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Abstract

Reliable condition monitoring (CM) can be an effective means to significantly reduce

wind turbine (WT) downtime, operations and maintenance costs and plan preventative

maintenance in advance. The WT generator voltage and current output, if sampled at

a sufficiently high rate (kHz range), can provide a rich source of data for CM. However,

the electrical output of the WT generator is frequently shown to be complex and noisy in

nature due to the varying and turbulent nature of the wind. Thus, a fully satisfactory

technique that is capable to provide accurate interpretation of the WT electrical output

has not been achieved to date.

The objective of the research described in this thesis is to develop reliable WT CM

using advanced signal processing techniques so that fast analysis of non-stationary current

measurements with high diagnostic accuracy is achieved. The diagnostic accuracy and

reliability of the proposed techniques have been evaluated using data from a laboratory

test rig where experiments are performed under two levels of rotor electrical asymmetry

faults. The experimental test rig was run under fixed and variable speed driving conditions

to investigate the kind of results expected under such conditions.

An effective extended Kalman filter (EKF) based method is proposed to iteratively

track the characteristic fault frequencies in WT CM signals as the WT speed varies. The

EKF performance was compared with some of the leading WT CM techniques to establish

its pros and cons. The reported experimental findings demonstrate clear and significant

gains in both the computational efficiency and the diagnostic accuracy using the proposed

technique.

In addition, a novel frequency tracking technique is proposed in this thesis to analyse

the non-stationary current signals by improving the capability of a continuous wavelet



vi

transform (CWT). Simulations and experiments have been performed to verify the proposed

method for detecting early abnormalities in WT generators. The improved CWT is finally

applied for developing a new real-time CM technique dedicated to detect early abnormalities

in a commercial WT. The results presented highlight the advantages of the improved

CWT over the conventional CWT to identify frequency components of interest and cope

with the non-linear and non-stationary fault features in the current signal, and go on to

indicate its potential and suitability for WT CM.
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Chapter 1

Introduction

1.1 Background

Wind power has been one of the fastest growing power sources in the world over

the last two decades, growing from a tiny 7.6 GW in 1997 to 539.1 GW in 2017

[1]. According to the global wind statistics reported in [6], estimated by the global

wind energy council (GWEC), wind power could reach 2,000 GW by 2030, and

supply up to 17% -19% of global electricity by that time. By 2050, wind power

could provide 25-30% of global electricity supply [7]. The WindEurope has projected

that wind turbine (WT) installations in the European Union will increase 64% by

2020 compared to 2013 levels [8]. Furthermore, China foresees wind power capacity

reaching 200 GW by 2020, 400 GW by 2030, and 1000 GW by 2050 [9].

Fig. 1.1 shows the global annual installed wind capacity from 2001-2017. There

was five years of essentially flat markets from 2009-2013 due to the global financial

crisis. Installations surpassed 50 GW per year in 2014, and have stayed over 50 GW

per year for the last four years, with the Chinese market in 2015 pushing the total

over 60 GW. Globally, cumulative installations passed 500 GW in 2017, ending the

year at about 540 GW as shown in Fig. 1.2.
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switch from the old regime to an auctioning 
system has left a ‘policy gap’.

However, 2019 and beyond are expected 
to see a dramatic increase in the Indian 
market, as the government seeks to meet 
its targets of 175 GW of renewable capacity 
by 2022, with 60 GW of that coming from 
wind. With cumulative installations standing 
at 32,848 MW at year-end 2017, that will 
mean an average of about 7 GW/year for the 
four years following 2018. At the end of this 
period, we should see the beginnings of an 
offshore wind sector emerging in the country.

As for the rest of Asia, it’s a long way down 
to third place, occupied by Pakistan with 
199 MW. Japan installed 177 MW for 
cumulative installations of 3,400 MW, 
while we continue to wait for the end to the 
stranglehold on the grid by the vertically 
integrated utility monopolies. South Korea 
added 106 MW, as we wait to see any 
effect of the new government’s pledge to 
dramatically increase the country’s share 
of renewables in the power mix, with a 
presumed focus on the offshore sector.

Elsewhere, Mongolia commissioned its 
second 50 MW wind farm, Vietnam added 
38 MW, Thailand 24 MW, and Taiwan added 
just 10 MW as it focuses on its burgeoning 
offshore sector, which will start to get built 
out in the next few years.

NORTH AMERICA: STRONG GROWTH 
CONTINUES IN THE US

The US is the second largest market in terms 
of total installed capacity after China. The 
US was also second in terms of the annual 
market, with 7,017 MW of new capacity added 
in 2017, solidifying wind’s position as the 
number one source of renewable electricity 
generation capacity in the country. Although 
the policy environment is relatively stable 
at the moment, the main driver for the wind 
industry is economics, with the price of power 
from new wind installations having dropped 
67% since 2009.

Total installed capacity at the end of 2017 was 
89,077 MW, and the 250 TWh generated by 
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10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

7,2706,500 8,133 8,207
11,531

14,703
20,310

26,850

38,475 39,062 40,635
45,030

51,675

63,633

54,642 52,492

36,023

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Source: GWEC

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 2001-2017

MW

100,000

200,000

300,000

400,000

500,000

600,000
539,123

487,279
432,680

369,862
318,697

238,110
197,956

159,052
120,696

73,95759,09147,62039,43131,10023,900

282,850

93,924

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Source: GWEC

Figure 1.1 Global annual installed wind capacity 2001-2017 according to [1].

Figure 1.2 Global annual cumulative wind capacity 2001-2017 according to [1].

As a large number of WTs are being installed and connected to power systems,

it becomes more and more challenging for manufacturers to monitor and maintain

all of these machines. The cost of operations and maintenance (O&M) has been

shown to be anything between 10% and 35% of the cost of energy from wind [10, 11],

and there is a great demand to reduce O&M cost. In addition, a need arises for

cost-effective predictive and proactive maintenance because the best wind resource

is usually to be found in more remote locations including offshore. In order to make

wind energy a competitive energy source in the energy market, the challenges of

reliability and cost effectiveness should be addressed. To reduce the cost of wind

energy, there is a need to improve WT availability and to reduce the maintenance

cost [12]. This need is even more important in the offshore environment due to

the harsh environmental conditions and the significant additional cost incurred by

catastrophic failure should offshore machines not be maintained in a timely fashion.
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For example, failure of a $1500 bearing in a WT drive-train could lead to a $100,000

gearbox replacement, a $50,000 generator rewind and another $70,000 in expenses

to replace the failed components [13].

In recent years, the need to improve the reliability and the availability of wind

turbines (WTs), particularly offshore has increased [14]. With this need has come

different maintenance strategies to enable desired component performance by main-

taining or returning the component’s ability to function correctly. These maintenance

strategies can be broadly divided into three categories: corrective maintenance, pre-

ventive maintenance, and condition-based maintenance. Table 1.1 summarizes the

comparison between maintenance methods for WTs [15],[16]. To achieve condition-

based maintenance, the use of remote WT condition monitoring (CM) is an effective

means of not only increasing turbine reliability and availability but also reducing the

costs and downtime associated with the operational and maintenance services [17].

Table 1.1 A Comparison of Maintenance Methods

Methods Advantages Disadvantages

Corrective maintenance

• Immediate corrective maintenance • Carried out after a failure event
• Low maintenance costs • High risk of consequential damages
• Maximum lifetime use of components • Maintenance scheduling is not possible

• Spare part logistics is complicated

Preventive maintenance
• Expected downtime is low • Carried out before a failure event
• Maintenance can be scheduled • Components will not be used for the maximum lifetime
• Spare part logistics is easy • High maintenance costs

Condition based maintenance
• Full lifetime use of components • Reliable information of the component state is required
• Low expected downtime • Additional CMS and software are required
• Low maintenance costs

To develop a successful WT condition monitoring system (CMS), there is a need

for information to credibly describe the state of each monitored component and a

reliable technique for fault feature extraction and fault diagnosis. In other words,

the most important elements of a WT CMS are the measured signal and a technique

to provide accurate interpretation of the measured signals. Generally, the signals

used in WT CM include vibration, acoustic emission, strain, torque, temperature,

electrical output, and supervisory control and data acquisition (SCADA) system

signals [18, 19]. Among them, vibration is the most well-known signal used in a WT
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CMS [20]. However, the analysis of the data can be complicated, and the sensors

and data acquisition devices are expensive, and are themselves subject to failure. A

survey of failures in wind power systems with focus on Swedish wind power plants

during 1997-2005 showed that CMS sensor failures account for 14% of all wind

turbine failures. This means sensor failures can cause unnecessary downtime and

additional operation and maintenance costs. Generator current signals have been

shown to have advantages over other signals for condition monitoring in terms of

accessibility, cost, implementation, and reliability [21]. The costs and complexity

involved in current measurements are significantly lower than many other signals

such as vibration, because the current signals are already available and continuously

measured in WTs and thus no additional sensors are required [22, 23].

However, the current-based approach is a new method for WT CM and diagnostics

which requires further investigation to assess various challenges that will be discussed

in the next section.

1.2 Scope of Research

The available literature indicates that each fault has its own characteristics (called

a fault signature) in the frequency spectrum of WT current signals. Theoretical

and analytical formulations of fault signature frequencies and their generation were

attempted in [24–26] to define the signal spectral component that can be monitored

for diagnostic purposes. To date, various WT condition monitoring (CM) techniques

that aim to utilize these and similar diagnostic signals have been developed [18, 20].

However, an eefective method to detect the full range of WT faults in their early

stages has not been achieved yet, and false alarms are still frequently reported from

sites with the generator being a significant contributor [27], demonstrating the need

to optimize these alarms. The root cause of generator false alarms can be related to

the following problems:
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• lack of clear understanding of the diagnostic information embedded in the

stator current spectral content.

• lack of signal processing tools with sufficient sensitivity and reasonable com-

putational efficiency to extract the instantaneous amplitude (IA) of fault

signature components (FSCs) from the WT current signals.

The first problem has largely been addressed in [25, 28–30] with a comprehensive

theoretical analysis of the stator current spectrum content for the machine operating

in steady state, both with and without supply and/or winding asymmetries. The

research reported in this thesis will focus on a potential solution to address the

second problem where the FSCs in the WT current signals have nonlinear and

non-stationary characteristics due to the constantly varying shaft rotating speeds

caused by turbine variable loads [31]. Furthermore, a wide range of CM technique

performance assessment under relevant transient conditions has not been widely

reported in the literature, particularly when the machine operates at low load near

to synchronous speed. As a result, in these conditions, the FSCs are particularly

difficult to detect or differentiate using existing methods, which may lead to an

increase in the false alarms for these conditions. This problem has not received

attention in reported literature despite the fact that actual WTs frequently operate at

low load conditions where the generator rotational speed is close to the synchronous

speed, motivating the research in this study to propose potential solutions.

1.3 Research Objectives

To date, there is a need for an effective approach to address all the issues discussed

in the previous section simultaneously. There has been much work to improve the

detection quality, however, the computational time is compromised and vice versa.

In addition, no such features identification and extraction technique exists in the

available literature where an early indication of faults progression can be observed.
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The primary objective of this thesis is to improve the cost-effective reliability and

availability of CM techniques by using only the current measurements that have

already been used by the control and protection systems of WTs, meaning that no

additional sensors or data acquisition devices will be needed. This work attempts

to target this research area by experimentally defining computationally efficient,

highly sensitive signal processing methods to better interpret current signals for

WTs operating in variable-speed conditions. The implementation of advanced signal

processing techniques could allow for early detection of faults in WTs, allowing

proactive decision making, minimizing downtime, and potentially forecasting the

remaining useful life of a component given a diagnosed fault.

1.4 Original Contributions

Recently, the analysis of the generator current signal has been introduced as an

effective means to detect early abnormalities in WTs. However, there are still

potential challenges to analyse a large range of data rapidly at low cost and with

modest computer hardware requirements in order to interpret the non-stationary

characteristic features of faults. The work presented in this thesis is an effort to

address these challenges by developing effective and reliable techniques that can be

commercially applied to the generator current signals.

The reported experimental findings demonstrate clear and significant gains in

both the computational efficiency and the diagnosis accuracy using the proposed

techniques. The developed techniques are also proved capable of indicating the

severity of a fault so that a judgement could be made as to when maintenance should

take place. This is accomplished by identifying and tracking characteristic fault

frequencies in WT CM signals using an adaptive extended Kalman filter (EKF) as

the WT speed varies. The proposed technique has been validated experimentally

on a WT drive train test rig with two fault levels of rotor electrical asymmetries at
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three different driving conditions whose variability is representative of WT generator

field operation. The EKF performance was compared with some of the leading WT

generator CM techniques. The reported experimental findings demonstrate clear

and significant gains in both the computational efficiency and the diagnosis accuracy

using the proposed technique.

Another novel contribution of this thesis relates to improving the capability

of the continuous wavelet transform (CWT) for the purpose of fault detection.

This is accomplished by using an adaptable shape for the mother wavelet rather

than the fixed shape in the conventional CWT to track only the fault signature

frequencies from the non-stationary characteristics of the WT current signal, while

other frequencies unrelated to the fault are left unprocessed. The shape with the

number of oscillations of the proposed mother wavelet is adopted according to the

oscillatory behaviour of the fault features in the WT current signals. The adaptive

approach is tested using laboratory test rig data. The experimental data showed

that the improved CWT overcame existing CWT limitations and was capable of

correctly tracking characteristic fault frequencies. The improved CWT is then used

to develop a new real-time CM technique dedicated to detecting early abnormalities

in commercial WT current signals. The proposed technique is computationally

efficient for on-line use, and shows promise in dealing with lengthy non-stationary

current signals.

1.5 Thesis Outline

This thesis is organized as following:

In Chapter 2, some quantitative studies and literature surveys that have been

carried out on reliability of WT components are introduced and discussed. In

addition, this chapter features the current state of the art of commercial available



1.5 Thesis Outline 8

WT CM signal and signal processing techniques, their commercial advantages,

challenges and limitations.

In Chapter 3, the characteristic signatures that relate to some faults in the

current signal of the generator are presented and discussed. Then a WT model for

representing a variable speed machine based doubly-fed induction generator (DFIG)

is developed in order to describe how the fault signatures may occur in current

signals, and potentially how they may deviate from a healthy and faulty state at

fixed and variable speed conditions.

Chapter 4 discusses the capabilities, advantages and limitations of two commonly

encountered signal processing techniques, and assesses their suitability for analysis

of non-stationary signals. The concept of tracking particular frequencies of interest

is also introduced using a recently introduced WT CM technique for extracting fault

signatures from non-stationary CM signals. Finally, in Chapter 4, the application of

Artificial Neural Networks for detecting faults is discussed to automate the fault

detection in the light of the limitations of spectral analysis in processing signals

subject to transient effects.

Chapter 5 introduces an effective approach based on an adaptive extended

Kalman filter (EKF) that is better capable of dealing with the non-stationary

and non-linear characteristics of the WT generator current signals. The proposed

approach is used to iteratively track the strength of particular frequency components,

characteristic of faults in the current signal. The proposed technique has been

validated experimentally on a WT drive train test rig with two fault levels of rotor

electrical asymmetries at three different driving conditions whose variability is

representative of WT generator field operation.

Chapter 6 proposes a novel frequency tracking technique to analyse the non-

stationary current signals by improving the capability of the continuous wavelet

transform (CWT). Simulations and experiments have been performed to verify the

proposed methods for detecting early abnormalities in WTs. The improved CWT is
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then applied for developing a new real-time CM technique dedicated to detect early

abnormalities in the generator current signals of a commercial WT. The results

prove that the improved CWT overcomes existing CWT limitations and is capable

of identifying frequency components of interest and coping with the non-linear and

non-stationary fault features in the current signal.

Finally, conclusions are drawn and possible future research challenges are dis-

cussed in Chapter 7.

1.6 Summary

Chapter 1 presented the background that motivates the development of this thesis

and establishes the research objectives. More specifically, this chapter highlighted the

need for advanced WT CM techniques that could allow for early detection of faults

in WTs, allowing proactive decision making, minimizing downtime, and potentially

forecasting the remaining useful life of a component given a diagnosed fault. As the

best wind resource is usually in more remote locations including offshore, a need

arises for cost-effective predictive and proactive maintenance. For these reasons,

there is a need to develop reliable and effective techniques for WT CM in order to

avoid catastrophic failures and to reduce associated costs of unnecessary scheduled

maintenance.
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Chapter 2

Monitoring of Wind Turbines

2.1 Introduction

This chapter starts with a brief discussion of the reliability of WT components

and the resulting interest in effective CM. Based on this discussion, the major

WT components and subsystems for modern variable speed machines that require

continuous monitoring are identified. This is followed by a brief description of the

signals and signal processing methods that are used to monitor these components.

The capabilities, advantages and limitations of the common WT CM signals and

their processing techniques that have been successfully utilised by industry or studied

by academia will be reviewed and compared.

2.2 Wind Turbine Reliability

2.2.1 Introduction to Reliability

Recently, wind energy has experienced a significant move towards offshore instal-

lations where a historical record of 4,331-MW of new offshore WTs were globally

installed across different markets in 2017 as seen in Fig. 2.1. This represents an

increase of 95% on the 2016 market.
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development of commercial-scale offshore 
wind farms is rapidly growing.

Meanwhile, offshore wind had its fi rst 
‘subsidy-free’ bids for offshore projects in 
Germany and an entire subsidy free tender in 
the Netherlands, with winners of new offshore 
capacity receiving no more than the wholesale 
price of electricity. Overall, offshore prices for 
projects to be completed in the next 5 years 
or so are half of what they were for the last 
fi ve years; and this trend is likely to continue.

The reasons for this are many: the 
maturing of the industry, the improvement 
and maturation of the technology and 
management thereof, growing investor 
confi dence, and the introduction and 
deployment of a new generation of turbines, 
with enormous swept area and tremendous 
output.

RECORD YEAR FOR EUROPEAN OFFSHORE 
WIND

The European offshore wind industry had 
an all-time record year adding 3,148 MW in 
2017, corresponding to 560 new offshore wind 
turbines across 17 wind farms. This is double 
the size of the 2016 market and represents 
a 13% increase on the previous record set 
in 2015. During 2017, fourteen projects 
came online, including Europe’s fi rst fl oating 
offshore wind farm. 2017 also saw Final 
Investment Decision (FID) on six new offshore 
wind projects to be installed in the coming 
years. The new investments total € 7.5bn and 
cover 2.5 GW of capacity.

Just over half of all capacity (53%) brought 
online in 2017 was in the United Kingdom, 
including the commissioning of the fi rst fl oating 
offshore wind farm: Hywind, in Scotland. 
The second largest market was Germany 
with 40% of overall European capacity, 
largely realised through the commissioning 
of the Veja Mate and Wikinger projects. 

GLOBAL CUMULATIVE OFFSHORE WIND CAPACITY IN 2017
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Figure 2.1 Global cumulative and annual offshore wind capacity end 2017 [1].

The figure shows that there are now 18,814-MW of installed offshore wind

capacity in 17 markets around the world. For example, at the end of 2017, nearly

84% (15,780-MW) of all offshore installations were located in the waters off the

coast of eleven European countries. The remaining 16% is located largely in China,

followed by Vietnam, Japan, South Korea, the United States and Taiwan. The UK is

the world’s largest offshore wind market and accounts for just over 36% of installed

capacity, followed by Germany in the second spot with 28.5%. China comes third in

the global offshore rankings with just under 15%. Denmark now accounts for 6.8%,

the Netherlands 5.9%, Belgium 4.7% and Sweden 1.1%. Other markets including

Vietnam, Finland, Japan, South Korea, the US, Ireland, Taiwan, Spain, Norway

and France make up the balance of the market. The main reasons for this significant

move towards offshore wind energy globally are the increased wind resource, and

the deployment of a new design and configuration of WTs, with large swept area

and multi-MW output.
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However, the move to offshore environments potentially presents significant

challenges regarding operation and maintenance. For example, higher wind speeds in

offshore environments can cause much greater mechanical loading of WT components

than onshore turbines. In addition, the cost of operation and maintenance is

substantially higher in offshore environments where the accessibility is restricted by

bad weather conditions, e.g., storms, high tides, etc., which can prevent any repair

actions for several weeks. In this case any small failure in turbine components may

cause additional cost and significant downtime. These issues have led to a number

of studies being performed so far to assess reliability of WT components.

2.2.2 Reliability Studies and Results

Several quantitative studies and literature surveys have been carried out over

recent years on reliability of WT components. Amirat et al conducted a survey

[32] describing different type of faults, such as generator, blade, gear, and bearing.

Recently, Qiao and Lu [33] conducted a comprehensive survey focused on the common

failure modes in the major wind turbine components and subsystems, e.g. bearing,

electric motor, and control system which are used in multiple WT subsystems, such

as pitch and yaw subsystems. In the literature, each component of the WT has its

own failure modes and contribution to the downtime of the WT. Fig. 2.2 shows

the annual failure frequencies of major WT subsystems and the average downtime

caused by the failures of these subsystems based on two large surveys of onshore

WTs in Europe over 13 years [2]. The comparison of the failure rate and downtime

indicates that the worst contributors to WT failure frequency are the electrical

system and electrical control areas with the mechanical subassemblies, gearbox,

generator and blades, having a low impact. However, the gearbox, generator and

blades have the highest downtime per failure among all the WT subassemblies.

Based on the failure data collected in Germany and Denmark [34], it was found

that direct-drive WTs which do not have a gearbox might achieve a higher availability
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significant effect in the move to offshore wind as quick repairs will not be possible due 

to access issues. 

 

Figure 8: Failure rates of different WT models by turbine capacity [15] 

 

Figure 9: WT sub-assembly failure rate and downtime per failure for two surveys 

including over 20000 turbine years of data as published in [16] 
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Figure 2.2 Failure frequencies of major WT subsystems and downtime caused by
failures of these subsystems [2].

than indirect-drive WTs (with a gearbox). However, in large direct-drive WTs, the

failure rate of generators is double that of indirect-drive WTs. The cause of this

disparity in failure rates is not known yet. Therefore, the generator has been chosen

in this thesis for further investigation because it is necessary for WT operation and

central to the debate about turbine structure in terms of whether to use direct drive

or geared WTs.

2.3 Reliability of Generators

As wind power has experienced substantial growth compared to other forms of power

generation, wind energy conversion has employed variable speed configurations to

maximize energy capture and reduce turbine loading. In the early 1990s, most of the

installed WTs were designed using a squirrel cage induction generator running close

to fixed speed and directly connected to the grid [35], meaning that whatever the

wind speed would be, the rotational turbine speed was fixed and determined by the
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frequency of the supply grid, the gear ratio and the generator design. During the

past few years, the variable-speed WT has become the dominant type of installed

WT based largely on doubly-fed induction generator (DFIG) technology, sharing the

market with excited synchronous generators and new arrivals, namely permanent

magnet synchronous generators. For a detailed analysis of generator types, the

reader is referred to the standard literature in this field [36].

While alternative forms of power generation are emerging, a large proportion

of currently installed and manufactured WTs continue to use induction generators.

The DFIG in particular remains an attractive generator technology with a strong

market position [37] due to its unique wide range variable-speed-constant-frequency

operating capability coupled with low power electronic inverter rating requirements

and effective power flow control. Undetected generator faults in DFIGs have been

associated with high failure rates, replacement of major components and subsequent

significant downtime [27]. The primary cause of this higher downtime in the offshore

environment is the increased need for heavy-lifting vessels [38]. Usually, faults evolve

from an incipient stage to a progressively more severe condition and eventually turn

to failure. Early fault detection can hence avoid catastrophic failures and downtime

reduction through careful condition based maintenance planning [39].

A study by Alewine analysed the reliability of generators [3]. The results of

this analysis are compared in Fig. 2.3 with another reliability analysis of other

rotating machines [4]. The results clearly show that rotor related faults and slip ring

failures contribute significantly to total generator failures, particularly in small and

medium-sized WT generators, despite the fact that bearing faults are dominant.

An analysis of failure statistics showed that 20% to 70% of the generator faults

were related to bearings, 3% to 38% to the stator, 7% to 50% to the rotor and the

rest were categorized as “others” [40]. Another study, which reviewed 80 journal

papers published by the IEEE and IEE/IET on the subject of induction machine
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Figure 2.3 Comparison of failure contribution of WT generator components according
to [3, 4].

failure statistics over the past 26 years, reported that 21% of generator faults were

bearing problems, 35% stator related and 44% rotor related [4].

Rotor electrical unbalance is identified as an indicator of some of the major

contributors to WT generator failure rate [24, 41]. This condition is representative

of a number of recognized rotor electrical fault modes in DFIG systems such as

brush gear degradation, rotor winding fault and/or improper connection between

the slip ring unit and the rotor cable leads and its analysis and detection has been

the topic of a number of studies conducted on representative academic scale test rig

systems and MW size DFIG field applications [24, 25, 29, 39, 4, 40–43]. Undetected

electrical faults may gradually develop into a major short circuit, and can cause

severe damage to the machine and the system to which it is connected [44]. Early

detection of rotor electrical unbalance faults of in-service generators is essential to
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eliminate consequential damage. Thus, the detection of rotor electrical unbalance

faults has been chosen for further investigation in this thesis.

2.4 Condition Monitoring System

Over the years, there has been much work to maximize energy capture, reduce costs

and improve reliability of WTs [45]. With this work has come investment and the

development of new technologies from WT manufacturers. Better design is of course

one answer to increase the reliability and availability of WTs; the other is condition

monitoring of the WT systems [46]. This allows for early detection of faults in wind

turbines, allowing proactive decision making, minimizing downtime, and potentially

forecasting the remaining useful life of a component given a diagnosed fault.

A WT condition monitoring system (CMS) can be defined as the process of

monitoring and providing information on the condition of components in WTs before

or during an early stage of abnormal operation. In other words, a CMS can be

used as a tool to evaluate WT state of health during operation and measure WT

performance indicating the need for remedial action when performance deteriorates.

Most components in WTs are subjected to different sorts of failures. Over time,

electrical and mechanical stresses can damage other components within the machine.

For example, failure of a bearing could result in an entire gearbox replacement. If a

particular damage is not detected or rectified, it can cause the WT to operate outside

of its normal parameters and eventually a catastrophic failure will occur, causing

potential damage to surrounding components and equipment, as well as lost revenue

due to an unscheduled power outage. WTs cannot be maintained instantaneously

in response to every problem that is detected. This is impractical and expensive,

particularly in the offshore environment which requires forward planning and the

use of an appropriate vessel, a particular crane or a helicopter.
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It has been reported in [20, 32] that the CMS can potentially help by firstly,

detecting incipient failures early. Secondly, it can be used to accurately evaluate com-

ponent health conditions. Finally, it can be used to analyse root causes, which may

provide the inputs for improved turbine operation, control strategy, and component

design. The CMS is not able to avoid sudden failures, but the use of CMS allows

maintenance to be planned, or other actions to be taken to avoid the consequences

of catastrophic failure, before the failure occurs [47]. Moreover, success in detecting

and repairing early faults not only avoids a catastrophic failure, but also has other

system benefits, such as maintenance cost reduction, more efficient plant operation

with consistent quality, plant availability and reliability improvement. Thus, a

reliable CMS is required to detect and diagnose WT failures in their early stages.

In order to develop an effective CMS, there is a need for information to credibly

describe the state of the monitored component and a reliable technique for fault

feature extraction and fault diagnosis. In other words, the most important elements

of a WT CMS are the measured signal and a signal processing technique to provide

accurate interpretation of the measured signals. Therefore, the remaining part of

this chapter will focus on signals and signal processing methods for WT CM. The

capabilities, advantages and limitations of the common WT CM signals and their

processing techniques that have been successfully utilised by industry or studied by

academia will be reviewed and compared.

2.5 Signals Available for WT CM

The signals used for WT CM mainly include vibration, lubrication oil quality parame-

ters, temperature, torque, acoustic emission, supervisory control and data acquisition

(SCADA) system and electrical signals. They are acquired using appropriate sensors

installed in various WT components. A brief description of the aforementioned

signals is discussed in the next subsections.
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2.5.1 Vibration

Most mechanical faults in the main components of WTs cause particular vibration

and noise frequencies. These faults can be detected by using the signals acquired

from vibration sensors. Vibration diagnostics have been used to detect mechanical

faults [48, 49]. For example, vibration-based CM techniques are mostly applied

to the rotor and blade, drivetrain shaft, gearbox, bearings and tower of the WT

[20, 50]. These techniques usually employ the statistical analysis in the time-domain

or the fault signature identification in the frequency-domain or joint time-frequency

domain. The amplitude of the vibration signal or the fault signature can indicate

the severity of a fault [6].

However, there are several challenges that must be addressed in order to use

the vibration signals for WT CM. The first challenge with vibration monitoring is

the high cost, owing to the requirement for additional sensors and hardware to be

installed on the turbine [32]. Secondly, vibration signal analysis can be complicated,

because the mechanical drive system is affected by turbulent wind conditions and

load variation, particularly in wind farms situated in mountainous or hilly areas

[51]. Furthermore, it has been reported that sensor failures contribute to 14.1% of

the total failures of WTs [52] which can cause unnecessary downtime and additional

operation and maintenance costs. In this case, the WTs might be turned off and

go to downtime even at simple faults due to the wrong information collected from

these sensors which is used for condition monitoring.

2.5.2 Lubrication Oil Parameters

Oil condition monitoring has been commonly used to detect potential cracks and

mechanical wear in WT components which require lubrication such as the gearbox,

generator, and main bearing. The principle behind lubrication oil condition moni-

toring is to use various sensing techniques to directly or indirectly monitor basic
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lubricant degradation features. Basic degradation features includes oil oxidation,

water contamination, particle contamination and oil dilution. For example, detecting

and filtering the metal debris from cracked gearbox wheels or bearings is the current

practice in oil debris monitoring [53]. In particular, the amount and type of metal

debris can indicate the health of the component. Oil analysis is mostly performed

off line (manually), by taking samples on at regular intervals , and then sent to a

laboratory for analysis [54]. This is a time-consuming and labour-intensive process,

especially with the increasing numbers of WTs.

Recent studies have tried to overcome the drawbacks of the offline monitoring

by using oil sensors, such as viscometers, level sensors, particle counters, and

thermometers, to monitor the oil condition in real time [55, 56]. However, most of

these sensors need to be specially designed and fabricated which potentially increases

the costs of the WTs. Additionally, not all the lubricant degradation features can be

monitored in real time using such oil sensors [57]. Furthermore, there is a challenge

to accurately interpret the real-time measurements of the oil parameters due to the

impact of the variable operating conditions.

2.5.3 Temperature

The WT components have certain temperature values during normal operating

conditions. Temperature-based monitoring tries to detect thermodynamic changes

in the mechanical systems such as bearings and the gearbox which might indicate

degradation and imminent failure. Temperature-based techniques have been also

used to detect generator winding short-circuits, rotor over-speed and power con-

verter faults. Model-based monitoring using techniques such as e.g. multi-linear

regression, artificial neural networks or adaptive neuro-fuzzy inference systems has

been demonstrated to be able to detect mechanical failures up to several months

in advance [58–62]. Further approaches have tried to derive more physical models

based on SCADA temperatures [63–65].
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Temperature monitoring is usually accomplished either by installation of tem-

perature sensors locally, or by using thermographic (infrared imaging) cameras [53].

Infrared thermography is a technique used to capture thermal images of components

where each component emits infrared radiation according to its temperature and its

emissivity.

However, changes in temperature associated with a fault can develop slowly and

often such trends are not adequate to provide an early indication of the fault. For

example, Feng et al. [66] monitored temperature signals from a gearbox over a period

of time. The results showed a rising gearbox inefficiency in the 9 months before

failure with a worsening trend presented 3 months before failure. Another drawback

is that the measured temperature can be influenced by its surroundings. It has

been reported that bearing temperature depends on the bearing fault, the amount

of grease in the bearing cavity, the winding temperature, the ambient temperature,

stator current heating, and rotational speed [67]. These factors are difficult to

estimate in complex systems like WTs that operate in high noise environments.

Therefore, further analysis is frequently required to find out the reason for abnormal

temperature behaviour in a WT component.

2.5.4 Torque

Torque-based monitoring has been used to detect abnormal torque oscillations due to

mechanical drive train faults. Torque measurements could be obtained using rotary

torque sensors installed on WT mechanical components, such as the main shaft,

gearbox, generator, etc. For example, using a test rig, with features similar to a

wind turbine drive train, Wilkinson et al. [68–70] demonstrated that by monitoring

the torque speed variation it was possible to detect faults in gearbox, shaft, main

bearing, rotor unbalance and coil. In work [71, 72] statistical analysis of torque signal

was used successfully to monitor turbine blade performance and rotor imbalance.
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However, the torque signal is costly, very noisy and difficult to extract in practice

[73]. For these reasons torque monitoring is rarely used in the wind industry.

2.5.5 Acoustic Emission

Acoustic emission monitoring is done by measuring and analysing acoustic emission

signals which are emitted by certain components. This method is typically applied

for fault detection in gearboxes, bearings, shafts, and blades [53]. For example,

an intelligent sensing module, with the ability to detect developing faults in a

gearbox at an early stage, is presented by [74]. The result of this work showed that

there are a number of requirements for an effective system, namely: the number of

sensors which need to be used, where sensors should be located, and the need for a

high-specification Amplifier/Filter/ADC capable of processing high frequency and

low amplitude acoustic emission signals with a high signal to noise ratio and the

ability to select sampling frequency and sensor response. In recent work, acoustic

emission monitoring has been applied to detect wind turbine blade defects [75, 76].

Some of the significant challenges of using acoustic emission for damage detection

are that it is relatively expensive to implement and it can be difficult to extract the

signal features. Other drawbacks are the difficulty of getting access to machinery

for installation and only certain types of faults can be detected in the monitored

high frequency range. Acoustic emission analysis is rarely used in isolation. It is far

more common to combine the use of acoustic emission monitoring with vibration

monitoring [77, 78]. Perhaps, one of the most significant challenges is processing the

large amount of data which might be required in order to capture useful features

which can indicate damage.

2.5.6 SCADA Signals

Commercial wind turbines are equipped with a Supervisory Control And Data

Acquisition (SCADA) system that usually records operational data only in ten-
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minute averages [79, 80]. The common setting of wind turbine SCADA systems to

record 10-minute averages is motivated by the characteristics of wind. Wind varies

significantly in time: from year to year, but also seasonally, in the scale of several

hours up to few days (storms and weather systems) and during seconds and minutes

(turbulence). If the spectrum is analysed, it can be seen that there is little energy in

the range between 10-minute and 2-hours. Accordingly, 10-minute averages are a

suitable choice to describe the wind resource without considering turbulence. The

wind industry has used SCADA signals for WT CM and most wind farms now have

a SCADA system providing data to remote control rooms. The recorded signals

cover environmental and control parameters, e.g. wind speed, wind direction, pitch

angle, rotational speed and three-phase power output. Although SCADA data

were intended for control and performance monitoring in the first place. Multiple

approaches of condition monitoring with these data have been proposed [81].

However, the main limitation of the common SCADA data lies in the very low

time resolution. The setting of the SCADA system might be revised to enable

data acquisition with a higher sampling rate for condition monitoring purposes.

The selection of a specific sampling rate is a trade-off between higher accuracy

with higher resolution and lower effort in terms of data acquisition, storage and

post-processing for a lower rate. However, the benefit of higher resolution is not the

same for different monitoring techniques.

2.5.6.1 Temperature-based monitoring

Temperature signals in the common 10-minute SCADA resolution are used to

generate ’high temperature’ warnings in real time which might lead to a shut-down

of the turbine. However, these alarms can be considered as very late warnings

[82]. If the temperature behaviour is monitored with normal behaviour models,

slow developments can be detected and the resolution is usually further reduced by

averaging over a longer period [60, 62].
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Up to now, wind turbine condition monitoring with temperature signals of higher

resolution than 10 minutes has not been investigated. It is doubtful that more

frequent measurements would reveal new insights due to the thermal inertia of the

system and also low accuracy if thermocouples are used.

2.5.6.2 Power-curve analysis

Most power curve monitoring studies have used 10-minute SCADA data to detect

under performance. Gonzalez and Melero [83] investigated data with a sampling

period of 4 s. The results indicated that the higher resolution monitoring was

enabling detection of aerodynamic under-performance events associated with such

as icing, yaw misalignment, etc.

However, it is unlikely that increasing the sampling rate further to multiple Hz

will result in improved power curve monitoring as the system inertia and damping

will significantly affect the response of the turbine to the wind load. As the input

reference needs to have the same resolution as the power signal, the commonly

used nacelle-top anemometer would not be a suitable tool to describe the wind at a

resolution of multiple Hz [84]. Furthermore, the analyses would need to consider

the sinusoidal time-series of the power signal.

2.5.6.3 Further monitoring approaches

Some manufacturers include tower-top and drivetrain acceleration measurements

in the SCADA system. Such acceleration signals with a sampling period of 10 s

have been used for investigating clustering and model-based monitoring approaches

[85]. There might be potential for using higher resolution vibration and acceleration

signals for further improving the fault detection capabilities. However, traditional

frequency-domain vibration analysis might require a sampling rate of multiple kHz

as used in CMS. The common setting of wind turbine SCADA systems to record

10-minute averages is motivated by the characteristics of the wind. Wind varies
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significantly in time: from year to year, but also seasonally, on the scale of several

hours up to few days (storms and weather systems) and over seconds and minutes

(turbulence). If the spectrum is analysed, it can be seen that there is little energy in

the range between 10 min and 2 h [86]. Accordingly, 10-minute averages are a suitable

choice to describe the wind resource without considering turbulent fluctuations.

However, the collection of SCADA signals was initially intended for operational

purposes, not really for the purpose of CM which is why these signals are recorded

as 10-minute averages. As a result, the valuable and useful features of most WT

faults are lost due to averaging over a relatively long interval. Thus, the detection

and diagnosis of most WT faults cannot be done by monitoring 10-minute SCADA

averages.

2.6 Electrical Signals

Voltage and current are electrical signals which can be acquired from the terminals

of generators and motors in electrical machines. Electrical signal-based methods

for CM have been well established, primarily motor current signature analysis, for

condition monitoring and diagnosis of rotating electrical machine faults [4, 87–89].

Previous work [44, 89–94] has looked at the use of stator currents to detect induction

motor faults, such as winding faults, unbalanced stator and rotor, broken rotor bars,

eccentricity, and bearing faults. Instantaneous power (calculated using voltage and

current signals) has also been used to monitor such faults [95–97]. Electrical signal-

based monitoring has consequently been proposed as a general tool for WT condition

monitoring and fault diagnosis [22, 23, 20]. For example, current signals have been

applied for bearing fault detection in WTs [98–100]. Instantaneous power has also

been used for bearing fault and generator fault detection in WTs [5]. More recently,

work has been extended in this area to monitoring the phase stator current for fault

diagnosis and prognosis of wind turbine drivetrain gearboxes [101]. Electrical signals
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can also be used to detect wind turbine blade faults by using current measurements

or power measurements [102, 103].

There are several advantages that monitoring the electrical signals offers when

compared to other condition monitoring methods. For example, electrical analysis

can provide a reliable indication of the presence of a fault for the monitored system; it

can indicate the location and severity of the fault; it can give immediate information

about the state of health of that system [104], in contrast with oil analysis, where

several days may elapse between the sample collection and its analysis. Moreover,

the main driver for using electrical signals is to reduce costs given that the electrical

current and voltage are continuously measured [105, 106]. This would indicate that

fault detection based on the measurement of electrical signals could be simpler, more

comprehensive and cheaper compared to other techniques. This research will be

based entirely on the use of current measurements for WT CM and fault detection.

A summary of WT CM and fault detection methods are listed in Table 2.1.

Table 2.1 Summary of WT CMS and fault detection methods

Monitoring Technology Main Components Monitored Disadvantages

Vibration monitoring Blade, gearbox, bearing, generator High cost, intrusive

Oil monitoring Gearbox, bearing Limited, intrusive

Temperature monitoring Gearbox, bearing, generator Unreliable, intrusive

Torque monitoring Blade, shaft, generator High cost, high complexity, intrusive

Acoustic emission monitoring Bearing, blade, gearbox High cost, intrusive

Electrical monitoring Blade, gearbox, bearing, shaft, generator Low signal to noise ratio

To date, electrical signal-based monitoring has not achieved commercial appli-

cation due to potential challenges. Firstly, it is a challenge to extract WT fault

signatures from non-stationary current measurements, due to variable-speed operat-

ing conditions of WTs [20]. Moreover, the useful information in current measurements

for a WT usually has a low signal to noise ratio, and thus is very difficult to extract
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without advanced signal processing methods to interpret non-stationary current

measurements [107, 31].

2.7 Signal Processing Methods for Feature Ex-

traction

Electrical signal analysis has been shown to be a complex task and frequently involves

the use of signal processing methods to facilitate fault features identification and

extraction from the WT generator current and voltage signals. To monitor or detect

faults, usually a threshold comparison is performed. If the monitored values of

the fault features exceed a defined threshold, this indicates the presence of a fault.

Probability analysis of failures using extracted fault features can be also used for

WT CM and fault detection. The signal processing methods used for WT CM can

be categorised into time-domain, frequency-domain and time-frequency analysis.

2.7.1 Time-Domain Methods

Classical time-domain analysis methods (e.g., statistical analysis, Hilbert transform,

and envelope analysis) are the most simple methods that have been used for WT CM.

The principle of these methods is often to simply obtain appropriate parameters,

such as standard deviation, mean, root mean square (RMS), peak, peak-to-peak

interval, etc., of the monitored signal acquired from a healthy WT. These features are

firstly recorded as reference values at different operating conditions, and continuously

monitored during the WT operation. Then if they deviate from their base thresholds,

it may indicate the presence of a fault in the monitored WT.

Time domain statistical methods are usually used to analyse acoustic, tempera-

ture and vibration signals [59, 108, 109]. Time-domain analyses of electrical signals

have focused on detecting wind turbine abnormalities through deriving a reference
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power curve, showing the relationship between the wind speed and the generator

output power during normal operating conditions [110–114].

The traditional methods based on time domain analysis are simple, easy to

implement and mature techniques. On the other hand, these methods can mostly

only be used to indicate the presence of a failure in a WT. It is difficult to employ

these methods for early fault detection or to provide detailed information of the fault

location or mode. This is due to the fact that many WT faults can cause very similar

changes in the monitored feature, e.g. the power curve. Thus, frequency domain

techniques and advanced time-frequency analysis techniques have been proposed in

recent years in order to achieve better interpretation of the WT current signals.

2.7.2 Frequency Domain Methods

Frequency domain techniques used for WT CM (e.g., envelope analysis [115], cep-

strum analysis[116], and spectral Kurtosis [117]) are based upon the fast Fourier

transform (FFT). The FFT converts the time domain signal into a frequency do-

main signal in order to facilitate the extraction of fault component frequencies of

interest from the time domain signal. The presence of certain frequency components

in the frequency spectra of WT CM signals can be related to a particular fault.

These components can be used as fault signatures for WT CM and fault diagnosis.

Monitoring the magnitude of fault signatures can indicate the fault levels. It was

reported in [118] that the FFT method can be used to extract the characteristic

frequencies related to a bearing fault using the current signals of an electrical ma-

chine. In[29, 119, 120] the characteristic frequencies of certain WT generator faults

were successfully extracted by applying the FFT method to generator current or

power signals. The FFT method has also been applied to current signals to identify

the characteristic frequencies of not only rotor blade unbalance [102, 103] but also

gearbox and main bearing faults [98–101, 121].
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However, the current signals from an operational WT are not stationary but

are time-varying in nature because of the constantly varying loads and non-linear

operation of the turbine. The FFT and those techniques developed based on it are not

ideal for processing these signals because of inherent limitations (e.g. time-averaging

effects). Therefore, a number of more advanced time-frequency analysis techniques

have been proposed in recent years in order to achieve better interpretation of the

WT current signals.

2.7.3 Time-Frequency Analysis Methods

Frequency domain methods are difficult to apply to non-stationary WT current

signals and to explicitly interpret their time-varying nature. For this reason, time-

frequency analysis methods have gained much more attention in the field of WT

CM and fault diagnosis.

The Short Time Fourier Transform (STFT) is the simplest time-frequency method

in the area of signal processing. The STFT analysis has been widely used to compute

the spectrogram of a time signal giving the spectral density of a signal varying

with time. This method has been successfully used to detect a variety of faults in

induction machines, such as bearing deterioration [122, 123], rotor unbalance and

a broken bar [124]. In [125, 126], the STFT was proposed as a means to detect

rotor unbalance in a WT induction generator. One problem with the application

of a STFT is that it analyses signals with fixed sized windows which yields limited

frequency resolution that is not optimal for processing non-stationary WT CM signals

with spectral resolution required for diagnostic purposes. This means that a good

frequency resolution cannot be achieved using wide windows, which is desired for

the analysis of low-frequency components. Also, a reasonable time resolution using

narrow windows, which is desired for the analysis of high-frequency components,

cannot be achieved. For this reason, the STFT is not suitable for time-frequency

analysis of non-stationary WT current signals. Accordingly, more complex techniques
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such as the wavelet transform have been proposed for tracking characteristic fault

frequencies and extracting the necessary information to detect these faults and their

severity [5, 127, 128].

The use of wavelet transforms in the analysis of current signals has been suc-

cessfully established for detecting induction motor faults [94, 124, 129, 130]. These

studies have employed the discrete (dyadic) wavelet transform (DWT) to decompose

the current signal and extract the fault features in the signal. The DWT has

limitations when analyzing non-stationary WTG current signals. Therefore, the

continuous wavelet transform (CWT) based on, for example, a Morlet wavelet has

been proposed for WT condition monitoring [5, 131]. This transform in previous

work was mainly used to track a single variable frequency component at twice slip

frequency divided by pole pairs (2ksf1/p) in order to determine its magnitude as an

indicator of a fault. However mechanical and electrical faults frequently manifest

themselves as changes in the magnitude of several spectral components [4, 132].

It has been reported in [20, 31, 98] that high time resolution and high frequency

resolution cannot be achieved simultaneously using a CWT and thus even this

transform still cannot provide accurate interpretation of non-stationary WTG signals.

Another drawback inherent to the wavelet transform is that it represents the analysed

signal in terms of predefined functions (e.g. mother wavelet functions) that are

defined in advance based on experience to extract the target diagnostic feature in

the signal that varies in time. In the light of the previous research mentioned above,

satisfactory results have not been achieved today using the CWT. Moreover, the

computational time required for the CWT analysis to produce useful results for a

signal recorded over long intervals and with wide frequency ranges is prohibitive.

To better process the WT CM signals, the spline-kernelled chirplet transform

(SCT) was proposed recently[133], and an improved SCT developed [134] to extract

the instantaneous amplitude (IA) of a nonlinearly varying fault signature component.

The improved SCT proved capable of detecting mechanical and electrical fault
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signatures in a WT drive train in less than half of the time needed by the conventional

SCT. However, the required computational time is still considerable as the results in

[134] show that the improved SCT required 135s to extract the IA of one frequency

component related to the fault from 300s of the power signal. This significantly

limits a more extensive application of the SCT in WT CM. Despite recent progress

in SCT development, further improvement of WT CM techniques with accurate

interpretation of the measured signals and minimization of the computational time

still remains a current research goal.

In light of the previous work, satisfactory results have not been achieved today

using time-frequency analysis techniques. Thus, an effective and computationally

efficient signal processing technique is still needed to interpret non-stationary current

signals acquired from variable-speed wind turbines for a cost-effective WT CM

system.

2.7.4 Artificial Intelligence Methods

Signal processing is mainly used in WT fault studies to facilitate the extraction of

fault-related features in the monitored signals, and then, the fault detection can be

automated via threshold comparison or probability analysis. The fault level and

location can then be identified by an artificial intelligence method. The term artificial

intelligence involves various different techniques, such as expert systems, artificial

neural network (ANN), and fuzzy logic, support vector machine (SVM), which can

all be used individually or in a combination, to improve their efficiency. Although

these methods require an initial training phase, they have adequate capacity to

process a large amount of data. The training phase requires a comprehensive set of

expected scenarios to avoid erroneous or produce results which are limited to a set

of examples.

ANNs have been primerly used as a fault classifier for analyzing and predicting

faults associated with different WT components, such as gearboxes [135, 136],
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bearings [137, 138], generator, power electronics, rotors, blades and pitch angle

control [139, 140]. The main drawbacks are the amount of inputs required, over-

training of the networks, the extrapolation errors and the difficulties of optimizing

the network [141].

Fuzzy logic systems have been used for WT CM and fault diagnosis in many

studies. In [142], a small-sample WT fault detection method with the synthetic

fault data was presented to detect WT faults. In [143], a fault diagnosis method

based on identified fuzzy models was proposed. In [144], a fuzzy synthetic model

based on a real-time condition assessment method was developed. In [145], based on

the fuzzy theory, a generalized anomaly detection model which integrated different

data prediction models was proposed. Fuzzy logic systems are designed to perform

certain rules to deal with reasoning based on fuzzy sets of linguistic rules. Fuzzy

logic rules are set to extract information related to faults and then used for fault

diagnosis. However, setting the rules requires comprehensive background knowledge

of faults conditions and variables (i.e., fault modes, locations, and severities), which

is usually not available in practice. Failure to set accurate and robust rules can

cause false diagnostic results. In addition, more sophisticated rules will increase the

size of a fuzzy logic system and making it computationally expensive.

Recently, a combination of the two previous techniques called neuro-fuzzy tech-

nique has been developed to obtain optimal weights in ANNs and to optimise the

rules setting in fuzzy logic systems. This optimisation of rules is performed using

training examples, by minimizing expert intervention during the formulation of

conditional rules. [146] and [147] have shown that this combination achieve higher

accuracy in comparison with ANNs for diagnosing and monitoring WTs. However,

neuro-fuzzy techniques are sensitive to the size of training data. To develop an effec-

tive neuro-fuzzy model that is capable of estimating a certain output, large historical

operational data is required, which is potentially challenging to a newly-built wind

farm particularly in offshore.
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SVMs have been proposed for WT fault detection and isolation. In [148], a

method of WT fault classification and detection based on Cuckoo search optimization

SVM parameter was proposed. In [149], the application of SVM algorithms to predict

WT generator bearing failure through analysis of high-frequency vibration data was

presented. In [150], a model for alarms-related WT fault detection based on kernel

SVMs was developed. However, SVMs are also a data-driven heuristic technique

and, therefore, have similar shortcomings of ANNs [20].

2.8 Summary

This chapter presented some relevant literature on the reliability of WT components.

The basic ideas of WT CM and fault diagnosis were discussed, and the most

predominant WT CM signals that have been used or studied were reviewed and

compared. The functions, capabilities, and limitations of signal processing methods

that have been employed for the analysis of WT CM signals were comprehensively

described in the literature overview. Special attention was paid to the use of signature

analysis of electrical signals in order to arrive at a better understanding of some of

the challenges of CM a non-stationary signal. This thesis will be focused entirely on

the use of current measurements for WT CM and fault detection, and the solution

of major problems faced to identify and track spectral fault signatures in current

signals under variable speed operation in order to enable non-intrusive online fault

detection.



Chapter 3

Current Signature Analysis to

Detect WT Fault Conditions

3.1 Introduction

The current signals in electrical machines carry dynamic information about the

machine. These signals have potential to be used for WT CM by the wind power

generation industry. In this chapter, the characteristic signatures that related to

certain faults in the current signal of the generator are presented and discussed. Then

to describe how the fault signatures may occur in current signals, and potentially

how they may deviate from a healthy state, firstly under steady state, constant speed

test operation and secondly under transient, variable speed conditions, a WT model

for representing a variable speed machine based doubly fed induction generator

(DFIG) is developed. The model performance is validated against experimental data

from a test rig under healthy and faulty conditions. The WT model is then run

under actual variable conditions recorded over a period of a two-year measurement

campaign on an operating WT to investigate the kind of results expected under

such conditions.
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3.2 Characteristic Signatures in Current Signals

Monitoring the signatures in the WT current signal is based on the principle that

each fault has its own characteristics in the current signals in the form of particular

frequency components. While there has been a wide range of faults studied in the

literature, the Author limits this introduction and discussion to rotor electrical

asymmetry and rotor eccentricity as both are common faults in a WT DFIG. Rotor

electrical asymmetry has been shown to be a significant indicator of WT generator

faults, caused by common winding, brush gear, broken rotor bars and high resistance

connection faults [29, 4, 41, 151, 152]. Rotor eccentricity has been shown to be a

significant indicator of bearing faults, caused by shaft misalignment, unbalanced

torque and wearing of bearings [153–156]. Thus, early detection of rotor electrical

asymmetry and rotor eccentricity is essential to significantly reduce WT downtime

and plan maintenance in advance. In addition, a fully satisfactory method to detect

the full range of WT faults in their early stages has not been achieved yet, and false

alarms are still frequently reported with the generator being a significant contributor

[27], demonstrating the need to develop reliable techniques for feature extraction

that can subsequently be suitable for real-time applications.

3.2.1 Rotor Eccentricity

Rotor eccentricity can be classified into two forms of eccentricity: static or dynamic.

In the case of static eccentricity, the airgap has a fixed minimal position, whereas

dynamic eccentricity occurs when the center of the rotor is not at the center of

rotation and the position of minimum air-gap rotates with the rotor [157]. The

causes of either type of rotor eccentricity are many, such as a bent shaft, mechanical

resonances at critical speeds, or bearing wear and movement [4, 156]. Moreover,

it has been reported that eccentricity related faults commonly occur as a result of
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bearing faults [158, 159]. Thus, the detection of rotor eccentricity faults in WTs

could potentially be a good indication of bearing failure.

The presence of static and dynamic air-gap eccentricity induces additional

frequencies called fault signature components (FSCs) around the fundamental

frequency components in the current signal. The equation that describes the

frequency components is given by [159, 157]

fecc =
(

(kR ± nd)
(1 − s)
p

± v

)
.fs (3.1)

where nd = 0, in the case of static eccentricity, and nd = 1, 2, 3, in the case

of dynamic eccentricity, R is the number of rotor slots, s is the slip, v is the order

of the stator time harmonics that are present beside the fundamental frequency

components in the current signal, and p is the number of pole pairs.

3.2.2 Rotor Electrical Unbalance

Rotor electrical unbalance is one of the major contributors to WT generator failure

rate [160]. Usually, the cause of rotor electrical unbalance is inter-turn, winding

insulation and brush gear faults [151, 4]. Undetected inter-turn faults may gradually

develop into a major short circuit, and can cause severe damage to the machine and

the system to which it is connected. Therefore, early detection of rotor electrical

unbalance faults during operation is essential to eliminate consequential damage.

It has been experimentally shown in [29, 30] that rotor electrical unbalance faults

in a WT DFIG actually induce additional FSCs in the current signals given by:

fb =
(
k(1 − s)

p
± i

)
.fs (3.2)

where fb and fs are detectable spectral components due to the fault and funda-

mental frequency components, respectively, k is the harmonic order (k= 1, 2, 3, 5...),
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s is the slip, i is a constant which relates to air-gap field space harmonics resulting

from the layout of the machine and p is the number of pole pairs.

The analysis of the stator current signal under rotor eccentricity and rotor

electrical unbalance Is(t) can be modeled by adding the fault signal Īf(t) to the

stator current signal under the steady state Īs(t):

Is(t) = Īs(t) + Īf (t)

= Imax sin(2πfst+ φ) + If sin(2πkff t+ φf )
(3.3)

where If is the maximum amplitude of the additional FSCs during the fault

at each k. Note that the number of additional FSCs can be determined by the

parameter k in equations (3.1) and (3.2). During the rotor eccentricity event, the

stator current signal can be represented as:

Is(t) = Imax sin(2πfst+ φ) + If sin(2πk
(
(kR ± nd)

(1 − s)
p

± v
)
.fst+ φf ) (3.4)

For the rotor electrical unbalance fault, the stator current signal can be repre-

sented as:

Is(t) = Imax sin(2πfst+ φ) + If sin(2πk
(k(1 − s)

p
± i

)
.fst+ φf ) (3.5)

3.3 Wind Turbine DFIG Modelling: Case Study

One of the challenges to conduct this investigation using only a laboratory test

rig is the need for extra equipment and instruments leading to additional cost

and complexity. The time and development costs can be avoided considerably by

developing a WT model with sufficient level of accuracy. For this purpose, a WT
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dynamic model for representing a variable speed machine based doubly-fed

induction generator (DFIG) has been developed and validated against laboratory

tests made on a physical test rig under healthy and faulty conditions. The WT

model is driven at actual variable speed conditions to investigate the impact of the

variable speed on the fault signatures. The proposed WT model was implemented

in MATLAB/Simulink, including wind speed, rotor, pitch control system, drivetrain

and generator sub-models as illustrated in Fig. 3.1. Mathematical models for the

representation of these sub-models have been extensively developed with a sufficient

level of accuracy in the literature for a detailed description, the reader is referred

to the standard literature in this field [161–163]. Some components, including yaw

systems, tower, bearings, brakes and power converter have not been considered in

the proposed model. This should not be a problem, as the purpose of this work is

to identify electrical and mechanical faults in electrical signals, and the impact of

those components on the stator current can be assumed to be rather limited.

Figure 3.1 Overview of the WT model
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3.3.1 Wind Speed Model

A wind model is used to generate short-term wind speed variations with certain

characteristics, such as mean wind speed or turbulence intensity, which a WT will

experience. A simple random walk is used of the form [164]:

Ut+1 = rUt + (1 − r)Ū + εt (3.6)

Ut+1 is the value of wind speed at time t + 1, Ut the value at t, Ū the desired

mean wind speed value, r the auto-correlation at unit lag and εt a Gaussian noise

term. An example of a wind speed sequence generated using this approach is shown

in Fig. 3.2.

Figure 3.2 Illustration of the wind speed sequence used in the model.

3.3.2 Rotor Model

The WT rotor, that transfers the kinetic energy from the wind into mechanical

energy is a complex aerodynamic system. To solve this problem, a simple rotor

model is used based on the following equation:

Pw = 1
2ρπR

2CP (λ, β)v3
w (3.7)
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where Pw is the power extracted from the wind; ρ is the air density (1.225 kg/m3);

R is the rotor radius [m]; CP is the performance coefficient or power coefficient; λ is

the tip-speed ratio; β is the blade pitch angle [deg]; and vw is the mean wind speed

[m/s]. A WT has a theoretical maximum level of power which can be extracted

from the wind, i.e. CP = 0.593, the so-called Betz limit. In practice the coefficient

of performance is less than this and also depends on the specific WT design, the

wind velocity, the turbine rotor speed, and the turbine blade pitch angle [165]. For

example, the power coefficient CP for a 2MW machine is defined as a function of

the tip-speed ratio λ and the blade pitch angle β in [166].

CP (λ, β) = 0.5(116
λi

− 0.022β2 − 5) exp(−0.17 vw
ωm

) (3.8)

The tip-speed ratio λ and the optimal tip-speed ratio λi are given by

λ = Rωm
vw

(3.9)

1
λi

= 1
λ+ 0.08β − 0.035

β3 + 1 (3.10)

Equations (3.8), (3.9) and (3.10) show how the aerodynamic behavior of the

turbine rotor can be modelled in more detail where the power efficiency coefficient

is a function of the tip-speed ratio, the blade pitch angle, the turbine rotational

speed ωm and the wind speed. Accordingly, if we need to calculate the tip-speed

ratio λ from Equation (3.9) which is needed with the blade pitch angle β in order

to calculate the optimal tip-speed ratio λi in Equation (3.10), then the calculated

value of optimal tip-speed ratio and the blade pitch angle are used to calculate the

power coefficient. This is a complex process and raises several questions as to how it

should be performed. In these circumstances it is convenient to be able to identify

the power efficiency coefficient directly as a function of wind speed instead of several
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variables (i.e. ωm, λ, λi and β). Therefore, the power coefficient is directly defined

as a function of wind speed using the following expression:

CP =



a1e
a2vw + a3e

a4vw , 4 ≤ vw < 11

c1e
−( vw−c2

c3
)2

+ c4e
−( vw−c5

c6
)2
, 11 ≤ vw ≤ 25

(3.11)

Fig. 3.3 compares the power coefficient curve using this approach with the power

curve of the commercial Nordex N80-2.5MW. This power curve is used to model the

aerodynamic behaviour of the turbine rotor.
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Figure 3.3 Comparison of the numerical approximation of the power curve with the
power curve of the commercial Nordex N80-2.5MW wind turbine.

In variable-speed WTs, the pitch control system controls the rotor speed by

changing the blade angle. The control system has a blade reference angle and

the pitch servo is the actuator, which changes the turbine blades to the desired

angle. The pitch control system is active only at higher wind speeds to diminish the

aerodynamic performance of the turbine and limit the power extraction.

In order to simulate a simple model for the pitch control, Equation (3.11) is used

to obtain the power coefficient to limit the mechanical power extracted from the

wind. The pitch control is modeled as shown in Fig. 3.4, by a PI controller that

generates a reference rate of change of the power efficiency coefficient. Although a
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PI controller is used and tuned using try and error, there is a slight over-speeding of

the rotational speed above its nominal value which can be tolerated and does not

cause a significant problem to the WT.

Control of a variable speed wind turbine is needed to calculate the generator torque

and pitch angle references in order to fulfill several requirements:

. Extract the maximum energy from the wind.

. Keep the turbine in safe operatingmode (power, speed, and torque under limits).

. Minimize mechanical loads in the drive train.

Design of this strategy is a very complicated task strongly related with the aerody-

namic and mechanical design of the turbine, and indeed only known by the

manufacturers. In this section only the aspects related to the energy extraction and

speed–power control will be treated.

Figure 1.10 shows a general control scheme for the VSWT, where the two degrees

of freedom are the generator torque and the pitch angle.
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Figure 1.10 Pitch regulated variable speed wind turbine control schema.
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Figure 3.4 Pitch control system.

3.3.3 Drivetrain Model

The drive train is modeled in this work by a two-mass model. The drive train is used

to transfer torque from the rotor to the generator. The two-mass representation is

described by the equations [164]

Jt
d2

dt2
θt = −K(θt − θg)

Jg
d2

dt2
θg = −K(θg − θt)

(3.12)

Jt, Jg are the moments of inertia of the turbine and generator respectively

(kgm2), ωg is the rotational speed of the generator (rad/s), θt, θg are the rotational

displacements of the turbine and generator respectively (rad) and K is the shaft

stiffness (Nm/rad).

3.3.4 Generator Model

The DFIG is the dominant generator used in WTs at the present time with the

largest share of the market [37]. The DFIG runs at a certain limited range of speeds

above or below the synchronous speed. The principle of the DFIG is that rotor
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circuit receives the magnetic field from a power converter so that it does not require

any excitation from the grid or permanent magnets. In normal operation, balanced

voltages applied to stator windings provide a rotating magnetic field at synchronous

speed ωs (rev/min). The synchronous speed is expressed as:

ωs = 60fs
p

(3.13)

where fs (Hz) denotes the stator current frequency and p is the number of poles

pairs. In principle, the DFIG always transmits power to the network through the

stator, but when the DFIG operates in super-synchronous mode, the rotational stator

flux will induce currents in the rotor windings which are taken off externally through

the brushes. This will lead to additional power from the rotor being delivered via

the power converter to the network. However, the rotor voltage that is induced in

the rotor windings depends on the relationship between the stator flux rotational

speed and the actual rotor shaft speed. The angular frequency of these voltages can

be expressed as follows:

ω2 = ωs − ωr (3.14)

where

ωs= the speed of the rotating magnetic field in stator (rad/s)

ωr= the actual rotor speed (rad/s)

ω2= the slip speed (rad/s)

The relation between the speed of the rotating magnetic field in the stator and

the actual rotor speed is defined by a commonly used term called the slip, s:

s = ωs − ωr
ωs

(3.15)

The sign of the slip is used to determine three different operating modes of the

DFIG:
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ωr = ωs ⇒ ω2 = 0 ⇒ s = 0 ⇒ synchronous

ωr < ωs ⇒ ω2 > 0 ⇒ s > 0 ⇒ sub-synchronous

ωr > ωs ⇒ ω2 < 0 ⇒ s < 0 ⇒ super-synchronous

The DFIG equivalent electric circuit with different stator and rotor frequencies

in the steady state can be ideally represented in Fig. 3.5. The electric parameters of

the DFIG are given as:

v̄s, v̄r = Supplied stator and rotor voltages

Ēs, Ēr = Induced stator and rotor emf

Īs, Īr = Induced stator and rotor currents

ψ̄s, ψ̄r = The stator and rotor fluxes

R̄s, R̄r = Stator and rotor resistances

X̄s, X̄r = Stator and rotor reactances

L̄s, L̄r, = Stator and rotor leakage inductances

L̄m = Magnetic inductance

r 
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s = ωs − ωm
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Therefore, slip frequency is given by 
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Figure 3.6 Steady state equivalent circuit of the DFIG – one phase representation [73] 

The induced voltage in the stator and rotor winding are described as 

Es  = 2πκs Ns fsφm (Vrms) (3.10)

Er  = 2πκr Nr frφm (Vrms) (3.11)

Where 
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Figure 3.5 DFIG equivalent electric circuit with different stator and rotor frequencies.

The induced voltage in the stator and rotor winding can be expressed as:
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Ēs = ωsksNsφ̄m = 2πfsksNsφ̄m (3.16)

Ēr = ωrkrNrφ̄m = 2πfrkrNrφ̄m (3.17)

Where ks and kr are winding factors of the stator and rotor, Ns and Nr are

number of turns of the stator and rotor, respectively, and φ̄m is the magnetizing flux

[Wb].

The induced RMS voltages are:

Ēs = 2√
2
πfsksNsφ̄m = 4.44fsksNsφ̄m (3.18)

Ēr = 2√
2
πfrkrNrφ̄m = 4.44frkrNrφ̄m (3.19)

Hence, by dividing Equation (3.19) by Equation (3.18), the relation between the

induced voltage in the stator and rotor winding can be expressed as:

Ēr

Ēs
= frkrNr

fsksNs

(3.20)

Where fr = sfs, ks ∼= kr and s = 1/ at standstill speed then we have:

Ēr

Ēs
= Nr

Ns

= n (3.21)

Equation (3.21) indicates that a DFIG can equivalently be treated as the primary

and secondary windings of a transformer which can be used to refer the rotor electric

quantities to the stator windings as shown in Fig. 3.6. Hence, the rotor electrical

quantities referred to the stator by factor n, can be expressed as:



3.3 Wind Turbine DFIG Modelling: Case Study 47

Ē ′
r = Ēs = Ēr

n

v̄′
r = v̄r

n

Ī ′
r = n.Īr

(3.22)

Similarly, the rotor’s resistance and inductance referred to the stator side, can

be calculated as:

R̄′
r = R̄r

n2

X̄ ′
r = X̄r

n2

(3.23)

+ + + 

- - - 
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s = ωs − ωm

ωs

(3.8) 

Therefore, slip frequency is given by 

ωr  = sωs (3.9) 

3.3.1. Steady state equivalent circuit

Assuming that the magnetic resistance is very large and thus it can be neglected, the 

equivalent circuit of the machine is represented in Figure 3.6. 
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Figure 3.6 DFIG equivalent electric circuit referred to the stator.

It is important to highlight that the stator currents and voltages have different

frequencies compared to the currents and voltages in the rotor windings. The stator

frequency of the currents and voltages is always fixed to the grid frequency, whereas

the rotor frequency is variable and proportional to the actual speed of the rotor.

The DFIG machine dynamic equations represented in the excitation reference

frame can be described by [167]:

v̄s = RsĪs + dψ̄s
dt

+ jωsψ̄s

v̄′
r = R′

rĪ ′
r + dψ̄′

r

dt
+ j(ωs − ωr)ψ̄′

r

ψ̄s = LsĪs + LmĪ ′
r

ψ̄′
r = LmĪs + LrĪ ′

r

(3.24)
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The parameters used in the proposed WT model are listed in Table 6.1.

Table 3.1 Model Parameters.

DFIG
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 12 m/s, 25 m/s
Rated Tip Speed 80 m/s
Rotor Diameter 90 m
Gearbox Ratio 1:77.4
Stator voltage (RMS) 690v
Frequency 50Hz
Pole Pairs 3
Rated Generator Speed (RPM) 1000
Magnetising inductance (H) 0.0025
Stator phase resistance (ohm) 0.029
Stator leakage inductance (H) 85 ∗ 10−6
Rotor phase resistance (ohm) 0.026
Rotor leakage inductance (H) 85 ∗ 10−6

3.4 The Impact of Varying Load Conditions

In electrical machines, the current signal contains non-linear components due to the

corresponding electromagnetic force produced by the non-linear interaction of the

linkage flux [168]. The current signals tend to change with speed and load of the

machine. A constant speed and load will typically generate stationary signals if the

machine remains in a normal condition. In this case, the current signal presents

non-stationary characteristics related to the operating process, machine run-up,

shutdown and driving conditions. However, the main differences that characterise

the operation of WTs in comparison to other forms of generation are the variable

speed and load operation. This makes the WT current signal analysis a complex

and costly task.

In this section, simulation results obtained from the WT dynamic model will be

presented to describe the difficulties that may arise for WT CM under rapidly varying

speed and load conditions. It should be mentioned that the WT model presented



3.4 The Impact of Varying Load Conditions 49

in this work is first validated using experimental data from a test rig run under

alternately healthy and faulty conditions and then is used to investigate the kind of

results expected under actual variable conditions which is potentially challenging

to perform using a test rig. The results according to the driving conditions are

described in the following subsections.

3.4.1 Experimental Driving Conditions

The University of Durham has experimentally investigated rotor electrical asymmetry

faults under constant and variable speed [21, 169]. The collected data have been

provided to the Author for further analysis and processing. The test rig comprises a

DC motor, rated at 50 kW; a two stage gearbox; and a two pair poles DFIG.

The test rig, although in a healthy state, had an inherent level of eccentricity

due to manufacturing and assembly imperfections. In the experiments, the rotor

electrical unbalance fault was simulated on the test rig by adding two additional

external resistances to one phase of the rotor circuit. The value of the external

resistances corresponds to two levels of rotor electrical unbalance of 23% and 46%,

respectively, given as a percentage to the original rotor phase resistance. The driving

conditions selected to run the simulation model are shown in Fig. 3.7. The three

phase stator currents from an induction motor are measured from the terminals of

the generator. The frequency of the stator current was 50.05 Hz in the measurements.

Data were sampled at 5 kHz.
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Figure 3.7 Experimental variable speed driving conditions.

In order to show the validation results of the developed WT model against the

test rig, a fast Fourier transform (FFT) is used to convert the time series of the

current signals into the frequency domain. Fig. 3.8 shows the result of this FFT for

the stator current from both the test rig and the proposed WT model operating in

a normal healthy case. Fig. 3.8(a) is actual measured data and Fig. 3.8(b) is the

developed WT model run at the same parameters to the test rig. Due to the inherent

static eccentricity, the healthy machine clearly shows the components predicted by

equation (3.1). The inherent eccentricity related components are simulated to be

present in the healthy case in our WT model similar to the test rig as shown in

Fig. 3.8(b), where the results of the developed WT model are quite similar to the

test rig.

Fig. 3.9 shows similar spectra, but this time the rig and the WT model are subject

to a rotor electrical unbalance conditions, and due to the fault some additional

sideband harmonics are clearly seen around the fundamental frequency components.

These frequencies respond as expected in Equation (3.2) and are consistent through-

out the simulation results. The magnitude of these harmonics increases with the

severity of the rotor electrical unbalance fault, as illustrated in Table 3.2. Note that

LFSCs and UFSCs denote the lower and upper sideband harmonics, respectively.
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Figure 3.8 Normalized stator current spectra with inherent static eccentricity.

Also, it can clearly be seen that by increasing the fault level of rotor electrical

unbalance in Fig. 3.9(c), the magnitudes of the FSCs related to the fault increase

significantly compared to those in Fig. 3.9(b). Thus, the WT model presented here

is able to successfully replicate the effects of static eccentricity and rotor electrical

unbalance conditions in an actual machine under fixed speed operations.

Table 3.2 Comparison between measured and simulated results.

Harmonic Order
(k)

FSCs (mA) for the test rig FSCs (mA) for the WT model
23% of rotor electrical unbalance 23% of rotor electrical unbalance 73.6% of rotor electrical unbalance
LFSCs UFSCs LFSCs UFSCs LFSCs UFSCs

1 - 8.44 - 7.36 - 14.51
2 0.59 0.94 0.58 0.96 0.9 3.4
3 - 1.76 - 1.7 - 3.5
5 0.61 0.2 0.59 0.24 1.51 0.56
7 - 0.51 - 0.58 - 1.48
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Figure 3.9 Normalized stator current spectra under different fault levels.
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The Root Mean Square Error (RMSE)is used to compare the performance of the

WT model against the test rig. The RMSE metric is defined as follows:

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (3.25)

where the yi and ŷi are, respectively, the magnitudes of the FSCs measured and

simulated values for the ith output N of data samples. The results of the RMSE

in Table 3.3 show that the response of the model was found to be in very good

agreement with the measured results.

Table 3.3 Agreement evaluation between measured and simulated results.

FSCs for 23% of rotor electrical unbalance RMSE Values
LFSCs 0.016
UFSCs 0.485

3.4.2 Actual Variable Speed Driving Conditions

As previously mentioned, rotor eccentricity and rotor electrical unbalance in the

steady state have been investigated in a number of previous studies, however, their

detection under a wide range of actual variable speed conditions has not been

examined. Since the WT model has been validated against the experimental data,

the model this time is run under actual variable speed conditions. By doing this, we

can investigate the impact of the variable speed on the fault signature frequencies.

Wind turbine DFIGs are machines which operate under highly variable load and

speed conditions as shown in Fig. 3.10 where load and speed data recorded from an

operational variable speed WT are presented. It can be seen that it is potentially

challenging to run a test rig under such driving conditions, but this is a relatively

simple task for a simulation model. The model developed in this work was initialized

using actual variable speed conditions. Operational data from five 2.5MW turbines

were recorded by the standard Supervisory Control And Data Acquisition (SCADA)
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Figure 3.10 Operational data from a 2.5 MW variable speed WT
(a) Generator speed and (b) Load.

system and by a bespoke high frequency monitoring system over the period of 1

year. The measured data were recorded at 10-min intervals with 32Hz sampling

frequency and included wind speed, wind direction, pitch angle, rotational speed

and three-phase power output. To show the accuracy of the model, its response to a

measured 10-minute wind speed time sequence is presented in Fig. 3.11 for one of

the turbines. It is worth noting that the rotor and drivetrain act as a low-pass filter

to the high-frequency wind speed variations, due to their relatively high moment of

inertia.

Fig. 3.12 shows the simulated stator current spectrum of the model operating

under varying speed conditions, driven by the wind speed time series recorded for

one of the 2.5MW turbines. Even though the turbine was known to be operating

normally with no known fault, there is still some inherent rotor electrical unbalance

with static eccentricity. If these components were of a sufficient magnitude, then
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Figure 3.11 Actual variable speed driving conditions.

they could be considered as indicative of a fault requiring intervention. Because of

the varying shaft rotating speed of the WT, the FSCs related to the rotor electrical

unbalance vary and overlap with the inherent static eccentricity components, and

both are corrupted in other wide-band dominant frequency components of the

current signal unrelated to any unbalance and eccentricity. The unrelated sideband

frequencies can be related to Equation (3.1). These sideband frequencies are a

function of the slip, so they are present in proportion to the rotational speed. As a

result, the FSCs related to any actual fault cannot be identified by simply using the

FFT algorithm for the stator current signal. This fact makes the detection of such

faults in the current spectrum problematic. This problem is discussed in [5], and the

authors used a continuous-wavelet-transform (CWT) to track the magnitude of the
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Figure 3.12 Simulated stator current spectra with inherent static eccentricity and
rotor electrical unbalance at variable speed conditions.

component at twice slip frequency divided by pole pairs (2sf1/p) as an indicator

of rotor eccentricity in a test rig, however, the detection of these faults and others

under actual variable speed and load conditions has not been investigated. Moreover,

it has been reported in [31, 33, 98] that high time resolution and high frequency

resolution cannot be achieved simultaneously using a CWT and so this transform

cannot necessarily provide accurate interpretation of non-stationary WT signals.

It therefore follows that a more advanced signal processing technique needs to be

developed in order to better interpret WT CM signals. This will be the subject of

the next chapter.

3.5 Summary

In this chapter, fault signatures in WT generator current signals were described briefly.

A WT model was implemented to investigate how the fault signatures may occur in

current signals, and potentially how they may change when a generator deviates

from a healthy to a faulty state when operating under variable speed conditions.

The performance of the model was validated by experimental measurements made

on a physical test rig under healthy and faulty conditions. The WT model was then

initialized using actual variable speed conditions collected from operational WTs
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to produce generator signals exhibiting similar noise, variability and information

content as those which would be seen on such operational turbines had direct high

frequency measurements of the generator current been available. The results of this

investigation showed that potential fault signatures in the WT current signals are

non-stationary with a low signal to noise ratio due to the constantly varying shaft

rotating speeds and varying loads. This means that more sophisticated analysis

methods should be chosen. In the next chapter, more advanced signal processing

techniques for time frequency analysis will be presented.



Chapter 4

Time-Frequency Analysis and

Neural Networks in WT CM

4.1 Introduction

The previous chapter showed that fault signatures in a WT generator current

signal have non-stationary characteristics with low signal to noise ratio due to the

constantly varying shaft rotating speeds and varying loads. It therefore follows

that more advanced techniques need to be developed in order to achieve better

interpretation of WT CM signals that are varying with time.

This Chapter begins with a brief discussion of the commonly applied standard

signal processing techniques, namely the short-time Fourier transform (STFT)

and the continuous wavelet transform (CWT). The concept of tracking particular

frequencies of inter of Artificial Neural Networks (ANNs) for detecting faults is

discussed to automate the fault detection in the light of the limitations of spectral

analysis in processing signals subject to transient effects. The capabilities, advantages

and limitations of these techniques are outlined. Conclusions are drawn about their

effectiveness to analyse non-stationary signals.
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4.2 Common Time-Frequency Analysis Techniques

The emphasis of this thesis is on the analysis of non-stationary WT generator current

signals for CM and fault diagnosis. Hence the principles and applications of two

common time-frequency techniques are discussed.

There are many signal processing techniques based on time-frequency analysis

which have been developed. Among them, the STFT and CWT are the most

well-known techniques used in WT CM. These techniques are the basis for the

new frequency tracking algorithms developments attempted in this thesis which

introduced in the next two chapters.

4.2.1 The Short-Time Fourier Transform

The limitations of the direct application of the Fourier transform method, and its

inability to localize a signal in both the time and frequency domains, was realized

very early on in the development of radar and sonar detection methods. The Hun-

garian electrical engineer and physicist G´abor D´enes (Physics Nobel Prize in 1971

for the discovery of holography in 1947) was the first person to propose a formal

method for localising information in both the time and frequency domains [170].

His method is known as the short-time Fourier transform (STFT), the STFT of a

continuous-time signal x(t) is defined as:

STFT(f, τ) =
∞∫

−∞

x(t)g(t− τ)e−j2πft dt (4.1)

where g(t − τ) is the window function whose position is translated in time by τ .

The integration over the parameter τ slides the time-filtering window along the

entire signal in order to pick out the frequency information at each instant of time.

Fig. 4.1 gives a clear illustration of how the time filtering scheme of the STFT works.
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In this figure, the time filtering window is centred at τ with a width a. Thus the

frequency content of a window of time is extracted and τ is modified to extract

the frequencies of another window. Thus, the STFT is able to capture the entire

time-frequency content of the signal.

Figure 4.1 Graphical illustration of the STFT for extracting the time-frequency
content of a measured signal.

The next stop is for the STFT is to multiply the time filter function with the

original signal in order to produce a windowed section of the signal. The Fourier

transform of the windowed section then gives the local frequency content in time. To

demonstrate the advantage of the STFT over the conventional FFT, a time varying

sinusoidal signal is simulated. It is formulated as follows:

x(t) =



sin(2πf1t) 0 ≤ t ≤ 50 s

+ 0.2 sin(2πf2t) 0 ≤ t ≤ 20 s

+ 0.4 sin(2πf3t) 0 ≤ t ≤ 30 s

(4.2)
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with f1 =50 Hz, f2 = 100 Hz, and f3 = 150 Hz.
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Figure 4.2 Analysis of a non-stationary signal via the (a) FFT and (b) STFT.

In Fig. 4.2(a), the results of the FFT show that throughout the entire period of

the signal three frequency components are present with different amplitudes. On the

other hand, the results of the STFT in Fig. 4.2(b) shows that the three frequency

components are correct in their values but these frequencies are not actually present

throughout the entire time domain signal. This is the advantage of the STFT and its

capability to localize the frequency components of the original signal in time domain

through iterative analysis of short time intervals of the analysed signal, whereas the

FFT is unable to localize the signal in both the time and frequency domains so that

all time information of the original signal is lost.
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However, the STFT has some limitations in time-frequency resolution due to the

signal segmentation where there is a trade off in the choice of window size. On the

one hand, the window width has to be narrow in order to localize an event in time.

On the other hand, the frequency resolution requires a longer time window to obtain

an accurate representation of the frequency content of the entire signal. This means

that STFT has a constant resolution for all frequencies since the same window size

is used for the analysis of the entire signal. Therefore, an accurate representation of

frequency content using a wide window, and an accurate time localization using a

narrow window, cannot be achieved based on the STFT analysis. In reality, WT

generator current signals are non-stationary because of both the rotating machine

itself and the nature of the wind and so a more advanced time-frequency analysis

than the STFT should be used in order to accurately locate dynamically varying

frequency components in time.

4.2.2 The Continuous Wavelet Transform

As mentioned in Section 4.2.1, the STFT uses translation of a short-time fixed

window along the entire signal in order to pick out the frequency information at

each instant of time. The fixed window size imposes a fundamental limitation on

achieving simultaneously high time and frequency resolution. A simple modification

to the STFT is to use a varied time-frequency window to obtain better resolution

simultaneously in the time and frequency domains. By doing this, the low frequency

components (with relatively poor time resolution) are firstly captured using a wide

scaling window. The scaling window is then subsequently shortened to capture

higher frequency components with better time resolution. This is the basic principle

of the continuous wavelet transform (CWT). The term wavelet usually refers to a

little wave that originates by picking out smaller and smaller pieces of waves from

the original signal using a scaling window.
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A CWT analysis requires the choice of an analysing function ψ known as the

mother wavelet. An example of such an analysing function is the Morlet wavelet

described by a modulated Gaussian function:

ψ(t) = 1√
πfb

exp(−t2

fb
)exp(i2πfot) (4.3)

where fb is the bandwidth parameter and fo is the wavelet centre frequency. The

Morlet wavelet and its Fourier transform are shown in Fig. 4.3(a) and Fig. 4.3(b).

t

(t
)

(a)

H
(

)

(b)

Figure 4.3 (a) Morlet wavelet in time domain and (b) frequency domain.

The corresponding family of wavelets ψa,τ is generated from shifted and scaled

copies of ψ defined as follows:

ψa,τ = 1√
a
ψ

(
t− τ

a

)
(4.4)

The wavelets ψa,τ can be viewed as a copy of the mother wavelet ψ rescaled

by a and centred around the time τ . The CWT of a signal x(t), which is a real

continuous function of time, can then be defined by the inner product between x(t)

and ψa,τ .
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Ca,τ (t) =
∫ +∞

−∞
x(t)ψ∗

a,τ (t)dt (4.5)

where ∗ denotes the complex conjugate. By substituting (4.4) into (4.5) the

CWT coefficients Ca,τ (t) of x(t) can also be written as a correlation between the

signal and the scaled wavelets ψa,τ :

Ca,τ (t) =
∫ +∞

−∞
x(t) 1√

a
ψ∗
(
t− τ

a

)
dt (4.6)

The position of the CWT coefficient in the time domain is given by τ , whereas

its position in the frequency domain is given by a (the relationship between the

scale and the frequency is explained later). The CWT, by mapping the original

series into a function of τ and a, provides information simultaneously in the time

and frequency domains. The main difference between the wavelet transform and the

Fourier transform is that, the Fourier transform does not have a time localization

parameter like the mother wavelet. In the case of the mother wavelet, its position

is translated in time by τ and integration over this parameter leads to the sliding

of the mother wavelet along the entire signal in order to pick out the frequency

information at each instant of time.

Using the properties of the Fourier transform, the CWT can be represented as:

Ha,τ (ω) =
√
a

2π

∫ +∞

−∞
Ψ∗(aω)X(ω)e−jωτdω (4.7)

Equation (4.7) shows that in the frequency domain the wavelet is scaled by 1/a

and multiplied by a phase factor e−jωτ . It is also clear that the amplitude of the

scaled wavelet is proportional to a−1/2 in the time domain, whereas it is proportional
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to a1/2 in the frequency domain. This is the main advantage of the CWT where

the low frequency (worse time resolution) components are firstly extracted using

a larger scale parameter. The scale parameter is subsequently reduced in order to

extract higher frequency components with better time resolution localisation.

4.2.3 Comparison of Techniques

To demonstrate the advantage of the CWT compared to the STFT, a non-stationary

signal is simulated as an example, i.e.,

x(t) = sin[50πt1 + 20π sin(t1)] sin(68.4πt2)

+ sin[66πt1 + 20π sin(t1)] sin(84.4πt2)

+ sin
{
16πt+ 6π arctan[(t− 5)2]

} (4.8)

with 0 ≤ t1 < 6 s, 6 ≤ t2 < 10 s, and 0 ≤ t < 10 s.

Fig. 4.4(a) shows the results of the STFT of a 10 s non stationary signal sampled

at (1kHz). The information obtained from the STFT indicates that there are three

frequency components (f1, f2 and f3) present over the entire time period of the

signal. It can also be seen that the STFT has divided the non-stationary signal

into segments to ensure that the window size adopted always coincides with the

stationary time-scales but the time-frequency representation obtained is still not well

concentrated. By contrast, the CWT avoids this problem and can better characterize

the time-frequency content of the non-stationary signal as shown in Fig. 4.4(b).

However, the CWT had difficulty capturing component (f1) between 3.25-5.75 s

because this component has strong non-stationary characteristics for a short period

compared to the other components. Another drawback inherent to the CWT is that

its analysis involves more intensive convolution calculations than the STFT, making

it more difficult to analyse lengthy online data, such as WT monitoring signals.
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Figure 4.4 Non-stationary signal analysed via the (a) STFT and (b) CWT.

These deficiencies significantly limit the application of the CWT in commercial WT

CM systems. One possible methodology to reduce the computational time is the

idea of frequency tracking which will be discussed in the next section.

4.3 Fourier Transform-Based Frequency Tracking

Effective CM using time-frequency analysis on highly non-stationary WT signals

depends on techniques that can successfully extract CM features accurately and

quickly from lengthy CM records. Traditional time-frequency methods such the

the STFT and the CWT are unable to meet such a requirement because of their
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complex calculations and the windowing technique. This has to be addressed when

considering on-line WT CM of a large fleet of machines.

To improve WT CM signal analysis, there has been research to explore the

potential of frequency tracking. The main idea behind frequency tracking techniques

is to reduce processing times by extracting individual fault-related frequency com-

ponents instead of analysing all frequency components. For example, a tracking

algorithm based on the CWT was applied in [169] to track a given variable frequency

component at twice slip frequency 2sf . In this study, the algorithm was shown to be

capable of detecting mechanical and electrical faults in WT-based DFIG. However,

high computational time is still needed to obtain good results, making it unsuitable

for large size data analysis.

To overcome this, another frequency tracking methodology was proposed in [24]

using the iterative localized discrete Fourier transform (IDFT) algorithm to extract

the fault frequency of interest over time. Similar to the STFT, the IDFT employs a

development of the discrete Fourier analysis to analyse the entire signal with short

time segments. The steps followed for this tracking method are:

• Divide the measured generator rotational speed and the stator current data points

into a number of time segments

• Calculate the mean speed and slip

• Calculate the stator current spectrum using an FFT

• Calculate discrete constants from frequencies of interest

• Calculate amplitudes for each constant

• Extract maximum amplitude and its frequency

• Repeat the process starting with next sampling interval
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4.4 Simulation Verification of IDFT

The WT model in Chapter 3 was used to test the IDFT algorithm and its ability

in interpreting non-stationary signals. The WT model was driven by variable

speed data derived from one of the operational 2.5 MW WTs described briefly in

Chapter 3 to produce signals of similar noise, variability and information content

as those encountered on operational turbines. The IDFT algorithm was then

applied to extract both the instantaneous amplitude and frequency of fault signature

components in the stator current under rapidly varying speed and load conditions.

Fig. 4.5 shows the driving conditions selected for testing.
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Figure 4.5 Generator speed for analysis using the IDFT algorithm.

A case study of the modelled WT under rotor unbalance of 23%, given as a

percentage of the rotor balanced phase resistance, was performed. One phase stator

current of the WT was recorded in the simulations before and after the presence of

the ‘fault’. To observe the effect of the fault, the model was run from 0 to 150 s in a

healthy condition (no unbalance) and from 150 s to 300 s with a rotor unbalance. It

was shown in the previous chapter that rotor unbalance fault gave rise to a number of

side-band components in the current spectrum but monitoring all components would

be impractical in an operating environment, so only four upper sideband harmonics
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have been selected to be tracked using the IDFT. These sideband harmonics are

labelled as C1, C2, C3 and C4 in Fig. 4.6. The results of tracing the instantaneous

amplitude of these components are shown in Fig.s 4.7 and 4.8.
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Figure 4.6 Simulated stator current spectra with inherent static eccentricity and
rotor electrical unbalance at variable speed conditions.
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Figure 4.7 The analysis of the characteristic frequencies in the current signal using
the IDFT under variable speed conditions (a) C1 (b) Its amplitude over time (c) C2
(d) Its amplitude over time.

It is worth noting if the tracked component shows a step change in magnitude

when the fault condition was present, then it can be said that the IDFT method
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Figure 4.8 The analysis of the characteristic frequencies in the current signal using
the IDFT under variable speed conditions (a) C3 (b) Its amplitude over time (c) C4
(d) Its amplitude over time.

has successfully captured the component frequency related to the fault. The results

presented in Fig. 4.7 and Fig. 4.8 clearly show that the C1, C2, C3 and C4 components

vary in frequency as the slip of the generator varies in response to changes in rotor

speed. Although the rotational speed was not varying over a wide range and for

long time, these components have non-stationary frequencies and amplitudes. The

results show that the IDFT is able to capture fault components of interest where

their magnitudes did show a marked change when the fault condition was applied

at 150 s. However, the magnitudes of C2 and C4 show a reduce amplitude for a

period where the tracking results would seem to indicate no presence of the fault

for a period even when in reality it is present. This is due to the fact that the

fault signature components may overlap with the fundamental frequencies when

the machine operates at low load near to the synchronous speed. As a result, the

fault signature components are difficult to detect or differentiate using the IDFT

method, posing a risk of missing the detection of a fault when in this operating

region. This demonstrates, that further improvement of WT CM techniques with
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accurate interpretation of the signals and minimization of computational time is

still an area that requires more research.

4.5 Application of Neural Networks in WT CM

The attractive feature of Artificial Neural Networks (ANNs) for CM is their ability

to represent complex, nonlinear relationships through learned pattern recognition

or signal regression. ANNs have been successfully used to identify changes in the

relationships between WT CM signals that indicate the development of a failure.

The application of ANNs for detecting faults is discussed in this section to

automate the fault detection in the light of the limitations of spectral analysis in

processing signals subject to transient effects. The main purpose of using ANNs is

to identify changes in the current signal which have non-stationary characteristics

due to the variable-speed operating conditions of WTs, and to provide online fault

detection in advance of catastrophic failures. The methodology behind the ANN

fault detection is discussed in the subsections.

4.5.1 Automated Fault Detection with ANNs

A simple detection threshold for the fault frequencies is not feasible due to the

variable speed operation and accordingly shifting frequencies. ANNs are useful

for automated processing and finding non-linear relationships. With data-driven

training, ANNs learn to weight different inputs in a way to deliver the required

output. Problem-specific settings have to be found in particular for the number of

neurons and the amount of training required.

The rotational speed ω of a WT varies significantly. Fault detection for all possible

rotational speeds is not feasible with a single ANN. A framework is proposed, in

which different networks are used for different ranges of rotational speeds, as sketched

in the workflows in Fig. 4.9 and Fig. 4.10. In the training phase, n sets of different
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rotational speeds (Ω) with defined limits ωmin and ωmax are used for simulation

of the current signals. The sets are selected in a way that all possible speeds are

covered. For each of the sets, an ANN is trained to detect a fault. In the detection

phase, maximum (max), minimum (min) and-standard deviation (σ) are calculated

for each two second record. If the variation in the rotational speed is relatively high,

the frequency spectrum becomes indistinct. Accordingly, the standard deviation

of the set has to go below a defined limit σL to allow further processing. The

appropriate ANN for fault detection with the FFT of the current signal is selected

with the information of the rotational speed extrema.

Figure 4.9 Workflow for training of fault detection algorithm.
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Figure 4.10 Workflow for fault detection after training.

The feasibility of the framework is discussed by investigating the training of one

network for a limited rotational speed variation. In a first simulation study the

ability to differentiate between healthy and faulty stages is tested. The second study

investigates fault degree detection with different fault strengths where the fault level

has been simulated by increasing the magnitude of the sideband harmonics as an

indication to the fault with higher level.

4.5.2 Fault Classification

The WT simulation model is run for healthy and faulty condition with a selected

variable speed variation between 924 and 937 rpm as shown in Fig. 4.11. For

each condition, the current signal is recorded for 300 seconds at 5 kHz sampling

frequency. Periods of two seconds of data are selected for analysis using the Fast

Fourier Transform (FFT) algorithm. This window length is identified as the shortest

possible with a sufficient resolution to capture all harmonics of interest. The

frequency spectrum of each window consisting of 250 amplitudes acts as a ‘sample’
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for ANN fault detection. All samples from healthy and faulty stages are mixed and

randomly split in training and testing. A classification as ‘healthy’ or ‘faulty’ is

trained with scaled conjugate gradient backpropagation. The number of neurons

and training samples are varied in a sensitivity study. Network training is repeated

a number of times to investigate the impact of the random selection of training

samples.

Figure 4.11 Rotational speed variation in simulation study.

The results of the simulation study with current signals from healthy and faulty

conditions are presented in Table 4.1 considering accuracy as correct classification

of both ‘healthy’ and ‘faulty’ stages. The median detection accuracy between 93.5

and 98% for different ANN and training length configurations distinctly higher than

random classification (50% accuracy) shows that ANN fault detection using current

signals under non-stationary conditions is feasible.

4.5.3 Fault Degree Detection

Additional to the above described two simulations representing permanent healthy

and faulty condition, two further runs are used to investigate fault development. The

first simulation applies a linear increasing fault during 300 seconds. In the second
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Table 4.1 Accuracy of ANN condition detection from frequency spectrum given as
median percentage from 250 training repetitions.

Number
of

neurons
used:

Training
with 100
samples,
testing

with 200
samples

Training
with 150
samples,
testing

with 150
samples

Training
with 200
samples,
testing

with 100
samples

2 93.5 96.7 98.0
5 94.5 96.7 98.0
10 95.5 97.3 98.0
25 95.5 97.3 98.0
50 95.0 97.3 98.0

run a fault occurs only at a certain point in the simulation. A fitting neural network

with a tansig transfer function in the output layer is used to predict a fault degree

between 0 and 1. All samples from the first simulation plus 100 randomly selected

samples of the linear increasing fault simulation are used for training the ANN.

Network training is repeated with identical data to illustrate differences resulting

from suboptimal training.

Results of the transient and variable fault detection are presented in Fig. 4.12

and Fig. 4.13. Although the significant differences between three ANNs trained

with the same input indicate that further optimisation of training and algorithm

settings might be reasonable, the general fault development is successfully detected.

Unsurprisingly, the fault degree detection is less accurate than the simple healthy or

faulty classification. Regardless, even the rough detection of the strength of a fault

enables better monitoring of condition changes.
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Figure 4.12 ANN fault degree detection of a linear increasing fault.

Figure 4.13 ANN fault detection of a transient fault.

4.6 Summary

Two standard techniques for time-frequency analysis have been introduced in this

chapter in terms of their capability and complexity when used for detecting faults

in a WT generator. Having examined these techniques, it seems that the time-

frequency representations obtained by STFTs and CWTs appear to be unsuitable
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for WT CM and fault diagnosis because they cannot provide accurate interpretation

of non-stationary signals. However, the CWT was more successful in detecting

anomalies in the time domain across different frequency bands from the analysis so

far.

The central idea behind frequency tracking techniques was introduced and the

commonly applied IDFT method was used as an example in this chapter. This

frequency tracking technique proved successful on a simulation case study for a

WT running under variable speed conditions. The IDFT has good computational

efficiency by applying a discrete Fourier analysis over a narrow band around the

potential fault frequency of interest to extract its peak amplitude. However, the

problem with this technique is that the fault frequencies do not always have their

maximum amplitude especially when they are corrupted by other components

unconnected to the fault or when they are hidden in other high amplitude components

such as the supply frequency and its harmonics, making the use of the IDFT

impractical for continuous application on large WT populations.

A technique to detect faults in variable speed WTs via ANNs has been also

introduced. A framework is discussed for training of fault detection with simulated

signals from faults for later online detection in real WTs. For each set of limited

rotational speed variation a separate ANN will detect the fault. In a simulation

study of a rotor imbalance under varying rotational speed as expected in 5 minutes

operation the feasibility of the fault detection approach is demonstrated. Simple

classification of healthy or faulty condition is achieved with a high accuracy. In a

further step towards fault prognosis, the severity of the fault is successfully detected.

However, the dependency of ANNs on training data and manually set thresholds can

result in undetected changes or frequent false alarms. Thus, further investigation

has to be done to validate the fault detection algorithm with experimental data. A

full test of the proposed framework has to be conducted including different sets of

rotational speed variation. In terms of fault prognosis, optimisation of the ANN
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settings might increase the fault degree detection accuracy. It is unlikely that the full

range of fault’s progression will be available in any training data period in practice.

This demonstrates, that further improvement of WT CM techniques is still an area

that requires more research to achieve effective real-time detection in real WTs.

One of the purposes of this research is to fill a gap in terms of finding a reliable

method which can efficiently and consistently detect and track fault frequencies.

The next two chapters will illustrate the theory behind new techniques that are

better able to fill this gap.



Chapter 5

Extended Kalman Filter-Based

Frequency Tracking

5.1 Introduction

In the previous chapter, the concept of time-frequency analysis to interpret non-

stationary signals was discussed and the IDFT frequency tracking technique was used

as an example. Despite the improvement in computational efficiency offered by this

method, the FSC can be difficult to isolate accurately due to the fact that the WT

frequently operates with the generator close to synchronous speed, resulting in FSCs

manifesting themselves in the vicinity of the supply frequency and its harmonics,

making their detection more challenging using methods such as an IDFT. To address

this challenge, this chapter introduces an effective approach for WT CM and fault

diagnosis where the detection of rotor electrical asymmetry in WT DFIGs is used as

an illustrative example. Firstly, the analytical expressions defining a rotor electrical

asymmetry fault signature in the DFIG stator current described in [30, 29] have been

used to enable FSCs to be recalculated over time as a function of machine speed.

Secondly, an adaptive extended Kalman filter (EKF) tracker has been proposed

to extract the IAs of the FSCs based on the corresponding machine speed signal
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and the estimated error covariance. At each time step, the calculated FSCs along

with those extracted from the measured current signal are processed by the EKF to

predict the future state of the FSCs, and continuously update the IAs of the FSCs as

real-time monitored signal data samples become available. The proposed technique

has been validated experimentally on a WT drive train test rig with two fault levels

of rotor electrical asymmetries at three different driving conditions whose variability

is representative of WT generator field operation. The performance of the proposed

approach is compared with some of the leading WT generator CM techniques [128],

[29]. The reported experimental findings demonstrate clear and significant gains in

both the computational efficiency and the diagnosis accuracy using the proposed

technique. The contents of this chapter has been published as an IEEE paper [119].

5.2 EKF for Frequency Tracking

The EKF is an efficient recursive algorithm widely applied in the fields of radar

tracking [171] and adaptive control [172]. The conventional Kalman filter assumes a

linear system dynamics model with Gaussian noise in the measurements, which is not

always realistic in many applications. The EKF on the other hand is an extension of

the conventional Kalman filter to non-linear system dynamics and has been used for

state estimations of induction motors and WT DFIGs [173, 174]. In this section, the

observed FSC yk at time k is first modelled. The mathematical formulation of the

EKF used to iteratively estimate the FSCs is then briefly presented. Theoretically,

the stator current waveform in one phase (e.g., phase A) of DFIG can be expressed

as:

zk(t) =
∑
i

Ai cos(2πfitk + θi) (5.1)

where Ai and fi are the amplitude with initial phase θi and the frequency of the ith

sinusoid, respectively. A Fourier transform to convert the time description of the
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stator current waveform into an equivalent function in the frequency domain has

been used:

zk(f) =
∑
i

Ai[δ(fk + fi) + δ(fk − fi)] (5.2)

The one-sided Fourier transform of (5.2) at (fs) the main supply frequency can be

written as:

zk(f) = Aδ(fk − fs) (5.3)

As previously mentioned in Chapter 3 that rotor electrical imbalance faults in a

WT based doubly fed induction generator (DFIG) can induce additional frequency

components in the frequency spectra of the stator current signals given by

ff =
(
I ± k(1 − s)

p

)
.f (5.4)

where ff are the series of fault signature components (FSCs) related to the fault,

f is the fundamental frequency, k is the component order (k= 1, 2, 3...), s is the

slip, I is a constant which relates to air-gap field space harmonics and p the number

of pole pairs.

From equation(5.4), the main supply frequency can be represented as:

fs =
( p

pI ± k(1 − s)
)
ff (5.5)

By substituting (5.5) into (5.3), the representation of the FSCs in the frequency

domain can be obtained:

zk(f) = Aδ
(
fk −

( p

pI ± k(1 − s)
)
ff
)

= Aδ(fk − αff )
(5.6)
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where α is a constant defined as:

α =
( p

pI ± k(1 − s)
)

(5.7)

A system whose physical process can be mathematically modelled as it changes

or evolves over time is known as a dynamical system. In making inference for such a

system, two models are usually considered, a state model and a measurement model.

5.2.1 State Model

The state model is otherwise known as the state evolution model. In this case, it

describes the motion model of the FSC profile, i.e. how the amplitude of a particular

fault signature frequency evolves at time index k based on the previous time step,

k − 1.

xk = f(xk−1,uk) + wk (5.8)

where f is a non-linear function of states, uk is the control vector, wk is a white

noise driving function to account for the dynamic variation of the state variables.

5.2.2 Measurement Model

The observed FSC yk at time k with the additive noise vk can be described as

follows:

yk = zk + vk (5.9)
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and can be represented by the following linear stochastic system:

yk =
[
1 1

]  A

αff

+ vk (5.10)

The above linear representation is also equivalent to the following non-linear stochas-

tic system:

State equation xk+1 = f(xk) + wk (5.11)

Measurement equation yk = Hxk + vk (5.12)

where

xk =
[
xk(1) xk(2)

]T
=
[
A αff

]T
(5.13)

f(xk) =
[
xk(1) xk(1)xk(2)

]T
=
[
A Aαff

]T
(5.14)

H =
[
1 1

]
(5.15)

5.2.3 Implementation

This formulation leads to the EKF algorithm in order to linearize the above system

which is slightly different from a standard linear Kalman filter model. The recursive

tracking process of a series of fault frequencies at any time step from k equal to zero

is outlined as follows:

Step 1) Predict the estimates of the state variables x̂k+1|k and the error covariance

Mk+1|k

x̂k+1|k = fx̂k|k (5.16)

Mk+1|k = FPk|kFT + Qk (5.17)
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Step 2) Update the Kalman gain Kk

rk = |zk − ẑk| (5.18)

Sk = HkPk|k−1HT
k + rk (5.19)

Kk = Pk|k−1HT
kS−1

k (5.20)

where

Fk = f(xk)xk
∣∣∣∣
xk=x̂k|k

=

 1 0

x̂k|k(2) x̂k|k(1)



=

 1 0

(1 − ε) ˆ(αff )k|k Âk|k


(5.21)

Step 3) Update the state variables x̂k|k

x̂k|k = x̄k|k−1 + Kk[yk − Hk(x̄k|k−1)] (5.22)

Step 4) Update the error covariance

Pk|k = (I − KkH)Pk|k−1 + qB

B =

0 0

0 1

 (5.23)

where the symbols Ĺ̄ and Ĺ̂ stand for the predicted and updated values, respec-

tively. I is the identity matrix. The vector zk is the observed FSCs which is obtained

by applying the Fast Fourier Transform (FFT) algorithm for each interval of interest

from the current signal in the time domain, and ẑk is the expected normal state

which represents the calculated FSCs in equation 5.4. rk denotes the measurement

innovation.
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The design of a stable EKF was largely addressed in [175, 176] which report

theoretically supported design guidelines to characterize the EKF design by a vector

of three parameters (r, ε, q). An easier and more transparent tuning of EKFs is

introduced in[177] where the results showed that ε must be set to zero to achieve

the basic property of unbiasedness, and that the performance of the EKF tracker

then only depends on the ratio λ = r/q; Ref. [177] proceeds to suggest that q = 1

(and hence λ = r) for a further significant simplification of the tuning procedure.

Hence, the task of tuning the design parameters of the EKF tracker (parametrized

with r, ε, q) is reduced to the fact that only a single parameter (λ = r) has to be

chosen [177]. This EKF tuning approach was followed in this chapter where, r is set

to be the difference between the observed FSCs and the calculated FSCs in order to

(a) limit the variation of the innovation vector, (b) cope with spurious measured

values, (c) enhance the estimated accuracy and (d) help the EKF to provide proper

weighting.

In the implementation of the EKF, we assume that at time k an initial estimate

of the state variable is known and is denoted by xk−1|k−1 and that its associated

covariance matrix is also known and denoted by Mk−1|k−1. The estimated variables

are not affected by this assumption because the EKF is not sensitive to moderate

changes in the initial covariance [178].

The principal stages of the tracking method based on the EKF to iteratively

estimate the FSCs in the stator current signal are

• Input the initial measured generator rotational speed and the stator current data

points, the initial value of the state variables x0 and its associated covariance matrix

M0, and covariance of the measured error r0 at a sampling interval ∆tk

• Calculate the mean speed for the sample and the slip

• Calculate the stator current spectrum using an FFT

• Calculate discrete constants from frequencies of interest,k

• Calculate amplitudes for each constant,k
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• Extract maximum amplitude and its frequency zk

• Calculate the FSCs of interest using equation 5.4 ẑk

• Predict the estimates of the state variables and the error covariance using equations

(5.16) and (5.17)

• Calculate covariance of the measured error rk using (5.18)

• Compute the Kalman filter gain Kk using (5.20)

• Update the estimates of the state variables and the error covariance with the

measurement zk using (5.22) and (5.23)

• Project ahead using equations (5.16) and (5.17)

• Repeat the process starting with next sampling interval ∆tk+1

5.3 Application of EKF to WT CM

The proposed approach has been applied to the generator current signals collected

from a purpose built WT drive train test rig. As shown in Fig. 5.1, the test rig

comprises of a 54-kW DC variable-speed drive connected via a two-stage gearbox to

a four-pole DFIG that was rated for the experiment at 30-kW. The rotational speed

of the DC motor is controlled by an external model incorporating the properties

of a 2-MW WT operating under closed-loop conditions, driven by realistic wind

conditions at a variety of wind speeds and turbulence intensities. The rotor circuit

of the generator is coupled via slip rings to an external three-phase resistive load

bank so that electrical imbalance can be applied to the generator rotor. The test rig

was instrumented and controlled using LabVIEW.

In the experiments, a rotor unbalance fault was implemented on the test rig by

adding two additional external resistances to one phase of the rotor circuit through

an external load bank. In the healthy state, the rotor resistance was 1.3 Ω per phase

and additional resistances of 0.3 Ω and 0.6 Ω were successively added to one phase

to create two fault levels. These correspond to two levels of rotor unbalance of 23%
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Figure 5.1 Schematic representation of the test rig[5].

and 46%, respectively, given as a percentage of the rotor balanced phase resistance.

The test rig enables the generator to be driven at a desired pre-programmed wind

speed profile that emulates realistic WT transient behavior and is achieved by

providing a pre-defined speed reference profile to the controller. The relevant signals

for condition monitoring were collected from the terminals of the generator at a

sampling frequency of 5 kHz. An example of the measured current signal under

faulty conditions is shown in Fig. 5.2.

It can be seen that the amplitude of the current-time waveform gave no indication

of abnormal conditions. Consequently, an FFT algorithm is used to convert the

generator current signal from the time domain into the frequency domain in a healthy

condition (no unbalance) and with a rotor unbalance as shown in Fig. 5.3. As is

generally expected for any grid connected machine the supply frequency (50 Hz) and

its harmonics are clearly seen in the spectra. There are also spectral components

present around the even and odd harmonics even when operating in a healthy state.

This is believed to be caused by pre-existing low level rotor excitation imbalance

commonly induced by inherent manufacturing imperfections [28, 29]. However, the

comparison of healthy and faulty data indicates a significant rise in magnitude of a

number of twice slip frequency 2sf sideband components on the current harmonics
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Figure 5.2 Comparison of the current-time waveform for healthy case, 23% rotor
unbalance case and 46% rotor unbalance case.
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which can be clearly observed when the 23% and 46% unbalance are applied to the

generator rotor.

50 100 150 200 250 300
Frequency (Hz)

100

PS
D

(d
B

)

Normal
f=50Hz

3f=150Hz 5f=250Hz4f=200Hz2f=100Hz

(a)

50 100 150 200 250 300
Frequency (Hz)

100

P
S

D
(d

B
)

23% Unbalance
f=50Hz

3f=150Hz 5f=250Hz4f=200Hz2f=100Hz
(2.1Hz)

(f
1
 )

+2sf

(1.9Hz)-2sf
+2sf (2.1Hz)

(2.2Hz)+2sf

(f
3
 ) (1.8Hz)-2sf

(f
5
 )

(2.2Hz)+2sf
(f

2
 )

(b)

50 100 150 200 250 300

Frequency (Hz)

10
0

P
S

D
(d

B
)

46% Unbalancef=50Hz

3f=150Hz 5f=250Hz4f=200Hz2f=100Hz

-2sf
(f

1
 )

+2sf (2.1Hz)

(1.9Hz) (2.1Hz)+2sf

(f
2
 )

(f
3
 )

+2sf (2.2Hz)
+2sf (2.2Hz)(1.8Hz)

(f
5
 )

-2sf

(c)

Figure 5.3 Comparison of the current spectra for healthy case, 23% rotor unbalance
case and 46% rotor unbalance case.

In Fig. 5.3, the FFT algorithm cannot reveal the time information of any

frequency changes i.e. no time domain information is available regarding fault

occurrence and progression. Thus, an EKF has been proposed to detect faults by

monitoring the magnitudes of the FSCs over time, taking into account variable

operating conditions. The rotor unbalance fault gave rise to a number of side-band
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components in the current spectra. Monitoring all components would be impractical

in an operating environment, so a series of FSCs was selected that exhibit the highest

magnitude. The FSCs of interest to be tracked using the EKF algorithm are labelled

as f1, f2, f3, f5 in Fig. 5.3.

5.4 Experimental Results

In order to show the effectiveness of the proposed approach based on an EKF, the

CWT and IDFT have been selected, used in [128, 29] for WT generator CM, for

comparison. The algorithms are tested under varying rotational speed conditions

representative of the operating regimes seen by a hypothetical wind turbine out in

the field. At each test, the test rig was run for a period of 150 s after which the 23%

and 46% unbalance fault conditions were applied at 150 s and 300 s, respectively.

The driving conditions selected for testing are shown in Fig. 5.4, corresponding to

the following WT operating conditions:
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Figure 5.4 Generator speed test conditions.
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5.4.1 Test case 1

Super-synchronous speed with high turbulence intensity: In this test, a high mean

wind speed (15 m/s) with high turbulence intensity (20%) was applied to the test rig

via a dc motor, the speed of which was controlled by an external model incorporating

the properties of a 2 MW exemplar turbine model developed by the University of

Strathclyde as part of the Supergen Wind Energy Technologies Consortium [29].

The CWT, IDFT and EKF methods have been applied to the current spectra in

Fig. 5.3 to extract the IAs of the four defined frequencies of interest (f1, f2, f3, f5) for

the detection of rotor unbalance. The results under super-synchronous speed with

high turbulence intensity are shown in Figs. 5.5, 5.6 and 5.7. Note, if the tracked

FSC of each method shows a step change in magnitude when the fault condition was

present or has changed, then the method has successfully captured the component

frequency related to the fault.

In Fig. 5.5, the conventional CWT is able to capture fault components f1 and f2

where their IAs did show a marked change when the fault condition was applied or

has changed. The CWT failed to capture other components due to the influence of

the window function on the results, where the window size is well matched with the

oscillation of component f1 and f2 but as the fault frequency increases the window

is no longer able to capture the variation of the fault components. A more robust

window design is necessary in order to improve simultaneously high time resolution

and high frequency resolution. But, this is not an easy task as the difference between

the f1, f2 and f3 components is about 50 Hz and increases to 100 Hz for component

f5. In addition, these components overlap with the main supply frequencies and

other dominant frequency components of the current signal that are irrelevant to the

fault. To overcome these shortcomings, the IDFT algorithm was applied to extract

the magnitude of the FSCs. The results are shown in Fig. 5.6.

In Fig. 5.6(b), it is seen that the IDFT method has successfully tracked the

magnitude of the four fault-related frequencies with increasing fault severity (i.e.,
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Figure 5.5 Tracking the magnitude of fault signature frequencies of interest using
the CWT for test case 1.

from 300 s to 450 s) despite the fact that the shaft speed was varying continuously

throughout the experiments. Similar to the IDFT results, the EKF algorithm

has successfully picked up the four FSCs that are changing proportionally to the

rotational speed as shown in Fig. 5.7. The results show that the EKF is able to track

the fault frequencies, giving quantitative information about the fault progression.

However, the tracking results of each algorithm follow different variation ten-

dencies due to the fact that the current signals from an operational WT are not

stationary but are time-varying in nature because of the constantly varying generator

speed, making the detection of FSCs by the tracking algorithms more challenging. In
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Figure 5.6 Tracking the magnitude of fault signature frequencies of interest using
the IDFT for test case 1.

order to demonstrate the best achieved performance for detecting the rotor unbalance

fault and revealing the actual fault degree, the performance of all diagnostic methods

during the fault event is evaluated using root mean squared error (RMSE) values.

Since the increase in the degree of rotor unbalance can be calculated from the IA

variations of the FSCs extracted by the diagnostic methods, a general expression

is derived for machine operation with rotor unbalance degree η̂k by calculating

the difference between the IA for each component under healthy and faulty condi-

tions divided by the order of the component order times the average under healthy

conditions as follows:
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Figure 5.7 Tracking the magnitude of fault signature frequencies of interest using
the EKF for test case 1.

η̂k = Af − Ah
k.Ah

.100% (5.24)

where the Ah and Af are the IA at any time step k for each component under

healthy and faulty conditions respectively and k is the component order (k= 1, 2,

3...). The RMSE is given by

RMSE =

√√√√ 1
N

N∑
i=1

(ηi − η̂i)2 (5.25)
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where the ηi is the degree of the fault during the experiment, corresponding to

the two levels of rotor unbalance of 23% and 46%. Table 5.1 summarizes the results

of the performance evaluation. It is clear from the table that the IDFT and EKF

methods perform best in terms of the RMSE for all FSCs. The CWT is incapable

of detecting the fault by tracking the components f3 and f5, but the RMSE values

for components f1 and f2 are lower than the same components for the IDFT. The

comparison between the three methods shows that the RMSE for all FSCs is much

lower when using the EKF method.

Table 5.1 RMSE of the tracking methods for test case 1.

Fault Signature Components RMSE Values (%)
CWT IDFT EKF

f1 1.967 2.135 0.325
f2 1.134 1.301 0.258
f3 N/A 2.115 0.441
f5 N/A 0.420 0.236

5.4.2 Test case 2

Super-synchronous speed with low turbulence intensity: This test represents 7.5 m/s

mean wind speed with low turbulence intensity 6%. The slip for this state differs

significantly from case 1 with a wide range as seen in Fig. 5.4. Similar results to

the previous test case are observed as shown in Figs. 5.8, 5.9 and 5.10, where the

CWT is only able to track the fault component f1 and f2. This explains why in

[128], [5] only the fault component f1 which is the twice slip frequency was tracked

using the CWT. In contrast, both the IDFT and EKF methods can successfully

show the presence of the fault. It is also clear that the variation tendencies of the

IAs at the four characteristic frequencies have been correctly extracted despite the

time-varying features due to the variable speed operation and the disturbance of

the components unrelated to the fault.
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Figure 5.8 Tracking the magnitude of fault signature frequencies of interest using
the CWT for test case 2.

The performances of the three methods are summarized in Table 5.2. Again, the

performance of the IDFT and EKF is better in terms of the RMSE values for all

FSCs. Compared to the CWT and IDFT, the EKF proved capable of dealing with

different variable speed driving conditions with lower RMSE values. In addition,

the components f1 and f2 for the CWT show higher RMSE values compared to the

results in case 1 as larger variation in rotational speed for test case 2 makes it more

challenging to track the FSCs. It can be concluded that the EKF not only showed

the best performance overall in terms of RMSE metric, but also in terms of the rotor

unbalance fault detection at different driving conditions, whereas the CWT method
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Figure 5.9 Tracking the magnitude of fault signature frequencies of interest using
the IDFT for test case 2.

performed worst. One explanation for the poor performance of the CWT method

can be the windowing technique which has been influenced by the speed variations.

5.4.3 Test case 3

Near-synchronous speed: Following the successful detection of the fault conditions

at super-synchronous speed, it is important now to verify the CM capability of

the algorithms when the machine operates near to the synchronous speed. In this

case, the slip will be near to zero so the FSCs in equation 5.4 will be very close to

the supply frequency(50 Hz) and its harmonics (both odd and even), making CM
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Figure 5.10 Tracking the magnitude of fault signature frequencies of interest using
the EKF for test case 2.

and fault detection more challenging even though this condition occurs frequently

for an operational wind turbine. The results of such a scenario are shown in

Figs. 5.11, 5.12 and 5.13.

Both the CWT and IDFT algorithms, shown in Figs. 5.11 and 5.12 have failed to

effectively track the FSCs; the shortcoming of the CWT and IDFT methods is that

both use windowing technique, and do not have an observer to avoid tracking the

FSCs when they are so close as to be effectively merged with the supply frequency

and its harmonics.



5.4 Experimental Results 99

Table 5.2 RMSE of the tracking methods for test case 2.

Fault Signature Components RMSE Values (%)
CWT IDFT EKF

f1 2.757 2.413 0.318
f2 2.213 0.608 0.276
f3 N/A 2.067 0.382
f5 N/A 0.388 0.234

On the other hand, the EKF shows much better resolution of the varying fault

conditions, as shown in Fig. 5.13. The results clearly show that the amplitude of the

fault-related frequencies jumps sharply when the 23% unbalance fault is introduced

at 150s. A similar jump occurs for the 46% unbalance condition introduced at 300s

that shows clear differences between healthy and faulty conditions particularly for

components f2, f3 and f5. The performances of the FSCs tracked by the EKF in

terms of the percentage RMSE values are found to be 0.378, 0.244, 0.386 and 0.352

for the f1, f2, f3 and f5, respectively. It can be seen that the EKF shows more

accurate fault tracking across all the driving conditions and the RMSE values for all

FSCs are very close. Over the three cases, the EKF shows better fault resolution

compared to the CWT and IDFT as it does not use any windowing technique, rather

it uses the Kalman gain (Kk). The Kalman gain acts as a relative weight given

to the current extracted and measurement values, and its value is continuously

tuned to get the correct estimation value of the FSCs and their magnitude from

the non-stationary current signal. At each time step, the Kk is calculated from

the covariance. The constantly varying generator speeds and non-linear operation

lead to an increase or decrease of the Kalman gain, so with a high gain the filter

places more weight on the most recent measurements, and thus follows them more

responsively to avoid tracking the noise (i.e. the supply frequency and its harmonics

or other dominant frequency components of the current signal) which are irrelevant



5.4 Experimental Results 100

50 100 150 200 250 300 350 400
0.6

0.7

0.8

0.9

1

A
m

pl
itu

de
(A

)

f1
moving average

50 100 150 200 250 300 350 400
0.01

0.02

0.03

0.04

0.05

A
m

pl
itu

de
(A

) f
2

moving average

50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

A
m

pl
itu

de
(A

) f
3

moving average

50 100 150 200 250 300 350 400

Time (sec)

0

0.01

0.02

A
m

pl
itu

de
(A

) f
5

moving average

Rotor unbalance of 46%Normal Rotor unbalance of 23%

Figure 5.11 Tracking the magnitude of fault signature frequencies of interest using
the CWT for test case 3.

to the fault. With a low gain, the filter follows the model predictions more closely

to track the fault signatures and smooth out the noise.

To show the effectiveness of the proposed EKF, we compare in Fig. 5.14 the

tracking results of the EKF associated with the spectral component frequencies

against the actual frequencies, described by equation5.4, across all driving conditions.

As it can be seen from Fig. 5.14, that the tracking frequencies are different from the

actual frequencies in normal operation when there is no fault because the magnitude

of the actual frequencies is very small and merged with the noise so they are difficult

to detect or differentiate. Once, the fault has been applied, the EKF immediately
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Figure 5.12 Tracking the magnitude of fault signature frequencies of interest using
the IDFT for test case 3.

captured the frequencies related to the fault and continued to track them over time

despite the fact that the actual frequencies are more affected by the speed variations

and follow exactly the same speed variation tendencies as shown in Fig. 5.4. It

can also be seen for case 3 that the f1 and f5 FSCs are particularly difficult to

capture compared to the others cases due to the operation at low load near to

synchronous speed, resulting in FSCs manifesting themselves in the vicinity of the

supply frequency and its harmonics with extraneous noise as shown in Fig. 5.3. This

led to an increase in the variation of the innovation vector rk for these conditions.

However, the magnitude of the tracked f1 and f5 FSCs is still useful for fault
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Figure 5.13 Tracking the magnitude of fault signature frequencies of interest using
the EKF for test case 3.

detection, and did show a step change in magnitude when the fault condition was

present or was changed as discussed above.

In summary, the results for the three cases show that the rotor electrical unbalance

fault can be accurately detected by tracking any component using the EKF, but

overall the second component f2 showed the lowest RMSE in revealing the fault

degree. Whereas, the results using the IDFT in Table 5.1 and 5.2 show that the fifth

component f5 provides the lowest RMSE (0.404 as an average percentage) while

the results obtained from other components are not effective in revealing the degree

of rotor unbalance. If one only considers component f5 for fault diagnosis, the
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Figure 5.14 Tracking the fault frequencies of interest using EKF for (a) test case 1
(b) test case 2 and (c) test case 3.
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proposed approach demonstrates a significant improvement over the IDFT method

in imbalance diagnosis accuracy by reducing the percentage RMSE from 0.404 to

0.235. Since the results show that the second component f2 has the best accuracy

in the case of the EKF while the fifth component f5 provides the best accuracy in

the case of the IDFT, this indicates that the volume of data required for analysis

and storage has been successfully reduced. To clarify, based on the Nyqist-Shannon

sampling theorem, the data requirements to monitor component f5 for a period of 1

year would enable the monitoring of component f2 for a period of approximately

2 years and 4 months, due to the fundamental fact that f5 is greater than f2 and

requires a higher sampling rate to capture. Hence, the approach shows success in

tracking the magnitude of the FSCs and revealing the severity of the faults over

time with significant gains in both the computational efficiency and the diagnosis

accuracy.

5.5 Computational Time

To further highlight the improvement offered by an EKF, a computational time

(CT) analysis is performed comparing the EKF method against the CWT and IDFT

methods. The calculations were performed on a computer with an Intel i7 core

processor and 32.0GB RAM.

Table 5.3 shows the plot of the averaged CT for the results obtained in Figs. 5.5-

5.13 for the series of FSCs. It is seen that the CWT method requires a higher

CT for the FSCs with lower frequencies because these tend to have much longer

wavelengths with a high signal to noise ratio, whereas the higher FSCs have much

shorter wavelengths with low signal to noise ratio. Accordingly, this affects the width

of the window function in time to capture the frequencies of interest; therefore, it

requires more computational resources. In contrast, the IDFT and EKF require far

less computational resource compared to the CWT. This is due to the fact that the
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IDFT and EKF methods apply a discrete Fourier analysis over a narrow band around

the frequency of interest. The IDFT and EKF have very similar CT requirements

making them more suitable for online monitoring than the CWT.

Table 5.3 Computational complexity of the tracking methods.

Fault Signature Components Computational Time (s)
CWT IDFT EKF

f1 35.65 0.98 1.2
f2 20.05 1.01 1.1
f3 14.79 1.05 1.16
f5 4.32 1.09 1.1

5.6 Summary

Determining the magnitude of particular fault signature components (FSCs) gener-

ated by WT faults from stator current signals has been used as an effective way to

detect early abnormalities. However, the current signals from an operational WT

are not stationary but are time-varying in nature due to the constantly varying

generator speed. Additionally, the WT frequently operates with the generator close

to synchronous speed, resulting in FSCs manifested in the vicinity of the supply

frequency (50 Hz) and its harmonics, making their detection more challenging. To

address this challenge, the detection of rotor electrical asymmetry in WT doubly-

fed induction generators (DFIGs), indicative of common winding, brush gear or

high resistance connection faults, has been investigated in this chapter using a

test rig operated under three different driving conditions, and then an EKF-based

method is proposed to iteratively estimate the FSCs and track their magnitude. The

FSCs performance has been compared with that of the commonly applied standard

CWT and IDFT. The experimental results demonstrate that the CWT and IDFT

algorithms fail to track the FSCs at low load operation near synchronous speed.

In contrast, the EKF was more successful in tracking the FSC magnitude in all
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operating conditions, unambiguously determining the severity of the faults over time

and providing significant gains in both computation efficiency and accuracy of fault

diagnosis.

The proposed tracker based EKF in this chapter proved capable of dealing with

the non-stationary and non-linear characteristics of the WT generator current signals.

However, the characteristic of faults in the current signal need to be identified in

advance in order to use the EKF to track the fault signatures. This is likely to be a

challenge when applying the EKF to the monitoring of operational WT generators

where large volumes of high frequency data of a wider range of WT faults are being

recorded. In this situation, the fault frequencies cannot easily be tracked via the

EKF unless the fault signatures are identified to the tracker. The major restriction

on the application of the EKF in the field to be used for detection of a wider range

of WT faults such as generator bearing, gearbox-bearing and rotor eccentricity

faults is the certainty of obtaining useful data. If the CM system is installed on a

single turbine it is likely to record large amounts of data during which no faults

are present. In fact, there is a significant risk that no faults will occur and the

CM system will simply be overrun with data. Addressing this problem will mean a

time-frequency analysis technique is required to identify the fault frequencies in the

current signal. To this end, the next chapter will present an improved technique for

fault feature extraction and fault diagnosis which at the same time can deal with

the non-stationary nature of WT CM signals.



Chapter 6

Improved Continuous Wavelet

Transform

6.1 Introduction

In the previous chapter, an effective technique for WT CM was proposed to facilitate

the extraction of fault-related features from the non-stationary current signals due

to the constantly varying shaft rotating speeds and varying loads of the turbines.

This technique is capable of detecting a rotor electrical unbalance fault occurring

in a WT. However, the proposed technique cannot be applied directly to detect a

wider range of WT faults unless fault-related features are identified in advance. It

therefore follows that an effective CM technique needs to be developed to define the

fault features first then one can apply the EKF to track these features, which will

be the objective of this chapter. This chapter proposes a novel frequency tracking

technique to analyse the non-stationary current signals by improving the capability

of the continuous wavelet transform (CWT). The novel contribution of this work

relates to the use of an adaptable shape for the mother wavelet rather than the fixed

shape in the conventional CWT to track only the fault signature frequencies from

the non-stationary characteristics of the WT current signal, while other frequencies
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unrelated to the fault will be left unprocessed. The shape and oscillatory nature

of the proposed mother wavelet is adapted according to the oscillatory behaviour

of the fault features in the WT current signal. Simulations and experiments have

been performed to verify the proposed method for detecting early faults in a WT

generator. The improved CWT is then applied for developing a new real-time

CM technique dedicated to detect early anomalies in an operational WT generator

current signal. The results show that the improved CWT has overcome conventional

CWT limitations, is capable of identifying frequency components of interest and

is able to cope with the non-linear and non-stationary fault features in the current

signal.

6.2 The Use of Wavelet Transforms for WT CM

The use of wavelet transforms in the analysis of current signals has been successfully

established for detecting induction motor faults [129, 94, 130, 124]. These studies

have employed the discrete (dyadic) wavelet transform (DWT) to decompose the

current signal and extract the fault features in the signal. The DWT is unable

to cope with non-stationary WT generator current signals. More recently, the

CWT based on the Morlet wavelet has been proposed for WT generator condition

monitoring [131, 5]. However, the transform used in this work was mainly used

to track only a given variable frequency component (e.g. the twice slip frequency

divided by pole pairs (2ksf1/p)) in time and determine its magnitude. The transform

was not used to represent the time and frequency content of the monitored CM

signal. In addition, it has been reported in [31, 98, 20] that high time resolution and

high frequency resolution cannot be achieved simultaneously using the CWT and

so cannot provide accurate interpretation of non-stationary WTG signals. In light

of this previous work, satisfactory results have not been achieved today using the

CWT. Moreover, the computational resource or the computational time required to
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produce a suitable result for a signal over a long period of time with wide frequency

or scale ranges has not been clearly addressed. It seems that for these reasons the

commercial application of the CWT for WT generator monitoring has been held

back. This chapter aims to improve the use of the CWT for WT generator condition

monitoring. The theory behind conventional wavelet analysis and its improvement

will be presented in the next sections.

6.3 Conventional CWT

The fundamental principle behind the application of wavelet and its theory have

been discussed in Chapter 4. However, it is worth discussing here the limitation

of the conventional CWT and how to address these limitations. The CWT can be

represented as:

Ha,τ (ω) =
√
a

2π

∫ +∞

−∞
Ψ∗(sω)X(ω)e−jωτdω (6.1)

Equation (6.1) shows in the frequency domain the wavelet is scaled by 1/a and

multiplied by a phase factor e−jωτ . It is also clear that the amplitude of the scaled

wavelet is proportional to a−1/2 in the time domain, whereas it is proportional to

a1/2 in the frequency domain. This is a useful characteristic of the CWT where

the low frequency (worse time resolution) components are firstly extracted using

a larger scale parameter. The scale parameter is subsequently reduced in order to

extract out higher frequency components and better time resolution localizations.

However, the current signal from an operational variable wind turbine generator

has non-stationary characteristics and shows strong oscillations particularly in the

peak values as shown in Fig. 6.1. That is the main reason why the conventional

CWT failed to analyse the current signals and achieve satisfactory results. Thus, the

mother wavelet needs to be modified in such a way that it can continuously change
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its shape and the number of oscillations within its envelope to make the detection

of the FSCs related to the fault easier to detect with better resolution. The next

section will introduce a new transform which is parametrized by its Q-factor to

control the number of oscillations of the mother wavelet during analysis.
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Figure 6.1 The generator current signal (a) during 10sec, (b) zoomed between 0 and
0.08sec and (c) zoomed for the positive peaks.

6.4 Modified CWT-Based Frequency Tracking

The proposed wavelet transform uses a modified mother wavelet to track only the

fault signature frequencies from the non-stationary characteristics of the WT current

signal, while other frequencies unrelated to the fault will be left unprocessed. By

doing this, we can significantly reduce the computational time, and we can reveal the

time information of any frequency changes, making the proposed technique suitable

for on-line application. The central idea for this modified CWT based frequency

tracking is to use an adaptable shape for the mother wavelet rather than the fixed
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shape as used in the conventional CWT. The shape with the number of oscillations

of the proposed mother wavelet is continuously adapted by a Q factor according to

the oscillatory behaviour of the fault features in the WT CM signals. The Q-factor

represents the ratio of the centre-frequency to the frequency bandwidth (∆ωψ) of

the mother wavelet function, which is defined as follows:

Q = ωo
∆ωψ

(6.2)

where ωo denotes the centre-frequency and ∆ωψ denotes the frequency bandwidth

of the mother wavelet function. The frequency components in the current signal

range from 0 Hz to half of the sampling frequency so it is difficult to tune the

Q-factor to ensure the oscillatory behaviour of the mother wavelet is matched with

the oscillation of the current signal. Hence, a mother wavelet whose oscillatory

behaviour is continuously tuned with the desired Q-factor is designed to capture

the oscillation of the current signal. The bandwidth of the proposed mother wavelet

is determined by the minimum and maximum cutoff frequencies ωmin and ωmax.

Using this approximation, the bandwidth is given by

∆ωψ = 1
2(ωmax − ωmin). (6.3)

The center frequency of the mother wavelet is the average of ωmin and ωmax,

ω0 = 1
2(ωmax + ωmin). (6.4)

By substituting (6.3) and (6.4) into (6.2) we can express the Q-factor in terms

of ωmin and ωmax
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Q = ωmax + ωmin
ωmax − ωmin

(6.5)

Hence, the frequency components irrelevant to the fault are left unprocessed,

resulting in reducing the calculation time for the new technique compared to the

conventional CWT applied to the entire region.

6.4.1 Modifying the mother wavelet

A mother wavelet with a fixed time window was proposed in [131] to extract the

energy in the power signal and reduce calculation time. The width of the window

in the frequency domain was adapted to the fluctuation of the generator rotational

speed. However, this approach is not effective for the online monitoring of the

WT health condition as the current signals in modern WTs are usually nonlinear

and non-stationary in nature because of the constantly varying generator speeds

and nonlinear loads. Moreover, the resolution in [131] depends on the accurate

measurement of the generator rotational speed. To address these limitations, an

adaptable shape for the mother wavelet rather than the fixed shape is designed in

this work to better match the oscillation of the current signal. In this way, there

is no need to measure the generator rotational speed because the shape and the

number of oscillations of the mother wavelet in the time domain is continuously

adapted by the Q factor according to the oscillatory behaviour of the fault features.

The mother wavelet used, in this work, is based on the Gabor wavelet described

as a modulated Gaussian function by a complex exponential [179]:

ψ(t) = e
−t2
2σ2 eiωot (6.6)
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where the parameter σ is controlling the size of the envelope of the wavelet. It

is evident from Eq. (6.6) that the Gabor wavelet function is basically the Morlet

wavelet function with σ > 1. The goal now is to express the parameter σ in terms

of the Q factor:

σ = 2Q/k
√

2 ln 2 (6.7)

By substituting (6.7) and (6.6), we can express the mother wavelet in terms of

the Q factor:

ψ(t) = e
−t2k2

16Q2 ln 2 eiωot (6.8)

Note, from equation (6.8) the Q-factor affects the oscillatory behaviour of the

mother wavelet, where higher values of Q result in more oscillations in the mother

wavelet. As a result, the number of oscillations of the mother wavelet in the

time domain is continuously adapted by the Q factor according to the oscillatory

behaviour of the fault features. It is, therefore, better suited to capture the fault

signature frequencies over time.

6.4.2 Selecting a

The foregoing discussion shows the local resolution of the CWT in the time and in

frequency domain also depends on the scaling parameter a so that we define a in

terms of any frequency between the specified frequencies ωmin and ωmax:

a = ωo
ω

(6.9)
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Hence, the range of the wavelet scales during the analysis can be expressed as:

amin = ωo
ωmin

, amax = ωo
ωmax

. (6.10)

The scaling parameter a satisfies a ∈ [amin amax], leading to only the frequency

information of interest being analysed rather than analysing wide frequency bands.

In this way, the frequency components irrelevant to the fault are left unprocessed,

resulting in reduced calculation time compared to the conventional CWT applied

to a broad bandwidth signal. Hence, the proposed CWT-based frequency tracking

method should be more efficient for online fault feature extraction from WT generator

signals than conventional CWT.

6.5 Application of The Modified CWT to WT

CM

To demonstrate the potential of the modified CWT in WT CM, the modified CWT

has been applied to the stator current signals produced in a simulation, collected

from a WT drive train test rig and from an operational WT.

6.5.1 WT Simulation Model

To demonstrate the effectiveness of the proposed method for WT condition monitor-

ing and fault diagnosis, the modified CWT was applied to a simulated generator

current signal obtained from the same model described in chapter 3 in order to

reveal the FSCs related to an inherent eccentricity under variable speed conditions.

Based on the results shown in Fig. 6.2, it is shown that the modified CWT

can successfully provide explicit time frequency information of the FSCs related

to the inherent eccentricity even when the machine operates at actual variable
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Figure 6.2 Modified CWT results when tracking the current signal with an inherent
eccentricity simulated at variable rotational speed.

speed conditions. Following the successful detection of the inherent eccentricity, the

modified CWT was applied to the current signal to identify the FSCs related to the

rotor electrical unbalance under actual variable speed conditions, and the result is

shown in Fig. 6.3.

In Fig. 6.3, both the inherent eccentricity and the rotor electrical unbalance

faults have been successfully detected by the modified CWT despite the significantly

varying generator speed. Moreover, the modified CWT is capable of capturing

the FSCs related to the fault which are combined and hidden in other dominant
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Figure 6.3 Modified CWT result for the current signal when the rotor electrical
unbalance was simulated at variable rotational speed.

frequency components of the current signal that are irrelevant to the fault due to

the constantly varying shaft rotating speeds and varying loads on the generator.

Thus, it can be concluded that the modified CWT is effective in dealing with

the non-stationary characteristics of the current signal under more than one fault

condition.
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6.5.2 Test Rig

The experimental data obtained from the purpose-built WT drive train test rig

are used in this section to show the improvement offered by the proposed modified

CWT. As has been briefly mentioned in Chapter 4, a generator rotor winding fault

was implemented on the test rig by changing the phase resistances in the load bank

externally connected to the rotor. To observe the effect of the fault, two levels of

rotor asymmetry were applied to investigate the effect of an incipient fault. The first

fault level corresponds to 23% rotor unbalance from 150 s to 300 s, then the fault

level was increased to 46% from 300 s to 450 s. The test rig enables the generator to

be driven at a desired pre-programmed wind speed profile that emulates realistic

WT transient behaviour and is achieved by providing a pre-defined speed reference

profile to the controller. Data were sampled at 5 kHz.
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Figure 6.4 Mother wavelets with different values of the parameter σ (a) σ =1 and
(b) σ > 1.

In order to show the effectiveness of the modified CWT, a mother wavelet with

different values of the parameter σ that controls the size of the envelope of the

wavelet, as shown in Fig.6.4, has been designed to analyse the time series of the

stator current signal. The stator current signal was measured during the experiments

at three conditions normal, 23% and 46% unbalance, to allow a relative comparison

between frequency components in the current signal under these three operating

conditions. The rotor electrical asymmetry condition in the DFIG is manifested

through a range of additional sideband components at the twice slip frequency

2sf . Herein, s refers to induction machine slip and f indicates the electrical supply
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frequency. Fig.6.5 compares the results when the data are analysed using the

conventional wavelet and the modified wavelet for the test rig run at a low mean

wind speed (7.5m/s) with low turbulence intensity (6%). The CWTs have been

applied to the stator current signal to capture the fault-induced characteristics

around the supply frequency (50 Hz) at (1 + 2s)f .

(a)

(b)

Figure 6.5 Time frequency representation of the current signal using the (a) conven-
tional CWT and (b)modified CWT with the test rig driven by 7.5m/s, 6% turbulence
conditions.

In Fig.6.5(a) the conventional CWT has difficulty extracting explicit time-

frequency features of the current signal. One explanation for the poor performance of

the conventional CWT method can be the fixed shape for the mother wavelet which

can not deal with the non-stationary characteristics and strong oscillations in the

current signal. By contrast, the modified CWT overcomes this problem and is better
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able to characterize the time-frequency content of the non-stationary signal. The

information available from the modified CWT shows that the supply frequency is

present throughout the entire length of the signal with strong evidence of additional

sideband component at (1 + 2s)f and the time-frequency representation obtained is

well concentrated.

(a)

(b)

Figure 6.6 Time frequency representation of the current signal using the (a) con-
ventional CWT and (b)modified CWT with the test rig driven by 15m/s, 20%
turbulence conditions.

Fig.6.6 shows a similar comparison between the conventional and modified CWT

for the case where the test rig is run at a high mean wind speed (15m/s) with high

turbulence intensity (20%). The time-frequency representation obtained by the

conventional CWT is still not well concentrated. On the other hand, the modified

CWT shows much better resolution of the frequency component related to the fault.
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(a) σ = 5 (b) σ = 10

(c) σ = 20 (d) σ = 40

Figure 6.7 modified CWT results for the current signal using various Gabor wavelets

To provide a sensitivity analysis of the impact of the mother wavelet shape

on the results of the CWT, various mother wavelets with different values of the

parameter σ that control the size of the envelope of the wavelet, as shown in Fig.6.7,

have been designed to analyse the time series of the stator current signal. It can be

seen that higher values of σ result in more oscillations in the mother wavelet, and

provide more explicit time-frequency features of the current signal. By extracting the

magnitude of the fault-induced frequency, we can clearly see using mother wavelets

with σ >= 10 that there is a step change in magnitude when the fault condition was

present or was changed as shown in Fig.6.8. However, the magnitude follows different

variation tendencies due to the fact that the current signals from an operational WT

are not stationary but are time-varying in nature because of the constantly varying

generator speed, making the detection of the frequency component related to the

fault more challenging. In order to demonstrate the best achieved mother wavelet
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design for detecting the fault signatures with better resolution, the performance of

mother wavelets with different values of the parameter σ during the fault event is

evaluated using root mean squared error (RMSE) values. The increase in the degree

of rotor unbalance can be evaluated from the instantaneous amplitude variations

from the tracking results by calculating the difference between the instantaneous

amplitude of the fault-induced frequency under healthy and faulty conditions divided

by the instantaneous amplitude under healthy conditions.
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(b) 15m/s, 20% turbulence conditions

Figure 6.8 Tracking the magnitude of fault signature frequencies of interest for the
detection of rotor unbalance.

Table6.1 summarizes the results of the performance evaluation. It can be seen

that higher values of σ result in lower RMSE value which means better fault detection.

This is due to the fact that the current signal has non-stationary characteristics

and strong oscillations due to the variable speed operation but changing the shape
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Table 6.1 RMSE of the modified CWT using various Gabor wavelets

Speed test condition RMSE Values (%)
σ = 10 σ = 20 σ = 30 σ = 40

7.5m/s 1.857 0.922 0.727 0.921
15m/s 2.038 1.053 0.846 1.052

and the number of oscillations of the mother wavelet within its envelope has led

to improved detection of the fault signatures with better resolution. However, the

results show that the optimal value of σ is 30; higher values of σ lead to an increase

in the percentage RMSE. This is because there is a trade off in the choice of window

size where a longer time window improves frequency resolution while resulting in

poorer time resolution because the Fourier transform loses all time resolution over the

duration of the window. Whereas, a shorter time window improves time localization

while resulting in poorer frequency resolution.

Table 6.2 Computational efficiency comparison between the modified and conven-
tional CWTs

Speed test Standard CWT Modified CWT
σ = 10 σ = 20 σ = 30 σ = 40

7.5m/s 3.13 s 0.76 s 0.78 s 0.81 s 0.84 s
15m/s 3.15 s 0.77 s 0.79 s 0.83 s 0.89 s

A computational time analysis was performed on a computer with an Intel i7 core

processor and 32.0GB RAM to demonstrate the excellent computational efficiency

of the modified CWT in comparison with the conventional CWT. Table6.2 shows

the time taken by the modified CWT to analyse 10 minutes of data from the current

signal is less than half of that taken by the conventional CWT. Hence, it can be

concluded that the modified CWT is much more computationally efficient than the

conventional CWT and therefore more suitable for real operating WTs.
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6.5.3 Operational Wind Turbine

To further highlight the effectiveness of the proposed technique for WT CM, the

modified CWT is applied to an operational commercial WT current signal. A

Vestas V42 600-kW wind turbine with an asynchronous generator was instrumented

to provide high frequency WT CM data sampled at 10.24 kHz for a number of

operational parameters including wind speed, vibration and three-phase voltage and

current. The data were recorded from June 2015 to April 2016. Since the sampling

frequency for the data is quite high, this potentially presents a significant challenge

for data storage and analysis on common personal computers.

Figure 6.9 modified CWT result for the stator current after an emergency stop on
4th April 2016.

Although no fault occurred or component replaced during the period of recording

of the data, the modified CWT detected an abnormal feature from the stator current

after an emergency stop on 4th April 2016 as shown in Fig.6.9. The results suggest

that after the WT was shutdown, two spectral components at f − fsh and f + fsh

appeared in the spectrogram. These component frequencies correspond to fsh =
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25.56 Hz and f = 50 Hz. Both these components that occurred on the 4th of April

were still present on the following day as shown in Fig.6.10 until the WT went into

another shutdown. It is also clear that the variation tendencies of the IAs at f − fsh

and f + fsh appeared in the spectrogram have been correctly extracted despite

the time-varying features due to the variable speed operation. Hence, determining

the magnitude of these component frequencies generated by WT faults from stator

current signals can be used as an effective way to detect early abnormalities.

Figure 6.10 modified CWT result for the stator current before an emergency stop
on 5th April 2016.

As the modified CWT algorithm has successfully revealed the time information of

two spectral components at f − fsh and f + fsh that can be used for fault occurrence

and progression monitoring. As an evidence, the modified CWT results show that

the magnitude of both components did show a marked change as shown in Fig.6.11

when the fault condition occurred. Thus, the modified CWT can be proposed to

detect faults by monitoring the magnitudes of these additional components over time,

by taking into account variable operating conditions. It has commonly been assumed
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Figure 6.11 The amplitude of spectral components at f ± fsh for the period between
4th and 5th April 2016.

that these additional components manifest themselves due to eccentricity-related

faults [93, 132] that exist between the stator and rotor. The eccentricity creates a

disturbance in the air-gap flux density. The action of eccentricity-related faults is

such that it will induce new air-gap flux density frequency components, and their

magnitude is directly proportional to the magnitude of a fault condition [92]. The

resulting unbalanced radial forces can cause stator to rotor rub, and this can result

in damage of the stator and rotor [132].

6.6 Summary

This chapter featured the development of an improved WT CM technique, based

on modifying the CWT. The technique was shown capable of providing explicit

time- frequency features from the current signal. The adaptable shape for the

mother wavelet used in this method instead of the fixed shape in the conventional
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CWT enables the improved CWT to track only the fault signature frequencies from

the non- stationary characteristics of the WT current signal, and avoid problems

associated with the conventional CWT. The proposed technique was evaluated using

simulated,experimental and real data. For the simulated data, the improved CWT

showed success in detecting a wider range of WT faults e.g. static eccentricity and

rotor electrical unbalance faults occurring in a WT, despite the constantly varying

shaft rotating speeds and varying loads. Secondly, the performance of the proposed

technique is compared to the conventional CWT for interpreting non-stationary WT

CM signals. The proposed method showed better performance in terms of accuracy

and computation complexity. Due to the efficient computational algorithm of the

modified CWT, accurate analysis of lengthy WT CM signals does not require more

costly WT CM computational requirements. The effectiveness of the modified CWT

was further demonstrated on real field measurements collected from a commercial

WT (Vestas V42 600-kW machine) to detect early abnormalities. Results showed

that it detected a problem from the stator current after an emergency stop on 4th

April 2016 approximately 19 hours before the WT went to another shutdown on the

following day.



Chapter 7

Conclusion and Future Work

7.1 Conclusions

The main goal of this thesis was to develop new and improved techniques for

WT generator CM and fault detection using advanced signal processing methods,

that can overcome existing CM limitations due to the constantly varying shaft

rotating speeds caused by turbine variable loads. The proposed techniques use the

measurement of stator current, already available for control purposes which means

no additional sensors or data acquisition devices are needed, so that the detection is

more beneficial, comprehensive, simpler, and cheaper than other techniques. The

successful development and application of the proposed techniques and performance

metrics in this thesis through simulations, experiments and real field measurements

prove that the proposed techniques are viable and effective approaches for on-line WT

CM. The proposed techniques provide accurate interpretation of the WT generator

electrical output with sufficient sensitivity and reasonable computational efficiency

to extract the instantaneous amplitude of fault signature components from the WT

current signals. A critique of the key contributions of this thesis is given as follows.

Simulation studies have been carried in the MATLAB/Simulink environment to

describe how fault signatures may occur in current signals, and potentially how they
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may deviate from a healthy state under variable speed conditions. The performance

of the model was validated by experimental measurements made on a physical test

rig under healthy and faulty conditions. The WT model was then run at actual

variable speed conditions collected from an operational WT to produce signals of

similar noise, variability and information content as those encountered on operational

turbines. The results of this investigation showed that the fault signatures in the

WT current signals are non-stationary with low signal to noise ratio due to the

constantly varying shaft rotating speeds and varying loads.

Two commonly encountered signal processing techniques: the short-time Fourier

transform and the wavelet transform are discussed and conclusions drawn about their

applicability and suitability for analysis of non-stationary signals. Having examined

these techniques, it is shown that the time-frequency representations obtained by

STFTs and CWTs appear to be unsuitable for WT CM. However, the CWT was

more successful in producing better information in the time domain at different

frequency bands from the data analysed. The concept of a frequency tracking

algorithm was introduced and the previously published IDFT method was used as

an example. This method proved successful on a simulation case study for a WT

running under variable speed conditions. The IDFT has good computing efficiency

by applying a discrete Fourier analysis over a narrow band around the frequency

of interest to extract peak amplitudes which are assumed to be the amplitudes of

the fault frequency of interest within the predefined window. However, the problem

with this assumption is that the fault frequencies do not always have maximum

amplitude especially when the fault frequencies are corrupted by other components

irrelevant to the fault or hidden in other components like the supply frequency and

its harmonics due to the variable operating conditions, making the use of the IDFT

impractical for continuous application on large WT populations. Another technique

to detect faults in variable speed WTs based on ANNs has been also introduced. A

framework is discussed for training of fault detection with simulated signals from
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faults for later online detection in real WTs. For each set of limited rotational speed

variation a separate ANN will detect the fault. In a simulation study of a rotor

imbalance under varying rotational speed as expected in 5 minutes operation the

feasibility of the fault detection approach is demonstrated. Simple classification

of healthy or faulty condition is achieved with a high accuracy. In a further step

towards fault prognosis, the severity of the fault is successfully detected.

Despite the improvement in computational efficiency offered by the IDFT method,

the FSC can be difficult to isolate accurately due to the fact that the WT frequently

operates with the generator close to synchronous speed, resulting in FSCs manifesting

themselves in the vicinity of the supply frequency and its harmonics, making their

detection more challenging using the IDFT. To address this challenge, Chapter 5

has proposed an effective EKF based method that is better capable of dealing

with the non-stationary and non-linear characteristics of the WT generator current

signals. The proposed approach is used to iteratively track the strength of particular

frequency components, characteristic of faults in the current signal. The proposed

technique has been validated experimentally on a WT drive train test rig with two

fault levels of rotor electrical asymmetries at three different driving conditions whose

variability is representative of WT generator field operation. The EKF performance

was compared with that of a CWT and an IDFT in terms of its ability to provide

significant gains in both computational efficiency and accuracy of fault diagnosis.

The EKF demonstrated better overall resolution of fault frequencies particularly

where those frequencies are close to the synchronous frequencies and their harmonics;

a condition that can occur frequently when a turbine is operating with the generator

close to synchronous speed. Due to the parsimonious nature of the EKF and the fact

that it does not employ windowing, it is able to accurately detect fault frequencies

with minimal computational requirements when compared with a CWT. The EKF

was shown to be capable of detecting the degree of rotor unbalance with greater

accuracy than an IDFT or CWT. The results presented show that the EKF algorithm
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shows promise as a low cost, efficient method for condition monitoring the output of

a WT generator particular with regard to the detection of electrical faults such as

rotor unbalance.

However, the proposed technique based on an EKF cannot be applied directly

to detect a wide range of WT faults until fault-related features are identified in

advance. To address this issue, Chapter 6 has proposed a new WT CM technique,

based on modifying the CWT. The new technique is capable of providing explicit

time-frequency features of the current signal. The adaptable shape for the mother

wavelet used in this method instead of the fixed shape in the conventional CWT

enables the improved CWT to track only the fault signature frequencies from the

non-stationary characteristics of the WT current signal, and avoid issues associated

with the conventional CWT. The proposed technique was evaluated using simulated,

experimental and real data. For the simulated data, the improved CWT showed

success in detecting a wide range of WT faults e.g. static eccentricity and rotor

electrical unbalance faults occurring in a WT, despite the constantly varying shaft

rotating speeds and varying loads. Secondly, the performance of the proposed

technique is compared to the conventional CWT for interpreting non-stationary WT

CM signals. The proposed method showed better performance in terms of accuracy

and computational complexity. Due to the efficient computational algorithm of

the improved CWT, accurate analysis of lengthy WT CM signals does not require

more costly WT CM hardware. Finally, the effectiveness of the improved CWT was

further demonstrated on real field measurements collected from a commercial WT

(Vestas V42 600-kW machine) to detect early abnormalities. An abnormality was

detected by the modified CWT in the stator current after an emergency stop on 4th

April 2016 approximately 19 hours before the WT went to another shut-down on

the following day.
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7.2 Future Work

From the work presented in this thesis, the following areas for further work arise:

• The proposed signal processing techniques need to be implemented on real

WTs, which may be suffering from rotor electrical asymmetries, and to use

the detection of the fault degree to potentially predict the fault progression

some time in advance.

• Work is necessary to assess the potential of the reported techniques to be used

for detection of a wider range of WT faults like generator bearing, gearbox-

bearing and rotor eccentricity faults as it will establish the detectability of the

proposed techniques and to make them ready for commercial implementations.

• Combination of the proposed EKF developed in this work with the modified

CWT in order to improve the detection performance and to identify and track

fault signatures in WTs.

• Work is also necessary to employ the proposed signal processing techniques

with intelligent systems for fault classification such as support vector machines,

genetic algorithms and fuzzy logic to automate and provide reliable alarms

with a high degree of confidence system.

• Work could be done to determine the minimum required sampling frequency

to capture fault frequency components in the measured current signal in order

to keep the amount of data as low as possible. This will require the analysis

of the frequency components in the spectra at various sampling rate for both

healthy and faulty conditions if this were done this would substantially reduce

memory requirement and computational complexity.

• Further work could be done to include the analysis of the continuously mea-

sured voltage and power signals to identify their fault frequency components
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manifestation. This may improve the performance of WT CM and fault

detection.

• It is highly recommended to move forward towards fault prognosis by using

the extracted fault features. Fault prognosis for WTs is important to lead to

better remaining useful life prediction which will results in a much optimized

maintenance schedule and less unscheduled maintenance events. Further

analysis of the extracted fault features may provide the capabilities of new

prognostic solutions for addressing the uncertainty challenges in predicting

the remaining useful life of abatement systems, subject to uncertain future

operating loads and conditions.
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