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Abstract: 8 

Observational learning is a form of social learning in which a demonstrator performs 9 

a target task in the company of an observer, who may as a consequence learn something 10 

about it. In this study, we approach social learning in terms of the dynamics of coordination 11 

rather than the more common perspective of transmission of information. We hypothesised 12 

that observers must continuously adjust their visual attention relative to the demonstrator’s 13 

time-evolving behaviour to benefit from it. We eye-tracked observers repeatedly watching 14 

videos showing a demonstrator solving three manipulative puzzles before attempting at the 15 

task. The presence of the demonstrator’s face and the availability of his verbal instruction in 16 

the videos were manipulated. We then used recurrence quantification analysis to measure the 17 

dynamics of coupling between the overt attention of the observers and the demonstrator’s 18 

manipulative actions. Bayesian regression was applied to examine whether the observers’ 19 

performance was predicted by such indexes of coordination, how performance changed as 20 

they accumulated experience, and if the availability of speech and intentional gaze of the 21 

demonstrator mediated it. Results showed that learners better able to coordinate their eye 22 

movements with the manipulative actions of the demonstrator had an increasingly higher 23 

probability of success in solving the task. The availability of speech was beneficial to 24 

learning, whereas the presence of the demonstrator’s face was not. We argue that focusing on 25 

the dynamics of coordination between individuals may greatly improve understanding of the 26 

cognitive processes underlying social learning. 27 
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Introduction 30 

Throughout their lives, humans and nonhuman animals learn to perceive their 31 

surroundings and engage more or less skilfully with the different tasks they encounter. Within 32 

the behavioural sciences, a common distinction is made between individual (or asocial) 33 

learning and social learning (Galef, 1988; Heyes, 1994; Hoppitt & Laland, 2013; Whiten & 34 

Ham, 1992; Whiten, Horner, Litchfield, & Marshall-Pescini, 2004). The latter is defined as 35 

“learning that is facilitated by observation of, or interaction with, another individual (or its 36 

products)” and encompasses a wide range of processes (Hoppitt & Laland, 2013). 37 

Here we focus on observational learning (a.k.a. ‘production imitation’), which occurs 38 

when an observer acquires an action, or action sequence, after watching another individual 39 

perform it (Ashford, Bennett, & Davids, 2006; Carcea & Froemke, 2019; see Hoppitt & 40 

Laland, 2013, p. 4 and p. 64 for precise definitions). This type of learning occurs in formal 41 

settings such as in schooling, sports training, and apprenticeship, and it usually involves a 42 

‘demonstrator’ (or ‘model’) and a ‘learner’ (or ‘observer’). The demonstrator shows the 43 

learner the correct or normative way of performing the target task, either intentionally or 44 

unintentionally. The learner observes the demonstration and attempts the task. In this context, 45 

the dynamics of joint attention that underlies the execution and observation of the task may 46 

facilitate the development of the skills required to complete it effectively, as we argue below. 47 

Our perspective is supported by the influential work of Tomasello and collaborators 48 

(Carpenter, Nagell, & Tomasello, 1998; Carpenter & Tomasello, 1995; Tomasello 1999, 49 

2009; Tomasello, Kruger, & Ratner, 1993), who maintain that joint attention is critical to 50 

human social learning and social cognition. These authors suggest that both teaching and 51 

collaborative learning are critically reliant on human’s ability to alternate perspective taking 52 

and to attend jointly to objects and events with others. Joint attention is thought to underlie 53 

the unique aspects of our species’ social cognition skills, differentiating humans from other 54 

apes (Carpenter & Tomasello, 1995; Tomasello, 2009), scaffolding language learning and 55 

cognitive development (Carpenter, Nagell, Tomasello, Butterworth, & Moore, 1998; 56 

Degotardi, 2017; Tomasello, 2003, 2009), and being a key deficit of individuals with autism 57 

spectrum disorders (Schertz, Odom, Baggett, & Sideris, 2013). 58 

Observational learning has been extensively investigated in the context of motor 59 

control to understand, for example, how humans learn novel sequences of existing movement 60 

patterns (Bird & Heyes, 2005; Nissen & Bullemer, 1987), rhythmic patterns (Vogt, 1995), 61 
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interlimb or whole-body coordination patterns (Casile & Giese, 2006; Hodges, Williams, 62 

Hayes, & Breslin, 2007), and how to adjust limb movements in novel environments (Mattar 63 

& Gribble, 2005). Given its intimate link with learning action sequences, observational 64 

learning has received considerable attention in the sport sciences; for example, to assess the 65 

effectiveness of demonstrations in facilitating skill acquisition (Horn, Williams, Hayes, 66 

Hodges, & Scott, 2007; Horn, Williams, Scott, & Hodges, 2005; Williams & Hodges, 2005). 67 

Some of these studies have also examined the role played by overt attention during 68 

observational learning. (e.g., Breslin, Hodges, & Williams, 2009; D’Innocenzo, Gonzalez, 69 

Williams, & Bishop, 2016; Horn et al., 2005). For example, Breslin and colleagues (2009) 70 

examined how attending to different parts of the body of a demonstrator performing a novel 71 

cricket bowling action mediates how the action is acquired by the learners. Participants in this 72 

study underwent three practice blocks in which they first watched a demonstration video – 73 

which consisted of a point-light display film showing either the demonstrator's bowling arm, 74 

or his wrists, or his full body – five times and then had ten trials to replicate the action. On 75 

the following day, after a retention test, participants practiced another three blocks now 76 

watching the full-body point-light display film; and an additional retention test was 77 

performed on the third day. Measures of intralimb and interlimb coordination were used to 78 

compare the performance of learners with the demonstrator, and eye-tracking was used to 79 

examine learners' visual attention to the demonstration videos. When watching the full-body 80 

film, participants focused more on the bowling arm than on other body parts (e.g., the legs) 81 

suggesting learners prioritize the end effector of the action during observational learning. 82 

Most importantly, participants who saw the demonstrator's bowling arm on both days 83 

acquired an intralimb coordination profile more similar to the demonstrator compared to 84 

participants who saw his bowling arm only on day 2. Despite showing a very interesting 85 

relation between overt attention and task performance, this study did not explicitly assess it as 86 

the measures of overt attention used were aggregated over the entire trial (e.g., proportion of 87 

time spent on each area of interest), and thus they were unable to capture the dynamics of 88 

overt attention on a moment-by-moment basis. This aspect is at heart of the current study, 89 

which will examine precisely how learners must dynamically adapt their visual attention in 90 

order to stay ‘in touch’ (i.e. informationally coupled through active perception) with the 91 

relevant aspects of the task as they move in space and change over time; and how this 92 

attentional coordination is critically related to their task success. 93 
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To the best of our knowledge, only few studies have formally examined the 94 

association between overt attention and learning outcome, and these do not come from the 95 

field of social learning. Eye-movement coordination between speakers and listeners was, for 96 

example, found to be positively associated with discourse comprehension (Richardson & 97 

Dale, 2005), and emerge as a positive predictor of task success only when interlocutors could 98 

engage in a bi-directional conversation (Coco, Dale, & Keller, 2018). Other eye-movement 99 

studies have attempted to direct the learners’ attention to specific aspects of the task by 100 

manipulating the saliency of visual stimuli and examined its effect on learning. Grant and 101 

Spivey (2003), for example, found that more learners arrived at the correct solution of a 102 

diagram-based insight task when presented with a diagram which highlighted a critical area, 103 

compared to a static diagram or a diagram which highlighted a non-critical area. 104 

However, intentionally directing the observer’s attention towards task-relevant 105 

aspects does not always facilitate learning (see van Gog, Jarodzka, Scheiter, Gerjets, & Paas, 106 

2009, for counterevidence), which indicates that the relation between attentional coordination 107 

and performance may strongly depend on the demands of the task at hand and the specific 108 

context of demonstrator-observer interaction. Even if researchers in the field of social 109 

learning recognize the importance of joint attention, it is yet to be rigorously demonstrated 110 

that the time-evolving dynamics of coordination between demonstrators and learners are 111 

indeed predictive of their learning pattern. 112 

This approach is in line with the growing body of literature in the cognitive sciences 113 

arguing that behaviour and human interaction can be framed as multi-scale, self-organizing 114 

and dynamical phenomena (Chemero, 2009; Dale, Fusaroli, Duran, & Richardson, 2013; De 115 

Jaegher & Di Paolo, 2007; Haken, Kelso, & Bunz, 1985; Kelso, 1995, 2016; Schoner & 116 

Kelso, 1988; Schoner, Zanone, & Kelso, 1992). Important advances in the study of multi-117 

modal coordination have, in fact, been possible through the application of non-linear methods 118 

of analysis such as recurrence quantification analysis (RQA) which can be used to quantify 119 

the temporal dynamics of two or more streams of data underlying human interaction, such as 120 

manipulative actions and eye-movement (Coco et al., 2017; Coco & Dale, 2014; Fusaroli, 121 

Konvalinka, & Wallot, 2014; Richardson, Dale, & Marsh, 2014; Wallot, Mitkidis, McGraw, 122 

& Roepstorff, 2016). 123 

In the current study, we take inspiration from dynamical systems theory and borrow 124 

some of their methodological tools to examine social learning. We combined eye-tracking, 125 
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RQA, and Bayesian hierarchical logistic regression analysis to investigate how learning rate 126 

in a novel manipulative task may depend on the patterns of attentional coordination that arise 127 

when learners watch a demonstrator performing task-specific actions. Learners were eye-128 

tracked as they watched videos of a demonstrator showing them how to solve a manipulative 129 

construction puzzle (our target task, see Figure 1) and then attempted to solve the same 130 

puzzle on their own. Rather than running a single trial, we asked learners to watch the 131 

demonstration video and attempt the corresponding puzzle multiple times, so that we might 132 

monitor changes in their performance as a function of their accumulated experience. 133 

We hypothesised that learners must adjust their overt attention dynamically and 134 

synchronously to the demonstrator’s unfolding behaviour to benefit from it maximally. 135 

Specifically, we expected that if learners systematically time-locked their overt attention to 136 

the pieces being manipulated by the demonstrator, they might detect relevant aspects of the 137 

demonstration, such as the actions required to orderly and correctly assemble the pieces into 138 

the final structure. Thus, we predicted that higher attentional coordination of the learners to 139 

the manipulative actions of the demonstrator would result into increasingly better learning 140 

outcomes. 141 

We acknowledge that the use of pre-recorded demonstrations imply that learners may 142 

dynamically adapt their allocation of overt attention to the manipulative actions displayed in 143 

the videos, but the demonstrator would always perform the same sequence of actions, and so, 144 

there is no dynamical interaction between the demonstrator and the learner. Hence, our use of 145 

the expressions `attentional coordination` or `synchronisation` must be interpreted as 146 

unidirectional (i.e., only the learner can dynamically adapt to the demonstrator). 147 

Another important aspect of an intentional demonstration is gaze following, which is 148 

considered central to establishing and sustaining joint attention (e.g., Carpenter et al., 1998; 149 

Tomasello, Carpenter, Call, Behne, & Moll, 2005). However, it is also known that people 150 

shift their overt attention to objects just before reaching them and tend to look at them until 151 

the movement is completed (Johansson, Westling, Backstrom, & Flanagan, 2001; Land & 152 

Hayhoe, 2001). Thus, in the context of object manipulation, the objects being looked at may 153 

coincide with the objects being manipulated. This suggests that, during a manipulative task, 154 

joint attention could be achieved by either following the partner’s gaze (the conventional 155 

gaze-following route) or the partner’s hands (hand-eye coordination route). 156 
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Yu and Smith (2013), for example, provided eye-tracking evidence for this alternative 157 

route to joint attention by examining the attentional coordination of one-year-old children and 158 

their parents while playing together with toys. Given that seeing the partner’s face might help 159 

direct one’s own visual attention, and given that learning through (live or recorded) 160 

demonstration requires coordinating one’s visual attention with the demonstrator, we 161 

examined whether the presence of the intentional gaze of the demonstrator helped (or not) to 162 

direct the attentional coordination of the learners and, especially, whether it improved (or not) 163 

their performance in the construction puzzle task. If gaze following is indeed required to 164 

establish joint attention, then we should expect that observers who could see the 165 

demonstrator’s face (and thus could follow his gaze throughout the demonstration) would 166 

learn faster than those that could not (see Figure S1 in the electronic supplementary material 167 

for an example of the gaze manipulation and refer to demonstration videos available in the 168 

Open Science Framework at https://osf.io/jhtqb/). Conversely, if gaze following is not 169 

required for joint attention, then we should expect that observers seeing the demonstrator’s 170 

face would not benefit from it as compared to those that did not see it.  171 

The final aspect of an intentional demonstration on which our study focuses is that 172 

learners may or may not receive verbal instructions from the demonstrator. Psycholinguistics 173 

research has provided compelling evidence that sentence processing is tightly linked with 174 

other cognitive modalities such as visual attention: speakers tend to look at those objects that 175 

correspond with the words being spoken (Coco & Keller, 2012, 2015; Griffin & Bock, 2000; 176 

Meyer, Sleiderink, & Levelt, 1998), and listeners also tend to look at those objects that 177 

correspond with the words being heard (Allopenna, Magnuson, & Tanenhaus, 1998; Coco, 178 

Keller, & Malcolm, 2016; Knoeferle & Crocker, 2006; Richardson & Dale, 2005). Moreover, 179 

systematic links between verbal and non-verbal (e.g., eye movement) behaviour extends to 180 

communicative dialogue, where speakers and listeners dynamically adapt their actions and 181 

vocalizations to the conversational partner as they go along in the dialogue (Clark & Krych, 182 

2004; Fogel, 1993), and may even synchronize their eye-movement behaviour over time 183 

(Richardson, Dale, & Kirkham, 2007). 184 

This literature clearly shows that listening to verbal communication can have a direct 185 

impact on one’s visual attention, as well as on task performance. We therefore examined the 186 

impact of the demonstrator’s verbal instruction on the learners’ attentional coordination and 187 

on their performance at assembling the puzzle. Given the suggested role of speech in guiding 188 
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the attention of listeners (e.g., Ingold, 2001; Tomasello, 2003), we predicted that learners 189 

who could listen to the demonstrator would learn faster than those ones that could not. 190 

1. Methods 191 

1.1. Design 192 
We used a mixed factorial design with the type of demonstration video manipulated 193 

as a between-participant variable and with 3 repeated measures of task per participant and 5 194 

repeated measures of iteration per task. Specifically, we crossed the visibility of the 195 

demonstrator’s face (face visible or face blurred) with the availability of the demonstrator’s 196 

verbal instructions (with audio or no audio), to produce four experimental conditions: face 197 

blurred and no audio (noFACE_noAUDIO); face visible and no audio (FACE_noAUDIO); 198 

face blurred with audio (noFACE_AUDIO); and face visible with audio (FACE_AUDIO). In 199 

addition, to discriminate between ‘social’ and ‘individual’ learning we ran two control 200 

conditions in which learners only saw a still image of the demonstrator and the puzzle pieces 201 

and could therefore not benefit from seeing his manipulative actions. In one condition, the 202 

still image was accompanied by the audio of the corresponding demonstration 203 

(noVIDEO_AUDIO) and hence learners could only benefit from the demonstrator’s verbal 204 

instructions. In the other condition, the still image was shown without the audio 205 

(noVIDEO_noAUDIO), thus learners could not benefit in any way from the behaviour of the 206 

demonstrator. We report these two control conditions in the electronic supplementary 207 

material, as they were not central to the main arguments of our study. 208 

Participants were randomly allocated to one of the six conditions and performed all 209 

three versions of the task (star, egg, and barrel). The order of the puzzles was 210 

counterbalanced between participants. At the start of each puzzle, the participants were asked 211 

to complete the puzzle without any instruction to obtain a baseline measure. They repeated 212 

the puzzle another five times, but each time they first watched the demonstration video before 213 

attempting the puzzle. This iterative procedure gives us repeated measures of performance 214 

(baseline plus 5), which could be used to construct a learning curve rather than a one-off 215 

success/failure outcome (see below for further details about how the data was modelled). 216 

1.2. Participants 217 

Fifty-three participants (32 female; age: range = [18, 50], median = 21, SD = 5.4) 218 

were recruited using the Experimenter Volunteer Panel of the University of Edinburgh. Forty 219 

participants did the four experimental conditions explained above and reported in what 220 
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follows. Thirteen participants instead did the control conditions and, as mentioned, are 221 

reported only in the electronic supplementary material. All participants gave informed 222 

consent, had normal or corrected-to-normal vision, indicated no known learning disability, 223 

and were paid £7 as compensation for their time. 224 

In addition, an experienced schoolteacher in Edinburgh (male, 33 years of age) was 225 

recruited to perform the role of the demonstrator in the video recordings used as stimuli and 226 

received £20 for his time. Prior to data collection, the study was approved by the University 227 

of St Andrews Teaching and Research Ethics Committee and by the Psychology Research 228 

Ethics Committee of the University of Edinburgh, in accordance with the British 229 

Psychological Society guidelines on ethics.  230 

1.3. Material 231 

The manipulative task was to solve construction puzzles, that is, to assemble sets of 232 

wooden pieces to form pre-defined structures. Each participant engaged with three puzzles 233 

(star, egg, and barrel, see Figure 1), which differed in the number of pieces (star: six pieces; 234 

egg: eight pieces; barrel: twelve pieces) and in the steps required to solve them. In the videos, 235 

the demonstrator shows and verbally describes the steps needed to assemble the different 236 

structures. The experimenter and the demonstrator scripted the verbal instructions beforehand 237 

so that the language used was standardised across the three puzzles (transcriptions of the 238 

verbal instructions are available in section 6 of the electronic supplementary material, and 239 

examples of the demonstration videos are available in the Open Science Framework page of 240 

this project). 241 

A tripod-mounted camera positioned at eye level in front of the demonstrator was 242 

used to record the videos. The demonstrator was instructed to act naturally and to look at the 243 

camera from time to time, as if he were teaching an imaginary learner in front of him. The 244 

videos were captured in the portrait orientation and a lapel microphone was used to record the 245 

demonstrator’s speech. Because the puzzles differed in the number of pieces, the 246 

demonstrations differed in duration (star: 40s, egg: 54s, barrel: 78s). We edited the videos to 247 

obtain the versions corresponding to the experimental conditions described above (i.e., face 248 

visible/face blurred, with audio/without audio) using the Wondershare Filmora software.  249 
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1.4. Experimental setup 250 
Participants watched the videos while being eye-tracked on one desk and assembled 251 

the puzzles on another desk (see Figure 1B for a visualization of the workspace). They could 252 

easily move between the two desks by rotating 90 degrees on the chair. Videos were 253 

displayed on a 21’’ monitor in portrait orientation with a resolution of 1050 x 1680 pixels at a 254 

refresh rate of 100 Hz and a frame rate of 25 Hz. The audio was played on standard desktop 255 

speakers. 256 

Eye-movements were tracked using a SR Research EyeLink 1000 with Desktop 257 

Mount at a sampling rate of 1000Hz. We only tracked the dominant eye, which was assessed 258 

using a parallax test. A forehead-and-chin rest was used to stabilize the participant’s head 259 

movement. The monitor covered 35 degrees of visual angle vertically and 22 degrees 260 

horizontally, and the distance between the headrest and the top of the monitor was 74 cm. 261 

Nine-point calibration routines were performed before watching the video for the first time 262 

for each puzzle, and a drift check was performed before each subsequent attempt. Experiment 263 

Builder (SR Research) was used to implement the experiment. All sessions were also video 264 

recorded using two tripod-mounted cameras, but these images were used only to double 265 

check the validity of the measures of success manually coded by the experimenter during 266 

each session. 267 
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 268 

Figure 1 The experimental setup. A: Examples of the starting frames of the demonstration videos for 269 
the three puzzle tasks (star, egg, and barrel) in which the demonstrator has his face blurred. The insets 270 
show the corresponding solved puzzles. B: Plan diagram and photo of the workspace. The learner is at 271 
the eye-tracking desk watching the demonstration video and to her left is the task desk with the pieces 272 
of a barrel puzzle as well as an assembled model. 273 



11 
 

1.5. Procedure 274 
The experimenter told the participants that they would alternate between watching the 275 

demonstration videos and attempting the task, and that this procedure would be repeated five 276 

times for each of the three puzzles, yielding a total of 15 trials per participant. At the start of 277 

each puzzle, the participant was shown all pieces of the puzzle and a correctly finished model 278 

and was asked whether she or he had seen it before. If the participant knew the puzzle, the 279 

experimenter would skip it and move on to the next (only one participant was familiar with 280 

one puzzle). Then, the experimenter asked the participant to produce a copy of the finished 281 

model to assess her or his initial ability to solve the puzzle (i.e., before watching the 282 

demonstration for the first time) and obtain a baseline score. Participants had a fixed time 283 

interval to solve the task (star: 90s, egg: 90s, barrel: 120s) corresponding to twice the time 284 

required by the demonstrator to solve it at a comfortable pace. During this period, participants 285 

could manipulate their own pieces and visually inspect the finished model but not touch it. 286 

The experimenter kept track of the time and interrupted the learner after the time-out, 287 

prompting her or him to turn to the eye-tracking desk. After the calibration and validation 288 

procedure, the participant watched the demonstration video corresponding to one, out of the 289 

four, experimental conditions while being eye-tracked. During this period, the experimenter 290 

disassembled the puzzle and re-arranged the pieces on the task desk to prepare for the 291 

participant’s next attempt. After watching the video for the first time, the participant turned to 292 

the task desk and had another attempt at solving the puzzle, thus yielding the first 293 

performance measure after the baseline. The participant then turned back to the eye-tracking 294 

desk and, after a drift check, watched the demonstration video a second time before the next 295 

attempt. This sequence of steps (baseline test plus five iterations of watching the 296 

demonstration and attempting the task) was repeated for each of the three puzzles. 297 

2. Analysis 298 

2.1. Data processing 299 
Demonstrator’s manipulation data. We coded the demonstrator’s manipulative 300 

actions from the demonstration videos into categorical time series at a sample rate of one 301 

observation every 25 milliseconds using the free software Solomon version beta 17.03.22 302 

(Péter, 2016). Solving the puzzle requires joining pieces together, thus producing compounds 303 

(i.e., the partially-solved puzzle) along the way. In each 25ms temporal window, we used 304 

unique categorical labels to code the individual pieces, the compound being manipulated, or 305 

to indicate that the demonstrator was not holding any piece. When the demonstrator had a 306 
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compound in one hand and a piece-to-be-added in the other hand, we used the label for the 307 

new piece and, after it was incorporated, the label for the newly-formed compound (see 308 

Figure 2A for an illustration of the resulting time series). 309 

Learner’s eye-movement data. Fixations and saccades events were extracted from the 310 

raw gaze data using the SR Research Data Viewer software, which performs saccade 311 

detection based on velocity and acceleration thresholds of 30°s–1 and 9,500°s–2, respectively. 312 

The eye-movement coordinates were mapped against dynamic Areas Of Interest (AOI), 313 

which were defined for each demonstration video using the same labels for pieces and 314 

compounds described in the previous paragraph and a label for ‘other’ to indicate when the 315 

participant was looking anywhere else on the screen. We used a customized algorithm written 316 

in the R programming language (R Core Team, 2016) to aggregate the eye-movement data 317 

into windows of 25ms and assign the label of the AOI that was fixated most of the time 318 

within such interval. We therefore obtained categorical time series indicating the sequence of 319 

objects fixated by the observers (scan-patterns) in each trial, with length and labels matching 320 

the categorical time series indicating the demonstrator’s manipulative actions. To avoid very 321 

small differences in length that occurred during eye-tracking data collection among 322 

participants (star: SD = 6ms, range [1573ms, 1643ms]; egg: SD = 13ms, range [2000ms, 323 

2159ms]; barrel: SD = 4ms, range [3078, 3114]), we normalized the length of the scan-324 

patterns and manipulative actions in each puzzle to the same number of bins (star: 1,500 bins, 325 

egg: 2,000 bins, barrel: 3,000 bins). 326 

Learner’s performance data. At the end of each trial, the experimenter coded the 327 

learners’ performance as either a success (i.e. the puzzle was assembled correctly before 328 

time-out) or a fail (i.e. the puzzle was not assembled before the time-out), and validated this 329 

data by watching the video recordings of the sessions. 330 

Data exclusion. The initial dataset included 600 trials (40 participants x 3 puzzles x 5 331 

iterations). From these, 5 trials were excluded due to one participant knowing the puzzle, 3 332 

due to one participant inadvertently moving away from the eye tracker, 2 due to the 333 

participant accidentally moving the desk during data collection (perturbing the eye tracking 334 

system), and 124 due to the eye tracking data not being acquired properly. The final dataset 335 

comprised of 36 participants and 466 trials (condition noFACE_noAUDIO: 10 participants 336 

and 131 trials; FACE_noAUDIO: 8 participants and 109 trials; noFACE_AUDIO: 8 337 

participants and 100 trials; and FACE_AUDIO: 10 participants and 126 trials). 338 
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2.2. Recurrence Quantification Analysis (RQA) 339 
We examined the coordination dynamics between the scan-patterns of the learners 340 

(i.e. the sequence of pieces learners looked at while watching the demonstration videos) and 341 

the manipulative actions of the demonstrator (i.e. the sequence of pieces the demonstrator 342 

manipulated in the demonstration videos) using Recurrence Quantification Analysis or RQA 343 

(Marwan & Kurths, 2002; Marwan, Romano, Thiel, & Kurths, 2007; Shockley, Butwill, 344 

Zbilut, & Webber, 2002; Webber & Zbilut, 2005; Zbilut, Giuliani, & Webber, 1998). In 345 

particular, we produced cross-recurrence plots (CRP), from which we computed joint-346 

recurrence plots (JRP) across the five trials of each puzzle to better capture the iterative 347 

process of the task. We used the crqa package (version 1.0.9) developed by Coco and Dale 348 

(2014) in the R software (R Core Team, 2016) to run our analyses using parameter values 349 

appropriate for categorical data: delay = 1, embedding = 1, and radius = 0.001. 350 

In Figure 2B and Figure 2C, we illustrate how CRPs and JRPs were computed for a 351 

participant attempting the star puzzle across five iterations after the baseline test. For each 352 

trial, we had two time series: one for the manipulative actions of the demonstrator and the 353 

other for the scan-pattern of the learner watching the demonstration. Note that the time series 354 

for the demonstrator is the same across all five trials (because the demonstration video is the 355 

same) but the time series of the learner is different in each trial (because learners are free to 356 

move their eyes differently each time). 357 

We produced a CRP for each trial by pairing the demonstrator (horizontal axis) with 358 

the learner (vertical axis). Conceptually, when the labels of the two time series match in some 359 

combination of time-points [x!, y!] (i.e., if the puzzle piece being manipulated by the 360 

demonstrator at time xi is the one being looked at by the learner at time yi), this returns a 361 

cross-recurrence point for that entry. When the labels do not match, there is no cross 362 

recurrence (see Dale, Warlaumont, & Richardson, 2011, for an extensive explanation of RQA 363 

applied to categorical time series). 364 

We then obtained joint-recurrence plots (JRPs) by simply multiplying the CRP of 365 

each iteration with all previous iterations on the same puzzle (see Figure 2C). Conceptually, 366 

only if all CRPs multiplied have a value of 1 in some entry [x!, y!] (thus indicating cross-367 

recurrence at that delay in all CRPs), then the resulting JRP will also have a value of 1 in that 368 

same entry, otherwise, the value will be zero. For the first iteration, we just kept the 369 

corresponding CRP, as there is no previous iteration to multiply it with. For iteration 2, we 370 
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multiplied the two CRPs obtained for iterations 1 and 2. For iteration 3, we multiplied the 371 

three CRPs obtained for iterations 1, 2, and 3; and similarly for iterations 4 and 5. Therefore, 372 

the resulting JRPs reflect the dynamics of coordination between demonstrator’s action and 373 

observer’s gaze that is consistently found across the trials with each puzzle. 374 

 375 

Figure 2. A: A single time series of the demonstrator manipulating the pieces of the star puzzle and five time 376 
series of one of the learners watching the corresponding video across the five iterations. The colours indicate 377 
either a single piece or the partially assembled puzzle being manipulated/looked at. The grey colour in the 378 
demonstrator’s time series represents the moments in which he was not manipulating any piece. B: Cross 379 
recurrence plots (CRP) of the demonstrator’s manipulative actions (horizontal axis) and the learner watching 380 
them (vertical axis). The line of synchrony, i.e., lag 0, is shown in black, and cross recurrence points are shown 381 
in blue. C: Joint recurrence plots (JRP) produced from the CRPs shown in B. For each iteration, the JRP is 382 
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produced by multiplying the CRP of that iteration with all previous ones, which leaves in only the recurrence 383 
points that consistently occur across iterations. 384 

From each JRP, we computed three recurrence measures reported in the main 385 

analysis. The recurrence rate (RR), which is the proportion of cross-recurrence points in the 386 

JRP, corresponds mathematically to the cross-correlation sum (Kantz, 1994) and reflects the 387 

degree of shared activity or coordination between the two time series. The determinism 388 

(DET), which is the proportion of cross-recurrence points that form continuous diagonal lines 389 

(longer than a predefined threshold defined with the parameter mindiagline in the crqa 390 

package) and reflects the degree of synchronization between the two time series. The mean 391 

line length (L), which is the average length of the diagonal lines (longer than the threshold), 392 

reflects the average time in which the two time series remain synchronized. 393 

To compute DET and L it is necessary to define the threshold parameter (mindiagline 394 

in the crqa package) because it indicates the minimum length of the diagonal lines in the 395 

recurrence plots, i.e. it defines the number of consecutive time-points needed to consider 396 

whether the two time series (e.g., the demonstrator and the observer) are in the same state 397 

(e.g., manipulating/attending to the same target). In our study, we obtained this threshold 398 

empirically by: (1) examining a range of possible threshold values, (2) plotting the resulting 399 

DET values as a function of the different threshold values examined, (3) visually inspecting 400 

these plots and (4) choosing the parameter value that counters ceiling effects (i.e., that leads 401 

DET values to vary rather than be concentrated at 100%). We obtained a minimum diagonal 402 

length threshold value of 30 data-points, which corresponds to a period of 750ms in the raw 403 

time series data. In other words, only synchronized attention and manipulative action that was 404 

longer than 750ms counted towards the values of DET and L. 405 

Additionally, we computed measures of recurrence across the vertical line structures 406 

of the JRPs: the laminarity (LAM) and the trapping time (TT) and obtained largely 407 

corroborating results of those observed on the diagonal lines (i.e., RR, DET and L) reported in 408 

the main text. These additional analyses are explained and reported in section 6 of the 409 

electronic supplementary material. 410 

2.3. Statistical analysis 411 
RQA measures are descriptive in nature and, therefore, comparisons among cases 412 

(e.g., conditions, participants, or appropriate baselines) are required to draw inferences and 413 

examine specific predictions (Marwan et al., 2007; Shockley et al., 2002). Thus, we 414 
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examined the relation between the learners’ performance, the RQA measures of attentional 415 

coordination, and the design variables using Bayesian hierarchical logistic regression 416 

modelling and the framework of model comparison (Gelman et al., 2014; McElreath, 2016). 417 

This allowed us to adequately capture the complexity of our mixed design with repeated 418 

measures while improving the estimation of the effects with relatively small samples (e.g., 419 

Baldwin & Fellingham, 2013; Depaoli & van Schoot, 2015). Bayesian regression models 420 

were fit in the probabilistic programming language STAN (B. Carpenter et al., 2017) using 421 

the map2stan function, and compared using the compare function, both from the rethinking 422 

package (McElreath, 2016) in the R software. We used Markov Chain Monte Carlo (MCMC) 423 

simulation to obtain samples from the posterior distribution of the unknown parameters for 424 

which summary statistics were then computed (e.g., mean, credible intervals, differences, or 425 

the proportion of positive values). For all models, we used weakly informative priors (i.e., 426 

they were not completely flat but had little influence on the estimated posterior distributions) 427 

to obtain a wide range of sensible parameter values and yet avoid unreasonable values 428 

(Gelman et al., 2014; McElreath, 2016). We used normal priors with mean 0 and standard 429 

deviation of 10 for all non-constrained parameters, and we used half-Cauchy priors with 430 

location 0 and shape 5 for the variance parameters.  431 

Our core question is whether attentional coordination, operationalized through the 432 

independent variables RR, DET, and L, is predictive of learners’ performance across trials. 433 

We first fitted to the performance data our base model, a hierarchical logistic model (logit 434 

link) predicting the probability of task success (Eq. 1). The predictors are the parameters 435 

modelling the experimental conditions, i.e. face (indicating whether learners could see the 436 

demonstrator’s face or if it was blurred) and audio (indicating whether learners could listen to 437 

the demonstrator’s verbal instruction or not), iteration, and the interaction between condition 438 

and iteration. Both face and audio were dummy coded and modelled as between-participant 439 

fixed effects, whereas iteration was coded numerically from 0 to 4 (i.e., the five trials with 440 

each puzzle after the baseline test) and modelled as a within-participant fixed effect. The 441 

model also included indicators of the task (three levels: star, barrel and egg) and participant 442 

(36 levels) as varying intercepts (also called fully-crossed random effects). None of the 443 

participants solved any of the tasks during the baseline test, therefore we did not include the 444 

baseline score as a covariate. This base model captures how performance varies across 445 

iterations (i.e. the steepness of the learning curves) for the different experimental conditions 446 
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and does not include any coordination variable. More formally, the base model can be 447 

represented as: 448 

logit(p) = b0+ b1* face + b2*audio + b3*face*audio +(b4 + b5 * face + b6*audio 

+ b7 * face*audio) * iteration + 1|task + 1|participant 

(1) 

We then fitted three additional models, each including one of the coordination 449 

variables, which were z-scored (i.e. subtracted from the mean and divided by the standard 450 

deviation), as a main (i.e. additive) effect. These models can be represented as: 451 

logit(p) = base_model + b8 * RR (2A) 

logit(p) = base_model + b8 * DET (2B) 

logit(p) = base_model + b8 * L (2C) 

Lastly, we fitted three additional models including the interaction between the 452 

experimental condition and the respective coordination variable, thus allowing the effect of 453 

coordination (if there was any) to vary across conditions. These models can be represented 454 

as: 455 

logit(p) = base_model + (b8+b9* face+b10*audio+b11*face*audio) * RR (3A) 

logit(p) = base_model + (b8+b9* face+b10*audio+b11*face*audio) * DET (3B) 

logit(p) = base_model + (b8+b9* face+b10*audio+b11*face*audio) * L (3C) 

For each coordination variable, we compared the base model and the two additional 456 

models using the Widely Applicable Information Criterion or WAIC (Gelman et al., 2014; 457 

McElreath, 2016) to examine whether adding the coordination variable, either only as a main 458 

effect or also in interaction with condition, improves model prediction accuracy (the results 459 

of the model comparison are reported in section 4 in the electronic supplementary material). 460 

Lower values of WAIC indicate better predictive accuracy than higher values. We also 461 

examined the Akaike weights, which are rescaled values of WAIC where a total weight of 1 462 

is partitioned among the models under consideration, thus indicating relative predictive 463 

accuracy among them (McElreath, 2016). Including RR as a main effect improved model 464 

accuracy but its interaction with the experimental conditions did not improve it further. Thus, 465 

we report model 2A. With respect to DET and L, including them both as main effect and in 466 



18 
 

interaction with the experimental conditions improved the prediction accuracy over the base 467 

model. Thus, we report models 3B and 3C. 468 

We ran 2000 iterations (including 1000 warmup iterations) on three chains for each 469 

model to ensure the robustness of the results, and report estimates of the posterior 470 

distributions from a total of 3,000 samples after warmup. All STAN models converged and 471 

mixing of the independent MCMC chains was good, as indicated by inspecting the trace plots 472 

and the number of effective sample sizes, and checking the Rhat values of the parameters 473 

were no higher than 1.01. More details can be found in the Open Science Framework page of 474 

this project where we provide a tutorial with the data and scripts to fit and compare the 475 

models, as well as to interpret the final models by computing the effects reported in Table 1 476 

and replicating Figures 3 and 4. Unless otherwise indicated, we report the mean and 95% 477 

central credible interval of the estimated parameters from the fitted models. A strong 478 

evidence for an effect is when the 95% credible interval excludes 0, and weak evidence when 479 

the 95% credible interval includes 0 but the 90% does not. 480 

In section 2 of the electronic supplementary material we report two more models, one 481 

examining the performance of the learners across the experimental and the additional control 482 

conditions to provide further evidence that learning is indeed facilitated by the demonstrator 483 

(in other words, that this is a case of ‘social’ learning), and the other examining the 484 

proportion of fixation of the learners to the demonstrator face vs. pieces to obtain clearer 485 

insights on the effect of intentional gaze. 486 

3. Results 487 
Table 1 shows the parameter estimates and odds ratios of the three fit logistic models 488 

chosen for interpretation (RR: model 2A; DET: model 3B; L: model 3C). Take, for example, 489 

the model including RR (i.e. the first four rows in Table 1). We observe an odds ratio of 3.17 490 

for the effect of iteration in the noFACE_noAUDIO condition, which means the odds of 491 

solving the puzzle increases 217% from one iteration to the next. Similarly, we observe an 492 

odds ratio of 2.48 for the effect of RR across all conditions (as there is no interaction between 493 

experimental conditions and RR in the model), which means the odds of solving the puzzle 494 

increases 148% for each unit increase in RR. 495 

To help interpretation, we simulated data from the fitted models. To do this, we must 496 

decide how to deal with the random effects. We could simulate them too and doing this 497 
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would increase the variation obtained for the simulated outcome. However, this is unhelpful 498 

here as we are not so much interested in the differences among tasks or among participants, 499 

but rather in the systematic differences among the experimental conditions. To focus on this 500 

aspect, we declared the random effects as zero in the simulations, which corresponds to 501 

simulating for an ‘average’ task and ‘average’ participant. Figure 3 shows simulations from 502 

the three final models to illustrates the effect of RR, DET, and L on the probability of success 503 

across conditions, averaging over the effect of iteration. Figure 4, instead, focuses on model 504 

2A (with RR) to illustrate also the effect of iteration, and the corresponding figures for DET 505 

and L can be found in the electronic supplementary material, section 5.  506 

We will interpret the results of each model in turn and start with model 2A (i.e., RR). 507 

In line with our main prediction, we found strong evidence that the coordination variable RR 508 

was positively associated with the probability of success across all experimental conditions 509 

(see effect of coordination on Table 1, Figure 3 top row, and Figure 4), which indicates that 510 

attentional coordination is beneficial for observational learning. Furthermore, the effect of 511 

iteration was positive in all conditions, i.e., learners get progressively better at solving the 512 

puzzle. 513 

In order to test whether the effect of iteration (i.e. learning rates) differs across 514 

conditions, we examined the posterior distribution from the fitted model. For each sample of 515 

the posterior distribution, we computed the difference between the effect of iteration 516 

estimated for different conditions (say, FACE_AUDIO and FACE_noAUDIO). This process 517 

generates a vector of estimated differences, which we summarised by computing the mean 518 

and 95% credible intervals. This summary statistics can be used as evidence (or lack thereof) 519 

for a systematic difference between conditions (Gelman et al., 2014). A credible interval 520 

crossing zero suggests that the difference between the estimates is not systematic (or, in a 521 

frequentist terminology, ‘not significant’). If the credible interval instead does not cross the 522 

zero, this suggests that the difference is indeed systematic or ‘significant’. Moreover, a 523 

positive difference means the first term of the difference has a higher estimate, and a negative 524 

difference means the second term has a higher estimate. 525 

We found that the effect of iteration was larger in the condition FACE_AUDIO than 526 

FACE_noAUDIO (difference between the estimates: 1.14 [0.4, 1.97]) and noFACE_AUDIO 527 

than noFACE_noAUDIO (difference between the estimates: 0.88 [0.15, 1.56]). This indicates 528 

that learners who could listen to the demonstrator learned faster than those that could not. We 529 
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found no difference between the effect of iteration for conditions FACE_AUDIO and 530 

noFACE_AUDIO: -0.04 [-0.8, 0.76]; and for conditions FACE_noAUDIO and 531 

noFACE_noAUDIO: -0.3 [-0.97, 0.39]). This result instead indicates that the performance of 532 

learners did not benefit from seeing the demonstrator’s face. 533 

 534 

Table 1 Estimated mean values and a 95% CI (unless a 90% CI is otherwise indicated) for the relative 535 
effects of iteration and coordination on the probability of task success across conditions, computed for 536 
the three final models (one for each coordination variable, RR, DET, and L). Values indicating strong 537 
or weak evidence of an effect are in bold to aid reading. 538 

Coordination 
variable in the 

model 
Condition 

Effect of iteration Effect of coordination 

Estimate Odds ratio Estimate Odds ratio 

RR 

 
1.11 

[0.55, 1.63] 
3.04 

[1.74, 5.11] 
0.91 

[0.02, 1.78] 
2.48 

[1.02, 5.93] 

 
0.81 

[0.26, 1.37] 
2.25 

[1.30, 3.95] 
0.91 

[0.02, 1.78] 
2.48 

[1.02, 5.93] 

 
2.00 

[1.34, 2.67] 
7.36 

[3.83, 14.41] 
0.91 

[0.02, 1.78] 
2.48 

[1.02, 5.93] 

 
1.95 

[1.26, 2.65] 
7.04 

[3.52, 14.21] 
0.91 

[0.02, 1.78] 
2.48 

[1.02, 5.93] 

DET 

 
1.39 

[0.70, 2.12] 
4.03 

[2,01, 8.30] 
1.14 

[0.01, 2.29] 
3.13 

[1.01, 9.91] 

 
0.15 

[-0.66, 0.91] 
1.17 

[0.52, 2.47] 
-1.32 

[-3.03, 0.45] 
0.27 

[0.05, 1.57] 

 
2.70 

[1.76, 3.68] 
14.89 

[5.80, 39.70] 
2.14 

[0.81, 3.68] 
8.50 

[2.25, 39.49] 

 
1.44 

[0.78, 2.15] 
4.23 

[2.18, 8.57] 
-1.11 

[-2.12, -0.17] 
0.33 

[0.12, 0.85] 

L 

 
1.73 

[0.98, 2.55] 
5.66 

[2.67, 12.86] 
2.05 

[0.82, 3.28] 
7.76 

[2.28, 26.45] 

 
0.01 

[-0.77, 0.77] 
1.01 

[0.46, 2.16] 
-1.82 

90% CI [-3.42, -0.24] 
0.16 

90% CI [0.03, 0.79] 

 
2.20 

[1.37, 3.07] 
9.07 

[3.93, 21.63] 
1.39 

90% CI [0.02, 2.71] 
4.00 

90% CI [1.02, 14.96] 

 
1.58 

[0.97, 2.28] 
4.87 

[2.65, 9.79] 
-0.41 

[-1.11, 0.30] 
0.66 

[0.33, 1.35] 
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 539 

Figure 3. Posterior predictions of the three final logistic models showing the probability of success 540 
(vertical axis) as a function of coordination (horizontal axis) as captured by the RQA variables (RR, 541 
top row; DET, middle row; L, bottom row) across the four experimental conditions organized along 542 
the columns. Coordination variables are standardized (z-scored) with -2 corresponding to 2 SD below 543 
the average (low coordination); 0 corresponding to the average value; and 2 corresponding to 2 SD 544 
above the average (high coordination). These simulations are for an average task and average 545 
participant. The shaded black lines represent 100 simulations and the thick red lines represent the 546 
mean of all simulations within each plot. 547 

The estimated parameters just discussed reflect the relative effects of iteration and 548 

coordination on the probability of successfully assembling the puzzle. In order to visualize 549 

and interpret their joint contribution, we simulated outcome values (probability of success) 550 

from the fitted model. We fixed the parameter for RR at either the average value, a low value 551 

(2 sd below the average), or a high value (2 sd above the average) and generated 100 552 

predictions for the probability of success for an average task and average participant. The 553 

simulated outcome, reported in Figure 4, clearly shows how the performance of hypothetical 554 

learners (vertical axes) increases as a function of iterations (horizontal axes), varies for the 555 

different experimental conditions (across columns) and is modulated by the degree of 556 

attentional coordination (across rows). A comparison between the three plots within each 557 

column in Figure 4 shows that the learning curves are shifted upwards from low to high 558 

values of attentional coordination. This illustrates that learning is faster among learners who 559 

could coordinate their overt attention with the demonstrator’s manipulations more 560 
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consistently across trials (i.e. those with higher values of coordination computed from the 561 

JRPs). In addition, the learning curves are steeper in column 3 compared with those in 562 

column 1, and in column 4 compared to column 2, which confirms that learning was faster 563 

for those individuals who could listen to the verbal instructions as compared to those that 564 

could not. Finally, the learning curves in column 2 are not systematically different from those 565 

in column 1, and those in column 4 are also not different from those in column 3, which 566 

confirms that seeing the demonstrator’s face did not seem to facilitate learning. 567 

 568 
Figure 4. Posterior predictions of the final logistic model with the coordination variable RR (model 569 
2A) showing the probability of success (vertical axis) as a function of iterations (horizontal axis) 570 
across conditions (columns), while holding RR at either 2 sd below the average (low RR, bottom row), 571 
at the average value (average RR, middle row), or at 2 sd above the average (high RR, top row). These 572 
simulations are for an average task and average participant. The shaded black lines represent 100 573 
simulations and the thick red lines represent the mean of all simulations within each plot. To see the 574 
effect of the different values of RR on performance, the reader should compare the three plots within 575 
each column. To see the effect of seeing the demonstrator’s face compared to face blurred, the reader 576 
should compare the plots in column 1 with those in column 2, and the plots in column 3 with 4. To see 577 
the effect of listening to the demonstrator’s speech compared to no audio, the reader should compare 578 
the plots in column 1 with those in column 3, and the plots in column 2 with 4. 579 

Model 3B (i.e., with coordination variable DET) and model 3C (with L) show similar 580 

patterns, albeit with some interesting differences (Table 1, Figure 3 middle and bottom rows, 581 

see Figures S5 and S6 in the electronic supplementary material for the visualization of 582 

posterior predictions). When the demonstrator’s face was blurred, both DET and L were 583 
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positively associated with probability of success, which confirms that learners who 584 

synchronized their eye-movement for longer with the demonstrator’s actions learned faster 585 

than those synchronising for shorter period of time. 586 

However, when the demonstrator’s face was visible, the probability of success was 587 

actually reduced for increasing values of DET and L. This is illustrated in Figure 3 (middle 588 

and bottom rows), which shows that the probability of success declines for higher values of 589 

DET and L in the conditions FACE_noAUDIO and FACE_AUDIO. Accordingly, Figures S5 590 

and S6 in the electronic supplementary material show that the learning curves shift downward 591 

as we move from low to high values of DET and L. This suggests that seeing the 592 

demonstrator’s face, compared to face blurred, was detrimental to learning. This result is 593 

confirmed by the strong evidence that iteration has a smaller effect on the probability of 594 

success when comparing FACE_noAUDIO with noFACE_noAUDIO for both DET and L 595 

(difference between the estimates for DET: -1.24 [-2.31, -0.22]; for L: -1.72 [-2.75, -0.63]); 596 

and comparing FACE_AUDIO with noFACE_AUDIO for DET but not for L (difference 597 

between the estimates for DET: -1.26 [-2.37, -0.14]; for L: -0.62 [-1.72, 0.39]). 598 

We speculate that the presence of the demonstrator’s face attracted the attention of 599 

learners to it, distracting them from the actual manipulation task without providing any 600 

benefit. Additional analyses reported in the electronic supplementary material (section 3) 601 

corroborate this suggestion by confirming that learners looked more at the demonstrator’s 602 

face when it was visible compared to blurred (difference in the mean estimates of the 603 

proportion of fixation time between FACE_noAUDIO and noFACE_noAUDIO: 3.14% 604 

[0.5%, 10.3%]), between FACE_AUDIO and noFACE_AUDIO: 5.6% [0.8%, 17.9%]), and 605 

even more so when they could listen to his speech (difference between FACE_AUDIO and 606 

FACE_noAUDIO: 2.9%, 90% CI [0.2%, 8.0%]). 607 

4. Discussion 608 
Observational learning (or production imitation) is a time-evolving process involving 609 

a demonstrator (or model), a learner (or observer), and a target task. In this study, we 610 

borrowed the conceptual and analytical framework of dynamical system theory as applied 611 

and developed in the cognitive sciences (e.g., Coco et al., 2017; Dale, et, al. 2013; Fusaroli, et 612 

al., 2014) to investigate the role of attentional coordination in the ‘passing on’ or re-613 

construction of knowledge. Researchers in diverse fields have claimed that learning through 614 

observation benefits from a constant interaction and tight attentional coupling between the 615 



24 
 

learner and the resources made available by the demonstrator (e.g., M. Carpenter et al., 1998; 616 

Mundy & Newell 2009; Tomasello, 2009). However, the experimental support for this claim 617 

has lacked both temporal and spatial resolution – for example, because studies used manual 618 

annotations of gaze directions from video footage (e.g., M. Carpenter et al 1998), or used 619 

eye-tracking measures that aggregate data over time, such as number of fixations, which 620 

provides little insight about how attention unfolds over time (e.g., Breslin et al., 2009). 621 

In the current study, we combined eye-tracking with sophisticated computational 622 

analyses (RQA and Bayesian hierarchical regression) and provided evidence that learners 623 

better able to coordinate their overt attention with the manipulative actions of the 624 

demonstrator had an increasingly higher probability of success in solving a construction 625 

puzzle task. Through this dynamical interaction with the demonstrator’s unfolding actions, 626 

learners discovered object affordances and the sequence of actions required to successfully 627 

complete the task more quickly than if they were learning alone.  628 

In this study, we also investigated how the availability of verbal instruction and 629 

intentional gaze interacts with attentional coordination and mediate the learning outcomes. 630 

Speech and overt attention are known to synchronise strongly during language 631 

comprehension, language production, and even dialogue tasks (e.g., Coco & Keller, 2012; 632 

Knoeferle & Crocker, 2006; Richardson et al., 2007). We therefore expected that the 633 

availability of verbal instruction would improve task performance and be associated with 634 

better coordination between overt attention and manipulative actions. Indeed, we found 635 

evidence that speech helps cognitive processes to align and plays an important role in the 636 

passing on of knowledge, as shown by the stronger improvement of performance compared to 637 

when speech was not available.  638 

The availability of intentional gaze is considered important to build joint attention 639 

(e.g.,  Tomasello et al., 2005) and we therefore expected that being able to see the 640 

demonstrator’s face (as opposed to his blurred face) would improve the learning outcome of 641 

our participants in the manipulative task. However, we found that the availability of the 642 

demonstrator’s face, and hence of his intentional gaze, were instead detrimental to learning. 643 

Learners tended to look more often at the demonstrator’s face when it was visible (compared 644 

to blurred) and even more often when they could also hear him speaking. These bouts of 645 

attention away from the manipulative actions of the demonstrator and towards his face have 646 

likely distracted learners and hence negatively impacted on their learning. We note, however, 647 



25 
 

that our study utilises pre-recorded videos and that, in cases of live interaction, the behaviour 648 

of looking at the partner’s eyes is likely to play important roles, such as to indicate 649 

engagement or request the partner’s attention, and hence may be beneficial to learning. 650 

Regardless, it is interesting to observe that learners coordinated their visual attention with the 651 

demonstrator’s actions even when his face was blurred. This result is consistent with the 652 

“hand-eye coordination” route to joint attention (Yu & Smith, 2013) rather than the more 653 

widely acknowledged gaze-following route and suggests that this alternative route may play 654 

an important role in the processes of social learning which has received little attention. 655 

Using pre-recorded demonstrations enabled us to achieve greater control when 656 

measuring the attentional coordination across learners, because they all watched the same 657 

videos. While demonstration videos are commonly used in studies of observational learning, 658 

this is arguably one of the main limitations of this design. Most cases of observational 659 

learning occur during face-to-face encounters, thus it would be important to examine 660 

demonstrator-learner dyads interacting live using the same paradigm. Another important 661 

limitation of this study is the relatively small number of participants. The novel manipulative 662 

task we conceived was particularly time-consuming, as it not only involved eye-tracking 663 

(while participants watched the demonstrations) but also required manual performance (to 664 

measure success in every trial) and was iterative (to measure changes in performance across 665 

trials, i.e. learning), requiring a total of 15 trials for each participant. To overcome the 666 

resulting time constraint, we manipulated the experimental conditions (i.e. type of 667 

demonstration video) between participants, which limited the sample size in each. Even 668 

though Bayesian statistics is more robust in the context of small sample sizes (see Gelman et 669 

al. 2014; van de Schoot et al., 2014) and despite finding systematic differences across 670 

conditions, the results must be interpreted as exploratory and might be used as an important 671 

foundation for future research interested in similar research questions and deploying a similar 672 

methodology. The results from the current study can constitute a solid basis for power 673 

analyses estimating effect size statistic in designs aimed at replicating our findings or 674 

extending in other ways our innovative experimental approach. 675 

This study did not seek to address how the ability to identify and track the relevant 676 

aspects of the demonstration develops. Further work might use a similar paradigm to examine 677 

dyads from different age groups, and we expect that measures of attentional coordination will 678 

be positively correlated with age. In principle, similar methods could be applied to the study 679 
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of social learning in nonhuman animals, allowing researchers to explore whether coordination 680 

is central to social learning more generally, or a species-specific feature of human social 681 

learning. 682 

One methodological contribution of our study is to show that the combination of eye-683 

tracking methods, RQA, and hierarchical modelling, can provide a powerful tool for 684 

examining the mechanisms of observational learning with finer granularity. Future research 685 

could exploit these methods to further elucidate how and the extent to which the dynamics of 686 

attentional coordination may influence social learning by looking, for example, at the stability 687 

of the attentional coordination, and the relation between patterns of attentional coordination 688 

and learning trajectories, during iterative observational learning. Novel extensions of 689 

recurrence quantification analysis to multi-dimensional data might be successfully used to 690 

investigate patterns of learning involving larger groups of individuals interacting in real time 691 

(see Knight, Kennedy, & McComb, 2016; Wallot, Roepstorff, & Mønster, 2016 for recent 692 

developments in this direction). 693 

We conclude that viewing social learning from the perspective of moment-to-moment 694 

attentional coordination might provide novel theoretical insights to the field, and we hope the 695 

present study will motivate further work that embraces the technological and analytical 696 

advances deployed here. 697 

Funding: This work was supported by the University of St Andrews; the Konrad Lorenz 698 

Institute for Evolution and Cognition Research [Writing-up Fellowship awarded to MP]; the 699 

John Templeton Foundation [grant number 40128 awarded to KNL]; the Leverhulme Trust 700 

[grant number ECF-014-205 awarded to MIC]; and the Fundação para a Ciência e Tecnologia 701 

[grant number PTDC/PSI-ESP/30958/2017 awarded to MIC]. The funding sources were not 702 

involved in the study design; the collection, analysis and interpretation of data; the writing of 703 

the report; and the decision to submit the article for publication. 704 

Declarations of interest: none 705 

References 706 

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of 707 
spoken word recognition using eye movements: Evidence for continuous mapping 708 
models. Journal of Memory and Language, 38(4), 419-439. 709 
https://doi.org/10.1006/jmla.1997.2558 710 



27 
 

Ashford, D., Bennett, S. J., & Davids, K. (2006). Observational Modeling Effects for 711 
Movement Dynamics and Movement Outcome Measures Across Differing Task 712 
Constraints: A Meta-Analysis. Journal of Motor Behavior, 38(3), 185-205. 713 
https://doi.org/10.3200/JMBR.38.3.185-205 714 

Baldwin, S. A., & Fellingham, G. W. (2013). Bayesian methods for the analysis of small 715 
sample multilevel data with a complex variance structure. Psychological Methods, 716 
18(2), 151–164. https://doi.org/10.1037/a0030642 717 

Bird, G., & Heyes, C. (2005). Effector-Dependent Learning by Observation of a Finger 718 
Movement Sequence. Journal of Experimental Psychology: Human Perception and 719 
Performance, 31(2), 262-275. https://doi.org/10.1037/0096-1523.31.2.262 720 

Breslin, G., Hodges, N. J., & Williams, M. A. (2009). Effect of Information Load and Time 721 
on Observational Learning. Research Quarterly for Exercise and Sport, 80(3), 480-722 
490. https://doi.org/10.1080/02701367.2009.10599586 723 

Carcea, I., & Froemke, R. C. (2019). Biological mechanisms for observational learning. 724 
Current Opinion in Neurobiology, 54, 178-185. 725 
https://doi.org/10.1016/j.conb.2018.11.008 726 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., . . . 727 
Riddell, A. (2017). Stan: A Probabilistic Programming Language. 2017, 76(1), 32. 728 
https://doi.org/10.18637/jss.v076.i01 729 

Carpenter, M., Nagell, K., & Tomasello, M. (1998). Social cognition, joint attention, and 730 
communicative competence from 9 to 15 months of age. Monographs for the Society 731 
of Research in Child Development, 63, 1-143. https://doi.org/10.2307/1166214 732 

Carpenter, M., & Tomasello, M. (1995). Joint Attention and Imitative Learning in Children, 733 
Chimpanzees, and Enculturated Chimpanzees. Social Development, 4(3), 217-237. 734 
https://doi.org/10.1111/j.1467-9507.1995.tb00063.x 735 

Casile, A., & Giese, M. A. (2006). Nonvisual Motor Training Influences Biological Motion 736 
Perception. Current Biology, 16(1), 69-74. https://doi.org/10.1016/j.cub.2005.10.071 737 

Chemero, A. (2009). Radical embodied cognitive science. Cambridge, Mass.: MIT Press. 738 
Clark, H. H., & Krych, M. A. (2004). Speaking while monitoring addressees for 739 

understanding. Journal of Memory and Language, 50(1), 62-81. 740 
https://doi.org/10.1016/j.jml.2003.08.004 741 

Coco, M. I., & Dale, R. (2014). Cross-recurrence quantification analysis of categorical and 742 
continuous time series: an R package. Frontiers in Psychology, 5. 743 
https://doi.org/10.3389/fpsyg.2014.00510 744 

Coco, M. I., Dale, R., & Keller, F. (2018). Performance in a Collaborative Search Task: The 745 
Role of Feedback and Alignment. Topics in Cognitive Science, 10(1), 55-79. 746 
https://doi.org/10.1111/tops.12300 747 

Coco, M. I., & Keller, F. (2012). Scan Patterns Predict Sentence Production in the Cross-748 
Modal Processing of Visual Scenes. Cognitive Science, 36(7), 1204-1223. 749 
https://doi.org/10.1111/j.1551-6709.2012.01246.x 750 

Coco, M. I., & Keller, F. (2015). Integrating mechanisms of visual guidance in naturalistic 751 
language production. Cognitive Processing, 16(2), 131-150. 752 
https://doi.org/10.1007/s10339-014-0642-0 753 

Coco, M. I., Keller, F., & Malcolm, G. L. (2016). Anticipation in Real-World Scenes: The 754 
Role of Visual Context and Visual Memory. Cognitive Science, 40(8), 1995-2024. 755 
https://doi.org/10.1111/cogs.12313 756 

Coco, M. I., Badino, L., Cipresso, P., Chirico, A., Ferrari, E., Riva, G., Gaggioli, A. & 757 
D’Ausilio, A., 2017. Multilevel behavioral synchronization in a joint tower-building 758 
task. IEEE Transactions on Cognitive and Developmental Systems, 9(3), pp.223-233. 759 



28 
 

D’Innocenzo, G., Gonzalez, C. C., Williams, A. M., & Bishop, D. T. (2016). Looking to 760 
Learn: The Effects of Visual Guidance on Observational Learning of the Golf Swing. 761 
PLoS ONE, 11(5), e0155442. https://doi.org/10.1371/journal.pone.0155442 762 

Dale, R., Fusaroli, R., Duran, N. D., & Richardson, D. C. (2013). The Self-Organization of 763 
Human Interaction. In B. H. Ross (Ed.), The Psychology of Learning and Motivation 764 
(Vol. 59, pp. 43-95): Academic Press. 765 

Dale, R., Warlaumont, A. S., & Richardson, D. C. (2011). Nominal cross recurrence as a 766 
generalized lag sequential analysis for behavioral streams. International Journal of 767 
Bifurcation and Chaos, 21(4), 1153-1161. 768 
https://doi.org/10.1142/s0218127411028970 769 

De Jaegher, H., & Di Paolo, E. (2007). Participatory sense-making. Phenomenology and the 770 
Cognitive Sciences, 6(4), 485-507. https://doi.org/10.1007/s11097-007-9076-9 771 

Degotardi, S. (2017). Joint attention in infant-toddler early childhood programs: Its dynamics 772 
and potential for collaborative learning. Contemporary Issues in Early Childhood, 773 
18(4), 409-421. https://doi.org/10.1177/1463949117742786 774 

Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian 775 
statistics: The WAMBS-checklist. Psychological Methods, 22(2), 240–261. 776 
https://doi.org/10.1037/met0000065 777 

Fogel, A. (1993). Developing through relationships : origins of communication, self, and 778 
culture. Chicago: University of Chicago Press. 779 

Fusaroli, R., Konvalinka, I., & Wallot, S. (2014). Analyzing Social Interactions: The 780 
Promises and Challenges of Using Cross Recurrence Quantification Analysis. 781 
Translational Recurrences: From Mathematical Theory to Real-World Applications, 782 
103, 137-155. https://doi.org/10.1007/978-3-319-09531-8_9 783 

Galef, B. G. (1988). Imitation in animals: History, definition, and interpretation of data from 784 
the psychological laboratory. In Z. T. R. & G. B. G. (Eds.), Social Learning: 785 
Psychological and Biological Perspectives (pp. 3-28). Hillsdale, NJ: Erlbaum. 786 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). 787 
Bayesian data analysis (Third edition. ed.). Boca Raton: CRC Press. 788 

Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention 789 
guides thought. Psychological Science, 14(5), 462-466. https://doi.org/10.1111/1467-790 
9280.02454 791 

Griffin, Z. M., & Bock, K. (2000). What the eyes say about speaking. Psychological Science, 792 
11(4), 274-279. https://doi.org/10.1111/1467-9280.00255 793 

Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in 794 
human hand movements. Biological Cybernetics, 51(5), 347-356. 795 
https://doi.org/10.1007/bf00336922 796 

Heyes, C. (1994). Social-Learning in Animals - Categories and Mechanisms. Biological 797 
Reviews of the Cambridge Philosophical Society, 69(2), 207-231. 798 
https://doi.org/10.1111/j.1469-185X.1994.tb01506.x 799 

Hodges, N. J., Williams, A. M., Hayes, S. J., & Breslin, G. (2007). What is modelled during 800 
observational learning? Journal of Sports Sciences, 25(5), 531-545. 801 
https://doi.org/10.1080/02640410600946860 802 

Hoppitt, W. J. E., & Laland, K. N. (2013). Social learning : an introduction to mechanisms, 803 
methods, and models. Princeton: Princeton University Press. 804 

Horn, R. R., Williams, A. M., Hayes, S. J., Hodges, N. J., & Scott, M. A. (2007). 805 
Demonstration as a rate enhancer to changes in coordination during early skill 806 
acquisition. Journal of Sports Sciences, 25(5), 599-614. 807 
https://doi.org/10.1080/02640410600947165 808 



29 
 

Horn, R. R., Williams, A. M., Scott, M. A., & Hodges, N. J. (2005). Visual search and 809 
coordination changes in response to video and point-light demonstrations without KR. 810 
Journal of Motor Behavior, 37(4), 265-274. 811 

Ingold, T. (2001). From the transmission of representations to the education of attention. In 812 
H. Whitehouse (Ed.), The Debated Mind: Evolutionary psychology versus 813 
ethnography (pp. 113-153). Oxford: Berg. 814 

Johansson, R. S., Westling, G. R., Backstrom, A., & Flanagan, J. R. (2001). Eye-hand 815 
coordination in object manipulation. Journal of Neuroscience, 21(17), 6917-6932.  816 

Kantz, H. (1994). Quantifying the Closeness of Fractal Measures. Physical Review E, 49(6), 817 
5091-5097. https://doi.org/10.1103/PhysRevE.49.5091 818 

Kelso, J. A. S. (1995). Dynamic patterns : the self-organization of brain and behavior. 819 
Cambridge, Mass.: MIT Press. 820 

Kelso, J. A. S. (2016). On the Self-Organizing Origins of Agency. Trends Cogn Sci, 20(7), 821 
490-499. https://doi.org/10.1016/j.tics.2016.04.004 822 

Knight, A. P., Kennedy, D. M., & McComb, S. A. (2016). Using recurrence analysis to 823 
examine group dynamics. Group Dynamics: Theory, Research, and Practice, 20(3), 824 
223–241. https://doi.org/10.1037/gdn0000046 825 

Knoeferle, P., & Crocker, M. W. (2006). The coordinated interplay of scene, utterance, and 826 
world knowledge: Evidence from eye tracking. Cognitive Science, 30(3), 481-529. 827 
https://doi.org/10.1207/s15516709cog0000_65 828 

Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday 829 
activities? Vision Research, 41(25-26), 3559-3565. https://doi.org/10.1016/s0042-830 
6989(01)00102-x 831 

Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence 832 
plots. Physics Letters A, 302(5-6), 299-307.  833 

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the 834 
analysis of complex systems. Physics Reports-Review Section of Physics Letters, 835 
438(5-6), 237-329. https://doi.org/10.1016/j.physrep.2006.11.001 836 

Mattar, A. A. G., & Gribble, P. L. (2005). Motor Learning by Observing. Neuron, 46(1), 153-837 
160. https://doi.org/10.1016/j.neuron.2005.02.009 838 

McElreath, R. (2016). Statistical rethinking : a Bayesian course with examples in R and Stan. 839 
Boca Raton: CRC Press/Taylor & Francis Group. 840 

Meyer, A. S., Sleiderink, A. M., & Levelt, W. J. M. (1998). Viewing and naming objects: eye 841 
movements during noun phrase production. Cognition, 66(2), B25-B33. 842 
https://doi.org/10.1016/s0010-0277(98)00009-2 843 

Mundy, P. & Newell, L. (2009) Attention, joint attention, and social cognition. Curr Dir 844 
Psychol Sci 16(5): 269-74 845 

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from 846 
performance measures. Cognitive Psychology, 19(1), 1-32. 847 
https://doi.org/10.1016/0010-0285(87)90002-8 848 

Péter, A. (2016). Solomon coder. Retrieved from http://solomoncoder.com/ 849 
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, 850 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-851 
project.org/ 852 

Richardson, D. C., & Dale, R. (2005). Looking to understand: The coupling between 853 
speakers' and listeners' eye movements and its relationship to discourse 854 
comprehension. Cognitive Science, 29(6), 1045-1060. 855 
https://doi.org/10.1207/s15516709cog0000_29 856 



30 
 

Richardson, D. C., Dale, R., & Kirkham, N. Z. (2007). The art of conversation is coordination 857 
- Common ground and the coupling of eye movements during dialogue. Psychological 858 
Science, 18(5), 407-413. https://doi.org/10.1111/j.1467-9280.2007.01914.x 859 

Richardson, M. J., Dale, R., & Marsh, K. L. (2014). Complex Dynamical Systems in Social 860 
and Personality Psychology Theory, Modeling, and Analysis. 861 

Schertz, H. H., Odom, S. L., Baggett, K. M., & Sideris, J. H. (2013). Effects of Joint 862 
Attention Mediated Learning for toddlers with autism spectrum disorders: An initial 863 
randomized controlled study. Early Childhood Research Quarterly, 28(2), 249-258. 864 
https://doi.org/10.1016/j.ecresq.2012.06.006 865 

Schoner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural 866 
systems. Science, 239(4847), 1513-1520. https://doi.org/10.1126/science.3281253 867 

Schoner, G., Zanone, P. G., & Kelso, J. A. S. (1992). Learning as change in coordination 868 
dynamics - theory and experiment. Journal of Motor Behavior, 24(1), 29-48. 869 
https://doi.org/10.1080/00222895.1992.9941599 870 

Shockley, K., Butwill, M., Zbilut, J. P., & Webber, C. L. (2002). Cross recurrence 871 
quantification of coupled oscillators. Physics Letters A, 305(1-2), 59-69.  872 

Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, Mass.: Harvard 873 
University Press. 874 

Tomasello, M. (2003). Constructing a language : a usage-based theory of language 875 
acquisition. Cambridge, Mass.: Harvard University Press. 876 

Tomasello, M. (2009). Why we cooperate. Cambridge, Mass.: MIT Press. 877 
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and 878 

sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 879 
28(5), 675-691. https://doi.org/10.1017/S0140525x05000129 880 

Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and 881 
Brain Sciences, 16(3), 495-511. https://doi.org/10.1017/S0140525X0003123X 882 

van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & Aken, M. A. 883 
(2014). A gentle introduction to Bayesian analysis: Applications to developmental 884 
research. Child Development, 85, 842–860. https://doi.org/10.1111/cdev.12169 885 

van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention guidance 886 
during example study via the model's eye movements. Computers in Human 887 
Behavior, 25(3), 785-791. https://doi.org/10.1016/j.chb.2009.02.007 888 

Vogt, S. (1995). On relations between perceiving, imagining and performing in the learning 889 
of cyclical movement sequences. British Journal of Psychology, 86(2), 191-216. 890 
https://doi.org/10.1111/j.2044-8295.1995.tb02556.x 891 

Wallot, S., Mitkidis, P., McGraw, J. J., & Roepstorff, A. (2016). Beyond Synchrony: Joint 892 
Action in a Complex Production Task Reveals Beneficial Effects of Decreased 893 
Interpersonal Synchrony. PLoS ONE, 11(12), e0168306. 894 
https://doi.org/10.1371/journal.pone.0168306 895 

Wallot, S., Roepstorff, A., & Mønster, D. (2016). Multidimensional Recurrence 896 
Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time series: 897 
A Software Implementation in MATLAB and Its Application to Group-Level Data in 898 
Joint Action. Frontiers in Psychology, 7(1835). 899 
https://doi.org/10.3389/fpsyg.2016.01835 900 

Webber, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear 901 
dynamical systems. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in 902 
contemporary nonlinear methods for the behavioral sciences (pp. 26-94). 903 

Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal 904 
kingdom: Reappraisal of a century of research. Advances in the Study of Behaviour( 905 
21), 239-283.  906 



31 
 

Whiten, A., Horner, V., Litchfield, C. A., & Marshall-Pescini, S. (2004). How do apes ape? 907 
Animal Learning & Behavior, 32(1), 36-52. https://doi.org/10.3758/bf03196005 908 

Williams, A. M., & Hodges, N. J. (2005). Practice, instruction and skill acquisition in soccer: 909 
Challenging tradition. Journal of Sports Sciences, 23(6), 637-650. 910 
https://doi.org/10.1080/02640410400021328 911 

Yu, C., & Smith, L. B. (2013). Joint attention without gaze following: human infants and 912 
their parents coordinate visual attention to objects through eye-hand coordination. 913 
PLoS ONE, 8(11), e79659. https://doi.org/10.1371/journal.pone.0079659 914 

Zbilut, J. P., Giuliani, A., & Webber, C. L. (1998). Detecting deterministic signals in 915 
exceptionally noisy environments using cross-recurrence quantification. Physics 916 
Letters A, 246(1-2), 122-128. https://doi.org/10.1016/S0375-9601(98)00457-5 917 

 918 


