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S O C I A L  S C I E N C E S

Flexible learning, rather than inveterate innovation  
or copying, drives cumulative knowledge gain
Elena Miu1,2*, Ned Gulley3, Kevin N. Laland1, Luke Rendell1

Human technology is characterized by cumulative cultural knowledge gain, yet researchers have limited knowl-
edge of the mix of copying and innovation that maximizes progress. Here, we analyze a unique large-scale dataset 
originating from collaborative online programming competitions to investigate, in a setting of real-world 
complexity, how individual differences in innovation, social-information use, and performance generate techno-
logical progress. We find that cumulative knowledge gain is primarily driven by pragmatists, willing to copy, innovate, 
explore, and take risks flexibly, rather than by pure innovators or habitual copiers. Our study also reveals a key 
role for prestige in information transfer.

INTRODUCTION
Culture is responsible for the behavioral diversity that has led to our 
species’ remarkable adaptability and ecological success (1, 2). At the 
heart of culture lies social learning—learning influenced by contact 
with other individuals (3)—which is used by an extensive variety of 
species. Only in humans, however, do we see compelling evidence 
for the buildup of socially transmitted information over multiple 
rounds of innovation and social learning, often into complex multi-
component functional solutions, leading to tools, products, and 
knowledge that no one individual could have invented alone (2, 4, 5).

Strong evidence suggests that individuals should use social 
learning selectively according to strategies that guide how, what, 
and under what circumstances they copy others, and when they rely 
on their own experience (6–11). Recent studies show that humans 
exhibit consistent individual differences in the rates of using either 
social or asocial information in decision-making (12–16), with these 
preferences consistent across time and contexts (13), and linked to 
personality traits in both adults (17) and children (18). Such indi-
vidual differences in social-information use have profound implica-
tions for the way researchers conceptualize and model social learning. 
In particular, there has been little research thus far on how variation 
in learning strategies between and within individuals could affect 
the processes underlying cumulative cultural evolution.

Here, we analyze a unique large-scale dataset to investigate, in a 
cumulative cultural evolution setting, whether and how individual 
differences in learning generate collective progress. The dataset arises 
from a series of collaborative online programming competitions 
organized by the MathWorks software company over the course of 
14 years (19). Each contest involved participants attempting to craft 
and improve solutions to a set of NP-complete computer coding 
challenges (20). Such challenges do not have an exact solution, which 
allows open-ended improvement, as typically characteristic of cu-
mulative cultural evolution. This exclusive dataset provides a rare 
opportunity to isolate the causes of technological progress in a 
setting that approaches real-world complexity.

Complex cultural systems, often characterized by opaque links 
between cultural traits and payoffs, require individuals to use effective 
heuristics to guide their learning. One cue thought to be particularly 
important in human societies is prestige, defined as high status or 
influence typically related to higher competence in valued domains 
of activity (21). In complex contexts when direct observation of 
payoffs is difficult, watching how much other individuals defer to, 
attend to, or copy a model can provide an efficient proxy for that 
model’s information quality (22, 23). Prestige can extend across 
domains, for example, being perceived as a successful yam grower 
might still increase the probability that an individual’s fishing tech-
niques would be copied (4).

The complex interactions characterizing cumulative cultural 
evolution provide an ideal context for such “prestige bias” to 
emerge. Repeated interactions between individuals in a challenging 
environment characterized by hard problems allow individuals to 
create reputations that are used to guide the copying of beneficial 
traits. In the aforementioned programming contests, once an indi-
vidual submitted a valid entry, it became public, making its code 
accessible to other participants, along with its score and the author’s 
chosen username. Over time, some individuals took part in more 
than one contest, which allowed the potential to build reputation 
and influence across contests.

Here, we show that the successful individuals that drive cumula-
tive improvements in the programming contests are neither habitual 
innovators nor inveterate copiers, but rather mixed-strategy prag-
matists, willing to copy, innovate, explore, and take risks flexibly. 
We further demonstrate that superior performance in contests allows 
players to generate reputations that are used by other players as a 
cue to guide social learning above and beyond the effect of payoff 
bias, both within and across contests.

RESULTS
Variation between and within individuals
We analyzed data from 19 online programming competitions orga-
nized by MathWorks from 1998 until 2012 (19). Overall, we had 
data from 1964 unique participants from 19 contests, with an average 
of 136 participants per contest, some of whom took part in more 
than one contest, and collectively submitted a total of 45,793 valid 
entries. We grouped submitted entries according to the participant 
that submitted them (henceforth called “contestant”) both within 
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each contest and, where possible, across different contests. Each 
contestant was thus responsible for a collection of entries, which can 
be characterized in terms of activity (the total number of entries 
submitted to the contest), novelty (similarity to the entry with the 
current best score—as there is substantial copying taking place in 
the contest, this similarity is an unbiased, relative measure of how 
much an entry is deviating from the current population consensus), 
and performance (whether the entry became, on submission, a leader 
in its contest, i.e., whether it achieved the best score at the time of its 
submission). Each individual contestant could thus be characterized 
by a number of entries, a distribution of leader similarities, and a 
distribution of performance measures for every entry they had sub-
mitted. To begin with, for simplicity, we analyzed each contest as 
independent and assumed that all contestants were distinct (i.e., 
contestants were not linked across contests; see below for an analysis 
considering the same individuals participating in multiple contests). 
This means that each contestant had an associated activity, novelty, 
and performance measure for each contest in which they participated.

We found that individuals differed widely in their activity, use of 
novelty, and performance. Activity ranged from those who only 
submitted one entry to very active, very exploratory individuals 
who returned a wide range of raw scores. The number of entries per 
contestant was approximately exponentially distributed in all con-
tests, with 30% of contestants submitting only 1 entry in the entire 
contest, 60% submitting 5 or fewer, and less than 1% submitting 
>50 entries (fig. S1). Of all participants to all contests, 22% submitted 
at least one entry that took the lead, and 14% did this more than 
once. The average number of entries per leading contestant was 
10 times larger than the average number of entries per nonleading 
contestant. Activity was therefore strongly linked to performance at 
the individual level (fig. S2). However, the variation in activity levels 
among leading contestants indicates that high activity was not 
necessary for a participant to be able to take the lead—8% of leading 
contestants submitted only a single entry, while 16% submitted less 
than five (fig. S2).

The novelty results show that this between-individual variation 
extends to how individuals used social learning in their solutions. 
Some contestants were very conservative and preferred to keep their 
entries “safe” through solely copying the current leader, while other 
contestants were relatively adventurous, submitting entries that varied 
in their novelty (Fig. 1A). However, contestants did not display a 
bimodal distribution in use of copying or introduction of novelty, 
but rather could be broadly split into three groups, albeit on a con-
tinuous distribution: (i) a surprisingly large number of contestants 
who only submitted entries with low similarity to the current leader, 
a group that we term “incurable mavericks,” who barely ever took 
the lead (Fig. 1A, left section); (ii) an intermediate group whose 
entries ranged from zero similarity to very close copies of the current 
leader, termed “occasional mavericks,” who were the most likely 
group to take the lead (Fig. 1A, middle section); and (iii) a smaller 
group whose entries were always very similar to the current leader, 
termed “extreme conservatives,” who, again, rarely took the lead 
(Fig. 1A, right section). Most leading contestants and the most 
active contestants lie toward the copying end of this spectrum.

There was also considerable between-individual variation in terms 
of performance (Fig. 1B), with participants again split into three 
groups: a number of contestants who displayed very little variation 
in scores relative to the current leader and who often took the lead 
but more often than not only submitted one or two entries (Fig. 1B, 

right section), a group of contestants who showed variation in per-
formance but tended to take the lead (Fig. 1B, middle section), and 
a final group of contestants who varied in their scores but showed 
poor performance on average (Fig. 1B, right section). Leading con-
testants use social information in a notably different manner to other 
contestants (Fig. 2). We split participants into leading contestants 
(i.e., contestants who submitted at least one leading entry that beat 
the current best in the contest, in at least one contest) and nonleading 
contestants (who never submitted any entry in any contest that beat 
the current best leader). To test whether the way individuals used 
social information affected their performance, we fitted a generalized 
linear mixed model with a binomial error distribution that predicted 
whether an individual was a leading contestant or not as a function 
of the mean and the range of the distribution of similarities between 
that individual’s submissions and the current leader at the time of 
submission, to ask whether more or less innovation in terms of 
solutions was beneficial.

According to the generalized mixed linear model (GLMM), the 
probability of a contestant introducing leading entries increased with a 
higher mean similarity to the current leader, but was also correlated 
with a higher range of the distribution of similarities between each 
entry submitted by the author and the current leader (i.e., the variation 
of solutions submitted by the author; Fig. 2B and Table 1). For 
every one unit increase in mean similarity, the log odds of taking 
the lead increasd by 3.488 (i.e., the odds increased by a factor of 31). 
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Fig. 1. Between- and within-individual variation in similarity and performance. 
Similarity to current leader (A) and score increment (B)—average values with bars 
spanning the range of the distribution. The colored circles indicate leading contestants 
(i.e., contestants who submitted at least one entry that improved the overall score 
at the time of its submission), and the size of the circles is proportional to the total 
number of entries submitted by each contestant. The shaded panels in (A) indicate 
a visual split of participants into mavericks (left), copiers (right), and flexible users 
(middle) based on how they make use of social learning. The shaded panels (B) in-
dicate a visual split between poorly performing contestants (left), contestants who 
are variable in performance (middle), and consistently good performers (right).
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Therefore, both between-individual variation (i.e., how much copying 
a contestant engages in on average, as measured by the average sim-
ilarity to the current leader) and within-individual variation (i.e., how 
variable the solutions submitted by each contestant are, as measured by 
the range of the distribution of similarities to the leader for each individual) 
are predictors of individual performance. Leading contestants, who 
were almost always occasional mavericks, were more similar to the 
current leader, on average, than nonleading contestants. However, 
leading contestants also showed considerable flexibility in their be-
havior, being substantially more variable in their use of social and 
asocial information than nonleading contestants. Leading contestants 
deviated more often from the status quo than extreme conservatives, 
while (unlike incurable mavericks) still sometimes working on varia-
tions of the current leading solution and scoring consistently better 
than nonleaders even with their nonleading entries (fig. S3). Results 
from the continuous version of this model confirm our findings 
(table S1 and fig. S4).

Influence
We devised a measure, which we call “influence,” that captures how 
much of an entry a population picked up following the entry’s sub-
mission. Influence is broadly calculated as a normalized version of 
the average similarity between an entry and subsequent entries sub-
mitted by other contestants in that contest, thus capturing how 
much of an entry is reflected following entries, while controlling for 
self-similarity (fig. S5). Leading contestants were also copied more 
(i.e., they had, on average, higher influence) than nonleading con-
testants, through both their leading and their nonleading entries 
(Fig. 3). Leading entries had higher influence than nonleading entries 
overall, but even nonleading entries submitted by leading contestants 

had higher influence than entries submitted by nonleading con-
testants (Table 2), even when we control for score difference. For 
instance, a nonleading entry submitted by a leading contestant had 
a 0.135-point increase in influence compared to a nonleading entry 
submitted by a nonleading contestant. If the entry was also leading, 
this added another 0.175-point increment. This was in addition to 
the increase in influence due to higher increment. Notably, leading 
contestants submitted entries that had a higher influence on other 
participants, even when those entries were not the best available to 
copy, and even when variation in actual score was accounted for. 
This demonstrates that a prestige effect was taking place in the con-
tests, with contestants who manage to take the lead at least once 
forming reputations that influenced how others copied.

Crucially, this effect extended across contests (fig. S6). Overall, again, 
leading entries had significantly higher influence than nonleading 
entries, and so did nonleading entries that had been submitted by a 
contestant who managed to take the lead in the same contest. Leading 
entries submitted by a contestant who was a leader in the current 
contest had, on average, 0.243 higher influence than nonleading 
entries submitted by a contestant who was never a leader, but even 
nonleading entries submitted by a contestant who had taken the 
lead in the contest had, on average, 0.217 higher influence (Table 3). 
More surprisingly, this prestige effect held even for entries that did 
not take the lead, submitted by contestants who did not become 
leaders in the focal contest, but had taken the lead in a different 
contest (Table 3), which achieved 0.120 higher influence than the 
baseline, nonleading entries submitted by contestants who never led. 
This was true while controlling for payoff bias, i.e., mean perform-
ance overall—for every unit increase in mean score increment, 
influence increased by 0.284 units. This shows that cross-contest 
individual behavior was significantly related to entry-level measures 
of influence, indicating that consistent individual characteristics affected 
how entries were copied, in line with the expectations if prestige 
effects were forming across contests through repeated participation.

DISCUSSION
In a cumulative cultural evolution setting with real-world task com-
plexity, we have shown that individual differences in reliance on 
social and asocial learning give rise to considerable variation in per-
formance. Analysis of individual-level patterns of entry novelty did 

0.00

0.25

0.50

0.75

1.00

Nonleading
authors

Leading authors

M
ea

n 
si

m
ila

rit
y 

to
 le

ad
er

0.00

0.25

0.50

0.75

1.00

Nonleading
authors

Leading authors
R

an
ge

 s
im

ila
rit

y 
to

 le
ad

er

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Mean leader similarity

P
ro

ba
bi

lit
y 

of
 b

ei
ng

a 
le

ad
in

g 
au

th
or

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Range leader similarity

P
ro

ba
bi

lit
y 

of
 b

ei
ng

a 
le

ad
in

g 
au

th
or

A

B

Fig. 2. The link between similarity and performance. (A) Distributions of aver-
age leader similarities and distribution of leader similarity ranges for all nonleading 
and leading contestants. (B) Probability of a contestant becoming a leading con-
testant as a function of mean leader similarity and the range of the leader similarity 
distribution, as predicted by the generalized linear mixed model.

Table 1. The effect of social learning and exploration on  
whether the contestants ever took the lead or not. Results from  
GLMM: LeadingContestant ~ MeanScoreDifference + 
MeanLeaderSimilarity + RangeLeaderSimilarity + (1|Contest).  
Predictors are standardized—similarity ranges theoretically between 0 
and 1 and score difference between −1 and 1. 

Fixed 
effects Estimate SE z value 95% confidence 

interval

(Intercept) −4.919 0.342 −14.37 −5.622 to −4.275

Mean score 
difference 2.752 0.893 3.08 1.096–4.621

Mean leader 
similarity 3.488 0.34 10.24 2.844–4.182

Range leader 
similarity 3.907 0.215 18.14 3.498–4.344
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not indicate a dichotomous split between individuals who preferred 
copying and those who preferred innovation, but rather a continuous 
spectrum, in which individuals varied not only in their proclivity to 
copy and/or innovate but also in how much within-individual vari-
ation (i.e., exploration across entries) they displayed. Notably, the 
spectrum of the individual reliance on social learning had long tails 
formed by individuals with relatively pure “always innovate” and 
“always copy” approaches, who had relatively low success overall. 
The best-performing individuals occupied the center ground, mixing 
a balance of copying the leader with their own innovation and 
exhibiting flexibility and exploration in achieving this balance. Our 
results suggest that, to succeed, it is not enough to innovate alone, 
or solely to copy uncritically, but rather, individuals must strike a 
balance between the two. Successful individuals are pragmatists, 
willing to copy, innovate, explore, and take risks.

Previous work acknowledges and occasionally focuses on 
between-individual variation in social-information use (9, 15, 24), 
sometimes identifying factors that could explain this variation, such 
as confidence (9), intelligence quotient (25), or age (26). For instance, 
in a dataset of 60 years of opening moves in the game of Go, Beheim 
et al. (27) found both individual variation in social-information use 
(some players copy more than others), as well as cultural variation 
(players from certain countries copy more than others). Modeling 
work has shown that a mix of innovation and social learning can be 
beneficial, at both the population and individual level (6, 11, 28), 
and improvement is maximized by a careful blend of exploration 
and copying (29, 30). The literature less often discusses within-individual 
variation in social learning and how it is linked to population-level 
improvement. Morgan et al. (9) show that individuals flexibly adjust 
their reliance on social information over time, as they gain confidence 
in the task, and Toelch et al. (31) show that individuals change their 
reliance on innovation when presented with social performance cues. 
Such findings are indicative of growing evidence that humans im-
plement learning strategies flexibly (32). We extend these findings 
to show that not only do individuals use social information flexibly 
but also this flexibility is adaptive in the sense of being associated 
with successful performance: The best-performing individuals are 
those that most effectively navigate the trade-off between innova-
tion and social learning.

Within our current framework, it is not immediately obvious 
how this trade-off is negotiated, or even how to predict accurately 
how good ideas are generated. Individual preferences for copying 
versus exploration can be explained in terms of both perceived ex-
pected payoffs and built-in proclivities for either type of learning. 
The structure of the scoring system allows for better scores either through 
algorithmic improvement or through speeding up the code, which 
means that copying is a safe strategy and individuals who are not 
especially proficient coders will typically receive higher payoffs from 
copying than innovating. Nonetheless, we see evidence of poor 
performers who stick exclusively to innovating and refuse to copy, 
suggesting a personal preference, manifest independent of payoff. 
Given the substantial search space of existing solutions, the fact that 
entries tend to have high similarity to the current leader is not sur-
prising, as copying the leader is a quick heuristic for reducing the space 
and focusing on proven solutions. The fact that new leaders are both 
similar to current leaders and more exploratory could be interpreted as 
leaders being good at innovating from a starting point of the cur-
rent best solution, although studies show that a degree of randomness 
can aid exploratory search (33, 34). However, our data imply that both 
conservatism and exploration play a role in effective innovation. We 
have shown in previous work that many leading entries were very simi-
lar to the current leader, but a handful were very different, yet associated 
with higher improvement (19). The latter generated large innovative 
leaps that triggered the population to adopt this new solution, which 
was then optimized through small modifications. Here, we show that 
the individuals responsible for these crucial entries rarely worked alone 
and also participated in the tweaking process. Overall, leaders showed 
a higher level of engagement than nonleaders, perhaps symptomatic of 
relevant personal motivators (interest, expertise, and perseverance).

Table 2. Influence within contests for entries that did/did not  
take the lead, submitted by contestants who did/did not take  
the lead. Results for fixed effects from linear mixed model: 
Influence ~ LeaderGroup + Increment + (1|Contest/Contestant). The top 
row represents the baseline, entries that neither led nor were submitted by 
contestants who were ever leaders. The following two rows indicate 
additive effects relative to the baseline for nonleading entries submitted by 
leading contestants and leading entries submitted by leading contestants. 
The last row indicates the relationship between influence and performance 
as measured by score increment (standardized between −1 and 1). 

Fixed effects Estimate SE t value 95% confidence 
interval

(Intercept)

0.578 0.025 22.96 0.527–0.629
Nonleading 

contestant

Nonleading 
entry

Leading 
contestant

0.135 0.010 12.77 0.114–0.155
Nonleading 

entry

Leading 
contestant 0.175 0.010 15.96 0.153–0.197

Leading entry

Score 
increment 0.314 0.007 44.65 0.3001–0.328
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Fig. 3. Leaders have higher influence. Entry-level influence distribution for en-
tries submitted by nonleading contestants, nonleading entries submitted by lead-
ing contestants, and leading entries submitted by leading contestants.
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Prestige effects are expected to emerge where there is a correla-
tion between status and performance (21). According to participant 
accounts, introducing an entry that takes the lead is a highly 
sought-after prize, which suggests that reputation is a valued com-
modity in these contests. Moreover, participants remember good 
players from previous contests and pay attention to their submissions. 

Our study provides clear evidence that leaders had more influence 
on the patterns of solutions in the population than nonleaders, even 
when their entries did not take the lead. This effect extended across 
contests such that individuals who had proved successful had influ-
ence even in contests in which they never took the lead. Modeling 
the influence of leaders while controlling for the individual perform-
ance of each entry allowed us to establish whether leaders had higher 
influence merely as a result of submitting generally better entries or 
whether leadership genuinely creates a reputational effect. The 
analysis confirms genuine prestige effects in the copying of leaders. 
This prestige effect held up across contests, suggesting that an indi-
vidual’s reputation builds in the MATLAB contest world independently 
of the specific challenge, perhaps serving as a heuristic used to 
reduce the overwhelming search space. This is in line with Henrich 
and Gil-White’s theory (21), suggesting that prestige can be a useful 
tool in the face of uncertainty, even when that uncertainty is not a 
result of lack of success information, but rather an excess of it. 
However, such effects are still reliant on general programming ex-
pertise, as opposed to, say, a gifted footballer promoting a brand of 
clothing, and it remains to be established how widely this cross- 
domain influence extends.

We have investigated how individual-level use of social inform-
ation contributes to technological progress in a cumulative cultural 
evolution microcosm, where cultural artifacts are incrementally 
improved over time through modifications by multiple individuals. 
We studied what humans do when unguided or unprompted, con-
firming and extending results from theoretical models and small 
experiments in a large-scale realistic setting. Although there were 
no experimental interventions in this study, we can nonetheless 
draw clear inferences about the factors that shape cumulative cul-
tural change. Our results suggest that overt attempts to maximize 
cumulative cultural adaptation require populations consisting of 
many individuals exhibiting “leader” qualities (i.e., exploring and 
flexibly switching between social and asocial information). We have 
also shown that prestigious individuals have a disproportionate 
influence on cultural transmission, a finding that implies that per-
formance increments may be achieved through coupling prestige 
with superior solutions. We note, however, that prestige bias need 
not speed up cumulative cultural evolution, if this means that good 
solutions introduced by nonprestigious individuals are hindered from 
spreading through the population. While our study system might 
mimic patterns of improvement in some contemporary scenarios—
today’s business world, for example—it is limited in its generality. For 
instance, many cultural adaptation scenarios do not involve the level 
of competition or transparency manifest here. Further realistic studies 
of such phenomena are needed to establish the generality of our findings.

Consistent interindividual variation in behavior has been a focus 
in behavior studies for over a decade, sometimes controversially (35). 
Our study contributes to the growing expectation that differences 
between individuals, and groups, in their approach to learning will 
have important effects on the patterns of cultural evolution (36).

However, our findings also draw attention to within-individual 
flexibility in the use of social and asocial information, suggesting 
that not only the predilection to use social information but also the 
contexts in which humans copy could be learned. Here, any assumpt-
ion that social learning strategies are not learned could underesti-
mate the speed of response to environmental variation (36), as well 
as the patterns of change of these social learning strategies (32), and 
the vulnerability to the propagation of maladaptive traits (37). Our 

Table 3. Influence across contests for leading/nonleading entries 
submitted by contestants who never took the lead, who took the lead 
in the same contest the entry was submitted in, or who took the lead 
in a different contest. Results for fixed effects from linear mixed model: 
Influence ~ LeaderGroup + Increment + (1|Contestant/Contest). The first 
row indicates the intercept: nonleading entries submitted by nonleading 
contestants who never took the lead in any other contests. The following 
rows indicate the additional effect corresponding to each factor level 
indicated—bold indicates leading (either entry, contestant, or contestant 
in a different contest). The last row indicates the relationship of influence 
with performance, measured here as score increment. 

Fixed effects Estimate SE t value 95% 
confidence 
interval

(Intercept) 0.483 0.024 19.64 0.435–0.531

Nonleading 
entry

Nonleading 
contestant

Not leading 
elsewhere

Nonleading 
entry

0.120 0.032 3.67 0.056–0.184

Nonleading 
contestant

Leading 
elsewhere

Nonleading 
entry

0.217 0.057 3.78 0.105–0.329

Leading 
contestant

Not leading 
elsewhere

Nonleading 
entry

0.242 0.030 7.87 0.182–0.303

Leading 
contestant

Leading 
elsewhere

Leading entry 0.243 0.062 3.90 0.121–0.365

Leading 
contestant

Not leading 
elsewhere

Leading entry 0.283 0.031 9.11 0.222–0.344

Leading 
contestant

Leading 
elsewhere

Score increment 0.284 0.008 32.28 0.267–0.302
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study implies that flexibility in learning is a key ingredient for suc-
cessful innovation.

Last, our study provides compelling evidence for prestige bias. 
To date, little empirical work has focused on the importance of 
prestige bias [see (38) for a review of the existing literature], but the 
complex cumulative cultural evolution microcosm provided by our 
dataset provides a useful framework for studying this learning 
mechanism in a naturalistic setting. Why prestige effects should be 
so potent is unclear, but plausibly, this bias has been co-opted as 
part of norm psychology, a psychological suite of traits evolved to 
support cultural evolution (39), and is used even in the presence of 
more effective learning mechanisms. If the effect of prestige is manifest 
even in the presence of a clear cue of success, then our findings suggests 
that prestige could play an even more prominent role in human 
social learning contexts in which payoffs are opaque.

MATERIALS AND METHODS
We analyzed data from 19 online programming competitions orga-
nized by MathWorks, the company that produces MATLAB, from 
1998 to 2012 (19, 40). Each contest involved the organizers proposing 
an NP-complete problem (traveling salesman–type constraint problems; 
see the Supplementary Materials for an example) and participants 
submitting solutions to it, in the form of MATLAB code. Each entry 
was submitted to an online platform and evaluated automatically. 
Once submitted, each entry, along with its score, submitting author, 
and time of submission, was freely available on the website for all 
the other participants to access and copy. Participants could only learn 
their score by submitting an entry. Prizes were nominal (e.g., a 
MATLAB T-shirt), and participants competed mainly for reputation. 
Participants were incentivized with small intermediate awards like 
daily leader and highest improvement in a day. Both these inter-
mediary prizes and the final winner were highly sought-after accolades. 
The contest attracted programmers that varied in their skill level 
and engagement with MATLAB, from beginners to engineers and 
academics who use MATLAB proficiently in their professional life.

Our dataset consisted of 1964 participants from 19 contests, with 
an average of 136 participants per contest, some of whom took part 
in more than one contest, and collectively submitted a total of 45, 793 
valid entries. Participants submitted an average of 21 entries each, but 
with very large variation between participants, ranging between 1 
and 1502 entries submitted. Of the total of 1964 individual partici-
pants, 83% participated in only one contest, and the average number 
of contests participated in was 1.34, with 2 participants competing 
in 14 of the 19 contests we studied.

Throughout the week of each contest, participants were allowed 
to submit as many solutions as they wanted through an online 
interface, which resulted in numerous participants submitting mul-
tiple entries. The participants were identified using an identification 
number that was linked to a MathWorks account that they themselves 
created and that was needed to submit entries to the contest. Individuals 
were not forbidden from creating multiple accounts if they wished 
to do so, but we have reason to believe, based on online communication 
between participants, that most did not and, because this would have 
required substantial effort (e.g., creating a new account, linked to a 
new email address), we expect that this was not a major confound-
ing factor in this analysis.

The score of each entry was a function of its effectiveness on the 
task, the speed of execution, and code complexity, measured using 

McCabe’s cyclomatic complexity (41), such that improving an entry 
could be achieved by improving the success of the algorithm and/or 
the speed of execution, and/or reducing its complexity (the latter 
could be achieved without considerable programming proficiency). 
Entries were disqualified if they exceeded execution time or length 
limits, and the winner was the entry with the lowest score at the end 
of the week.

Characterizing individual variation through activity, 
novelty, and performance
We characterized individual variation through three principal metrics 
that we term “activity,” “novelty,” and “performance.” The analysis 
included only valid entries, which followed the contest guidelines 
and received a score (if an entry contained a bug that stopped exe-
cution, it was not valid and did not receive a score). Some of the 
contests included a period of “darkness” in the first 2 days, in which 
contestants only had access to their own entries, in an attempt to 
encourage individual exploration. To compare accurately across con-
tests, in our analysis, we included only data from the third day onward 
for all contests.

Activity was measured as the total number of entries submitted 
in a contest. At the individual level, activity is an indirect measure of 
motivation—we expected that more motivated, more interested 
players would submit more entries throughout the contest.

Novelty is inversely related to social learning, and hence, this 
measure allowed us to quantify and investigate individual differences 
in both reliance on social learning and innovation, as well as link 
these factors to performance and thereby establish their adaptive 
value. To measure novelty, we first used similarity to the current 
leader as an index of copying. We have shown elsewhere (19) that 
solutions quickly become very complex, which incentivizes partici-
pants to copy the current leader (i.e., the entry with the best score at 
a set time) substantially and tweak that leading solution instead of 
submitting completely original entries. As a result, populations 
converged on similar solutions over each contest. Entries are much 
more similar to the current leader than to any other entries, and 
although this similarity might not indicate direct copying but rather 
could be mediated through third entries that copied the current 
leader, it is nonetheless a robust measure of how much an individual 
is deviating from the population consensus and, reciprocally, a 
measure of how much novelty they are introducing. Although we 
could have used raw proportion of new lines introduced into the 
contest as a straightforward measure of novelty, this would be a 
biased measure—there is much more scope for novelty at the begin-
ning of the contest, while novelty naturally decreases over time as 
possible space of solutions is explored and exhausted. Therefore, we 
settled on similarity to the current leader as a relative measure that 
is conditional on the current level of novelty entertained by the best 
entries. Code similarity was measured using the Czekanowski simi-
larity, designed as a statistic for comparing two ecological samples 
in terms of proportion of overlapping species, given by

   CZ  ik   = 2   
 ∑ j = 1  S   min( x  ij  ,  x  kj  )  ─  

 ∑ j = 1  S   ( x  ij   +  x  kj  )
    (1)

where CZik is the similarity between samples i and k, xij is the num-
ber of instances of species j in sample i, and xkj is the number of 
instances of species j in sample k. For our analysis, each sample cor-
responds to an entry, and each species is a line of code. Every entry 
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is a set of lines of code, so the similarity between two entries is a func-
tion of the total number of lines they have in common, including 
reoccurring lines, relative to the sum of their lengths. Each individual 
contestant could thus be characterized by a distribution of leader 
similarities—the novelty introduced by an individual is therefore given 
by the distribution of dissimilarities (i.e., 1– CZik for each entry).

Performance of an entry was simply characterized as whether that 
entry became, on submission, the leader in its contest (i.e., achieved 
the best score at the time of its submission and thus improved the 
overall score). Extending this to the contestant level allowed us to 
quantify how many of each contestant’s entries improved upon the 
current leader. To test the link between social-information use at 
the individual level and contestant performance, we fitted a model 
that predicts whether a contestant ever became a leader or not 
(within a contest) as a function of that contestant’s social-information 
use. We used both the mean and the range of the distribution of 
similarities between a contestant’s entries and the current leader as 
measures of copying and exploration around the population con-
sensus. Thus, we fitted a generalized linear mixed model with a 
binomial error distribution. The predicted outcome of the model 
was whether an individual was a leading contestant, and the dependent 
variables were the mean and range of the distribution of similarities 
between that individual’s submissions and the current leader at the 
time of submission.

An additional independent variable accounts for the fact that 
some contestants were better players overall. Thus, the model also 
included an average performance measure for each contestant as a 
fixed effect. We used the difference in score between the current 
leading entry and each specific entry as a continuous, relative mea-
sure of performance at the entry level, which takes into account the 
steady improvement in score. This score difference is positive for 
entries that improved the overall score, and negative for most 
entries—a large negative difference indicating a particularly un-
successful entry. We rescaled this increment within each contest so 
it fell between −1 and 1 according to Eq. 2

  I′= sign(I )   I −  I  min   ─  I  max   −  I  min      (2)

where I is the original increment value, Imin and Imax are the mini-
mum and maximum values taken by all increments, and I′ is the 
rescaled increment. We included the mean score increment for each 
contestant as a fixed effect in the model. The model also includes 
contest as a random effect to account for inherent differences in 
performance and similarity introduced by different tasks in differ-
ent contests. Therefore, the model specification was

    

 Leader  ij    ~ Binomial(1,  p  ij  )

     
logit( p  ij   ) =  +    1   ×  MeanIncrement  ij   +    2  

 
×  MeanSimilarity  ij   +    3  

      ×  RangeSimilarity  ij   +  a  i                                          
    

 a  i    ~ N(0,   a  2  )

    

where leaderij is the probability of contestant j in contest i to become 
a leader, and ai estimates the random effect corresponding to contest i. 
All models were implemented in R, using the lme4 package (42).

In the context of the MATLAB contests, being a leader was a 
highly prized achievement and a principal motivator for contestants. 
Here, “leading entries” and “leaders” have the broader significance 
of improving the overall score at the population level. As a result of 

the considerable copying taking place, most entries scored just be-
low the current leader, making those entries that did surpass the 
leader even more salient. This pattern extended to the contestant 
level: Most contestants, including leaders, had a mean increment 
value just below zero. Leaders whose mean increment value exceeded 
zero generally submitted a small number of entries (one or two), 
while many leaders had a negative increment value because they 
submitted both leading and nonleading entries. For these reasons, 
whether a contestant was a leader or not is a more meaningful mea-
sure of performance than mean increment (or other continuous 
measures of performance), although we also fitted an additional linear 
model similar to the above, in which we use mean increment as the 
outcome variable

  
 MeanIncrement  ij   =  +    1   ×  MeanSimilarity  ij   +    2   ×  RangeSimilarity  ij   +  a  i  

     
 a  i   ~ N(0,   a  

2  )
    

Measuring individual influence
To investigate whether individuals formed reputations that affected 
how they were copied, we needed to establish the extent to which an 
individual was copied throughout the contest. While we used simi-
larity as a proxy for copying, this does not exclude the possibility 
that the two entries are related through copying via a third entry 
they both copied. As quantifying indirect copying is impossible in 
this context, we devised a measure that we call influence that attempts 
to capture how much of an entry a population picked up following 
the entry’s submission.

Influence was calculated as the average similarity between an entry 
and subsequent entries in that contest. To control for the situation 
in which a contestant is working on a solution and submits a series 
of very similar solutions to each other, we only took into account 
subsequent entries submitted by other contestants. This excludes 
self-similarity as an explanation for high influence. The influence of 
the entries submitted at the beginning of the contest will naturally 
be lower than the influence of the entries submitted toward the end, 
purely because the number of subsequent entries is higher for the 
entries submitted at the beginning of the contest, which translates 
into a higher number of entries that could potentially be dissimilar 
to these initial entries. Therefore, we divided this average similarity 
by a number indicating the order of the entry into the competition, 
ranging from 1 for the first entry to the total number of entries in 
the contest for the last. We used the order of submission rather than 
the raw time point of submission to control for variation in the rate 
of submission across the duration of the competition (although the 
results hold when using raw time point as a normalizing factor). As 
mentioned above, in this analysis, we only included data starting 
with day 3, when participants had full access to everybody else’s en-
tries; therefore, this timestamp never actually took the value 0. To 
correct for the skew introduced by the difference in magnitude be-
tween similarity and this measure of time, we used a log transfor-
mation of the influence measure—this skew correction was used for 
both measures of time, raw time point, and entry order. Thus, influ-
ence was given by

   Influence = log (     
mean similarity

  ─ entry order   +  10   −5  )     (3)

Last, this influence measure was rescaled between 0 and 1 using 
the same form as Eq. 2 to make comparison across contests possible. 
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Influence is therefore a continuous measure of subsequent-entry 
similarity for each entry that indicates how much a given solution, 
once introduced, is used by others in the population. This measure 
does distinguish between the initial innovator and the following 
copiers purely because innovators have precedency and therefore a 
higher number of entries that can potentially copy them, but it does 
not completely discount copiers as completely lacking influence on 
the population outcomes—copiers deserve credit, too, for recognizing 
a successful solution and popularizing it, thus influencing the popu-
lation repertoire.

Within-contest influence
To test whether leading contestants had a higher influence than 
nonleading contestants in either or both their leading and nonlead-
ing entries, we fitted a linear mixed model with the influence of each 
entry as the dependent variable. The influence was predicted as a 
function of a factor with three levels that specified whether (i) the 
entry took the lead and was submitted by a leading contestant, 
(ii) the entry did not take the lead but was submitted by a leading 
contestant, and (iii) the entry did not take the lead and was submitted 
by a nonleading contestant. The intercept baseline was set to group 3, 
the entries that did not take the lead and were submitted by non-
leading contestants. The model also included the entry’s score in-
crement as a fixed effect, because better-performing entries can be 
expected to have higher influence irrespective of the contestant who 
submitted them. This allows us to compare between prestige-bias, 
here measured as how much more influence entries submitted by 
leading contestants have, and payoff-bias, measured by the score 
increment of the entry. The contestant and the contest were included 
as random effects, with contestant nested within contest, to account 
for the fact that each contest might be characterized by a different 
average level of copying and that within each contest some contestants 
might have generally higher influence independent of their leader 
status. Therefore, the model specification was

   

   ijk   =  +    i   +    ij   +    1    Increment  k   +    2    ContestantFactor  k  

        i    ~ N(0,   1  2  ) ;    ij    ~ N(0,   2  2 )   
 Influence  ijk    ~ N(   ijk  ,   3  2 )

    

for each entry k submitted by contestant j in contest i, where i in-
dicates the random effect corresponding to contest i, and ij captures 
random effects corresponding to contestant j in contest i.

The predictor of interest here was the contestant factor. We ex-
pected leading entries submitted by leading contestants to have a 
significantly higher influence than entries submitted by nonleading 
contestants. However, if prestige bias was operating, we also expected 
greater influence of nonleading entries submitted by leading con-
testants compared to entries submitted by nonleading contestants.

Cross-contest influence
Some individuals participated in multiple contests, which gave us 
the opportunity to investigate whether individuals performed con-
sistently across different problems or whether the variation between 
contest problems somehow breaks down these individual charac-
teristics. This was tested using a similar mixed linear model as for 
within-contest influence. In this context, however, the predictor of 
interest was a factor that specified whether the entry took the lead, 
whether the contestant submitting the entry was ever a leader in the 
same contest, or whether the contestant was ever a leader in a differ-

ent contest. This factor had six levels: (i) nonleading entry submitted 
by a nonleading contestant who was never a leading contestant in 
any other contest, (ii) nonleading entry submitted by a nonleading 
contestant who was a leading contestant in a different contest, (iii) 
nonleading entry submitted by a leading contestant who was not a 
leading contestant in a separate contest, (iv) nonleading entry sub-
mitted by a leading contestant who was also a leader in a different 
contest, (v) leading entry submitted by a leading contestant who 
was not a leader in a different contest, and (vi) leading entry sub-
mitted by a leading contestant who was also a leading contestant in 
a different contest. As before, we included score increment as a 
fixed factor, and contest and contestant identity as random fac-
tors—in this case, the model included a random effect for contest 
nested inside the random effect for contestant, as contestant identi-
ty explained more variation than contest identity. To capture within- 
participant variation adequately and to ensure methodological 
validity, we chose to examine individuals who participated in at least 
three contests, giving a sample size of 96 repeat contestants, of the 
total of 1416 unique contestants overall.

This allowed us to establish whether entries had more influence 
when submitted by a leading contestant, independent of how well 
they scored. Crucially, this analysis also allowed us to establish if 
entries had more influence when submitted by a contestant that was 
a leader in a different contest (i.e., if reputations carry across con-
tests, as predicted if prestige bias is important). If entries that do not 
take the lead, submitted by contestants who do not become leaders 
in the same contest, but who had been leading contestants in a dif-
ferent contest still have higher influence than entries submitted by 
nonleading contestants both within and across contests, it would 
mean that the leadership reputation at the individual level was 
maintained across contests, evidence of prestige bias.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/23/eaaz0286/DC1
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