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Abstract—Recently there have been several proposals for ‘eco-
driving assistance systems’, designed to save fuel or electrical
power by encouraging behaviours such as gentle acceleration
and coasting to a stop. These systems use optimal control to
find driving behaviour that minimises vehicle energy losses. In
this paper, we introduce a methodology to account for driver
preferences on acceleration, braking, following distances and
cornering speed in such eco-driving optimal control problems.
This consists of an optimal control model of acceleration and
braking behaviour containing several physically-meaningful pa-
rameters to describe driver preferences. If used in combination
with a model of fuel or energy consumption, this can provide
an adjustable trade-off between satisfying those preferences and
minimising energy losses. We demonstrate that the model gives
comparable performance to existing car-following and cornering
models when predicting drivers’ speed in these situations by
comparison with real-world driving data. Finally, we present
an example highway braking scenario for an electric vehicle,
illustrating a trade-off between satisfying driver preferences on
vehicle speed and acceleration and reducing electrical energy
usage by up to 43%.

I. INTRODUCTION

Drivers’ acceleration and braking behaviour has a significant
effect on vehicle fuel consumption, a fact that was first
recognised over four decades ago [1]. Reduction of fuel
consumption, and therefore of CO2 emissions due to transport,
has become a topical issue in recent years due to concerns
about climate change [2]. Economical driving behaviour, or
‘eco-driving’, has been suggested as a method which can
reduce CO5 emissions from road vehicles by 10% with current
technology by encouraging drivers to accelerate gently, to
anticipate signals and traffic flow to avoid stops, to maintain
an even speed, and to avoid idling [3]. This view has been
reinforced by recent results of the naturalistic driving study
UDRIVE, which suggest that braking behaviour, gear shifting
and the velocity choice on the motorway have effects on fuel
consumption of greater than 10% [4].

Training programs have been designed to encourage eco-
driving behaviors with positive results [5], but after these
programs many drivers revert back to their original driving
styles over time [6]. A further complication for eco-driving
is that avoiding stops at intersections requires prediction of
traffic flow and signal changes, which is difficult for humans.
Introducing coasting behaviour before corners and junctions
is known to reduce fuel consumption, but coasting effectively
requires prior knowledge of the timing of signal changes and

accurate models of vehicle fuel consumption and dynamics
[7]. A potential remedy to both of these problems is to provide
active feedback to the driver on their behaviour, for instance
by using auditory, visual or haptic human-machine interfaces
(HMIs) within a vehicle [8], [9]. There is considerable research
interest in improving these interfaces using methods such as
V2X communication [10] or machine learning [11].

To put the problem of minimising fuel consumption in a
mathematical framework, the eco-driving problem can be for-
mulated as an optimal control problem [12], [13]. This requires
modelling of the vehicle powertrain, losses due to aerodynamic
drag and rolling resistance, and modelling of gear-shifting,
leading to a complex mixed-integer nonlinear programming
problem [14] or a dynamic programming problem [15]. Al-
though effective, these methods require large computational
effort to compute the optimal velocity profile. Model predic-
tive control (MPC) has been suggested as a computationally
tractable alternative to solve the problem during driving [16].
If available, the incorporation of fuel consumption maps and
knowledge of road grade to such predictive optimisations can
considerably improve performance [17]. Recently, researchers
have also considered the effect of road curvature on eco-
driving [18], where constraints on lateral acceleration cause
the vehicle to reduce speed in curves.

User acceptance is a well-known issue with existing auto-
motive ADAS, for example for collision-warning systems [19]
that rely on knowledge of typical vehicle-following behaviour.
Based on the large variations between drivers observed in
naturalistic studies, one suggestion to improve user acceptance
of ADAS is to make the system adaptive, adjusting to the
driver by estimating parameters representing their driving
style in real-time [20]. For eco-driving assistance systems this
possibility has already been explored for the specific scenario
of approaching intersections [21]. Several simplified models
of car-following behaviour have already been developed for
use in traffic simulations, such as the Intelligent Driver Model
(IDM) which uses a differential equation for velocity to
model the motion of a vehicle with acceleration limits and
a preferred velocity and following distance [22]. For curve
driving behaviour, models of tolerable lateral accelerations
while cornering have appeared in the human factors literature,
such as the model due to Reymond and co-workers appearing
in [23]. From the point of view of adapting system parameters,
real-time adaptation of the IDM has been demonstrated [24]
and the authors have recently developed an automated fitting



method for models of cornering speeds [25].

In this paper, we present a general method of accounting for
the effects of driver following behaviour and cornering speed
choice in an eco-driving assistance system. By considering
the modelling of longitudinal driver behaviour in an optimal
control framework, it is possible to trade-off the objectives
and preferences of the driver with the objective of energy-
efficiency. This provides a tuning parameter that can give be-
haviour intermediate between the two extremes of economical
driving and natural driving, and gives a systematic way to
account for driving styles in an eco-driving assistance system.

To be able to represent a variety of drivers who have
different preferences with regard to acceleration, braking, and
following distances, our driver model contains a small number
of parameters that may readily be estimated from naturalistic
driving data. To simplify this process we choose the set of
model parameters to match those of the IDM, for which
parameter fitting procedures are well known. We present a
methodology based on an optimal control formulation of the
IDM and subsequent quadratic approximation near equilibrium
points that allows us to give physical meaning to the otherwise-
arbitrary weighting parameters appearing in the cost function.
This leads to a model that gives similar behaviour to the
IDM in car-following scenarios, but that can additionally
handle position-dependent constraints on velocity resulting
from cornering and is suitable for incorporating into an eco-
driving optimal control problem. We validate this model by
comparing its predictions with real-world driving data and
existing models of cornering and car-following.

Because the new model of driver behaviour is based on
optimal control in which the driver chooses the minimum
possible value of a cost function, we may interpret the cost as a
measure of a driver’s ‘dissatisfaction” with a particular vehicle
trajectory and control history. Under this interpretation the
model yields the acceleration profile that is most satisfying to
the driver in terms of speed, acceleration, and vehicle spacing.
Accordingly, we refer to it as the ‘Driver Satisfaction Model’
(DSM) to easily contrast it with, for example, the IDM.

II. LITERATURE REVIEW
A. Optimal control

Optimal control is an extension of the calculus of variations
which considers how to choose the input of a dynamical
system to optimise some performance criterion. The field
originated with the work of Bellman [26] and Pontrygin
[27] and was initially applied to problems in aeronautics and
spaceflight, but later found application in many other fields.
The optimal control problems we consider have the form

min  J[x,u]
u(t)eu
s.t. X = f(x,u,t)
g9(x,u,t) <0
x(0) =x9, x(T)e€ &p

where J[x, u] is the cost function given by:

T
J[x, u] :/0 L(x,u,t) dt+ ¢(x(T)) (1)

In this cost function, L(x,u,t) and ¢(x(7T")) are referred to
as the stage cost and terminal cost respectively. The vector
x € R" represents the state of a dynamical system, which
evolves according to the differential equation x = f(x,u,t),
and the vector u € R™ represents a control input. The cost
function J models a quantity that should be kept small in
a particular application, such as fuel usage, elapsed time, or
deviation from a reference.

The problem of eco-driving can be formulated in an optimal
control framework by choosing the stage cost L(x,u,t) to be
the rate of fuel consumption of the vehicle [13]. However,
choosing to minimise fuel consumption alone can lead to
behaviour that is unnatural for a human driver, such as
travelling far below the speed limit or leaving large spacings
to the preceding vehicle. To address this, the authors of the
present paper considered a modified optimal control problem
in [28] in which the cost function has the form

Ty
J = / (La+ OéLf) dt 2)
T;
where Ly is a fuel consumption term, and the additional term
L, represents driver preferences on speed, acceleration, and
inter-vehicle spacings. By adjusting the weighting parameter
a between oo and 0, it is possible to obtain behaviour that is
intermediate between minimising fuel consumption and fully
respecting the driver’s preferred driving style. This gives a
parameter that can be tuned to ensure that the solution of the
optimal control problem does not seem unnatural to the driver,
respecting normal following distances for example.
Analytical solutions of optimal control problems only exist
in special cases, such as when there are bounds on the input
and both cost and dynamics are linear [29] or for unconstrained
linear systems with quadratic costs [30]. However, the latter
case is practically useful because systems may often be lin-
earised and cost functions locally approximated as quadratic,
an approach that we adopt in the current work to relate the
weighting parameters of our model’s cost function to the
parameters of existing models of driver behaviour. In practice,
optimal control problems are often solved using numerical
methods. Two effective approaches are multiple shooting, in
which the input is parameterised as a function of time and the
state integrated piecewise over times of interest [31], and direct
collocation, in which both the input and state are incorporated
into a nonlinear programming problem as decision variables
[32]. These methods of solution are not guaranteed to find the
global solution of the problem, yet work well in practice.

B. Models of vehicle following

Many models of driver acceleration and braking behaviour
express the acceleration of a individual driver as a function
of their current speed and the relative position and velocity
of the preceding vehicle. This leads to a differential equation
describing motion known as a ‘car-following’ model. Such car-
following models have their origin in [33], which proposes to
describe vehicle-following by the delay differential equation

O=Aop(t—71)—v(t—71)], 3)



in which v denotes ego-vehicle velocity, v; denotes the
velocity of the leader, 7 is a time-delay parameter and A is a
sensitivity parameter. That is, the driver accelerates in propor-
tion to the relative velocity of the vehicle ahead, incorporating
some time delay. This shows a good fit to experimental data,
but is an oversimplified view of actual driver behaviour as
there is no consideration of the distance to the lead vehicle.
Subsequent works have incorporated this distance, as well as
other factors, leading to many car-following models [22], [34],
[35], [36]. Because of the large number of models available
in the literature, in the remainder of this section we restrict
our attention to two that are directly relevent to the present
work. For a more extensive overview, we direct the reader to
the review which may be found in [37].

The IDM was proposed in [22] to model congested states of
traffic, and is a car-following model described by the ordinary
differential equation

-] e

where the desired inter-vehicle spacing s*(v, Av) is given by

v Av
(v, Av) = s +Tv + —= 5
s*(v, Av) = 89 v N (5)

and where z; denotes the position of the preceding vehicle
and Av = vy — v is the relative velocity of that vehicle.
The model parameters a, b, vgq, sg, 7' may vary between
drivers and are respectively the maximum acceleration, desired
deceleration, free-flow velocity, minimum desired spacing, and
the desired time-gap to the leading vehicle. Our interest in
this model is that it provides a useful set of parameters that
characterise driver behaviour during car-following, which have
well-defined physical meanings and for which there exist well-
tested fitting procedures [38].

A car-following model using linear quadratic optimal con-
trol, and hence that is related to the model developed in the
present paper, appeared in [39]. This considered the driver as
an optimal controller that regulates the vehicle spacing and
velocity to desired set points s* and v* by minimising

J:/OO [qs(s—s*)2+qv(v—v*)2+ij2} dt (6)
0

which, as there are no acceleration constraints, leads to linear
driver behaviour according to the differential equation:

—ky(v—v*) — ks(s — s¥) @)

v =
Although appealing due to its interpretation that the driver
attempts to achieve preferred velocities and spacings to a lead
vehicle, the model is unrealistic at large distances as then the
acceleration is large and unbounded. A further practical issue
is that the parameters g5 and ¢, in the cost function have no
physical interpretation, and instead the model must be fit to a
particular driver by estimating k4 and k, from driving data.

C. Models of cornering speed

A model of driver speed choice in curves was suggested
in [40] which, inspired by models of braking based on time-
to-collision (TTC), considered a quantity called time-to-lane-
crossing (TLC) to explain variations in driving speed for

corners of different curvatures. By removing visual feedback
while entering a corner, the authors demonstrated that drivers
estimate the curvature of a corner on approach and make an
anticipatory steering action based on the perceived curvature.
Later work using a driving simulator also demonstrated that
differences between individuals’ cornering speeds could be
explained by differences in their steering competance [41],
measured as their ability to accurately track the centre of a
lane on a straight road.

Further study of driver speed in curves was carried out by
Reymond et al. in [23], which investigated the effect of lateral
acceleration in drivers’ choice of speed when negotiating
curves, demonstrating that drivers choose their cornering speed
based on a lateral acceleration limit and a ‘safety margin’ of
error when estimating curvature. Denoting road curvature as
K, this leads to a model of maximum driver speed in the curve
given by

Fmax
K+ A

®)

Umax =

where the parameters I'y,,x and A represent the maximum
lateral acceleration and the curvature safety margin. These
parameters vary from driver to driver, and together characterise
a particular driver’s cornering speed preferences. As it lacks
a name, we refer to this model as ‘Reymond’s model’ for the
remainder of the paper.

A similar curvature-speed relationship is suggested in [42],
where the maximum allowable speed in curves is predicted as:

Umax = Ok 3 &)

An interesting feature of that work is that a trajectory for
vehicle longitudinal motion is generated by minimising a cost
function that penalises time and includes a quadratic penalty
on jerk, with this velocity limit included as a constraint.
Hence, this models not only the choice of speed for a given
curvature, but also the transition while entering and exiting the
corner. This is especially relevant to eco-driving applications,
since coasting down to reduce speed before cornering can
significantly affect fuel consumption.

III. THE DRIVER SATISFACTION MODEL

We now describe the Driver Satisfaction Model (DSM)
as a model of driver acceleration behaviour, noting that our
goal is a model that gives similar behaviour to the IDM
in car-following situations, but that can also handle velocity
constraints due to cornering and be incorporated into eco-
driving optimal control problems. In the following sections, we
introduce a stage cost function for the DSM and then relate its
weighting parameters to the parameters of the IDM. Variations
in speed due to cornering are then incorporated by adding a
constraint on vehicle velocity, in a similar manner to [42].

A. Development of cost function and constraints

The stage cost function used in the DSM is based on the
optimal control model of car-following given in [39], which
has the cost function (6). Using this as a starting point, we
make modifications to add a limit to the maximum acceleration



and to modify the penalty on inter-vehicle spacing to better
reflect the driver’s indifference to far-away vehicles.

When the spacing s between vehicles is large, the behaviour
of (6) becomes dominated by the s — s* term. This is quite
unrealistic, as drivers are likely to be indifferent to far away
vehicles. To address this, we introduce a penalty function for
vehicle spacing s that tends to a constant value when s is large,
reflecting this indifference. Hence we use a penalty function
that is approximately quadratic near its minimum, but is a
rational function with a quadratic term in the denominator
according to
(s/sq—1)°
(s/sa) +1

in which sy denotes the driver’s ‘desired’ spacing. The justifi-
cation for referring to s4 as the driver’s desired spacing is that
it corresponds to the minimum of the penalty, and therefore
will correspond to an equilibrium value for the model. The
penalty is approximately constant for s > s4, so that in this
case the driver behaviour is unaffected by any lead vehicle.

To complete the cost, we add a quadratic penalty function
for velocity that penalises the difference to a ‘desired’ velocity
which would be chosen by the driver in the absence of a
lead vehicle. This is similar to (6). Combining these penalty
functions then leads to the DSM stage cost

s/sq—1)2

Lysm = (’U,/CL)2 + B(’U//Ud - 1)2 T WW

where  and -y represent weighting parameters to trade-off the
three competing objectives.

Noting that minimisation of (11) alone may lead to unreal-
istically large accelerations when either s — s* or v — v* are
large in magnitude, we also introduce a limit on the maximum
acceleration. Considering the acceleration as a control input
and denoting it by u, we limit it so that

Vs(s) = (10)

(1)

uw<a (12)

where a denotes a constant parameter which may be consid-
ered as a characteristic of a particular driver. We introduce a
similar constraint on the vehicle spacing, specifying that

5s>0 (13)

at all times in order to avoid collisions with the lead vehicle.

B. Choice of weighting parameters

At this point, the parameters sy, 3 and ~y are still arbitrary,
making the model difficult to apply. Given the extensive
literature on parameter estimation for car-following models,
we relate these values to the parameters of the IDM. The
following result provides a variational formulation of the IDM,
and will be used throughout the remainder of this section.

Theorem 1. For fixed initial velocity v(0) = v;, the IDM (4)

is optimal for the stage cost
w\ 2 U s*\?
SOROIC
a a S

v J 5%\ 2 ?
Vd S
(14)

and, writing vy = v(T), the terminal cost

() -

subject to the constraints U =u, S =V — VL.

Gum(vg) = —2d

a(d + 1) (15)

Proof. From (4), the IDM is optimal for the stage cost

. B N 2

v v s
ONON

a V4 S

as this has a minimum value of zero which is attained if and
only if (4) is satisfied at all times of interest.

Expanding, collecting terms in ¥/a, and integrating from
t=0tot="1T, we find,

T T T ) .
/ let:/ Lidde—/ 2 <”> —1 Y a
0 0 0 Vo a

whereby the second term can be integrated by changing
variables from ¢ to v:

[5G ] o=t ount

L, =

i

Because the initial velocity is fixed, the term ¢igm(v;) is
constant and may be dropped from the cost function without
affecting the solution. O

The cost function (14) is convenient for analysis, but not for
direct minimisation via numerical methods. In particular the
first and second derivatives are equal to zero when v = 0 and
approach zero as s — co, which typically causes convergence
problems. It also has a singularity at s = 0, which leads to
ill-conditioning when s is small.

We construct expressions for sy, 8 and v in terms of the
parameters in the IDM by relating the two stage costs (11) and
(14) when considering small perturbations from equilibrium
values. We first consider a vehicle on a straight road clear of
other traffic. In that case, we may take s — oo in the IDM
stage cost (14):

Lign = [(0/u)" ~1]" + (u/a)?

To fix B such that we obtain similar behaviour to (14) for
v near vy, we find a quadratic approximation ¢(v) of

s 2
aw) = [(v/va)’ ~1]
by expansion in a Taylor series about vg:

3(0) = a(va) + ¢ (Wa)(v — va) + =" (va) (v — va)?

2
Noting that q(vgq) = ¢'(vq) = 0, we have
. 52
q(v) = —5(v— Ud)2
Vg

after evaluating ¢"/(vgq). Comparing to the quadratic velocity
penalty in the DSM stage cost (11), this suggests choosing

B =0 (16)



to obtain similar behaviour near equilibrium when s is large.
In particular, with this choice of S we have
li 82Ldsm li 82Lidm
1m ~ l1m
s—oo0  Ov? s—oo  Ov2

considering second derivatives at the equilibrium point v = vg.

To find an expression for s4, we consider the special case
where there is a lead vehicle with a constant velocity v4. Under
these conditions, the IDM has an equilibrium at:

T
Seq = _ Sotlup a7

1 - (vz/va)’

By inspection of (11) we see that the minimum over s,
and hence the equilibrium spacing when the lead vehicle is
travelling at constant velocity, is at s = s4. We would like this
to correspond to the equilibrium of the IDM, so we choose:

sog+Tv

1 (vp/va)’

This gives greater following distances for larger values of
v, in common with the IDM and many other models. The
dependence on v rather than vy is deliberate and leads to
behaviour that is more similar to the IDM in braking, for which
we recall s* = sqg + Tv.

To fix v, we once again consider taking a local approx-
imation of the IDM stage cost near this equilibrium point,
requiring that the second partial derivatives with respect to s
of Ligm and Ly, are equal there. Hence we require

9’ Lam _ 9°Lidm
ds2  9s?
at the equilibrium point v = veq, 5 = S¢q. Evaluating the partial
derivatives, we find

Veq = VL,

sqa(v) = (18)

82 Ldsm
0s?

g
= (19)
54
and:
P Ligm _ 8(s)*  12(s")? [ (s7)? v\’ u
0s2 848 + sqt 842 + (UTJ) - a 9
To simplify (20), we note that if the DSM is to behave
similarly to the IDM near equilibrium, then we will have

U1 v\° (s*)?
a o 542

so that the second term may be neglected, leading to:

?Lian _ 8(s*)*

an _ 8(57) Q1)
0s2 545

Recalling that we wished the partial derivatives to be equal at

the equilibrium point, we may now equate (19) and (21) and

rearrange for vy to yield:

1) =8 (vfva)’ ~1)°

This completes the specification of the stage cost function
for the DSM, as the weighting parameters 5 and ~ and the
desired spacing sq appearing in (11) have now been specified
in terms of the driver preferences a, vq, sg, and 7.

(22)

Remark 1. If desired, the dependence of sq and v on v may be
removed by substitution of v = vy, which is true at equilibrium.
In that case, the DSM stage cost (11) is quasiconvex in u,
v and s. In particular, this guarantees that it has a single
local minimum which is also the global minimum. However,
in cases considering limits on speed during cornering as in
the following section, the resulting optimisation problem is
nonconvex anyway and in such cases the authors have found
that retaining the dependence on v typically leads to more
natural driving behaviour.

C. Incorporation of cornering constraints

So far, the emphasis has been on developing a model
compatible with the parameters of the IDM and yielding
similar behaviour in vehicle-following. We now extend this
to incorporate limits to the speed while cornering, considering
the maximum speed as a function of curvature implied by the
lateral acceleration limits of [23]:

Fmax

k(x) + A 23)

We note that the curvature x(x) depends on the distance trav-
elled down the road, and therefore the constraint function is in
general a nonlinear function of travelled distance. Practically,
this can be modelled as a cubic spline curve, which is the
approach used in our implementation.

For completeness, we now state the entire model:

Optimization 1 (Driver Satisfaction Model).
Solve the optimal control problem,

T
/ Lysm(xr — x,v,u) dt
0

min
u(t)
s.t. T=wv, vV=u
u<a, xp—z2>0,
v < /Toar/ (K(x) + A)
x(0) = xzg, ©v(0) =1

where the stage cost Ly, is given by
Lasm(s, v, 1) = (u/a)® + 6*(v/vg — 1)°
2 (/54— 1)°
+8 ( v/vg)® — 1)
(v/va) (s/sq4)?+1
where we have defined
sg +Tv

1 - (vp/va)’

and where xy, is the position of the rear of the lead vehicle.

Sq =

It should be noted that in this form, the model is acausal in
that it assumes knowledge of the leader’s future position x, ()
and the upcoming road curvature x(x). If it is desired to gen-
erate predictions from the model in real time, as is possible for
the IDM, some simplifying assumption is required about the
future behaviour of the lead vehicle, such as that it continues
travelling at its current velocity, accelerates smoothly up to the
speed limit, or that it brakes to a halt before an approaching



Parameter | Value (IDM)

Value (DSM)

a 4 m/s2 4 m/s?
b 4 m/s? -

Vg 30 m/s 30 m/s
S0 2m 2m
T 1.5s 1.5s
1) 4 4

TABLE I: Model parameters for the comparison
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Fig. 1: Car following, comparison with IDM for different ‘a’

intersection. When considering curve driving however, acausal
modelling is natural in that drivers decelerate in response to
upcoming curves, before they are encountered.

D. Comparison of the model with IDM

As the DSM expressions for sg4, 6 and v developed in the
preceding sections were derived to provide similar behaviour
to the IDM, it is interesting to compare the predictions of the
two models in some common situations. Figure 1 shows a
comparison of vehicle velocity under the DSM and the IDM
when accelerating from a standing start to follow a vehicle
of velocity 15m/s, for different values of the parameter a.
Other parameters used for this comparison are given in Table
I. The velocity and spacing of the two models evolve similarly
in each case, and increases in a (which represents the driver
preference on maximum acceleration) affects both models by
increasing the initial acceleration, decreasing the maximum
spacing, and increasing the time taken to reach steady state,
while leaving the maximum velocity almost unchanged.

One interesting feature of the IDM compared to many other
car-following models is the ability to handle emergency brak-
ing situations in which the deceleration may be large in order
to avoid a collision. As the DSM contains no lower bound
on the acceleration and contains a constraint to ensure that
the vehicle spacing remains positive, it can also handle harsh
braking situations in which large decelerations are required,
avoiding a collision if possible to do so. A comparison between
the two models under braking is shown in Figure 2, in which
the ego vehicle is initially travelling at 30m/s and there is
a slower vehicle travelling at 15m/s at 50m distance. In this
Figure the parameter 7' is varied, which represents a driver
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Fig. 2: Braking, comparison with IDM for different ‘1"

preference on time headway while following another vehicle.
In this case, the final spacing and velocity for the two models is
equal, but the IDM shows much greater decelerations initially
of over 10m/s?. For both models, the effect of increasing T'
is to increase the final following distance and to increase
the initial deceleration, which is expected if a greater final
following distance is desired.

IV. MODEL VALIDATION

A. Method

We compared predictions of our model to naturalistic driv-
ing data collected by ADAM [43] as part of the G-ACTIVE
(Green Adaptive ConTrol for Interconnected VEhicles) project
[44]. ADAM is placed in a study participant’s own vehicle,
and collects data on vehicle position and velocity using GPS
as well as the spacing to the lead vehicle by post-processing
of recorded stereo video. Data collected from 3 different
drivers was used, which included both urban and rural driving
situations. To give a fair evaluation of the two models, the
data was split into ‘training’ and ‘test’ data. The training data
consisted of approximately 10 minutes of car-following and
cornering data for each driver that were used to fit parameters
of the IDM and Reymond’s cornering model by minimising
the mean square velocity error, as described in [38] and [23].
The parameters of the DSM were then chosen to be identical
to the corresponding parameters of the IDM and the cornering
model. The test data were seperated into 30 second segments
for use as cases for validation. Segments where the driver
was travelling at a constant speed were discarded, and the
remaining testcases were classified into: starting and stopping,
vehicle-following, and cornering, by the following criteria:
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« Start/stop: There is no leading vehicle. The driver either
brakes to a stop at, or accelerates away from, a static road
feature such as an intersection or traffic signals.

o Vehicle-following: The driver is following another ve-
hicle, which is accelerating and braking due to traffic
conditions. Corners and intersections may be included.

o Cornering: There is no leading vehicle. The driver’s
speed varies due to the road curvature at corners and
intersections.

For the start/stop and vehicle-following tests, predictions of the
IDM are compared to those of the DSM. Similarly, Reymond’s
model is compared with the predictions of the DSM for the
cornering tests. For each testcase, both models were simulated
using the leader velocity collected from ADAM and applicable
speed limit and road curvature data. We computed the root-
mean-square velocity error,

1 =(T)
RMSE = \/LU(T) /0 ['Upredicted(z) - vaclual(I)P dx
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Fig. 5: Example of cornering testcase (Test C4)
Test RMSEDSM RMSEIDM MAXEDSM MAXEIDM
/ms™* /ms™* /ms™? /ms™*
S1 1.70 0.82 343 2.26
S2 0.57 0.84 1.17 2.07
S3 2.19 1.18 4.89 3.08
S4 0.97 1.22 1.77 3.44
S5 0.72 1.18 1.50 2.79
S6 0.73 1.55 1.91 4.28
S7 2.91 2.34 6.52 5.00
S8 3.03 2.31 7.10 4.99
S9 2.06 2.24 4.14 3.58
S10 1.06 2.73 2.34 4.31
mean | 1.59 1.64 3.48 3.58
corr 0.48 0.60

TABLE II: Results for start/stop testcases

and also the maximum velocity error,

MAXE = max

2€[z(0),z(T)] |Upredicted({£) — vactua](x”

to measure the goodness-of-fit of the model to the data. We
take the integral with respect to distance in the RMS error,
rather than with respect to time, to ensure that we are always
comparing speeds at the same position on the road. This is
especially important for the cornering testcases.

Simulations and the subsequent calculation of error metrics
were performed in MATLAB. The DSM was implemented by
discretising the model for a step of 1s using direct collocation
as described in [32]. The automatic differentiation software
CasADi [45] was used to formulate the collocation equations,
and the resulting nonlinear programming problem solved with
IPOPT [46]. No attempt was made to improve computational
efficiency (for example by code generation), yet this solution
procedure took an average of 0.42s to optimize 30s of driver
behaviour, using a mobile Intel core i5 processor, indicating
that real-time implementation is likely to be feasible.

B. Results and Analysis

In all three scenarios, the RMSE and MAXE is smaller
for the DSM than it is for either the IDM or Reymond’s
model, although in the car-following and start-stop testcases



Test RMSEDSM RMSEIDM MAXEDSM MAXEIDM
/ms™! /ms™* /ms™* /ms™!
F1 0.67 0.81 1.33 1.70
F2 1.31 0.65 1.87 3.70
F3 1.48 1.51 2.65 2.46
F4 0.82 1.11 2.08 2.70
F5 0.55 0.48 1.38 1.38
Fé6 0.30 0.32 0.71 0.87
F7 0.59 0.69 0.94 1.05
F8 0.34 0.47 0.81 1.01
F9 0.45 0.43 0.73 0.92
F10 1.48 2.80 3.11 4.34
mean | 0.80 0.93 1.56 2.01
corr 0.78 0.89

TABLE III: Results for vehicle-following testcases

Test RMSEDSM RMSERey MAXEDSM MAXERey
/ms™! /ms™? /ms™t /ms™?

C1 3.94 421 6.47 8.95
C2 2.74 493 4.11 9.17
C3 2.23 3.28 5.19 7.03
C4 1.84 3.68 5.99 10.34
C5 1.60 2.39 4.75 9.39
(8 2.90 3.61 8.83 12.85
Cc7 5.13 3.56 8.21 16.20
C8 1.07 1.51 2.83 4.10
Cc9 5.38 5.49 15.05 15.05
C10 3.08 6.35 4.65 12.35
mean | 2.99 3.90 6.61 10.54
corr 0.58 0.73

TABLE IV: Results for cornering testcases

this improvement appears minor. All scenarios show a positive
correlation between the error metric when simulating using the
DSM and when using the reference model, implying that the
DSM tends to perform well for the testcases in which the
reference models perform well, and vice versa.

To determine if these reductions in error were statistically
significant, we compared the RMSE values for the DSM with
that of the benchmark using the Wilcoxon signed-rank test, a
non-parametric test of the paired differences. This indicated
that the differences in RMSE for the start/stop (Z =0, p =1,
0) and vehicle-following (Z = —1.27, p = 0.202,
r = 0.40) testcases were not significant at the 0.05 significance
level. For the cornering testcase, the differences in RMSE
were significant (Z = —2.08, p = 0.037, » = 0.66), which
was also the case for the MAXE error metric (Z = —2.61,
p = 0.009, r = 0.82). This suggests that the DSM gives
comparable performance to the IDM in car-following and start-
stop situations, while outperforming the model of Reymond et
al. in cornering situations.

r =

V. USAGE EXAMPLE

We now demonstrate the use of the DSM in an eco-driving
optimization by considering a braking scenario in which an
electric vehicle must slow from highway speeds to a low
speed due to a corner, as may occur at the end of an off-
ramp or sliproad. We consider a vehicle that may regenerate
a factor 0 < 6 < 1 of braking energy, and has energy losses
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Fig. 6: Eco-driving optimal control example

due to aerodynamic drag and rolling resistance in which the
combined drag force is given by

1
Firag = cqv® + me,, = 5PuCpA v? + Crrmg

in which CpA and Cgrp denotes the usual coefficients of
aerodynamic drag and rolling resistance, and mg is the weight
of the vehicle. We additionally consider a simplified model of
an electric powertrain with losses due to the resistance R, of
the motor windings, and a reduction gear of ratio IV,. These
resistive losses are given by R,,i2, where i,, is the motor

current given by
rF

Nyk

in which F' denotes the traction force at the wheels,  denotes
wheel radius, and k is the torque constant of the electrical
motor. For simplicity, we ignore other electrical losses.

To correctly handle the energy loss when braking, we
introduce different input variables for acceleration due to the
vehicle engine and brakes, considering © = u. + up where
ue > 0 is the component of acceleration due to the engine
only, and up < 0 is that due to braking. Considering the u
term in (11), we can expand in u, and u; giving

(u/a)* = (ue/a)* + 2ucuy/a® + (uy/a)®

and noting that uweup, = 0 if, as in normal driving, the
accelerator and brake are not used simultaneously, we find:

(u/a)® = (uefa)” + (up/a)”

im =

(24)



In fact, as we may always establish this equality for any solu-
tion u(t) of Optimization 1 by choosing u.(t) = max (0, u(t))
and u(t) = min(0, u(t)), it is evident that using the expres-
sion on the right hand side of (24) in place of (u/a)’ in the
DSM stage cost will ensure that accelerator and brake are
not activated simultaneously, without otherwise changing the
result. This leads to the modified stage cost function:

(ue/a)* + (up/a)® + 6 (v/va — 1)

s \2(s/sa—1)°
8 ((v/vd) a 1) (s/sa)®+1

For completeness, we state the optimal control problem with
this modified stage cost.

Lélsm =
(25)

Optimization 2 (Example eco-driving optimization).
Solve the optimal control problem,

min
u(t)
s.t. T=wv,

T
/ (Lo (@ — 2,0, tey ) + ALy (0)] di
0

b:ue—I—ub—cva—cTT
0§u8§a7 Ub§07 871}20

v < V/Thar/ (6(z) + A)
z(0) =z, v(0) = o
where the DSM stage cost L'

dsm

is given by
L = (ue/a)” + (wp/a)* + 6% (v/va — 1)

2 (s/sa—1)°
+8 ((UL/Ud)6 - 1) (5/53)2 T

with sq(v) is defined as in Optimization 1, and

2
Lioss(v) = —(1 — 0)muyv + cqv® + ¢ppv + Ry <rmue)
Nyk

is the stage cost associated with energy losses.

The result of this optimization for different values of «
in the braking scenario is shown in Figure 6. The corner is
modelled as a cubic spline of increasing curvature as a function
of x, with curvature increasing over an approximately 80m
length, and a final (maximum) curvature chosen to correspond
to a cornering speed of 6m/s. The initial velocity was taken as
vo = 25m/s, and the vehicle is initially at £y = Okm with the
corner placed at z. = 1.2km. For the vehicle, we take m =
1500kg, 7 = 0.29, CpA = 0.7 and Crr = 0.005, typical
for a medium-sized family car. For the electric powertrain we
set k = 0.12, R,, = 0.1, Ny = 15, and 6 = 0.7. The driver
preference parameters used in the DSM are those in Table I
that were used for the previous comparison examples.

It is apparent that as the parameter o penalising energy
usage is increased, the electric motor is used less and at lower
torques on approach to the corner, with a greater reduction
in speed via coasting under the effects of drag. In the most
extreme case of a = 0.3, this requires 900m of coasting and
reduces energy loss by approximately 43%, but intermediate
values of « also give reductions in energy loss while remaining
closer to the ‘natural’ velocity profile given by the o = 0 case.

VI. CONCLUSION

We have introduced a method based on optimal control
model to incorporate driver preferences into eco-driving as-
sistance systems. Models of longitudinal driver behaviour
available from the traffic modelling literature were unsuitable
for this purpose, so we developed a novel Driver Satisfac-
tion Model that characterises the driver using parameters in
common with the well-known Intelligent Driver Model, but
in addition is compatible with eco-driving optimal control
problems and is capable of reproducing driver speed in curves.
As the DSM is based on optimal control, it may be directly
used for eco-driving optimizations in which fuel-saving ve-
locity profiles are sought while respecting a ‘natural’ driving
style. The model has been validated by comparison with
naturalistic driving data in several scenarios, finding it gives
comparable or better performance than existing models in the
literature for prediction of the speed of an individual vehicle in
typical vehicle-following and cornering situations. Finally, we
illustrated the potential for optimal control to be used to trade-
off energy savings and a natural driving style in a braking and
cornering scenario for an electric vehicle.

ACKNOWLEDGEMENT

We are grateful for support of the UK Engineering
and Physical Sciences Research Council, grant number
EP/N022262/1 (Green Adaptive Control for Future Intercon-
nected Vehicles).

REFERENCES

[1] L. Evans, “Driver behavior effects on fuel consumption in urban
driving,” in Proceedings of the Human Factors Society Annual Meeting,
vol. 22, no. 1. Sage Publications Sage CA: Los Angeles, CA, 1978,
pp. 437-442.

[2] M. P. Vandenbergh, J. Barkenbus, and J. Gilligan, “Individual carbon
emissions: The low-hanging fruit,” UCLA L. Rev., vol. 55, p. 1701, 2007.

[3] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,”
Energy Policy, vol. 38, no. 2, pp. 762-769, 2010.

[4] V. Heijne, N. Ligterink, and U. Stelwagen, “Potential of eco-driving.
UDRIVE Deliverable D45.1. EU FP7 Project UDRIVE Consortium.
https://doi.org/10.26323/UDRIVE_D45.1,” 2017.

[5] M. Zarkadoula, G. Zoidis, and E. Tritopoulou, “Training urban bus
drivers to promote smart driving: A note on a Greek eco-driving pilot
program,” Transportation Research Part D: Transport and Environment,
vol. 12, no. 6, pp. 449-451, 2007.

[6] B. Beusen, S. Broekx, T. Denys, C. Beckx, B. Degraecuwe, M. Gijsbers,
K. Scheepers, L. Govaerts, R. Torfs, and L. I. Panis, “Using on-board
logging devices to study the longer-term impact of an eco-driving
course,” Transportation research part D: transport and environment,
vol. 14, no. 7, pp. 514-520, 2009.

[71 H. Rakha and R. K. Kamalanathsharma, “Eco-driving at signalized
intersections using V2I communication,” in Intelligent Transportation
Systems (ITSC), 2011 14th International IEEE Conference on. 1EEE,
2011, pp. 341-346.

[8] S. Azzi, G. Reymond, F. Mérienne, and A. Kemeny, “Eco-driving per-
formance assessment with in-car visual and haptic feedback assistance,”
Journal of Computing and Information Science in Engineering, vol. 11,
no. 4, p. 041005, 2011.

[9] S. A. Birrell, M. S. Young, and A. M. Weldon, “Vibrotactile pedals: pro-
vision of haptic feedback to support economical driving,” Ergonomics,
vol. 56, no. 2, pp. 282-292, 2013.

[10] S. E. Li, S. Xu, X. Huang, B. Cheng, and H. Peng, “Eco-departure of
connected vehicles with v2x communication at signalized intersections,”
IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5439—
5449, 2015.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

[35]

H. Ma, H. Xie, and D. Brown, “Eco-driving assistance system for a
manual transmission bus based on machine learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 2, pp. 572-581, 2018.
M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling
horizon control framework for driver assistance systems. part i: Math-
ematical formulation and non-cooperative systems,” Transportation re-
search part C: emerging technologies, vol. 40, pp. 271-289, 2014.

A. Sciarretta, G. De Nunzio, and L. L. Ojeda, “Optimal ecodriving
control: Energy-efficient driving of road vehicles as an optimal control
problem,” IEEE Control Systems, vol. 35, no. 5, pp. 71-90, 2015.

Y. Saboohi and H. Farzaneh, “Model for developing an eco-driving
strategy of a passenger vehicle based on the least fuel consumption,”
Applied Energy, vol. 86, no. 10, pp. 1925-1932, 2009.

F. Mensing, R. Trigui, and E. Bideaux, “Vehicle trajectory optimiza-
tion for application in eco-driving,” in Vehicle Power and Propulsion
Conference (VPPC), 2011 IEEE. 1IEEE, 2011, pp. 1-6.

M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “On board
eco-driving system for varying road-traffic environments using model
predictive control.” in CCA, 2010, pp. 1636-1641.

Q. Jin, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Power-based
optimal longitudinal control for a connected eco-driving system,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp.
2900-2910, 2016.

F. Ding and H. Jin, “On the optimal speed profile for eco-driving on
curved roads,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 12, pp. 4000-4010, 2018.

R. Parasuraman, P. A. Hancock, and O. Olofinboba, “Alarm effectiveness
in driver-centred collision-warning systems,” Ergonomics, vol. 40, no. 3,
pp. 390-399, 1997.

J. M. Fleming, C. K. Allison, X. Yan, N. A. Stanton, and R. Lot,
“Adaptive driver modelling in ADAS to improve user acceptance: A
study using naturalistic data,” Safety Science, 2018.

X. Xiang, K. Zhou, W.-B. Zhang, W. Qin, and Q. Mao, “A closed-
loop speed advisory model with driver’s behavior adaptability for
eco-driving,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 6, pp. 3313-3324, 2015.

M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review E,
vol. 62, no. 2, p. 1805, 2000.

G. Reymond, A. Kemeny, J. Droulez, and A. Berthoz, “Role of lateral
acceleration in curve driving: Driver model and experiments on a real
vehicle and a driving simulator,” Human factors, vol. 43, no. 3, pp.
483-495, 2001.

J. Monteil, N. OHara, V. Cahill, and M. Bouroche, ‘“Real-time estimation
of drivers’ behaviour,” in Intelligent Transportation Systems (ITSC),
2015 IEEE 18th International Conference on. IEEE, 2015, pp. 2046—
2052.

J. M. Fleming, X. Yan, and R. Lot, “Fitting cornering speed models with
one-class support vector machines,” in 2019 IEEE Intelligent Vehicles
Symposium (1V). 1EEE, 2019, pp. 2457-2462.

R. E. Bellman, “Dynamic programming,” 1957.

L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze,
“The mathematical theory of optimal processes,” 1962.

J. Fleming, X. Yan, C. Allison, N. Stanton, and R. Lot, “Driver modeling
and implementation of a fuel-saving ADAS,” in IEEE Conference on
Systems, Man and Cybernetics, 2018.

R. Bellman, I. Glicksberg, and O. Gross, “On the bang-bang control
problem,” Quarterly of Applied Mathematics, vol. 14, no. 1, pp. 11-18,
1956.

R. E. Kalman, “Contributions to the theory of optimal control,” Bol.
Soc. Mat. Mexicana, vol. 5, no. 2, pp. 102-119, 1960.

H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603-1608, 1984.

C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using
nonlinear programming and collocation,” Journal of Guidance, Control,
and Dynamics, vol. 10, no. 4, pp. 338-342, 1987.

R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics:
studies in car following,” Operations research, vol. 6, no. 2, pp. 165—
184, 1958.

P. G. Gipps, “A behavioural car-following model for computer simula-
tion,” Transportation Research Part B: Methodological, vol. 15, no. 2,
pp. 105-111, 1981.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,”
Physical review E, vol. 51, no. 2, p. 1035, 1995.

(36]

(37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[40]

S. Krau3, P. Wagner, and C. Gawron, “Metastable states in a microscopic
model of traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.
R. E. Wilson and J. A. Ward, “Car-following models: fifty years of linear
stability analysis—a mathematical perspective,” Transportation Planning
and Technology, vol. 34, no. 1, pp. 318, 2011.

A. Kesting and M. Treiber, “Calibrating car-following models by using
trajectory data: Methodological study,” Transportation Research Record:
Journal of the Transportation Research Board, no. 2088, pp. 148-156,
2008.

G. Burnham, J. Seo, and G. Bekey, “Identification of human driver
models in car following,” IEEE transactions on Automatic Control,
vol. 19, no. 6, pp. 911-915, 1974.

H. Godthelp, “Vehicle control during curve driving,” Human Factors,
vol. 28, no. 2, pp. 211-221, 1986.

W. Van Winsum and H. Godthelp, “Speed choice and steering behavior
in curve driving,” Human factors, vol. 38, no. 3, pp. 434441, 1996.
P. Bosetti, M. Da Lio, and A. Saroldi, “On curve negotiation: From driver
support to automation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 4, pp. 2082-2093, 2015.

X. Yan, J. Fleming, C. Allison, and R. Lot, “Portable Automobile Data
Acquisition Module (ADAM) for naturalistic driving study,” in 15th
European Automotive Congress (EAEC 2017), 2017.

R. Lot and X. Yan, “The G-ACTIVE project,” http://www.g-active.uk,
2016, accessed: 2018-04-13.

J. Andersson, J. Akesson, and M. Diehl, “Casadi: A symbolic package
for automatic differentiation and optimal control,” in Recent advances
in algorithmic differentiation. Springer, 2012, pp. 297-307.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.

James Fleming (M’12) was born in County
Durham, UK in 1990. He received the MEng and
DPhil degrees in Engineering Science from the Uni-
versity of Oxford, UK in 2012 and 2016 respec-
tively.

In 2016, he joined the Faculty of Engineering and
Physical Sciences at the University of Southampton
as a Research Fellow to work on the G-Active
(Green, Adaptive Control of Interconnected Vehi-
cles) project. Since September 2019, he has been
a Lecturer in the Wolfson School of Electrical,

Mechanical and Manufacturing Engineering at Loughborough University. He
researches the theory and practice of optimal and model predictive control,
including applications to fuel-efficient driving, motorcycle stabilisation, and
renewable energy.

Xingda Yan was born in 1989. He received the
B.Eng. degree in automation from Harbin Institute
of Technology, Harbin, China in 2012, and the Ph.D.
degree in electrical engineering from the University
of Southampton, U.K in 2017.

He worked as a Research Fellow with the Fac-
ulty of Engineering and Physical Sciences at the
University of Southampton from 2016 to 2019. He
is currently a research fellow in the Department
of Mechanical Engineering Sciences, University of
Surrey, U.K. His research interests include power

electronics, hybrid system modelling and control, model predictive control,
hybrid electric vehicle modelling and energy management.

Roberto Lot received a Master’s Degree cum laude
in Mechanical Engineering in 1994 and a PhD in
Mechanics of Machines in 1998 from the University
of Padova, Italy.

From 2014 to 2019 he was Professor of Auto-
motive Engineering at the University of Southamp-
ton, UK. Currently he is within the Department of
Industrial Engineering at the University of Padova.
His research interests include dynamics and control
of road and race vehicles and contributions to make
our vehicles safer, faster, and more eco-friendly. He

has directed several national and international research projects and published
more than 100 scientific papers.



