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Stochastic MPC for additive and multiplicative
uncertainty using sample approximations

James Fleming Mark Cannon

Abstract—We introduce an approach for Model Predictive
Control (MPC) of systems with additive and multiplicative
stochastic uncertainty subject to chance constraints. Predicted
states are bounded within a tube and the chance constraint
is considered in a ‘one step ahead’ manner, with robust con-
straints applied over the remainder of the horizon. The online
optimization is formulated as a chance-constrained program
which is solved approximately using sampling. We prove that
if the optimization is initially feasible, it remains feasible and
the closed-loop system is stable. Applying the chance-constraint
only one step ahead allows us to state a confidence bound for
satisfaction of the chance constraint in closed-loop. Finally, we
demonstrate by example that the resulting controller is only
mildly more conservative than scenario MPC approaches that
have no feasibility guarantee.

I. INTRODUCTION

Robust Model Predictive Control (MPC) is a method of
controlling uncertain systems in which predictions of states are
used to minimize a cost function online. Unlike linear feedback
controllers, MPC allows inequality constraints to be handled
systematically and, if suitable terminal constraints are included
in the optimization, it can ensure that those constraints are
satisfied for all uncertainty realizations. In general, propagat-
ing the effects of parametric or multiplicative uncertainty over
a prediction horizon of length N involves computation that
grows exponentially with N . This difficulty can be avoided
through the introduction of a prediction tube [1], [2]. Recent
papers have provided convenient parameterizations of such
tubes for systems with parametric uncertainty [3], [4].

In the presence of stochastic uncertainty, it is often desirable
to limit the probability of constraint violations. In this case a
robust approach, which enforces constraints for all uncertainty
realizations, may be conservative. Instead, knowledge of the
probability distribution of uncertainty should be used to relax
constraints. For a linear system with additive uncertainty,
constraint tightening/relaxing parameters may be calculated to
handle chance constraints [5], [6] and the resulting controller
guarantees constraint satisfaction and stability in closed-loop.
No similar result exists for stochastic uncertainty in system
parameters, and the aim here is to introduce a suitable frame-
work by using conditions for a polyhedron to be contained in
a set defined by chance constraints. This results in a receding
horizon control problem whose solution can be approximated
using a sample-based method, while providing closed-loop
feasibility, stability and constraint satisfaction guarantees.
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In [7] and [8] a scenario approach is used for predictive
control, where the probability that constraints are satisfied over
some finite horizon is bounded. These scenario methods are
very general, but they do not guarantee that the optimization
problem remains feasible at subsequent times. In contrast, we
consider ‘one step ahead’ chance constraints (as in [5] and [6])
and use a tube to bound the predicted state, which guarantees
recursive feasibility if the uncertainty has compact support.
This extends the work of [3] by introducing additive uncer-
tainty, less conservative terminal conditions, and a closed-
loop confidence bound on constraint violation, and provides a
stochastic counterpart to the robust controller of [4].

a) Notation: We use Et[·] to denote conditional ex-
pectation given state x(t) while Prt[·] denotes conditional
probability given x(t). The convex hull of a set of points is
written as Co {·}. To refer to the ith row of a matrix H , we
write (H)i. For convenience when developing the controller,
we consider the time t = 0 and denote predictions of the input
and state u(t), x(t) at a future time t = k as uk, xk.

II. PROBLEM STATEMENT

We consider the control of a discrete-time system,

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t). (II.1)

where the state x(t) is available at each t and u(t) is a control
input. The values A(t), B(t), w(t) depend on a vector-valued
stochastic process q(t) with elements qi(t) ∈ R, i = 1 . . . µ,

(
A(t), B(t), w(t)

)
=

µ∑
i=1

(A{i}, B{i}, w{i})qi(t) (II.2)

for some known A{i}, B{i}, w{i}, with i = 1, . . . , µ. To
simplify notation we write A, B, w, q in place of A(t), B(t),
w(t), q(t) wherever the time-dependence is clear. We briefly
note that (II.2) allows A, B and w to be independent, as q
may be partitioned as q = [qA qB qw]T and, for example,
B{i} = w{i} = 0 for i corresponding to elements of qA.

Assumption 1. For any t1 6= t2, q(t1) and q(t2) are indepen-
dent and identically distributed (i.i.d.).

Assumption 2. The probability distribution of q is compactly
supported with q ∈ Co

{
q(1), . . . , q(ν)

}
almost surely.

Remark 1. Assumption 1 limits the approach to systems
in which the uncertainty affecting A(t) and B(t) is i.i.d.,
in common with existing methods [3], [8], [9]. Temporal
correlations in w(t) can be handled by augmenting the system
with a linear filter generating non-i.i.d. noise. Assumption 2
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is required for recursive feasibility, and is used to bound the
uncertainty robustly after the first prediction time.

The control objective is to minimize the expected value of
∞∑
k=t

Et
[
L(k)

]
=

∞∑
k=t

Et
[
x(k)

T
Qx(k)+u(k)

T
Ru(k)

]
, (II.3)

where Q and R are positive definite matrices, while, for some
probability level p ∈ (0, 1], satisfying constraints:

Fhx(t) +Ghu(t) ≤ 1 (II.4)

Prt
[
Fpx(t+ 1) ≤ 1

]
≥ p. (II.5)

Constraint (II.5) limits the probability of a constraint violation
at the next sample time using the most recent information
available, which is useful in applications such as wind turbine
control [9]. At each time t the controller minimizes (II.3),
which is the expected future performance given present infor-
mation, subject to (II.4) and (II.5). We write A(j), B(j) and
w(j) for values of A, B, w in (II.2) corresponding to q = q(j).

III. INPUT, STATE AND TUBE PARAMETRIZATION

We parametrize the predicted control input as

uk = Kxk + ck (III.1)

where K is chosen so that the dynamics ξk+1 = (A+BK)ξk
are mean-square stable [10], [11]. The uncertain system

xk+1 = Φxk +Bck + w (III.2)

then generates predicted state trajectories, where Φ = A+BK.
Define Φ(j) = A(j) +B(j)K, and let ck = 0 for k ≥ N . The
sequence c0, . . . , cN−1 is set by the controller, with the integer
N referred to as the prediction horizon.

At some prediction time k, the set of possible future states
xk is a polyhedron with a number of vertices that grows
exponentially with k. To avoid computing these sets we
bound the predictions in a state tube, which is a sequence
of polyhedra of fixed complexity. Introducing a parameter αk,
we define the state tube cross sections as the sets:

Tk = {x : V x ≤ αk} . (III.3)

The choice of V is nontrivial and should be made by offline
construction of an invariant set.

Assumption 3. For some g, the set {x : V x ≤ g} is robustly
invariant for (II.1) under the control law u(t) = Kx(t).

We apply constraints so that the Tk contain the predictions:

Tk ⊆
{
x : Φ(j)x+B(j)ck + w(j) ∈ Tk+1

}
, ∀j (III.4)

x0 ∈ T0. (III.5)

In particular, since (III.4) implies xk+1 ∈ Tk+1 whenever xk ∈
Tk, for all k, we obtain xk ∈ Tk for k ≥ 0 by induction. From
(III.3), condition (III.5) is equivalent to V x0 ≤ α0.

Constraints (II.4) and (II.5) can be applied to the predictions
by requiring that the cross sections satisfy:

Tk ⊆ {x : Fhx+Ghuk ≤ 1} (III.6)
Tk ⊆ {x : Pr [Fpxk+1 ≤ 1] ≥ p} (III.7)

Using (III.1) and (III.2), and defining F̄h = Fh +GhK, these
conditions can be re-written as

Tk ⊆ {x : F̄hx+Ghck ≤ 1} (III.8)
Tk ⊆ {x : Pr[Fp(Φx+Bck+w)≤1] ≥ p}. (III.9)

IV. LINEAR AND PROBABILISTIC CONSTRAINTS

We extend a well-known condition for inclusion of poly-
hedra to the case where the containing set is defined by
probabilistic constraints. The following lemma is from [12].

Lemma 1. Let Pi = {x : Fix ≤ bi}, i = 1, 2, then P1 ⊆ P2

if and only if there exists a matrix H ≥ 0 satisfying:

HF1 = F2, Hb1 ≤ b2.

The next result generalizes Lemma 1 to the case in which
P2 is defined by a linear chance constraint, which in general
does not yield a polyhedral set.

Lemma 2. Let P1 = {x : F1x ≤ b1} and P2 = {x :
Pr[F2x ≤ b2] ≥ p}, with F2 and b2 defined as

(F2, b2) =

µ∑
i=1

(F
{i}
2 , b

{i}
2 )qi.

Then P1 ⊆ P2 if and only if matrices H{i} ≥ 0 exist satisfying
H{i}F1 = F

{i}
2 for i = 1, . . . , µ and

Pr
[ µ∑
i=1

(H{i}b1 − b{i}2 )qi ≤ 0
]
≥ p.

Proof: To prove sufficiency, suppose that H{i}, . . . ,H{µ}

satisfy the conditions of the lemma. Then for any x∗ in P1 we
obtain F2x

∗ =
∑µ
i=1H

{i}qiF1x
∗ ≤

∑µ
i=1H

{i}qib1. Hence
Pr
[∑µ

i=1(H{i}b1 − b{i}2 )qi ≤ 0
]
≥ p implies that Pr

[
F2x

∗ −
b2 ≤ 0

]
≥ p and therefore x∗ ∈ P2.

We prove necessity by construction. Assume P1 ⊆ P2, then

Pr [µ ≤ b2] ≥ p, µj = max
x
{(F2)jx : F1x ≤ b1} , (IV.1)

where (F2)j is the jth row of F2 and µj is the jth element of
µ. Strong duality holds for linear programs, so the dual of the
linear program defining µj for any realization of F2 implies

µj = min
h

{
hT b1 : hTF1 = (F2)j , h ≥ 0

}
. (IV.2)

For any i ∈ {1, . . . , µ}, let h{i}j denote the minimizing
argument of the LP (IV.2) corresponding to (F2)j = (F

{i}
2 )j ,

and define H{i} as the matrix with jth row equal to
(h
{i}
j )T . Then (IV.2) implies that H{i} ≥ 0 and H{i}F1 =

F
{i}
2 . Also from (IV.2), µj is equal to the jth element of

the vector
∑µ
i=1H

{i}qib1, and therefore (IV.1) implies that
Pr
[∑µ

i=1(H{i}b1 − b{i}2 )qi ≤ 0
]
≥ p.

We now apply Lemmas 1 and 2 to the inclusions (III.4),
(III.8) and (III.9). Analogously to Φ(j), we define Φ{i} =
A{i} +B{i}K.

Proposition 3. Tk = {x : V x ≤ αk} satisfies (III.4) if there
exist H(j) ≥ 0, j = 1, . . . , ν, such that H(j)V = V Φ(j) and

H(j)αk + V B(j)ck + V w(j) ≤ αk+1.
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Proposition 4. Tk = {x : V x ≤ αk} satisfies (III.8) if there
exists Hh ≥ 0 such that HhV = F̄h and

Hhαk +Ghck ≤ 1.

Proposition 5. Tk = {x : V x ≤ αk} satisfies (III.9) if there
exist H{i}p ≥ 0 such that H{i}p V = FpΦ

{i}, i = 1, . . . , µ, and
with probability at least p,

µ∑
i=1

(H{i}p αk + Fp(B
{i}ck + w{i}))qi ≤ 1.

To apply the set inclusions in the online MPC controller, a
choice of ‘H’ matrix is made offline and the associated in-
equality constraint included in the online optimization, which
is then a sufficient condition for the associated set inclusion.
To relax the online constraints, these rows of these matrices
can be chosen as the solutions of linear programs:

(H(j))i = arg min
h

{
1Th : hTV =(V )iΦ

(j), h≥0
}

(IV.3)

(Hh)i = arg min
h

{
1Th : hTV =(F̄h)i, h≥0

}
(IV.4)

(H{i}p )l = arg min
h

{
1Th : hTV =(Fp)lΦ

{i}, h≥0
}
. (IV.5)

When defined in this way, these matrices have several useful
properties that simplify the online optimization.
Remark 2. If F̄h appears as a block row of V then Hh =
[I 0 · · · 0]. This simplifies the constraints of Proposi-
tion 4 and occurs if V defines the maximal robustly invariant
set for xk+1 = Φxk + w subject to F̄hxk ≤ 1. Proposition 4
is then necessary and sufficient for constraint satisfaction. For
details of how to compute this set, see [12] or [13].

Remark 3. Each of the matrices H(j), Hh and H{i}p defined
by (IV.3), (IV.4) and (IV.5) is sparse with at most dim(x)
nonzero entries in each row.

A terminal condition is required to ensure the online opti-
mization remains feasible in closed-loop. In [3] a norm-bound
was used, but here we use the less conservative condition

H(j)αN + V w(j) ≤ αN . (IV.6)

This terminal constraint guarantees that states within the final
tube cross section TN remain within TN , effectively making
it a terminal set for the MPC controller.

V. QUADRATIC COST FUNCTION

Due to additive uncertainty, it is not possible to use the cost
(II.3) as the objective of the online MPC optimization directly
because its optimal value may not be finite. Following the
method of [9], we instead define the predicted cost as

E [J ] =

∞∑
k=0

(E[Lk]− Lss) (V.1)

where Lk = xTkQxk + uTkRuk for each k = 0, 1, . . . and
Lss = limk→∞ E[Lk]. This limit is finite if ξk+1 = Φξk is
mean-square stable [9]; hence the predicted cost E[J ] is finite.

Let c = [cT0 cT1 · · · cTN−1]T and ζ0 = [xT0 cT ]T and define

Ψ =

[
Φ BE
0 T

]
, Q̄ =

[
Q+KTRK KTRE
ETRK ETRE

]
, w̄ =

[
w
0

]

where E and T are the matrices such that c0 = Ec and Tc =
[cT1 cT2 · · · cTN−1 0]T . Then the predicted sequences of states
and control inputs are generated by ζk+1 = Ψζk + w̄.

Proposition 6. The cost (V.1) is given by

E [J ] =

[
ζ0
1

]T [
P v
vT π

] [
ζ0
1

]
(V.2)

where P , v and π solve the Lyapunov equation[
P v
vT π

]
−E

([
Ψ w̄
0 1

]T [
P v
vT π

] [
Ψ w̄
0 1

])
=

[
Q̄ 0
0 −Lss

]
.

Given the linear dependence of (Ψ, w̄) on q, it follows
immediately that P is the solution of the Lyapunov equation

P −
∑
i,j

(Ψ{i})TPΨ{j}E [qiqj ] = Q̄ (V.3)

and v is the solution of the linear equations(
I−

µ∑
i=1

Ψ{i}E [qi]

)T
v =

∑
i,j

(Ψ{i})TPw̄{j}E [qiqj ] , (V.4)

where Ψ{i} and w̄{i} are defined by replacing Φ, B and w
with Φ{i}, B{i} and w{i} in the definition of Ψ and w̄.

VI. CHANCE-CONSTRAINED MPC OPTIMIZATION

The constraints of Section IV can be used to construct a
recursively feasible MPC law. The control applied at each
time is u0 = Kx0 + c0, where c0 is given by the solution
of an optimization problem. This online optimization consists
of minimizing the predicted cost defined in Section V subject
to contraints deriving from Propositions 3, 4 and 5, with
the chance constraint applied only at time k = 0 and a
correspondng robust constraint applied for k = 1, . . . , N . Note
that at time k = 0 we may choose α0 = V x0.

Optimization 1. Chance-constrained tube MPC:

minimize
{ck,αk}

ζT0 Pζ0 + 2vT ζ0

subject to, for all j = 1, 2, . . . , ν :

initial constraints :

H(j)V x0 + V B(j)c0 + V w(j) ≤ α1, HhV x0 +Ghc0 ≤ 1,

Pr
[ µ∑
i=1

(H{i}p V x0 + Fp(B
{i}c0 + w{i}))qi ≤ 1

]
≥ p

tube constraints, for k = 1, 2, . . . , N − 1 :

H(j)αk + V B(j)ck + V w(j) ≤ αk+1, Hhαk +Ghck ≤ 1,
µ∑
i=1

(H{i}p αk + Fp(B
{i}ck + w{i}))q

(j)
i ≤ 1,

terminal constraints :

H(j)αN + V w(j) ≤ αN , HhαN ≤ 1,
µ∑
i=1

(H{i}p αN + Fpw
{i})q

(j)
i ≤ 1,

If the one-step ahead chance constraint at prediction time
k = 0 is replaced with its robust counterpart (as used for
k = 1, . . . , N − 1), then Optimization 1 reduces to a robust
controller, similar to that of [4].
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VII. SAMPLE-BASED MPC ALGORITHM

This section considers implementing Optimization 1 using
random samples, q[1], . . . , q[n] drawn from the distribution of q
at each time t. The chance constraint may be approximated by
specifying that it should hold for at least n−r samples. For the
rest of the prediction horizon, the constraint is applied robustly.
To determine the r samples allowed to violate constraints
we use the following heuristic: if an approximate solution is
available, then a good choice of samples to ignore are those
that have the greatest constraint function values.

This motivates an algorithm where successively better ap-
proximations to the solution of Problem 1 are generated by
solving with a fixed set of samples, sorting those samples,
and solving again with the most restrictive samples removed.
To facilitate this we introduce slack variables, denoted s[l],
l = 1, 2, . . . , n, leading to the quadratic program:

Optimization 2. Stochastic tube MPC with sampling:

minimize
{ck,αk,s[l]}

ζT0 Pζ0 + 2vT ζ0

subject to, for j = 1, 2, . . . , ν :

initial constraints :

H(j)V x0 + V B(j)c0 + V w(j) ≤ α1, HhV x0 +Ghc0 ≤ 1,

sampled constraints, for l = 1, 2, . . . , n :
µ∑
i=1

(H{i}p V x0 + Fp(B
{i}c0 + w{i}))q

[l]
i + s[l] = 1,

tube constraints, for k = 1, 2, . . . , N − 1 :

H(j)αk + V B(j)ck + V w(j) ≤ αk+1, Hhαk +Ghck ≤ 1,
µ∑
i=1

(H{i}p αk + Fp(B
{i}ck + w{i}))q

(j)
i ≤ 1,

terminal constraints :

H(j)αN + V w(j) ≤ αN , HhαN ≤ 1,
µ∑
i=1

(H{i}p αN + Fpw
{i})q

(j)
i ≤ 1,

slack variable conditions :

s[l] ≥ 0, ∀l ∈ I, |I| ≥ n− r
The online algorithm involves solving Optimization 2 and

refining the index set I. This procedure is repeated to improve
the accuracy of the solution. In contrast to the approach of [8],
sampled constraints are employed only for the first prediction
time k = 1 rather than over the whole horizon. This may be
conservative, but guarantees recursive feasibility.

Algorithm 1. Sample removal. At times t = 0, 1, . . .:
1) Draw samples q[1], . . . , q[n] from the distribution of q.
2) Set I = Il = {1, 2, . . . , n}.
3) Solve Optimization 2 using I.
4) Set m[l] as the minimum element of s[l] for each l.
5) Set I to contain the n− r indices ‘l’ with greatest m[l].
6) If I = Il stop. Otherwise set Il = I and return to 3).

Because of the nonconvexity of Optimization 2, the stopping
criterion is necessarily heuristic, but in practice Algorithm 1
converges in a few iterations when the index set I is repeated.

VIII. CLOSED-LOOP PROPERTIES

Due to the bounding of predictions at time k = N in the
final tube cross-section TN , it is possible to give guarantees
of feasibility and stability in closed-loop operation.

Theorem 7. Optimization 2 and Algorithm 1 define a recur-
sively feasible MPC law. That is, if it is feasible at time t, then
it remains feasible at all subsequent times in closed-loop.

Proof: Let (c′0, . . . , c
′
N−1), (α′0, . . . , α

′
N ) denote a feasible

point at any given time t. We will show that (c′1, . . . , c
′
N−1, 0)

and (α′1, . . . , α
′
N , α

′
N ) are feasible at time t + 1 with I =

{1, 2, . . . , n}. For the terminal constraints

H(j)αN + V w(j) ≤ αN , HhαN ≤ 1,
µ∑
i=1

(H{i}p αN + Fpw
{i})q

(j)
i ≤ 1.

we observe that at time t+1 these are identical to the terminal
constraints from time t, and therefore are satisfied. In a similar
manner, the tube constraints

H(j)αk + V B(j)ck + V w(j) ≤ αk+1, Hhαk +Ghck ≤ 1,
µ∑
i=1

(H{i}p αk + Fp(B
{i}ck + w{i}))q

(j)
i ≤ 1

are trivially satisfied for k = 1, . . . , N − 2 because they are
identical to constraints used at time t. For k = N − 1, they
are identical to the terminal conditions used at time t, noting
that our chosen ‘c’ is zero, and are also satisified.

The remaining constraints are the initial constraints, sam-
pled constraints and slack variable conditions. If I =
{1, 2, . . . , n}, then |I| ≥ n − r is satisified and we may
eliminate the slack variables to leave

H(j)V x0 + V B(j)c0 + V w(j) ≤ α1, HhV x0 +Ghc0 ≤ 1,
µ∑
i=1

(H{i}p V x0 + Fp(B
{i}c0 + w{i}))q

[l]
i ≤ 1,

where the sampled constraint applies for all l = 1, . . . , n.
Because the initial state x0 at time t+1 necessarily lies within
the tube cross-section T1 from time t, we have V x0 ≤ α′1.
Noting that all elements of the ‘H’ matrices are nonnegative,
comparing the first two constraints with the k = 1 tube
constraints from time t leads immediately to the conclusion
that they are satisfied, as we have HV x0 ≤ Hα′1 where H is
either H(j) or Hh. Finally, the sampled constaint is satisfied
for all l because we have H{i}p V x0 ≤ H

{i}
p α′1 for all i and

all samples q[l] ∈ Co
{
q(1), . . . , q(ν)

}
by Assumption 2.

Theorem 8. The system (II.1) under the control law u(t) =
Kx(t) + c0, where c0 is the first element of c defined by
Optimization 2 and Algorithm 1, is stable in the sense that

lim
τ→∞

1

τ

τ−1∑
t=0

E0[L(t)] ≤ Lss (VIII.1)

where L(t) = x(t)TQx(t) + u(t)TRu(t), and x(t), u(t) are
the state and input of the closed loop system at time t.

Proof: Let V
(
x(t)

)
denote the predicted cost (V.1) eval-

uated at the solution of Optimization 2 at time t. Then the
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feasibility and the suboptimality of the sequences Tc and
(α1, . . . , αN , αN ) at time t+ 1 implies

Et
[
V
(
x(t+ 1)

)]
≤ V

(
x(t)

)
−
(
Et
[
L(t)

]
− Lss

)
.

Taking expectations and summing each side of this inequality
over t = 0, 1 . . . , τ − 1, we then obtain

1

τ

τ−1∑
t=0

E0

[
L(t)

]
≤ Lss +

1

τ

(
V
(
x(0)

)
− E0

[
V
(
x(τ)

)])
.

However by Proposition 6 and (V.3), V(x) is neces-
sarily bounded from below for all feasible x, so that
limτ→∞

1
τ E0

[
V
(
x(τ)

)]
= 0, and the bound given by (VIII.1)

therefore follows when passing to the limit τ →∞.
We now appeal to the ‘sampling and discarding’ theory of

random convex programs found in [14], [15] to show that the
chance constraint (II.5) holds with high confidence in closed-
loop, in the sense that we are unlikely to draw samples q[l]

such that (II.5) does not hold. To state the result, let Fn,s(p)
denote the binomial distribution of s or fewer successes of
probability p in n trials. We also use the notion of a support
constraint, which is a sampled constraint for which the optimal
cost decreases if it is removed [15, Definition 2.1].

Theorem 9. The probability that the chance constraint (II.5)
is violated at any time t in closed-loop is at most

ε =
(
r+dim(u)−1

r

)
Fn,r+dim(u)−1(1− p).

Proof: Noting that satisfaction of the chance constraint
in Optimization 1 implies (II.5) by Proposition 5, and that
Optimization 2 is the sampled counterpart of Optimization
1, the result will follow from [15, Theorem 4.1] if the
number of support constraints of Optimization 2 is bounded
by m = dim(u) (in [15] the best such bound is used, which
is termed Helly’s dimension).

Suppose that Optimization 2 has m+d support constraints.
Considering a rearrangement of the sampled constraints(

µ∑
i=1

q
[l]
i FpB

{i}

)
c0 ≤ 1−

µ∑
i=1

q
[l]
i (H{i}p V x0 + Fpw

{i})

and omitting all rows for each value of l which do not yield
support constraints, we observe that the support constraints
may be written as Sc0 ≤ v, in which S is a (m+d)×m matrix
and v ∈ Rm+d. Due to convexity, these are satisfied with
equality at the solution c∗0 and hence Sc∗0 = v. As a solution
c∗0 exists, these m + d linear equations in m variables must
have at least d redundancies and removal of the corresponding
support constraints from Optimization 2 will not affect its
solution. But this contradicts the supposition that there are
m + d support constraints, so Optimization 2 has at most
m = dim(u) support constraints and the result follows.

IX. NUMERICAL EXAMPLE

Consider the system of (II.1)

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t)
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Fig. 1: Confidence value for example, dim(u) = 1
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Fig. 2: Cost improvement for example, n = 250

with nominal (expected-value) system matrices:

A0 =

[
−1.9 −1.4
0.7 0.5

]
, B0 =

[
1

−0.25

]
.

We define random variables

A = A0 + ∆
{1}
A q1 + ∆

{2}
A q2 + ∆

{3}
A q3 (IX.1)

B = B0 + ∆
{1}
B q4 + ∆

{2}
B q5, w = w{1}q6 + w{2}q7 (IX.2)

where q1, . . . , q7 are independent random scalars uniformly
distributed on the interval [0, 1], and

∆
(1)
A =

[
0.01 0.05
−0.05 −0.01

]
, ∆

(2)
A =

[
−0.01 −0.05

0 −0.01

]
∆

(3)
A =

[
0 0

0.05 0.02

]
, ∆

(1)
B =

[
0.03
−0.02

]
∆

(2)
B =

[
−0.03

0.02

]
, w1 =

[
0.2
−0.2

]
, w2 =

[
−0.2

0.2

]
.

The support of (q1, . . . , q7) is therefore the unit hypercube
with ν = 128 vertices. The cost matrices and probabilistic
constraint are defined as:

Q =

[
1 0
0 1

]
, R = 1, Prt

[
[−0.5 1]x(t+ 1) ≤ 1

]
≥ 0.9.

The stochastic MPC algorithm of this paper, and its robust
analog from [4], were used with initial condition x0 = [4 4]T ,
prediction horizon N = 4 and taking n = 250 samples of q.
The feedback gain K was chosen to be the LQ-optimal for
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Fig. 3: Closed-loop trajectories for robust MPC [4] and
stochastic MPC (Alg. 1) for 50 realizations of {q(0), q(1), . . .}

MPC Algorithm Robust [4] Algorithm 1 Scenario [8]
(r = 14) (r = 14)

Mean closed-loop cost 244.19 208.85 208.55
% satisfied constraints t = 1 100.0 95.4 93.2
% satisfied constraints t = 2 100.0 96.4 100.0
Mean computation time /ms 79.1 167.4 210.0

TABLE I: Robust and stochastic MPC with sample removal

the pair (A0, B0): K = [1.31 0.97], and V was constructed
by finding the maximal robustly invariant set respecting the
constraint [−0.5 1]x ≤ 1, which is defined by 22 linear
inequalities. For this example, dim(u) = 1 and Theorem 9
can be applied to give the relationship between n, r and ε. This
is shown in Figure 1 for p = 0.9. In this case, a confidence
value of 99% mandated that r = 14 samples could violate the
sampled constraint. Simulations were carried out in MATLAB,
using Yalmip [16] and the QP solver Gurobi. The resulting
state-space trajectories are shown in Figure 3.

Table I compares the closed loop properties of the robust
and stochastic implementations for 500 realizations of model
uncertainty, as well as comparing with the ‘scenario’ approach
of [8] when using the same heuristic for sample removal.
The mean closed loop cost is 15% lower in the stochastic
case than the robust. The proportion of trajectories satisfying
constraints (95.4%) implies conservativism in the stochastic
MPC with respect to the probabilistic constraint, which re-
quires [−0.5 1]x(t + 1) ≤ 1 to be satisfied for 90% of
uncertainty realisations. However, this is expected from the
confidence value of 99%, which requires 1− r/n = 0.944 for
n = 250. As more samples are used, 1− r/n approaches 0.9
asymptotically. For a given n, Algorithm 1 appears slightly
more conservative than the scenario MPC of [8] in terms of
mean closed-loop cost, but unlike scenario MPC, Algorithm 1
guarantees feasibility in closed-loop.

MPC Algorithm Robust [4] Algorithm 1 Scenario [8]
(r = 0) (r = 0)

Mean closed-loop cost 244.19 214.09 213.35
% satisfied constraints t = 1 100.0 97.6 96.8
% satisfied constraints t = 2 100.0 97.8 100.0
Mean computation time /ms 79.1 74.6 29.6

TABLE II: Robust and stochastic MPC without sample removal

It is also of interest to compare with the case that sampling
is used, but with no sample removal (r = 0). Applying
the chance constraint with p = 0.9 and 99% confidence
requires n = 44 samples. Table II shows that Algorithm 1
gives a 12% improvement in closed-loop cost over Robust
MPC but requires similar computation time. It is notable that
the scenario MPC of [8] has a lower computation time than
Algorithm 1 when n = 44, but a higher computation time
when n = 250. The reason is that the number of constraints
in the optimization is O(nN) for the scenario MPC of [8], but
is O(n+ν(N−1)) with ν > 44 in Optimization 2 as sampled
constraints are only applied at the first prediction time.

Using robust MPC in this example leads to conservativism
and a significant increase in closed-loop cost compared to
the stochastic MPC algorithms. This is a result of having
several independent sources of uncertainty: although each is
uniformly distributed, the one-step ahead probability density
function resulting from them will quickly fall to a small value
as distance from the mode increases. Figure 2 shows the
‘normalized cost’ given by division of the mean stochastic
MPC cost by the mean robust MPC cost against the proportion
of active samples. The improvement is significant even when
1− r/n = 0.98.
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