
13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

Restoration of Legacy Parallelism in C and C++
Applications

Vladimir Janjic · Christopher Brown ·
Adam D. Barwell ·

Abstract Parallel patterns are a high-level programming paradigm that en-
ables non-experts in parallelism to develop structured parallel programs that
are maintainable, adaptive, and portable whilst achieving good performance on
a variety of parallel systems. However, there still exists a large base of legacy-
parallel code developed using ad-hoc methods and incorporating low-level par-
allel/concurrency libraries such as pthreads without any parallel patterns in
the fundamental design. This code would benefit from being restructured and
rewritten into pattern-based code. However, the process of rewriting the code
is laborious and error-prone, due to typical concurrency and pthreading code
being closely intertwined throughout the business logic of the program. In
this paper, we present a new software restoration methodology, to transform
legacy-parallel programs implemented using e.g. pthreads into structured pat-
terned equivalents. We demonstrate our restoration technique on a number of
benchmarks, allowing the introduction of patterned parallelism in the resulting
code; we record improvements in cyclomatic complexity and speedups.

Keywords Parallel patterns, restoration, pthreads, program transformation,
code analysis

1 Introduction

Parallel patterns are a well-established high-level parallel programming model
for producing portable, maintainable, adaptive, and efficient parallel code.
They have been endorsed by some of the biggest IT companies, such as Intel
and Microsoft, who have developed their own parallel pattern libraries (Intel

V. Janjic
School of Science and Engineering, University of Dundee, UK.
E-mail: vjanjic001@dundee.ac.uk

C. Brown, A. Barwell
School of Computer Science, University of St Andrews, UK.
E-mail: cmb21,adb23@st-andrews.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/327068288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Restoration of Legacy Parallelism in C and C++ Applications 135

TBB [1], Microsoft PPL, etc.) A standard way to use these libraries is to
start with a sequential code base, identifying in it the portions of code that
are amenable to parallelisation, together with the exact parallel pattern to be
applied. Then instantiating the identified pattern at the identified location in
the code, after possibly restructuring the code to accommodate the parallelism.

Sequential code gives the cleanest starting point for introduction of parallel
patterns. There exists, however, a large base of legacy code that was paral-
lelised using lower-level, mostly ad-hoc parallelisation methods and libraries,
such as pthreads [10]. This code is usually very hard to read and understand,
is tailored to a specific parallelisation, and optimised for a specific architec-
ture, effectively preventing alternative (and possibly better) parallelisations
and limiting portability and adaptivity of the code. An even bigger problem,
from the software engineering perspective, is the maintainability of the legacy-
parallel code: commonly, the programmer who wrote it is the only one who can
understand and maintain the code. This is due to both complexity of low-level
threading libraries and the need for custom-built data structures, synchroni-
sation mechanisms, and sometimes even thread/task scheduling implemented
in the code. The benefits of using parallel patterns lie in a clear separation be-
tween sequential and parallel parts of the code and a high-level description of
the underlying parallelism, making the patterned applications much easier to
maintain, change, and adapt to new architectures. Common examples include
farms and pipelines. In a farm, a single computational worker is applied to a
set of independent inputs. The parallelism arises from applying the worker to
different input elements in parallel. In a parallel pipeline, a sequence of func-
tions, f1, f2, ..., fm are applied to a stream of independent inputs, x1, ..., xn

where the output of fi becomes the input to fi+1; the parallelism arises from
executing fi+1(fi(...f1(xk)...)) in parallel with fi(fi−1(...f1(xk+1)...)).

In this paper, we present a new methodology for the restoration of legacy-
parallel code into an equivalent patterned form, through application of a num-
ber of identified program transformations; the ultimate goal of which is to
provide a semi-automatic way of converting legacy-parallel code into an equiv-
alent patterned code, therefore increasing its maintainability, adaptivity, and
portability whilst either improving or maintaining performance. This paper
makes the following specific research contributions:

1. we present a novel software restoration methodology for converting legacy-
parallel applications into their structured (patterned) parallel equivalents;

2. we present a new set of restoration transformations that attempt to sys-
tematically, i) eliminate pthread operations from legacy C/C++ programs;
ii) perform code repair, fixing any bugs introduced in i ; and, iii) reshape
code in preparation for parallel pattern introduction;

3. we evaluate these transformations on a set of benchmarks, demonstrating
that removal of parallelism can allow us to manually derive structured par-
allel code that is comparable to the original legacy-parallel version in terms
of performance, while being more portable, adaptive, and maintainable.



136 Vladimir Janjic et al.

Fig. 1: Software Restoration Process

2 Software Restoration

In this section, we propose a new Software Restoration methodology for im-
proving the structure of legacy-parallel C++ code by applying a series of incre-
mental program analysis and transformation steps to rewrite the code into its
patterned equivalent. Software restoration is based on program transformation
and code analysis and aims to:

1. discover the instances of common patterns in legacy-parallel code;
2. eliminate undesirable legacy parallel primitives from the same code; and
3. replace the removed parallel primitives with instances of parallel patterns.

The input to the Software Restoration process is a legacy-parallel C/C++
code that is based on some low-level parallelism library, such as pthreads, and
the output is the semantically-equivalent code based on parallel patterns. In
this way, we obtain well-structured code based on a higher level of parallel
abstraction, which is significantly more maintainable and adaptive while still
preserving good performance of the original, highly-tuned parallel version. In
this paper, we will focus on the TBB library as our target code.

The Software Restoration methodology consists of a number of steps, each
applying a class of code transformations, some of which are driven by the
pattern discovery code analysis. The whole process is depicted in Figure 1.
In the below description, we will focus on the code transformation steps. We
will use a synthetic, but representative, parallel pipeline as a running example
in order to demonstrate the transformation. Listing 1 presents aspects of the
original parallel code with pthreads that are pertinent to this demonstration.

Listing 1: Original Simple Pipeline Code

1 int main(int argc, char *argv[]) {
2 ...
3 // create the workers, then wait for them to finish
4 pthread_create(&workerid[0], &attr, Stage1, (void *)&stage_queues[0]);
5 pthread_create(&workerid[1], &attr, Stage2, (void *)&stage_queues[1]);



Restoration of Legacy Parallelism in C and C++ Applications 137

6 pthread_create(&workerid[2], &attr, Stage3, (void *)&stage_queues[2]);
7
8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

10
11 ...
12 }
13
14 // Second stage reads an element from the input queue, adds 1 to it,
15 // and writes it to the output queue.
16 void *Stage2(void *arg) {
17 int my_input, my_output;
18
19 pipeline_stage_queues_t *myQueues = (pipeline_stage_queues_t *)arg;
20 queue_t *myOutputQueue = myQueues->outputQueue;
21 queue_t *myInputQueue = myQueues->inputQueue;
22
23 do {
24 my_input = read_from_queue(myInputQueue);
25 if (my_input > 0)
26 my_output = my_input + 1;
27 else // 0 is a terminating token. Pass on if received.
28 my_output = 0;
29 add_to_queue(myOutputQueue, my_output);
30 } while (my_input>0);
31
32 return NULL;
33 }
34
35 void add_to_queue(queue_t *queue, int elem)
36 {
37 pthread_mutex_lock(&queue->queue_lock);
38 // If the queue is full, wait until something reads from it before adding a new element
39 if (queue->nr_elements == queue->capacity)
40 pthread_cond_wait(&queue->queue_cond_read,&queue->queue_lock);
41 queue->elements[queue->addTo] = elem;
42 queue->addTo = (queue->addTo + 1) % queue->capacity;
43 queue->nr_elements++;
44 pthread_cond_signal(&queue->queue_cond_write);
45 pthread_mutex_unlock(&queue->queue_lock);
46 }

In the above main function (Lines 1–12), a pipeline of three stages is created
using three threads. The stages are connected by queues such that the first
stage has an output queue, and stages two and three have both an input and
an output queue. After creation, the main function waits for the threads to
finish their work (Lines 8–9) before continuing. In Lines 14–32, we show the
function for the middle stage of the pipeline, which reads an integer from the
input queue, increments it by one, then puts it into the output queue. The
first and third stages have a similar structure, where the first stage acts as a
source of integers for the second stage, and the third stage doubles its inputs
before adding them to the final output queue.

All the relevant synchronisation code for the queues can be found in two
functions: add_to_queue and read_from_queue. Only add_to_queue (Lines
35–46) is shown here, since read_from_queue is similar. Both functions use
one mutex lock and two conditional variables. The conditional variables are
used for synchronisation when threads are waiting to insert an element into a
full queue or for reading from an empty queue (e.g. at the start of the program).
When a thread needs to add to the queue, it first acquires the queue lock and



138 Vladimir Janjic et al.

checks if the queue is full (Lines 39–40). When the queue is full, the thread
releases the lock and waits for a signal that some other thread has consumed an
element of this queue (queue->queue_cond_read conditional variable at line
40). After this conditional variable is signalled, the thread adds the element to
the queue, updating the queue counter and pointer in the process (Lines 42–
44). Finally, the thread signals that an element has been added to the queue
(queue->queue_cond_write conditional variable in Line 44) and releases the
queue lock (Line 45) before returning.

Parallelism Elimination. The initial code analysis step, Initial Pattern Dis-
covery, analyses the original pthreaded code and discovers those parts of it,
if any, that correspond to instances of parallel patterns. In our example, this
stage identifies the pipeline created in Lines 4–6, with the pipeline stages be-
ing the functions: Stage1, Stage2, and Stage3. Following pattern discovery,
the first code transformation step is applied, where pthread operations and
primitives are either removed or transformed so as to eliminate parallelism. In
Listing 1, this impacts the main and add_to_queue functions; Listing 2 gives
the results of parallelism elimination on both functions.

Listing 2: Simple Pipeline Code with Parallelism Removed

1 int main(int argc, char *argv[]) {
2 ...
3 // Calls to pthread_create are converted to function calls.
4 Stage1((void *)&stage_queues[0]);
5 Stage2((void *)&stage_queues[1]);
6 Stage3((void *)&stage_queues[2]);
7
8 // The loop containing pthread_join is removed.
9 ...

10 }
11
12 void add_to_queue(queue_t *queue, int elem) {
13 // All mutex and conditional variable operations are removed.
14 queue->elements[queue->addTo] = elem;
15 queue->addTo = (queue->addTo + 1) % queue->capacity;
16 queue->nr_elements++;
17 }

Whilst all pthread operations have been removed or transformed, and the pro-
gram is now sequential, the Parallelism Elimination stage does not guarantee
that a program’s semantics are preserved. Accordingly, as in our running ex-
ample, errors may be introduced. Here, Stage1 contains a do-loop that adds
items to its output queue. Since the second stage, which reads from that queue,
is no longer consuming those elements concurrently, and the queue is smaller
than the total number of elements produced, the second stage will now con-
sume and process only a subset of its inputs in the original pthreaded version
after Stage1 returns. Ultimately, the semantics and output of the program
produced by the Parallelism Elimination stage is not the same as the original
pthreaded program; the code must therefore be repaired.

Code Repair. As observed in the previous step, Parallelism Elimination might
result in code that is broken and, hence, not semantically equivalent to the



Restoration of Legacy Parallelism in C and C++ Applications 139

original legacy-parallel code. Our example is just one of many instances in
which merely removing pthread constructs actually breaks the code (see Sec-
tion 4 for more examples). The next step in Software Restoration is, therefore,
to repair the potentially broken code produced by Parallelism Elimination.
Due to the potential complexity of this repair stage, multiple transformations
may need to be applied.

In order to repair the broken pipeline in our running example it is necessary
to stop the first stage from overflowing its output queue. This can be achieved
by merging the loops found in Stage1, Stage2, and Stage3, thereby resulting
in loop where the operations in stages two and three are applied to each integer
produced by stage one in the same iteration that produces it. The result of
this process can be found below in Listing 3.

Listing 3: Simple Pipeline Code after Code Repair

1 void Pipe(void* a1, void* a2, void* a3) {
2 // STAGE ONE
3 int my_output_1, i_1 = MAXDATA;
4
5 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
6 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
7
8 // STAGE TWO
9 int my_input_2, my_output_2;

10 ...
11 do {
12 // STAGE ONE
13 if (i_1 >= -1) { ... }
14
15 // STAGE TWO
16 my_input_2 = read_from_queue(myInputQueue_2);
17 if (my_input_2 >= 0) {
18 if (my_input_2 > 0)
19 my_output_2 = my_input_2 + 1;
20 else
21 my_output_2 = 0;
22 add_to_queue(myOutputQueue_2, my_output_2);
23 }
24
25 // STAGE THREE
26 my_input_3 = read_from_queue(myInputQueue_3);
27 if (my_input_3 >= 0) { ... }
28 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
29 }

Here, the calls to Stage1, Stage2, and Stage3 in main are first lifted into a new
function, Pipe. Each of those calls are then unfolded in order to expose the do-
loops that they contain. These loops are then merged, allowing all three stages
to be executed within a single iteration. This avoids the first stage overflowing
its output queue, and consequently, results in a program that is sequential but
semantically equivalent to the original pthreaded program.

Program Shaping. Despite correcting those errors introduced during Paral-
lelism Removal, the code produced by the Code Repair stage may still contain
artefacts from the original legacy parallelisation. In our running example, such
artefacts include the queues between the stages. In other examples artefacts
can include custom-built representations of flat data structures, such as arrays,



140 Vladimir Janjic et al.

perhaps introduced for chunking purposes. These artefacts are redundant and
could hinder alternative (and possibly better) parallelisations of the code. The
next step is, therefore, to eliminate residual artefacts of legacy parallelism, and
to improve structure where such improvements make the code more amenable
to the introduction of patterned parallelism. As in Code Repair, due to the
potential complexity of this task, multiple transformations may need to be
applied. Each Program Shaping refactoring results in a program that is se-
mantically equivalent to the one it transforms. In our running example, we
remove the now redundant queues in between the stages, the result of which
can be found in Listing 4.

Listing 4: Clean Sequential Simple Pipeline Code

1 struct PipeStruct {
2 // Input to pipeline
3 int* i_1;
4 // Output of pipeline
5 queue_t* myOutputQueue_3;
6 // Inter-stage temporary variables, used in loop-condition.
7 int my_output_1;
8 int my_output_2;
9 };

10
11 PipeStruct S1(PipeStruct arg) { ... }
12
13 PipeStruct S2(PipeStruct arg) {
14 if (arg.my_output_1 >= 0) {
15 if (arg.my_output_1 > 0) arg.my_output_2 = arg.my_output_1 + 1;
16 else arg.my_output_2 = 0;
17 }
18 return arg;
19 }
20
21 PipeStruct S3(PipeStruct arg) { ... }
22
23 void Pipe(void* a1, void* a2, void* a3) {
24 // STAGE ONE
25 int my_output_1, i_1 = MAXDATA;
26 ...
27 do {
28 PipeStruct arg = PipeStruct {&i_1, myOutputQueue_3, &my_output_1, &my_output_2};
29 PipeStruct r = S3(S2(S1(arg)));
30 my_output_1 = r.my_output_1;
31 my_output_2 = r.my_output_2;
32 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
33 }

Here, calls to add_to_queue and read_from_queue are first unfolded, allow-
ing the specific read and write statements that represent the passing of data
between stages to be matched and ultimately simplified to a single assign-
ment statement between stages. The stages are then lifted into the functions
S1 (Line 11), S2 (Lines 13–19), and S3 (Line 21), and a struct (Lines 1–9)
generated to ensure that each stage is a single-input single-output function.
The function composition on Line 32 is now in a form where pattern-based
parallelism can be simply introduced, perhaps again by refactoring.

Pattern Introduction. After the final pattern discovery analysis is performed
and the final patterns to be introduced are identified, together with the lo-



Restoration of Legacy Parallelism in C and C++ Applications 141

cations in the code where this will be done, the final step is to introduce
instances of parallel patterns into the now-clean sequential code. The parts of
the sequential code are replaced by calls to the functions from the high-level
pattern libraries such as Intel TBB [1] or OpenMP [14]. This results in final,
patterned parallel code that is semantically equivalent to the starting legacy-
parallel code, but with much cleaner structure and simpler, higher-level code
that allows easier maintainability, adaptivity and portability.

3 Restoration Transformations

We propose a series of program transformations to facilitate the restoration
of C programs that have been previously parallelised using low-level pthread
parallelism techniques. The following transformations are grouped according
to the stages in Section 2 in which they are used. In addition to the fol-
lowing, standard transformations may also facilitate the restoration process.
For instance, the transformation to unfold a function definition [9] is used in
both Code Repair and Shaping stages; e.g. in the former, it allows loops to be
merged, and in the latter, it allows the elimination of intermediate queues. The
extract method [17] transformation can be similarly used to lift a pipeline into
a self-contained function, or to lift its individual stages (back) into separate
functions.

3.1 Parallelism Elimination

Parallelism Elimination comprises a single composite transformation that ei-
ther removes or transforms pthread operations. As noted in Section 2, Paral-
lelism Elimination, and by extension this transformation, does not guarantee
that the result of the transformation will be semantically equivalent to the
transformed program. Parallelism Elimination effects the following transfor-
mations.

– Removes #include <pthread>.
– Removes all pthread operations aside from calls to both pthread_join and

pthread_create.
– Removes all variable declarations whose types are defined as part of the

pthread library, excepting pthread_t declarations.
– Declarations in the form pthread_t t; are transformed into void* t;.
– Calls to pthread_create of the form,

1 pthread_create(t,a,f,x)

are transformed into the form:

1 t = f(x);

Recall that Parallelism Elimination converts the type of pthread_t vari-
ables to void* variables of the same name(s), and that pthread_create

requires that f returns a value of type void*.



142 Vladimir Janjic et al.

– Calls to pthread_join are transformed according to whether the second ar-
gument is NULL. When the second argument is not NULL, e.g. pthread_join
(t,x), the join operation is transformed into the form x = t. Otherwise,
when the second argument is NULL, the call to pthread_create is removed.

– In cases where a call to pthread_join or pthread_create forms the right-
hand-side of an assignment statement, e.g.

1 r = pthread_join(t,x);

in addition to the transformation of the pthread operation, an assignment
statement is inserted where the variable being assigned, r in the above
example, is assigned the value of a successful call to the original pthread
operation, here pthread_join and 0. In the above example, the code re-
sulting from the transformation is:

1 r = 0;
2 x = t;

– Any for-loop whose body contains no statements following the removal of
a pthread operation will itself be removed.

– Any if-statement with a branch whose body contains no statements fol-
lowing the removal of a pthread operation will be transformed to have only
the other branch, or itself removed, if no such branch exists. For instance,
given the for-loop from the synthetic pipeline example in Listing 1,

8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

since the second argument to pthread_join is NULL, the join operation
result is itself a statement, and the body of the for-loop contains no other
operations, this for-loop is removed.

3.2 Code Repair

In addition to unfolding and extract method refactorings, the merging of loops
is a key transformation of the Code Repair stage when restoring pipelines. In
order to avoid the overheads involved with thread creation, individual stages
of a pipeline may loop until a termination token or condition is met. Merging
the loops across pipeline stages from which pthreads have been eliminated
using the transformations in Section 3.1 can be necessary to avoid overflowing
any buffers or queues in between pipeline stages, thus restoring the original
semantic behaviour of the code. Here, we describe only the merging of do-loops,
but a similar approach can be used to merge, e.g., for-loops.

Merge do-loops. A sequence of n do-loops, in the same compound statement
can be merged such that the result is a single loop containing the bodies of
the original loops in the same order that they appeared in the original source
code. We note that any statements that appear in between loops in the original
code, must be commutative with respect to any preceding loops; i.e. it must be



Restoration of Legacy Parallelism in C and C++ Applications 143

possible to swap the ordering of the statements and preceding loops without
changing the behaviour of the program.

To illustrate this transformation we use the below code, derived from the
synthetic simple pipeline example in Section 2.

Listing 5: Intermediate Code Repair Stage for Simple Pipeline Example

1 void Pipe(void* a1, void* a2, void* a3) {
2 // STAGE ONE
3 int my_output_1, i_1 = MAXDATA;
4 ...
5 do {
6 ...
7 } while(i_1>=0);
8
9 // STAGE TWO

10 int my_input_2, my_output_2;
11 ...
12 do {
13 my_input_2 = read_from_queue(myInputQueue_2);
14 ...
15 } while (my_input_2>0);
16
17 // STAGE THREE
18 int my_input_3, my_output_3;
19 ...
20 do {
21 my_input_3 = read_from_queue(myInputQueue_3);
22 ...
23 } while (my_input_3>0);
24 }

This represents the example following the Parallelism Elimination stage (List-
ing 2), and where the calls to Stage1, Stage2, and Stage3 have been lifted
into the function Pipe using extract method and then unfolded. Since the state-
ments in between the above loops consist solely of declarations and assignment
statements and can be safely executed prior to the first and second loops, it
is possible to merge these loops.

Listing 6: Following Merging of loops in Listing 5)

1 void Pipe(void* a1, void* a2, void* a3) {
2 int my_output_1, i_1 = MAXDATA;
3 ...
4 do {
5 // STAGE ONE
6 if (i_1 >= -1) {
7 ...
8 }
9

10 // STAGE TWO
11 my_input_2 = read_from_queue(myInputQueue_2);
12 if (my_input_2 >= 0) {
13 ...
14 }
15
16 // STAGE THREE
17 my_input_3 = read_from_queue(myInputQueue_3);
18 if (my_input_3 >= 0) {
19 ...
20 }
21 } while (i_1 >=0 || my_input_2 > 0 || my_input_3 > 0);
22 }



144 Vladimir Janjic et al.

The bounding condition of the merged loop is formed of the disjunction of
the conditions of the original loops. Similarly, the body of the merged loop
comprises the bodies of the original loops wrapped in if-statements. The
condition of one of these if-statements is the weakened condition of the re-
spective original do-loop; e.g. the condition my_input_2>0 above is weakened
to my_input_2>=0. This weakening is necessary, since the body of a do-loop
is executed before the bounding condition is checked. Moreover, because the
loop body is guaranteed to execute once, it is possible that a variable used
in the bounding condition may be declared outside of the loop, but only ini-
tialised within it. For example, in the second and third stages above, neither
my_input_2 nor my_input_3 are initialised before the assignment inside the
body of their respective loops (Lines 15 & 23, Listing 5). In order to merge
these loops such that the second and third stages will execute, we move the
aforementioned assignment statements outside of the introduced if-statement
around the loop body (Lines 12 & 18, Listing 6). Such assignment statements
can only be lifted out of the body if they themselves depend upon variables
already assigned outside of the loop. Variables are renamed in the bodies of
the loops as necessary.

3.3 Program Shaping.

Program Shaping represents the broadest stage in the process and presents the
programmer with the largest range of choices in terms of transformations that
may be effected. In addition to unfolding definitions and creating new functions
via extract method, other standard transformations may be applied, e.g. dead-
code elimination [23], in order to improve or simplify the structure of the code.
In order to remove aspects of the code that represent optimisations enacted for
the legacy parallelisation, both existing and novel transformations may be nec-
essary. Novel transformations may include the unchunking of data, the removal
intermediate, and now redundant, queues between stages, and a tupling (and
potential localisation) of arguments to present transformations that introduce
algebraic skeletons with a simple composition of single-parameter functions.
In line with our running example, we propose transformations to remove in-
termediate queues, and to merge arguments.

Remove Intermediate Queues. In a pthreaded pipeline, passing the result of
a stage to the next can involve intermediary queues. Once the parallelism
from the pipeline has been eliminated and the code repaired, so too can
these queues be removed. We remove these intermediate queues by inspect-
ing, matching, and transforming read, write, and update operations pertaining
to those queues. In our recurring example we begin this process following the
Code Repair stage, and having unfolded add_to_queue and read_from_queue

operations for intermediate queues only ; note that the output queue operation
on Line 35 has not been unfolded.

1 void Pipe(void* a1, void* a2, void* a3) {



Restoration of Legacy Parallelism in C and C++ Applications 145

2 int my_output_1, i_1 = MAXDATA;
3
4 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
5 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
6 ...
7 do {
8 // STAGE ONE
9 if (i_1 >= 0) {

10 ...
11 myOutputQueue_1->elements[myOutputQueue_1->addTo] = my_output_1;
12 myOutputQueue_1->addTo = (myOutputQueue_1->addTo + 1) % myOutputQueue_1->capacity;
13 myOutputQueue_1->nr_elements++;
14 }
15
16 // STAGE TWO
17 my_input_2 = myInputQueue_2->elements[myInputQueue_2->readFrom];
18 myInputQueue_2->nr_elements--;
19 myInputQueue_2->readFrom = (myInputQueue_2->readFrom + 1) % myInputQueue_2->capacity;
20
21 if (my_input_2 >= 0) {
22 ...
23 myOutputQueue_2->elements[myOutputQueue_2->addTo] = my_output_2;
24 myOutputQueue_2->addTo = (myOutputQueue_2->addTo + 1) % myOutputQueue_2->capacity;
25 myOutputQueue_2->nr_elements++;
26 }
27
28 // STAGE THREE
29 my_input_3 = myInputQueue_3->elements[myInputQueue_3->readFrom];
30 myInputQueue_3->nr_elements--;
31 myInputQueue_3->readFrom = (myInputQueue_3->readFrom + 1) % myInputQueue_3->capacity;
32
33 if (my_input_3 >= 0) {
34 ...
35 add_to_queue(myOutputQueue_3, my_output_3);
36 }
37 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
38 }

A variable is read from when that variable occurs in a statement and that vari-
able is not being updated ; e.g. capacity on Line 12 above. Similarly, a variable
undergoes a write when it is being assigned to and is not being updated ; e.g.
elements in the first output queue is written to on Line 13. Finally, a variable
is updated when it occurs in a statement that is both reading from and writ-
ing to that variable; e.g. addTo in Line 12 above. Basic increment operators,
e.g. nr_elements++ on Line 13, are similarly considered updates due to their
semantics. In order to transform these read, write, and update operations, we
pair the operations in the order that they appear in the code and according to
the variables they read, write, or update, and transform those pairs according
to their composition. If two queues are semantically the same but referred
to by different variables then they themselves will be considered the same
during pairing; e.g. myOutputQueue_1 and myInputQueue_2 refer to the same
intermediate queue, thus myOutputQueue_1->elements and myInputQueue_2

->elements are similarly considered to be the same variable for pairing. In
the above example, two cases arise:

1. Updates to variables that do not occur elsewhere in the code pertain to
queue housekeeping operations are therefore removed. In the above code,
Lines 12, 13, 18, 19, 24, 25, 30, and 31 are all removed.



146 Vladimir Janjic et al.

2. A write followed by a read is merged into a single assignment statement s.t.
the RHS of the read is replaced with the RHS of the write, and where the
original write statement is removed. For example, in the above code, the
write to elements on Line 11 and the read from elements on Line 17 can
be paired (due in part to the behaviour of the queue reading the element
that has just been added). Since this represents passing my_output_1 on
Line 11 to my_input_2 on Line 17, it is possible to remove Line 17 and
transform Line 11 into the form my_input_2 = my_output_1.

An unpaired read that is part of an update, e.g. capacity on Line 12, or
a paired write, e.g. addTo on Line 11, is removed or otherwise transformed
along with the update or paired write statement. Similarly, an unpaired read
that is part of a paired read statement, e.g. readFrom on Line 17, is also
transformed according to the paired read statement. When applied, the above
transformations result in the removal of the two intermediate queues.

1 void Pipe(void* a1, void* a2, void* a3) {
2 int my_output_1, i_1 = MAXDATA;
3
4 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
5 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
6 ...
7 do {
8 // STAGE ONE
9 if (i_1 >= 0) {

10 ...
11 my_input_2 = my_output_1;
12 }
13 // STAGE TWO
14 if (my_input_2 >= 0) {
15 ...
16 my_input_3 = my_output_2;
17 }
18 // STAGE THREE
19 if (my_input_3 >= 0) {
20 ...
21 add_to_queue(myOutputQueue_3, my_output_3);
22 }
23 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
24 }

Merge Arguments. During restoration, the stages of a pipeline may each be
represented by a single function. Since the majority of patterned pipeline im-
plementations expect pipeline stages to take a single argument, i.e. usually
the result of the preceding stage, it may be necessary to tuple the parameters
of each stage. This can be done (semi-)automatically. A struct can be syn-
thesised across each of the functions representing stages in the pipeline, with
each function transformed to both return and take the synthesised struct as
its argument. In our running pipeline example, following the removal of the
intermediate queues, we have three stages represented by the functions S1, S2,
and S3, respectively. S1 takes a pointer to an integer and returns an integer
value; S2 takes and returns an integer value; and S3 takes an integer value and
a pointer to its output queue and returns nothing.

1 int S1(int* i_1) {



Restoration of Legacy Parallelism in C and C++ Applications 147

2 int my_output_1;
3 if (*i_1 >= 0) {
4 my_output_1 = *i_1;
5 *i_1 = *i_1-1;
6 }
7 return my_output_1;
8 }
9

10 int S2(int my_output_1) {
11 ...
12 return my_output_2
13 }
14
15 void S3(int my_output_2, queue_t* myOutputQueue_3) {
16 ...
17 }
18
19 void Pipe(void* a1, void* a2, void* a3) {
20 ...
21 do {
22 my_output_1 = S1(&i_1);
23 my_output_2 = S2(my_output_1);
24 S3(my_output_2, myOutputQueue_3);
25 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
26 }

Here, we observe that the result of the first two stages are used in the merged
loop bounding condition and must therefore be propagated through the stages
when converted to composition form. This is achieved by synthesising a new
struct, PipeStruct, that contains all those variables used in the condition
statement, and both the input and output to the pipeline.

1 struct PipeStruct {
2 // INPUTS
3 int* i_1;
4 // OUTPUTS
5 queue_t* myOutputQueue_3;
6 // USED IN LOOP CONDITION
7 int my_output_1;
8 int my_output_2;
9 };

10
11 PipeStruct S1(PipeStruct arg) {
12 ...
13 return arg;
14 }
15
16 PipeStruct S2(PipeStruct arg) {
17 ...
18 return arg;
19 }
20
21 PipeStruct S3(PipeStruct arg) {
22 ...
23 return arg;
24 }
25
26 void Pipe(void* a1, void* a2, void* a3) {
27 ...
28 do {
29 PipeStruct arg = PipeStruct {&i_1, myOutputQueue_3};
30 PipeStruct r = S3(S2(S1(arg)));
31 my_output_1 = r.my_output_1;
32 my_output_2 = r.my_output_2;
33 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
34 }



148 Vladimir Janjic et al.

Here, in order to introduce a TBB pipeline, we keep the input and output
to the pipeline as pointers. The variables my_output_1 and my_output_2 are
only used as part of the condition and are not outputs of the pipeline, as such
they are stored by their value. In this particular example, it is possible to
remove the second and third disjunctions and therefore remove my_ouptut_1

and my_ouptut_2 from PipeStruct, and thus further simplify the pipeline, but
this is left to another Shaping transformation or sequence of transformations.

4 Evaluation

In this section, we present an evaluation of our restoration methodology on a
number of examples of pthreaded C and C++ applications taken from a vari-
ety of domains, including image convolution, nqueens, cholesky decomposition,
blackscholes, pgpry, mandelbrot and matrix multiplication. For each bench-
mark we evaluate the effectiveness of our technique using standard metrics,
such as McCabe’s Cyclomatic Complexity [26], lines of code and difference in
runtimes between the original pthread version and the restored TBB version,
using the maximum number of available cores; these results are summarised
in Table 1, which also labels if each benchmark is a standard task from im-
plementation (F) or a pipeline, where each stage can also be farmed (P). All
of our execution experiments are conducted on a server with Intel Xeon E5-
2690 CPU with 28 cores, running at 2.6 GHz with 256 GB of RAM, with the
Scientific Linux 6.2 operating system.

4.1 Image convolution

Image Convolution is a technique widely used in image processing applications
for blurring, smoothing and edge detection. We consider an instance of the
image convolution from video processing applications, where we are given a
list of images that are rocessed by applying a filter. Applying a filter to an
image consists of computing a scalar product of the filter weights with the
input pixels within a window surrounding each of the output pixels:

out(i, j) =
∑
m

∑
n

in(i− n, j −m) × filt(n,m) (1)

Listing 7: Original Convolution with PThreads

1 void add_to_queue(queue_t *queue, task_t elem)
2 {
3 /* Same as in Listing 1 */
4 }
5
6 task_t read_from_queue(queue_t *queue)
7 {
8 ...
9 }

10



Restoration of Legacy Parallelism in C and C++ Applications 149

11 void* stage1() {
12 ..
13 while(1) {
14 t = read_from_queue(tq1);
15 r = workerStage1(t); /* Reads in pixels from a file into an array */
16 add_to_queue(tq2, r);
17 }
18 return NULL;
19 }
20
21 void* stage2() {
22 ..
23 while(1) {
24 t = read_from_queue(tq2);
25 r = workerStage2(t); /* Applies transformation to each pixel in a received array */
26 add_to_queue(tq3, r);
27 }
28 return NULL;
29 }
30
31 int main (int argc, char **argv)
32 {
33 ...
34 /* Reading in the images in the task queue tq1 */
35 ...
36 /* Create the pipeline */
37 for (int i=0; i<nw1; i++)
38 pthread_create(&workers1[i], NULL, stage1, NULL);
39 for (int i=0; i<nw2; i++)
40 pthread_create(&workers2[i], NULL, stage2, NULL);
41 ...
42 /* Wait for threads to finish execution and output results to files */
43 }

For the convolution example, we start off with a pthreaded version in Listing 7,
with a similar structure as the other pipelined examples in this paper, and
outlined in Section 2. After setting up the task queue for the first stage of
the pipeline (e.g. by reading a list of names of files with images), the example
creates the pipeline in Lines 37–40, spawning a number of worker threads for
each stage of the pipeline. The pipeline stages are shown at Lines 11 and 21,
respectively; each stage has a similar structure: a non-terminating while loop
that retrieves a task from the stage’s input queue (tq1 and tq2 for stage1

and stage2, respectively), computes the unit of work on the task item (Lines
15 and 25) and then places the result on an output queue (Lines 16 and 26).
Functions add_to_queue and read_from_queue put a task in an output queue
and read a task from an input queue, respectivelly, in a thread safe manner.
The code for add_to_queue was shown in Listing 1.

The first step to restoration is to remove the threading code; this is a fairly
straightforward process, but results in an executable that no-longer terminates.
This is due to the fact that there is no termination condition of the while

loops within the stages. A simple repair for this step is to add a termination
token, EOS, which threads through the pipeline computation when no more
tasks are on the original input queue amd terminates the stages when received
(Listing 8).

Listing 8: Convolution, Repaired with a Termination Token

1 if ((int)(task_t)t == EOS) {



150 Vladimir Janjic et al.

2 puttask(tq2, (task_t2 *)EOS);
3 break;
4 }

The next step is to perform program shaping which goes through various steps,
including unfolding the various calls to gettask and puttask in the stages,
merging the stages together, and finally removing the intermediate queue be-
tween the two stages (leaving the input and output queue; see Listing 9).

Listing 9: Stages merged, unfolded and intermediate queue removed

1 /* Unfolded gettask function, reutrning t1 as an input task to stage 1 */
2 . . .
3 r1 = workerStage1(t1);
4 r2 = workerStage2(r1);
5 /* Unfolded puttask function that puts r2 into queue tq2 */
6 tq2->elements[tq2->addTo] = r2;
7 tq2->addTo = (tq2->addTo + 1) % tq2->capacity;
8 tq2->nr_elements ++

The final step in the shaping process is to arrive at the code shown in List-
ing 10, where we remove the input and output queues completely, and trans-
form the program into a simple function composition; the function composition
has been unfolded into the original for loop (Line 37–40 from Listing 7), and
the loops merged into a single loop.

Listing 10: Convolution Shaped

1 for (int i=0; i<NIMGS; i++) {
2 workerStage2(workerStage1(i));
3 }

Finally, the fully shaped program from Listing 10 can be parallelised using
a structured pattern approach. Here we use TBB, to define a pipeline, using
C++ classes, as shown in Listing 11.

Listing 11: Convolution Restored with TBB

1 tbb::parallel_pipeline(
2 ntoken,tbb::make_filter<void,task_t2*>(tbb::filter::serial, Stage1(NIMGS) )
3 & tbb::make_filter<task_t2*,int>(tbb::filter::parallel, Stage2() )

4.2 Discussion

Table 1 shows the summary of our results for all the benchmarks. For all
benchmarks we see comparable results in the McCabe metrics, where the
TBB version gives a better result, apart from Blackscholes, where the com-
plexity is equal, and Matrix Multiplication, where the complexity actually
increases. This is most likely because both of these benchmarks are simple
farms, and the TBB logic actually introduces some complexity over simply
calling pthread_create multiple times. The number of lines of code for the
TBB version is mostly comparable, with most benchmarks showing a decrease
in lines of code. Blackscholes shows a slight increase in LOC, most likely, again,



Restoration of Legacy Parallelism in C and C++ Applications 151

Benchmark McCabe Lines Performance
Before After Before After Before After

Blackscholes F 29 29 366 393 38.5 39
Matrix Multiplication F 9 15 176 146 909.4 896.5

Mandelbrot F 12 11 145 142 2.21 2.28
NQueens P 41 24 421 337 8.63 8.622

Cholesky Decomposition P 31 19 321 226 16.97 17.08
PGPry P 23 19 210 243 138.1 131

Image Convolution P 71 29 714 280 12.85 5.2

Table 1: Metrics for each benchmark, where F = Farm, and P = Pipeline;
performance times are in seconds on a 28-core machine.

due to the slight increase in code logic for TBB versus the pthread version. In
terms of performance, again, the TBB versions are mostly comparable, with
the exception of a few cases. For convolution, the TBB version performs 2.4x
faster, due to the pthreading version introducing extra overheads in the locking
code; Blackscholes also performs very slightly worse, by 0.5 seconds.

5 Related Work

The concept of a systematic, or structured approach to software restoration
has, to our knowledge, been largely previously unexplored. A concept that is
probably most related to software restoration is that of reverse engineering,
which is a technique used to retrieve high-level requirements from existing
sequential code [12,13]. Yu et al. [31] proposed a technique that attempts to
use refactoring to try and recover requirements goal models from legacy code.
However, the work only targets sequential code and only capture high-level
information that is not useful for parallel restoration. Refactoring has roots in
Burstall and Darlington’s fold/unfold system [9], and has been applied to a
wide range of applications as an approach to program transformation [27], with
refactoring tools a feature of popular IDEs including, i.a., Eclipse [16] and Vi-
sual Studio [28]. Previous work on parallelisation via refactoring has primarily
focussed on the introduction and manipulation of parallel pattern libraries in
C++ [8,22] and Erlang [7,6]. Another approach has been the automated in-
troduction of annotations in the form of C++ attributes [30]. Dig proposed an
approach to parallel loops in Java [15], but did not use high-level algorithmic
skeletons. Aldinucci and Danelutto proposed an approach to convert between
skeleton configurations and could be used to introduce parallelism, but where
the sequential program must also be defined using (sequential) skeletons [2].
Thompson et al. [24] proposed an approach to refactor sequential Erlang pro-
grams into concurrent versions, using program slicing to guide the refactoring
process. However, their approach was not focussed on parallel performance,
and did not use restoration or parallel patterns. High-level parallel patterns,
sometimes known as algorithmic skeletons offer high-level abstraction over low-
level concurrency methods [4,18]. A range of pattern/skeleton implementations



152 Vladimir Janjic et al.

have been developed for a number of programming languages; these include:
RPL [22]; Feldspar [5]; FastFlow [3]; Microsoft’s Pattern Parallel Library [11];
and Intel’s Threading Building Blocks (TBB) library [1]. Since patterns are
well-defined, rewrites can be used to automatically explore the space of equiv-
alent patterns, e.g. optimising for performance [25,20] or generating optimised
code as part of a DSL [19]. Moreover, since patterns are architecture-agnostic,
patterns have been similarly implemented for multiple architectures [21,29].

6 Conclusions

In this paper, we have introduced a software restoration methodology for con-
verting legacy-parallel applications into structured parallel code using parallel
patterns. This ensures portability, maintainability and adaptivity of paral-
lel code while maintaining, and sometimes even increasing, performance. We
also presented transformations to eliminate ad-hoc pthread parallelism from
legacy-parallel code, transformations that repair the code from bugs intro-
duced by the elimination step, and , shape the code in order to patternise it.
Furthermore, we evaluated out software restoration methodology on a num-
ber of realistic benchmarks and use-cases, demonstrating benefit in terms of
gained performance, increased adaptivity, portability and maintainability.

References

1. TBB (intel threading building blocks). In: Encyclopedia of Parallel Computing, p. 2029.
Springer (2011)

2. Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: PDCS, pp.
955–962 (1999)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-Level and
Efficient Streaming on Multicore, chap. 13, pp. 261–280 (2017). DOI 10.1002/
9781119332015.ch13

4. Asanovic, K., Bod́ık, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Mor-
gan, N., Patterson, D.A., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.A.: A view of
the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

5. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:
The design and implementation of feldspar - an embedded language for digital signal
processing. In: IFL, Lecture Notes in Computer Science, vol. 6647, pp. 121–136. Springer
(2010)

6. Barwell, A.D., Brown, C., Hammond, K., Turek, W., Byrski, A.: Using program shaping
and algorithmic skeletons to parallelise an evolutionary multi-agent system in erlang.
Computing and Informatics 35(4), 792–818 (2016)

7. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed refac-
toring for parallel erlang programs. International Journal of Parallel Programming
42(4), 564–582 (2014)

8. Brown, C., Janjic, V., Hammond, K., Schöner, H., Idrees, K., Glass, C.W.: Agricultural
reform: More efficient farming using advanced parallel refactoring tools. In: PDP, pp.
36–43. IEEE Computer Society (2014)

9. Burstall, R.M., Darlington, J.: A transformation system for developing recursive pro-
grams. J. ACM 24(1), 44–67 (1977)

10. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Longman Pub-
lishing Co., Inc., USA (1997)



Restoration of Legacy Parallelism in C and C++ Applications 153

11. Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++: De-
sign Patterns for Decomposition and Coordination on Multicore Architectures, 1st edn.
Microsoft Press (2011)

12. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data.
ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

13. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng,
H.: Bandera: extracting finite-state models from java source code. In: ICSE, pp. 439–448.
ACM (2000)

14. Dagum, L., Menon, R.: Openmp: An industry-standard api for shared-memory pro-
gramming. IEEE Comput. Sci. Eng. 5(1), 4655 (1998)

15. Dig, D.: A refactoring approach to parallelism. IEEE Software 28(1), 17–22 (2011)
16. Foundation, E.: Eclipse - an Open Development Platform (2009).

http://www.eclipse.org

17. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
object technology series. Addison-Wesley (1999)

18. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers. Softw., Pract. Exper. 40(12), 1135–1160
(2010)

19. Gorlatch, S.: Domain-specific optimizations of composed parallel components. In:
Domain-Specific Program Generation, Lecture Notes in Computer Science, vol. 3016,
pp. 274–290. Springer (2003)

20. Gorlatch, S., Wedler, C., Lengauer, C.: Optimization rules for programming with col-
lective operations. In: IPPS/SPDP, pp. 492–499. IEEE Computer Society (1999)

21. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High performance
stencil code generation with lift. In: CGO, pp. 100–112. ACM (2018)

22. Janjic, V., Brown, C., Mackenzie, K., Hammond, K., Danelutto, M., Aldinucci, M.,
Garćıa, J.D.: RPL: A domain-specific language for designing and implementing parallel
C++ applications. In: PDP, pp. 288–295. IEEE Computer Society (2016)

23. Kennedy, K.: A Survey of Data Flow Analysis Techniques, p. 554 (1981)
24. Li, H., Thompson, S.J.: Safe concurrency introduction through slicing. In: PEPM, pp.

103–113. ACM (2015)
25. Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A fusion-embedded skeleton

library. In: Euro-Par, Lecture Notes in Computer Science, vol. 3149, pp. 644–653.
Springer (2004)

26. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320 (1976)
27. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software Eng.

30(2), 126–139 (2004)
28. Microsoft: Visual Studio IDE (2019). https://visualstudio.microsoft.com/vs/

29. Reyes, R., Lomüller, V.: SYCL: single-source C++ accelerator programming. In:
PARCO, Advances in Parallel Computing, vol. 27, pp. 673–682. IOS Press (2015)

30. del Rio Astorga, D., Dolz, M.F., Sánchez, L.M., Garćıa, J.D., Danelutto, M., Torquati,
M.: Finding parallel patterns through static analysis in C++ applications. IJHPCA
32(6) (2018)

31. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., do Prado Leite, J.C.S.:
Reverse engineering goal models from legacy code. In: RE, pp. 363–372. IEEE Computer
Society (2005)


	Introduction
	Software Restoration
	Restoration Transformations
	Evaluation
	Related Work
	Conclusions

