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Graphical abstract 

 

Abstract 

Graphene-based advanced electrodes with improved electrochemical properties have received 

increasing attention for use in lithium ion batteries (LIBs). The conventional synthesis of graphene via 

liquid phase exfoliation or chemical reduction of graphene oxide (GO) approaches, however, either 

involves prolonged processing or leads to the retainment of high-concentration oxygen functional 

groups (OFGs). Herein, bulk synthesis of high-quality reduced graphene oxide using microwave 

irradiation (MWrGO) within few seconds is reported. The electromagnetic interaction of GO with 

microwaves is elucidated at molecular level using reactive molecular dynamic simulations. The 

simulation suggests that higher power microwave irradiation results in significantly less retainment 

of OFGs and the formation of structural voids. The synthesized MWrGO samples are thoroughly 

characterized in terms of structural evolution and physicochemical properties. Specifically, a 

modified ID/IG-in ratio metric for Raman spectrum, wherein the intensity contribution of D’ peak is 

deducted from the apparent G peak, is proposed to investigate the structural evolution of 

synthesized MWrGO, which yields a more reliable evaluation of structural disorder over traditional 

ID/IG ratio. Li-ion half-cell studies demonstrate that the MWrGO is an excellent candidate for usage as 

high capacity anode (750.0 mAh g-1 with near-zero capacity loss) and high-performance cathode (high 

capacity retention of ~70% for LiCoO2 at 10 C) for LIBs. 
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1. Introduction 

Rapid production of high-quality reduced graphene oxide (rGO) with less OFGs and large lateral 

dimensions is pursued worldwide owing to the fascinating intrinsic properties of graphene such as 

highly flexible but mechanically robust structure, excellent electronic conductivity, and massive 

theoretical specific surface area (2630 m2 g-1) [1, 2]. High-quality rGO has found widespread 

applications in energy generation/storage devices, especially LIBs [3-5]. Although chemical vapor 

deposition (CVD) and mechanical exfoliation approaches have been well developed to produce 

graphene, their outcomes are generally unsatisfactory due to the high cost and the tedious process 

involved. The alternative approach to produce graphene is reduction of GO using chemical reducing 

agents or conventional thermal treatment. Nevertheless, the synthesized rGO possesses high 

concentration of OFGs and low carbon-to-oxygen atomic ratio (C/O). In order to produce high-quality 

rGO in a rapid and low cost manner, reduction of GO using microwave irradiation is recently explored 

because it simultaneously combines the advantages of low cost by Hummer’s method and super-fast 

volumetric heating by microwave irradiation [6-8]. 

Initially, microwave-assisted reduction of GO was accomplished in organic solvents, e.g. 

oleylamine, and N,N-dimethylformamide [9, 10]. However, the extent of reduction of GO in organic 

solvents was inferior because of the low boiling points of organic solvents (generally <300 ℃). It was 

reported that the temperature required to effectively reduce GO was ~1050 ℃ in argon atmosphere 

[11] and 800 oC in hydrogen atmosphere [12], which were difficult to achieve in organic solvents. 

Additionally, the rGO tends to aggregate to become large particulates in solvents, which ultimately 

impairs the attainable properties of rGO. Afterwards, much efforts have been devoted to microwave-

assisted reduction of GO in solid powder form [3, 4, 13, 14]. The first direct microwave-assisted 

reduction of solid-state GO was achieved by Ruoff in a domestic microwave oven [13], Following that, 

the microwave-driven reduction process of solid-state GO was optimized by using an array of 

microwave secondary susceptors, e.g. graphene, carbon black or graphite. They were employed to 

enhance microwave absorption and trigger super-heating to facilitate the reduction of surrounding 

GO powder [3, 4, 15, 16]. However, it has been revealed that the reduction reaction mainly occurred 

in places where the microwave susceptors were present, thereby resulting in non-uniform reduction 

of GO [3]. 

To overcome this issue, Voiry optimized the microwave absorption process by annealing the GO 

powder at 300 ℃ prior to microwave irradiation [17]. This pre-annealing treatment can convert entire 

GO from a poor microwave absorber to an extraordinary microwave absorber due to the partial 

restoration of the π-π conjugated network of GO. This led to the intensive volumetric microwave 

heating and uniform microwave reduction [3, 15, 17]. Whilst number of studies have been made to 

produce microwave-assisted rGO, most of the studies so far are focused on the fixed power 

microwave synthesis. Therefore, the effects of varied microwave power on the structural evolution 

and the extent of reduction of GO remain unknown and need to be explored. 

Following Voiry’s work, Chaban theoretically studied the microwave-assisted reduction process of 

GO using reactive molecular dynamics (RMD) and concluded that the different oxygen-containing 

                  



     

3 

groups were deoxygenized at very different temperature regimes [18]. Though their work provided a 

fundamental understanding of electromagnetic interaction of GO with microwaves at a molecular 

level, no such reports are available on microwave interaction of annealed GO. Further, whilst the 

pioneering work of Chaban shed some light on the reaction mechanisms of reduction of GO using 

microwaves, it did not consider the effect of localized microwave heating generated at OFGs – the 

current work fills this extremely vital gap in understanding. 

Despite that commercial LIBs have currently achieved grand successes as power sources for 

portable electronic devices, the commonly used graphite anode and LiCoO2-based cathode cannot 

satisfy the demanding requirements of the advanced LIBs due to the low capacity and the inferior 

rate capability, respectively. Therefore, the electrochemical properties of LIBs can be improved using 

MWrGO because it is regarded as a promising electroactive material to replace traditional graphite in 

anode and as a conductive additive in cathode. However, with MWrGO as anode, only limited 

capacity was obtained, e.g. 400 mAh g-1 at 0.1 C for few-layered MWrGO [19]. The low capacity was 

probably attributed to the inefficient reduction of GO without pre-annealing treatment, which will be 

addressed in the work. On the other hand, the rate capability of LiCoO2/rGO cathode, in which rGO 

was produced using thermal/chemical reduction approaches, is still poor. For instance, when 

thermally prepared rGO was used as conductive additive in LiCoO2-based cathode, the capacity of 

LiCoO2/rGO cathode drastically declined to ~0 mAh g-1 at 2 C [20]. The low capacity at high current 

rate was related to the inferior electronic conductivity of rGO caused by inefficient thermal reduction. 

To date, the effect of rGO prepared using microwave irradiation, i.e. MWrGO, on the electrochemical 

properties of LiCoO2-based cathode has not been reported and will be further examined in this work. 

Herein, the GO prepared using modified Hummer’s method was first pre-annealed at 250 ℃ to 

restore partial graphitic structures before being subjected to microwave irradiation at different 

powers (300, 500, and 800 W) (Fig. S1). The microwave-synthesized products of annealed GO are 

denoted as MWrGO-X where X represents the microwave power. It is found that the microwave-

assisted reduction process can be completed within few seconds at the super-fast heating rate of 

30,000 ℃ min-1. For comparative study of the impact of pre-annealing treatment on microwave 

absorption, GO without pre-annealing treatment (denoted as unannealed GO) was subjected to 

microwave irradiation and was compared with annealed GO. A computer simulation using RMD was 

used to mimic the thermal deoxygenation process of OFGs at different microwave powers by 

considering the microwave localized heating of functionalized carbon atoms. The simulation results 

suggested that different microwave powers could be used to tailor the quality of MWrGO – a unique 

trait that can be exploited based on need. The obtained MWrGO-800W exhibited a highly porous 

structure, high C/O ratio (≈14.29), high surface area (310.24 m2 g-1) and high electronic conductivity 

(761.4 S m-1). For LIBs application, the anode made of MWrGO-800W delivered a high discharge 

capacity of 750.0 mAh g-1 at 0.2 A g-1 with near-zero capacity loss after 100 cycles. Additionally, the 

LCO-based cathode with MWrGO-800W as conductive additive was shown to exhibit an improved 

capacity retention and rate capability compared to the counterpart containing carbon nanotube 

(CNT). 
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2. Experimental 

2.1. Synthesis of MWrGO 

The GO suspension was prepared using a modified Hummer’s method [21, 22] and was used to 

produce GO beads in CaCl2 coagulation bath (See the Supporting information) [23]. Afterwards, the 

as-prepared GO was annealed at 250 ℃ for 1 hour in argon atmosphere to obtain annealed GO. The 

annealed GO was placed inside a microwave transparent quartz reactor, which was flushed with 

argon gas for 10 min to create an inert atmosphere. Microwave irradiation was performed at powers 

of 300, 500, and 800 W using a customized microwave oven (WaveDOM 7020, 2.45 GHz frequency). 

For comparison, as-prepared GO without the annealing treatment (denoted as unannealed GO) was 

exposed to 800 W microwave irradiation in identical argon atmosphere. Upon microwave irradiation, 

the real-time temperature profiles across annealed GO and unannealed GO were monitored using 

thermal imaging camera (FLIR-A655sc, Sweden). 

2.2. Characterizations 

The morphologies of MWrGO was investigated using field emission gun scanning electron 

microscopy (FEGSEM; JEOL-7800F) and high-resolution transmission electron microscopy (HR-TEM; 

FEI-Tecnai) equipped with Supertwin symmetric lenses. The structure and composition were 

characterized using Micron-Raman spectroscopy (Horiba Jobin-Yvon, 514 nm), X-ray diffraction (XRD; 

Bruker D2), Fourier transform infrared spectroscopy (FTIR; Shimadzu 8400S), thermogravimetric 

analysis (TGA; TA Instruments Q5000IR), X-ray photoelectron spectroscopy (XPS; Thermo Scientific, 

Al-Kα hv=1486.6 eV). The isotherms of N2 physisorption were recorded (TristarTM 3000) and was used 

to calculate the SBET and the pore size distribution. Electronic conductivity was measured on dense 

pellets using a four-probe method (Keithley 580). 

2.3. Simulation 

Simulations were carried out on LAMMPS [24] and the visualization was obtained using OVITO 

[25]. As supported by Car-Parrinello MD, ReaxFF was used to govern the dynamics [26, 27]. Two 

simulation scenarios, i.e. direct heating and microwave localized heating, were performed on GO 

with a timestep of 0.1 fs. For direct heating simulation, GO sheet which consisted of 1073 carbon 

atoms with designated 30 oxygen functional groups (OFGs) (hydroxyl groups, epoxide groups, and 

carbonyl groups) was simulated in a large cell. Direct heating was achieved using Nose-Hover 

thermostat from 273 to 3000 K in 500 ps. The first three reduction events of each OFGs were 

recorded to calculate the average reduction temperatures. For microwave localized heating 

simulation, only functionalized carbon atoms were heated up because microwaves were absorbed 

only by charged carbon atoms (with a threshold charge >0.08 e). Whereas the other carbon atoms 

were freely simulated (Fig. S3). In this simulation, the annealed GO sheet with 10.2 nm × 9.8 nm was 

constructed with C/O=5.04. The charged carbon atoms were coupled by a thermostat heating of 

3.454 K ns-1, 9.454 K ns-1 and 15.454 K ns-1 to mimic different microwave powers, respectively. 

2.4. Electrochemical measurements 

2.4.1. The preparation of MWrGO anode.  

The slurry of 60 wt% MWrGO and 40 wt% polyvinylidene fluoride (PVDF) was prepared using N-

methyl pyrrolidinone (NMP, 99%) and was blade cast on Cu foils, followed by drying at 100 oC 
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overnight. Afterwards, the dried electrode was roll pressed and punched out (8 mm discs). The mass 

loading was ~0.2 mg cm-2. 

2.4.2. The preparation of cathode.  

The stoichiometric amounts of Co3O4 (≥99%, Sigma) and Li2CO3 (≥99%, Fisher) were ball milled at 

200 rpm for 16 hours with the ball-to-powder ratio of 10:1, followed by calcination at 850 ℃ for 5 

hours to prepare LiCoO2 (LCO). The slurry of 91% LCO, 1 wt% MWrGO-800W and 8 wt% PVDF was 

prepared for MWrGO-containing cathode (LCO-MWrGO) and the slurry of 89 % LCO, 3 wt% CNT and 

8 wt% PVDF was prepared for CNT-containing cathode (LCO-CNT) using NMP. The slurries were blade 

cast on Al foils, followed by drying at 100 oC overnight. Afterwards, the dried electrodes were roll 

pressed and punched out (8 mm discs). The mass loading was ~3.1 mg cm-2 for LCO-MWrGO and ~3.0 

mg cm-2 for LCO-CNT. 

All the working electrodes prepared above were assembled in 2032 type coin cells with lithium 

metal as counter electrode in Ar-filled glove box (MBraun). Celgard 2325 membrane was used as 

separators and the electrolyte of 1.0 M LiPF6 in ethylene carbonate/dimethyl carbonate (1:1 v/v) was 

used. All the cells were conditioned for 1 day and galvanostatically charged/discharged using multi-

channel battery tester (Neware, BTS-4008). Cyclic voltammetry (CV) test was performed for MWrGO 

anode at 0.1 mV s-1 in 0.01-2.5 V (BioLogic VSP). Electrochemical impedance spectroscopy (EIS) was 

conducted on LCO-based cathodes in the frequency range 10 kHz–0.01 Hz with an AC amplitude of 5 

mV. 

3. Results and discussion 

3.1 The enhanced microwave absorption of GO by annealing treatment 

Fig. 1a depicts the effect of pre-annealing treatment on the microwave absorption of unannealed 

GO and annealed GO. In sharp contrast with the highest temperature of ~160 ℃ achieved on the 

unannealed GO, the annealed GO could be heated up to ~670 ℃ within few milliseconds due to the 

boosted microwave coupling capability caused by partial restoration of conjugated graphitic 

structure. The modified Hummer’s method introduced OFGs on the basal planes of GO, which 

cleaved the defect-free conjugated structure down to tiny polyaromatic islands [3]. Those 

polyaromatic islands created inter-boundaries along the vicinity of the OFGs and thus confined the 

transportation of π electrons within delimited regions. Consequently, the π electrons were hard to 

be driven by the E-field component of the electromagnetic microwaves to transport over a long 

range to generate enough Joule heating to effectively reduce GO. Fortunately, GO is 

thermodynamically unstable due to the incorporated -OH and -C=O groups [3, 10]. The pre-annealing 

treatment of GO at 250 ℃ can remove the -OH and -C=O groups and thus eliminate the inter-

boundaries of defective regions, leading to partial restoration of the conjugated structures. This 

enabled the transportation of π electrons over a longer distance and generated significant amounts 

of Joule heating, yielding a remarkable heating rate of 30,000 ℃ min-1 for annealed GO. This value was 

far greater than that of 2,000 ℃ min-1 achieved in conventional rapid thermal reduction method [11]. 

This superfast heating rate was the direct result of intense microwave absorption and efficient 

conversion from microwave energy to thermal energy [11]. Furthermore, the obtained high 

temperature (~670 ℃) of annealed GO was also believed to result in the localized deoxygenation of 

OFGs. 
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During microwave irradiation, it is also interesting to find that strong arcing was observed on 

annealed GO after just 1-3s of microwave irradiation (Movie S1 and Fig. S4), whereas no arcing was 

observed on unannealed GO after even 60 s. The occurrence of microwave-induced arcing may be 

ascribed to the congregation of π electrons at the sharp sites on graphene planes, which led to the 

ionization of the surrounding gas [15]. During microwave irradiation of annealed GO, the residual 

OFGs were locally heated and deoxygenated, which further eliminated the inter-boundaries around 

OFGs and enabled more π electrons to transport over a longer distance. In this scenario, a higher 

concentration of π electrons was built up at sharp sites, such as plane edges or defective points, 

resulting in the formation of intense electrostatic field [28]. The induced electrostatic field was likely 

to ionize the surrounding gas through electron excitation, which was perceived as electric arcing. It is 

also believed that the microwave reduction of GO was a self-accelerating deoxygenation process 

because the freshly formed MWrGO themselves became additional microwave absorption regions 

and in turn converted more microwave energy to thermal energy to remove the residual OFGs. 

The morphologies of unannealed GO and annealed GO were characterized using FEGSEM (Fig. 1b-

c). The original microstructure of unannealed GO was observed to be quite compact and dense (Fig. 

1b). After the annealing treatment at 250 ℃, a highly porous structure was formed (Fig. 1c), which 

was accompanied with a remarkable volume expansion of GO (Fig. S5). The formation of porous 

structure was ascribed to vigorous release of gases, like CO, CO2, and H2O, during annealing 

treatment [14, 18]. Since the decomposition rate of OFGs exceeded the diffusion rate of the gases 

through the GO, the released gases were initially trapped in the GO and resulted in a rapid pressure 

build-up. Once the internal pressure reached the threshold of Van der Waals forces, the graphitic 

layers were violently exfoliated and concurrently resulted in the formation of highly porous structure. 

 

Fig. 1. (a) Time-temperature profiles of annealed and unannealed GO by 800 W microwave irradiation. The heating rate 
is ~30,000 ℃ min

-1
 for annealed GO and ~2000 ℃ min

-1
 for unannealed GO. (b-c) FEGSEM images of (b) unannealed GO 

and (c) annealed GO. 

The morphology of MWrGO-800W flakes were characterized using HR-TEM. The MWrGO-800W 

featured a distinctively transparent and wrinkled surface with some stacking regions at the edges 

(Fig. 2a). Furthermore, the closer microscopic examination (Fig. 2b) shows well-resolved lattice 

fringes, indicative of significant exfoliation of microwave reduced GO. The inset in Fig. 2b shows 

sharp electron diffraction pattern with two sets of symmetric hexagonal peaks at the edge region, 

further indicating the well-crystallized hexagonal graphitic structure. Noticeably, the higher intensity 

of the first-order spots over the second-order spots implied the presence of single layer graphene. 
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Fig. 2. HR-TEM images of MWrGO-800W at (a) low and (b) high magnification. The electron diffraction pattern is given in 
the inset, along with the diffraction intensity profiles of (11𝟐̅0) and (1𝟏̅00). 

3.2. The microwave interaction simulation 

RMD simulation can provide insights into the atomistic information regarding transformations and 

deoxygenation of OFGs during microwave irradiation. Two simulation scenarios, i.e. direct heating 

and microwave localized heating, were carried out. In the direct heating simulation, the 

deoxygenation temperatures of different OFGs were presented in Fig. 3a. From the simulation 

results, it is concluded that the hydroxyl groups were decomposed from GO sheets at roughly 1200 K, 

followed by removal of epoxide, and carbonyl groups above 2200 K. The decomposition of hydroxyl 

groups at lower temperature was supported by previous research [29, 30]. Based on the simulation 

results, the decomposition mechanisms of hydroxyl, epoxide, and carbonyl groups are proposed in  

Fig. 3b-d. The hydroxyl group was decomposed from carbon skeleton by breaking the C-OH bond 

during microwave irradiation and then was released as a hydroxyl free radical (Fig. 3b). As for the 

decomposition of epoxide group, the two C-O bonds sequentially broke, and an oxygen atom was 

then released, as illustrated in  Fig. 3c. Notably, if two epoxide groups are linked by a carbon-carbon 

bond, they tended to transform into a pair of carbonyl groups as shown in  Fig. 3e, which was also 

reported by Abolfath [26]. With regard to the paired carbonyl groups, one carbonyl group was 

rearranged with the C-CO bond of another carbonyl group and became an over-coordinated epoxide 

group, releasing a CO molecule, as shown in  Fig. 3d and  Fig. 3f. 

 

Fig. 3. (a) Simulation time-temperature profile for different OFGs in direct heating simulation. (b-c) Proposed reduction 
pathways for (b) hydroxyl, (c) epoxide, and (d) paired carbonyl groups. (e) The transformation of linked epoxide groups 
to paired carbonyl groups. (f) The transformation of paired carbonyl groups to over-coordinated epoxide group (grey for 
carbon atoms and red for oxygen atoms). 

The microwave-assisted reduction of annealed GO was also simulated using localized heating 

fashion to mimic different heating rates introduced by different microwave powers, as illustrated in 
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Fig. 4. At low microwave power, the annealed GO sheet was hardly reduced and most of the OFGs 

remained intact, as shown in Fig. 4a. With increasing microwave power, the extent of deoxygenation 

was enhanced, as exemplified in Fig. 4b and Fig. 4c. Specifically, only 3.7% of the oxygen atoms were 

removed at low power microwave irradiation, which were far less than 49.8% at medium power and 

83.5% at high power, as shown in Fig. 4d. The reason for the poor reduction at low microwave power 

was that the kinetic energy of the charged carbon atoms was dissipated into GO layers rather than 

being converted into localized overheating around OFGs. It is worth mentioning that at high 

microwave power, most of the OFGs were deoxygenated but the carbon skeleton was significantly 

damaged since more structural voids were formed during microwave irradiation, as shown in Fig. 4c. 

Compared to 0.04% at low microwave power and 7.5% at medium microwave power, 14.5% of the 

carbon atoms were removed at high microwave power, as shown in Fig. 4e. These simulation results 

supported that a high microwave power (800 W in this work) could lead to the effective 

deoxygenation of the OFGs and the formation of voids on the backbone. The extent of 

deoxygenation of OFGs at different microwave power levels was corroborated by further exposing 

the MWrGO samples to microwave irradiation at 800 W (Fig. S6). Since more OFGs were already 

deoxygenated at higher power levels, the MWrGO-800W sample showed less Joule heating when re-

heated at the same microwave power level, which further validated the proposed 

decomposition/deoxygenation model. 
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Fig. 4. The simulation results of MWrGO after microwave irradiation at (a) low power, (b) medium power and (c) high 
power. (d-e) Removed oxygen and carbon atoms on GO after microwave irradiation at different power levels. 

3.3. The MWrGO characterization 

Raman spectroscopy provides insights into structural evolutions relating to lattice disorder due to 

its unique phonon interaction with carbon hexagonal structure. All Raman spectra of MWrGO exhibit 

four characteristic peaks; D peak at ~1350 cm-1, G peak at ~1580 cm-1, 2D peak at ~2690 cm-1, and 2D’ 

at ~3240 cm-1 (Fig. 5a). The intensity ratio between D peak and G peak, i.e. ID/IG, has been intensively 

utilized as a measure of structural disorder in rGO and as a direct indicator for the extent of recovery 

of crystalline aromaticity. However, this empirical measuring tool, i.e. ID/IG, may give contradictory 

results on rGO synthesized by various methods, such as chemically/thermally treated rGO [31-34]. 

After being reduced from its GO precursors, an increased ID/IG may be observed for rGO instead of a 

decreased ID/IG. The unreliability of this empirical ID/IG is attributed to the superposition of G peak 

and D’ peak, the latter of which generally appears at the high-Raman-shift shoulder of G peak. Due to 

the additional intensity contribution of D’ peak to the observed apparent G peak (denoted as GApp, 

hereafter), the empirical ID/IG ratio is actually the intensity ratio between D peak and GApp peak (ID/IG-

App). Depending on the contribution of D’ peak, ID/IG-App may vary from sample to sample and thus 

gives inconsistent comparisons over rGO samples. Therefore, by subtracting the intensity 

contribution of D’ peak from GApp peak, a modified measuring ratio between D’ peak to the intrinsic G 

peak (denoted as ID/IG-in) was proposed to study the structural evolutions of MWrGO (Fig. S7). 

The ID/IG-in ratios of all the MWrGO samples were calculated in Table S1. It is seen that the ID/IG-in 

ratio is increased from ~0 in the pristine graphite to 1.258 for the unannealed GO, indicating the 

transformation of sp2 graphitic domains to sp3 amorphous domains by introducing OFGs. After 

annealing treatment at 250 ℃, the ID/IG-in ratio was significantly reduced to 0.906, representing the 

partial recovery of conjugated graphitic structure. After microwave irradiation, the ID/IG-in ratio of 

MWrGO decreased to 0.392 at 300 W, 0.251 at 500 W and further to 0.062 at 800 W, indicating an 

effective removal of OFGs at higher microwave power. In comparison with annealed GO, the 

unannealed GO showed poor reduction even at the highest microwave power of 800 W, which 

indicated the importance of annealing treatment which can convert GO from a poor microwave 

absorber to an extraordinary microwave absorber. 
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I2D/IG ratios and crystalline domain size (La) are other indicators for the quality of synthesized rGO. 

The larger the values of I2D/IG ratios and La, the higher quality of rGO. Fig. 5b depicts the I2D/IG ratios 

as a function of La on MWrGO samples in comparison with CVD-graphene and dispersed graphene. 

Among MWrGO samples, MWrGO-800W exhibited the largest values of I2D/IG ratio and La, 

representing less OFGs on graphene plane (Table S1). The aforementioned Raman analysis revealed 

that highest-quality MWrGO could be obtained using 800 W of microwave power and this is 

consistent with the RMD simulation results. The most attractive MWrGO-800W was then selected as 

a representative for further characterization. 

 

Fig. 5. (a) Raman spectra of MWrGO in comparison with pristine graphite, unannealed GO, and annealed GO. (b) I2D/IG 
intensity versus the crystalline domain sizes (La) for MWrGO, CVD-graphene and dispersed graphene (the latter two were 
added for comparison from ref. [17]). 

  

The quantified amounts of OFGs on pristine graphite, unannealed GO, annealed GO and MWrGO-

800W were determined using XPS (Fig. 6, Table S2). The XPS C1s spectra featured the following 

bands: non-oxygenated ring C-C at 284.48 eV, C-O at 285.98 eV, C=O at 287.48 eV, O-C=O at 288.98 

eV, and π-π* shake-up peak at 291.28 eV. The intensities of the OFGs on the unannealed GO became 

significant after the modified Hummer’s method and then were effectively reduced after the 

annealing process and microwave irradiation. The appearance of π-π* shake-up peak and the 

increase in the C-C band intensity for the annealed GO and the MWrGO-800W confirmed: (i) the 

effective reduction of the oxygenated graphene sheets during the annealing treatment at 250 ℃ and 

(ii) the further removal of OFGs upon microwave irradiation. Similar corroborative conclusions can 

also be drawn based on the structural, compositional, and thermal analysis using XRD, FTIR, TGA, and 

nitrogen adsorption-desorption isotherms, which are detailed in Fig. S8-S11. In short summary, the 

MWrGO-800W exhibited a high C/O ratio of 14.29 and a high specific surface area (SBET) of 310.24 m2 

g-1 (Table S2 and Fig. S11). 
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Fig. 6. The XPS C1s spectra of (a) pristine graphite, (b) unannealed GO, (c) annealed GO, and (d) MWrGO-800W. 

Generally, a high electronic conductivity of graphene is closely related to the perfection of carbon 

hexagonal structures. GO is electrically insulated because the extended π-π* electronic conjugated 

network is damaged by the presence of OFGs. As shown in Fig. S12, the electronic conductivity of the 

unannealed GO (1.83 × 10-2 S m-1) was much inferior than that of the pristine graphite (851.2 S m-1), 

implying that the transportation of π electrons was blocked by OFGs. After annealing treatment and 

microwave-assisted reduction, the electronic conductivities of annealed GO and MWrGO-800W 

yielded values of 268.9 S m-1 and 761.4 S m-1, respectively, which are excellent compared to literature 

values (Table S3). There was a direct relation noticed between the electronic conductivity and the 

C/O ratios of the samples (Fig. S13), indicating that the removal of OFGs can enhance the free 

transportation of π electrons on graphene nanosheets. 

3.4. The applications of MWrGO in LIBs 

As discussed above, the high SBET (310.24 m2 g-1) and the high electronic conductivity (761.4 S m-1) 

can enable the MWrGO-800W as an excellent electroactive material in anode and a conductive 

additive in cathode for LIBs due to (i) the sufficient uptake sites for Li ions, (ii) the formation of elastic 

and highly conductive 3-dimensional network, (iii) the enhanced lithium ion mobility through large-

size voids [6]. This is further investigated here. 

MWrGO-800W anode exhibited a discharge capacity of 1523.9 mAh g-1 and a charge capacity of 

755.1 mAh g-1 in the initial cycle, yielding a coulombic efficiency of only 49.5% (Fig. 7a). The large 

initial discharge capacity mainly involved the irreversible capacity caused by the formation of a 

passivating solid electrolyte interphase (SEI) on the graphene flakes and the reversible capacity 

caused by the intercalation process of lithium ions [35]. Among them, the reversible intercalation 

process of lithium ions was consisted of the electrochemical lithiation/delithiation process (<0.5 V) 

and the Faradic capacitance on the structural voids of the graphene flakes (>0.5 V) [4]. 
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A stable discharge capacity of ~750.0 mAh g-1 was attained subsequently for the MWrGO-800W 

anode, corresponding to a high stoichiometric LixC6 (X≈2.0) (Fig. 7b). In contrast with crystalline 

graphite in which each graphitic flake is thought to only accommodate a single layer of Li ions, well-

exfoliated MWrGO-800W seems to be capable to uptake a layer of Li ions on both sides of graphene 

flake. This enables the specific capacity of MWrGO-800W to be almost double that of crystalline 

graphite (372 mAh g-1). Moreover, the structural voids on the MWrGO-800W flakes can function as 

additional Li+ storage sites, further increasing the attainable capacity. The low coulombic efficiency of 

49.54% in the initial cycle progressively increased to 96.91% at 5th cycle and then stabilized at around 

100%, indicating that the SEI formed in the first 5 cycles was stable and the 

intercalation/deintercalation process was reversible. The intercalation/deintercalation behavior of 

MWrGO-800W with Li ions was further studied using CV test between 0.01-2.5 V (Fig. S14). In the 

first cathodic scan, a strong reduction peak was observed at 0.66 V and was attributed to the 

formation of SEI. However, this reduction peak disappeared in the subsequent cathodic scans, which 

was indicative of the SEI stability. In the initial five scans, MWrGO-800W electrode featured a 

reduction peak at 0.02 V and an oxidation peak at 0.19 V, which exhibited an excellent consistency in 

shape and were assigned to the intercalation/deintercalation of Li ions in a manner reflecting LixC6 

bulk storage. Overall, the excellent consistency of CV test indicated the good reversibility of the 

MWrGO-800W anode. 

With stepwise increasing the current densities to 10 A g-1, the capacities of MWrGO-800W were 

declined to 120 mAh g-1 (Fig. 7c). The diminishing capacities of MWrGO-800W can be attributed to 

the increased polarization at high current densities. More notably, the exceptional capacity of 120 

mAh g-1 at the super-high current density of 10 A g-1 was indicative of the presence of structural voids 

formed during microwave irradiation, which provided channels for faster diffusive motion of Li+ ion 

[6]. A remarkable capacity of 750 mAh g-1 was retained at 0.1 A g-1 immediately after being 

charge/discharged at 10 A g-1, indicating the robust microstructure of MWrGO-800W and the stable 

SEI formed [36]. The capacities of MWrGO-300W, MWrGO-500W and MWrGO-800W were also 

compared in Fig. S15. In contrast with 750.0 mAh g-1 for the MWrGO-800W anode, the lower 

capacities of ~520.0 mAh g-1 and ~400.0 mAh g-1 were achieved for MWrGO-500W and MWrGO-

300W, respectively, which could be ascribed to (i) the less accessible sites for Li ions due to the 

occupancy of residual OFGs, and (ii) the less structural voids formed at lower microwave powers. 

Thus, the electrochemical evaluation of MWrGO samples further agrees with the RMD simulations 

and Raman results. 

The improvement on the use of MWrGO-800W in LCO electrode (LCO-MWrGO) was studied in 

comparison with the counterpart containing CNT (LCO-CNT). Compared with LCO-MWrGO which 

showed a smooth capacity decay over 100 cycles, LCO-CNT suffered from a rapid capacity decay in 

the first 20 cycles, followed by a smooth capacity decay in the successive cycles (Fig. 7d). After 100 

cycles, the capacity retentions were 87.7% for LCO-MWrGO and 74.6% for LCO-CNT relative to their 

initial capacities. The higher capacity retention of LCO-MWrGO was ascribed to the sheet 

characteristic of MWrGO. The graphene sheets could wrap the LCO particles and prevent them from 

disintegration (Fig. 8 and Fig. S16). In this scenario, more LCO particles were able to firmly embed in 

the sponge-like MWrGO architecture and continually contribute to the overall capacity even though 

the LCO particles experienced expansion and contraction along C axis during the 

lithiation/delithiation process [37, 38]. Nevertheless, as expected the tube-shape CNT cannot provide 
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buffering volume for LCO particles, thereby leading to electrode disintegration and capacity fading 

upon long-term cycling. 

The LCO-MWrGO showed a similar rate capability as LCO-CNT at low current rate (<1 C) whilst it 

exhibited a superior rate performance at high current rates >2 C (Fig. 7e). Specifically, the capacity 

retention of LCO-MWrGO was ~70% at 10 C, which was much more extraordinary than ~0% of LCO-

CNT. The high capacity retention of LCO-MWrGO at high current rate can be attributed to (i) the 

effective plane-to-point contact model in which the spherical-shape LCO particles come in contact 

with planar graphene flakes, providing more contact points [39], (ii) the higher utilization efficacy of 

the carbon atoms on the planar graphene flakes [39], (iii) the porous structure of MWrGO which can 

facilitate the absorption and retention of electrolyte solution, providing an intimate contact between 

active material and electrolyte [20, 40]. When the current rate was returned to 0.1 C, a slightly higher 

capacity of LCO-MWrGO, i.e. ~130 mAh g-1, was achieved in comparison to that of ~125 mAh g-1 in 

LCO-CNT. It is worth pointing out that the content of MWrGO (1 wt%) used in LCO-MWrGO is less 

than that of CNT used (3 wt%) in LCO-CNT, indicating that higher volumetric capacity can be realized 

for LCO-MWrGO cathode system. 

EIS measurements were conducted to investigate the reasons why LCO-MWrGO exhibited 

improved electrochemical properties over LCO-CNTs, particularly at high current rates (Fig. 7f and 

Table S4). All the curves comprise a single semicircle and a quasi linear tail which are ascribed to the 

charge transfer process and Li ion diffusion in the solid phase of the electrode, respectively. After 100 

cycles, the Rs for the LCO-CNTs exhibited greater increase than that for LCO-MWrGO, which indicated 

the side reactions of the electrolyte could be suppressed by the graphene hence lower electrlyte 

resistance observed. It is worth noting that the Rct of LCO-MWrGO was much smaller than that of 

LCO-CNTs regardless of cycling test. The effectiveness of MWrGO in improving interfacial charge 

transfer kinetics manifests itself when comparing charge transfer resistances at solid particles. Rct is 

the main factor to affect the electrode kinetics during rate capability test, especially at high current 

rate. The small values of LCO-MWrGO can be attributed to the excellent electronic conductivity and 

the improved contact area of MWrGO. 
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Fig. 7. (a) The galvanostatic charge/discharge curves of MWrGO-800W anode at the current density of 0.2 A g
-1

. (b) The 
cycling performances of MWrGO-800W anode at 0.2 A g

-1
. (c) Rate capability of MWrGO-800W anode. (d) The cycling 

performances of LCO-MWrGO and LCO-CNTs at C/5 (1C=140.0 mAh g-1). (e) The rate capability comparison of LCO-
MWrGO and LCO-CNTs. (f) Nyquist plots of LCO-MWrGO and LCO-CNTs before and after 100 cycles with the equivalent 
circuit in the inset, where Rs represents the electrolyte resistance, Rct represents the charge transfer resistance, CPE 
stands for constant phase element and Zw is the Warburg impedance, which is attributed to the Li diffusion on LCO 
particles. 

 

Fig. 8. FEGSEM images of LCO-MWrGO cathode at (a) lower magnification, (b) medium magnification and (c) higher 
magnification. 

4. Conclusions 

In summary, this work demonstrated the feasibility of microwave reduction of solid-state GO to 

synthesize MWrGO within seconds. RMD simulations suggested that different microwave powers 

could be used to tailor the quality of MWrGO product. The reduction mechanisms of different OFGs 

were also proposed based on RMD simulations. Through comprehensive structural and 

compositional characterization, high-quality MWrGO was successfully produced using the microwave 

power of 800 W. A modified ID/IG-in Raman metric was shown to give a more reliable structural 

evaluation for MWrGO by deducting the intensity contribution of D peak from the apparent G peak. 

In LIB applications, the anode made of MWrGO-800W delivered a high capacity of ~750.0 mAh g-1 

with near-zero capacity loss after 100 cycles. Additionally, a highly conductive 3D network 

constructed by porous MWrGO-800W provided LiCoO2 with a high capacity retention of ~70% at the 

high current rate of 10 C, which is promising for power-oriented cathode. Thus, the microwave-
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assisted reduction of GO provides a rapid way to produce high-quality graphene for energy storage 

devices at an affordable cost and at bulk scale. 
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