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How shape‑based anthropometry 
can complement traditional 
anthropometric techniques: 
a cross‑sectional study
Michael thelwell1*, chuang‑Yuan chiu1, Alice Bullas1, John Hart1, Jon Wheat2 & 
Simon choppin1

Manual anthropometrics are used extensively in medical practice and epidemiological studies to 
assess an individual’s health. However, traditional techniques reduce the complicated shape of human 
bodies to a series of simple size measurements and derived health indices, such as the body mass 
index (BMi), the waist‑hip‑ratio (WHR) and waist‑by‑height0.5 ratio (WHT.5R). Three-dimensional 
(3D) imaging systems capture detailed and accurate measures of external human form and have 
the potential to surpass traditional measures in health applications. the aim of this study was to 
investigate how shape measurement can complement existing anthropometric techniques in the 
assessment of human form. Geometric morphometric methods and principal components analysis 
were used to extract independent, scale-invariant features of torso shape from 3D scans of 43 male 
participants. Linear regression analyses were conducted to determine whether novel shape measures 
can complement anthropometric indices when estimating waist skinfold thickness measures. 
Anthropometric indices currently used in practice explained up to 52.2% of variance in waist skinfold 
thickness, while a combined regression model using WHT.5R and shape measures explained 76.5% of 
variation. Measures of body shape provide additional information regarding external human form and 
can complement traditional measures currently used in anthropometric practice to estimate central 
adiposity.

Measurements of size and shape of the human body are an important source of information for a range of 
scientific fields and applications. Traditional manual anthropometrics have been used extensively in medical 
practice and epidemiological studies to derive health risk indicators, since it has been suggested that human 
body shape is dependent on its underlying composition, including soft and skeletal  tissues1. Indices, such as the 
body mass index (BMI), waist girth and the waist-hip ratio (WHR) are used to assess variations in human body 
dimensions and physical  health2–4. Of these, BMI is most commonly used in current practice to determine the 
healthy weight range for individuals based on their height. However, BMI fails to distinguish between quantities 
of muscle and fat, which are of different density, and therefore is prone to misclassifying muscular individuals as 
being overweight or  obese5,6. Size measures, such as sagittal diameter, waist girth and WHT.5R have been found 
to demonstrate improved correlations with quantities of abdominal visceral fat and greater associations with 
metabolic disease risks compared to BMI 7,8. Relative measures, such as the WHR, provide information about the 
size of the abdomen relative to the rest of the body, so has been used as a proxy of torso shape and central obesity, 
defined as excess fat around the abdominal  region7. However, these relatively simple approaches to measuring 
external human form only utilise a small number of manual anthropometrics, which are prone to human error 
and limited by their simplicity, as they do not fully describe the complex three-dimensional (3D) variations in 
human body  shape4,9–11. Skinfold thickness measurements are a manual anthropometric technique which have 
been shown to be an accurate approach for measuring subcutaneous fat at a given location and measuring total 
subcutaneous fat from the sum of several skinfold  sites12. Studies often use the sum-of-skinfold thickness taken 
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from around the waist as a measure of central subcutaneous adiposity to assess the efficacy of anthropometric 
indices used in clinical  practice13. Predictive equations have been developed based on combinations of anthro-
pometric measures and approximate interrelationships among subcutaneous fat, visceral fat and whole body 
density. However, biological variations such as age, sex and body  type14 make estimations of visceral fat using 
anthropometric techniques  difficult15.

3D imaging systems capture detailed and accurate external dimensions and shape characteristics of the human 
body. Measures acquired by these devices are used to describe, interpret and analyse the external dimensions 
of the human body for applications that include apparel  sizing16,17 and epidemiological  surveys9,11,18, with the 
potential for clinical evaluation and health  monitoring11,19,20. The point cloud data these systems produce contain 
all of the differential geometric properties of the body’s surface. These surface features could be used to charac-
terise individuals according to their shape as well as their size, to a higher degree of precision and complexity 
than existing manual  methods9,17. Previous studies have investigated the use of 3D imaging to create indices that 
measure human shape, for example, the health index (HI)21, the surface-based body shape index (SBSI)22 and a 
Body Shape Index (ABSI)23. Recent studies by Loffler-Wirth et al.9 and Pluess et al.24 are the most sophisticated 
of these, demonstrating the use of machine learning techniques to evaluate a large number of different human 
body measurements. These studies demonstrate that large cohorts of participants can be stratified into distinct 
body-types based on a higher number of independent parameters. However, all of these studies have a specific 
definition of shape, which is based on the ratios and relative proportions of one-dimensional anthropometrics, 
such as waist girth and stature. This approach discards the majority of information captured by 3D imaging 
systems. Therefore, there is a need to investigate more sophisticated methods of analysis that captures all of the 
complex curvature of the human body and improve current understanding regarding variations in external 
human form and associated health  risk2,9.

Humans intuitively perceive differences in body shape between individuals by identifying scale-invariant 
features, such as surface curvature, body proportions and lateral  contours25. Recent studies have analysed human 
body shape using surface curvature derived from 3D scan data to identify differences between individuals and 
predict body fat  percentage19,25. These studies stated that further research was needed to associate configura-
tions of these features with distinct body shapes at various scales and to establish reliable associations between 
body shape and body composition. Geometric morphometrics (GM) is an established method within the fields 
of anthropology and evolutionary biology to analyse variations in shape. These methods have emerged from 
established statistical shape  theory26 and a conceptual understanding of mathematical shape, defined as “what 
is left when the differences which can be attributed to translations, rotations, and dilations have been quotiented 
out”27 (p. 82). Therefore, to analyse human body shape according to this definition, the effects of non-shape vari-
ation—location, rotation and scale—must be removed, which can be achieved using a Procrustes superimposi-
tion  procedure28. Though these types of methods have been used to analyse shape in a wide range of biological 
and anthropological studies they have not previously been used to analyse the external form of the human body 
from an anthropometric perspective. The aim of this study was to investigate whether measures of body shape 
can complement existing anthropometric techniques in the assessment of external human form and the estima-
tion of subcutaneous central adiposity. The objectives of this study were to: demonstrate the application of an 
analytical procedure for extracting scale-invariant features of human body shape from 3D scan data; compare 
traditional manual measures and shape measures when assessing variations in external human form; determine 
whether shape measures can complement manual anthropometric techniques in estimating sum-of-skinfold 
thickness around the waist. We hypothesise that scale-invariant measures of body shape will identify additional 
information compared to size measures regarding variations in external human form and will complement 
existing anthropometric techniques for estimating subcutaneous central adiposity.

Methods
Study design. This study is a cross-sectional, observational cohort study designed to determine the efficacy 
of a novel analytical procedure for measuring variations in human body shape and estimating subcutaneous cen-
tral adiposity. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement 
for cross-sectional studies was followed in the development of this  manuscript29.

participants. Data analysed in this study consists of manual anthropometric profiles, as defined by the 
International Society for the Advancement of Kinanthropometry (ISAK)30, and torso 3D scan data of 43 male 
participants (Age 33 ± 12 years). Participants in the study cohort were recruited as part of a University-based 
health screening study using convenience sampling and consisted of University-level students, as well as mem-
bers of the general public. Before testing all participants completed an initial screening form and provided writ-
ten informed consent. Participants were required to be over the age of 18 years and able to stand unaided during 
manual and 3D scan measurement procedures. Levels and frequency of physical activity were self-reported 
by participants during the initial screening. All participants stated that they performed at least 150  min of 
moderate-intensity aerobic physical activity per week, in accordance with WHO  guidelines31. Participants were 
required to wear non-compressive form-fitting shorts. The study protocol adheres to the principles laid out in 
the Declaration of Helsinki. All procedures were approved by Sheffield Hallam University Research Ethics Com-
mittee, reference number ER5855905. All human measurement methods were performed in accordance with 
ISO 7250-1:2017 anthropometric  standards32 and ISAK  guidelines30.

Data acquisition. Bony landmark palpation. Each participant had bony anatomical landmark locations, 
which were required for both manual measurement and 3D scan post-processing procedures, manually palpated 
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and marked with a cross on the skin using a fine-tipped surgical marker (e.g. Viscot 1451). All bony anatomical 
landmarks marked during the experimental protocol are shown in Table 1.

Manual measurement. All manual measurements were obtained according to standard ISAK procedures by an 
accredited anthropometrist (Level 1 or 2) to minimise human error in  measurement30. Measures of body size 
collected from participants included: stature, body mass, waist and hip girth. Anthropometric indices of weight 
status were calculated as follows: BMI = mass/stature2; WHR = waist girth/hip girth; WHT.5R = waist girth/
height0.5. All calculations of anthropometric indices involving height and waist girth are recorded in metres (m). 
Three skinfold sites in close proximity to the measured waist girth were used as the measure of subcutaneous 
central adiposity, similar to a recent study by Nevill et al.13. The three skinfold sites and their definitions were: 
(1) the iliac crest: a near-horizontal fold superior to the iliac crest; (2) supraspinale: an oblique fold at approxi-
mately 45° at the intersection of a line from the anterior superior iliac spine (ASIS) to the anterior axillary fold 
and a line from the iliac crest; (3) abdominal: a vertical fold 5 cm lateral to the navel. The stature and mass of 
each participant was measured using a Leicester height stadiometer (Marsden, UK) and digital weight scales 
(Conair, UK). All girth and skinfold measures were acquired using a basic anthropometric tape measure (Lufkin 
Executive Thinline 2 m, W606PM) and Harpenden skinfold caliper (Baty International, UK), respectively. The 
summary characteristics of participants are presented in Table 2. All manual measurements collected from each 
participant can be found in Supplementary Table S1 online.

3D scan measurement. 3D scan data of the torso was captured using a 3dMD (3Q Technologies Inc., Atlanta, 
GA) surface imaging system (mean error < 0.5 mm33), which has been shown to have acceptable accuracy for 
acquiring human measurements for clinical  studies34. This system consists of five synchronised modular units, 
each containing three machine vision cameras, placed around a square 258 × 258 cm aluminium Bosch (Bosch 
Rexroth AG) strut frame, using a single computer (64 Bit Windows 7 Professional 4 Core CPU @ 3.6 GHz 8 GB 
RAM). Calibration and data collection were conducted using 3dMD acquisition software. The calibration proce-
dure followed 3dMD guidelines using a calibration plate and was conducted at the start of each testing session. 
For torso scanning, participants were asked to adopt a modified version of the standing anatomical pose defined 
by ISO 20685-1:201835, with their arms abducted by approximately 35◦ (Fig. 1). This ensured that there were no 
occluded areas of the scan image, whilst enabling participants to maintain a relaxed position during the scan-

Table 1.  Bony anatomical landmarks palpated and marked for manual and 3D scan measurement procedures, 
defined by  ISO32.  *Landmark required for 3D scan post-processing.

Anatomical landmark

Acromiale

Xiphoid process*

Mesosternale

Iliocristale

Anterior superior iliac spine (ASIS)*

9th Thoracic vertebrae*

Subscapulare

Radiale

Iliospinale

Table 2.  Summary characteristics of participant manual measurements. SD standard deviation, 95% CI 95% 
confidence interval.

Parameter Mean (SD) Min Max 95% CI

Age (years) 33 (12) 18 62 [29, 36]

Stature (cm) 179.8 (7.2) 165.4 193.5 [177.2, 181.6]

Mass (kg) 82.9 (16.2) 50.9 139.4 [78.1, 87.7]

Waist Girth (cm) 86.06 (10.19) 67.3 116.6 [83.0, 89.1]

Hip Girth (cm) 100.36 (7.3) 82.4 120.4 [98.2, 102.5]

BMI (kg m−2) 25.7 (4.2) 17.9 38.3 [24.4, 26.9]

Waist-hip-ratio (WHR) 0.86 (0.07) 0.75 1.04 [0.83, 0.88]

Waist by  height0.5 (WHT.5R) 0.64 (0.08) 0.52 0.84 [0.62, 0.67]

Iliac Crest skinfold thickness (mm) 17.4 (9.4) 3.9 42.0 [14.6, 20.2]

Supraspinale skinfold thickness (mm) 11.7 (6.6) 3.6 29.6 [9.7, 13.7]

Abdominal skinfold thickness (mm) 22.9 (11.6) 4.3 44.4 [19.4, 26.3]

Sum-of-skinfold thickness (mm) 51.95 (26.33) 11.75 101.6 [44.08, 59.82]
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ning process. Participants were asked to hold their breath at end-tidal expiration throughout the short scanning 
 duration36(∼ 15 ms).

Data analysis. 3D scan data post‑processing. An experienced researcher (first author) digitised the xiphoid 
process, ASIS and thoracic vertebra bony landmarks from each 3D scan file (Fig. 2a) using KinAnthroscan—cus-
tom software created in-house. The positions of the landmarks were used to create a local anatomical coordinate 
system located at the centre of each torso scan and according to the convention defined in ISO 20685-1:201835. 
The centre of the torso was defined as the midpoint between the xiphoid process and the 9th thoracic vertebra. 
A vector from the xiphoid process to the 9th thoracic vertebra was used as the transverse axis. A vector from 
the left to the right anterior superior iliac spine (ASIS) markers was used as the sagittal axis. The cross product 
of these two vectors defined the longitudinal axis. The anatomical axis system enabled differences in translation 
and orientation between participants in the sample to be removed.

Each torso scan was segmented to include only the coordinate points relating to the region of interest (between 
the xiphoid process and ASIS markers—Fig. 2b). Twenty-one separate 2 mm transverse data point slices were 
extracted from each torso segment point cloud at 5% intervals (Fig. 2c). The height of each data slice was set 
at 2 mm to ensure that the external shape features of the torso segments were preserved while allowing for any 

Figure 1.  Scanning pose for torso segment scanning adapted from ISO  2068535.

Figure 2.  Analytical procedure for extracting shape features from torso 3D scan data; (a) Digitise 3D geometry 
of individual (KinanthroScan v1.0, https ://three space .org/); (b) Segment, scale and rotate torso segment; c) 
Extract transverse data slice profiles; (d) obtain signal waveform from profiles; (e) Extract frequency content 
from signals; (f) Generate shape features from frequencies.

https://threespace.org/
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gaps in the point cloud. This is based on a previous study by Clarkson et al.37, which determined that data slices 
of 2 mm sufficiently captured the external features of a human torso. However, analysis of other body segments, 
such as hands or feet, would require greater resolution of data slices. The raw data points within each slice were 
collapsed to two-dimensions, creating individual shape profiles along the length of the segment. The centroid 
size (square root of the sum of squared distances of landmarks from the  centroid28 of all extracted shape profiles 
within each torso was scaled by a single scale factor so that the sum of distances from each point to the centroid 
for all slices along the torso segment was equal for all participants. This removed any differences in scale between 
participants, enabling analysis of body shape according to mathematical shape  theory26.

Dimension reduction. A previous study by Zahn and  Roskies38, established a method for extracting sets of 
numerical features from a closed curve that could be used to discriminate between different shapes. It was 
determined that the coefficients calculated from a fast-Fourier transform can be used to describe the shape 
features of the original  curve38. This method was used to extract the Fourier coefficients of the cubic smoothing 
splines calculated for each data slice profile along the torso  segment39. The polar coordinates within each data 
slice, plotted as a continuous signal waveform (Fig. 2d), were inputted to the fast-Fourier transform algorithm 
in MATLAB (version 9.2, Mathworks, USA) to extract the frequency components present within each data slice 
(Fig. 2e). Only the first 10 frequency coefficients were used, the higher frequency content was determined to be 
low amplitude noise. This procedure reduced the total number of variables representing each participant to 210 
complex Fourier coefficients.

Shape feature detection. Principal components analysis (PCA) was carried out to detect independent features 
of torso shape that exhibited the highest variation in the sample. The entire list of 42 principal components can 
be found as Supplementary Table S1 online. This procedure produced 11 principal components that captured 
95% of the total body shape variation, resulting in a feature vector to characterise the torso shape characteristics 
of each participant. The primary shape features capturing the majority of shape variation can then be visualised 
as a radar diagram (Fig. 2f). 3D scan data post-processing and feature extraction procedures were performed 
using MATLAB R2018a software (version 9.2, Mathworks, USA).

Statistical analysis. All body size measures, skinfold measures and derived anthropometric indices were 
converted into standardised z-scores, ensuring that they were comparable by providing a common scale in units 
of standard deviations from the mean value of each measure of the cohort. Initially Pearson correlation coef-
ficients were calculated to explore associations between size measures, derived indices and body shape principal 
components. P values < 0.05 were considered statistically significant.

Linear regression analyses were conducted to investigate the strength of associations between surface anthro-
pometrics and sum-of-skinfold measures taken from the waist region of the torso segment. Three different types 
of regression models were created: (1) Size models, separate regression models for each anthropometric index 
(BMI, WHR, waist girth and WHT.5R) and a combination of manual size measures (height, mass, waist and hip 
girth) used as input variables; (2) Shape-only model, a stepwise regression model which used the first 11 torso 
shape principal components as input variables to determine which contribute to the estimation of skinfold thick-
ness; (3) Combined models, which integrated size measures, anthropometric indices and torso shape principal 
components as input variables. Each multiple regression model was assessed for multicollinearity between input 
variables using variance inflation factor (VIF) and tolerance collinearity statistics and for independence of errors 
using the Durbin-Watson test statistic. If the largest VIF value was greater than 10 there was cause for  concern40, 
while tolerance values below 0.2 could indicate potential issues in the model associated with  multicollinearity41. 
If the Durbin Watson value differed significantly from 2 this would suggest dependence of errors between input 
variables in the  model42. Statistical analyses were performed using SPSS software (version 24.0, IBM, USA).

Results
torso shape features. Figure 3a shows the meshed surface image of the average torso shape calculated 
from all participants in the sample. The corresponding radar diagram represents the average values for each of 
the first 5 principal components identified in this study. Figure 3b shows the maximum and minimum deviations 
from the average torso shape geometry along each of these first 5 principal components. Blue and red regions 
represent areas that protrude less, or more than the average torso. The terms used to describe each of the prin-
cipal components were based on which areas of the torso surface deviated from the average of the sample. For 
example, PC1—anterior weighting—was based on the observed deviations from the average torso in the anterior 
and posterior aspect.

correlations between size and shape measures. Pearson correlations between size measures, anthro-
pometric indices and shape features are presented in Table 3. Waist girth measure was strongly correlated with 
hip girth, body mass and derived indices, BMI, WHR and WHT.5R. Hip girth was also strongly correlated with 
mass, BMI and WHT.5R, though only had weak correlation with WHR. Stature had moderate correlations with 
body mass and hip girth, but only weak correlations with all other body size and shape measures, suggesting that 
central adiposity changes independently of body height. PC2 of shape was strongly correlated with waist girth, 
WHR and WHT.5R, and was also significantly correlated with BMI and other size measures. PC1, PC4, PC5 and 
PC6 had significant correlations with certain size measures and anthropometric indices, while the remaining 
shape features were not significantly correlated with size measures. Due to the nature of PCA all extracted shape 
features were independent of each other and so were uncorrelated. Waist girth and WHT.5R had the strongest 
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correlations with sum-of-skinfold thickness, with several other size and shape measures also significantly cor-
related with sum-of-skinfold thickness.

Regression analysis. Table  4 shows the results of linear regression analyses evaluating the strength 
of associations between sum-of-skinfold measures taken from the torso segment and each of the commonly 
used anthropometric indices identified in this study (BMI, WHR, waist girth and WHT.5R). All anthropo-
metric indices significantly improved the prediction of skinfold thickness. WHR had the weakest association, 
explaining 30.6% of the variance in sum-of-skinfold thickness  (R2 = 0.306, F(1,35) = 15.434, p < 0.01), followed 
by BMI which explained 33.5% of variance  (R2 = 0.335, F(1,35) = 17.605, p < 0.01). Waist girth  (R2 = 0.522, 
F(1,35) = 38.270, p < 0.01) and WHT.5R  (R2 = 0. 522, F(1,35) = 38.258, p < 0.01) had the strongest associations, 
both explaining 52.2% of the variance in sum-of-skinfold thickness measures. Table 5 shows the results of the 
multiple regression analyses for the size model, the shape model and the combined models. The size-only model, 

Figure 3.  Visualisation of extracted torso shape features; (a) Average torso and corresponding radar diagram; 
(b) deviations from the sample mean along the first 5 principal components, the left and right images show the 
maximum and minimum differences in an individual shape feature from the average torso geometry. Blue and 
red regions represent areas that protrude less, or more than the average torso, respectively.
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which included all manual body size measures, explained 68.9% of the variance in sum-of-skinfold thickness 
 (R2 = 0.689, F(1,32) = 17.690, p < 0.01). However, the collinearity statistics suggest that there are serious concerns 
with this regression model. The tolerance values for mass and hip girth were both below 0.2 and the VIF values 
for these measures were 17.281 and 11.484, respectively, suggesting high levels of multicollinearity between size 
measures. In addition, the Durbin-Watson statistic for this model was 2.387, suggesting higher dependence of 
errors between the input variables. Using stepwise regression for the shape-only model, it was shown that PC2, 
PC4, PC1 and PC3, in order of their strength of association, contributed significantly to the regression model, 
explaining 74.2% of the variance in skinfold thickness  (R2 = 0.742, F(1,32) = 22.96, p < 0.01). The Durbin Watson 
test statistic for this model was close to 2 suggesting independence of errors, and all VIF values for this model 
were below 10 and all tolerance statistics are above 0.2 suggesting that there was no collinearity between shape 
features. The results of the combined regression models show that integrating shape principal components with 
commonly used anthropometric indices improved the estimation of skinfold thickness, with the WHT.5R and 
shape model explaining 76.5% of the variance in skinfold thickness. The Durbin Watson test statistic for all mod-
els was close to 2 suggesting independence of errors for all combined models. All VIF values for all models were 
below 10 and all tolerance statistics are above 0.2 suggesting that there was not concerning levels of collinearity 
within the data.

Discussion
It has been suggested that more sophisticated shape indexes, measured using 3D scanning, can surpass manual 
measures in epidemiology and clinical practice for classifying and health monitoring of  individuals2. The aim of 
this study was to investigate whether novel measures of body shape can complement existing anthropometric 
techniques in the assessment of variations in external human form.

Shape features identified in this study characterise deviations in torso shape that exist within the sample 
data and are invariant to the effects of scale, location and orientation. The information used to characterise 
individuals in our study differed from that used in previous studies by Loffler-Wirth et al.9 and Pleuss et al.24. In 
these studies, large numbers of simple measures, such as lengths and girths and their ratios, were extracted from 
3D body scan data and normalised with respect to height. Machine learning processes were then used to find 
clusters of participants based on these simple measures. However, though the approach used by Loffler-Wirth 
et al. identified body types within large cohorts, the primary differences between clusters were variations in the 
lengths and girths of body segments. In contrast, the approach used in our study has been shown to identify dif-
ferences in scale-invariant shape features that cannot be captured using traditional anthropometric techniques. 
There have been recent studies which have also used principal components analysis (PCA) to detect variations 
in torso 3D scan data similar to our study, such as Ruto et al.43 and Ng et al.44. However, the torso scan data in 
both these investigations were not scaled to uniform size, so as a result some variations observed within these 
studies were related to differences in overall body height and size, as well as variations in scale-invariant body 

Table 3.  Pearson correlation coefficients between size measures, anthropometric indices and shape principal 
components.  *P < 0.05 BMI body mass index, WHR waist-hip ratio; sum-of-skinfolds: Iliac crests skinfold, 
supraspinale skinfold and abdominal skinfold.

Size measures Anthropometric indices Shape principal components

Stature Mass
Waist 
Girth

Hip 
Girth BMI WHR WHT.5R PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Sum-of-
skinfolds 0.02 0.51* 0.72* 0.58* 0.58* 0.55* 0.72* − 0.30 0.55* − 0.27 − 0.5* 0.046 − 0.21 − 0.12 0.11 0.14 − 0.07 − 0.09

Stature 0.47* 0.12 0.46* 0.054 − 0.26 − 0.06 0.11 − 0.26 − 0.17 − 0.31 − 0.002 0.27 0.25 0.09 0.18 − 0.02 − 0.25

Mass 0.83* 0.95* 0.90* 0.34* 0.75* − 0.23 0.48* − 0.19 − 0.15 0.28 0.40* − 0.01 0.21 0.18 0.03 − 0.10

Waist 
Girth 0.79* 0.89* 0.78* 0.98* − 0.32* 0.76* − 0.25 − 0.14 0.05 0.08 − 0.01 0.24 0.09 0.06 − 0.15

Hip Girth 0.87* 0.23 0.70* − 0.26 0.41* − 0.14 − 0.30 0.37* 0.27* 0.08 0.19 0.11 − 0.03 − 0.07

BMI 0.52* 0.89* − 0.32 0.67* − 0.14 − 0.03 0.33* 0.27 − − 0.01 0.23 0.11 0.05 0.02

WHR 0.84* − 0.24 0.77* − 0.24 0.063 − 0.28 − 0.14 − 0.31 0.19 0.03 0.10 − 0.18

WHT.5R − 0.34* 0.81* − 0.22 − 0.09 0.05 0.03 − 0.19 0.23 0.06 0.07 − 0.11

Table 4.  Linear regression models showing associations between existing anthropometric indices and sum-of-
skinfold thickness. SSF sum-of-skinfolds.

Model R2 Regression equation Standardised β F(1,35) Sig

BMI 0.335 SSF = 0.033 + 0.555*BMI 0.578 17.605  < 0.001

WHR 0.306 SSF = − 0.005 + 0.525*WHR 0.553 15.434  < 0.001

Waist Girth 0.522 SSF = 0.019 + 0.695*Waist 0.723 38.270  < 0.001

WHT.5R 0.522 SSF = 0.02 + 0.694*WHT.5R 0.723 38.258  < 0.001
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shape. Though the size of the participant samples used in these studies were larger than in our study, the PCA 
procedure identified the same number of components to describe 95% of the variation present within the cohort. 
This suggests that shape information inherent within 3D scan data includes subtle variations requiring a greater 
number of principal components to describe them fully, as opposed to size measures which can be described in a 
smaller number of  components24. Though it is currently unknown what all of the shape features captured in this 
study represents in terms of human health, these results further illustrate the wealth of information regarding 
body shape and weight distribution which cannot be captured by measurements used in current practice. We 
have also demonstrated an effective method of capturing and quantifying this information. Given the additional 
information contained within shape measures an anthropometric procedure that accounts for body shape would 
be a more effective method of assessing variations in external human form within populations.

External body shape is determined by its skeletal structure and the distributions of fat and muscle mass along 
its  length1,45. It has previously been found that the distribution of body fat, especially visceral fat accumulation in 
the abdominal region, represent the most significant metabolic  consequences7,45,46. However, the ability of current 
anthropometric approaches, such as BMI, to determine body fat mass has been questioned repeatedly in previous 
 studies45,47. Though the BMI was not originally developed for use specifically as an index of fatness it has been 
utilised for this purpose because it is a readily obtained  metric45. However, accumulations of visceral fat do not 
correlate with total body mass and are therefore not detectable using  BMI14. Measures such as waist girth and 
WHT.5R, which utilise measures of body size, have been found to demonstrate improved correlations with quan-
tities of abdominal adiposity and therefore are used as surrogates of central  obesity13. Regression analyses were 
conducted to investigate whether torso shape principal components identified in our study contain additional 
information that can complement these existing anthropometric techniques in the estimation of subcutaneous 
central adiposity. In this study it has been shown that shape principal components explained 74.2% of the variance 
in sum-of-skinfold thickness, compared to 52.2% explained by existing anthropometric indices waist girth and 
WHT.5R. However, when waist girth and WHT.5R were combined with torso shape principal components they 
were able to explain 75.8% and 76.5% of the variance in sum-of-skinfold thickness, respectively. These results 

Table 5.  Multiple linear models showing associations between sum-of-skinfold thickness and (1) size 
measures; (2) shape PCs; (3) anthropometric indices and shape PCs. SSF sum-of-skinfolds; VIF variance 
inflation factor, DW Durbin-Watson.

Model R2 Regression equation DW Predictor Standardised β t Sig

Collinearity 
Statistics

Tolerance VIF

Size Measures 0.689 SSF = 0.023 + (0.082*Stat-
ure) + (− 1.578*Mass) + (1.067*Waist) + (1.210*Hip) 2.387

Stature 0.084 0.625 0.536 0.534 1.874

Mass − 1.640 − 3.999  < 0.001 0.058 17.281

Waist 1.110 5.125  < 0.001 0.207 4.820

Hip 1.242 3.716 0.001 0.087 11.484

Shape PCs 0.742 SSF = 0.001 + (0.415*PC2) + (− 0.787*PC4) + (− 0.241*PC1) + 
(− 0.402*PC3) 2.094

PC2 0.523 5.814  < 0.001 − 0.998 1.002

PC4 − 0.526 − 5.823  < 0.001 0.991 1.009

PC1 − 0.350 − 3.866 0.001 0.987 1.014

PC3 − 0.319 − 3.530 0.001 0.991 1.009

BMI & Shape 0.748 SSF = 0.005 + (0.120*BMI) + (0.350*PC2) + (− 0.778*PC4) + (− 
0.213*PC1) + (− 0.376*PC3) 2.164

BMI 0.125 0.918 0.366 0.437 2.290

PC2 0.441 3.475 0.002 0.504 1.984

PC4 − 0.520 − 5.729  < 0.001 0.986 1.014

PC1 − 0.310 − 3.083 0.004 0.803 1.245

PC3 − 0.298 − 3.198 0.003 0.934 1.071

WHR & Shape 0.743 SSF = − 0.001 + (0.073*WHR) + (0.368*PC2) + (− 0.793*PC4) + 
(− 0.228*PC1) + (− 0.377*PC3) 1.993

WHR 0.077 0.461 0.648 0.294 3.396

PC2 0.464 2.966 0.006 0.338 2.960

PC4 − 0.530 − 5.768  < 0.001 0.981 1.020

PC1 − 0.331 − 3.318 0.002 0.830 1.205

PC3 − 0.299 − 2.963 0.006 0.813 1.230

Waist girth & Shape 0.758 SSF = 0.003 + (0.250*Waist) + (0.262*PC2) + (− 0.726*PC4) + (− 
0.182*PC1) + (− 0.311*PC3) 2.010

Waist 0.260 1.457 0.155 0.246 4.067

PC2 0.331 2.082 0.046 0.309 3.233

PC4 − 0.485 − 5.214  < 0.001 0.902 1.109

PC1 − 0.265 − 2.492 0.018 0.690 1.448

PC3 − 0.247 − 2.431 0.021 0.757 1.321

WHT.5R & Shape 0.765 SSF = 0.002 + (0.341*WHT.5R) + (0.192*PC2) + (− 0.731*PC4) 
+ (− 0.158*PC1) + (− 0.291*PC3) 2.006

WHT.5R 0.355 1.745 0.091 0.183 5.450

PC2 0.242 1.324 0.195 0.227 4.412

PC4 − 0.488 − 5.416  < 0.001 0.934 1.070

PC1 − 0.229 − 2.047 0.049 0.607 1.646

PC3 − 0.231 − 2.283 0.029 0.743 1.345



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12125  | https://doi.org/10.1038/s41598-020-69099-4

www.nature.com/scientificreports/

agree with those of Nevill et al.13, which found that WHT.5R was the most sensitive of existing anthropometric 
indices to changes in abdominal adiposity, however, the addition of scale-invariant measures of body shape can 
improve this prediction still further. These results are promising for a study conducted on a small cohort. Though 
the addition of greater numbers of predictor variables will always improve the accuracy of a regression model, 
the torso shape features extracted using our analytical procedure are independent and describe different aspects 
of human form. This is contrary to individual manual measures of body size (stature, mass, waist and hip girth), 
which have been shown to exhibit high levels of collinearity, preventing them being from combined in the same 
regression model. For this reason, anthropometric indices, such as BMI, WHR and WHT.5R, are used as a way 
to combine measures of body size to create proxies of body shape, reducing the complexity of human form to a 
single value. However, our study has shown that distinct features of body shape can be measured directly, provid-
ing additional information that can be used to complement existing anthropometric techniques in the estimation 
of central adiposity. Though it is acknowledged that current anthropometric proxies of visceral adiposity, such as 
waist girth and WHT.5R, are confounded by levels of subcutaneous  fat15,48, the additional information contained 
within shape measures may be able to identify features of external human form that relate to accumulations of 
visceral fat and associated cardio-metabolic health risks. Further study is required to establish these relationships, 
as well as the effects on shape measurement caused by underlying health issues, such as edema, which could 
obscure relationships between shape and body composition.

A limitation of this study was the restricted size of the participant cohort; it does not capture the complete 
range of body shapes that exist in the wider population and may limit the effectiveness of PCA used to detect 
features of torso shape variation in this study. In order to be robust, methods of 3D body classification require 
several thousand  participants9. Therefore, the next stage of work will be to apply our analytical procedure to the 
Leipzig Research Centre for Civilization Diseases (LIFE) dataset, one of the world’s largest collections of 3D body 
scan data with over 10,000  participants49. The increased size of this cohort will enable a greater range of body 
shapes and sizes to be characterised and add further stability to the results of the PCA. The LIFE dataset is also 
supplemented with medical examination results, such as MRI scans of visceral adipose tissue volume and oral 
glucose tolerance tests (OGTT), which could be used to further investigate relationships between body shape 
and cardio-metabolic risk factors. The long-term aim of this work will be to combine shape parameters identified 
within this large dataset with traditional size anthropometrics to improve body composition predictive power 
and the quality of health classification.

conclusions
This paper introduces a novel method for extracting features which characterise an individual’s body shape. 
This characterisation of shape contains information that is absent from measures used in current anthropo-
metric practice. In addition, these identified shape features can complement traditional anthropometrics when 
explaining variations in quantities of subcutaneous abdominal adiposity. The aim of future work will be to apply 
the proposed methods to characterise a large cohort of several thousand participants and identify patterns of 
variation across a wider range of body shapes and to further investigate the relationship between shape features 
and physical health indicators.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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