrling, 2000). Therefore, bend sprinting may 

be associated with high injury incidence and muscular strength imbalance. The 

evidence presented regarding injury prevalence in bend sprinting athletes provides a 

rationale for further investigation of lower limb function during bend sprinting, which 

may provide important insights for the development of injury prevention strategies.  
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1.1. Aims and objectives 

 The aim of this programme of research was to understand the biomechanical 

aspects of technique and performance in the acceleration phase of sprinting on the bend 

compared with the straight. 

The objectives were: 

1 Determine the accuracy of a reduced marker set for CoM calculations 

compared with a full-body marker set (Chapter 3)  

2 Determine the within- and between-day reliability of bend sprinting using 3D 

optoelectronic motion capture with a lower limb and trunk marker set (Chapter 

4).  

3 Evaluate the effect of the bend on lower limb kinematic parameters of 

technique and spatio-temporal variables during the acceleration phase (Chapter 

5). 

4 Evaluate the effect of the bend on the kinetic parameters of technique and 

performance during the acceleration phase (Chapter 6). 

5 Evaluate the effect of the bend on joint moments and joint kinetics during the 

acceleration phase (Chapter 7). 
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Chapter Two: LITERATURE REVIEW 
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2. Literature review 

2.1. Research overview 

 A reduction in velocity during bend sprinting has been observed, for example; 

7.70 m/s (straight) to 5.66 m/s (6 m radius, Chang & Kram, 2007); 9.86 m/s (left step, 

straight) to 9.40 m/s (left step, 37.72 m radius, Churchill et al., 2015). Thus it is 

apparent that bend sprinting is detrimental to maximum sprint speed. At the London 

2017 World Championships, the difference between first and second place in the 

women's 200 m final was 0.03 s. Therefore, even small decreases in velocity on the 

bend can have a big impact on overall race performance. Of the studies available that 

have examined bend sprinting, most have been in the form of two-dimensional (2D) 

analyses (Ryan & Harrison, 2003; Stoner & Ben-Sira, 1979). In addition, some 

analyses have relied upon televised footage (Mann & Herman, 1985), which is often 

problematic due to the inability to verify calibration methods and camera quality. 

Finally, for research where to the evaluated radii (e.g., 1-6 m, Chang and Kram, 2007; 

5 m, Smith, Dyson, Hale, and Janaway, 2006) and surfaces (e.g., grass, Smith et al., 

2006) are not representative of those found in bend sprinting with elite athletes, it is 

not possible to apply these results to the athletic population. 

 Mathematical models which have investigated bend sprinting performance 

support the reported reduction in velocity during bend sprinting (e.g., Greene, 1985; 

Usherwood and Wilson, 2006; Ward-Smith and Radford, 2002). Mathematical models 

are typically based on assumptions, such as the constant limb force hypothesis which 

assumes maximum resultant force will be the same in both bend and straight-line 

sprinting (Usherwood & Wilson, 2006). However, empirical research demonstrates 

this might not be entirely valid during bend sprinting, where asymmetrical limb 

function results in a decreased force production during the left step on the bend 
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compared with the straight (Churchill, Trewartha, Bezodis, & Salo, 2016). Recent 

studies have chosen to utilise 3D methods of analysis and findings remain consistent 

regarding the reduction in velocity found on the bend (e.g., Churchill et al., 2015; 

Churchill et al., 2016). This reduction is suggested as a result of asymmetric kinematic 

differences and how these differences consequently affect force production (Alt et al., 

2015; Churchill et al., 2015).  

 The following sub-sections will present an overview of previous 

anti-clockwise bend sprinting research (that is the direction of competitive athletics), 

exploring the available evidence regarding the kinematic and kinetic adaptations that 

occur during maximal and sub-maximal velocity bend sprinting. In addition, since the 

current evidence base surrounding the acceleration phase on the bend is limited, the 

literature review will discuss the biomechanical variables associated with straight-line 

acceleration performance to identify suitable parameters for comparison. Similarly, 

literature investigating joint moments, power and energy during straight-line sprinting 

is reviewed to provide the basis for evaluation during bend sprinting. Finally, issues 

regarding the collection and analysis of data during bend sprinting are addressed to aid 

in the research design. 

2.2. Spatio-temporal parameters of bend sprinting 

 Step length and step frequency determine velocity (Hay, 1993), and thus have 

been prominent measures of evaluation of technique in bend sprinting investigations. 

During bend sprinting, several authors have reported a shorter step length compared 

with the straight at maximum velocity (Chang & Kram, 2007; Churchill et al., 2015; 

Churchill et al., 2016; Ishimura, Tsukada, & Sakurai, 2013; Ryan & Harrison, 2003). 

However, Ryan and Harrison (2003) neglected to differentiate between the left and 

right step. Whilst this may be appropriate at smaller radii (1-6 m) where a significant 
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reduction in both left and right step length has been observed (Chang & Kram, 2007), 

at larger radii (e.g., 37.72 m), the reduction was present in the right step only (Churchill 

et al., 2015; Churchill et al., 2016; Ishimura et al., 2013). Therefore, during bend 

sprinting at a radius representative of competitive athletics performance, combining 

measures for the left and right limbs potentially masks asymmetry between limbs.  

 There are further inconsistencies evident in the reported results with regard to 

step frequency. Whilst both Churchill et al. (2015) and Ishimura et al. (2013) reported 

reductions in left step frequency on the bend compared to the straight, Alt et al. (2015), 

who evaluated a constant sub-maximum velocity between conditions, found step 

length and step frequency were not affected by the bend. These results are supported 

by Chang and Kram (2007), who also observed no change in step frequency whilst 

sprinting at smaller radii. In addition, flight time was found to have a reduction in the 

right step on the bend compared with the straight by Churchill et al. (2015), Churchill 

et al. (2016), and Ishimura et al. (2013), yet Alt et al. (2015) reported no difference. 

These results suggest adaptations such as a decrease in step length and step frequency 

may be velocity specific.  

 The literature with regard to ground contact time appears more consistent. For 

example, Alt et al. (2015) reported a 2.5% increase in left ground contact time on the 

bend (107.5 ms) compared with the straight (104.9 ms). This increase is consistent 

with other research (Chang & Kram, 2007; Churchill et al., 2015; Churchill et al., 

2016; Ishimura & Sakurai, 2010; Ishimura et al., 2013; Ryan & Harrison, 2003; Smith 

et al., 2006). Since the longer left step contact time has been observed within the 

varying protocols used, it is possible that, unlike differences in step length and 

frequency that appear velocity dependent, an increased ground contact time is a bend 

specific modulation. Large effect sizes for left contact time (d = 2.97, bend left: 0.116 



 

Page 26 of 226 

 

s, straight left: 0.105 s and d = 1.39, bend left: 0.112 s, straight left: 0.102 s, Churchill 

et al., 2015, and Ishimura et al., 2013 respectively), add further support to the potential 

importance of left step contact time during bend sprinting. Moreover, an asymmetry 

between limbs was reported during bend sprinting, with the left contact time being 

longer than the right (Alt et al., 2015; Churchill et al., 2015; Churchill et al., 2016; 

Ishimura & Sakurai, 2010). 

  Touchdown distance (defined as the 'horizontal distance from the head of the 

second metatarsal of the stance foot to the centre of mass [CoM]', Hunter, Marshall, & 

McNair, 2004a, p852) has been suggested as having an important relationship with 

200 m sprint performance (Mann & Herman, 1985). Moreover, a shorter touchdown 

distance has also been associated with a shorter ground contact time (Hunter, Marshall, 

& McNair, 2004b) which Weyand, Sandell, Prime, and Bundle (2010) demonstrated 

is associated with faster speeds. Furthermore, Hay (1993) proposed a smaller 

touchdown distance may be related to a decrease in braking force. However, only 

Churchill et al. (2015), Churchill, Trewartha, and Salo (2018) and Ishimura and 

Sakurai (2016) have examined touchdown distance during bend sprinting. Coinciding 

with the longer contact times reported Churchill et al. (2015), touchdown distance was 

greater in the left step compared to the right step on the bend (Churchill et al., 2015; 

Churchill et al., 2018; Ishimura & Sakurai, 2016). These asymmetries further suggest 

the left and right limb may perform different functions during bend sprinting. Churchill 

et al. (2016) turn of CoM results suggests more turning (mean difference: 1.6º) was 

achieved during the left foot contact in comparison to the right. Ishimura and Sakurai 

(2016) somewhat dispute this, with findings that indicate that the running direction 

was changed more during the right step. However, Ishimura and Sakurai (2016) used 
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a different calculation method, and so direct comparisons between the two studies may 

not be appropriate. 

 In summary, bend sprinting has an impact on some performance descriptors. 

There is compelling evidence to suggest that an increased contact time (particularly 

with the left foot) is one of the key adaptations occurring as a consequence of the bend. 

This longer contact time is thought to be associated with a decrease in step frequency, 

which consequently results in decreased velocity on the bend compared with the 

straight (Churchill et al., 2015). However, differences between protocols make 

comparisons between studies problematic and conclusions would benefit from further 

supporting research. 

2.3. Kinematics in bend sprinting  

 Kinematic analysis of technique during bend sprinting is, to some extent, 

contradictory. For example, Alt et al. (2015) evaluated the effect of the bend on three 

joints (hip, knee, and ankle) and observed no changes in the sagittal plane. However, 

findings from Churchill et al. (2015) contradict this. For example, an increase in left 

hip peak extension angle was found when compared with the right hip on the bend 

(Churchill et al., 2015). As such, there is a lack of consistency surrounding what the 

kinematic adaptations during bend sprinting are and in which plane they occur. 

However, the contrasting methods used between studies make comparisons 

problematic. Whilst Alt et al. (2015) used optoelectronic cameras to evaluate 

sub-maximal effort sprinting (left step: 9.26 m/s, right step: 9.39 m/s), Churchill et al. 

(2015) measured maximal velocity (left step: 9.40 m/s, right step: 9.34 m/s) with high-

speed video cameras. The radii evaluated also differed from lane one (36.5 m) by Alt 

et al. (2015) and lane two (37.72 m) by Churchill et al. (2015).  
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 Findings from Alt et al. (2015) regarding the knee joint are currently the only 

published insights to the 3D function of the knee during bend sprinting. An increase 

in internal rotation of the right knee was reported in comparison to the left (mean 

difference 4.0°; Alt et al., 2015). The internal rotation at the right knee was combined 

with a high external rotation of the right ankle (mean difference 4.9°, Alt et al., 2015). 

Alt et al. (2015) concluded the left and right limbs have different functional roles 

during bend sprinting, with the right limb described as implementing a rotational 

strategy with transverse plane modulations which served to control the horizontal 

plane motion. However, Alt et al. (2015) did not present any supporting reliability 

data, and transverse plane variables have previously been reported as having lower 

reliability during running analyses (Alenezi, Herrington, Jones, & Jones, 2016; Ferber, 

McClay Davis, Williams, & Laughton, 2002). Therefore, it is difficult to determine 

whether the observed differences are due to changes in the experimental condition, as 

opposed to errors in the experimental protocol or natural variance in technique. 

 Nevertheless, the findings are consistent regarding a greater left hip adduction 

during sprinting on the bend than straight (Alt, Heinrich, Funken, & Potthast, 2015; 

Churchill, Salo, & Trewartha, 2015). Alt et al. (2015) observed the left limb was 

characterised by an increase in hip adduction and external rotation which, combined 

with an increase in left ankle eversion during bend sprinting, is thought to contribute 

towards a stabilising function during sub-maximal velocity bend sprinting. The 

increase in left ankle eversion of 10.1° reported by Alt et al. (2015) is close to 13° 

which Clarke, Frederick, and Hamill (1984) suggested as excessive and, if reached 

repeatedly, may result in injury. Thus emphasising the importance of understanding 

the kinematic adaptations that occur at the foot and ankle joints as a result of bend 

sprinting. Moreover, Luo and Stefanyshyn (2012a) introduced wedged footwear to 
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align the left foot in a more neutral position during bend sprinting with a 2.5 m radius. 

A 4.3% increase in sprint performance was observed, which coincided with a 4.2° 

reduction in ankle eversion (Luo & Stefanyshyn, 2012a). The non-sagittal plane 

adaptations reported by Alt et al. (2015), alongside the increase in performance when 

such adaptations are alleviated (Luo & Stefanyshyn, 2012a), support the suggestion 

that sprint performance on the bend is limited by a need to change direction and 

stabilise the lower limb in the transverse and frontal planes (Chang & Kram, 2007).  

 In addition, van Ingen Schenau, Bobbert, and Rozendal (1987) described using 

the Geometrical Constraints theory how horizontal velocity is dependent on two 

factors: segmental angular velocity and segment orientation. It is thought that segments 

possess greater horizontal velocity when closest to a vertical orientation and so when 

segments are aligned more vertically, they are better able to contribute to the horizontal 

translation of whole-body CoM (van Ingen Schenau et al., 1987). Therefore, 

geometrical constraints are important when considering the performance of an 

essentially translational task, i.e., to shift a body from one point in space to another. 

Jacobs and van Ingen Schenau (1992, p. 954) described how, during the first steps of 

sprinting, the motor system aims to 'control the transformation of joint angular 

accelerations into an increase in velocity of the body centre of gravity in the horizontal 

direction'. During the stance phase of bend sprinting, the foot remains in a fixed 

position and the shank rotates anteriorly about the foot. Therefore, adaptations such as 

increased hip adduction may result in a deviation away from the more optimal vertical 

segmental alignment and consequently have a detrimental effect on that segments 

ability to contribute to the horizontal translation of the CoM. Further understanding of 

these limiting mechanisms may have important implications for both performance and 

injury prevention strategies. 
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 Chan and Rudins (1994) described how, when the foot is in a fixed position 

(such as the stance phase during sprinting), motion at the foot and ankle passes 

proximally as part of a closed kinematic chain to the tibia, fibula, and femur. Therefore, 

adaptations at the hip and ankle during sprinting are likely a consequence of motion at 

the foot. The metatarsophalangeal joint (MTP) has been highlighted as making an 

important contribution to performance in straight-line sprinting (Krell & Stefanyshyn, 

2006; Smith, Lake, & Lees, 2014). Krell and Stefanyshyn (2006) investigated the 

relationship between 100 m sprint performance and MTP joint function, demonstrating 

that faster male sprinters elicited higher maximal rates of MTP extension. However, it 

is not possible to review the role of the foot in bend sprinting further; since analyses 

using a multi-segment foot model during bend sprinting are currently missing from the 

literature. Therefore, it is not known whether the MTP joint makes a similar 

contribution to performance during bend sprinting to that demonstrated on the straight 

(Krell & Stefanyshyn, 2006; Smith et al., 2014).  

 Bojsen-Moller (1979) described the two possible push-off axes at the foot; 

transverse and oblique and suggested propulsive capacity is superior when push-off 

occurs with the transverse axis (see Figure 6.2.4.1). Churchill et al. (2016) postulated 

that the potential use of different push off axes by the MTP joint might have important 

implications in force production during bend sprinting. The greater inward lead found 

during the left stance phase (Churchill et al., 2015) might result in the left foot contact 

being more lateral, resulting in the use of the less effective oblique axis during the 

push-off phase (Churchill et al., 2016). Therefore, research into the kinematic function 

of the lower limb and multi-segment foot during bend sprinting is warranted. 

 It is evident the biomechanical demands of the lower limb during bend 

sprinting are different to straight-line sprinting (Alt et al., 2015; Churchill et al., 2015; 
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Churchill et al., 2016; Ishimura & Sakurai, 2010; Ishimura & Sakurai, 2016; Ishimura 

et al., 2013). Whilst an insight into the consequential adaptations of the lower limb that 

occur as a result of bend sprinting has been presented, there is a lack of supporting 

literature regarding individual joints, which weakens the strength of conclusions. 

Moreover, information regarding how the limb functions collectively is also required. 

In addition, the function of the multi-segment foot has not yet been investigated. 

 Mann and Herman (1985) proposed that the arms do not have a significant role 

in straight-line sprint performance. Subsequently, upper body kinematics has received 

little attention in the scientific literature. However, it is thought body lateral lean may 

be responsible for inducing the asymmetrical changes in spatio-temporal variables and 

lower limb kinematics previously discussed. Churchill et al. (2015) have included 

analysis of whole-body variables; body sagittal and lateral lean. For body sagittal lean, 

the range of motion was greater on the left step on the bend (57.2°) compared with the 

left step on the straight (51.1°), and the right step on the bend (52.9°). Body sagittal 

lean range of motion is thought to be associated with an increase in contact time during 

straight-line sprinting (Hunter et al., 2004b). Therefore, a greater body sagittal lean 

range of motion may be detrimental to sprint performance.  

 Churchill et al. (2015) also reported body lateral lean at touchdown and 

take-off was greater in both the left and right step on the bend compared with the 

straight. However, this is a necessary consequence of the requirement to produce 

centripetal force in order to maintain a curved path and continuously change direction 

whilst bend sprinting (Hamill, Murphy, & Sussman, 1987). Therefore, whilst the joints 

of the upper body may not substantially influence performance, body lateral lean might 

be a key characteristic of bend sprinting and should be included in future analyses. 
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2.4. Kinetics of maximal speed bend sprinting 

 Kinematic adaptations occurring during bend sprinting, such as changes in 

joint configuration, may alter force production capacity. Force production ability has 

previously been shown to be related to straight-line sprint performance (Weyand et al., 

2010; Weyand, Sternlight, Bellizzi, & Wright, 2000) and therefore highlights the 

importance of gaining an in-depth understanding of the kinetic patterns present in bend 

sprinting.  

 While several authors have considered the effect of the bend on force 

production during sprinting (Chang & Kram, 2007; Luo & Stefanyshyn, 2012a, 2012b; 

Smith et al., 2006), only one has done so in conditions representative of elite athletics 

performance (Churchill et al., 2016). Peak resultant and vertical force was lower for 

the left step on the bend (3.61 ± 0.45 BW) compared with the straight at maximal 

velocity (3.82 ± 0.53 BW; Churchill et al., 2016), a finding that supports previous 

research at smaller radii (Chang & Kram, 2007; Smith et al., 2006). Findings from 

Churchill et al. (2016) are in contrast to results from theoretical modelling that propose 

the 'constant limb hypothesis' (Usherwood & Wilson, 2006). Based upon empirical 

research from Weyand et al. (2000), Usherwood and Wilson (2006) assumed athletes 

produce the same maximum resultant force when sprinting on both the bend and 

straight. However, it was suggested that, during bend sprinting, an increase in ground 

contact time is necessary to achieve the same amount of maximum force as produced 

on the straight (Usherwood & Wilson, 2006). Longer contact times were observed 

empirically for the left step at maximal (Churchill et al., 2015; Churchill et al., 2016) 

and sub-maximal velocities (Alt et al., 2015) during sprinting on the bend compared 

with the straight. 
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 Luo and Stefanyshyn (2012b) evaluated ground reaction forces during a 

control condition and externally weighted sprinting condition (wearing a modified life 

jacket containing a total mass of 12.4 kg) at a 2.5 m radius and the findings further 

dispute the constant limb force concept (Usherwood & Wilson, 2006). Peak left 

resultant ground reaction force increased in the weighted condition compared to the 

control (Luo & Stefanyshyn, 2012b). If, as Usherwood and Wilson (2006) proposed, 

the limb was operating at a maximum limit, the force generated would remain the same 

regardless of condition. Thus, these results provide evidence that maximal force is not 

achieved during bend sprinting at smaller radii. Moreover, although not statistically 

significant, peak resultant force during the right step increased from 3.66 ± 0.29 BW 

on the straight, to 4.19 ± 1.29 BW on the bend (Churchill et al., 2016). The results 

from Ishimura and Sakurai (2016) support this finding, reporting an increase in vertical 

force in the right step compared to the left on the bend when derived using the impulse-

momentum relationship. Again, much like conclusions from Luo and Stefanyshyn 

(2012b), the increase in peak resultant force provides further evidence against the 

constant limb force hypothesis. Luo and Stefanyshyn (2012b) postulated that 

maximum force generation capacity might be reduced by alterations in joint 

configurations. Kinematic adaptations such as an inward lean of the trunk (Churchill 

et al., 2015; Ishimura & Sakurai, 2010), increased hip adduction (Alt et al., 2015; 

Churchill et al., 2015) and increased ankle eversion (Alt et al., 2015) could potentially 

support this claim. Moreover, the possible change in MTP joint axis use for push-off 

would also add strength to this argument. Hence, the importance of the investigation 

of simultaneous kinematic and kinetic data is clear.  

 With regard to mediolateral forces on the bend, some inconsistencies are 

present between findings. For example, although research tends to agree that 
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mediolateral forces are greater on the bend compared with the straight (Chang & Kram, 

2007; Churchill et al., 2016; Smith et al., 2006), findings regarding between limb 

differences are less certain. Churchill et al. (2016) reported the left limb produced 

greater peak inward force (relative to the bend) at maximal velocity (supported by 

Viellehner, Heinrich, Funken, Alt, and Potthast (2016) at sub-maximal velocity), 

whereas others reported greater medial forces in the right limb (Chang & Kram, 2007; 

Smith et al., 2006). Again, it is expected that differences in radii are most likely 

responsible for these differing outcomes. However, further research would be 

beneficial in providing supporting data to strengthen conclusions at radii 

representative of a competitive athletics environment. Running at tight radii possibly 

shares more similarities with an open cutting manoeuvre (Rand & Ohtsuki, 2000), as 

opposed to sprinting at larger radii such as those found on a typical outdoor running 

track. Therefore, more work is required to assess force production during 

representative radii of sprint performance on a bend to increase understanding of the 

role of mediolateral force in sprint performance. 

 In summary, there is strong evidence that force production adaptations occur 

during bend sprinting (Chang & Kram, 2007; Churchill et al., 2016; Viellehner et al., 

2016). However, there are some contradictory results observed amongst studies. In 

particular, the force production function of the left and right lower limbs remains 

unclear. Additionally, although Viellehner et al. (2016) and Luo and Stefanyshyn 

(2012a) provide some insight into the mechanisms responsible for limiting bend 

sprinting performance, their research is not in conditions representative of elite bend 

sprinting. Further research is warranted to simultaneously evaluate kinematic and 

kinetic adaptation that occur during bend sprinting and clarify the asymmetry between 

lower limbs.  
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2.5. Acceleration phase kinematics 

 Existing research has focussed almost wholly on the maximal velocity phase 

of bend sprinting, which does not reflect the full requirements of sporting performance 

in events such as the 200 m. In straight-line sprinting, the acceleration phase 

(approximately 0 - 30 m, Mero, 1988) has been found to make an essential contribution 

to overall sprint performance (Delecluse et al., 1995; Mero, 1988). Yet the impact of 

the bend on the acceleration phase is still largely unknown.  

 Owing to the step-to-step changes in touchdown kinematics observed at 

different stages of acceleration, it is too simplistic to consider acceleration as a single 

phase. As such, authors have sub-divided the acceleration phase of straight-line 

sprinting into two phases: initial acceleration and the transition phase (Delecluse et al., 

1995). The initial acceleration phase is defined as the block phase along with the first 

two steps and the transition phase occurs from the third step to the point at which the 

athlete reaches 80% of their maximum velocity (Delecluse et al., 1995). The 

fundamental principles of straight-line sprinting are governed by Newton's laws of 

motion (Morin et al., 2015), which dictate that acceleration is directly proportional to 

the net force, in the same direction as the net force. Thus, as demonstrated 

experimentally by Rabita et al. (2015), straight-line sprint acceleration is dependent on 

the ability to generate anterior force.  

 However, during bend sprinting at maximal speed, the need to achieve up to 4° 

change of direction during ground contact (Churchill et al., 2016) changes the 

mechanical demands of the task and requires generation of the necessary centripetal 

force (a force that acts on a body moving in a circular path and is directed towards the 

centre around which the body is moving) in order to accelerate towards the centre of 

the curve. Thus, body lateral lean is required to counteract the rotational torque in the 
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mediolateral direction and achieve the change in direction required to stay in lane and 

follow the curve of the athletics track. The magnitude of centripetal force produced is 

proportional to the square of velocity and therefore greater centripetal force is required 

as the athlete reaches faster velocities. 

 There have been attempts to evaluate performance in the acceleration phase of 

bend sprinting. Stoner and Ben-Sira (1979) observed a trend for a slower 

(approximately 0.02 s) time to 12 m on the bend than the straight. However, no 

statistically significant differences were reported. There was a significant reduction in 

step length in both the left and right step (Stoner & Ben-Sira, 1979), coinciding with a 

significant reduction in left step velocity (Stoner & Ben-Sira, 1979). In contrast to the 

strong outcomes reported during the maximal velocity (30 - 40 m) phase (e.g., Alt et 

al., 2015; Churchill et al., 2015; Ryan & Harrison, 2003), Stoner and Ben-Sira (1979) 

did not find a difference in contact time between the bend and the straight. However, 

it is not clear whether this was genuinely unaffected or a consequence of the sampling 

rate (148 Hz) used. For example, Churchill et al. (2015) found a significantly greater 

left contact time compared to the right with a mean difference of 0.007s, whereas a 

sampling rate of 148 Hz provides a time resolution of 0.0068. Hence, a faster sampling 

rate (≥ 200 Hz) with improved time resolution is appropriate for future research to 

ensure differences are detected. Further research is necessary to provide clarity 

surrounding performance descriptors such as contact time, whilst also identifying the 

kinematic mechanisms responsible for such changes and increasing the available 

supporting research for the previously reported differences in step length and step 

frequency (Stoner & Ben-Sira, 1979).  

 Research during straight-line acceleration links rapid hip extension to a greater 

propulsive impulse (Hunter, Marshall, & McNair, 2005). The knowledge that the 
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movement patterns of the hip are altered during maximal bend sprinting (i.e., increased 

adduction, Alt et al., 2015; Churchill et al., 2015) questions whether this high hip 

extension angular velocity is still influential in force production on the bend. During 

bend sprinting, it is possible adaptations such as the greater left step hip adduction and 

body lateral lean observed at maximal speed on the bend (Churchill et al., 2015) restrict 

the ability to produce a high hip extension angular velocity. Therefore, research is 

required to establish whether the kinematic adaptations found at maximal speed on the 

bend are present during the acceleration phase and, if so, what impact these adaptations 

have on the force production capabilities of the lower limbs. Furthermore, these forces 

may impact upon the internal forces of the lower limb, therefore increasing the risk of 

injury. 

2.6. Acceleration phase kinetics 

 The evaluation of kinetic and kinematic functions of the lower limb is crucial 

in furthering understanding of whether acceleration performance is limited by the 

bend. As Clark and Weyand (2015) stated, the forces produced are a consequence of a 

complex segmental arrangement of the limb. Therefore, there could be concomitant 

changes in force production. Moreover, evidence suggests there are differences in 

force production during acceleration and maximal speed straight-line sprinting (Morin 

et al., 2015; Rabita et al., 2015; Yu et al., 2016), and it is not known whether the 

mechanics of acceleration on the bend can be characterised in the same way. 

 Previous research into the kinetics of bend sprinting has shown changes in 

vertical and resultant force during maximal sprinting (Churchill et al., 2016). However, 

straight-line acceleration research suggests that the direction and orientation of force 

may be more important than resultant magnitude (Morin et al., 2012; Morin, Edouard, 

& Samozino, 2011; Rabita et al., 2015). When several sprints were used to reconstruct 
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the entire 40 m acceleration phase, neither resultant ground reaction force or its vertical 

component were correlated to sprint acceleration performance (Rabita et al., 2015). It 

was, however, found that mean anteroposterior force was strongly correlated to 40 m 

maximal speed. These findings (supported by others such as Morin et al., 2011) 

demonstrate the biomechanical demands of acceleration performance are different to 

those associated with maximal velocity, which relies on the production of vertical 

ground reaction force (Morin et al., 2012; Morin et al., 2011; Weyand et al., 2000). 

This view is further reinforced by Morin et al. (2015), which found mean velocity over 

40 m was significantly correlated with net horizontal impulse and propulsive impulse, 

whereas vertical and braking impulse was not. Correlations were only observed in the 

0 - 20 m sections, and not 20 - 40 m, suggesting the production of horizontal impulse 

(and specifically propulsive impulse) in the first 20 m determines acceleration 

performance (Morin et al., 2015).  

 With the findings of Rabita et al. (2015) in mind, it seems the use of resultant 

ground reaction force in evaluating technique in force production during the 

acceleration phase is limited. Researchers have proposed the use of ‘ratio of force’ - a 

concept borrowed from cycling (for additional information, please see: Bini, Hume, 

Croft, Cowan, & Kilding, 2013) as a meaningful measure in the evaluation of 

acceleration performance (Morin et al., 2011; Morin et al., 2012; Rabita et al., 2015). 

This parameter combines both the force applied by the athlete and their ability to apply 

this force effectively in the forward direction. Mean ratio of force was found to be one 

of the mechanical variables most highly correlated with 40 m performance in 

comparison to other variables such as average vertical force and average horizontal 

force (Rabita et al., 2015). However, impulse was not included in this analysis (Rabita 
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et al., 2015), despite propulsive impulse being identified as a key performance 

indicator by Morin et al. (2015).  

 The index of force application technique, which evaluates a runner's ability to 

maintain a high ratio of force at increasing speeds across the acceleration phase (Morin 

et al., 2011), has also been established as being significantly related to 100 m 

performance (Morin et al., 2011). However, owing to the requirement of several force 

plates to acquire measurements over a period of time, index of force application cannot 

be measured with most experimental set-ups, hence limiting its wider applicability to 

most research settings. The concept of orientation of force rather than magnitude may 

have importance in understanding bend sprinting. Although Rabita et al. (2015) 

concluded mediolateral forces were negligible throughout straight-line sprinting, 

Churchill et al. (2016) highlighted their potential importance during maximal velocity 

bend sprinting. The greater mediolateral forces may impact upon the ratio of force and 

thus acceleration performance during bend sprinting. However, owing to the continual 

change in direction that occurs during bend sprinting, an adapted version of ratio of 

force may be required. Research evaluating the force production capacity and ratio of 

force during bend sprinting is therefore required. 

 Whilst the aforementioned studies (Morin et al., 2012; Morin et al., 2011; 

Morin et al., 2015; Rabita et al., 2015) have contributed to a greatly increased 

understanding of sprint acceleration, their reliance on the reduction of one-dimensional 

(1D) waveforms to discrete (0D) variables is a persistent limitation. Although the 

introduction of ratio of force is a move away from the traditional analysis of peak and 

mean forces, it remains somewhat problematic since it is presented as a single, mean 

0D value which therefore does not permit analysis of the entire waveform. Statistical 

parametric mapping (SPM) presents an opportunity to overcome these limitations and 
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analyse sprint performance across the whole stance phase, providing insight that may 

have previously been lost with the reductionist approach of 0D analysis. Colyer, 

Nagahara, and Salo (2018) were able to use SPM to investigate relationships between 

force production across the stance phase and straight-line sprint performance from 

acceleration to maximal speed. Uniquely, the use of fifty-four force plates enabled the 

analysis of consecutive steps over 52 m. Using linear regressions, it was established 

that better performances were associated with the production of higher horizontal force 

production in the mid-late propulsive phase (58-92% of stance in the second step; 

55 - 85% of stance in the eighth step). As the athletes progressed through the sprint, 

these associations appeared earlier in the ground contact phase, occurring 

predominantly in the braking phase of stance (19 - 64% for the nineteenth step). These 

results highlight not only the importance of horizontal force production for 

acceleration but additionally the phase during stance where this contribution is most 

crucial. Thus, implementing SPM as an analysis technique to evaluate acceleration 

performance during bend sprinting may hold important insights. 

2.7. Joint moments in sprinting 

 Evaluation of joint moments through the calculation of inverse dynamics can 

provide insight into the underlying causes of motion and the musculoskeletal demand 

associated with performing a particular skill (Brazil et al., 2017). As Zajac, Neptune, 

and Kautz (2002) described, moments generated at the lower extremity joints are one 

of the main sources for the development of the ground reaction force required for 

sprinting. Thus, information regarding these moments during bend sprinting could 

identify the limiting factor to sprint performance on the bend. Chang and Kram (2007) 

have suggested that, during bend sprinting, the muscles of the lower limb are restricted 

in their ability to produce force in the sagittal plane owing to adaptations in the frontal 
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and transverse planes (such as hip adduction and ankle eversion). Analysis of joint 

moments would provide empirical evidence to support or otherwise refute this theory, 

whilst also supporting our understanding of injury mechanisms.  

 During straight-line acceleration, it has been established that extension 

moments generated at the ankle joint during the stance phase are mostly responsible 

for GRF development (Dorn, Schache, & Pandy, 2012). However, at speeds above 

7 m/s, this strategy is thought to shift, and muscles of the hip and knee joint contribute 

to increased speed through a greater acceleration of hip and knee joints during the 

swing phase, thus increasing stride frequency. Therefore, it is likely the application of 

moments at these joints may restrict the limb force generation. Although changes in 

lower limb joint kinematics have been reported during bend sprinting (Alt et al., 2015), 

it is not known if or how these adaptations impact on internal joint moments and thus, 

force production ability. Burnie et al. (2017) reported that elite coaches believed the 

transfer of strength training to sports performance was dependent on maintaining 

coordination and sports-specific movement patterns throughout periods of strength 

training. Therefore, confirmation of the functioning mechanisms in place during bend 

sprinting and the resulting joint moments may increase the specificity of strength and 

conditioning programmes and consequently improve the transfer of training to 

performance.  

 The current evidence base regarding joint moments and bend sprinting is 

limited. Heinrich, Alt, Funken, Brueggemann, and Potthast (2015) examined muscle 

energies of the lower limb establishing that, during sprinting on the bend compared 

with the straight, the ankle was the largest energy absorber and generator in the sagittal 

plane, whereas the hip joint was largest in the frontal and transverse planes. These 

findings suggest the left hip is highly loaded during bend sprinting. Furthermore, it 
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appears the roles of the left and right hip joints are asymmetrical. In addition, 

Viellehner et al. (2016) found an increase in left peak hip and knee adduction moment 

during constant sub-maximal effort bend sprinting at 9.38 m/s, when compared with 

the straight. The presence of greater peak external rotation moments at the left hip and 

knee compared with the right further supports the previous findings from Heinrich et 

al. (2015) demonstrating different functions of the left and right limb on the bend. 

Although insightful, the experimental protocols used may not be applicable to bend 

sprinting performance due to the matched velocity conditions that are not 

representative of athletic performance conditions. Hence, an investigation of joint 

moments with a protocol more closely replicating competitive bend sprinting would 

provide further valuable insights.  

 During straight-line sprinting, the important role of the ankle joint in 

contributing to sprint performance in the acceleration phase has been highlighted. For 

example, Debaere, Delecluse, Aerenhouts, Hagman, and Jonkers (2015) simulated 

individual muscle forces and established the ankle joint of the stance leg made the 

greatest contribution to CoM propulsion in all athletes, accounting for 67.1% and 

92.9% of propulsion in the first and second stance phase, respectively. Similarly, the 

plantar flexors of the ankle (gastrocnemius and soleus) were found to contribute the 

most to propulsion at a muscular level (Debaere et al., 2015). The hip and knee joints 

were found to have a supporting role in the propulsion of CoM (Debaere et al., 2015). 

Brazil et al. (2017) supported this, reporting ankle dominance in energy generation of 

the first stance. However, it is possible that the high ankle eversion and hip adduction 

found during bend sprinting (Alt et al., 2015, Churchill et al., 2015) places the limb in 

a complex position and consequently prevents the limb from generating the necessary 

extension moments demonstrated on the straight.  
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 A proximal-distal sequencing of peak joint powers has been observed during 

the first stance phase of straight-line sprinting (Brazil et al., 2017; Charalambous et 

al., 2012). This sequential pattern was also reported by Johnson and Buckley (2001) 

when investigating muscle power patterns during the acceleration phase of 

straight-line sprinting. Biarticular muscles are believed to contribute towards the 

transfer of power from proximal to distal joints (Jacobs, Bobbert, & van Ingen 

Schenau, 1996). Consequently, smaller muscles of the foot and ankle can achieve a 

high power output, and thus generate a large ground reaction force due to work done 

by larger, monoarticular hip muscles. It is possible that kinematic adaptations found 

during bend sprinting may disrupt this sequencing, resulting in a decrease in sprint 

performance.  

 Luo and Stefanyshyn (2012a) introduced a wedged footwear condition during 

bend sprinting with a 2.5 m radius, inducing a 4° decrease in left step ankle eversion 

compared with the control condition. The wedged footwear resulted in a 4.3% increase 

in sprint speed and an 18.8% increase in peak ankle plantar flexion moment generation. 

These results provide some indication of the importance of joint moment generation 

at the ankle joint and its relationship with sprint speed on the bend. However, the radius 

used by Luo and Stefanyshyn (2012a) is smaller than those used during athletics, 

meaning these results cannot be generalised to an athletics environment. Therefore, 

further research utilising a representative radius in the context of sprint performance 

is warranted.  

  Whilst evidence suggests joint moments of the ankle joint are influential in 

sprint acceleration, a common limitation of the existing literature is that most inverse 

dynamics analyses fail to include the MTP joint. This is despite Bezodis, Salo, and 

Trewartha (2012) showing inclusion of the MTP joint is necessary for the accurate 
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calculation of joint moments in sprinting. Stefanyshyn and Nigg (1997) showed peak 

resultant MTP moments of up to 120 Nm during sprinting, with the MTP joint 

accounting for approximately 32% of the total energy absorbed at the stance leg. 

Moreover, the MTP joint did not generate energy at take-off (Stefanyshyn & Nigg, 

1997). Stefanyshyn and Nigg (1997) results highlighted the potentially important 

contribution of the MTP joint in sprinting and led Bezodis et al. (2012) to calculate 

joint moments, power and work during accelerated sprinting (15 m) using three 

different models to examine the influence of including the MTP joint in these 

calculations. The thigh and shank were modelled consistently, and three different foot 

representations were used: ankle to distal hallux, ankle to MTP and a two-segment foot 

with a rearfoot (ankle to MTP) and forefoot (MTP to distal hallux) segment. A within-

participant analysis of three participants revealed a significant effect of the choice of 

foot model on peak resultant moment, peak power and net work at the knee and ankle 

joints. There was a significantly greater peak ankle joint moment when the MTP joint 

was not included, which can be attributed to the linked-segment nature of inverse 

dynamics. Bezodis et al. (2012) also described a general non-significant increase in 

peak hip extensor moments when the foot was represented as a single segment. 

 Further work by Bezodis, Salo, and Trewartha (2014) found a resultant MTP 

joint plantar flexor moment throughout stance, with the MTP joint also being a net 

absorber of energy. Thus supporting the previous work of Stefanyshyn and Nigg 

(1997) and Smith, Lake, Lees, and Worsfold (2012) and demonstrating the importance 

of including the MTP joint in sprint analyses. Whilst including the MTP joint in sprint 

analyses is an improvement on single-segment representations, Bezodis et al. (2012) 

rightfully acknowledge this remains a simplification of the complex foot anatomy. 
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  It has been demonstrated that extension joint moments make a substantial 

contribution to straight-line sprint performance in the acceleration phase, particularly 

at the ankle (Debaere et al., 2015). There is also a sequential transfer of power elicited 

from the hip joint enabling a higher power output at the smaller, more distal joints of 

the foot and ankle (Brazil et al., 2017; Charalambous et al., 2012; Jacobs et al., 1996; 

Johnson & Buckley 2001). However, changes in the segmental arrangement of the 

limb during bend sprinting could impact on both the ability to produce these moments 

and the proximal-distal transfer of power. Therefore, an investigation of joint moments 

and the associated power and energy is required in conditions representative of a 

competitive athletics environment. 

2.8. Methodological considerations 

 Collecting data in a competition is the optimum method of data collection since 

it enables the measurement of representative performance behaviours. Unfortunately, 

this is not always possible due to restrictions regarding athlete access, collaborative 

opportunities, obstructions within stadia and the often invasive nature of data 

collection methods that can require the attachment of markers to the athlete. Although 

some researchers have opted to use television broadcasts in their analyses (e.g., Salo, 

Bezodis, Batterham, & Kerwin, 2011), the quality of the camera settings cannot be 

verified. Furthermore, analysis of repeated measures under the same experimental 

conditions is not possible during a competitive setting. Researchers must instead 

promote ecological validity and replicate a competitive environment through a 

representative research design. Achieving a representative design most often requires 

a compromise of some sort owing to the measurement technique employed. All 

methods of data collection have individual merit, alongside some limitations which 

will be discussed within this chapter. It is necessary to consider these limitations, 
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alongside the ecological validity and representativeness of the research, and select the 

most appropriate method of data collection to best answer the research question within 

these constraints. 

2.8.1. Data collection with high speed video 

 Previous bend sprinting research has used high speed video cameras in the 

collection of data (e.g. Churchill et al., 2015; Churchill et al., 2018). These methods 

are considered beneficial due to their unobtrusive nature. For example, it is possible to 

collect data without the application of markers which therefore maintains the 

representativeness of protocols. However, without the use of markers, it is not possible 

to determine the amount of flexion/extension, abduction/adduction or internal/external 

rotation that exists at a joint with the calculation of 3D vector angles. Instead, 

orientation angles, developed by Yeadon (1990) are required, which require the known 

location of three points on each segment. However, as described by Churchill et al. 

(2015), this is not possible for all joints of the lower limb due to a lack of independent 

points for segment definition. The inability to calculate joint angles at all joints 

presents a substantial limitation to this measurement technique, particularly at the 

ankle joint where Alt et al. (2015) reported significant adaptions during sprinting on 

the bend. 

2.8.2. Data collection with optoelectronic cameras  

 Optoelectronic cameras are considered the gold standard of motion capture due 

to the high validity and reliability values associated with this technique (Hood et al., 

2012). They record the location of retro-reflective or active markers, which are used 

to reconstruct the geometry of bones and joint axes using standardised algorithms 

(Hood et al., 2012). The use of bone pins is considered the most accurate method of 

data collection of this type (Hood et al., 2012). However, this is mostly unfeasible for 



 

Page 47 of 226 

 

several reasons, not least the highly invasive and impractical procedure that may 

impede natural movement. The most common solution is to place spherical, 

retro-reflective markers directly on the skin over bony landmarks thought to represent 

the underlying anatomical structures. However, there are some limitations associated 

with this method, notably, the unknown error from skin artefact. Marker placement 

and attachment techniques can minimise skin movement artefact (Manal, McClay, 

Stanhope, Richards, & Galinat, 2000). A cluster of skin-mounted markers was reported 

as the most inaccurate method due to the independent movement of the markers in 

relation to each other (Manal et al., 2000). The use of cluster markers attached to a 

rigid board and then applied to the segment using tape or a hook and loop attachment 

has been promoted as a viable solution to this problem with increased accuracy over a 

cluster of skin-mounted markers (Manal et al., 2000). However, even this optimal 

solution provides individual rotational deviations of ± 2° (mediolateral axis) and ± 4º 

(longitudinal axis, Manal et al., 2000). Furthermore, some researchers suggest this 

method may not only increase the amount of time required to apply the marker set, but 

the tight strapping may provide an alternative stimulus to the participant that may 

disrupt natural movement (Mündermann et al., 2006). The Vicon Plug-in Gait (PiG) 

marker set (Davis, Õunpuu, Tyburski, & Gage, 1991), provides an opportunity to solve 

this problem as it is promoted as a minimal marker set, utilising just one marker per 

segment to define the third dimension of rotation, therefore negating the previous 

issues highlighted. The use of a single marker per segment rather than a cluster does, 

however, increase the likelihood of marker drop-out during the data collection process.  

2.8.3. Choice of marker set  

 Keeping the limitations associated with the application of markers in mind, 

alongside the constraints of the research environment, a key consideration when 
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working with optoelectronic systems is the choice of marker set (Milner, 2008). There 

are several, well-established marker sets in existence which have subtle variations in 

marker placement, for example, the six degrees-of-freedom (Collins, Ghoussayni, 

Ewins, & Kent, 2009), and the conventional gait models such as Vicon PiG (Davis et 

al., 1991) or Helen Hayes (Baker, 2006). The conventional gait models were 

introduced as minimalistic options to account for the small number of low-resolution 

cameras originally used in clinical laboratories (discussed in Baker, 2006). These 

models are hierarchical and require detection of the proximal segment before the distal 

segment can be calculated. In contrast, the six degrees-of-freedom marker set was 

introduced using anatomical landmarks following ISB (International Society of 

Biomechanics) recommendations (Wu et al., 2002) which enable the independent 

tracking of each segment (Collins et al., 2009). However, some of the anatomical 

landmarks are located medially (Wu et al., 2002), which not only introduces problems 

in terms of marker detection but also may increase the risk of marker dropout or 

obstruction with the opposing limb due to the technique used in bend sprinting. The 

conventional gait models are often favoured for their simplicity and have demonstrated 

high repeatability and comparable outcomes in the calculation of gait variables to five 

of the most common marker sets including conventional and six degrees-of-freedom 

models (Ferrari et al., 2008; Collins et al., 2009; Żuk & Pezowicz, 2015). Most bend 

sprinting research making use of optoelectronic techniques have failed to provide 

explicit information on the location of markers used (Alt et al., 2015; Heinrich et al., 

2015; Ishimura & Sakurai, 2010; Ishimura et al., 2013), and so it is often difficult to 

determine which models have been used in past analyses. Furthermore, current 

reliability assessments of kinematic variables with optoelectronic systems are limited 

to walking gait (Bishop, Paul, & Thewlis, 2012; Deschamps et al., 2012) and running 
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(Milner & Brindle, 2016) that is not representative of the higher velocities found in 

sprinting. Therefore, information regarding the reliability of variables measured during 

sprinting is scarce, and those in existence have focussed on parameters of technique 

such as step length and step frequency (Hunter et al., 2004a; Standing & Mauler, 

2017).  

 Software such as Visual 3D enables the user to make adaptations to marker sets 

as necessary. These might include: the CODA pelvis option to comply with ISB 

recommendations (Wu et al., 2002), calculating the ankle joint centre from the 

mid-point of the medial and lateral malleoli to mitigate against the accumulation of 

errors found in PiG (Nair, Gibbs, Arnold, Abboud, & Wang, 2010), and the inclusion 

of a multi-segment foot to enable measurement of more detailed movements such as 

inversion and eversion (Milner, 2008). Therefore, the researcher must choose the 

marker set that best meets their requirements taking into consideration the research 

question and available equipment/space. 

2.8.4. Modelling the multi-segment foot  

 Most conventional models consider the foot as a singular, rigid body which can 

sometimes be considered appropriate depending on the research question. However, 

although sprint research including a multi-segment foot model is limited, the MTP 

joint has been shown to make a substantial contribution to sprint performance (Krell 

& Stefanyshyn, 2006), whilst its inclusion in analyses also affects the accuracy of joint 

moment data (Bezodis et al., 2012). Therefore, a more in-depth evaluation of sprinting 

using a multi-segment foot model is required. There have been several foot models 

introduced and validated through research (Rankine, Long, Canseco, & Harris, 2008; 

Stebbins, Harrington, Thompson, Zavatsky, & Theologis, 2006), although a criticism 

might be that they are unnecessarily complex due to an abundance of markers. The 
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model used by Smith et al. (2012) can measure the movement of the forefoot, rearfoot 

and toebox without an overabundance of markers. In addition, it appears this marker 

set is one of few to be used in a sprint setting (e.g., Smith et al., 2012; Smith et al., 

2014). Therefore, its continued use would contribute towards the standardisation of 

research protocols and enable comparison between studies. 

 Other than the choice of marker sets available, modelling the multi-segment 

foot presents further challenges. One example is the use of markers placed on top of 

footwear at locations thought to represent bony landmarks. These markers are then 

used to measure the underlying movement of the foot. The accuracy of marker 

placement of this kind is often brought into question (e.g., Stacoff, Reinschmidt & 

Stüssi, 1992) and there have been attempts in the literature to overcome this persistent 

limitation. The use of specially designed sandals during gait studies has allowed 

marker placement directly onto the skin (Barnes, Wheat, & Milner, 2010). However, 

their use is not appropriate for sprinting where sprint spikes should be worn to maintain 

the representativeness of the protocol. Some have achieved marker to skin placement 

by making small incisions into the footwear (Smith et al., 2014), although this method 

compromises the integrity of the shoe and the representativeness of this method is 

questionable. Fortunately, sprint spikes are lightweight and worn tight-fitting so 

palpating bony landmarks through the shoe is not challenging to an infeasible extent. 

Furthermore, recent work from McDonald, Honert, Cook, and Zelik (2019) 

demonstrated no statistically significant effect on net ankle joint power across the 

stance phase of walking (0.8 - 1.6 m/s) and running (2.6 - 3.0 m/s) when comparing 

skin vs. shoe-mounted calcaneal markers with the use of SPM. With the various 

available options, the identification of a suitable marker set for use in the analysis of 

bend sprinting is desirable. 
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2.8.5. Inertial models 

 CoM calculations are required for the analysis of bend sprinting performance. 

For the calculation of CoM, segment mass and moment of inertia are needed. 

Determination of these properties requires inertial properties of body segments. It is 

not possible to directly measure these quantities without difficulties such as the 

time-consuming process of taking multiple measurements (Hanavan, 1964) or 

radiation exposure associated with Gamma Mass scanning (Zatsiorsky, 1983). 

Therefore, inertial properties are most often estimated with the use of regression 

equations based on anthropometric measurements, which are comparatively simplistic 

and easier to apply. However, these models are deficient in several areas; the small 

and uniform populations used, and the possible inaccuracies associated with the 

application of cadaver data to living humans being the main concerns (Winter, 2009). 

Despite these drawbacks, their use is prominent and generally considered acceptable 

and used throughout the sprint literature (e.g., Churchill et al., 2015; Churchill et al., 

2016). Zatsiorsky, Seluyanov, and Chugunova (1990) used gamma scanning 

techniques to obtain data from 115 physically fit participants - much greater than most 

cadaver studies which are typically in the range of 8-13 (e.g., Dempster and Gaughran, 

1967). In addition, the population of physically fit adults are more representative of 

those typically used in biomechanical research of sports performance. The Zatsiorsky 

et al. (1990) parameters were adjusted by de Leva (1996), making the reference 

landmarks in line with those more commonly used in biomechanics. In sprint research, 

further adjustments are often made to account for the mass of a sprinting shoe to each 

foot (Hunter et al., 2004b). The mass of the foot (including sprint spike) requires 

distribution amongst the multi-segment foot. There does not seem to be an accepted 

standard for this segmentation within the literature, with methods including the use of 
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computed tomography (CT) scans (Saraswat, Andersen, & MacWilliams, 2010; 

Saraswat, MacWilliams, Davis, & D’Astous, 2014); distribution based on the relative 

forefoot:rearfoot length (Bezodis et al., 2012; Bruening, Cooney, & Buczek, 2012) and 

arbitrary use of 50:50 for forefoot:rearfoot (Dixon, Böhm, & Döderlein, 2012). Whilst 

the use of CT scans is the most accurate method, they require expensive and 

specialised equipment that is not available in most laboratories.  

 The choice of inertial properties influences the calculation of joint moments 

with inverse dynamics. For example, Rao, Amarantini, Berton, and Favier (2006) 

compared lower limb inverse dynamics computations from six body segment 

parameter models. During the stance phase at 'fast' cadence, the highest percentage of 

variation between models was 19% for flexion/extension at the hip (Rao et al., 2006); 

although values were much lower for the knee and ankle joints. This presents an issue 

with regard to the foot as there are currently no guidelines for the estimation of body 

segment parameters of the multi-segment and as such, they are largely based on 

assumption. A number of different methods have been used within the gait community, 

with the most common being the use of CT scans (Saraswat et al., 2010; Saraswat et 

al., 2014) or the application of body segment parameter estimates for a single segment 

foot (Deschamps et al., 2017; Dixon et al., 2012). However, owing to the small mass 

of the foot, any influence of body segment parameter values is likely to have a minimal 

effect on the calculation of inverse dynamics. Rather, it is generally accepted that joint 

moments at the foot are almost entirely a product of the ground reaction force and the 

associated moment arm (Bruening & Takahashi, 2018). 

2.8.6. Measuring kinetics  

 Ground reaction force can be measured with the use of force plates which can 

be synchronised with a motion capture system to enable simultaneous data collection. 
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The accuracy of these systems is generally accepted as very high. However, it is 

dependent on several factors; for example, crosstalk, cable interference, mounting 

technique and force detection threshold (Lees & Lake, 2008). With regard to 

experimental procedures, one of the main concerns is 'targeting' of the force plate by 

the athlete, where the athlete deliberately tries to strike the force plate, which can lead 

to adaptations in normal movement patterns (Sanderson, Franks & Elliot, 1993) and 

consequently affects the ecological validity of the protocol. Every effort must, 

therefore, be made to reduce the likelihood of this occurring. The optimum solution 

would be to have a number of adjacent force plates, therefore improving the possibility 

of a clean strike. Although there have been some studies that have utilised a series of 

force plates 52 m in length (Colyer et al., 2018), in most laboratories, this is not 

possible, and targeting must be addressed using different techniques. Monitoring and 

adjusting the start position of the athlete is a solution most often employed in sprint 

studies (Bezodis, Kerwin, & Salo, 2008; Churchill et al., 2016).  

 In the calculation of joint moments, it is generally considered that ground 

reaction forces are error-free (Camomilla et al., 2017). However, when using a 

multi-segment foot, each segment in contact with the ground requires an individual 

ground reaction force vector (Saraswat et al., 2010). Bruening and Takahashi (2018) 

established that the most accurate way to partition ground reaction forces amongst the 

multi-segment foot is with the use of a pressure mat, although even with this method 

sagittal plane peak moment and power were slightly overestimated by 10% and 9%, 

respectively. The measurement of plantar pressure to distribute vertical ground 

reaction force across segments of the foot has been implemented in a number of gait 

analyses (Deschamps et al., 2017; MacWilliams, Cowley, & Nicholson, 2003; 

Saraswat et al., 2010; Saraswat et al., 2014). However, the use of pressure insoles is 
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not always possible and may further reduce the representativeness of sprint protocols. 

Furthermore, the proportionality assumption (Saraswat et al., 2014) used to distribute 

shear forces (which pressure insole systems do not measure) may not be appropriate 

for use during bend sprinting where mediolateral forces are much greater than those 

found during straight-line sprinting (Churchill et al., 2016). 

 To avoid the problems associated with the distribution of ground reaction force, 

analysis after heel raise (at which point contact occurs mostly in the forefoot) has been 

implemented within the literature where pressure insoles have not been available 

(Dixon et al., 2012). However, this method restricts inverse dynamics analysis to the 

latter part of the stance phase and so is not a favourable alternative. Therefore, the 

'Centre of Pressure Cross' method described by Bruening and Takahashi (2018) is 

often used, whereby the anteroposterior location of the centre of pressure is used to 

allocate ground reaction force to a segment. This method does have its limitations, 

notably the overestimation of joint moments at the MTP joint by approximately 17% 

(Bruening & Takahashi, 2018). Despite this, several sprint analyses have chosen to 

implement this method, whereby the MTP joint moment was considered negligible 

until the ground reaction force acted distal to the joint (Smith et al., 2014; Smith et al., 

2012; Stefanyshyn & Nigg, 1997). This method was also used by Bezodis et al. (2012) 

and Bezodis et al. (2014) who investigated joint moments during the first stance phase 

of straight-line sprinting. However, Bezodis et al. (2012) identified, through the 

qualitative assessment of previous work, that foot contact occurred with the forefoot 

only during the first stance phase and so partition of ground reaction forces amongst 

the multi-segment foot was not necessary. Although, this may not be the case when 

the athlete has progressed further along the sprint distance.  
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 As Schache and Baker (2007) described, the net activity in muscle groups (and 

hence which group is dominant) is represented by joint moments. Therefore, the 

reference frame chosen should best represent the relative activity of different muscle 

groups (Schache & Baker, 2007). Schache and Baker (2007) presented joint moment 

profiles calculated in different reference frames (laboratory, proximal segment, distal 

segment and joint coordinate system). Significant differences were observed between 

reference frames, particularly in the transverse plane (Schache & Baker, 2007). 

Although the author's note these differences are not representative of errors between 

conditions, Schache and Baker (2007) go on to advocate the use of the joint coordinate 

system reference frame. Their reasoning behind selecting the joint coordinate system 

reference frame as the most appropriate is based upon the definition of different muscle 

groups as the rotation the muscles would produce if the moment were the only force 

applied to the joint (Schache & Baker, 2007). The joint coordinate system is 

recommended by the ISB as a standard convention for describing rotations about a 

joint (Wu et al., 2002; Wu et al., 2005). Therefore, to achieve correspondence between 

joint angles and joint moments, it seems logical that the joint moment thought to create 

that rotation should also be expressed in the joint coordinate system (Schache and 

Baker, 2007). Kristianslund, Krosshaug, Mok, McLean, and van den Bogert (2014) 

and Desroches, Cheze, and Dumas (2010) also support the use of the joint coordinate 

system reference frame, with the latter suggesting expressing both joint angles and 

moments in the same coordinate system might provide an improved biomechanical 

insight. Use of a non-orthogonal reference frame may warrant concern since, due to 

crosstalk, the sum of the squares of the three components will always be greater than 

the square of the total moment. However, as Schache and Baker (2007) state, the 

actions of different muscle groups cannot be allocated to acting purely about a single 
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axis. Therefore, it was felt the joint coordinate system was the most appropriate 

reference frame for the representation of joint moments.  

2.8.7. Filtering 

 There are inevitably some errors associated with all measurement techniques, 

which may exist as a consequence of skin movement artefact or factors such as 

electrical interference. These errors become increasingly problematic when using 

differentiation techniques such as those used to calculate velocities and accelerations 

(Winter, 2009) and so are typically removed using data smoothing techniques before 

analysis takes place. These techniques work by identifying and removing elements of 

'noise' that occur at a frequency range different from the actual signal (Robertson, 

Caldwell, Hamill, Kamen, & Whittlesey, 2013). Of those in existence, polynomial 

fitting, spline fitting and digital filtering appear the most commonly used in current 

sprint literature (e.g., Churchill et al., 2015; Churchill et al., 2016; Johnson & Buckley, 

2001; Hunter et al., 2004a). 

 Polynomial smoothing fits a shape that is assumed to represent the 'best fit' of 

the data. Whilst it is advantageous in that it allows the interpolation of points at 

different time points alongside the calculation of derivatives with ease, their use can 

distort the true shape of a signal (Robertson et al., 2013). In addition, Winter (2009) 

suggests that the use of polynomials may be more appropriate in non-repetitive 

movements. Splines are a modification of polynomials that work on smaller sections 

of the curve and because of this, are more adaptable to changes in curvature. They also 

share the advantage of making derivatives easier to obtain. However, as Robertson et 

al. (2013) highlight, the points of inflexion used to determine individual sections of 

the curve are influenced by the noise within the signal which the filter is attempting to 

remove. 
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 Digital filtering takes a different approach to remove noise from the signal. It 

instead removes noise by focussing on differences between the frequency content of 

the signal and noise. Since the use of a digital filter introduces a phase lag, a second 

filter must be applied in the opposite direction. The choice of cut-off frequency can 

affect the resulting signal and whilst several methods exist to determine this cut-off 

point, Winter (2009) suggests that a residual analysis is the most appropriate. It is 

important to note that this applies to displacement data only and the fact that different 

markers are likely to have different optimum frequencies exists as a further limitation 

to this selection method. It has been suggested that when differentiation is required, 

much higher cut-off frequencies are needed than those suggested as a result of a 

residual analysis (Yu, Gabriel, Noble, & An, 1999). 

 Another important consideration when using digital filters is 'endpoint error' 

which refers to the distortion that these types of filter can often introduce at the start 

and end of a signal. Whilst this can be avoided through the collection of additional 

frames of data, doing so is not always possible, so techniques such as 'padding' or 

'reflection' are often used during the filtering process. In an investigation of the 

effectiveness of these techniques in reducing endpoint error, it was found that the 

reflection of data points produced results similar to those found with the addition of 

real data points (Smith, 1989). 

 Furthermore, Bezodis, Salo, and Trewartha (2013) highlighted the importance 

of selecting an appropriate cut-off frequency when calculating joint moments. In an 

analysis of kinetic and kinematic data with four different cut-off frequencies (10, 25, 

50 and 100 Hz) and ten combinations where the kinetic data cut-off frequency was 

equal to or exceeding the kinematic input data. The choice of cut-off frequency 

combination influenced the magnitude of peak knee extensor moment during the first 
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5% of stance, with greater peaks introduced when the kinetic cut-off frequency 

exceeded that of the kinematic data (Bezodis et al., 2013). These impact peaks were 

close to non-existent when the cut-off frequencies were matched (Bezodis et al., 2013). 

Thus, the application of identical cut-off frequencies for kinetic and kinematic data is 

recommended to avoid these fluctuations at impact. 

2.9. Summary 

 There is a growing body of research examining the biomechanical differences 

between sprinting on the bend and straight. Increased hip adduction and longer contact 

time in the left step appear key characteristics of bend sprinting performance at 

maximal and sub-maximal speeds (Alt et al., 2015; Churchill et al., 2015). These 

adaptations have been associated with an increase in body lateral lean (Churchill et al., 

2015), a consequence of the additional requirement of producing centripetal force 

during bend sprinting. Furthermore, a high left step ankle eversion at sub-maximal 

speed (Alt et al., 2015) and a smaller radius (Luo & Stefanyshyn, 2012a) have been 

observed. However, the ankle and multi-segment foot are yet to be investigated in 

conditions representative of elite athletics competition despite their importance being 

demonstrated during straight-line sprinting (Bezodis et al., 2008; Bezodis, Trewartha, 

& Salo, 2015; Bezodis, Salo, & Trewartha, 2014; Brazil et al., 2017; Charalambous et 

al., 2012; Debaere et al., 2015; Krell & Stefanyshyn, 2006; Smith et al., 2014). 

 Although it is clear athletes are unable to reach the same maximal speeds on 

the bend and straight (Churchill et al., 2015; Churchill et al., 2016), the number of 

studies evaluating the acceleration phase of bend sprinting is limited. Therefore, it 

remains unclear if the bend has the same effect on acceleration performance. Ratio of 

force analysis encapsulates the technical ability of sprinters by assessing the way force 

is applied to the ground (Morin et al., 2011). A higher ratio of force, achieved through 
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the production of high amounts of anteroposterior force, has been associated with 

acceleration performance in straight-line sprinting (Morin et al., 2011; Rabita et al., 

2015). However, during bend sprinting at maximal speed, an increase in mediolateral 

force has been observed (Churchill et al., 2016), which might impact upon the 

technical ability of sprinters. Therefore, analysis of force production during the 

acceleration phase of bend sprinting might provide important insights and aid 

understanding of performance. 

  Furthermore, it is likely that joint kinetics hold some insights into the 

mechanisms of bend sprinting performance. However, joint moments and power have 

yet to be investigated under conditions replicating a competitive athletic environment. 

A review of the methodological considerations pertinent to addressing the research 

question has also been presented. It is essential that the representativeness of the 

experimental protocol is maintained throughout and optimum solutions to the issues 

raised are sought from the literature. Taking into consideration the constraints of the 

research environment, the most appropriate solution should be implemented 

throughout the programme of research. 
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Chapter 3: SIMPLIFIED  MARKER SETS FOR THE CALCULATION OF 

CENTRE OF MASS LOCATION DURING BEND SPRINTING 
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3. Simplified marker sets for the calculation of the centre of mass location 

during bend sprinting 

3.1. Introduction 

 Analysis of the position, trajectory and velocity of the CoM is common within 

bend sprinting research (Alt et al., 2015; Churchill et al., 2015; Churchill et al., 2016; 

Churchill et al., 2018; Ishimura & Sakurai, 2016). In addition, key variables such as 

touchdown distance and turn of CoM during ground contact require knowledge of the 

location of CoM for calculation (Churchill et al., 2015; Churchill et al., 2016). 

Furthermore, during bend sprinting the kinematic adaptations that occur are 

multi-dimensional, occurring in all three planes (Alt et al., 2015; Churchill et al., 2015; 

Churchill et al., 2016). Therefore, evaluation of bend sprinting necessitates the use of 

3D data collection methods.   

 With the use of a full-body marker set, 3D methods such as optoelectronic 

motion capture allow calculation of CoM position. Segment inertial parameters 

(derived from anthropometric studies, e.g. de Leva, 1996; Dempster & Gaughran, 

1967; Zatsiorsky, 1983) are used to estimate the whole-body CoM location based on 

the distribution of mass within the multi-segment model. However, there are 

difficulties with optoelectronic data collections that have complex lower limb marker 

sets (e.g., a multi-segment foot model) with a required minimum of three markers for 

each segment. The ability to achieve an appropriate frame rate, resolution and capture 

volume to aid marker detection is both determined and restricted, due to the number 

of cameras and laboratory space available. Additional factors such as the 

time-consuming application of markers, and increased interference with the athlete 

causing a potential decrease in ecological validity, make the collection of data with a 

simple model, using the fewest possible markers (e.g., lower limb only), preferable to 
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using a full-body marker set. Furthermore, kinematic analysis of the arms is rarely 

performed due to the implication that the arms do not have a significant impact on 

sprint performance (Mann & Herman, 1985). Finally, the capture volume must be 

defined as a square or rectangular shape with most motion capture systems. This is 

problematic due to the curved nature of bend sprinting, which therefore requires a long 

and wide capture volume, resulting in essentially 'wasted' space within the capture 

volume. A reduced marker set would enable a capture volume lower in height and 

longer in length enabling more steps to be calculated, increased resolution and 

reducing the risk of marker drop-out. Therefore, the ability to calculate the required 

variables (including CoM location) using a simplified marker set would be desirable. 

The purpose of this study was to ascertain to what extent the simplification of a 

kinematic marker set is appropriate for the accurate calculation of CoM during bend 

sprinting.  

3.2. Methods 

3.2.1. Participants 

 Following ethical approval from the Sheffield Hallam University Local 

Research Ethics Committee, seven sprinters (five males; mean age 20 ± 1.11 years; 

body mass 70.37 ± 4.88 kg; stature 1.79 ± 0.48 m and two females; mean age 

22 ± 3.50 years; body mass 58.85 ± 1.35 kg; stature 1.66 ± 0.40 cm) volunteered for 

the study. The inclusion criteria required athletes to have competitive experience of 

bend sprinting (200 and/or 400 m). Mean personal best times were 22.90 ± 0.85 s 

(range: 22.00 - 24.10 s; 200 m, five males) and 64.00 ± 0.00 s (400 m, two females). 

All participants provided written informed consent prior to data collection. 
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3.2.2. Experimental set-up 

 Kinematic data were collected using a 12-camera optoelectronic motion 

capture system (10 x model Raptor and 2 x model Eagle, Motion Analysis Corporation, 

Santa Rosa, CA, USA) operating at 240 Hz. A right-handed global coordinate system 

was defined using a rigid L-frame with four markers of known locations. A three 

marker wand of 500 mm was used within the calibration volume to scale the individual 

camera views. The capture volume (7 m long, 1.5 m wide and 2 m high) was located 

tangentially to the apex of the curve to record data at the 38 - 45 m section of the 60 m 

sprints where athletes are likely to be at maximum speed (Krzysztof & Mero, 2013, 

Figure 3.2.2.1).  

 

 

 

 

 

 

 

 

 

 

 

 A full-body marker set (59 markers) modified from Davis et al. (1991) was 

used to model 13 segments (head, upper arms, lower arms, torso, pelvis, thighs, shanks 

and feet). Retro-reflective spherical markers (12.7 mm) were placed on both sides of 

the body on the following anatomical landmarks: head, acromioclavicular joint, upper 

Capture volume (7.00 m 

x 1.50 m x 2.00 m) 

End of 60.00 m 

maximal effort 

running 

Start of run (38.00 m 

from capture volume) 

z 

y x 

Path of athlete 

(radius 36.5 m) 

Figure 3.2.2.1 Plan view of test set-up (not to scale) 
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arm, lateral humeral epicondyle, medial humeral epicondyle, forearm, ulnar styloid, 

radial styloid, C7, T10, jugular notch, xiphoid process, anterior superior iliac spine 

(ASIS), posterior superior iliac spine (PSIS), greater trochanter, medial femoral 

epicondyle, lateral femoral epicondyle, thigh, tibia, medial malleolus, lateral 

malleolus, posterior calcaneus, medial calcaneus, lateral calcaneus, 1st and 5th 

metatarsal base, 1st, 2nd and 5th metatarsal head and head of the 2nd toe. The results of 

this chapter will inform the identification of a marker set for use throughout the 

remainder of the thesis. Therefore, full details of the marker set (including segment 

definitions) chosen for use with subsequent studies can be found in Section 4.2.2. A 

static trial was completed prior to data collection, with the participant in the anatomic 

position for three seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2.2 Full-body marker set. Markers were placed on the following anatomical landmarks on both sides of 

the body: head, (front left, front right, rear left, rear right) acromioclavicular joint, upper arm, lateral humeral 

epicondyle, medial humeral epicondyle, forearm, ulnar styloid, radial styloid, C7, T10, jugular notch, xiphoid 

process, anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), greater trochanter, medial femoral 

epicondyle, lateral femoral epicondyle, thigh, tibia, medial malleolus, lateral malleolus. The multi-segment foot (not 

shown) was modelled using markers placed on: posterior calcaneus, medial calcaneus, lateral calcaneus, 1st and 5th 

metatarsal base, 1st, 2nd and 5th metatarsal head and head of the 2nd toe. 
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3.2.3. Protocol 

 Data were collected on a flat standard indoor track surface with a reconstructed 

bend, replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 

2008). It was necessary to reconstruct the bend indoors to enable use of the 

optoelectronic cameras. In addition, a standard 200 m indoor track is banked and has 

a radius ranging from 15 - 17 m (IAAF, 2008) and has not been used competitively in 

World Championships since 2004. Thus, a reconstructed bend replicating a standard 

outdoor track was required. The bend was reconstructed using cones placed 4 m apart, 

with a lane width of 1.2 m. Following a typical competition warm up, participants 

performed five trials at maximal effort for 60 m, starting with the use of starting blocks. 

Participants were topless (or wearing just a sports bra for female athletes) and wore 

form fitting shorts, allowing the majority of markers to be placed directly onto the skin. 

Approximately eight minutes were allowed between trials to allow recovery and avoid 

the onset of fatigue (Churchill et al., 2015). 

3.2.4. Data Processing 

 Cortex (version 5.3, Motion Analysis Corporation, Santa Rosa, CA, USA) was 

used to track and export raw 3D coordinate data. Automatic gap filling was performed 

using a cubic spline where gaps were <10 frames. Raw marker positions were filtered 

at 18 Hz (chosen with the use of residual analysis, Winter, 2009) using a low-pass, 

fourth-order recursive Butterworth filter. Segments, local coordinate systems (LCS) 

and joint centres were defined and constructed in Visual 3D (version 4, C-Motion, 

Rockville, MD, USA). There are numerous models available for the prediction of 

inertial characteristics which enable CoM calculation, the merits of which have been 

discussed in section 2.8.1. The de Leva (1996) adjusted parameters were considered 

the most appropriate due to the combination of a large sample of recreationally fit 
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adults being most representative of the athletic population within the present 

programme of research and, the reference landmarks corresponding to those used 

within biomechanical analyses of sports performance. Therefore, body segment 

parameters were estimated from de Leva (1996) and adjusted to allow the addition of 

0.2 kg to each foot which represents the mass of a spiked shoe (Hunter et al., 2004b).  

 Two further simplified models were defined following methods of 

Vanrenterghem et al. (2010). Firstly, a CoM representation was calculated with lower 

limb and trunk segments (LLT) including pelvis, thighs, shanks, feet and thorax (total 

markers: 42). Following this, the trunk segment was then excluded, and CoM 

calculated based upon lower limbs (LL) segmental position only (total markers: 38). 

CoM trajectories across two steps (one left, one right) were calculated with each of the 

three models and the mean calculated across all participants. Take-off and touchdown 

events were identified using the position of the marker coordinates for 5th metatarsal 

head (MTH5) in the static trial as a threshold following Bezodis, Thomson, Gittoes, 

and Kerwin (2007).  

3.2.5. Calculation of variables 

 Variables requiring the calculation of the CoM that are important within the 

previous bend sprinting literature were calculated (Alt et al., 2015; Churchill et al., 

2015; Churchill et al., 2016; Churchill et al., 2018). Horizontal velocity for each CoM 

representation was calculated in Matlab (v2015b, Mathworks, Natick, USA) using a 

finite difference algorithm (Winter, 2009). Velocity data were analysed for the 

duration of the left and right steps and normalised to 101 data points to represent 100% 

of the gait cycle. Left and right steps were defined by the foot that initiated the step.  

 Touchdown distance, defined as the horizontal displacement between the CoM 

and second MTP joint, was calculated in line with methods from Churchill et al. 
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(2015). An instantaneous progression vector for the CoM (calculated from the 

horizontal position of the CoM one frame before the instant of interest to the horizontal 

position of the CoM one frame after the instant of interest, then divided by its norm to 

create a unit vector) and a horizontal vector from the CoM to the 2nd metatarsal head 

of the touchdown limb were created. A scalar projection of this vector onto the 

instantaneous progression vector gave touchdown distance. For all trials the middle 

step was used to calculate turn of CoM, this resulted in 16 trials for the right step and 

19 for the left step. Turn of CoM (the amount the athlete turns 'into' the bend during 

ground contact; Churchill et al., 2016) was calculated using the angle between CoM 

progression vectors during the flight phase before and after the ground contact of 

interest. 

3.2.6. Statistical analysis 

  Descriptive statistics (mean and standard deviation) were calculated. In 

addition, Bland-Altman plots with 95% limits of agreement were used to evaluate the 

agreement between models for all variables. Intraclass correlations (ICC), model (3, 1) 

were used to further assess agreement according to the criteria set by Cicchetti (1994), 

where > 0.75 excellent agreement. 

3.3. Results  

 Mean velocity for the whole-body model for all participants was 8.14 ± 0.74 

m/s (right step) and 8.12 ± 0.73 m/s (left step, Table 3.3.1). Deviations from whole-

body model CoM across mean velocity profiles for all participants during the left and 

right step are shown in Figure 3.3.. Visual inspection of these curves suggests that 

representation of the CoM with both LLT and LL models provide a close (0.00 – 0.10 

m/s) approximation when compared to the whole-body model CoM velocity, with LLT 

providing a more accurate representation throughout the entire step.  
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 Observations from Bland-Altman plots (Figures 3.3.3 - 3.3.8) and the small 

mean difference found suggest no evidence of systematic bias in the CoM 

representations with LLT and LL when compared to whole-body CoM. The mean 

difference for mean step velocity in the LLT condition was 0.0207 ± 0.0643 m/s for 

the right step and 0.0037 ± 0.0808 m/s for the left step. The mean difference increased 

to 0.0524 ± 0.0860 m (right step) and 0.0375 ± 0.0661 m (left step) during the LL 

condition.  
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Figure 3.3.1 Comparison of the difference between whole-body CoM velocity and CoM representations, zero indicates 

no deviation from whole-body model CoM during a step. Mean velocity profiles for (A) the right step and (B) the left 

step. 
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Figure 3.3.2 Bland Altman plots for right step velocity for (A) LLT and (B) LL, where the dashed line represents 

the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold dashed line 

represents the mean difference.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 Bland Altman plots for left step velocity for (A) LLT and (B) LL, where the dashed line represents 

the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold dashed line 

represents the mean difference.  
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Figure 3.3.4 Bland Altman plots for right step touchdown distance for (A) LLT and (B) LL, where the dashed line 

represents the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold 

dashed line represents the mean difference.  

 

 

 

 

  

 

 

 

 

 

 

Figure 3.3.5 Bland Altman plots for left step touchdown distance for (A) LLT and (B) LL, where the dashed line 

represents the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold 

dashed line represents the mean difference. 
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Figure 3.3.6 Bland Altman plots for right step turn of CoM for (A) LLT and (B) LL, where the dashed line 

represents the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold 

dashed line represents the mean difference. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.7 Bland Altman plots for left step turn of CoM for (A) LLT and (B) LL, where the dashed line represents 

the upper and lower limits of agreement (mean difference ± 1.96 x standard deviation), and the bold dashed line 

represents the mean difference. 
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Table 3.3.1 Mean values ± SD, mean difference, limits of agreement and ICC values 

for the left and right step during bend sprinting. 

 

 

Discussion 

 This study aimed to determine the accuracy of simplified marker sets in the 

calculation of the location of the CoM and associated variables during bend sprinting. 

For mean velocity, ICCs suggest an excellent level of agreement between the whole-

body model and simplified LLT and LL representations providing support for the use 

of an LLT model to measure mean velocity. However, wide (≥ 0.09 m/s) limits of 

agreement were also observed. The high limits of agreement could be related to the 

high standard deviation shown between trials which are likely a consequence of the 

differing maximal velocities achieved by participants. Both between- and within-

participant differences are accounted for in the calculation of the ICCs (Hopkins, 2000; 

Weir, 2005). ICC results for LLT and LL models for all variables were above excellent 

suggesting these between participant differences did not affect the data. 

 Mean step velocity 

(m/s) 

Touchdown 

distance (m) 
Turn of CoM (°) 

 Right Left Right Left    Right                       

Left 

Whole-body Mean ± standard 

deviation 

8.14 ± 

0.74 

8.12 ± 

0.73 

0.28 ± 

0.13 

0.43 ± 

0.13 

3.59 ± 

1.83 

4.60 ± 

1.13 

LLT Mean ± standard deviation 8.16 ± 

0.75 

8.13 ± 

0.74 

0.28 ± 

0.13 

0.42 ± 

0.13 

3.55 ± 

1.95 

4.66 ± 

1.16 

LL Mean ± standard deviation 8.18 ± 
0.76 

8.14 ± 
0.74 

0.28 ± 
0.14 

0.43 ± 
0.12 

3.13 ± 
1.78 

5.47 ± 
1.34 

Mean difference (Whole-body – 

LLT) 
0.0207 0.0037 0.0040 0.0066 0.0381 0.0402 

Mean difference (Whole-body – LL) 0.0524 0.0375 0.0100 0.0010 0.4659 0.8696 

Upper Limits of Agreement (Whole-

body – LLT) 
0.14 0.16 0.02 0.03 0.11 0.33 

Lower Limits of Agreement (Whole-

body – LLT) 
0.11 0.15 -0.01 -0.02 -0.04 -0.25 

Upper Limits of Agreement (Whole-

body – LL) 
0.12 0.09 0.04 0.09 1.95 1.63 

Lower Limits of Agreement (Whole-

body – LL) 
0.22 0.16 -0.02 -0.09 -1.02 0.11 

ICC (Whole-body – LLT) 0.998 0.997 0.998 0.995 0.998 0.995 

ICC (Whole-body – LL) 0.996 0.998 0.995 0.900 0.942 0.873 
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 Mean difference for touchdown distance in the LLT condition (< 0.0066 m) in 

both the left and right step, indicate the method provides near equivalent results, 

supported by narrow limits of agreement and all trials falling within these limits. The 

mean difference of touchdown distance was also low for the LL condition. The limits 

of agreement for the LLT condition are similar to the 1.11 limits of agreement ratio 

for touchdown distance reported as part of a reliability assessment of sprint variables 

(Hunter et al., 2004a). The mean difference was <1° across all models for the turn of 

CoM. ICC results for turn of CoM again demonstrated excellent agreement between 

the whole-body and LLT methods (0.995-0.998). Whilst both models showed very 

good agreement, the whole-body condition with the LLT condition being marginally 

better.  

 The results of the present study are in line with the conclusions of 

Vanrenterghem et al. (2010) who found a better agreement in the LLT model compared 

to the LL model in the analysis of lateral cutting movements. Thus, whilst both CoM 

representations provide a close approximation of whole-body CoM, LLT is a more 

accurate solution. Since the use of LLT requires only a small number (four) of 

additional markers, its use should be favoured over LL. The LLT marker set is 

comprised of 17 fewer markers than the whole-body marker set. Thus, its use can 

decrease the amount of time required in the application of markers and the data 

cleansing process whilst also increasing the representativeness of the protocol by 

reducing the amount of intrusion the athlete experiences. In addition, the use of a LLT 

marker set negates issues with data collection owing to the athlete's height which, with 

taller athletes, can require a change in experimental set-up to ensure detection of head 

markers. Extending the height of the capture volume reduces the resolution within the 

capture volume and increases the likelihood of drop-out of lower limb markers.  
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3.4. Conclusion 

 The aim of this study was to establish whether the CoM and associated 

variables required for the analysis of performance during bend sprinting could be 

estimated from a simplified marker set. The LLT model was deemed to provide good 

agreement with whole-body CoM. It is thought the benefits associated with utilising 

this simplified model outweigh the small differences reported. Therefore, use of an 

LLT marker set is suggested as an appropriate alternative to a full-body marker set in 

kinematic studies of bend sprinting. The test re-test reliability of bend sprinting with 

the LLT marker set will be established in Chapter 4. 
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Chapter Four: MEASUREMENT OF BEND SPRINTING KINEMATICS 

WITH THREE-DIMENSIONAL MOTION CAPTURE: A TEST-RETEST 

RELIABILITY STUDY 
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4. Measurement of bend sprinting kinematics with three-dimensional motion 

capture: a test-retest study 

4.1. Introduction 

 Sprint velocity decreases on the bend in comparison to the straight (Chang & 

Kram, 2007; Churchill et al., 2015; Churchill et al., 2016). This reduction is suggested 

to be related to the additional need to generate centripetal force (Chang & Kram, 2007; 

Usherwood & Wilson, 2006). Unlike the 100 m race that occurs entirely on the 

straight, the 200 m and 400 m races include a portion on the bend that accounts for 

approximately 58% of the total distance covered (Meinel, 2008). Therefore, 

performance on the bend makes a substantial contribution to overall race performance.  

 Whilst there has been some consideration of the reliability of sprint related 

performance variables within the literature (most notably, Hunter et al., 2004a; Salo & 

Grimshaw, 1998; Standing & Maulder, 2017), the analysis of performance descriptors 

has been the main focus. For example, Hunter et al. (2004a) evaluated the within-day 

reliability of 26 kinematic and seven kinetic variables. It was concluded that reliability 

could be improved with the use of an average score of multiple trials as opposed to a 

single measure. Even for variables demonstrating low reliability (such as touchdown 

distance), averaging across multiple trials was an appropriate method of improving 

reliability. Substantial adaptations in joint kinematics have been reported during bend 

sprinting in comparison to straight-line sprinting (e.g., Alt et al., 2015; Churchill et al., 

2015), without supporting reliability data it is difficult to determine whether these 

changes have been influenced by variation in task execution, equipment calibration, 

random error or protocol design.  

 To evaluate performance on the bend, the analysis of spatio-temporal, 

kinematic and kinetic variables is required. Owing to its high reliability and validity, 
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data collection with optoelectronic systems is considered the gold standard of 

kinematic measurement techniques (Hood et al., 2012). Despite this, few bend 

sprinting studies have used optoelectronic cameras to investigate kinematic variables 

(for exceptions see: Alt et al., 2015; Ishimura & Sakurai, 2010; Ishimura & Sakurai, 

2016; Ishimura et al., 2013). A key consideration when working with 3D motion 

capture is the choice of marker set (Milner, 2008, section 2.8.3). However, in studies 

that have used 3D motion capture, most fail to provide explicit information on the 

location of markers used (Alt et al., 2015; Ishimura & Sakurai, 2010; Ishimura & 

Sakurai, 2016; Ishimura et al., 2013). Furthermore, there is a lack of published 

evidence regarding the reliability of such models in conditions representative of elite 

bend sprinting (i.e., radius, velocity and surface), since the majority of research focuses 

on straight-line walking (e.g., Bishop, Paul, & Thewlis, 2013; Deschamps et al., 2012; 

Milner & Brindle, 2016) or running (e.g., Alenezi et al., 2016; Ferber et al., 2002; 

Milner & Brindle, 2016). These studies have typically reported lower reliability in the 

frontal and transverse planes. Therefore, this is an expected outcome regardless of 

speed. However, bend sprinting occurs at much a higher velocity (e.g., 9.86 m/s, 

Churchill et al., 2015) than walking (e.g. 1.25 m/s, Milner & Brindle, 2016) or running 

(e.g., 3.65 m/s, Ferber et al., 2002). These higher velocities produced during sprinting 

are likely to affect the reliability of a marker set, for example, through an increase in 

skin movement artefact. Thus, it is not appropriate to assume the same reliability as 

for walking or running actions. Due to the issues highlighted (see section 2.8.3), 

selecting a marker set for use in bend sprinting is problematic. Knowledge of reliability 

data enables researchers to determine the meaningfulness of reported differences 

between conditions and conclude, with confidence, that the effects are due to the 

independent variable and not the method of data collection, or any other form of 
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random variation (Hopkins, 2000). A standardised marker set with supporting 

reliability data would be a valuable tool for use in future bend sprinting research. It is 

important to examine both between- and within-day reliability. Whilst within-day 

reliability is affected by task execution, random error and skin movement artefact, 

additional factors such as system calibration and marker application may affect 

between-day measurements. Although the use of ICCs is supported for establishing 

the level of reliability, it is further recommended that ICCs should not be used as a 

sole measure (Atkinson & Nevill, 1998). Therefore, ICCs are often combined with the 

standard error of measurement (SEM) which provides a measure of absolute reliability 

and allows results to be extrapolated to other populations and measurement tools since 

it is expressed in the actual units of measurement (Atkinson & Nevill, 1998). 

Furthermore, there is a lack of agreement or clarity regarding what is considered an 

'acceptable' ICC or SEM, and so, calculation of minimal detectable difference (MDD) 

provides an indication of the magnitude of change required to be considered 'real' to 

aid researchers in the interpretation of results. 

During kinematic analyses, the number of cameras and available laboratory 

space impact upon factors such as frame rate, resolution and desired capture volume. 

The resulting camera set-up can influence the coverage within the capture volume, 

which will impact upon marker detection - for example, areas of low coverage within 

the capture volume would likely increase marker drop-out rate. Furthermore, 

increasing the number of markers used has the consequence of increasing marker 

application and post-processing time (Vanrenterghem et al., 2010). In addition, there 

is potentially a decrease in the representativeness of the protocol through increased 

athlete interference with additional markers. It has been established that an LLT 
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marker set was sufficient for the accurate calculation of CoM location and associated 

variables (velocity, touchdown distance and turn of CoM) during bend sprinting 

(Chapter 3). For mean step velocity, touchdown distance and turn of CoM, ICCs in the 

range of 0.995-0.998 were reported showing excellent agreement between the 

simplified model and a whole-body marker set (Chapter 3). Since this reduced marker 

set has been shown to accurately represent full-body movements, it holds promise for 

use in future studies on bend sprinting. However, its reliability has yet to be 

established.  

 Therefore, the aim of this chapter was to determine the within- and 

between-day reliability of bend sprinting using 3D optoelectronic motion capture with 

an LLT marker set.  

4.2. Methods 

4.2.1. Participants 

 Following ethical approval from Sheffield Hallam University Research Ethics 

Committee, six sprinters (four males; mean age 20 ± 1 years; body mass 73.3 ± 3.0 kg; 

stature 1.79 ± 0.56 m and two females; mean age 22 ± 3 years; body mass 58.9 ± 1.4 

kg; stature 1.66 ± 0.40 m) volunteered for this study. All athletes had experience of 

bend sprinting (200/400 m) and were active in training at the time of data collection. 

Mean personal best times were 22.76 ± 0.95 s (range: 22.00 - 24.10 s; 200 m, four 

males) and 64.00 ± 0.00 s (400 m, two females). Owing to the population under 

investigation and the requirement for experience the execution of a specific task, the 

number of participants in previous bend sprinting studies is typically in the range of 

six to nine and statistically significant differences have been found despite the smaller 

sample sizes used (Alt et al., 2015; Churchill et al., 2015; Churchill et al., 2016). 
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Furthermore, the findings from Alt et al. (2015) imply that velocity specific 

modulations are apparent in bend sprinting, and therefore extending the inclusion 

criteria may introduce variability into the sample. Thus, a smaller, but more 

homogenous, sample size was thought more appropriate. The study procedures were 

fully explained to participants who subsequently provided written informed consent.  

4.2.2. Equipment 

 Kinematic data were collected using a 12-camera optoelectronic motion 

capture system (8 x Raptor model and 4 x Eagle model, Motion Analysis Corporation, 

Santa Rosa, CA, USA) sampling at 240 Hz. The experimental set-up is demonstrated 

in Figure 4.2.2.1 and fully described in section 3.2.2. Athletes ran primarily in the 

direction of the positive x-axis (anterior-posterior) in the capture volume, (see Figure 

4.2.2.1) where the positive y-axis was directed vertically upwards (longitudinal) and 

the positive z-axis was orthogonal to the other two axes (mediolateral, pointing to the 

athletes’ right).  

A modified Vicon Plug-in Gait (PiG) marker set (LLT; Chapter 3) was used to 

model segments (torso, pelvis, thighs, shanks and feet, Figure 4.2.2.2). PiG has been 

used extensively in gait research (Kadaba, Ramakrishnan, & Wootten, 1990; Kulmala 

et al., 2017; Radzak, Putnam, Tamura, Hetzler, & Stickley, 2017). Although there are 

not yet any published data in sprinting, the unmodified PiG model is supported by 

reliability data during walking gait (Ferrari et al., 2008), revealing good reliability and 

correlation with other approaches including the Calibrated Anatomical System 

Technique (CAST; Benedetti, Catani, Leardini, Pignotti, and Giannini, 1998). Retro-

reflective, spherical markers (12.7 mm diameter) were placed on the following 

anatomical landmarks of the left and right leg: lateral malleolus, medial malleolus, 
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shank (lower lateral 1/3), thigh (lower lateral 1/3 surface of the thigh), lateral femoral 

epicondyle, medial femoral epicondyle, greater trochanter, posterior superior iliac 

spine (left and right), anterior superior iliac spine (left and right), C7, T10, suprasternal 

notch, xiphoid process. Acromion process markers were included for the static trial 

only. All other markers remained for the movement trials. 

 

 

 

 

 

 

 

 

The PiG model represents the foot as a single unit. However, this simplistic 

approach does not permit the measurement of movements within the foot such as MTP 

dorsiflexion and plantar flexion which have been identified as important movements 

in sprinting (Bezodis et al., 2012; Smith et al., 2012). In addition, inversion and 

eversion may have importance during bend sprinting. Therefore, additional markers 

were placed on the posterior, medial and lateral calcaneus, 1st and 5th metatarsal bases, 

1st, 2nd and 5th metatarsal heads and head of the 2nd toe (Smith et al., 2012, Figure 

4.2.2.3). All foot markers were shoe-mounted and assumed to represent the movement 

Capture volume (7.00 m 

x 1.50 m x 2.00 m) 

End of 60.00 m 

maximal effort 

running 

Start of run (38.00 m 

from capture volume) 

z 

y x 

Path of athlete 

(radius 36.5 m) 

Figure 4.2.2.1 Plan view of test set-up (not to scale) 
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of the underlying foot. The foot was modelled as three segments; rearfoot, forefoot 

and toebox (Figure 4.2.2.3). 

 Multi-segment foot models require placement of the three calcaneus markers 

(posterior, medial and lateral) to be equidistant, and at the same height (Grant & 

Chester, 2015; Paik, Stebbins, Kothari, & Zavatsky, 2014). However, there are few 

easily palpable anatomical landmarks at the calcaneus (Grant & Chester, 2015), which 

makes repeatable marker placement difficult. Furthermore, McDonald et al. (2019) 

suggest variation in calcaneal marker placement can result in significant differences in 

ankle joint power. Thus, a consistent marker placement should be maintained across 

trials and conditions. Therefore, a custom-built block was used to enable consistent 

marker placement (height 3 cm, between-marker distance 3 cm, Figure 4.2.2.2). 

   

 

 

 

 

 

 

 

 

 

Figure 4.2.2.2 Custom built block to enable consistent placement of 

calcaneus markers 
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Figure 4.2.2.2 Lower limb and trunk marker set anatomical locations. Markers were placed on both sides of the 

body on the following landmarks: C7, T10, jugular notch, xiphoid process, anterior superior iliac spine (ASIS), 

posterior superior iliac spine (PSIS), greater trochanter, medial femoral epicondyle, lateral femoral epicondyle, 

thigh, tibia, medial malleolus, lateral malleolus.  

Figure 4.2.2.3 Multi-segment foot model marker placement and segment division. The solid line (-) represents 

the forefoot defined by the first and fifth metatarsal base and first, second and fifth metatarsal head. Dashed 

line ( - - -) represents the toebox defined by first, second and fifth metatarsal heads and the head of second toe. 

Circular line ( …  ) represents the rearfoot segment defined by posterior, lateral and medial calcaneus and a 

virtual inter-medius calcaneus marker. 
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Where possible, segments were defined according to ISB recommendations (Wu et al., 

2002; Wu et al., 2005), with the exception of the multi-segment foot model which was 

defined in line with Cappozzo, Catani, Della Croce, and Leardini (1995) where the 

long axis of the foot was defined first. The segments were defined as follows: 

Rearfoot 

Segment definition: Posterior calcaneus, medial calcaneus, lateral calcaneus and 

virtual intermedius calcaneus marker. 

● Origin: Posterior calcaneus marker. 

● y: vector from the origin to intermedius calcaneus (midpoint of lateral and 

medial calcaneus markers) and its positive direction is proximal. 

● z: defined by the y-axis and lateral calcaneus marker, pointing to the right 

(positive). 

● x: orthogonal to the yz plane and the positive direction is dorsal. 

 

 

 

 

 

 

 

 

MC 

z 

x 

IC y PC 

LC 

Figure 4.2.2.4 Rearfoot segment definition. L/P/MC = lateral/posterior/medial 

calcaneus, IC = intermedius calcaneus 
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Forefoot  

Segment definition: 1st and 5th metatarsal bases and 1st and 5th metatarsal heads 

● Origin: virtual landmark 1/3 of the way between the base of 1st and 5th  

  metatarsal. 

● y: joins the origin with the 2nd metatarsal head. 

● z: orthogonal to a plane created by the y-axis and base of the 5th metatarsal, 

 pointing to the right. 

● x: orthogonal to the yz plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2.5 Forefoot segment definition. MTB1/5 = 1st and 5th metatarsal bases, 

MTH2 = 2nd metatarsal head, 1/3MTB1-5 = virtual landmark 1/3 of the way 

between MTB1 and MTB5 

MTB5 

z 

x 

MTH2 

MTB1 

y 1/3MTB1-5 
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Toebox 

Segment definition: 1st and 5th metatarsal heads and head of 2nd toe 

● Origin: 2nd Metatarsal Head. 

● y: joins the origin with the head of 2nd toe. 

● z: defined by the y-axis and the 1st metatarsal head. 

● x: orthogonal to the yz plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 

x 

y MTH2 

MTH1 

T2 

Figure 4.2.2.6 Toebox segment definition. MTH1 = first metatarsal head, MTH2 = second 

metatarsal head, T2 = head of second toe 
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Shank 

Segment definition: virtual markers of the knee and ankle joint centres and tibia marker 

● Origin: Intermedius malleoli (mid-point between lateral malleolus and 

 medial malleolus). 

● z: created from a unit vector passing from the medial malleolus to lateral 

 malleolus, pointing to the right (positive). 

● x: defined by the line perpendicular to the torsional plane of the tibia/fibula, 

 pointing anteriorly with its positive direction forwards. 

● y: defined by the line perpendicular to z- and x-axis with the positive 

 direction proximal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IM z 

x 

LM 
MM 

y 

Figure 4.2.2.7 Shank segment definition. LM/MM = lateral / medial malleolus, IM = intermedius 

malleolus 
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Thigh 

Segment definition: virtual markers of the hip and knee joint centres and the thigh 

marker 

● Origin: hip joint centre of rotation. 

● y: a line joining the origin with the midpoint between the femoral   

   epicondyles, pointing upwards (positive). 

● z: perpendicular to the y-axis, in the plane defined by the origin and femoral 

 epicondyles, pointing to the right (positive). 

● x: a line perpendicular to y- and z-axis, pointing anteriorly (positive). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2.8 Thigh segment definition. HJC = hip joint centre, LE/ME = lateral and medial 

epicondyle, IE = inter-epicondyle 
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Pelvis 

Segment definition: virtual marker at the midpoint of ASIS and both ASIS markers 

● Origin: mid-point of the two ASIS markers. 

● z: the line parallel to a line connecting the two ASIS landmarks, pointing to 

 the right (positive). 

● x: a line parallel to the plane defined by the midpoint of the two PSISs and 

 the two ASIS landmarks, orthogonal to the z-axis and pointing anteriorly 

 (positive). 

● y: orthogonal to the z-x plane and its positive direction is upwards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LPSIS 

IASIS 

y 

x 

z 

RPSIS 

LASIS RASIS 

IPSIS 

Figure 4.2.2.9  Pelvis segment definition. RPSIS/LPSIS = right / left posterior superior iliac spine, 

RASIS/LASIS = right/left anterior superior iliac spine, IPSIS = inter posterior superior iliac spine, 

IASIS = inter anterior superior iliac spine 
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Trunk 

Segment definition: virtual markers: mid-point of C7 and jugular notch, the midpoint 

between the xiphoid process and T10 and mid-point between the jugular notch and 

xiphoid process 

● Origin: coincident with the jugular notch. 

● y: the line connecting the mid-point between the xiphoid process and T10 and 

 the mid-point between the jugular notch and C7, pointing upward (positive). 

● z: the line perpendicular to the plane formed by the jugular notch, C7, and the 

 mid-point between the xiphoid process and T10, pointing to the right 

 (positive). 

● x: the common line perpendicular to the y- and z-axis, pointing forwards  

  (positive). 
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y 

x 

z 

MID JN-C7 

MID XIP-T10 

Figure 4.2.2.10  Trunk segment definition. JN = jugular notch, XIP = xiphoid process 
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4.2.3. Test-retest protocol  

 Data were collected on a flat standard indoor track surface with a reconstructed 

bend replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 

2008). Lane 1 has the tightest bend radius (36.5 m compared to lane 8, 41.5 m). 

Therefore, any adaptations that occur as a consequence of bend radius were expected 

to be more apparent in lane 1 (Churchill et al., 2018). Following an individualised, 

standard competition warm-up, participants performed five trials at maximal effort for 

60 m. Data collection started at 38 m, where athletes were likely to be at maximum 

speed (Krzysztof & Mero, 2013). Approximately eight minutes were allowed between 

trials to allow full recovery and avoid the onset of fatigue (Churchill et al., 2015). 

Participants were topless where possible or wearing form fitting clothing. In addition, 

participants wore the same pair of sprint spikes for each testing session and completed 

a full cool-down following the test protocol. 

The test protocol was repeated between two days and one week later, with the 

second session occurring at approximately the same time of day (i.e., morning or 

afternoon). The marker set was applied by the same researcher at each testing session. 

4.2.4. Data processing 

 Cortex software (version 5.3, Motion Analysis Corporation, Santa Rosa, CA, 

USA) was used to track and export raw 3D marker coordinate data. Automatic gap 

filling was performed using a cubic spline on all gaps <10 frames. Raw marker 

positions were filtered at 14-18 Hz using a low-pass, fourth-order recursive 

Butterworth filter. Trunk, pelvis and thigh markers were filtered at 18 Hz, shank and 

ankle markers at 16 Hz and foot markers at 14 Hz. These cut-off frequencies were 

chosen using residual analysis with a frequency range based upon previous sprint and 
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multi-segment foot literature with a range of 7 - 20 Hz (Churchill et al., 2015; Hunter 

et al., 2004a; Hunter et al., 2004b; Milner & Brindle, 2016; Queen, Gross, & Liu, 

2006). Segments, LCS and joint centres were defined and constructed in Visual 3D 

software based on a static standing trial (version 6, C-Motion, Rockville, MD, USA). 

Body segment parameters were estimated from de Leva (1996) and adjusted to allow 

the addition of 0.2 kg to each foot which represents the mass of a spiked shoe (Hunter 

et al., 2004b). For CoM calculations, a single segment foot was implemented with the 

multi-segment foot used for other kinematic calculations only. 

4.2.5. Calculation of variables 

 Descriptive statistics (mean and standard deviation) were calculated for spatio-

temporal and kinematic variables found to be of importance in previous bend sprinting 

research were selected for measurements and evaluation (Alt et al., 2015; Churchill et 

al., 2015). All variables were calculated separately for the left and right step. Left and 

right steps were defined by the foot that initiated the step. 

 Joint (orientation) angles were defined as the distal segment relative to the 

proximal segment, with the exception of the trunk that was defined relative to the lab 

coordinate system. The Cardan sequence zxy (multi-segment foot angles: zyx) was used 

in line with ISB recommendations (Wu et al., 2002; Wu et al., 2005). Peak joint angles 

during the stance phase were calculated to enable standardisation of results with 

previous research (e.g. Alt et al., 2015). Values for the left limb in the transverse and 

frontal planes were multiplied by minus one for ease of interpretation. Touchdown and 

take-off events were defined using vertical force data where available. The mean plus 

two standard deviations of the last three seconds of vertical ground reaction force data 

(where there was zero load on the force plate) were used as a threshold (Bezodis et al., 
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2007). For the second step or trials where force data was not recorded, the MTH5 

marker was used to determine touchdown and take-off. The mean plus two standard 

deviations of the vertical coordinates of the left and right MTH5 in the static trial were 

calculated and used as a threshold for ground contact in each participant. For each foot, 

touchdown was considered as the first data point where the vertical coordinate of the 

marker dropped below the defined threshold and vice-versa for take-off (Bezodis et 

al., 2007). Analysis of the difference in key variables when calculated from data with 

each of the two methods of touchdown identification has been provided in Appendix 

A. Coefficient of variation (CV) was <1% for the sample of variables calculated. A 

CV of < 10 % is thought to represent very good reliability between trials (Atkinson & 

Nevill, 1998). Therefore, it is appropriate to make use of these different methods since 

any error present in the identification of touchdown does not propogate into notable 

differences in the calculation of variables of interest.   Absolute speed was calculated 

using the first central difference technique from the horizontal distance travelled in the 

anterior direction by the CoM. The mean of the instantaneous speeds was calculated 

from the first frame of ground contact to the last frame of the flight phase with the 

contralateral foot to give absolute speed over a step (Churchill et al., 2015). Directional 

step length (Figure 4.2.5.1) was calculated relative to the direction of travel. A vector 

between the horizontal positions of the 2nd metatarsal head at consecutive ground 

contacts was created. A step progression vector was then created between the 

horizontal positions of the CoM at consecutive ground contacts and divided by its 

norm to create a unit vector. The dot product of the two vectors gave directional step 

length (Churchill et al., 2015). Step frequency was calculated as absolute speed divided 

by directional step length. Contact time was the time from touchdown to take-off of 
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the same leg and flight time the total step time (touchdown of one foot to touchdown 

of the contralateral foot) minus contact time. 

 

 

 

 

Touchdown distance (the horizontal displacement between the CoM and second 

metatarsal head at touchdown) was calculated using an instantaneous progression 

vector for the CoM (calculated from the horizontal position of the CoM one frame 

before the instant of interest to the horizontal position of the CoM one frame after the 

instant of interest, then divided by its norm to create a unit vector). A horizontal vector 

from the CoM to the 2nd metatarsal head of the touchdown limb was also calculated. 

The dot product of the horizontal vector onto the instantaneous progression vector gave 

touchdown distance (Churchill et al., 2015).  

4.2.6. Reliability measures 

 The reliability of the marker set was established using ICC tests. ICCs for 

absolute agreement were used to determine the reliability between sessions (ICC 3,k). 

Within-day reliability was determined using ICC (3,1) and calculated for all trials on 

the first day of testing. ICCs were interpreted according to Cicchetti (1994), where < 

0.40 represents poor agreement; 0.40 to 0.59 fair agreement; 0.60 to 0.75 good 

agreement and > 0.75 excellent agreement. In accordance with recommendations from 

Figure 4.2.5.1 Calculation of directional step length where GC represents ground contact and MTH2 represents 

the second metatarsal head 
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Koo and Li (2016), 95% confidence intervals (CI) were also presented and Cicchetti 

(1994) descriptors were applied to the interpretation of CIs. As recommended by Koo 

and Li (2016) for a variable to be considered as having 'excellent' reliability, both upper 

and lower bounds must fall within the excellent range (i.e., > 0.75). 

 Standard error of measurement (SEM) was calculated using the formula (Weir, 

2005): 

Standard deviation of the mean difference (SD) x √1 − 𝐼𝐶𝐶  Equation 1 

  Minimal detectable difference (MDD) was calculated using the formula (Weir, 

2005): 

1.96 x SEM x √2        Equation 2   

4.3. Results 

 For between-day reliability (ICC 3, k), analysis of 95% CI revealed all but two 

spatio-temporal variables (Table 4.3.1, Table 4.3.2) were fair to excellent 

(0.419 - 1.000). Right touchdown distance and left step length were poor to excellent 

(0.180 - 0.980). For all variables, within-day reliability (ICC 3, 1: 0.258 - 1.000) was 

greater than between-day reliability (ICC 3, k: 0.180 - 0.975). Right step frequency 

displayed a between-day MDD of 0.16 Hz, whereas right and left contact time had a 

between-day MDD of 0.02 s. Contact time also demonstrated a small between-day 

SEM (0.006-0.007 s). Within-day SEM and MDD were smaller when compared to 

between-day values.  

 For joint kinematics (Table 4.3.3, Table 4.3.4), 29 of 44 variables demonstrated 

excellent between-day reliability when analysing the 95% CI (0.780 - 0.999). Six 
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frontal and transverse plane variables (left knee internal rotation, right hip external 

rotation, right knee abduction, right knee adduction, right knee external rotation, right 

ankle external rotation) demonstrated poor to excellent reliability (0.075 - 0.985). 

Within-day reliability (ICC 3, 1: 0.228-0.999) was greater than between-day 

variability (ICC 3, k, 0.075 - 0.999) for most joint kinematic variables. MDD ranged 

from 1-11° across all variables. Between-day SEM values were < 4° across all 

conditions, however, within-day SEM and MDD were smaller. 
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Table 4.3.1 Left step spatio-temporal variables. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability. 95% lower- (LB) and upper bound (UB) confidence intervals 

are presented. Variables showing less than excellent (<0.75) reliability are highlighted with an asterisk (*). ± indicates the standard deviation of the group means. 

 

 

 

 

Variable 
Left ICC 

(3, 1) 

95% 

 LB 

95% 

 UB 
SEM MDD 

ICC 

(3, k) 

95%  

LB 

95%  

UB 
SEM MDD 

Day One Day Two 

Absolute speed (m/s) 7.89 ± 0.75 8.01 ± 0.67 0.990 0.964 0.999 0.02 0.04 0.985 0.946 0.989 0.03 0.08 

Directional step length (m) 1.94 ± 0.08 2.00 ± 0.08 0.832 0.315* 0.995 0.03 0.08 0.738* 0.184* 0.980 0.04 0.10 

Contact time (s) 0.128 ± 0.01 0.127 ± 0.01 0.949 0.748 0.994 <0.01 0.01 0.815 0.419* 0.933 0.007 0.02 

Flight time (s) 0.122 ± 0.03 0.126 ± 0.02 0.857 0.456* 0.983 <0.01 0.01 0.796 0.536* 0.911 0.01 0.03 

Step frequency (Hz) 4.07 ± 0.32 4.01 ± 0.26 0.981 0.898 1.000 0.03 0.07 0.975 0.834 1.000 0.03 0.08 

Touchdown distance (m) 0.40 ± 0.08 0.42 ± 0.08 0.791 0.258* 1.000 0.02 0.06 0.701* 0.436* 0.855 0.02 0.07 
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Table 4.3.2 Right step spatio-temporal variables. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability. 95% lower- (LB) and upper bound (UB) confidence intervals 

are presented. Variables showing less than excellent (<0.75) reliability are highlighted with an asterisk (*). ± indicates the standard deviation of the group means. 

 

 

 

 

 

 

 

 

Variable 
Right ICC  

(3,1) 

95%  

LB 

95%  

UB 
SEM MDD 

ICC 

(3, k) 

95%  

LB 

95% 

 UB 
SEM MDD 

Day One Day Two 

Absolute speed (m/s) 7.87 ± 0.78 8.01 ± 0.67 0.973 0.908 0.997 0.02 0.04 0.984 0.944 0.999 0.03 0.08 

Directional step length (m) 1.93 ± 0.11 2.00 ± 0.11 0.939 0.782 0.993 0.03 0.08 0.924 0.768 0.991 0.03 0.09 

Contact time (s) 0.108 ± 0.01 0.108 ± 0.01 0.963 0.826 0.996 <0.01 <0.01 0.878 0.734 0.944 0.006 0.02 

Flight time (s) 0.119 ± 0.03 0.113 ± 0.05 0.935 0.693 0.995 0.003 0.01 0.761 0.420* 0.897 0.006 0.02 

Step frequency (Hz) 4.09 ± 0.33 4.02 ± 0.27 0.949 0.818 0.994 0.06 0.16 0.958 0.869 0.995 0.06 0.16 

Touchdown distance (m) 0.34 ± 0.07 0.38 ± 0.07 0.982 0.867 0.997 <0.01 <0.01 0.684* 0.180* 0.874 0.03 0.08 
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Table 4.3.3 Left step joint kinematics. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability. 95% lower- (LB) and upper bound (UB) confidence intervals are presented. 

Variables showing less than excellent (<0.75) reliability are highlighted with an asterisk (*). ± indicates the standard deviation of the group means. 

 

Peak joint angle during stance (°) 
Left ICC 

(3, 1) 
95% 

LB 

95% 

UB 
SEM MDD 

ICC 
(3, k) 

95% 

LB 

95% 

UB 
SEM MDD 

Day One Day Two 

Hip Flexion  42 ± 8 38 ± 16 0.926 0.763 0.988 1.92 5 0.930 0.782 0.992 2.55 7 

Hip Extension -15 ± 5 -14 ± 11 0.975 0.922 0.996 0.84 2 0.917 0.738 0.990 2.36 7 

Hip Abduction -5 ± 3 -5 ± 4 0.946 0.825 0.991 0.69 2 0.941 0.714 0.999 0.87 2 
Hip Adduction 9 ± 4 8 ± 5 0.988 0.960 0.998 0.24 1 0.956 0.845 0.997 0.58 2 

Hip Internal Rotation  -2 ± 9 -2 ± 8 0.992 0.973 0.999 0.26 1 0.989 0.965 0.999 0.42 1 

Hip External Rotation -16 ± 8 -14 ± 7 0.963 0.861 0.996 0.55 2 0.967 0.897 0.996 0.72 2 

Knee Flexion -40 ± 5 -42 ± 9 0.952 0.803 0.997 0.81 2 0.967 0.882 0.998 0.87 2 

Knee Extension  -18 ± 7 -18 ± 7 0.975 0.911 0.997 0.70 1 0.978 0.932 0.997 0.54 1 

Knee Abduction  -3 ± 3 -2 ± 4 0.969 0.890 0.996 0.57 2 0.936 0.780 0.995 1.33 4 
Knee Adduction  4 ± 4 3 ± 3 0.942 0.815 0.991 0.38 1 0.937 0.808 0.992 0.40 1 

Knee Internal Rotation 7 ± 7 8 ± 10 0.947 0.814 0.994 1.18 3 0.782 0.190* 0.985 2.39 7 

Knee External Rotation  -13 ± 9 -9 ± 10 0.956 0.862 0.993 1.55 4 0.933 0.794 0.992 2.05 6 

Ankle Dorsiflexion 107 ± 6 108 ± 9 0.962 0.865 0.996 0.96 3 0.934 0.795 0.992 2.37 7 

Ankle Plantar flexion 63 ± 12 58 ± 10 0.960 0.850 0.995 1.94 5 0.932 0.786 0.992 3.87 11 

Ankle Eversion -10 ± 13 -12 ± 13 0.994 0.979 0.999 0.32 1 0.971 0.909 0.996 1.06 3 
Ankle Inversion 5 ± 14 6 ± 11 0.992 0.972 0.999 0.49 1 0.970 0.907 0.996 1.85 5 

Ankle Internal Rotation 24 ± 6 22 ± 6 0.949 0.819 0.994 0.66 2 0.852 0.549* 0.982 2.31 6 

Ankle External Rotation 3 ± 5 4 ± 3 0.976 0.910 0.997 0.69 2 0.871 0.590 0.985 1.76 5 

Midfoot Inversion  0 ± 4 0 ± 3 0.962 0.860 0.996 0.53 1 0.872 0.595* 0.985 1.64 5 
Midfoot Eversion 7 ± 5 7 ± 1 0.985 0.948 0.998 0.34 1 0.877 0.603* 0.986 1.88 5 

MTP Dorsiflexion 36 ± 8 38 ± 6 0.995 0.980 0.999 0.38 1 0.914 0.729* 0.990 2.21 6 

MTP Plantar flexion  13 ± 5 13 ± 6 0.906 0.648* 0.989 0.97 3 0.840 0.504* 0.981 2.20 6 
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Table 4.3.4 Right step joint kinematics. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability. 95% lower- (LB) and upper bound (UB) confidence intervals are 

presented. Variables showing less than excellent (<0.75) reliability are highlighted with an asterisk (*). ± indicates the standard deviation of the group means. 

 

Peak joint angle during stance (°) 
Right ICC  

(3,1) 

95% 

LB 

95% 

UB 
SEM MDD 

ICC 

(3, k) 

95% 

LB 

95% 

UB 
SEM MDD 

Day One Day Two 

Hip Flexion  39 ± 10 43 ± 11 0.909 0.714 0.985 1.81 5 0.883 0.580 0.992 3.15 9 
Hip Extension -15 ± 8 -14 ± 15 0.989 0.962 0.999 0.40 1 0.961 0.861 0.997 1.70 5 

Hip Abduction -7 ± 4 -6 ± 4 0.963 0.871 0.996 0.46 1 0.966 0.896 0.996 0.46 1 

Hip Adduction 4 ± 6 6 ± 5 0.985 0.945 0.998 0.40 1 0.976 0.927 0.997 0.41 1 
Hip Internal Rotation  3 ± 5 4 ± 8 0.923 0.733* 0.991 1.36 4 0.907 0.705* 0.989 1.46 4 

Hip External Rotation -9 ± 2 -9 ± 5 0.761 0.228* 0.962 2.41 7 0.752 0.200* 0.971 2.24 6 

Knee Flexion -44 ± 5 -42 ± 7 0.860 0.461* 0.984 2.21 5 0.831 0.479* 0.980 1.90 5 

Knee Extension  -18 ± 7 -16 ± 8 0.951 0.822 0.994 0.70 1 0.972 0.913 0.997 0.42 1 
Knee Abduction  -3 ± 2 - 4 ± 3 0.891 0.613* 0.987 0.88 2 0.778 0.308* 0.959 0.55 2 

Knee Adduction  2 ± 1 3 ±4 0.855 0.320* 0.978 0.87 2 0.809 0.493* 0.990 1.23 3 

Knee Internal Rotation 1 ± 8 -2 ± 9 0.961 0.862 0.995 1.01 3 0.973 0.886 0.999 1.09 3 
Knee External Rotation  -14 ± 4 -13 ± 9 0.807 0.327* 0.997 1.64 5 0.739* 0.075* 0.982 3.67 10 

Ankle Dorsiflexion 98 ± 6 97 ± 8 0.954 0.854 0.993 1.25 3 0.940 0.814 0.993 1.10 3 

Ankle Plantar flexion 52 ± 13 51 ± 13 0.944 0.804 0.993 1.52 4 0.961 0.864 0.997 1.37 4 

Ankle Eversion -4 ± 8 -4 ± 7 0.988 0.956 0.999 0.60 2 0.897 0.705* 0.983 2.68 6 

Ankle Inversion 12 ± 4 12 ± 9 0.961 0.874 0.994 1.38 4 0.816 0.294 0.987 3.33 9 

Ankle Internal Rotation -7 ± 4 - 6 ± 6 0.948 0.815 0.994 1.06 3 0.922 0.734 0.994 1.25 3 
Ankle External Rotation -17 ± 3 - 16 ± 2 0.929 0.708 0.995 0.75 2 0.793 0.353* 0.976 1.34 4 

Midfoot Inversion  -9 ± 5 -6 ± 4 0.937 0.799 0.990 0.92 3 0.827 0.510* 0.978 2.84 8 

Midfoot Eversion -3 ± 4 0 ± 3 0.960 0.887 0.996 0.77 2 0.880 0.639* 0.986 1.66 5 

MTP Dorsiflexion 36 ± 6 36 ± 5 0.918 0.703 0.990 1.18 3 0.914 0.785 0.994 1.91 5 
MTP Plantar flexion  12 ± 5 10 ± 4 0.945 0.804 0.994 1.53 4 0.908 0.839 0.989 1.77 5 

 



 

Page 101 of 226 

 

4.4. Discussion 

 The aim of this study was to determine the between- and within-day reliability 

of a lower limb and trunk marker set during maximal velocity bend sprinting. All 

athletes were experienced bend sprinters and mean absolute speed was similar between 

days. All variables (both spatio-temporal and kinematic) demonstrated excellent 

within-day reliability. Data from this study demonstrated consistently poorer between-

day reliability than within-day reliability. When compared to between-day reliability, 

greater within-day reliability has been a common finding throughout previous 

reliability investigations involving running (e.g., Alenezi et al., 2016; Ferber et al., 

2002). It is not possible to quantify the error arising from soft tissue artefact and marker 

misplacement within the current body of work. However, Leardini, Chiari, Croce, and 

Cappozzo (2005) concluded from a review of literature that soft tissue artefact is most 

prominent at the thigh compared with other lower limb segments, with Akbarshahi et 

al. (2010) reporting mean artefact of 9.7 mm in the mediolateral direction with 

skin-mounted thigh markers during treadmill walking in typical male adults. However, 

artefact during sprinting, which occurs at a higher velocity than walking, is likely to 

be higher. The increase in artefact at higher speeds is likely offset somewhat by the 

population of athletes used within the current programmes of research. Large 

differences in soft tissue artefact between participants are typical  (Leardini et al., 

2005), and so the contribution of error associated with soft tissue artefact and marker 

placement to the present study is likely reduced due to the lean body composition and 

consequently lower adipose tissue of the athletes involved and the marker set being 

applied by the same experienced researcher for all participants. In addition, given that 

the 3D residual for the optoelectronic camera system was calibrated to ≤0.4 mm for 
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each instance of testing, the majority of within day variability can likely be attributed 

to human movement variability in task execution as opposed to measurement error. 

 Between-day reliability for kinematic variables during walking and running 

has been reported with ICCs (without 95% CI's) in the range of 0.51 - 0.72 (Alenezi et 

al., 2016); 0.54 - 0.93 (Ferber et al., 2002) and 0.644 - 0.993 (Milner & Brindle, 2016). 

In comparison to between-day reliability, within-day reliability for kinematic variables 

is typically greater: 0.63 - 0.94 (Alenezi et al., 2016); 0.92 - 0.99 (Ferber et al., 2002) 

and 0.881 - 0.994 (Milner & Brindle, 2016). Therefore, the between- (0.739 - 0.989) 

and within-day (0.761 - 0.995) reliability demonstrated for joint kinematics within the 

present study are comparable to previous research in walking and running. Greater 

within-day reliability suggests that, where possible, data for each individual athlete 

should be collected during a single session. Should this not be appropriate, the 

between-day MDDs provide an indication of the margin for error that should be 

applied when interpreting results. 

 SEM and MDD provide an indication of the magnitude of change required in 

experimental studies to be confident that a real change has occurred. The present 

findings demonstrated an MDD of 2° (left step) and 1° (right step) for peak hip 

adduction angles comparing favourably to the MDD of 6.90° during running and 8.37° 

in cutting reported previously (Alenezi et al., 2016). It is likely these differences can 

be attributed to the inclusion of recreational athletes by Alenezi et al. (2016) in 

comparison to the present study where athletes were trained and experienced in the 

execution of a specific task. Moreover, the cutting task used by Alenezi et al. (2016) 

may also contribute to these differences since it may be difficult for non-expert 

participants to replicate the movement consistently. In addition, Alenezi et al. (2016) 
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found knee internal rotation angle during the cutting manoeuvre (which due to its 

lateral change of direction may share some similarities with bend sprinting) 

demonstrated the lowest between-day ICC (0.40) with an MDD of 11.3°. This is 

similar to the current findings, where one of the lowest between-day ICC was left knee 

internal rotation angle (0.782) with an MDD of 7°. Whilst this is larger than the 5° 

difference in left knee internal rotation angle reported by Alt et al. (2015), the 

reliability can be increased by collecting data on the same day. Doing so would 

decrease the required MDD from 7° to 3°, thus making the protocol sensitive to smaller 

changes such as those reported by Alt et al. (2015).  

 Touchdown distance and left step length in this study failed to achieve 

excellent between-day reliability, supporting previous findings that touchdown 

distance was one of the least reliable variables examined during straight-line sprinting 

(Hunter et al., 2004a). In addition, Standing and Maulder (2017) reported between-day 

ICCs of 0.65 and 0.44 for step length during the first and third steps of the acceleration 

phase. However, Hunter et al. (2004a) showed that reliability increased for all 

variables when averaging across three trials, suggesting a single trial is insufficient to 

capture the natural variance within an athlete's technique. Therefore, as also 

demonstrated by the results of average measures ICC (3, k) here, future research 

should, where possible, use an average of multiple trials to improve the reliability of 

variables such as step length and touchdown distance. Step length results of the present 

study demonstrate excellent within-day reliability for both steps, however high 

standard deviations were reported, suggesting step length is variable both between 

participants (SD: 0.08 - 0.11 m) and between-days (ICC 3, k: 0.184 - 0.991). These 

variations in step length might contribute towards the different results found between 
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previous bend sprinting studies. For example, Churchill et al. (2015) and Churchill et 

al. (2016) suggested a reduction in right step length is present on the bend, while Alt 

et al. (2015) found neither left nor right step length was affected during bend sprinting. 

However, this may have been a result of the different protocols used, since Alt et al. 

(2015) measured sub-maximal velocity compared to Churchill et al. (2015) and 

Churchill et al. (2016) who evaluated maximal velocity. The present study results 

provide increased clarity for future research on what constitutes a real change in step 

length. The ICCs for the remaining spatio-temporal variables represented excellent 

agreement for both between- and within-day reliability, with small (e.g. contact time 

0.006 - 0.007 s) SEM reported throughout. Notwithstanding the poor and fair 95% CI 

reported for some ICCs, the resulting MDD is low enough to detect changes in 

spatio-temporal variables between conditions. For example, a 0.08 m MDD has been 

established for right step length. Churchill et al. (2015) reported a decrease of 0.10 m 

in the right step length on the bend compared to the straight at maximal speed. In 

further research also at maximal speed, Ishimura and Sakurai (2016) reported a 

difference of 0.14 m between right and left step length on the bend. Therefore, the 

marker set is reliable for future use with spatio-temporal variables.   

 Reliability of sagittal plane variables was generally greater than variables 

calculated in the frontal and transverse planes, replicating common findings of 

reliability analyses. For example, a review of reliability in kinematic measures of 

walking gait demonstrated the lowest reliability, and the highest error occurred most 

frequently in the transverse plane (McGinley, Baker, Wolfe, & Morris, 2009). In 

addition, the values reported here are consistent with previous reliability investigations 

of multi-segment foot models during walking (Bishop et al., 2013; Deschamps et al., 
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2012) and running (Milner & Brindle, 2016). Joints at the foot generally exhibit 

smaller ranges of motion than other segments. Therefore, determining true differences 

from error can be more of an issue at segments of the foot. However, comparison of 

the MDDs with previous bend sprinting literature suggests the protocol is sensitive 

enough to detect the magnitude of change previously reported. For example, Alt et al. 

(2015) and Churchill et al. (2015) have reported an increase in left hip adduction on 

the bend compared with the straight of 6° and 7° respectively. The present study 

established an MDD of 1° and 2° for within- and between-day protocols. In addition, 

although right ankle external rotation demonstrated poor to excellent between-day 

reliability, the associated MDD is 4°, which is smaller than the 5° difference between 

left and right foot on the bend reported by Alt et al. (2015). In addition, right ankle 

external rotation MDD can be decreased further to 2° by collecting data on the same 

day. Therefore, the marker set can reliably be used in future research. 

 A radius replicating lane one (36.5 m) was used in this study. Whilst this may 

be most useful from a research perspective since technical adaptations have been 

shown to be more prominent in lanes with a smaller radius (Churchill et al., 2018), 

athletes tend to avoid training in this lane, which may have contributed towards 

variance between days.  

4.5. Conclusion 

 The reliability of an LLT marker set with a multi-segment foot has been 

established for bend sprinting. Overall, between-day ICCs were fair to excellent for all 

variables and comparable to those previously reported during straight-line walking and 

running gait. Within-day reliability was greater than between-day reliability, 

suggesting that, where possible, data collection for a single athlete should take place 
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on the same day. The between-day data presented considers variance in athlete 

technique alongside the reliability of the equipment set-up, calibration, random error 

and marker placement. As such, this will inform protocol design and the determination 

of meaningful differences between conditions in future kinematic studies of bend 

sprinting. The LLT marker set is a reliable model to use in future analyses of bend 

sprinting. However, results should be interpreted with the reported MDD's in mind. 
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Chapter Five: THE EFFECT OF THE BEND ON TECHNIQUE AND 

PERFORMANCE IN THE ACCELERATION PHASE OF SPRINTING 
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5. The effect of the bend on technique and performance in the acceleration 

phase of sprinting 

5.1. Introduction 

 In track and field sprint events longer than 100 m, more than half the total 

distance is run on a curved portion of track (Meinel, 2008). Research demonstrates a 

decrease in maximum velocity when sprinting on the bend in an anti-clockwise 

direction (which is the standard direction of travel in athletics competition) compared 

with the straight which has been attributed to kinetic, kinematic and spatio-temporal 

adaptations (Churchill et al., 2015; Churchill et al., 2016). However, the current 

understanding of biomechanical adaptations during anti-clockwise bend sprinting in 

the acceleration phase is limited. Identification of these affected parameters could aid 

overall race performance through the development of targeted training programmes 

and increased specificity of athlete preparation.  

 During bend sprinting at maximal speed, mean body lateral lean angles of 10° 

and 15° at touchdown have been reported in the left and right step, respectively 

(Churchill et al., 2015). This lateral lean is necessary to counteract the moment 

produced by the mediolateral force required to change direction. The configuration of 

the lower limb is therefore dictated by the lateral lean and constrained by the need to 

complete an anti-clockwise left hand turn.  Therefore, several kinematic changes of 

the lower limb exist during bend sprinting, which occur predominantly in the frontal 

and transverse planes (Alt et al., 2015; Churchill et al., 2015) and are thought to be a 

consequence of lateral lean (Churchill et al., 2015). More specifically, the left limb is 

characterised by a mean increase in peak hip adduction of approximately 6° during 

bend sprinting at 40 m compared with the straight (Alt et al., 2015; Churchill, 2015). 

Furthermore, a high left peak ankle eversion angle (e.g. 13° Alt et al., 2015; > 35° Luo 
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and Stefanyshyn, 2012a) has been reported, but in protocols that are not representative 

of a competitive elite environment, for example, at sub-maximal speed (Alt et al., 

2015) and with a smaller radius (2.5 m, Luo & Stefanyshyn, 2012a). It has previously 

been suggested that excessive hip adduction and ankle eversion are associated with 

injury, particularly at the knee (Hreljac, 2004; Li et al., 2015). Hence, understanding 

the kinematics of bend sprinting technique may provide insight into possible injury 

mechanisms. Therefore, further investigation with a protocol more closely replicating 

race conditions is warranted. 

 In the right limb, a mean 4° increase in internal knee rotation on the bend 

compared with the straight is thought to contribute to a rotational strategy which serves 

to control horizontal plane motion (Alt et al., 2015). This finding did not reach the 

alpha level p < 0.05, but due to the small sample size (n = 6) was reported as a tendency 

(p < 0.1, Alt et al., 2015), suggesting this should be interpreted cautiously until further 

evidence is available. However, bend sprinting did result in a 3° increase in peak right 

ankle external rotation compared with the straight (Alt et al., 2015). Despite Alt et al. 

(2015) providing some initial findings using a controlled sub-maximal velocity, 

gaining further evidence during representative performance conditions (such as during 

acceleration) would enhance the current evidence base. 

 Spatio-temporal parameters such as contact time, step frequency and step 

length are fundamental components of sprint performance, with these parameters 

being affected during bend sprinting. For example, Alt et al. (2015) found an increase 

in left contact time on the bend compared with the straight at sub-maximal speed. This 

increase in contact time is consistent with others at maximal speed (Churchill et al., 

2015; Churchill et al., 2016; Ishimura & Sakurai, 2010; Ishimura et al., 2013). 

However, the evidence base regarding spatio-temporal variables is sometimes 
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contradictory. For example, a reduction in right step length on the bend compared with 

the straight at maximal speed has been reported by several authors (Churchill et al., 

2015; Churchill et al., 2016; Ishimura et al., 2013). This reduction was considered 

responsible for a loss of velocity on the bend compared with the straight (Churchill et 

al., 2015), highlighting the importance of spatio-temporal variables and their 

relationship with performance. However, step length was unaffected during sub-

maximal bend sprinting (Alt et al., 2015). Moreover, the majority of available research 

has focussed on maximal and sub-maximal speed bend sprinting (Alt et al., 2015; 

Churchill et al., 2015; Churchill et al., 2016; Ishimura et al., 2013). The limited 

research available in the acceleration phase of sprinting at maximal effort showed both 

left and right step lengths were reduced on the bend compared with the straight (Stoner 

& Ben-Sira, 1979). Therefore, further research is required regarding the effect of the 

bend during the acceleration phase on spatio-temporal aspects of technique and 

performance.  

 Alt et al. (2015) suggested some adaptations may be velocity dependent. Thus, 

during the acceleration phase, where athletes have not yet reached maximum velocity, 

the kinematic demands of bend sprinting may be different from the maximum speed 

phase. It is possible that adaptations such as increased hip adduction and ankle eversion 

are less prominent during acceleration. Moreover, the maximum velocity a sprinter is 

able to attain is dependent on the sprinters' ability to accelerate. Consequently, any 

adaptations present in the acceleration phase of bend sprinting may impact upon 

overall race performance. However, the acceleration phase (0 - 40 m) has received 

little attention within the bend sprinting literature. Therefore, the aim of the present 

study was to investigate the effect of bend sprinting on the kinematic and spatio-

temporal parameters of the lower limb during the acceleration phase. It was 
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hypothesised bend sprinting would result in greater adaptations in the frontal and 

transverse planes than on the straight. 

5.2. Methods 

5.2.1. Participants 

 Ethical approval was provided by the Sheffield Hallam Research Ethics 

Committee. Nine male sprinters (mean age 22 ± 4 years; body mass 71.48 ± 9.47 kg; 

stature 1.81 ± 0.06 m) with experience of bend sprinting (200 and /or 400 m) 

volunteered to participate in this study. The sample size was largely determined by 

convenience sampling. However, the number is within the range used in the previous 

bend sprinting literature (Alt et al., 2015; Churchill et al., 2015; Churchill et al., 2016). 

To standardise ability with previous research (22.60 ± 0.33 s, Alt et al., 2015; 

22.15 ± 0.93 s, Churchill et al., 2015), the inclusion criteria required a 200 m personal 

best of 23.5 s or faster (mean 22.70 ± 0.49 s, range 21.8 - 23.43 s). All athletes were 

active in training and injury free at the time of data collection. The study procedures 

were fully explained to participants who subsequently provided written informed 

consent.  

5.2.2. Experimental set-up 

 The experimental set-up is demonstrated in Figure 5.2.1.1. Kinematic data 

were collected using a 15-camera optoelectronic motion capture system (13 x Raptor 

model and 2 x Eagle model, Motion Analysis Corporation, Santa Rosa, CA, USA) 

sampling at 200 Hz. A right-handed lab coordinate system was defined using a rigid 

L-frame with four markers at known locations. Athletes ran primarily in the direction 

of the positive x-axis (anterior-posterior), where the positive y-axis was directed 

vertically upwards (longitudinal) and the positive z-axis (mediolateral) was pointing 

to the athletes’ right. A three-marker wand (length 500 mm) was used within the 
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calibration volume to scale the individual camera intrinsic and extrinsic parameters. 

The calibration volume (7 m long, 3 m wide and 1.5 m high) was located tangentially 

to the apex of the curve to record data through the 10 - 17 m section of the 30 m sprints. 

Data were collected specifically at this distance as Morin et al. (2015) identified the 

production of horizontal impulse in the first twenty metres of a sprint as a major 

determinant of sprint acceleration performance. Furthermore, Stoner and Ben-Sira 

(1979) measured sprints on the bend vs. straight at 12 m, and data collection at this 

point provides standardisation allowing comparisons with previous research.  

 For the identification of gait events, a force plate (Kistler, Model 9287BA, 900 

x 600 mm) was embedded into the track surface at approximately 12 m. A modified 

Vicon Plug-in Gait (PiG) marker set (lower limb and trunk; 4.2.2) was used to model 

the torso, pelvis, thighs, shanks and feet segments (toebox, forefoot, rearfoot). For full 

details of marker location, please see Section 4.2.2. The marker set was applied by the 

same researcher for all participants to reduce variability in marker placement. 
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5.2.3. Protocol 

 Data collection took place on a standard flat indoor track surface. A bend 

replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 2008) was 

reconstructed, and a 30 m section of straight track was used for straight trials. For bend 

trials, cones were placed at 1 m intervals to aid with guiding the athlete during the 

drive phase. A lane width of 1.22 m was used. The order of bend and straight trials 

was randomised to minimise order effects. Participants completed a typical warm-up 

followed by up to six maximal effort trials for 30 m from starting blocks in both bend 

and straight conditions. Athletes were instructed to accelerate maximally for the full 

30 m, and 'on your marks, set, go' signal was used. To avoid the onset of fatigue, 

approximately eight minutes rest were allowed between trials (Churchill et al., 2015). 

Participants wore their own sprint spikes for the testing session and were topless with 

form fitting shorts allowing the majority of markers to be placed directly on to the skin. 

z 

x y 

Capture volume (15- 

camera, 7.00 m x 

3.00 m x 1.50 m, 

200 Hz) Path of athlete 

Start of bend trials 

(approximately 

12.00 m from force 

plate) 
End of 30.00 

m bend 

running 

Kistler force plate 

(Model: 9287BA, 

900 x 600 mm, 

1000 Hz) 

Start of straight trials 

(approximately 

12.00 m from force 

plate) 

End of 30.00 m 

straight running 

Figure 5.2.1.1 Plan view of experimental set-up (not to scale). 
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5.2.4. Data processing 

 Raw 3D marker coordinate data was tracked using Cortex software (version 

5.3, Motion Analysis Corporation, Santa Rosa, CA, USA). Automatic gap filling 

(cubic spline) was performed; all gaps were <10 frames. Raw marker positions were 

filtered at 18 Hz using a low-pass, fourth-order recursive Butterworth filter. The 

cut-off frequency was determined with the use of residual analysis. Segments, LCS 

and joint centres were defined using Visual 3D software (version 6, C-Motion, 

Rockville, MD, USA). de Leva (1996) was used to estimate body segment parameters. 

In line with Hunter et al. (2004b), these values are typically adjusted by 0.2 kg to 

represent the typical mass of a sprint spike. However, owing to advances in technology 

which aim to reduce the weight of the shoe, it is possible the value of 0.2 kg is outdated. 

Therefore, the manufacturer and model of the shoe were recorded, allowing the values 

to be individually adjusted by 0.150 to 0.189 kg (representing the mass of individual 

participants' spiked shoe according to manufacturer guidelines) and increasing the 

accuracy of the estimations.  

 Vertical force data and methods described by Bezodis et al. (2007) were used 

to identify touchdown and take-off events, with the mean plus two standard deviations 

of the last three seconds of vertical ground reaction force data (where there was zero 

load on the force plate) were used as a threshold. All variables were measured 

individually for the left and right step. For touchdown of the second foot contact or 

trials where force data was not available, methods described by Bezodis et al. (2007) 

were used where the mean plus two standard deviations of MTH5 vertical coordinates 

in the static trial were used as a threshold to detect touchdown and take-off. Spatio-

temporal variables (absolute speed, contact time, directional step length, turn of CoM, 
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touchdown distance, step frequency and flight time) were calculated following the 

methods of Churchill et al. (2015), described in full in Section 4.2.5.  

 For the calculation of race velocity in bend trials, a four-quadrant inverse 

tangent was used to calculate the angle between CoM position at each time point. The 

difference between these angles at consecutive time points was used to calculate race 

displacement: 

race displacement = θd r      Equation 3 

where θd represents the difference in angle and r is the radius of the race line (36.7 m). 

First central difference technique was then used to calculate the instantaneous velocity 

of the CoM relative to the race line. Race step length was calculated using a similar 

method, where the angle between the MTP at two consecutive ground contacts was 

calculated (θ), then used to calculate race step length with the following equation, 

where r is the radius of the race line (36.7 m): 

race step length = θr      Equation 4 

 Joint orientation angles during the stance phase were defined as the distal 

segment relative to the proximal segment. Joint angles were calculated using the 

cardan sequence zxy (multi-segment foot angles: zyx) and cropped to the stance phase. 

To enable standardisation with previous bend sprinting research (e.g. Alt et al., 2015), 

peak angle during stance was then calculated and averaged across three trials for each 

participant. Furthermore, bend sprinting research has reported peak ankle eversion 

angles close to that considered to cause injury if reached repeatedly (Alt et al., 2015; 

Clarke et al., 1984). Therefore, the analysis of peak angles could assist in developing 

injury prevention strategies by identifying which joints are at risk and how. For ease 

of interpretation, values of the left limb were multiplied by minus one. Body lateral 

lean was calculated using 3D orientation angles, based on methods outlined by 
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(Yeadon, 1990). First, a CoM progression vector was calculated using the first central 

difference technique at the frame before and after the instant of interest. This was then 

divided by its norm to create a unit vector, i representing forward progression. Unit 

vector j, representing vertical progression, was defined as [0 1 0]. The cross product 

of these two unit vectors was then divided by its norm to give unit vector k 

(mediolateral progression): 

k =  
𝑖 𝑥 𝑗

 ‖ 𝑖 𝑥 𝑗  ‖
       Equation 5 

A unit vector matrix for the progression coordinate system was then constructed: 

[PROG] = [

𝑖𝑥  𝑖𝑦 𝑖𝑧

𝑗𝑥 𝑗𝑦 𝑗𝑧

𝑘𝑥 𝑘𝑦 𝑘𝑧

]       Equation 6 

 A body coordinate system was then created using the i unit vector from the 

CoM progression matrix. A temporary second unit vector (j), was created from the 

second metatarsal head (MTH2) and CoM location, and divided by its norm. Vector k 

was then created using the cross product of i and j: 

k = i x j        Equation 7 

j was then recalculated using the cross product of k and i: 

j = k x i         Equation 8 

A unit vector matrix for the body coordinate system was then created: 

[BODY] = [

𝑖𝑥  𝑖𝑦 𝑖𝑧

𝑗𝑥 𝑗𝑦 𝑗𝑧

𝑘𝑥 𝑘𝑦 𝑘𝑧

]       Equation 9 

The RTM was the dot product of the two matrices: 

[RTM] = [BODY][PROG]'      Equation 10 

For each rotation, a direction cosine matrix can be defined: 
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[Rz] = [
1 0 0
0 cos 𝛼 sin 𝛼
0 − sin 𝛼 cos 𝛼

]      Equation 11 

 

[Rx] = [
cos β 0 − sin β

0 1 0
sin β 0 cos β

]      Equation 12 

 

[Ry] = [
cos 𝛾 sin 𝛾 0

− sin 𝛾 cos 𝛾 0
0 0 1

]      Equation 13 

 

The direction cosine matrix, [R], is the product of [Ry], [Rx] and [Rz]: 

[R]= 

[
cos 𝛽 cos 𝛾 − sin 𝛼 sin 𝛽 sin 𝛾 cos 𝛽 sin 𝛾 + 𝑐𝑜𝑠 𝛾 sin 𝛼 sin 𝛽 − cos 𝛼 sin 𝛽

− cos 𝛼 sin 𝛾 cos 𝛼 cos 𝛾 sin 𝛼
sin 𝛽 cos 𝛾 + sin 𝛼 cos 𝛽 sin 𝛾 sin 𝛾 sin 𝛽 − cos 𝛽 cos 𝛾 sin 𝛼 cos 𝛼 cos 𝛽

] 

         Equation 14 

It was then possible to solve for 𝛼, representing body lateral lean: 

𝛼  = sin-1(R23) = sin-1(RTM23)      Equation 15 

 MDD indicates the magnitude of change required to be considered 'real'. Where 

the difference between conditions exceeds the MDD, it can be considered a change 

due to the experimental condition and not natural athlete variance or protocol error. 

Therefore, peak angles and spatio-temporal variables were interpreted with reference 

to the MDD, identified in Chapter 4. Variables failing to meet the MDD were not 

interpreted further. 

5.2.5. Statistical analysis 

 Descriptive statistics (mean, standard deviation and percent difference) were 

calculated for all variables. A group design approach was taken throughout the thesis. 

The Shapiro-Wilk normality test (p > 0.05) was used to confirm the normal distribution 
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of data. Differences between the bend and straight conditions for the left and right limb 

were assessed using a two-way repeated measures Analysis of Variance (ANOVA, 

condition: bend vs. straight, limb: left vs. right) for each dependent variable. Due to a 

small sample size, the study may be statistically underpowered, and so the chance of 

detecting a true effect is reduced. Unlike significance tests, effect size places emphasis 

on the size of the difference (Coe, 2002). Therefore, results were also interpreted using 

effect size. Cohen's d provides an estimate of effect with a population and so can be 

biased for small samples (n < 20), resulting in an overestimation of the true population 

effect (Lakens, 2013), since variations have a larger influence on smaller samples 

(Schweizer & Furley, 2016). Therefore, Hedges' g was used, which includes a 

correction for smaller sample sizes, calculated using the following equation (Durlak, 

2009): 

𝑔 =  
𝑀1− 𝑀2

𝑠𝑑
 ×  (

𝑛 −3

𝑛−2.25 
)  × √

𝑛−2

𝑛
      Equation 16 

where M1 - M2 is the difference between the group means (M), sd is the pooled standard 

deviation and n is the total sample size. Cohen (1988) guidelines were used for the 

interpretation of effect size, where g < 0.20 represents a trivial difference, 0.20 ≥ 0.50 

indicating a small difference, 0.50 ≥ 0.80 a moderate difference and ≥ 0.80 a large 

difference between means. 

5.3. Results 

5.3.1. Spatio-temporal variables 

 There was a 2% reduction in absolute speed on the bend compared with the 

straight for the left step (g = 0.53, Table 5.4.1.1). During bend sprinting, absolute speed 

was faster for the right step compared with the left step (g = 0.64). However, there was 

no significant main effect for condition, F (1, 8) = 0.574, p = 0.47 or limb, F (1, 8) = 2.994, 
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p = 0.122. For race velocity, which takes into consideration the progression of the 

athlete with respect to the actual race distance, there was no main effect for condition 

(F (1, 8) = 2.673, p = 0.141, Table 5.4.1.1). However, there was a significant condition 

x limb interaction (F (1, 8) = 19.467, p = 0.002, Table 5.4.1.1) due to shorter race step 

lengths on the bend compared with the straight. 

For step frequency, there was a significant condition x limb interaction, 

F (1, 8) = 12.144, p = 0.008, due to the left step on the bend being lower compared with 

the left step on the straight (g = 0.66) and the right step on the bend (g = 0.61). There 

was also a condition x limb interaction for touchdown distance, F (1,8) = 5.477, p = 0.04, 

where left step touchdown distance was longer on the bend (0.30 ± 0.05 m) compared 

with the straight (0.25 ± 0.05 m). For contact time, there was a significant main effect 

for condition, F (1, 8) = 6.111, p = 0.039 (g = 1.50 left step; 0.27 right step), with contact 

being longer on the bend compared with the straight. A significant condition x limb 

interaction was also reported, F (1, 8) = 7.801, p = 0.023 showing the increase in contact 

time on the bend was greater in the left step compared with the right step (g = 0.57).  

5.3.2. Joint kinematics 

For joint kinematics, there was a condition x limb interaction for peak hip 

adduction angle, F (1, 8) = 12.093, p = 0.008. Peak left step hip adduction was greater 

on the bend (8°) compared with the left step on the straight (4°) and the right step on 

the bend (6°, Table 5.3.2.2). In addition, the condition x limb interaction for peak hip 

external rotation was non-significant, F (1, 8) = 3.859, p = 0.085. However, a large effect 

size was observed, suggesting higher peak left hip external rotation (g = 0.89) on the 

bend compared with the straight. There was a condition x limb interaction for peak hip 

abduction joint angle (F (1, 8) = 6.075, p = 0.039), with the right limb being more 

abducted on the bend compared with the straight. There was a condition x limb 
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interaction for body lateral lean at touchdown, F (1, 8) = 26.697, p = 0.001 which was 

greater in both the left and right step on the bend (left step -5°; right step -12°) 

compared with the straight (left step 6°; right step -5°). No significant interactions were 

reported for any variables at the knee.  

Left step peak ankle internal rotation was greater on the bend compared with the 

straight and the right step on the bend resulting in a condition x limb interaction 

(F (1, 8) = 17.091, p = 0.003). Although no main effect was reported for peak ankle 

eversion (F (1, 8) = 1.247, p = 0.297), left step peak ankle eversion was 55% greater on 

the bend compared with the straight (g = 0.88). At the midfoot, there was a significant 

condition x limb interaction (F = 11.768, p = 0.009) for peak midfoot eversion. Peak 

midfoot eversion increased in the left step on the bend compared with the straight 

(g = 0.76), whereas it decreased in the right step on the bend compared with the straight 

(g = 0.70).  

 A significant condition x limb interaction was reported for peak midfoot 

inversion, F (1, 8) = 6.238, p = 0.037, due to an increase in right step peak midfoot 

inversion on the bend compared with the straight and the left step on the bend 

(g = 0.90). There was no significant condition x limb interaction for MTP angular 

velocity (F (1,8) = 1.672, p = 0.232). However, a moderate effect size between the left 

step on the bend and straight was observed (g = 0.50). 
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Table 5.3.2.1 Spatio-temporal variables. Group mean ± standard deviation. Significant main effects are marked with *. Significant interactions are marked with #. 

 

Straight Bend 
Effect size (g) 

(% difference) 

 

Left Right Left Right 

Left vs. 

right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. bend 

right 

MDD met? (left 

/ right) 

Absolute speed (m/s) 7.98 ± 0.34 8.00 ± 0.20 7.81 ± 0.30 7.98 ± 0.34 0.12(0%) 0.48(2%) 0.52 (2%) 0.05 (0%) Yes / no 

Race velocity (m/s) 7.98 ± 0.34 8.00 ± 0.20 7.76 ± 0.32 7.86 ± 0.27 0.12 (0%) 0.32 (1%) 0.64 (3%) 0.56 (2%) n/a 

Contact time (s) 0.107 ± 0.007 0.111 ± .012 0.119 ± 0.007 0.114 ± 0.008 0.34 (4%)# 0.57 (4%)# 1.50 (11%)*# 0.27 (24%)*# Yes / yes 

Flight time (s) 0.135 ± 0.019 0.133 ± 0.016 0.135 ± 0.021 0.124 ± 0.016 0.10(2%) 0.53 (9%) 0.01 (0%) 0.51 (7%) No / yes 

Step Frequency (Hz) 4.33 ± 0.25 4.29 ± 0.22 4.11 ± 0.37 4.30 ± 0.22 0.18 (1%)# 0.61 (5%)# 0.66 (5%)# 0.09 (1%)# Yes / no 

Directional step length (m) 1.84 ± 0.11 1.87 ± 0.08 1.90  ± 0.12 1.84 ± 0.07 0.26 (2%)# 0.55 (3%)# 0.48 (3%)# 0.35 (2%)# No /  no 

Race step length (m) 1.84 ± 0.11 1.87 ± 0.08 1.53 ± 0.10 1.37 ± 0.08 0.26 (2%)# 1.70 (12%)*# 2.89 (17%)* # 6.16 (37%)* # n/a 

Touchdown distance (m) 0.25 ± 0.06 0.26 ± 0.07 0.30 ± 0.05 0.27 ± 0.08 0.12 (4%)# 0.49 (10%)# 0.95 (29%) # 0.11 (4%)# Yes / yes 

Turn of CoM (°)  2.48 ± 0.91 2.61 ± 0.86   0.13 (5%) n/a 
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Table 5.3.2.2 Joint kinematics. Group mean ± standard deviation. Significant main effects are marked with *. Significant interactions are marked with #. 

Peak angle (°)  

Straight Bend 
Effect size (g) 

(% difference) 

 

Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. bend 

right 

MDD met? (left / 

right) 

Hip abduction -6 ± 4 -6 ± 3 - 6 ± 3 -8 ± 3 0.08 (27%)# 0.66 (21%)# 0.22 (20%)# 0.50 (28%)# No / yes 

Hip adduction 4 ± 5 7 ± 3 8 ± 4 6 ± 4 0.49 (72%)# 0.63 (30%)# 1.09 (106%)# 0.24 (31%)# Yes / yes 

Hip internal rotation 2 ± 8 5 ± 4 1 ± 9 7 ± 5 0.41 (104%) 0.75 (126%) 0.15 (86%) 0.41 (38%) Yes / no 

Hip external rotation -9 ± 8 -10 ± 9 -16 ± 7 -8 ± 4 0.13 (11%) 1.22 (89%) 0.89 (51%) 0.28 (14%) Yes / no 

Knee abduction -2 ± 4 -1 ± 7 -2 ± 4 0 ± 4 0.03 (75%) 0.39 (23%) 0.03 (0%) 0.21(93%) No / no 

Knee adduction 5 ± 5 5 ± 4 5 ± 4 6 ± 6 0.10 (26%) 0.15(17%) 0.05 (5%) 0.05 (21%) No / no 

Knee internal rotation -1 ± 8 -5 ± 8 -1 ± 6 -5 ± 9 0.37 (70%) 0.52 (80%) 0.02 (18%) 0.07 (11%) No / no  

Knee external rotation -15 ± 7 -13 ± 7 -14 ± 6 -15 ± 8 0.18 (6%) 0.18 (4%) 0.14 (5%) 0.22 (6%) No / no 

Ankle inversion  14 ± 9 10 ± 9 11 ± 9 12 ± 9 0.34 (48%)# 0.06 (6%)# 0.22 (33%)# 0.19 (16%)# Yes / no 

Ankle eversion  -2 ± 9 -4 ± 10 -5 ± 9 -3 ± 10 0.15 (36%) 0.12 (23%) 0.88 (55%) 0.02 (8%) Yes / no 

Ankle internal rotation  2 ± 4 3 ± 5 12 ± 7 1 ± 7 0.25 (44%)*# 1.95 (562%)*# 1.70 (346%)*# 0.46(108%)*# Yes / no 

Ankle external rotation  -10 ± 5 -10 ± 3 -5 ± 5 -9 ± 5 0.13 (9%) 0.85 (42%) 0.95 (50%)* 0.20 (6%) Yes / no 

Midfoot inversion  -7 ± 5 -7 ± 5  -5 ± 4 -12 ± 4 0.03 (6%)# 1.48 (63%)# 0.30 (41%)# 0.90 (69%)# Yes / yes 

Midfoot eversion  0.3 ± 5 -0.3 ± 5 4 ± 3 -4 ± 4 0.13 (209%)# 1.73 (184%)# 0.79 (956%)# 0.72 (1271%)# Yes / yes 

MTP angular velocity (°/s) 776 ± 239 732 ± 120 694 ± 168 704 ± 176 0.25 (6%) 0.06 (2%) 0.50 (11%) 0.15 (4%) n/a 

Body lateral lean at 

touchdown 
6 ± 3 -5 ± 1 - 5 ± 2 -12 ± 2 3.24 (221%)*# 2.98 (62%)*# 4.01 (168%)*# 3.39 (78%)*# n/a 
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5.4. Discussion 

 This study aimed to investigate the effect of bend versus straight-line sprinting 

during the acceleration phase on the kinematic and spatio-temporal parameters of the 

lower limb. Variables were interpreted with reference to the MDDs determined in 

Chapter 4. All variables demonstrating significant outcomes met or exceeded the 

identified MDD, with the exception of directional step length and ankle inversion.  

 A moderate effect size was observed when comparing absolute speed on the 

bend and the straight for the left (g = 0.52, 2%) step. Whilst the reported effect size 

suggests these reductions are moderate, a 2% reduction may be meaningful in terms 

of competitive race performance. For the left step, the 2% reduction found in the 

present study is the same as the 2% reported in previous research into the acceleration 

phase of bend sprinting (Stoner & Ben-Sira, 1979). Similarly, to Churchill et al. (2015) 

at maximal speed, the reduction in left step velocity on the bend can be attributed to a 

reduction in left step frequency. Moreover, an increase in left step touchdown distance 

was apparent on the bend compared with the straight. Churchill et al. (2015) suggest 

the reduction in right step absolute speed is due to a shorter right directional step length 

on the bend compared with the straight. However, no reduction in right step absolute 

speed was observed in the present study. A small (g = 0.35) decrease in right 

directional step length on the bend compared with the straight was reported, although 

the difference (0.03 m) does not meet the minimum detectable difference (MDD) of 

0.08 m identified in Chapter 4. Therefore, the results suggest maintaining a similar 

right directional step length on the bend and straight aided in avoiding a reduction in 

right step absolute speed.  
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 A main effect for condition was reported with a reduction in race step length 

on the bend compared with the straight in both the left (g = 2.89) and right steps 

(g = 6.16). Race step length takes into account the progression with respect to the 

official race distance in each step. The reductions reported here are up to twice as great 

as those found by Churchill et al. (2015) and Churchill et al. (2016) at maximal speed. 

The radius in the present study was 36.5 m (lane one), whilst Churchill et al. (2015) 

and Churchill et al. (2016) examined a 37.72 m radius (lane two), which might have 

some impact on the results. Furthermore, athletes tend to try and maintain a straight 

path for as long as possible during the acceleration phase. Whilst athletes were not 

running straight at the point of data collection, doing so in the earlier phases of the race 

may result in athletes not closely following the race line and consequently, a 3 and 2% 

decrease in race velocity for the left and right steps, respectively. Therefore, sprinting 

to maintain a straight path during the acceleration phase may not be an effective 

strategy. 

 During bend sprinting, an increase in peak left hip adduction (bend = 8°, 

straight = 5°, g = 1.09), combined with a non-significant increase in peak left hip 

external rotation (bend = 16°, straight = 9°, g = 0.89) was reported compared with 

straight-line sprinting. This supports research during sub-maximal effort bend 

sprinting at approximately 9.26 m/s which reported peak left hip adduction (14°) and 

external rotation (22° Alt et al., 2015). The excessive hip adduction observed might 

have implications for injuries, particularly at the knee (Li et al., 2015). For example, it 

is expected that iliotibial band tension would increase with hip adduction, potentially 

resulting in iliotibial band syndrome (Chuter & Janse de Jonge, 2012; Powers, 2010). 

In addition, greater hip adduction has also been associated with patellofemoral pain 
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(Neal, Barton, Birn-Jeffery & Morrissey, 2019). Both iliotibial band syndrome and 

patellofemoral pain were recorded by Beukeboom et al. (2000) in a season long 

evaluation of injuries in indoor track athletes. Therefore, high peak hip adduction may 

be a precursor for injury. Strength and conditioning programmes should aim to 

increase strength in the frontal and transverse planes to ensure athletes are sufficiently 

prepared to withstand this high adduction angle. These results suggest non-sagittal 

plane hip movement may be an important kinematic modification in bend sprinting 

compared to straight-line sprinting. 

 The present study observed an increase in peak left step ankle eversion on the 

bend (-5° ± 9°) compared with the straight (-2° ± 9°). These findings support the notion 

that the left limb is associated with a stabilising role achieved through the combination 

of greater hip adduction and ankle eversion (Alt et al., 2015). An increase in left step 

peak midfoot eversion was also observed in the present study, suggesting the 

stabilising role of the left hip and ankle joints might extend to the midfoot. Whilst 

increased eversion enables the attenuation of impact forces (Hreljac, 2004), it is also 

linked with medial tibial stress syndrome and patellofemoral pain syndrome (Chuter 

& Janse de Jonge, 2012), both of which were amongst the most frequently reported 

injuries in indoor bend sprinters over a season (Beukeboom et al., 2000). Therefore, 

strengthening the evertor muscles of the left foot and ankle should be prioritised to 

reduce the risk of injury. It is apparent that the left limb is in a complex segmental 

arrangement which might compromise force production and therefore be responsible 

for the loss of speed observed on the bend. As Chang and Kram (2007) suggested, it 

is possible that modifications in the transverse and frontal planes restrict the capacity 

of muscles to operate and produce force in the sagittal plane. Therefore, analysis of 

joint moments during bend sprinting is warranted. 
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  In general, eversion occurs during the first 15% of stance due to the eccentric 

contraction of invertors such as tibialis posterior and anterior (Chan & Rudins, 1994). 

As bi-planar muscles, whilst they are predominantly invertors, they also have a role to 

play in plantar flexion of the foot and ankle (Palastanga, Field, & Soames, 2006). 

Simulations (Debaere et al., 2015) and later experimental data (Brazil et al., 2017) 

suggested kinetics of the ankle joint play a dominant role in the acceleration of the 

centre of mass during the stance phases of early acceleration in straight-line sprinting. 

It appears the increased left step eversion and ankle internal rotation might place the 

foot in a disadvantageous position, compromising the ability to produce propulsive 

force.  

 A moderate (g = 0.50) effect size suggests there might be a decrease in MTP 

joint angular velocity during the left step on the bend compared to the straight. Krell 

and Stefanyshyn (2006) established that faster male sprinters elicited higher maximal 

rates of MTP extension. Therefore, decreased angular velocity of the MTP joint might 

be a contributing factor to the decrease in sprint performance found on the bend. 

However, further research is required to strengthen this conclusion.  

 Based on the results of the present study, adaptations of the right limb during 

the acceleration phase of bend sprinting can be characterised by an increase in hip 

abduction. In addition, the present study did not observe a change in peak right ankle 

external rotation or internal knee rotation. These two factors were suggested by Alt et 

al. (2015) to contribute towards a rotational strategy of the right limb. However, the 

findings of this study do not support this during the acceleration phase. This further 

highlights the left and right limb have different functions on the bend, whilst also 

advancing the notion that the key to understanding the limits of bend sprinting 

performance in an anti-clockwise direction lies within the left limb. 
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 There was a large increase in body lateral lean at touchdown on the bend 

(left step: -5° ± 2; right step -12° ± 2) compared with the straight (left step: 6° ± 3; 

right step: -5° ± 1). These findings, combined with the aforementioned kinematic 

adaptations, support the suggestion from Churchill et al. (2015) that the increase in 

lateral lean angle found on the bend might be responsible for inducing kinematic 

adaptations in the lower limb. However, the observed body lateral lean in the present 

study was lower than the -10° (left step) and -15° (right step) lean angles reported 

during maximum speed (Churchill et al., 2015), suggesting these smaller changes 

accumulate during the acceleration phase, resulting in greater changes at faster speeds. 

To ensure the transfer of strength training to sports performance, the principle of 

training specificity is of paramount importance (Young, 2006). Coaches tend to prefer 

the specificity of training is addressed by adding resistance to sporting movements 

rather than attempting to make gym exercises more sports-specific (Burnie et al., 

2017). Therefore, as suggested by Churchill et al. (2016), the use of ropes or harnesses 

in training to provide resistance in a leaning position might be beneficial to 

performance. In addition, ensuring acceleration training is undertaken on the bend to 

promote further specificity is essential. 

 The adaptations reported in the present study during the acceleration phase on 

the bend compared with the straight are not as great as those reported at maximum 

speed. For example, Churchill et al. (2015) and Alt et al. (2015) reported peak left hip 

adduction values during bend sprinting of 11° and 14° respectively, compared with 8° 

in the present study. This suggests kinematic adaptations between the bend and straight 

become more prominent as velocity increases. However, greater adaptations have also 

been found at smaller radii when running at slower speeds (Chang & Kram, 2007; Luo 
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& Stefanyshyn, 2012a). Therefore, it is likely that a combination of radius and velocity 

are responsible for inducing kinematic adaptations. However, the effect of lane 

allocation has not yet been investigated during the acceleration phase, despite 

performance differences being observed across lanes at maximal velocity (Churchill 

et al., 2018). 

5.5. Conclusion  

 In conclusion, the results of the present study demonstrate that the bend 

impacts upon kinematic and spatio-temporal parameters of sprint technique and 

performance during the acceleration phase. These results show that kinematic 

adaptations start early in the race and likely accumulate, resulting in greater 

adaptations at maximal speed and thus a greater reduction in speed. For example, in 

accordance with the mechanical principles of bend sprinting, and in particular the need 

to produce centripetal force which is proportional to the square of velocity, as athletes 

reach faster speeds the magnitude of centripetal force experienced will also increase. 

Thus, at faster speeds a greater lateral lean will be required to balance the greater 

mediolateral force and as a consequence of body configuration also result in greater 

adaptations at the lower limb. Furthermore, the reported kinematic adaptations are 

more prominent in the left limb. A recent study by Ohnuma, Tachi, Kumano, and 

Hirano (2018) compared technique on the bend and straight in 'good' and 'poor' bend 

sprinters - where athletes were categorised by their ability to maintain their maximum 

straight-line speed on the bend (i.e., those with a higher percentage difference in 

running speed were categorised as poor, and vice versa). It was concluded that better 

bend sprinters are those who are able to more closely maintain the same sagittal plane 

kinematics and kinetics as on the straight path. Therefore, coaches and athletes should 
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prioritise strategies to address the reported adaptations of the left limb, such as 

reducing touchdown distance and increasing step length on the bend. Whilst the results 

demonstrated within the present chapter highlight changes in technique during bend 

sprinting compared with the straight, we do not know how this impacts upon force 

production and propulsion in the acceleration phase. Moreover, an investigation of 

joint moments may be warranted to understand the mechanisms responsible for these 

adaptations and identify their role in restricting or aiding performance.  
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Chapter Six: FORCE PRODUCTION AND MTP JOINT AXIS USE DURING 

THE ACCELERATION PHASE DURING BEND SPRINTING 
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6. Force production and kinetics of the acceleration phase during bend 

sprinting 

6.1. Introduction 

 Faster speeds are associated with higher peak vertical forces during maximal 

velocity treadmill sprinting (Weyand et al., 2010). However, rather than solely 

producing greater peak forces, faster speeds are more dependent on the ability to 

produce these forces rapidly, meaning the production of high vertical force over a short 

contact time is crucial (Weyand et al., 2010). During anti-clockwise over-ground bend 

sprinting, left step contact times are longer than during straight-line sprinting (Alt et 

al., 2015; Churchill et al., 2015; Ishimura & Sakurai, 2010; Ishimura et al., 2013). 

Therefore, with the findings of Weyand et al. (2010) in mind, the magnitude of force 

produced during the longer contact time on the bend is also of interest in understanding 

bend sprinting performance. 

 In the maximal velocity phase of bend sprinting, lower peak resultant forces 

have been reported for the left step on the bend than on the straight (Churchill et al., 

2016). Additionally, inward forces are greater on the bend than the straight for both 

the left and right step, with the left limb producing a greater peak inward force 

compared with the right on the bend (Churchill et al., 2016). This limb asymmetry in 

force production could hold important insights in understanding bend sprinting 

performance. This asymmetry can be quantified using the 'symmetry angle' proposed 

by Zifchock, Davis, Higginson and Royer (2008) and used in straight-line sprint 

research by Exell, Irwin, Gittoes, and Kerwin (2017) who demonstrated higher levels 

of asymmetry in kinetic variables at maximal speed. However, the maximal velocity 

phase does not reflect the full requirements of performance across a 200 m or 400 m 

race and consideration of the acceleration phase on the bend is required.  
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 Straight-line acceleration performance is not simply reliant upon the 

production of large forces, but rather the production of greater horizontal force as a 

proportion of the total amount of force applied (Morin et al., 2012; Rabita et al., 2015). 

Thus, 'ratio of force' has been proposed as a useful measure of performance during the 

acceleration phase of straight-line sprinting, rather than simply the evaluation of mean 

forces, as it places emphasis on the orientation of force rather than magnitude (Morin 

et al., 2012; Morin et al., 2011; Rabita et al., 2015). The necessity to generate 

centripetal force during bend sprinting might also affect the magnitude and orientation 

of vertical and anteroposterior forces, and thus ratio of force, however, this is yet to be 

investigated. In addition, Morin et al. (2015) identified propulsive impulse in the first 

20 m of acceleration as a key determinant of acceleration performance over 40 m. This 

further reinforces the importance of orientation in force production, particularly as no 

correlations were observed for vertical or braking impulse (Morin et al. 2015). The 

generation of propulsive impulse could also be negatively affected during bend 

sprinting due to the need to produce centripetal force. Therefore, analysis of impulse 

and ratio of forces might provide important insight into performance changes between 

bend and straight sprinting.  

  Bojsen-Moller (1979) observed the MTP has two possible axes about which 

the foot can push off: transverse and oblique. The transverse axis runs through the 

heads of the first and second metatarsals, whereas the oblique axis runs through the 

second to fifth metatarsal heads (Bojsen-Moller, 1979). During push-off about the 

transverse axis, the calcaneocuboid joint is closely packed, which increases the 

effectiveness of the windlass mechanism and provides a more stable foot for push-off 

(Bojsen-Moller, 1979). Push-off at higher walking speeds is thought to use the 

transverse axis, thus it is deemed more effective than the oblique axis at generating 
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propulsive force in the direction of progression (Bojsen-Moller, 1979). Churchill et al. 

(2016) postulated that the inward lean of athletes during bend sprinting might promote 

the use of the less effective oblique axis for the left ground contact (but the more 

effective transverse axis for the right ground contact). Therefore, it is probable that 

athletes are less effective at generating propulsive force when using the oblique axis 

for the left step, which has been suggested as a limiting factor in bend sprinting 

(Churchill et al., 2016). Indeed, the MTP joint has been highlighted as making an 

important contribution to performance in straight-line sprinting (Krell & Stefanyshyn, 

2006; Smith et al., 2014) and warrants investigation during bend sprinting.  

 In summary, force adaptations during the acceleration phase of sprinting on the 

bend are likely and this might contribute towards a decrease in performance compared 

with straight-line sprinting. Therefore, the aim of this study was to investigate force 

production and MTP axis use during sprinting on the bend compared with the straight. 

A secondary aim was to evaluate between limb differences to identify the existence of 

any asymmetry during bend sprinting. It was hypothesised that the oblique axis would 

be used by the left foot for push-off during bend sprinting, resulting in a decrease in 

propulsive force (and therefore sprint performance) in comparison with the straight. 

6.2. Methods 

6.2.1. Participants 

 Following institutional ethical approval, seven male sprinters (mean age 

22 ± 4 years; body mass 68.32 ± 6.98 kg; stature 1.79 ± 0.06 m) volunteered to 

participate in this study. All athletes were experienced bend sprinters (200 and/or 

400 m) and the inclusion criteria required a 200 m personal best of 23.5 s or faster 

(mean 22.70 ± 0.52 s, range 21.8 - 23.43 s). At the time of data collection, all athletes 
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were injury free and active in training. The study procedures were fully explained to 

participants who subsequently provided written informed consent.  

6.2.2. Experimental set-up 

 The experimental set-up is provided in section 0. For CoM calculations, 

kinematic data were collected using a 15-camera optoelectronic motion capture system 

(13 x Raptor model and 2 x Eagle model, Motion Analysis Corporation, Santa Rosa, 

CA, USA) sampling at 200 Hz. A modified Vicon Plug-in Gait (PiG) marker set (lower 

limb and trunk; Chapter 4) was used to model the torso, pelvis, thighs, shanks and feet 

segments (toebox, forefoot, rearfoot). Full details of marker placement can be found 

in section 4.2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 Kinetic data were collected using a Kistler force plate (Model: 9287BA, 

900 x 600 mm) sampling at 1000 Hz. The force plate was embedded into the track 

surface and covered with a secured piece of synthetic track. The force platform was 

z 

x y 

Capture volume (15- 

camera, 7.00 m x 

3.00 m x 1.50 m, 

200 Hz) Path of athlete 

Start of bend trials 

(approximately 

12.00 m from force 

plate) 
End of 30.00 

m bend 

running 

Kistler force plate 

(Model: 9287BA, 

900 x 600 mm, 

1000 Hz) 

Start of straight trials 

(approximately 

12.00 m from force 

plate) 

End of 30.00 m 

straight running 

Figure 6.2.2.1 Plan view of experimental set-up (not to scale). 
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configured to produce a rising edge 5 V signal at the onset of data collection, which 

was sampled by the motion capture system and used to temporally synchronise the 

kinematic and kinetic data. 

6.2.3. Protocol 

 Data were collected on a flat standard indoor track surface with a reconstructed 

bend replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 

2008). Straight-line trials were completed on a 30 m section of straight track. The order 

in which experimental conditions were presented to each participant was randomised 

to minimise order effects. Results from Morin et al. (2015) suggest the production of 

propulsive impulse in the first 20 m determines acceleration performance. Thus, it was 

decided to limit analysis to the 0 - 20 m section. Furthermore, only one study has 

examined the acceleration phase of bend sprinting, analysing data at 12 m (Stoner & 

Ben-Sira, 1979). Therefore, data were collected at approximately 12 m within the 

present study to enable comparison with previous research.  

 Participants completed their typical competition warm-up before performing 

up to six trials at maximal effort for 30 m in each condition (bend and straight, three 

left, three right). Starting blocks were used alongside an 'on your marks, set, go' signal 

to maintain the representativeness of the protocol. For force data, a minimum of one 

successful right step and left step on the bend and one successful right step and left 

step on the straight were achieved. A successful trial was defined as contact being 

made with the force plate with the whole foot, without changes to their running gait 

caused by targeting. To achieve this, one researcher modified the start location of the 

athletes based upon warm-up trials, up to a maximum of one metre. Therefore, force 

data were collected in the range of 11 - 13 m. To further reduce the likelihood of 

targeting, participants were not informed of the force plate location. Approximately 



 

Page 136 of 226 

 

eight minutes were allowed between trials to allow full recovery and avoid the onset 

of fatigue (Churchill et al., 2015). Participants wore their own sprint spikes for the 

testing session.  

6.2.4. Data processing 

 Raw 3D marker coordinate data was analysed using Cortex software 

(version 5.3, Motion Analysis Corporation, Santa Rosa, CA, USA). Automatic gap 

filling, using a cubic spline, was performed. All gaps were <10 frames. A low-pass, 

fourth-order recursive Butterworth filter was applied to raw marker positions. Residual 

analysis was used to determine the cut-off frequency (18 Hz). Visual 3D (version 6, 

C-Motion, Rockville, MD, USA) was used to define and construct segments, LCS and 

joint centres. Where possible, ISB guidelines (Wu et al., 2002; Wu et al., 2005) were 

adhered to. However, the joint coordinate system for the multi-segment foot was 

defined in accordance with Cappozzo et al. (1995). Body segment parameters were 

estimated from de Leva (1996) and adjusted by 0.150 to 0.189 kg representing the 

mass of individual participants' spiked shoe according to manufacturer guidelines. 

Kinetic data were analysed using Matlab (v2017a, Mathworks, Natick, USA). Force 

data were filtered with a low-pass, fourth-order recursive Butterworth filter with a 150 

Hz cut-off frequency, chosen with the use of residual analysis. 

 For force data for each participant, one successful trial for each condition was 

analysed, as was the case with Churchill et al. (2016). Where more than one successful 

trial was available, the first successful trial was used for analysis. A selection of 

variables calculated from additional trials that were not included in the analysis for 

this study have been presented in Appendix B, alongside CV.. The CV were in the 

range of 0.42 - 1.67 % for propulsive force and 1.40 - 5.74 % for braking impulse, 

supporting previous work from Hunter et al. (2004a) that demonstrated greater 
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reliability in propulsive measurements than measurements of braking. In addition, all 

values reported were < 10 %, which is indicative of very good reliability between trials 

(Atkinson & Nevill, 1998), supporting the use of a single trial for force plate data. 

 Touchdown and take-off events were identified using vertical force data, using 

the mean plus two standard deviations of the zero load vertical force as a threshold 

(Bezodis et al., 2007). All variables were calculated separately for the left and right 

step. Steps were defined by the foot that initiated the step. 

  Horizontal forces in the global coordinate system (GCS) were aligned with the 

direction of travel of the athlete for both bend and straight trials (Glaister, Orendurff, 

Schoen, & Klute, 2007). This was necessary due to the orientation of the force plate in 

the experimental set-up not being aligned with the direction of forward progression. 

To enable this alignment to take place, CoM data was up-sampled from 200 Hz to 

1000 Hz using a cubic spline interpolation. An instantaneous progression vector was 

then calculated from the up-scaled horizontal CoM position one frame before and one 

frame after the instant of interest. The angle between the x-axis (anteroposterior) of the 

force plate and the CoM progression vector was then calculated. A direction cosine 

matrix was then used to rotate the forces bringing them into alignment with the 

direction of travel: 

[𝐹𝑧′
𝐹𝑥′

] =  [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

− sin  𝜃 cos  𝜃
] [

𝐹𝑧
𝐹𝑥

]      Equation 17 

Fz' and Fx' represent the horizontal ground reaction forces aligned with the direction 

of travel of the athlete, where Fz and Fx are the horizontal ground reaction forces in 

the GCS. θ is the angle between the GCS and body reference frame. 

  Impulse in each direction was calculated from absolute values using numerical 

integration of the force data and expressed relative to body mass, thus giving change 
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of direction and keeping consistent with previous bend sprinting research (Churchill 

et al., 2016). The symmetry angle (θSYM) was calculated with the following equation, 

proposed by Zifchock, et al. (2008): 

 

𝜃𝑆𝑌𝑀=

(45°−arctan(
𝑋𝑙𝑒𝑓𝑡

𝑋𝑟𝑖𝑔ℎ𝑡
))     

90°
  ×100

 

         Equation 18 

A θSYM value of 0% represents perfect symmetry between limbs, where 100% would 

indicate perfect asymmetry (Zifchock et al., 2008). The symmetry angle method was 

chosen for use over the symmetry index as Zifchock et al., (2008) reported it does not 

suffer from artificial inflation that can occur when a difference that is clinically 

irrelevant is divided by a much smaller reference value. 

 Ratio of force was calculated as the mean ratio of force in the direction of 

forward progression (relative to the direction of travel of the athlete's CoM) to resultant 

force (including mediolateral forces) during ground contact. The inclusion of 

mediolateral force in this equation differs from that proposed by Morin et al. (2011), 

which includes anteroposterior and vertical forces, only. Since mediolateral force can 

be considered negligible on the straight, this equation is sufficient for the analysis of 

straight-line acceleration. However, sprinting on the bend results in higher 

mediolateral forces, as demonstrated by Churchill et al. (2016). Thus, the inclusion of 

mediolateral force is necessary to appropriately assess the effectiveness of force 

application on the bend. 

 Following methods adapted from Smith et al. (2012), MTP push-off axis was 

determined using centre of pressure (CoP) data. CoP data were first aligned with a 

local foot coordinate system. The mediolateral position of the CoP and MTH2 marker 



 

Page 139 of 226 

 

was then extracted during the propulsive phase of stance for each condition. The 

distance of the CoP from the MTH2 was then calculated for each frame, followed by 

calculation of the mean CoP position during the propulsive phase of stance. For ease 

of interpretation, data for the left foot were multiplied by -1, so a positive value 

indicated CoP was lateral for both the left and right foot. Consequently, a positive 

value would represent the use of the oblique axis, with a negative value representing 

the use of the transverse axis (Figure 6.2.4.1). 

 

 

 

 

 

 

 

 

6.2.5. Statistical analysis 

 Descriptive statistics (mean, standard deviation and percent differences) were 

calculated for all variables. Normal distribution of the data for each variable was 

confirmed by the Shapiro-Wilk normality test (p > 0.05). For discrete variables, two-

way repeated measures ANOVAs were performed, condition (bend vs. straight) x limb 

(left vs. right). Due to a small sample size, the study may be statistically underpowered, 

and so the chance of detecting a true effect is reduced. Therefore, results were also 

interpreted using effect size (Hedges' g, Equation 16). Cohen's (1988) guidelines were 

used for the interpretation of effect size, where g < 0.20 represents a trivial difference, 

T2 

MTH5 

MTH2 
MTH1 

Figure 6.2.4.1 Right foot representation of the transverse (solid line        ) and oblique (dashed line - - -) axes of 

the foot. Where T2 represents marker at the second toe and MTH1, 2 and 5 the first, second and fifth metatarsal 

heads, respectively. 
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0.20 ≥ 0.50 indicating a small difference, 0.50 ≥ 0.80 a moderate difference and ≥ 0.80 

a large difference between means.  

 Statistical parametric mapping (SPM; Friston, Ashburner, Kiebel, Nichols, & 

Penny, 2007) was used to statistically compare force production across the entire 

stance phase between conditions. Force data were first normalised to 101 data points, 

representing 0-100% of the stance phase. An SPM repeated measures two-way 

ANOVA was then performed separately at each of the 101-time points resulting in the 

output of a statistical parametric map (SPM{F}), using the equation: 

𝑃(𝑡(𝑞)𝑚𝑎𝑥 > 𝑡∗
1𝐷) = 1 − 𝑒𝑥𝑝 (− ∫ 𝑓0𝐷

∞

𝑡∗1𝐷
(𝑥)𝑑𝑥 − 𝐸𝐷) =  𝛼 Equation 19 

where 𝑡∗
1𝐷 is the one-dimensional (1D) test statistic, 𝑡(𝑞)𝑚𝑎𝑥 represents the maximum 

value in the 1D trajectory t, and the smoothness-dependent Euler density function is 

represented by ED (Friston et al., 2007). If SPM{F} exceeded the critical threshold, 

force production at these specific nodes could be considered statistically different. A 

collection of consecutive nodes exceeding the threshold and thus considered 

significant is termed a 'supra-threshold cluster'. In line with Colyer et al. (2018), 

clusters of fewer than five nodes were considered unlikely to be meaningful. SPM 

analyses were implemented using open source SPM code (SPM1D open-source 

package, spm1d.org) in MATLAB (v2017a, Mathworks, Natick, USA).  

 To establish whether there was a relationship between asymmetry and sprint 

performance, Pearson's correlations (r) were calculated between θSYM and mean 

velocity across the left and right steps. In accordance with Field (2009), an r value of 

.1 - .3 indicates a weak correlation, .3 - .5 a moderate correlation and >.5 a strong 

correlation. 
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6.3. Results 

 SPM revealed there were no changes in resultant force across bend and straight 

conditions (Figure 6.3.1, F = 28.771). Similarly, for vertical force (Figure 6.3.2), the 

critical threshold of F = 31.573 was not met, indicating there was no difference in 

vertical force production between conditions.  

 

 

 Figure 6.3.1 Group mean resultant force for the left (red) and right (black) steps on the bend (dashed line - - -) and 

straight (solid line        ). Shaded areas represent supra-threshold clusters indicating a significant main effect for 

condition. 

 

Figure 6.3.2 Group mean vertical force for the left (red) and right (black) steps on the bend (dashed line - - -) and 

straight (solid line         ). Shaded areas represent supra-threshold clusters indicating a significant main effect for 

condition. 

% stance 

% stance 

Vertical force (BW) 

Resultant force (BW) 

% stance 
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Figure 6.3.3 Group mean anteroposterior force for the left (red) and right (black) steps on the bend (dashed line   - 

- -) and straight (solid line        ). Shaded areas represent supra-threshold clusters indicating a significant main 

effect for condition. 

 Anteroposterior force production during straight-line and bend sprinting was 

similar for the majority of the stance phase (Figure 6.3.3). However, one 

supra-threshold cluster (37-44%) exceeded the critical threshold of F = 17.238 for the 

main effect of condition, where anterior force was lower on the bend compared with 

the straight in both the left and right steps. The probability that a supra-threshold 

cluster of this size would be observed in repeated random samplings was p < 0.001. 

  

 One supra-threshold cluster exceeded the critical threshold (F = 15.309) for 

main effect of condition when comparing mediolateral force on the bend and straight 

(3-96%, p < 0.001). This was due to an increase in mediolateral force production across 

the majority of the stance phase on the bend (Figure 6.3.4). There was also a significant 

main effect for limb, with two supra-threshold clusters found at 1-12% and 75-100% 

of stance. At 1-12%, mediolateral force was greater in the right step than left, whilst 

at 75-100% of stance the left step was greater than the right step. 

Anteroposterior force (BW) 

% stance 
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 There was no main effect for condition on vertical impulse F (1, 6) = 0.001, 

p = 0.973 (Table 6.3.1). However, a main effect was observed for condition for 

propulsive impulse F (1, 6) = 10.98, p = 0.016 (g = 0.93 left step; 0.78 right step, Table 

6.3.1), with the straight resulting in a greater propulsive impulse than the bend. There 

was no condition x limb interaction, F (1, 6) = 1.135, p = 0.328. For braking impulse, a 

27% increase with large effect size (g = 1.29, Table 6.3.1) was reported in the left step 

on the bend compared with the straight. However, the main effect for condition was 

not significant, F (1, 6) = 4.617, p = 0.075. There was a significant condition x limb 

interaction for mediolateral impulse, F(1, 6) = 19.739, p = 0.004 due to an increase in 

mediolateral impulse on the bend that was greater in the left step compared with the 

right. For mean ratio of force, there was a significant main effect for condition, 

F (1, 6) = 11.647, p = 0.014 (g = 1.72 left step; 1.16 right step, Table 6.3.1), with the 

straight resulting in a higher mean ratio of force compared with the bend. There was 

no condition x limb interaction for mean ratio of force (F (1, 6) = 2.628, p = 0.156). 

 For  θSYM, no significant correlations were observed between mean velocity 

and discrete kinetic variables in both bend (vertical impulse r = .023, p = 0.960; 

braking impulse r = -.649, p = 0.115; propulsive impulse r = -.006, p = 0.989; 

mediolateral impulse r = .164, p = 0.725) and straight conditions (vertical impulse r = 

.328, p = 0.472; braking impulse r = -.134, p = 0.775; propulsive impulse r = .168, p 

= 0.718; mediolateral impulse r = .044, p = 0.925; Table 6.3.2).  
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Figure 6.3.4 Group mean mediolateral force for the left (red) and right (black) steps on the bend (dashed line - - - ) and straight (solid line        ). Shaded areas represent supra-threshold clusters 

indicating a significant main effect for condition (A) and limb (B). 
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Table 6.3.1 Group mean values (± standard deviation), effect sizes (% difference) force variables of the left and right step. Significant main effects are marked with *. Significant interactions are 

marked with #. 

 Straight Bend 
Effect size (g) 

(% difference) 

 Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. bend 

right 

Relative vertical impulse 

(m/s) 
1.34 ± 0.41 1.08 ± 0.53 1.21 ± 0.30 1.21 ± 0.27 0.55 (24%) 0.04 (1%) 0.40 (11%) 0.31 (12%) 

Relative braking impulse 

(m/s) 
-0.08 ± 0.02 -0.09 ± 0.03 -0.11 ± 0.01 -0.10 ± 0.03 0.19 (6%) 0.24 (7%) 1.22 (27%) 0.46 (15%) 

Relative propulsive 

impulse (m/s) 
0.59 ± 0.06 0.65 ± 0.12 0.55 ± 0.06 0.58 ± 0.06 0.65 (10%) 0.60 (5%) 0.93 (7%)* 0.74 (12%)* 

Relative mediolateral 

impulse (m/s) 
0.02 ± 0.10 0.04 ± 0.05 0.42 ± 0.09 0.31 ± 0.11 0.26 (49%) # 1.16 (34%)# 4.61 (1858%)# 3.01 (660%)# 

Mean ratio of force (%) 19.13 ± 1.30 23.50 ± 5.52 16.94 ± 1.12 18.44 ± 2.03 0.93 (19%) 0.51 (8%) 1.49 (11%)* 1.02 (22%)* 

 

 

 

 

 

 



 

Page 146 of 226 

 

 

 

 

Table 6.3.2 Group mean values (± standard deviation) of symmetry angle (θSYM). Significant effects are marked with *.  

θSYM Straight Bend Pearson's r straight 
Pearson's r  

bend 

Relative vertical impulse (m/s) 4.39 ± 2.55 9.48 ± 12.06 .328 .023 

Relative braking impulse (m/s) 8.47 ± 3.46 6.10 ± 3.49 -.134 -.649 

Relative propulsive impulse (m/s) 2.42 ± 1.68 2.87 ± 2.71 .168 -.006 

Relative mediolateral impulse (m/s) 10.97 ± 10.67  11.69 ± 12.83 .044 .164 
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There was a significant condition x limb interaction for CoP position, 

F (1, 6) = 127.878, p < 0.001. The mean mediolateral CoP position was more lateral in 

the left step on the bend compared with the straight (Figure 6.3.5). This indicates the 

oblique axis was in use during the left step on the bend, while the transverse axis was 

used for all other conditions. 

 

6.4. Discussion 

 The aim of this study was to investigate force production and MTP joint axis 

use during the acceleration phase on the bend compared with the straight. The left foot 

was found to use the oblique axis for push-off at the MTP joint on the bend, as opposed 

to the transverse axis on the straight. This coincided with a decrease in anterior force 

and propulsive impulse on the bend.  

 There were no differences observed in resultant or vertical force during stance 

between the bend and straight conditions. These results contrast with those reported 

Figure 6.3.5 Mean centre of pressure mediolateral position relative to second metatarsal head during the propulsive 

phase. 

-0.80-0.60-0.40-0.200.000.200.400.60

Centre of pressure position relative to MTH2 (cm)

Straight Left

Straight Right

Bend Left

Bend Right

Lateral (+ , oblique axis) Medial (- , transverse axis)
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by Churchill et al. (2016) at maximal velocity. Churchill et al. (2016) found a 

significant reduction in peak and mean vertical force and peak resultant force during 

the left step on the bend compared to the straight. The lack of differences observed in 

the present study might be expected when considering that, despite their importance at 

maximum speed (Weyand et al., 2010), vertical force and resultant force have been 

found not to contribute to sprint performance during the acceleration phase (Morin et 

al., 2011). Rabita et al. (2015) reconstructed the entire 40 m acceleration phase with 

several sprints and neither resultant ground reaction force, nor its vertical component, 

was correlated to sprint acceleration performance (Rabita et al., 2015). It was, 

however, found that mean anteroposterior force was strongly correlated to 40 m 

maximal speed and performance (Rabita et al., 2015). Thus, the results of the present 

study, which showed no difference between bend and straight conditions in resultant 

or maximal force, were as expected from the literature. 

 A decrease in propulsive force on the bend compared with the straight was 

observed, with the supra-threshold cluster occurring at 37-44% of the stance phase. 

Colyer et al. (2018) found better performances in straight-line sprinting were 

associated with the production of high amounts of propulsive force during the mid-late 

propulsive phase of the eighth step (55-85% of stance). As the sprint distance 

increased, these associations occurred earlier in the stance phase (nineteenth 

step: 19 - 64% of stance, Colyer et al., 2018). The present study measured in the range 

of the eighth to eleventh step dependent on the location of the start blocks (see 

Appendix C for more information). Therefore, it is reasonable to assume that the 

observed decrease in propulsive force observed during bend sprinting coincided with 

a crucial time for propulsive force production during the stance phase, which might 

impact upon acceleration performance.  
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 In addition to the reduction in propulsive force, propulsive impulse was lower 

on the bend than straight, particularly during the left step where a large effect size was 

found (g = 0.93). Right step propulsive impulse was also reduced on the bend 

compared with the straight. However, the moderate effect size suggests this was not to 

the same extent as the left limb (g = 0.78). Morin et al. (2015) discussed how straight-

line acceleration capability in faster sprinters was characterised by 'pushing more' but 

not necessarily 'braking less'. This concept suggests producing higher propulsive 

impulse is of greater importance than reducing braking impulse, particularly in the first 

twenty metres of acceleration (Morin et al., 2015). This is supported by Colyer et al. 

(2018) who observed a positive association between better performances and higher 

amounts of anterior force during the mid-late propulsion phase of stance. During bend 

sprinting in the present study, the ability to produce propulsive impulse was reduced, 

and although a significant effect was not reported for braking impulse, large effect 

sizes were observed when comparing left step on the bend compared with the straight 

(g = 1.29). This suggests a greater braking impulse was experienced in the left step on 

the bend in comparison to the straight. Unlike Morin et al. (2015), acceleration 

performance during bend sprinting seems to be characterised by 'pushing less' and 

'braking more' in comparison to the straight, particularly with the left foot. Therefore, 

it seems propulsive force production of the left foot may be a limiting factor for bend 

sprinting performance during the acceleration phase. 

 However, these reductions in propulsive force observed during bend sprinting 

are a necessary consequence of the additional requirement to produce centripetal force. 

In order to achieve this requirement, and stay in the correct lane, mediolateral force 

was greater on the bend compared with the straight for the majority (3-96%) of the 

stance phase. Whilst necessary for bend sprinting, it is possible the greater mediolateral 
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force is a contributing factor for the decrease in ratio of force found during bend 

sprinting compared with straight-line sprinting. In addition, the use of SPM revealed 

mediolateral force during bend sprinting was greater in the right step compared to the 

left during 1-12% of the stance phase. Whereas later in stance (75-100%) mediolateral 

force was greater in the left step than right, thus further establishing the left foot as 

fulfilling a different role to the right foot during bend sprinting. These asymmetries 

demonstrate the benefit of SPM analysis, which has provided new insights that may 

have been lost with the analysis of discrete values.  

 In comparison to straight-line sprinting, bend sprinting elicited an 11% and 

22% decrease in mean ratio of force for the left and right steps, respectively. A higher 

ratio of force has been associated with better acceleration performance (Morin et al., 

2011). This reinforces the notion that athletes apply propulsive force less effectively 

during bend sprinting and therefore the generation and orientation of force appear a 

limiting factor to acceleration performance on the bend when compared with straight-

line sprinting. It appears this may be due to the combination of a reduction in 

propulsive force and an essential increase in mediolateral force. Whilst the right step 

experienced a decrease in ratio of force on the bend, right step ratio of force was 8% 

greater than the left step on the bend (g = 0.88). Thus, there appear to be asymmetries 

in force production of the left and right limb during bend sprinting, with the right being 

more effective at propulsive force production. However, it is possible that ratio of force 

requires further evaluation during bend sprinting. For example, although reducing 

mediolateral force would achieve the desired outcome of increasing ratio of force, 

doing so would prevent the athlete from maintaining a curved path. Therefore, as 

mediolateral force is a necessary component of bend sprinting, rather than achieving 
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the highest ratio possible, it is likely there is an optimum ratio that balances the 

production of propulsive and mediolateral forces. 

 Ratio of force analysis provides an overview of force orientation and a 

reduction was reported in both left and right steps on the bend compared with the 

straight. This finding is reinforced when considering impulse, which, as the product of 

force and time, acts as a metric to evaluate force application. Despite longer left step 

contact times, reductions in the magnitude of force resulted in a decrease in propulsive 

impulse that was greater in the left step. Therefore, it appears the decrease in 

acceleration performance at approximately 12 m phase is largely due to changes in left 

step force orientation and application. 

 A mechanism behind the reported changes in force production during bend 

sprinting might be the use of different MTP joint push-off axes. Results showed that 

left step mean mediolateral CoP position was more lateral on the bend than the straight, 

suggesting the oblique axis is used to push-off with the left step during bend sprinting, 

supporting the hypothesis put forward by Churchill et al. (2016). The oblique axis is 

considered less effective for push-off at high speeds (Bojsen-Moller, 1979). However, 

during bend sprinting, the use of the oblique axis seems a necessary adaptation 

(dictated by the need to produce centripetal force) required to aid the change of 

direction. The mean mediolateral CoP position for the right step on the bend was more 

medial than on the straight, thus the transverse axis was in use for both bend and 

straight conditions. This further reinforces the notion that the right step and left steps 

perform different functions during bend sprinting. The left limb appears to have a 

controlling role, focussed upon producing the necessary rotation and centripetal force 

required during bend sprinting. In contrast, the right limb appears to produce 
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movement in the anterior direction, sharing more similar characteristics to those 

demonstrated during straight-line sprinting. 

 Although resultant and vertical forces were unaffected by the bend, the results 

demonstrate a reduction in the ability to produce anterior force during bend sprinting. 

This was combined with a lower mean ratio of force, suggesting athletes apply 

propulsive force less effectively during bend sprinting. There was an increase in 

mediolateral force on the bend, which was greater in the left step compared with the 

right demonstrating asymmetry between limbs. Whilst the observed mean θSYM value 

for mediolateral impulse was comparable on the bend (10.98 ± 10.66) and straight 

(11.70 ± 12.83), mediolateral force is often considered negligible during straight-line 

sprinting (Rabita et al., 2015). Likewise, the magnitude of mediolateral impulse 

generated on the straight in the current study was small (left step: 0.02 ± 0.10 m/s; 

right step: 0.04 ± 0.05 m/s). Therefore between-limb differences observed during 

straight-line sprinting are unlikely to be practically meaningful, as also suggested by 

the weak correlation reported (r = .044).  Furthermore, in the left step, to aid with the 

change in direction, it was necessary for push-off to occur using the oblique axis at the 

MTP joint. However, similarly to straight-line sprinting, the right step maintained use 

of the transverse axis for push-off during bend sprinting. The asymmetries in force 

production and MTP joint axis suggest the left and right limb have different functional 

roles during bend sprinting.  

 There were some differences observed between the left and right limb on the 

straight that may not be expected (e.g., vertical impulse, g = 0.55). For vertical 

impulse, this resulted in a mean θSYM value of 9.48 ± 12.06 on the straight - which was 

twice as large as that observed on the bend (4.40 ± 2.55) and also higher than the 

maximum θSYM value of 6.0 reported by Exell et al. (2017) at maximal speed. 



 

Page 153 of 226 

 

However, no significant correlations were observed relating this asymmetry to sprint 

performance. In addition, it was necessary to move the starting point for athletes to 

collect data for both the left and right step with a single force platform. The start blocks 

were moved a maximum of one metre forwards or backwards to facilitate a clean strike 

on the force platform in separate trials for the left and right steps. Consequently, 

athletes made contact with the force platform approximately 11 - 13 m from the start 

point. Therefore, asymmetry present when comparing the left and right limb may be 

somewhat exacerbated by the use of different steps which represent different levels of 

distance progressed within the acceleration phase. The number of steps taken by 

athletes is recorded in Appendix C. The distance run by all athletes was further in the 

left step, with the difference between left and right steps never greater than a single 

step. The step number and distance run was consistent for bend and straight 

comparisons by limb for all participants. However, work from Exell et al. (2017) 

suggested we should expect to see a certain level of asymmetry between limbs during 

straight-line sprinting, which is not necessarily dysfunctional or detrimental to 

performance. This notion is supported by Haugen, Danielsen, McGhie, Sandbakk, and 

Ettema (2018) who concluded that asymmetry within the sprint stride cycle is more 

likely the norm rather than the exception. This is likely pertinent when considering 

bend sprinters who perform sprints on the bend consistently in the same direction, and 

so asymmetry in muscle strength is expected. Moreover, kinematic lower limb 

asymmetries were not associated with maximal sprint running performance or the 

prevalence of injury among high‐level athletic sprinters (Haugen et al., 2018). 

6.5. Conclusion 

 The present study has identified differing functions in the force production of 

the left and right limb during bend sprinting. The need to produce centripetal force is 
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fulfilled primarily by the left leg, whilst the right limb serves to produce force in the 

anteroposterior direction. Therefore, training should be developed to fully reflect this, 

ensuring acceleration training takes place on the bend, and non-sagittal plane exercises 

are included in strength and conditioning programmes.  
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Chapter Seven: JOINT MOMENTS, POWER AND ENERGY IN BEND 

SPRINTING 
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7. Joint moments, power and energy in bend sprinting 

7.1. Introduction 

  In comparison to straight-line sprinting, bend sprinting at maximal and 

sub-maximal speed induces several lower limb kinematic changes which occur 

predominantly in the frontal and transverse planes (Alt et al., 2015; Churchill et al., 

2015, Chapter 5). These kinematic adaptations result in changes in spatio-temporal 

parameters such as contact time, step length and step frequency (Alt et al., 2015; 

Churchill et al., 2015; Churchill et al., 2016, Chapter 5). Furthermore, asymmetrical 

changes in force production are evident during bend sprinting, with Churchill et al. 

(2016) reporting a reduction in mean vertical force and peak resultant force in the left 

step but not the right step. In addition, mediolateral forces are greater during bend 

sprinting relative to the straight (Churchill et al., 2016). This increase in mediolateral 

force was also demonstrated in the acceleration phase (Chapter 6), where the use of 

SPM revealed greater mediolateral force during 3-96% of stance. The combination 

of these kinematic and kinetic adaptations result in a decrease in velocity on the bend 

compared to the straight (Churchill et al., 2015; Churchill et al., 2016, Chapter 5). 

Thus, furthering our understanding of bend sprinting and its associated limits may 

aid overall race performance in events such as the 200 and 400 m and the 4 x 100 m 

relay.   

  Chang and Kram (2007) hypothesised that muscles operating in the 

non-sagittal plane are at a critical threshold during bend sprinting at small radii 

(1-6 m). It was suggested the ability to sustain muscle forces in the frontal and 

transverse planes prevents the generation of necessary sagittal plane moments and 

consequently inhibits the production of ground reaction force in the direction of 

travel (Chang & Kram, 2007). This hypothesis has generally been accepted as a 
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plausible explanation within the bend sprinting literature (e.g., Alt et al., 2015; 

Churchill et al., 2015), however, has yet to be confirmed empirically in conditions 

representative of a competitive athletics environment.  

  There is some evidence at smaller radii which appears to refute the hypothesis 

of Chang and Kram (2007). For example, Luo and Stefanyshyn (2012a) introduced 

a wedged footwear condition during bend sprinting with a 2.5 m radius. In the 

wedged footwear condition, the midsole structure was modified with the aim of 

aligning the foot more neutrally and decreasing eversion during anti-clockwise bend 

sprinting. In the left step, a decrease in ankle eversion angle was observed, which 

coincided with an increase in plantar flexion moment and a 4.3% increase in speed 

compared with the control condition with no wedge. Whilst a decrease in non-sagittal 

plane moments was also observed at the ankle, an increase in non-sagittal plane 

moments was observed at the knee, suggesting the load was distributed elsewhere. 

If, as Chang and Kram (2007) suggested, the non-sagittal plane moments were 

operating at their critical limits and therefore preventing further generation of limb 

extension force, it would be expected that the participants continue to operate at the 

same threshold, regardless of experimental condition. However, the results from Luo 

and Stefanyshyn (2012a) demonstrate this not to be the case, although the right limb 

was not investigated. Moreover, in a further study from Luo and Stefanyshyn (2012b) 

which compared bend sprinting with and without an additional mass (achieved 

through a weighted vest), an increase in left limb non-sagittal plane moments was 

observed in the additional mass condition. Therefore, it appears the left limb 

possesses the ability to generate larger moments than demonstrated in the control 

'without mass' condition but is prevented from doing so in some way. This provides 

further evidence against the hypothesis of Chang and Kram (2007) since the 



 

Page 158 of 226 

 

increasing moments in the weighted condition demonstrate the limb was able to 

endure a greater external load.  

  At present, only Viellehner et al. (2016) have investigated joint moments with 

a radius representative of athletic bend sprinting competitions (36.5 m). An increase 

in left step ankle plantar flexion moment was observed during bend sprinting relative 

to the straight, although the sub-maximal effort is not representative of performance 

in a competitive environment. It is possible similar adaptations are present during the 

acceleration phase of bend sprinting. Therefore, there is a direct contradiction 

between what has been empirically evaluated within the literature (Luo & 

Stefanyshyn, 2012a, 2012b; Viellehner et al., 2016), and what has been hypothesised 

as possible within the bend sprinting community (Alt et al., 2015; Chang & Kram, 

2007; Churchill et al., 2015). Thus, analysis of 3D joint moments at maximal effort 

and at radii representative of competitive athletics would provide insight into the 

function of each leg and the mechanisms of performance.  

  Whilst analysis of joint moments provides an indication of the magnitude of 

muscular force generation, calculation of joint powers and energies would provide 

further in-depth insight into joint function during bend sprinting. For example, during 

straight-line sprinting, the production of high propulsive ground reaction force is 

often associated with high hip extension angular velocity (Hunter et al., 2004a). 

When analysing the mid-acceleration phase of straight-line sprinting, Johnson and 

Buckley (2001) noted this forceful production of hip extension was possible due to a 

large power at the hip (3242 W). Furthermore, a proximal-distal sequencing of peak 

joint extension powers was observed during the stance phase (Johnson & Buckley, 

2001). It is thought this sequential pattern is necessary to allow the transfer of power 

from proximal to distal joints and enable greater power generation by the smaller 
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muscles of the foot and ankle (Jacobs et al., 1996). Kinematic adaptations, such as a 

high peak hip adduction angles (e.g., 13.8°, Alt et al., 2015; 10.6 °, Churchill et al., 

2015) and high peak ankle eversion (e.g., 12.7°, Alt et al., 2015) found during bend 

sprinting could not only impact upon the muscles' ability to produce forces in the 

sagittal plane, but also disrupt this sequencing, resulting in a decrease in sprint 

performance. Furthermore, it is possible the complex arrangement of the lower limb 

and associated non-sagittal plane adaptations are a risk factor for injury during bend 

sprinting. Analysis of joint kinetics would establish the net demand of the joint and 

surrounding musculature, thus being influential in developing strength and 

conditioning and injury prevention programmes. Therefore, investigation of joint 

kinetics during bend sprinting is required. These findings would enable strength and 

condition programmes to target the strengthening of specific muscles to improve 

bend sprinting performance and also decrease the risk of injury. 

  The aim of this study was to investigate joint moments, power and energies of 

the lower limb during sprinting on the bend compared with the straight. In line with 

the empirical evidence presented, it was hypothesised that increased frontal and 

transverse plane moments would be greater on the bend compared with the straight. 

7.2. Methods 

7.2.1. Participants 

 Following ethical approval from Sheffield Hallam University, seven male 

sprinters (mean age 22 ± 4 years; body mass 68.32 ± 6.98 kg; stature 1.79 ± 0.06 m) 

volunteered to participate in the study. The inclusion criteria required a 200 m personal 

best of 23.5 s or faster, consequently, all athletes were experienced bend sprinters 

(personal bests: 21.8 - 23.43 s) in full training and with no history of injury in the six 
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months before testing. Participants provided written informed consent having had the 

study procedures fully explained and the opportunity to ask any questions. 

7.2.2. Experimental set-up 

The experimental set-up is demonstrated in section 0. A 15-camera 

optoelectronic motion capture system (13 x Raptor model and 2 x Eagle model, Motion 

Analysis Corporation, Santa Rosa, CA, USA) sampling at 200 Hz was used to collect 

kinematic data. A rigid L-frame with four markers at known locations was used to 

define a right-handed laboratory coordinate system. The direction of progression was 

most closely aligned with the positive x-axis, where the positive y-axis was directed 

vertically upwards, and the positive z-axis was mediolateral, pointing to the athletes’ 

right. Individual intrinsic and extrinsic parameters of the 15 optoelectronic cameras 

were scaled using a three-marker wand (length: 500 mm) within the calibration volume 

(7 m long, 3 m wide and 1.5 m high), located tangentially to the apex of the curve to 

record data through the 10 - 17 m section of the 30 m sprints (see Chapter 5, Figure 

5.2.1.1). Torso, pelvis, thighs, shanks and feet segments (toebox, forefoot, rearfoot) 

were modelled using a modified Vicon Plug-in Gait (PiG) marker set (lower limb and 

trunk, 4.2.2). 

 A Kistler force plate (Model: 9287BA, 900 x 600 mm) embedded into the track 

surface at approximately 12 m was used to collect kinetic data (1000 Hz). Kinetic and 

kinematic data were synchronised using a rising edge 5 V signal from the force plate 

at the onset of data collection. 
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7.2.3. Protocol 

  Data were collected on a 30 m section of straight track for straight-line trials. 

A bend replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 

2008) was reconstructed on a flat section of indoor track for bend trials. The order of 

experimental conditions was randomised to minimise order effects.  

 Participants completed their typical competition warm-up before performing a 

maximum of six 30 m sprints at maximal effort in each condition (bend and straight). 

To maintain the representativeness of the protocol, starting blocks and an 'on your 

marks, set, go' signal was used. A successful trial was defined as contact being made 

with the force plate without changes to their running gait caused by ‘targeting’. To 

reduce the risk of targeting, athletes were not informed of the location of the force 

plate. Instead, one researcher modified the start location of the athletes to aid the 

athlete in making contact with the force plate. Approximately eight minutes were 

z 

x y 

Capture volume (15- 

camera, 7.00 m x 

3.00 m x 1.50 m, 

200 Hz) Path of athlete 

Start of bend trials 

(approximately 

12.00 m from force 

plate) 
End of 30.00 

m bend 

running 

Kistler force plate 

(Model: 9287BA, 

900 x 600 mm, 

1000 Hz) 

Start of straight trials 

(approximately 

12.00 m from force 

plate) 

End of 30.00 m 

straight running 

Figure 7.2.1.1 Plan view of experimental set-up (not to scale). 
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allowed between trials to allow full recovery and avoid the onset of fatigue (Churchill 

et al., 2015). Participants wore their own sprint spikes for the testing session.  

7.2.4. Data processing 

 Raw 3D marker coordinate data were analysed using Cortex software (version 

5.3, Motion Analysis Corporation, Santa Rosa, CA, USA). Automatic gap filling using 

a cubic spline was performed with all gaps <10 frames. Visual 3D (version 6, C-

Motion, Rockville, MD, USA) was used to define and construct segments, LCS and 

joint centres in line with ISB guidelines (Wu et al., 2002; Wu et al., 2005) for the 

majority of segments. However, the joint coordinate system for the multi-segment foot 

was defined in accordance with Cappozzo et al. (1995). 

 A lower limb and trunk model was used, having been previously established as 

appropriate for whole-body CoM calculations (Chapter 3). Previous work from 

Bezodis et al. (2012) established that, when excluding the MTP joint from moment 

and power analyses of the lower limb, peak moments at the ankle were artificially high. 

Due to the linked segment nature of inverse dynamics, this consequently affected the 

accuracy of knee and hip joint kinetics (Bezodis et al., 2012). Thus, Bezodis et al. 

(2012) advocated the use of a multi-segment foot in sprint analyses of the lower limb. 

This was supported by Zelik and Honert (2018) who suggest a single segment foot is 

inappropriate for calculations of ankle power, which should instead be computed about 

the shank-calcaneus joint. Therefore, a multi-segment foot model (toebox, forefoot and 

rearfoot) was used.  

 Body segment parameters were estimated from (de Leva, 1996), recommended 

by Rao et al. (2006) as the most accurate regression equations for use in the assessment 

of joint kinetics. Owing to the small mass of the foot, it is unlikely that body segment 

parameters have a significant influence over the calculation of inverse dynamics 
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(Bruening & Takahashi, 2018). Therefore, body segment parameter estimates for a 

single segment foot were applied to each segment of the multi-segment, foot based 

upon individual segment length, as is the case with previous gait research (Deschamps 

et al., 2017; Dixon et al., 2012). Adapting methods of Hunter et al. (2004b), multi-

segment foot values were adjusted by 0.150 to 0.189 kg (according to manufacturer 

specification) representing the mass of individual participants' spiked shoe. Owing to 

the use of a multi-segment foot, this additional mass required redistribution amongst 

each segment. A number of methods have been implemented within previous literature 

such as CT scans (Saraswat et al., 2010; Saraswat et al., 2014); distribution based on 

the relative forefoot:rearfoot length (Bezodis et al., 2012; Bruening et al., 2012) and 

arbitrary use of 50:50 for forefoot:rearfoot (Dixon et al., 2012) For the purpose of the 

present study, the distribution based on relative segment length was considered the 

most feasible and appropriate. 

 Kinetic data were analysed using Matlab (v2017a, Mathworks, Natick, USA). 

Large fluctuations in knee joint moments during sprinting have been observed when 

filtering kinematic and kinetic data at different cut-off frequencies (Bezodis et al., 

2013). Therefore, both kinetic and kinematic force data were filtered with a low-pass, 

fourth-order recursive Butterworth filter 18 Hz cut-off frequency, chosen with the use 

of residual analysis. 

 One successful trial per condition and participant was analysed. CV was 

calculated for a sample of key variables where additional trials were available 

(Appendix D). CV was ≤ 10 % for peak MTP moment (1.80 - 9.26 %) and peak hip 

adductor moment (2.98 - 10.28 %), whilst one participant demonstrated a CV of 16.22 

% for peak hip flexor moment, the remaining values were  ≤ 10 % (1.88 - 9.45). 

Atkinson and Nevill (1998) suggest a CV of 10 % or less indicates very good 
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reliability, thus the CV results presented support the use of a single trial for further 

analysis. This is further supported by Johnson and Buckley (2001) who demonstrated 

high intra-individual consistency in sprint trials (alpha coefficients of 0.95 to 0.99 for 

hip, knee and ankle angles and vertical and horizontal ground reaction forces), 

establishing one trial was sufficient for analysis of joint kinetics. Where more than one 

successful trial was available, the first successful trial was selected for analysis. 

Touchdown and take-off events were identified from vertical ground reaction force 

using the mean plus two standard deviations of the last three seconds of data (where 

there was zero load on the force plate) as a threshold (Bezodis et al., 2007). All 

variables were calculated separately for the left and right step. Steps were defined by 

the foot that initiated the step.  

 Joint moments were calculated in Visual 3D (version 6, C-Motion, Rockville, 

MD, USA) and expressed in the joint coordinate system, discussed in section 2.8.2. In 

previous sprint research, this issue of force redistribution amongst foot segments has 

not needed addressing, since sprinters tend to remain on their toes throughout early 

acceleration (Bezodis, Salo, & Trewartha, 2010; Bezodis et al., 2012). Therefore, the 

entire ground reaction force can be allocated to the MTP joint. However, qualitative 

analysis of the trials within the current body of work established a small number of 

frames where the heel came into contact with the ground, resulting in the centre of 

pressure passing proximally to the MTP joint and therefore requiring the redistribution 

of force (see section 2.8.2. for discussion). Consequently, joint moment data were 

cropped to the propulsive phase of stance (identified using the corresponding 

anteroposterior force), at which point the centre of pressure was distal to the MTP 

joint. Joint moment data were normalised to body weight and height (Hof, 1996, 
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adapted from leg length to maintain consistency with previous sprint literature such as 

Charalambous et al., 2012). 

 As Schache and Baker (2007) noted, expression of joint moments in the joint 

coordinate system is purely for representation purposes, and thus, any further 

calculations should be completed in an orthogonal reference frame. Therefore, joint 

powers were calculated in Matlab (v2017a, Mathworks, Natick, USA) using the 

following equations and non-normalised joint moments expressed in the proximal 

segment reference frame: 

𝑃𝑜𝑤𝑒𝑟 = �⃗� ∙ �⃗⃗⃗�        Equation 20 

where �⃗� represents force (moment) and �⃗⃗⃗� represents angular velocity. As the dot 

product of two vectors, power is a scalar quantity. As such, it is mathematically 

incorrect to split power into its components; since a one-dimensional calculation of 

power might not represent the actual rate work is performed in three-dimensions. 

However, as Vigotsky, Zelik, Lake, and Hinrichs (2019) noted, there may be 

circumstances where directional components of power remain of interest, and 

therefore it should not necessarily be disregarded. Bend sprinting has been shown as 

multi-dimensional, with kinematic adaptations occurring predominantly in the frontal 

and transverse planes (Alt et al., 2015; Churchill et al., 2015). Consequently, the 

analysis of directional powers is necessary for gaining an in-depth understanding of 

the mechanisms required for sprinting on the bend. Therefore, power data were 

calculated in each direction and normalised using the following equation (Hof, 1996, 

modified by Bezodis et al., 2010): 
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𝑃
→

𝑚∙𝑔3/2∙ℎ1/2         Equation 21 

where 
𝑃
→ is power, m is the mass of the sprinter, g is gravitational acceleration and h 

is the height of the sprinter. 

 Energy was calculated as the integral of the non-normalised power-time curve, 

and cumulative positive and negative phases represent energy generation and 

absorption, respectively. Energy data were normalised to body weight and height (Hof, 

1996).  

7.2.5. Statistical analysis 

 Descriptive statistics (mean and standard deviation) were calculated for all 

variables. The Shapiro-Wilk normality test (p > 0.05) was used to assess the normal 

distribution of the data for each variable. Two-way repeated measures ANOVAs were 

performed where condition (bend vs. straight) x limb (left vs. right) were analysed. It 

is acknowledged that the sample size in this study was small and that this inflates the 

type II familywise error rate. As such, effect size (Hedges’ g, Equation 16) was used 

to give an indication of the magnitude of the effect, interpreted with reference to Cohen 

(1988) guidelines where g < 0.20 represents a trivial difference, 0.20 ≥ 0.50 indicating 

a small difference, 0.50 ≥ 0.80 a moderate difference and ≥ 0.80 a large difference 

between means. 

7.3. Results 

Joint angle, moment and power across the propulsive phase of stance are shown in 

Figures 7.3.1.1-4. 

7.3.1. Joint moments 

 For peak hip flexor moment, there was no significant condition x limb 

interaction (F (1, 6) = 0.57, p = 0.48). Although the main effect for condition was 

non-significant (F (1, 6) = 4.47, p = 0.08, Table 7.3.2.1), a large and moderate effect size 
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(g = 1.10, 0.70) suggest a trend towards a decrease in peak hip flexor moment for the 

left and right steps on the bend compared with the straight, respectively. This was also 

the case for peak knee flexor moment, where a large effect size (g = 1.06) suggests a 

decrease in peak knee flexor moment was observed during the left step of bend 

sprinting compared with the straight. However, the condition x limb interaction was 

non-significant (F (1, 6) = 4.66, p = 0.07). There was no significant condition x limb 

interaction for hip adduction (F (1, 6) = 2.84, p = 0.14). However, there was a trend 

towards a large (g = 0.85) increase in peak left step hip adductor moment during 

sprinting on the bend relative to the straight. 

 A trend towards a large (g = 1.07) increase in peak left step ankle plantar 

flexion moment was also observed on the bend compared with the straight, although a 

significant interaction was not found (F (1, 6) = 2.33, p = 0.18, Table 7.3.2.2). For peak 

MTP joint plantar flexor moment, the condition x limb interaction was non-significant 

(F (1, 6) = 0.06, p = 0.81). However, there was a main effect for limb due to a larger 

plantar flexor moment in the right MTP joint than left (F (1, 6) = 8.46, p = 0.03, g = 

0.53). Moderate and large effect sizes (g = 0.50, 1.90) suggest a trend towards a greater 

plantar flexor moment on the bend than straight in the right and left MTP joints, 

respectively. 

 For peak ankle eversion moment, there was no significant condition x limb 

interaction (F (1, 6) = 0.70, p = 0.43). However, a main effect for limb was observed, F 

(1, 6) = 26.00, p <0.01, due to an increase in left step peak ankle eversion moment on 

the bend compared with and the right step on the bend (g = 1.23). There was also a 

large effect size suggesting a greater left step peak ankle eversion moment on the bend 

than straight (g = 0.82). There was no significant condition x limb interaction for 

midfoot eversion (F (1, 6) = 3.20 p = 0.12). However, a moderate increase in left step 
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peak midfoot eversion moment was observed during bend sprinting compared with the 

straight (g = 0.65) and also when compared with the right step on the bend (g = 1.31). 
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Figure 7.3.1.1 Hip joint angle, joint moment and joint power for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line           ). 
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Figure 7.3.1.2 Knee joint angle, joint moment and joint power for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line           ). 
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Figure 7.3.1.3 Ankle joint angle, joint moment and joint power for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line         ). 
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 Figure 7.3.1.4 Midfoot and MTP joint angle, joint moment and joint power for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line          ). 
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7.3.2. Joint power and energy 

 At the hip joint, no significant condition x limb interactions for peak power in 

the sagittal plane (positive: F (1, 6) = 0.06, p = 0.82, negative: F (1, 6) = 0.23, p = 0.65, 

Table 7.3.2.3) or sagittal plane energy (generated: F (1, 6) = 0.02, p = 0.88, absorbed: 

F (1, 6) = 0.97, p = 0.36) were observed. Although there was no significant condition x 

limb interaction (F (1, 6) =1.59, p = 0.25), there was a large effect size (g = 0.82), 

suggesting a trend towards an increase in left step peak positive hip power in the frontal 

plane during bend sprinting compared with the straight (main effect, limb: 

F (1, 6) = 6.29, p = 0.05). There was also a moderate (g = 0.63) increase in left step peak 

negative hip power in the transverse plane during bend sprinting relative to the straight. 

However, no significant condition x limb interaction was reported (F (1, 6) = 2.88, 

p = 0.14). Although there was no significant condition x limb interaction for hip joint 

energy absorption in the frontal plane (F (1, 6) = 0.31, p = 0.60), there was a main effect 

for condition (F (1, 6) = 17.29, p = 0.01) due to increased energy absorption during 

sprinting on the bend compared with the straight (left step, g = 1.12, right step g = 0.89, 

Table 7.3.2.5). 

 At the ankle, there was no significant condition x limb interaction for peak 

negative sagittal plane joint power (F (1, 6) = 0.05, p = 0.841. Table 7.3.2.4), although 

a moderate increase (g = 0.61) in left step peak sagittal plane negative joint power was 

observed in the (main effect limb: F (1, 6) = 3.174, p = 0.15). This was combined with 

a large, but non-significant, increase in left step sagittal plane ankle energy absorption 

on the bend compared with the straight (main effect limb: F (1, 6) = 3.287, p = 0.13, 

g = 0.80). The condition x limb interaction was non-significant for peak positive 

transverse plane ankle power (F (1, 6) = 1.13, p = 0.34). However, there was a moderate 
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increase in peak positive left step ankle power in the transverse plane during bend 

sprinting relative to the straight (main effect limb: F (1, 6) = 4.800, p = 0.08, g = 0.76). 

There was no significant condition x interaction for transverse plane ankle energy 

absorption (F (1, 6) = 3.87, p = 0.10, Table 7.3.2.6). However, the effect size (g = 1.08) 

suggests an increase in left step transverse plane ankle energy absorption during 

sprinting on the bend relative to the straight. 

 At the MTP joint, no significant condition x limb interaction was found 

(F (1, 6) = 0.261, p = 0.627). However, there were large and moderate effect sizes 

(d = 0.95, 0.52) suggesting increases in peak negative joint power for the left and right 

step, respectively (main effect condition: F (1, 6) = 6.27, p = 0.05). This was related to 

an increase in MTP joint energy absorption (main effect condition: F (1, 6) = 7.14, 

p = 0.04) on the bend compared with the straight (left step, d = 1.68, right step, 

d = 0.30). For midfoot peak positive power, there was a main effect for condition, 

F (1, 6) = 48.04, p <0.01, due to an increase in peak positive midfoot power in both the 

left (g = 1.20) and right (g = 0.74) step on the bend compared with the straight. For 

peak negative midfoot power, there was a main effect for limb (F (1, 6) = 19.683, 

p <0.01, due to an increase in peak negative midfoot power in the left step compared 

with the straight (g = 1.45). 
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Table 7.3.2.1 Peak joint moments for hip and knee joints Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant main effects are marked with 

*. Significant interactions are marked with #. 

Peak moment during the 

propulsive phase of stance 

(dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Hip extension -0.238 ± 0.138 -0.179 ± 0.047 -0.204 ± 0.066 -0.179 ± 0.061 0.39 (34%) 0.29 (14%) 0.34 (15%) 0.00 (0%) 

Hip flexion 0.138 ± 0.074 0.104 ± 0.053 0.070 ± 0.046 0.068 ± 0.034 0.24 (27%) 0.00 (3%) 1.10 (49%) 0.70 (44%) 

Hip adduction 0.130 ± 0.057 0.122 ± 0.093 0.217 ± 0.133 0.079 ± 0.036 0.13 (12%) 1.39 (173%) 0.85 (67%) 0.55 (35%) 

Hip abduction -0.062 ± 0.034 -0.067 ± 0.055 -0.059 ± 0.058 -0.063 ± 0.057 0.00 (3%) 0.00 (7%) 0.00 (5%) 0.00 (0%) 

Hip internal rotation 0.050 ± 0.033 0.090 ± 0.036 0.040 ± 0.025 0.118 ± 0.074 1.07 (44%) 1.48 (65%) 0.37 (20%) 0.50 (31%) 

Hip external rotation -0.098 ± 0.017 -0.054 ± 0.049 -0.088 ± 0.028 -0.086 ± 0.060 1.21 (82%) 0.00 (3%) 0.37 (9%) 0.69 (60%) 

Knee flexion -0.058 ± 0.048 -0.040 ± 0.023 -0.019 ± 0.012 -0.041 ± 0.023 0.50 (42%) 1.20 (53%) 1.06 (67%) 0.01 (1%) 

Knee extension 0.157 ± 0.129 0.127 ± 0.064 0.108 ± 0.032 0.105 ± 0.033 0.30 (24%) 0.00 (3%) 0.50 (32%) 0.40 (17%) 

Knee abduction 0.187 ± 0.154 0.094 ± 0.117 0.143 ± 0.099 0.060 ± 0.077 0.70 (107%) 0.84 (140%) 0.37 (36%) 0.28 (36%) 

Knee adduction -0.002 ± 0.020 -0.047 ± 0.041 0.009 ± 0.017 -0.036 ± 0.031 1.12 (76%) 1.50 (95%) 0.48 (73%) 0.27 (31%) 

Knee internal rotation -0.012 ± 0.007 -0.024 ± 0.032 -0.010 ± 0.008 -0.026 ± 0.050 0.43 (48%) 0.53 (61%) 0.00 (18%) 0.23 (10%) 

Knee external rotation 0.061 ± 0.058 0.021 ± 0.010 0.077 ± 0.063 0.019 ± 0.009 0.88 (191%) 1.33 (308%) 0.32 (26%) 0.00 (10%) 
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Table 7.3.2.2 Peak joint moments for ankle, midfoot and MTP joints. Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant main effects are 

marked with *. Significant interactions are marked with #. 

Peak moment during the 

propulsive phase of stance 

(dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Ankle dorsiflexion -0.017 ± 0.026 0.001 ± 0.009 -0.034 ± 0.026 0.003 ± 0.018 0.85 (1328%) 1.12 (1077%) 0.32 (98%) 0.05 (307%) 

Ankle plantar flexion 0.309 ± 0.061 0.358 ± 0.077 0.391 ± 0.081 0.378 ± 0.054 0.67 (14%) 0.14 (3%) 1.07 (36%) 0.29 (5%) 

Ankle inversion 0.001 ± 0.010 -0.023 ± 0.021 0.001 ± 0.010 -0.024 ± 0.019 1.49 (105%) 1.67 (105%) 0.01 (9%) 0.05 (5%) 

Ankle eversion 0.047 ± 0.047 0.009 ± 0.012 0.098 ± 0.063 0.025 ± 0.038 1.34 (409%) 1.23 (259%)* 0.82 (91%) 0.55 (172%) 

Ankle internal rotation 0.004 ± 0.011 0.020 ± 0.020 0.003 ± 0.011 

 

 

 

 

 

 

 

 

 

 

0.020 ± 0.022 0.95 (84%) 1.03 (82%) 0.04 (15%) 0.03 (3%) 

Ankle external rotation -0.063 ± 0.059 -0.016 ± 0.022 -0.117 ± 0.123 -0.034 ± 0.050 0.85 (291%) 0.93(246%) 0.60 (85%) 0.25 (110%) 

Midfoot inversion 0.003 ± 0.015 0.019 ± 0.009 0.005 ± 0.010 0.021 ± 0.008 1.33 (84%) 1.70 (76%) 0.16 (64%) 0.23 (10%) 

Midfoot eversion -0.054 ± 0.046 -0.056 ± 0.075 -0.097 ± 0.088 -0.011 ± 0.016 0.16 (2%) 1.31 (798%) 0.65 (78%) 0.93 (81%) 

MTP dorsiflexion 0.013 ± 0.025 0.008 ± 0.007 0.003 ± 0.006 0.002 ± 0.002 0.30 (70%) 0.63 (55) 0.06 (11%) 1.05 (72%) 

MTP plantar flexion -0.020 ± 0.014 -0.040 ± 0.018 -0.039 ± 0.012 -0.064± 0.056 1.20 (51%) 0.53 (40%) 1.90 (98%)* 0.50 (62%)* 
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Table 7.3.2.3 Peak power values for the hip and knee joints. Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant main effects are marked 

with *. Significant interactions are marked with #. 

Peak power during the 

propulsive phase of stance 

(dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Hip sagittal (concentric) 0.519 ± 0.217 0.557 ± 0.219 0.515 ± 0.092 0.525 ± 0.171 0.17 (7%) 0.07 (2%) 0.03 (15%) 0.02 (0%) 

Hip sagittal (eccentric) -0.261 ± 0.104 -0.270 ± 0.094 -0.231 ± 0.072 -0.273 ± 0.090 0.10 (4%) 0.47 (16%) 0.33 (11%) 0.04 (1%) 

Hip frontal (concentric) 0.119 ± 0.064 0.104 ± 0.048 0.232 ± 0.171 0.099 ± 0.085 0.34 (15%) 0.93 (135%) 0.82 (94%) 0.08 (5%) 

Hip frontal (eccentric) -0.104 ± 0.065 -0.159 ± 0.138 -0.145 ± 0.083 -0.141 ± 0.119 0.51 (35%) 0.10 (3%) 0.78 (39%) 0.14 (11%) 

Hip transverse (concentric) 0.064 ± 0.054 0.115 ± 0.054 0.073 ± 0.090 0.139 ± 0.05 0.94 (44%) 0.92 (48%) 0.13 (13%) 0.57 (21%) 

Hip transverse (eccentric) -0.092 ± 0.062 -0.087 ± 0.050 -0.172 ± 0.157 -0.087 ± 0.080 0.09 (6%) 0.60 (99%) 0.63 (87%) 0.00 (0%) 

Knee sagittal (concentric) 0.095 ± 0.042 0.122 ± 0.109 0.107 ± 0.037 0.104 ± 0.045 0.34 (22%) 0.24 (3%) 0.47 (13%) 0.23 (15%) 

Knee sagittal (eccentric) -0.161 ± 0.058 -0.151 ± 0.071 -0.115 ± 0.042 -0.151 ± 0.044 0.15 (6%) 0.71 (24%) 0.75 (28%) 0.00 (0%) 

Knee frontal (concentric) 0.050 ± 0.041 0.046 ± 0.037 0.061 ± 0.037 0.098 ± 0.066 0.00 (8%) 0.50 (30%) 0.24 (22%) 0.67 (89%) 

Knee frontal (eccentric) -0.062 ± 0.038 -0.107 ± 0.146 -0.082 ± 0.070 -0.059 ± 0.052 0.43 (42%) 0.33 (40%) 0.31 (33%) 0.43 (45%) 

Knee transverse (concentric) 0.055 ± 0.037 0.028 ± 0.014 0.030 ± 0.017 0.051 ± 0.033 0.65 (94%) 0.75 (42%) 0.60 (46%) 0.85 (81%) 

Knee transverse (eccentric) -0.014 ± 0.008 -0.021 ± 0.012 -0.019 ± 0.020 -0.025 ± 0.016 0.95 (30%) 0.00 (21%) 0.60 (34%) 0.00 (19%) 
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Table 7.3.2.4 Peak power for the ankle, midfoot and MTP joints. Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant main effects are marked 

with *. Significant interactions are marked with #. 

Peak power during the 

propulsive phase of stance 

(dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 

Left vs. 

right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Ankle sagittal (concentric) 1.103 ± 0.161 0.965 ± 0.070 1.244 ± 0.380 0.993 ± 0.086 1.00 (48%) 0.86 (25%) 0.46 (13%) 0.24 (3%) 

Ankle sagittal (eccentric) -1.303 ± 0.383 -1.103 ± 0.251 -1.532 ± 0.338 -1.401 ± 0.391 0.59 (18%) 0.34 (9%) 0.61 (18%) 0.87 (27%) 

Ankle frontal (concentric) 0.062 ± 0.043 0.052 ± 0.050 0.143 ± 0.118 0.042 ± 0.038 0.21 (19%) 1.06 (237%) 0.85 (134%) 0.21 (18%) 

Ankle frontal (eccentric) -0.074 ± 0.048 -0.044 ± 0.044 -0.153 ± 0.155 -0.044 ± 0.057 0.63 (66%) 0.87 (252%) 0.64 (108%) 0.02 (2%) 

Ankle transverse (concentric) 0.042 ± 0.035 0.021 ± 0.019 0.111 ± 0.119  0.027 ± 0.030 0.74 (97%) 0.87 (311%) 0.76 (163%) 0.37 (26%) 

Ankle transverse (eccentric) -0.063 ± 0.041 -0.045 ± 0.044 -0.099 ± 0.070  -0.047 ± 0.045 0.24 (39%) 0.78 (109%) 0.67 (57%) 0.05 (4%) 

Midfoot (concentric) 0.026 ± 0.016 0.040 ± 0.035 0.053 ± 0.012 0.063 ± 0.045 0.37 (35%) 0.60 (16%) 1.20 (100%)* 0.74 (56%)* 

Midfoot (eccentric) -0.063 ± 0.037 -0.050 ± 0.032 -0.142 ± 0.066 -0.041 ± 0.020  0.37 (25%)# 1.85 (243%)# 1.34 (124%)# 0.37 (18%)# 

MTP sagittal (concentric) 0.015 ± 0.016 0.019 ± 0.018 0.028 ± 0.016 0.025 ± 0.022 0.22 (20%) 0.20 (14%) 0.83 (85%) 0.28 (31%) 

MTP sagittal (eccentric) -0.104 ± 0.084 -0.116 ± 0.046 -0.158 ± 0.035 -0.199 ± 0.133 0.28 (10%) 0.11 (6%) 0.95 (52%) 0.52 (44%) 
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Table 7.3.2.5 Energy generation and absorption at the hip and knee joints. Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant main 

effects are marked with *. Significant interactions are marked with #. 

Energy during the propulsive 

phase of stance 

(dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Hip sagittal (generated) 0.052 ± 0.045 0.061 ± 0.037 0.034 ± 0.018 0.047 ± 0.031 0.20 (13%) 0.48 (29%) 0.50 (36%) 0.39 (22%) 

Hip sagittal (absorbed) -0.011 ± 0.007 -0.011 ± 0.010 -0.016 ± 0.015 -0.010 ± 0.008 0.05 (4%) 0.51 (62%) 0.41 (40%) 0.12 (10%) 

Hip frontal (generated) 0.006 ± 0.002 0.007 ± 0.005 0.017 ± 0.016 0.008 ± 0.007 0.25 (20%) 0.69 (109%) 0.92 (197%) 0.16 (13%) 

Hip frontal (absorbed) -0.005 ± 0.004 -0.003 ± 0.001 -0.011 ± 0.006 -0.007 ± 0.006 0.65 (74%) 0.64 (62%) 1.12 (101%)* 0.89 (117%)* 

Hip transverse (generated) 0.003 ± 0.004 0.001 ± 0.008 0.004 ± 0.005 0.019 ± 0.027 0.30 (433%) 0.74 (79%) 0.21 (22%) 0.86 (2940%) 

Hip transverse (absorbed) -0.006 ± 0.004  -0.006 ± 0.006 -0.013 ± 0.013 -0.019 ± 0.031 0.10 (8%) 0.24 (32%) 0.69 (121%) 0.55 (202%) 

Knee sagittal (generated) 0.006 ± 0.003 0.009 ± 0.009 0.007 ± 0.004 0.006 ± 0.003 0.43 (71%) 0.27 (4%) 0.27 (14%) 0.42 (31%) 

Knee sagittal (absorbed) -0.011 ± 0.004 -0.009 ± 0.008 -0.008 ± 0.004 -0.009 ± 0.004 0.30 (15%) 0.24 (10%) 0.71 (27%) 0.09 (6%) 

Knee frontal (generated) 0.003 ± 0.003 0.002 ± 0.002 0.004 ± 0.003 0.005 ± 0.004 0.37 (42%) 0.27 (15%) 0.32 (37%) 0.90 (128%) 

Knee frontal (absorbed) -0.003 ± 0.002 -0.003 ± 0.001 -0.003 ± 0.002 -0.004 ± 0.003 0.29 (15%) 0.35 (25%) 0.29 (17%) 0.34 (28%) 

Knee transverse (generated) 0.002 ± 0.003 0.001 ± 0.001 0.002 ± 0.001 0.003 ± 0.002 0.43 (95%) 0.79 (42%) 0.47 (38%) 1.20 (107%) 

Knee transverse (absorbed) -0.001 ± 0.001 -0.001 ± 0.001 -0.001 ± 0.001 -0.001 ± 0.000 0.21 (16%) 0.18 (18%) 0.24 (32%) 0.12 (6%) 
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Table 7.3.2.6 Energy generation and absorption at the ankle, midfoot and MTP joints. Group mean values (± standard deviation), effect sizes (% difference) of the left and right step. Significant 

main effects are marked with *. Significant interactions are marked with #. 

Energy during the propulsive 

phase of stance (dimensionless) 

Straight Bend Effect size (g) 

Left Right Left Right 

Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. 

bend left 

Straight vs. 

bend right 

Ankle sagittal (generated) 0.076 ± 0.021 0.056 ± 0.027 0.087 ± 0.018  0.055 ± 0.029 0.28 (12%) 1.31 (58%) 0.56 (14%) 0.04 (2%) 

Ankle sagittal (absorbed) -0.085 ± 0.036 -0.070 ± 0.038 -0.110 ± 0.022 -0.070 ± 0.052 0.39 (22%) 0.95 (57%) 0.80 (29%) 0.01 (1%) 

Ankle frontal (generated) 0.003 ± 0.002 0.002 ± 0.002 0.005 ± 0.004 0.002 ± 0.003 0.48 (48%) 0.81 (126%) 0.61 (85%) 0.19 (21%) 

Ankle frontal (absorbed) -0.004 ± 0.002 -0.003 ± 0.003 -0.008 ± 0.008 -0.003 ± 0.004 0.30 (40%) 0.75 (208%) 0.65 (87%) 0.15 (15%) 

Ankle transverse (generated) 0.003 ± 0.002  0.002 ± 0.003 0.005 ± 0.007 0.002 ± 0.002 0.37 (48%) 0.56 (245%) 0.37 (83%) 0.16 (21%) 

Ankle transverse (absorbed) -0.003 ± 0.003 -0.003 ± 0.003 -0.007 ± 0.004 -0.003 ± 0.004 0.23 (20%) 0.95 (29%) 1.08 (136%) 0.01 (1%) 

Midfoot (generated) 0.002 ± 0.002 0.003 ± 0.003 0.005 ± 0.003 0.006 ± 0.006 0.37 (29%) 0.20 (21%) 1.12 (151%) 0.60 (82%) 

Midfoot (absorbed) -0.005 ± 0.003 -0.005 ± 0.003 -0.009 ± 0.004 -0.002 ± 0.001 0.16 (9%) 2.29 (308%) 1.07 (91%)* 1.28 (58%)* 

MTP sagittal (generated) 0.001 ± 0.001 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.001 0.25 (2%) 0.92(46%) 0.50 (37%) 0.05 (5%) 

MTP sagittal (absorbed) -0.006 ± 0.005 -0.011 ± 0.004 -0.014 ± 0.004 -0.013 ± 0.008 1.05 (42%) 0.15 (8%) 1.68 (133%)* 0.30 (26%)* 
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7.4. Discussion 

 This study aimed to compare joint kinetics during the acceleration phase of 

bend sprinting with straight-line sprinting. During bend sprinting, there was a large, 

but non-significant, decrease in peak flexor moment of the left hip (g = 1.10) and knee 

(g = 1.06) compared with straight-line sprinting. There was also a moderate decrease 

in peak flexor moment of the right hip (g = 0.70), although no change was observed at 

the right knee (g = 0.01). Changes in non-sagittal plane moments were also observed, 

with a large (g = 0.85) increase in peak left hip adduction moment.  

 During both straight-line and bend sprinting, sagittal plane hip moment was 

extensor for the majority of the propulsive phase of stance, becoming flexor dominant 

towards latter stages of ground contact. This pattern is similar to that found in previous 

research in early (Bezodis et al., 2014) to mid-acceleration (Johnson & Buckley, 2001) 

and maximal speed (Bezodis et al., 2008) during straight-line sprinting. A large effect 

size suggests a trend towards a lower hip flexor moment during sprinting on the bend 

compared with the straight. The need for a hip flexor moment towards the end of the 

stance phase has previously been attributed to the requirements of the hip flexors in 

driving the limb forward during the swing phase (Charalambous et al., 2012). 

Consequently, it is possible that athletes' experience difficulties repositioning the left 

leg on the bend due to the kinematic alterations such as greater hip adduction and 

external rotation observed in Chapter 5. Consequently, swing phase mechanics might 

also be of interest in understanding the mechanisms of bend sprinting performance.  

 Furthermore, there were moderate effect sizes suggesting a trend towards a 

greater left step peak negative frontal (g = 0.78) and transverse (g = 0.63) plane power 

at the hip on the bend than on the straight. This negative power indicates an eccentric 

contraction of the muscles surrounding the hip joint, which could be required to 
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stabilise the pelvis during sprinting on the bend since Segal, Yack, Brubaker, Torner, 

and Wallace (2009) suggested negative hip power in the frontal plane is likely 

associated with pelvic control. In walking gait, Shultz, Hills, Sitler, and Hillstrom 

(2010) noted the negative frontal plane hip power is due to the need to control for 

pelvic drop, whilst negative hip power in the transverse plane facilitates deceleration 

of forward rotation of the pelvis. Since the pelvis is mutually influenced by each limb, 

and the left and right limb have been shown to behave differently during bend sprinting 

(Chapter 5), a greater level of pelvic control is likely required to overcome these 

adaptations. Consequently, bend sprinting athletes and coaches should consider 

introducing muscle strengthening exercises targeted at reducing the amplitude of 

motions such as increased hip adduction. Research suggests this can be achieved 

through improving the strength of hip abductors to increase the mechanical resistance 

against adduction and strengthening the rotators and lateral flexors of the trunk to 

increase eccentric resistance against pelvic drop (Cruz et al., 2019).  

 Results observed at the ankle joint suggest the limiting factor to sprint 

performance on the bend is more complex than supposed by Chang and Kram (2007). 

A large (g = 1.07), but non-significant, increase in left step peak plantar flexor moment 

was observed on the bend compared with the straight, supporting results of sub-

maximal effort bend sprinting (Heinrich et al., 2015). The greater plantar flexor 

moment at the ankle joint contradict the hypothesis that moment production at the 

ankle joint is constrained by moments in the non-sagittal planes (although a large 

[g = 0.82] increase in peak ankle eversion moment and a moderate [g = 0.60] increase 

in peak ankle external rotation moment were observed). In previous straight-line 

sprinting studies, plantar flexor moment of the ankle has been attributed to acting 

against the anterior rotation of the shank to prevent the collapse of the shank due to 
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the effect of ground reaction force (Hunter, Marshall, & McNair, 2004c; Johnson & 

Buckley, 2001). It is possible the increase in left step peak ankle plantar flexor moment 

is due to the need to further stabilise the shank as a consequence of the non-sagittal 

plane adaptations of the lower limb. Whilst an increase in plantar flexor moment was 

observed during bend sprinting, this might be insufficient to overcome the combination 

of greater non-sagittal plane moments and the greater need for stabilisation. Therefore, 

strategies aimed at improving the ability to produce plantar flexion from an internally 

rotated position may be beneficial in improving sprint performance.   

 Furthermore, an increase in peak MTP plantar flexor moment was also 

observed during bend sprinting compared with the straight, thus providing further 

support against the hypothesis of Chang and Kram (2007). MTP moment in the sagittal 

plane was plantar flexor for the duration of the propulsive phase of stance. These 

results are similar to previous research in the acceleration phase of straight-line 

sprinting, demonstrating no dorsiflexor moment (Bezodis et al., 2014; Smith et al., 

2014; Stefanyshyn & Nigg, 1997). In Chapter 6, use of the oblique axis for push-off 

at the MTP joint was observed in the left step. Therefore, future research examining 

MTP moment about the oblique axis may be beneficial in further advancing knowledge 

in this area.  

 Orendurff et al. (2009) calculated the differential between the peak pressure 

value at the base and the head of the fifth metatarsal. This measure was proposed as a 

proxy for bending moments applied to the fifth metatarsal, where a high pressure 

differential was said to indicate more load at the head than the base and thus, 

application of a greater bending moment (Orendurff et al., 2009). It was found that 

acceleration elicited the highest bending moments when compared with a range of 

athletic movements, including straight-line running, cutting left and right and jumping 
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(Orendurff et al., 2009). These bending moments, attributed to high moments at the 

forefoot (or toebox) during push-off, have been identified as a possible risk factor for 

fifth-metatarsal stress fractures (Orendurff et al., 2009). Moreover, it is likely that bend 

sprinting also increases the torsional load experienced by the long bones of the foot. 

Therefore, the increase in ankle and MTP plantar flexor moments observed in the 

present study is possibly a risk factor for injury. To minimise the injury risk, Orendurff 

et al. (2009) recommended careful consideration of the rate at which training volume 

increases and the number of sprint accelerations performed within a session. In 

addition, sufficient rest between training sessions should also be prioritised (Orendurff 

et al., 2009). With the results of the present study in mind, it seems these 

recommendations may have particular importance in preparation for bend sprinting. 

 The ankle joint generated the most power in the sagittal plane (normalised 

power: 0.97 - 1.24) compared with the hip (0.52 - 0.56) and knee joints (0.09 - 0.12). 

These findings are in agreement with previous literature demonstrating the dominant 

role of the ankle joint in sprinting (Brazil et al., 2017; Debaere et al., 2015; Dorn et al., 

2012; Johnson & Buckley, 2001). Thus, the results of the present study reinforce the 

importance of the ankle joint during sprinting. During bend sprinting, both large and 

moderate increases in left step peak positive power were observed at the ankle in the 

frontal (g = 0.85) and transverse (g = 0.76) planes. However, this did not affect 

positive power production in the sagittal plane, where no differences were observed. 

In line with the ankle joint moment results, strength and conditioning programmes 

aiming to ensure the ankle joint is capable of withstanding these additional loads 

observed in the non-sagittal plane, whilst also improving the capacity to generate 

sufficient power in the sagittal plane, might be beneficial for sprint performance on the 

bend. 
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 Compared with the hip and ankle joints, power generation at the knee joint was 

relatively low. These results suggest a supporting role at the knee and agree with 

previous literature such as Heinrich et al. (2015), who proposed the knee may only 

have a sub-unit function. As suggested by Bezodis et al. (2008), it is likely the knee 

plays an enabling role, facilitating the transfer of power from the hip through to the 

ankle. In both conditions (bend and straight), a proximal to distal sequence of peak 

extensor power generation was observed. However, during bend sprinting with the left 

step, the timing of peak extensor power at the knee was later than that of the straight. 

This sequential transfer of power, occurring distally from the hip joint, is thought 

necessary to allow joints, such as the ankle, to achieve a higher power output despite 

having relatively smaller muscles (Jacobs et al., 1996). Kinematic adaptations, such as 

increased left hip adduction (Churchill et al., 2015; Churchill et al., 2018), which in 

the present study resulted in a large (g = 0.82) increase in peak hip power in the frontal 

plane, might delay the transfer of power from the hip to the knee. At maximum speed, 

the left limb has been found to achieve 1.6° more turning of the CoM than the right 

limb during ground contact (Churchill et al., 2016), which suggests more turning is 

achieved during left step ground contact. Therefore, this increase in peak left hip 

frontal plane power is likely a necessary consequence of the need to generate 

centripetal force and stay in the correct lane.  

 Large amounts of energy were absorbed in the ankle (0.070 - 0.110) and MTP 

joints (0.006 - 0.014) in the sagittal plane in both the bend and straight conditions. 

Energy absorption was greater in the left step on the bend compared with the straight 

at the MTP joint (g = 1.68), with a trend towards greater absorption at the ankle 

(g = 0.80). During bend sprinting, the left step also demonstrated greater energy 

absorption than the straight in the frontal plane at the midfoot (g = 1.07) and ankle 
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(g = 0.65), and the transverse plane at the ankle (g = 1.08). Therefore, it appears the 

absorption and generation of energy in the foot and ankle may be a key consideration 

in improving bend sprinting performance. Stefanyshyn and Nigg (1997) previously 

demonstrated the MTP joint to be a large absorber of energy during stance, with the 

energy absorbed being dissipated into the shoe and foot complex. With this in mind, 

Stefanyshyn and Nigg (1997) proposed that reducing energy loss at the MTP joint 

should result in performance improvements. Smith et al. (2014) demonstrated that, 

although there was no change in energy absorption at the MTP joint, energy generated 

at the MTP joint during push-off increased in a shod condition, compared with the 

barefoot condition. An increase in sprint velocity was also observed during the shod 

condition (Smith et al., 2014) suggesting sprint spikes are capable of enabling changes 

in MTP joint function, resulting in improved sprint performance. Strength training 

targeted at the extrinsic muscles of the foot and ankle such as tibialis anterior and 

posterior, in addition to the intrinsic foot muscles such as abductor hallucis and flexor 

digitorum brevis, might provide a further opportunity to influence sprint performance, 

particularly on the bend (Smith et al., 2014).   

7.5. Conclusion 

 The results of the present study demonstrate that bend sprinting results in 

substantial changes to the function of the joints of the lower limb and loading of the 

surrounding musculoskeletal structures compared with straight-line sprinting. Whilst 

peak flexor moments at the hip and knee were lower during sprinting on the bend than 

straight, increased plantar flexor moment at the ankle and MTP suggest the limiting 

factor to sprint performance on the bend is more complex than previously thought. 

Compared with straight-line sprinting, there was also an increase in non-sagittal plane 

joint moments during bend sprinting, particularly at the hip and ankle joints. To 
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improve bend sprinting performance, athletes should consider developing the ability 

to produce plantar flexion from an internally rotated position specific to bend sprinting.  
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Chapter Eight: OVERALL DISCUSSION 
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8. Overall discussion 

8.1. Review of previous chapters 

 The aim of this thesis was to further understanding of the biomechanical 

aspects of technique and performance in the acceleration phase of sprinting on the bend 

compared with the straight. To date, this thesis represents the first collection of 

empirical research to evaluate the kinematic and kinetic adaptations of bend sprinting, 

specifically in the acceleration phase (Chapters 5 - 7). In addition, the reliability and 

minimal detectable difference of a lower limb and trunk marker set have been 

presented for use in analysing bend sprinting with 3D motion capture (Chapter 4). It 

is hoped these methods will be adopted by other researchers to advance the field 

further. Therefore, the experimental studies presented within this thesis represent a 

significant contribution to the theoretical understanding of bend sprinting 

performance, whilst also providing methodological recommendations for further 

research and practical guidance for programmes aimed at improving performance and 

reducing the risk of injury. 

 The majority of key alterations occurred during ground contact with the left 

step. For example, a 2% reduction in absolute speed was observed compared with the 

straight for the left step during bend sprinting (g = 0.56, Chapter 5).  Whilst the 

associated effect size suggests this change is moderate in magnitude, this difference is 

likely to be meaningful in terms of race performance. For example, the difference 

between first and second place in the women's 200 m final at the 2017 International 

Association of Athletic Federations (IAAF) World Championships was 0.03 s. 

Therefore, achieving even a small improvement in bend sprinting performance could 

have a large impact on the outcome of a competitive race.  
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 This decrease in left step absolute speed coincided with a reduction in left step 

frequency (Chapter 5), supporting results from Churchill et al. (2015). The reduction 

in left step frequency is a consequence of the longer left step contact time observed on 

the bend compared with the straight since left flight time remained constant between 

bend and straight conditions (Chapter 5). With an increased contact time and flight 

time remaining constant during bend sprinting, Usherwood and Wilson (2006) 

proposed a consequential decrease in step frequency would ultimately reduce velocity 

on the bend. The results of this thesis have empirically confirmed this to be the case 

for the left step during the acceleration phase. 

 Furthermore, a lower hip flexor moment (present towards the end of the stance 

phase) was observed during sprinting on the bend than the straight for both the left and 

right steps (Chapter 7). This hip flexor moment is needed to drive the hip forward 

during the swing phase (Charalambous et al., 2012). In addition, Dorn et al. (2012) 

demonstrated with the use of musculoskeletal modelling that, at speeds above 7 m/s, 

increases in running speed are achieved through an increased step frequency. Increased 

muscle forces (primarily iliopsoas, gluteus maximus, and the hamstrings) at the hip 

joint enable the rapid acceleration of the hip and knee joints during the swing phase 

and were therefore considered responsible for increasing step frequency (Dorn et al., 

2012). Therefore, training to increase hip flexor moment might also have the 

consequential benefit of increasing step frequency, and thus velocity on the bend.  

 An increase in left step touchdown distance was apparent on the bend 

compared with the straight (Chapter 5). A longer touchdown distance is related to a 

decrease in ratio of force (Bezodis et al., 2015) which was also observed during bend 

sprinting in Chapter 6, suggesting reducing touchdown distance may be a key 

consideration for improving performance on the bend. The reduction in ratio of force 
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can in part be attributed to an increase in mediolateral force (Chapter 6). However, the 

increase in mediolateral force is an essential component of bend sprinting, required to 

enable the athlete to follow the curve of the track and stay in lane. The analysis of ratio 

of force makes one of the first attempts to holistically understand force application and 

orientation during bend sprinting. These results provide some initial evidence that 

athletes are applying propulsive force 'less effectively' on the bend than the straight. 

However, the left limb could be considered to be applying force effectively when 

taking into consideration the demands required to achieve the task of sprinting around 

the bend, which are different to what is considered effective for straight-line sprinting. 

Moreover, ratio of force may require further evaluation during bend sprinting, as 

unlike straight-line sprinting, where the aim is to maximise the ratio of force (Morin 

et al., 2011), it is likely an optimum ratio exists, taking into consideration both 

propulsive and mediolateral forces. Furthermore, the novel application of SPM is an 

important step in better understanding force production without the need to reduce data 

to discrete form (Chapter 6). A reduction in propulsive force at 38-44% of stance 

coincided with greater mediolateral force for the majority of the stance phase (3-96%) 

during sprinting on the bend compared with the straight. 

 Bend sprinting also induced several kinematic adaptations at the foot when 

compared with straight-line sprinting. In particular, there was an increased left step 

peak midfoot eversion combined with increased left step peak internal ankle rotation 

on the bend compared with the straight. Although there was no significant main effect, 

a large effect size suggests a trend towards an increase in left step peak ankle eversion 

angle (g = 0.88). These results provide unique insight since the function of the multi-

segment foot during bend sprinting has yet to be presented within the literature. 

Furthermore, evaluation of MTP axis use during push-off provides the first empirical 
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evidence to demonstrate use of the oblique axis with the left step during bend sprinting 

(Chapter 6). This finding identifies a significant constraint to performance on the bend 

and can, therefore, be considered a critical advance for the research area, providing 

experimental evidence to confirm the hypothesis originally proposed by Churchill et 

al. (2016). 

 In the foot and ankle complex, energy absorption was greater during the left 

step on the bend than the straight (Chapter 7), providing further insight into of 

multi-segment foot function during bend sprinting. Kelly, Cresswell, and Farris (2018) 

observed a foot-energy dissipation ratio greater than zero when evaluating the 

energetic function of the foot at different running speeds on the straight 

(2.2 m/s - 4.4 m/s). The authors suggested energy absorption within the foot may result 

in a slowing of the CoM progression and prolonged contact time to maximise the time 

required to generate a propulsive impulse (Kelly et al., 2018). A longer left step contact 

time was demonstrated on the bend compared with the straight (Chapter 5) and is 

supported during sub-maximal (Alt et al., 2015), and maximal velocity (Churchill et 

al., 2015; Churchill et al., 2016) bend sprinting. Therefore, the increased energy 

absorption observed at the foot and ankle (Chapter 7) might be a contributing factor to 

the longer contact time observed during bend sprinting (Chapter 5). These results have 

significant implications for practice since energy loss at the foot might be offset by 

force produced at larger, more proximal muscles (Kelly et al., 2018). Therefore, whilst 

decreasing energy absorption at the foot might be a key area for improvement, 

increasing energy generation at the hip might also be beneficial.  

8.2. Implications for performance 

 There are a number of practical applications from the findings of this thesis 

which have specific relevance to informing practice and improving sprint 
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performance. Results from this thesis suggest athletes are restricted due to a complex 

interaction of adaptations at the joints of the ankle and foot and the need to produce 

force in the non-sagittal planes (Chapters 5 - 7). This is an important and necessary 

addition to our understanding of bend sprinting and can be used to inform strength and 

conditioning programmes with the aim of improving performance. Improving the 

strength of extrinsic and intrinsic muscles of the foot has been suggested as being 

beneficial to sprint performance (Smith et al., 2014). Although there is no direct 

evidence in sprinting to confirm this hypothesis, results from Farris, Kelly, Cresswell, 

and Lichtwark (2019) showed that, alongside the longitudinal arch, the plantar intrinsic 

muscles contributed to a stiffer forefoot during late stance of treadmill running, which 

may have particular importance during bend sprinting where the oblique axis is in use. 

Therefore, strength training, targeted at both the extrinsic and intrinsic muscles of the 

foot, may have a positive influence on sprint performance. Ridge et al. (2019) 

demonstrated an increase in muscular strength of both extrinsic and intrinsic foot 

muscles with an eight-week intervention where participants used minimalist footwear 

for walking, gradually increasing the number of steps each week up to a maximum of 

7000 steps for at least five days a week. The increase in strength observed was similar 

to that of the control group who undertook a strength training programme (Ridge et 

al., 2019). The habitual wearing of minimalist shoes has also been associated with a 

stiffer longitudinal arch (Holowka, Wallace, & Lieberman, 2018), thus possibly 

having implications for the production of propulsive force at push-off. Therefore, it is 

possible that walking with minimalist shoes is a plausible alternative to strength 

training, with the additional benefit of being easy to implement.  

 To ensure the transfer of strength training to sports performance, the principle 

of training specificity is of paramount importance (Young, 2006). Therefore, 
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practitioners should seek to strengthen lower limb muscles in frontal and transverse 

planes, which may aid in improving performance. Plyometric bounding exercises have 

similar contact times to those found in the acceleration phase of sprinting (Young, 

1992) and consequently aid the transfer of strength training to performance through 

comparable contraction velocity specificity (Young, 2006). Therefore, the inclusion of 

bounding exercises with a change of direction might be an area worth consideration 

by coaches and practitioners. Burnie et al. (2017) noted that coaches tend to prefer that 

the specificity of training is addressed by adding resistance to sporting movements 

rather than attempting to make gym exercises more sports specific. Therefore, training 

interventions such as the use of ropes or harnesses in training to provide resistance in 

a leaning position might be beneficial to performance (Churchill et al., 2016). In 

addition, frontal and transverse moment data at the hip (Chapter 7) suggest 

interventions aimed at improving pelvic control to prevent inwards collapse of the hip 

and provide a stable base for the athlete may be warranted. Finally, as previously 

suggested by Churchill et al. (2015) and Churchill et al. (2018), undertaking maximal 

speed training on the bend to further promote specificity, is essential. The current 

programme of research has affirmed that this should include acceleration training on 

the bend.  

8.3. Implications for injury 

 It is possible that repeated stress in the frontal and transverse planes may be a 

precursor to injury. Thus, strengthening muscles has implications for injury prevention 

as well as performance improvements. Hamill et al. (1987) theorised the left limb 

would most likely suffer injuries such as plantar fasciitis or post-tibialis tendonitis as 

a consequence of bend running and repeated exposure to stress in the frontal and 

transverse planes. The results of the research presented throughout Chapters 5-7 
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support these possible injury aetiologies and advance current knowledge in this area. 

Repetitive loading and excessive eversion are considered a risk factor for plantar 

fasciitis (Beeson, 2014). The increased eversion of the left midfoot and ankle that 

occurs during the first 15% of stance during bend sprinting may place additional stress 

on tibialis anterior which provides a 'stirrup' for the arch under the foot (Palastanga et 

al., 2006) and may, therefore be a contributing factor in the onset of plantar fasciitis. 

 An increase in body lateral lean has been reported in Chapter 5 in both the left 

and right steps during bend sprinting compared with the straight. Tibialis posterior 

helps maintain the balance of the tibia on the foot, particularly when the bodyweight 

is moving laterally (Palastanga et al., 2006). This, along with the observed greater 

mediolateral force in the left and right steps on the bend than straight (Chapter 6), 

suggests the weight is likely moving laterally. Maharaj, Cresswell, and Lichtwark 

(2016) showed that, during walking, the tibialis posterior muscle actively lengthens at 

touchdown to resist pronation then shortens later in stance to contribute towards 

supination. This stretch and recoil mechanism results in the storage and return of 

energy at the rearfoot unit (Maharaj et al., 2016). However, during bend sprinting with 

the left step, a large positive power was observed in the frontal plane in the ankle and 

midfoot at the beginning of the propulsive phase of stance (Chapter 7). Therefore, it is 

possible this stretch-shortening cycle was disrupted. Moreover, it has been suggested 

the excessive eversion (Chapter 5) results in muscular fatigue occurring earlier in the 

stance phase, thus resulting in abnormal loading of the tibia (Pohl, Mullineaux, Milner, 

Hamill, & Davis, 2008), which leads to injuries such as medial tibial stress syndrome 

(Chuter & Janse de Jonge, 2012). Medial tibial stress syndrome was amongst the most 

frequently reported injuries in indoor bend sprinters (Beukeboom et al., 2000), 
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therefore strengthening of the tibialis posterior to minimise fatigue related adaptations 

may be a key area in reducing the risk of injury. 

 Both iliotibial band syndrome and patellofemoral pain were also recorded by 

Beukeboom et al. (2000) in a season-long evaluation of injuries indoor track athletes. 

Therefore, the high peak hip adduction angle observed in Chapter 5 may also be a 

mechanism for injury since it is associated with both these conditions (Li et al., 2015). 

Thus, in addition to the foot and ankle, it appears that ensuring the hip is not neglected 

through strength and conditioning programmes may also be beneficial for reducing 

injury risk. 

8.4. Limitations 

 There are several limitations to this programme of research that are worthy of 

discussion. It should be noted that Chapters 3 and 4 which established the accuracy 

and repeatability of a reduced marker set were conducted under different experimental 

conditions than Chapters 5-7. For instance, data for Chapters 3 and 4 were collected at 

maximal speed, compared with the acceleration phase that was used in Chapters 5-7. 

Moreover, two additional cameras were introduced into the experimental set-up which, 

alongside the use of the LLT marker set, allowed the width of the capture volume to 

be extended from 1.5 m (Chapters 3 and 4) to 3 m (Chapters 5-7). Sprinting at maximal 

speed is likely to result in greater error than lower speeds due to increased soft tissue 

artefact and larger ranges of joint motion. Therefore, it is appropriate to assume that 

MDDs determined from maximal speed sprinting are applicable to sprinting at slower 

speeds during the acceleration phase and we can assume the data represent an upper 

bound on the MDD. However, it is possible some MDDs may be overestimated when 

applied to the acceleration phase. In addition, the greater number of cameras would 

lead to increased resolution within the capture volume. Thus, the risk of marker 
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dropout is further reduced which likely has a positive influence on the reliability of the 

protocol. Therefore, the additional cameras in the experimental set-up could also be 

indicative of inflated MDDs for Chapters 5-7. However, it is likely the influence of 

the additional cameras was negated by the increased capture volume. 

  The use of shoe-mounted markers to represent the movement of the underlying 

bones of the foot could be associated with some inaccuracies of joint kinematics, as 

observed by Sinclair, Taylor and Chockalingam (2014) during running. However, the 

use of sprint spikes, which tend to have a tight fit, helped minimise this risk. 

Furthermore, this approach ensured a more representative experimental design (see 

Pinder, Davids, Renshaw, & Araujo, 2011) in comparison to other options, such as 

bone-mounted markers. Also, whilst cutting holes in the shoes to enable skin-mounted 

markers would be a feasible alternative, this would compromise the integrity of the 

shoe and prevent athletes from wearing their own spikes. Furthermore, qualitative 

analysis of the dataset determined a small number of frames where the heel came in 

contact with the ground. Thus, distribution of ground reaction force amongst each 

segment of the multi-segment foot is required for the accurate analysis of joint 

moments. However, methods such as pressure insoles that enable the redistribution 

force were not available for use in the current body of work. Therefore, analysis of 

joint kinetics were restricted to the propulsive phase of stance where the ground 

reaction force could be allocated in its entirety to the toebox segment. Whilst 

necessary, restricting analysis to the propulsive phase is acknowledged as a limitation 

of this thesis which could have particular implications in understanding adaptations 

such as increased eversion, which is said to typically occur in the first 15% of stance 

(Chan & Rudins, 1994). Therefore, to enable analysis of the entire stance phase, future 
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work should seek to establish methods of accurately redistributing force amongst the 

multi-segment foot during bend sprinting. 

 In addition, although in line with previous bend sprinting literature evaluating 

in the range of six to nine participants (Alt et al., 2015; Churchill et al., 2015; Churchill 

et al., 2016), the sample size of the studies within this thesis is small. Although an 

increased sample size would be desirable in terms of statistical power, the inclusion 

criteria (200 m PB: 23.5 s) meant this was not possible. Expanding the inclusion 

criteria in order to increase the number of eligible athletes was not considered 

appropriate for the present body of work. The findings from Alt et al. (2015) imply 

that velocity specific modulations may be apparent during bend sprinting. 

Consequently, extending the inclusion criteria to include less-skilled sprinters may 

introduce variability into the sample and consequently conceal adaptations. Therefore, 

the evaluation of a smaller but more homogenous sample size was thought more 

appropriate. However, doing so did rule out the inclusion of female participants, which 

is noted as a further limitation of this thesis. 

  A smaller sample size is associated with a loss of statistical power which 

inflates the risk of a type II error, reducing the chance of a statistically significant result 

being found. To overcome this risk, effect size (Hedges' g) was also used to aid in the 

interpretation of the results, which includes a correction for smaller sample sizes 

(Lakens, 2013). Furthermore, as Knudson (2017) suggested, replication studies are 

encouraged to further advance the findings of this thesis. Despite the small sample 

size, it was felt a group design was the most appropriate approach for the statistical 

analyses and interpretation of the data. Whilst it could be argued that a group design 

might  mask individual differences in the data, this is only problematic when the 

participants are expected to respond differently to the change in experimental 
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condition. In bend sprinting, it was expected that there are a number of key adaptations 

that are required to maintain a curved path. Therefore, identifying the kinematic and 

kinetic variables necessary to sprint on the bend was thought of greater importance to 

provide a starting point for coaches and athletes to start to consider where 

improvements can be made.  

 In some instances, there are non-significant but non-trivial differences between 

the left and right limb on the straight. For example, small effect sizes of g = 0.26, 0.34 

and 0.41 were reported for directional step length, ankle inversion and hip internal 

rotation, respectively (Chapter 5). However, existing sprint literature offers some 

plausible explanations for these slight differences. Exell, et al. (2017) reported 

asymmetry in all kinetic and kinematic variables analysed during maximal velocity 

straight-line sprinting, possibly due to muscular strength imbalances and resulting 

compensatory mechanisms. It was concluded that asymmetry was athlete-specific and 

not necessarily detrimental to performance (Exell et al., 2017). Furthermore, 

asymmetrical differences in the strength of invertor and evertor muscle groups of 

indoor bend sprinters have been observed (Beukeboom et al., 2000). The differences 

observed between the left and right limbs on the straight may be a result of muscular 

changes due to expertise in the discipline of bend sprinting. Therefore, it is crucial that 

researchers evaluate the left and right limb separately for both straight-line and bend 

sprinting. However, asymmetry between left and right limbs may be exaggerated by 

the collection of different steps which represent different amounts of progress in the 

acceleration phase. The distance run by all athletes was further in the left step, with 

the difference between left and right steps limited to a single step (Appendix C). Where 

possible, future work should use multiple force plates to avoid this limitation and the 

potential overestimation of asymmetry. 
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 Finally, the evaluation of one lane is a limitation, since Churchill et al. (2018) 

demonstrated differences in kinematic modifications across lanes. It is possible that 

adaptations demonstrated throughout this thesis during the acceleration phase would 

become less prominent as the radius of the lane increased. However, Chapter 4 

demonstrated that the reliability of kinematic variables decreases when sessions take 

place across two days. Therefore, the collection of data in one session was prioritised, 

which constrained the number of trials available due to the risk of fatigue induced 

injury or changes in technique. Due to the limited number of trials available, lane one 

was chosen for evaluation since it has the tightest radius, and consequently, adaptations 

were expected to be more prominent in this lane. The limited number of trials available 

for data collection was also problematic with regard to the collection of force plate 

data. Since only a single force platform was available for data collection, this limited 

the analysis to a single step and a single trial. Whilst the collection of multiple steps 

and trials is preferable, access to and availability of equipment prevented this. It was 

the intention to gain a minimum of two trials for each foot and condition for analysis; 

however throughout data collection this proved not to be possible for all participants.  

8.5. Future work  

 The body of work presented within this thesis has important implications for 

future work. It has been demonstrated that the demands of sprinting on the bend are 

substantially different from straight-line sprinting during the acceleration phase. 

Therefore, future work comparing the two may not be warranted, but rather 

investigations should focus upon identification of factors related to sprint performance 

on the bend. For example, research using correlations between the identified 

adaptations (such as hip adduction) and performance to determine which aspects of 

bend sprinting are beneficial would be insightful for coaches and athletes in better 
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understanding technique. In addition, future research conducted with the use of 

electromyography to investigate the intermuscular coordination of the muscles 

involved in bend sprinting might be beneficial in further enhancing the specificity of 

training. In addition, an intervention study aimed at evaluating the effectiveness of 

strength training targeting the hip, ankle and foot in the frontal and transverse planes 

would also be insightful. 

 Moreover, there are a number of methodological limitations identified within 

the present thesis that could be addressed by future research. More specifically, 

evaluating acceleration performance during bend sprinting across several lanes, which 

could influence strategies and team allocation in races such as the 4 x 100 m relay 

would be beneficial. In addition, whilst increasing the number of steps analysed would 

typically require a higher number of force plates, or collection of data across multiple 

days, these may not be available or desirable options. A possible option would be to 

explore the use of multiple inertial measurement units as a method of predicting 

ground reaction force. However, development of more accurate algorithms and 

validation during bend sprinting is required before this is possible. Furthermore, future 

research should consider evaluating phases that have not yet currently been considered 

within the literature, such as the mechanics of the swing phase and transition from 

bend to straight, to better understand sprint performance on the bend. 

8.6. Conclusion 

 In conclusion, lower limb adaptations to bend sprinting have been shown to 

occur in acceleration which occurs during the early phases of the race. Whilst the 

adaptations, such as increased hip adduction, ankle eversion and lower propulsive 

force, appear to be more prominent in the left leg, this is due to the different functional 

requirements of the left and right legs. For instance, whilst both limbs produced greater 
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mediolateral force on the bend than straight, mediolateral impulse was 34% greater in 

the left leg on the bend compared with the right. Combined with the use of the oblique 

axis for push-off at the MTP joint, this suggests the left limb achieves a greater change 

in direction compared with the right.  These findings have practical implications from 

a strength and conditioning perspective, which have been suggested throughout this 

thesis, to reduce injury and improve performance. 
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Appendix A. Comparison of key kinematic variables calculated from force 

plate and marker identification of touch down. 

 

Variable 

Value when 

touchdown 

identified with 

force plate data 

Value when 

touchdown 

identified from 

marker data 

Difference CV 

Bend Left      

Contact time 0.124 s 0.125 s 0.001 s 0.005 % 

Hip adduction 7.02° 7.45° 0.43° 0.04 % 

Ankle eversion -7.84° -6.93° 0.91° 0.09 % 

Straight Left      

Contact time 0.120 s 0.115 s 0.005 s 0.03 % 

Hip adduction 3.41° 3.75° 0.34° 0.07 % 

Ankle eversion 4.39° 5.43° 1.04° 0.14 % 

 

*CV = coefficient of variance 
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Appendix B. Additional force trials to demonstrate repeatability. 

 Trial one Trial 

two 

Trial 

three 

CV  

Peak propulsive force (BW; 

bend left) 

    

Participant a 0.877 0.868  0.52 % 

Participant b 0.736 0.761  1.67 % 

Participant c 0.822 0.829  0.42 % 

Peak braking impulse (Ns; 

bend left)    

 

Participant a -11.19 -11.83  2.78 % 

Participant b -10.15 -9.87  1.40 % 

Participant c -13.13 -12.04  4.33 % 

Peak propulsive force (BW; 

straight right)    

 

Participant d 0.893 0.909 0.886 1.07 % 

Participant e 0.784 0.799 0.789 0.79 % 

Participant f 0.694 0.715  1.49 % 

Peak braking impulse (Ns; 

straight right)    

 

Participant d -7.16 -6.22 -6.68 5.74 % 

Participant e -6.93 -6.29 -7.00 4.74 % 

Participant f -7.68 -8.47  4.89 % 

 

* CV = coefficient of variance 
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Appendix C. Recorded step numbers for force trials. 

 

Bend / Straight 

Left step 
Step Number 

Number of 

Participants 

 11 2 

 10 4 

 9 1 

Bend / Straight 

Right step 
Step Number 

Number of 

Participants 

 10 2 

 9 4 

 8 1 
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Appendix D. Additional joint moment trials to demonstrate repeatability. 

 Trial one Trial 

two 

Trial 

three 

CV  

Peak MTP moment (bend left)     

Participant a -0.051 -0.042  9.26 % 

Participant b -0.034 -0.036  3.51 % 

Participant c -0.026 -0.028  5.27 % 

Peak hip flexor moment         

(bend left)    

 

Participant a 0.026 0.024  4.21 % 

Participant b 0.091 0.088  1.88 % 

Participant c 0.095 0.083  6.87 % 

Peak hip adductor moment  

(bend left)    

 

Participant a 0.090 0.075  9.16 % 

Participant b 0.253 0.294  7.46 % 

Participant c 0.134 0.109  10.28 % 

Peak MTP moment (straight 

right)    

 

Participant d -0.064 -0.056 -0.055 7.10 % 

Participant e -0.037 -0.035 -0.037 1.80 % 

Participant f -0.053 -0.045  8.16 % 

Peak hip flexor moment 

(straight right)    

 

Participant d 0.071 0.062 0.070 6.49 % 

Participant e 0.050 0.075 0.065 16.22 % 

Participant f 0.121 0.146  9.45 % 

Peak hip adductor moment 

(straight right)    

 

Participant d 0.103 0.096 0.100 2.98 % 

Participant e 0.042 0.045 0.046 3.24 % 

Participant f 0.081 0.092  6.16 % 

 

* CV = coefficient of variance 
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Appendix E. Example consent form. 

THE EFFECT OF BEND SPRINTING ON KINEMATIC AND KINETIC TECHNIQUE 
DURING THE ACCELERATION PHASE 

Please answer the following questions by ticking the response that applies 
 YES NO 
1. I have read the Information Sheet for this study and have had details of 

the study explained to me. 

 

☐ ☐ 

2. My questions about the study have been answered to my satisfaction and 
I understand that I may ask further questions at any point. 

 

☐ ☐ 
 
 

3. I understand that I am free to withdraw from the study within the time 
limits outlined in the Information Sheet, without giving a reason for my 
withdrawal or to decline to answer any particular questions in the study 
without any consequences to my future treatment by the researcher.   

                

☐ ☐ 

4. I agree to provide information to the researchers under the conditions of 
confidentiality set out in the Information Sheet. 

 

☐ ☐ 

5. I wish to participate in the study under the conditions set out in the 
Information Sheet. 

 

☐ ☐ 

6. I consent to the information collected for the purposes of this research 
study, once anonymised (so that I cannot be identified), to be used for 
any other research purposes. 

 

☐ ☐ 

 
Participant’s Signature: _________________________________________ Date: ________ 
 
Participant’s Name (Printed): ____________________________________ 
 
Contact details: 
________________________________________________________________ 
 
__________________________________________________________________________ 
 
Researcher’s Name (Printed): ___________________________________ 
 
Researcher’s Signature: _______________________________________ 
 
Laura Judson 
Email: l.judson@shu.ac.uk 
Tel. +44(0)7875 930 025 
Sheffield Hallam University 

Sheffield, South Yorkshire, S10 2BP, UK  
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I have listened to Bruce Springsteen almost daily throughout my PhD. His music has provided 

me with comfort and companionship on the days that I needed it most. Therefore, it is only 

fitting that my thesis ends with his words, a reminder to us all to keep moving forwards: 

 

We busted out of class had to get away from those fools 

We learned more from a three minute record than we ever learned in school 

Tonight I hear the neighborhood drummer sound 

I can feel my heart begin to pound 

You say you're tired and you just want to close your eyes and follow your dreams down 

 

We made a promise we swore we'd always remember 

No retreat, baby, no surrender 

Like soldiers in the winter's night with a vow to defend 

No retreat, baby, no surrender 

 

Now young faces grow sad and old and hearts of fire grow cold 

We swore blood brothers against the wind 

I'm ready to grow young again 

And hear your sister's voice calling us home across the open yards 

Well maybe we could cut someplace of our own 

With these drums and these guitars 

 

Cause we made a promise we swore we'd always remember 

No retreat, baby, no surrender 

Blood brothers in the stormy night with a vow to defend 

No retreat, baby, no surrender 

 

Now on the street tonight the lights grow dim 

The walls of my room are closing in 

There's a war outside still raging 

You say it ain't ours anymore to win 

I want to sleep beneath peaceful skies in my lover's bed 

With a wide open country in my eyes 

And these romantic dreams in my head 

 

Cause we made a promise we swore we'd always remember 

No retreat, baby, no surrender 

Blood brothers in the stormy night with a vow to defend 

No retreat, baby, no surrender 

 

No retreat, baby, no surrender 

 

 


