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Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta,
within the polyphyletic chromalveolates. They evolved as a result of secondary
endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history
is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical
properties that have allowed them to flourish in a wide range of different environments and
cope with highly variable conditions. We review the effect of pH, light and dark, and CO2

concentration on the regulation of carbon uptake and assimilation. We discuss the
regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and
carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins
(proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of
metabolic enzymes is important, it appears to be less common in diatoms, based on the
current evidence, but regulation at the transcriptional level seems to be widespread. The role
of post-translational modifications such as phosphorylation, glutathionylation, etc., and of
protein-protein interactions, has been overlooked and should be investigated further.
Diatoms and other chromalveolates are understudied compared to the Viridiplantae,
especially given their ecological importance, but we believe that the ever-growing number
of sequenced genomes combined with proteomics, metabolomics, enzymemeasurements,
and the application of novel techniques will provide a better understanding of how this
important group of algae maintain their productivity under changing conditions.

Keywords: Calvin cycle, CO2 concentrating mechanism, Phaeodactylum tricornutum, redox regulation,
Thalassiosira pseudonana
INTRODUCTION

The chromalveolates are a polyphyletic eukaryote supergroup that includes many photosynthetic
lineages including the cryptomonads, dinoflagellates, haptophytes, and heterokonts (also called
stramenopiles) (Keeling, 2009). The phylogeny of diatoms and their allied groups is complicated
(Dorrell et al., 2017; Falciatore et al., 2020) and while the chromalveolates are not now regarded as a
.org July 2020 | Volume 11 | Article 10331

https://core.ac.uk/display/327067325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/articles/10.3389/fpls.2020.01033/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01033/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01033/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01033/full
https://loop.frontiersin.org/people/1020360
https://loop.frontiersin.org/people/583443
https://loop.frontiersin.org/people/1020220
https://loop.frontiersin.org/people/183665
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:bmeunier@imm.cnrs.fr
https://doi.org/10.3389/fpls.2020.01033
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.01033
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.01033&domain=pdf&date_stamp=2020-07-16


Launay et al. Photosynthesis and Carbon Metabolism Regulation
natural group we have retained the name here as a convenient
and widely-used term. It has been estimated that over 50% of all
formally described protists are chromalveolates (Cavalier-Smith,
2004; Cavalier-Smith and Chao, 2006). Within the diverse clade
Heterokonta, diatoms (Bacillariophyceae) are photosynthetic
microalgae that comprise between 30,000 and 100,000 species
(Mann and Vanormelingen, 2013). They evolved about 250 Myrs
ago (Medlin, 2016), are found today in all aquatic environments,
and contribute about 20% to global primary production
(Falkowski et al., 1998). Like other heterokonts, diatoms
originated via serial endosymbioses (Stiller et al., 2014) and
their chloroplasts derive from a red and a green algal
endosymbiosis and also contain genes from prokaryotes, their
eukaryotic host, and genes acquired by horizontal transfer
(Moustafa et al., 2009; Deschamps and Moreira, 2012; Dorrell
et al., 2017). Consequently, diatom genomes are enriched in
genes from different origins and this combination has gifted
them with unique metabolic features. In addition to the
metabolism needed to produce a silica cell wall (Hildebrand
et al., 2018) a functioning urea cycle is present (Allen et al., 2011;
Nonoyama et al., 2019). Diatoms have an Entner-Doudoroff
glycolytic pathway (Fabris et al., 2012) but lack the
oxidative pentose phosphate (OPP) pathway in their
chloroplast (Wilhelm et al., 2006; Kroth et al., 2008; Gruber
et al., 2009). Their principal storage compound is a
polysaccharide, chrysolaminarin (b-1,3 linked glucan) that is
located in the vacuole rather than the chloroplast (Huang et al.,
2018). Diatoms also have a large diversity of the metalloenzyme
carbonic anhydrase (CA) that interconverts CO2 and HCO3

−.
They possess seven of the eight known CA sub-classes, some of
which can make use of metal cations other than the canonical
Frontiers in Plant Science | www.frontiersin.org 2
zinc (Jensen et al., 2019a; Alissa et al., 2020; Morel et al., 2020). In
diatoms, both the large and the small subunits of ribulose
bisphosphate carboxylase-oxygenase (RuBisCO) are encoded
by the chloroplast genome, in contrast to Viridiplantae where
the small subunit is a nuclear encoded protein (Oudot-Le Secq
et al., 2007). Moreover, most diatom plastid genomes, unlike
those in Viridiplantae and the diatom Seminavis robusta, lack
introns (Brembu et al., 2014). Also in diatoms, RuBisCO
activation is mediated by the protein CbbX (Mueller-Cajar
et al., 2011) that does not possess the cysteine residues found
in RuBisCO activase (RCA) found in Viridiplantae, and thus
cannot be redox regulated (Jensen et al., 2017). In addition,
diatoms also have a pigment composition that substantially
differs from plants (Carreto and Catoggio, 1976; Falkowski and
Owens, 1980; Gilstad et al., 1993; Kuczynska et al., 2015). The
most important accessory pigments in diatoms are fucoxanthin
and chlorophyll c rather than chlorophyll b in Viridiplantae
(Green, 2011). Also, like all photosynthetic eukaryotes and
cyanobacteria, they contain xanthophylls that are derived from
b carotene but in contrast, lack the a-carotene pathway. Diatoms
are able to acclimate to a broad range of light irradiance and
nutrient concentrations by adjusting their physiology and
biochemical activity (Schoefs et al., 2017; Heydarizadeh et al.,
2019). This requires a variety of mechanisms for balancing
energy harvesting and light-energy consuming metabolic
processes including carbon fixation (Wilhelm et al., 2006). In
contrast to Viridiplantae, diatoms have a very low cyclic electron
flow. To equilibrate the ratio of ATP to NADPH required for
optimal photosynthesis, the chloroplast and the mitochondrion,
that are physically in contact, exchange these compounds
(Bailleul et al., 2015) (Figure 1).
FIGURE 1 | Schematic of the different levels of regulation in diatoms. Transcription of the genome by mRNA polymerase (yellow circle) converts nuclear DNA (blue)
and chloroplast DNA (gray) into mRNA (yellow). Translation by the ribosome (purple) converts mRNA into protein (brown). Regulation can also be modulated by
enzyme activity (blue stars), post-translational modification (green diamonds) and small molecules such as co-factors or metabolites (green carbon skeletons). The
transport of molecules between the cytoplasm and the chloroplast is represented by a green double-headed arrow across cylinders. ATP synthesized in the
mitochondrion can be transported into the chloroplast (brown arrow), while the reducing power (e.g., NADPH, represented by e-) of the chloroplast is transported to
the mitochondrion (red arrow) (Bailleul et al., 2015). PPS, Periplasmic Space; CER, Chloroplast Endoplasmic Reticulum; PPC, Periplastidial Compartment; Mit,
Mitochondrion; Chlp, Chloroplast; Cyt, Cytoplasm; PTM, Post-Translational Modification; Nuc, Nucleus.
July 2020 | Volume 11 | Article 1033
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Regulation can act on, and be studied at, a cascade of different
levels from DNA (genomics), mRNA (transcriptomics), proteins
(proteomics and post-translational modifications, PTMs),
metabolites (metabolomics), and enzyme activity, because each
approach provides different types of information (Figure 1).
Genomes are powerful resources to determine if a specific gene is
present while transcriptomics detect under what conditions it is
expressed. Fully annotated diatom genome sequences are only
available for Thalassiosira pseudonana, a marine centric diatom
and Phaeodactylum tricornutum, a marine or coastal pennate
diatom (Armbrust et al., 2004; Bowler et al., 2008). Other
sequences are also available for Fragilariopsis cylindrus (Mock
et al., 2017) and Pseudo-nitzschia multiseries (https://genome.jgi.
doe.gov/portal/pages/tree-of-life.jsf) and there are further
published genomes that are not yet publicly available (Tanaka
et al., 2015; Traller et al., 2016; Basu et al., 2017; Villain et al.,
2017; Ogura et al., 2018). Lauritano et al. (2019) reviewed the
current development of omics approaches on microalgae. Of the
26 eukaryotic microalgal genomes they listed, 15 were from
chromalveolates and of these, 8 were from diatoms. However,
regulation should also be analyzed at the level of enzyme activity
and/or metabolites (metabolomics), as these represent the final
outcome of gene expression and activity (Prosser et al., 2014).
The lifetime of an active enzyme, or of a metabolite, is related to
its rate of synthesis and turnover. While the synthesis rates are on
the order of 4–6 amino acids per second for enzymes (Stein and
Frydman, 2019) and several seconds for metabolites (Nikolaev
and Lohse, 2006), their turnover rates can vary from a few
seconds to extended periods respectively. Enzyme activity is also
modulated by PTMs, such as acetylation, phosphorylation,
methylation, glycosylation and formation/dissociation of
disulfide bonds. These types of modulation are very fast (rate
on the order of few per second), reversible, and are the most
flexible regulatory responses at the protein level (Prabakaran
et al., 2012). In diatom RuBisCO, a number of post-translational
modifications of the large subunit are present, including 4-
hydroxyproline, b-hydroxyleucine, hydroxylated and nitrosylated
cysteine, mono- and dihydroxylated lysine, and trimethylated lysine
(Valegard et al., 2018). Nevertheless, in order to understand the full
scope of regulation by post-translational modifications
(Grabsztunowicz et al., 2017) in chromalveolates, more studies are
needed on PTM and proteomics. Regulation of gene expression is
itself dependent on earlier response regulators (for example, PTMs
of histones and transcription factors) and on metabolite
productions (for example, cAMP). As a consequence, upon
environmental changes, regulation of gene expression occurs over
a longer timescale of several minutes to hours (Chauton et al., 2013).

Relationships between mRNA level and protein expression
can be observed though this might be influenced by biological
(e.g., properties of mRNA and proteins, cell cycle status) and by
technical problems (accurate quantification of these two
biological molecules) (Maier et al., 2009; Ponnala et al., 2014).
Therefore, there are discrepancies in the literature as regard to
the extent of correlation between them. Net mRNA levels can be
a major contributor to protein abundance, and for instance,
positive relationship has been observed in yeast (Fournier et al.,
Frontiers in Plant Science | www.frontiersin.org 3
2010), in the green alga Chlamydomonas reinhardtii (Castruita
et al., 2011) and specifically in the diatom T. pseudonana
(Clement et al., 2017b). Nevertheless, there are additional
mechanisms, that control protein abundance including
translational control and differential protein and mRNA
degradation rates (Ponnala et al., 2014). However, since data
on protein expression and activity are scarce, we have
supplemented this type of information with data on gene
regulation as a first step to assess how diatoms respond to
environmental change, even though there is not always a direct
and positive relationship between mRNA level, protein
expression and finally, metabolic activity (Figure 1).
REGULATION OF PHOTOSYNTHESIS BY
LIGHT AND DARK

Changing light levels affect many processes, including cell division,
and diatoms can acclimate efficiently to light variation by altering
the expression of different cell cycle genes such as cyclins and cyclin-
dependent kinases genes (Huysman et al., 2013). Here, we focus on
the best-studied effect of light, the regulation of photosynthesis,
although there is much less information for diatoms than for the
Viridiplantae (Jensen et al., 2017). In the Viridiplantae, that includes
the Embryophyta, carbon fixation by the Calvin-Benson-Bassham
(CBB) cycle is well known to be fine-tuned by dark-light transitions,
involving regulation by pH (Werdan et al., 1975), Mg2+ (Portis and
Heldt, 1976), metabolite concentration (Anderson, 1973; Pupillo
and Giulianipiccari, 1975; Gardemann et al., 1983; Baalmann et al.,
1994), and primarily by the redox state of key enzymes (Buchanan
et al., 1980; Schurmann and Jacquot, 2000). Non-covalently bound
“small molecules” or metabolites also affect the rates of redox-
interconversion of each redox-regulated enzyme in Viridiplantae
and this fine-tuning regulation is well-described in a review from
Knuesting and Scheibe (2018).

Regulation by pH
In chloroplasts from Embryophyta, dark-to-light transitions are
accompanied by a shift of the chloroplast internal pH from 7 in
the dark to 8 in the light (Werdan and Heldt, 1973; Hauser et al.,
1995). These changes directly regulate photosynthesis since
many key chloroplastic enzymes have optimal activity at pH 8
and are much less active at pH 7 [reviewed in Gontero et al.
(2007)]. In diatoms, pH responses have mainly been studied for
external/environmental, rather than internal, pH. External pH
can affect growth rate, silicon metabolism and biomineralization
of Conticribra weissflogii (formerly known as Thalassiosira
weissflogii) as well as its intracellular/cytoplasmic pH
homeostasis (Herve et al., 2012). For other photosynthetic
organisms, it is not the extracellular pH, but the intracellular
pH in the chloroplast that is the critical factor for regulation of
carbon acquisition, transport capacity and other metabolic
processes. To our knowledge, internal pH has only been
measured for a small number of diatoms. For P. tricornutum
and Cyclotella sp. the pH was around 7 in the dark and 7.5 in the
light (Colman and Rotatore, 1995), and for Navicula pelliculosa,
July 2020 | Volume 11 | Article 1033
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it was 7.4 in the dark and 7.6 in the light (Colman and Rotatore,
1988). We found no published values for the pH within diatom
chloroplasts stroma. One of the few studies of the effect of pH on
enzyme activity in chromalveolates is for the chloroplastic
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that
catalyzes the reversible reduction and dephosphorylation of
1,3-bisphosphoglycerate to produce glyceraldehyde-3-
phosphate and inorganic phosphate. Avilan et al. (Avilan et al.,
2012) compared the optimal pH of GAPDH in the freshwater
diatom, Asterionella formosa, the freshwater eustigmatophyte,
Pseudocharaciopsis ovalis, and the model green alga, C.
reinhardtii. In A. formosa, GAPDH was still active at the pH
occurring in the dark, assuming that the internal pH (pH 7)
reflects the one in the chloroplast. This suggests that GAPDH is
regulated by factors other than pH in this diatom, unlike in the
green algal enzyme that was down-regulated at the pH that
occurs in the dark. The response of GAPDH from the
eustigmatophyte P. ovalis was similar to that of the green alga
C. reinhardtii.We do not know the internal chloroplast pH for P.
ovalis but if the dark-to-light pH transition in this species is
similar to that of C. reinhardtii, GAPDH could be partly
regulated by pH under dark-light transitions. The different
regulation of GAPDH by pH in the two heterokonts, A.
formosa and P. ovalis, might be the result of the diverse
evolutionary history of chromalveolates. Another example of
regulation by pH is the lumenal enzyme violaxanthin de-
epoxidase [VDE, (Lavaud et al., 2012)] that is involved in
dissipating excess light energy (Lohr and Wilhelm, 1999).

Beyond photosynthesis, the carbon metabolism of the marine
diatom Skeletonema costatum is regulated by the pH of the
growth medium (Taraldsvik and Myklestad, 2000). The content
of the carbohydrate storage compound, chrysolaminarin (b-1,3
linked glucan) decreased from 7.1 mg.L−1 at pH 6.5 to 0.2 mg.L−1

at pH 9.4 and concomitantly, the total organic carbon as glucan
also decreased from 60 to 10%. The total amino acid content also
decreased from 7.41 to 2.51 fmol.cell−1 when the pH of the
growth medium increased (Taraldsvik andMyklestad, 2000). It is
unclear if these are direct effects on carbon and nitrogen
metabolism of external or internal pH or indirect effects linked
to the greater external concentration of CO2 at pH 6.5 than at pH
9.4. Nevertheless, to relate these physiological responses to
enzyme activity regulation, the authors report results from a
Norwegian PhD thesis (Kirkvold, 1994) that showed that the
specific activity of glutamine synthetase, a key enzyme in the
metabolic pathway of glutamine and glutamate synthesis, also
decreased with increasing pH when measured in vitro.

Studies on the effect of pH on activity should be expanded to
more enzymes and their optimal pH compared to the internal
pH in dark and light in order to determine if enzyme activity is
regulated by internal pH. The difficulty of working with enzymes
from diatoms and from chromalveolates in general, is probably
responsible for the lack of data for this important group. For
instance, in order to extract proteins from diatoms, litres of
culture are required and it is not always easy to measure activity.
Expressing recombinant diatom enzymes in heterologous
systems is also challenging with many enzymes found in the
Frontiers in Plant Science | www.frontiersin.org 4
insoluble fractions (B. Gontero, personal communication).
Measurement of internal pH is also an experimental tour de
force. Colman and Rotatore used the 5,5-dimethyl-2,4-
oxazolidinadione distribution method that distributes between
the medium and the cell as a function of their respective pH
(Colman and Rotatore, 1988; Colman and Rotatore, 1995).
However, this method does not distinguish between the pH in
the cytoplasm, chloroplast stroma or thylakoid lumen.

Regulation by the Redox State of Cysteine
Residues
The redox control of enzyme activity in the Viridiplantae is
primarily mediated by small proteins, thioredoxins, that are
oxidized in the dark and reduced in the light (Buchanan et al.,
1980; Buchanan, 2017). This regulation avoids futile cycles
between the CBB and the OPP pathway, since both occur
within the chloroplast, with enzymes from the CBB being
active in the light and those from OPP being active in the
dark. In contrast, in diatom plastids the OPP is incomplete,
and presumably lacking (Kroth et al., 2008), and accordingly the
regulation of their metabolism is different (Jensen et al., 2017).
Moreover, diatoms have a high stromal reductant pressure and
in contrast to Viridiplantae, metabolic activity in long dark
periods leads to an enhanced reduction state of the
plastoquinone pool. In the dark, since the plastoquinone pool
is reduced, it may regulate redox-sensitive enzymes as is the case
for algal nitrate reductase (Giordano et al., 2005). This avoids
reducing equivalents to accumulate maintaining cellular redox
poise (Wilhelm et al., 2006). In Viridiplantae in contrast,
oxidizing conditions prevail in the dark, therefore suggesting
that redox control may be different. Because of this unusual
redox control, the redox regulation of diatom enzymes has been
questioned (Wilhelm et al., 2006). However, diatoms possess
many different thioredoxins, each encoded by a specific gene and
located in different compartments, including the chloroplast.
Most thioredoxins contain the regulatory cysteine residue in the
conserved motif, WCGPC (Weber et al., 2009), thus they are
likely to have specific regulation targets and some targets have
been identified such as two CAs in P. tricornutum (Kikutani
et al., 2012). The relatively few targets of thioredoxins currently
identified in diatoms, contrasts with the 1188 targets found by
combining qualitative and quantitative proteomic analyses in the
C. reinhardtii thioredoxome (Perez-Perez et al., 2017).

Using a redox proteomics approach on P. tricornutum,
Rosenwasser et al. identified the “redoxome”, or in other words
the redox-sensitive proteins, and demonstrated its involvement
in photosynthesis, photorespiration, lipid biosynthesis, and
nitrogen metabolism (Rosenwasser et al., 2014). In that case,
however, the redox-sensitivity is a response to oxidative stress
rather than light-dark transition even though reactive oxygen
species are photo-induced, and increase in parallel to glutathione
(GSH). GSH is a low-molecular-weight tripeptide that consists of
cysteine (Cys), glutamic acid (Glu), and glycine (Gly) and is
present in microorganisms, plants, and mammals (Zaffagnini
et al., 2012). It can regulate protein activity by forming a mixed
disulfide bridge between the thiol group of its Cys and an
July 2020 | Volume 11 | Article 1033
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accessible free thiol on a protein, a process known as protein S-
glutathionylation (Zaffagnini et al., 2012; Marri et al., 2014). This
post-translational modification can protect specific Cys residues
from irreversible oxidation but can also modulate protein
activities (Zaffagnini et al., 2012; Marri et al., 2014; Thieulin-
Pardo et al., 2015). In T. pseudonana, a diurnal redox-related
pattern has been observed in which GSH accumulates in the
light, and decreases upon darkness, (Dupont et al., 2004) (Figure
2). However, direct regulation of the enzyme activities by
glutathionylation in diatoms, or in other chromalveolates, in
contrast to Viridiplantae, has not yet been studied, to the best of
our knowledge.

Although the effect of glutathionylation on enzymes has not
been studied in diatoms, the effect of other reducing agents such as
dithiothreitol has been investigated, though understudied
as compared to other photosynthetic organisms such as
Cyanobacteria, Chlorophyta, Rhodophyta, and Embryophyta.
The chloroplastic phosphoglycerate kinase belonging to the CBB
cycle, catalyzes the ATP-Mg2+-dependent phosphorylation of 3-
phosphoglycerate (3-PGA) to 1,3-bisphosphoglycerate, in a
reversible reaction and was redox-regulated in P. tricornutum
(Belen Bosco et al., 2012). However, in our hands, PGK was not
redox-regulated, as was also the case in T. pseudonana, inNavicula
Frontiers in Plant Science | www.frontiersin.org 5
pelliculosa grown with sea water and fresh water medium and in a
freshwater diatom, A. formosa (Jensen et al., 2019b). In contrast to
the Viridiplantae, two enzymes that are unique to the CBB were
not redox regulated (Michels et al., 2005; Maberly et al., 2010;
Jensen et al., 2017). These include, sedoheptulose 1,7-
bisphosphatase that irreversibly catalyzes the dephosphorylation
of sedoheptulose-1,7-bisphosphate producing sedoheptulose-7-
phosphate, and phosphoribulokinase (PRK) that irreversibly
catalyzes the ATP-Mg2+-dependent phosphorylation of ribulose-
5-phosphate into ribulose-1,5-phosphate. The general lack or
weak redox regulation of PRK in the chromalveolates (diatoms
and other groups) seems to be related to its sequence, where the
connectivity between two regulatory cysteine residues is crucial [at
position 16 and 55 in C. reinhardtii (Maberly et al., 2010)]. In
many photosynthetic organisms PRK can also be sequestered, and
inactivated, in a PRK-GAPDH-CP12 complex, that has not yet
been found in diatoms. The absence of the ternary complex with
GAPDH in diatoms has been attributed to the absence of two
cysteine residues on PRK (at position 243 and 249 numbered from
the enzyme from C. reinhardtii) that are present in Cyanobacteria,
Chlorophyta, Rhodophyta, and Embryophyta where the complex
has been identified (Thieulin-Pardo et al., 2015). In contrast
however, a ferredoxin-NADP reductase (FNR)-GAPDH-CP12
FIGURE 2 | Regulation of pathways by light and dark. This schematic includes regulatory pathways from P. tricornutum (Chauton et al., 2013; Bai et al., 2016), and
T. pseudonana (Ashworth et al., 2013). Where up-regulation of the mRNA transcription preceded the start of the photoperiod, we have represented it as being
higher in the light, this is the case for RuBisCO expression in T. pseudonana (Ashworth et al., 2013). Glycolysis and proteolysis pathways are up-regulated in the light
in T. pseudonana, but down-regulated in P. tricornutum. In contrast, fatty acid synthesis is down-regulated in T. pseudonana but up-regulated in P. tricornutum.
Fatty acid content increased after 3 h of light in P. tricornutum (Chauton et al., 2013), we have thus represented the molecule as being higher in the light. FBPase
gene expression is not regulated, but its activity is redox-regulated (Michels et al., 2005; Mekhalfi et al., 2012). Redox regulation of enzyme activity has been shown
on the isolated proteins in vitro, and by analogy with the Viridiplantae lineage, this could be related to light-to-dark transitions. The transport of molecules between
the cytoplasm and the chloroplast is represented by a green double-headed arrow across cylinders. CL, Chrysolaminarin; FA, Fatty Acid; GSH, Glutathione; a-tRNA,
aminoacyl-transfer RNA; CA, Carbonic Anhydrase; NC synt., Nucleotide synthesis; cell div., Cell division; DNA replic., DNA replication; PPS, Periplasmic Space; CER,
Chloroplast Endoplasmic Reticulum; PPC, Periplastidial Compartment; Mit, Mitochondrion; Chlp, Chloroplast; Cyt, Cytoplasm; Nuc, Nucleus.
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complex has been found in A. formosa (Mekhalfi et al., 2014). For
the chloroplastic GAPDH, the regulation is more complex as
discussed above in the pH regulation section, but in many
diatoms, this enzyme seems to be redox regulated (Maberly
et al., 2010; Mekhalfi et al., 2012; Mekhalfi et al., 2014; Jensen
et al., 2019b).

Direct Light-Dark Control of Gene
Expression
Regulation at the transcriptional level by light-dark transitions,
occurs in Viridiplantae, and also in diatoms (Sun et al., 2003; Fey
et al., 2005). In T. pseudonana, after 12 h of light, 1,859 genes were
upregulated compared to cells exposed to 12 hours of dark, and
inversely, after 12h of dark, 1,326 genes were up-regulated
compared to cells exposed to 12 h of light (Ashworth et al.,
2013). Among the most highly expressed genes after 12 h of light
were the ones encoding enzymes for cell division, DNA replication
and repair, carbonmetabolism and oxidative phosphorylation while
after 12 h of dark, the most highly expressed genes were those
encoding ribosomal biogenesis, aminoacyl-tRNA and key
photosynthetic enzymes (Figure 2). Some genes, such as that
encoding RuBisCO, anticipates the diurnal cycle and is up-
regulated before the onset of light. The dark-light expression
pattern of genes was affected by growth phase (exponential vs.
stationary). In the stationary phase, the expression of only a few
genes fluctuated under dark-light transitions (Ashworth et al.,
2013). One of these genes encodes a putative pyruvate
carboxylase suggesting a switch toward other types of metabolism
such as gluconeogenesis and lipid biosynthesis. This might be
explained by the hypothesis raised by Norici et al. in S. marinoi
(Norici et al., 2011) who postulated that the diatom re-routes its
metabolism toward lipid biosynthesis, because of the relatively high
volume-based energy content of lipids in an organism in which size
decreases with vegetative cell divisions, thus requiring carbon
allocation into more energy-compact compounds.

In the light, more than 4,500 transcripts were differentially
expressed in P. tricornutum, including genes such as the one
encoding for pyruvate transporter that had never been previously
described in this organism (Chauton et al., 2013). This work
shows that transcriptional regulation of carbohydrate and lipid
metabolism occurs in diatoms (Figure 2). Indeed, the content of
soluble glucans and lipids decreased in the dark and fatty acid
biosynthesis genes were up-regulated within 30 min of a switch
from dark to light. Fatty acid biosynthesis and the tricarboxylic
acid (TCA) cycle are also tightly co-ordinated (Chauton et al.,
2013). During the day, carbon skeletons are produced within the
chloroplast while in the night these carbon-rich compounds are
broken down in the mitochondria and the cytosol.

Interestingly, four carbon fixation enzymes were co-regulated
in P. tricornutum: PGK, GAPDH, triose phosphate isomerase/
GAPDH and PRK. Their mRNAs were all highest at the
beginning of the light period (dawn) and lowest at the
beginning of the dark period (dusk). Bai et al. (2016) showed
however that the expression of PRK increased after 4 days of dark
treatment using a proteomic approach. Similarly, the expression
Frontiers in Plant Science | www.frontiersin.org 6
of phosphoribose isomerase, the enzyme that produces PRK
substrate, as well as the expression of transaldolase and
glyoxylase, increased after dark treatment.

Redox regulation of PRK is observed and well-studied in
Viridiplantae, but in contrast in diatoms and other chromalveolates,
as mentioned above, the activity of PRK was affected neither by
oxidizing nor by reducing conditions (Maberly et al., 2010).
Therefore, for enzymes that are not redox-regulated, regulation at
thetranscriptional levelcouldallowadark-lightregulationoftheCBB.
The expression pattern of the gene of fructose-1,6-bisphosphatase
(FBPase) that catalyzes the dephosphorylation of fructose-1,6-
bisphosphate into fructose-6-phosphate and inorganic phosphate,
was not induced to the same degree by light as other CBB enzymes.
Since this enzyme can be redox regulated (Michels et al., 2005;
Mekhalfi et al., 2012), its regulation could occur both at the level of
activity and transcription.

Carbon acquisition is also stopped at night since in P.
tricornutum, mRNA encoding for bicarbonate transporters of
the Solute Carrier family 4 (SLC4) and for alpha-carbonic
anhydrases, especially a-CA-VII, were much less abundant in
the dark than in the light (Chauton et al., 2013). Recently, in the
same organism, the pattern of mRNA levels at a photon
irradiance of 30,300, 1,000 µmol photon m−2 s−1 differed at the
lag, exponential and stationary phases of growth (Heydarizadeh
et al., 2019).

Dark-treated P. tricornutum cells preferentially utilize carbon
and nitrogen obtained from protein breakdown to increase lipid cell
quotas at low cost (Bai et al., 2016). Long-term dark stress inhibited
several key proteins involved in nitrogen assimilation and in the
synthesis of the photosynthetic machinery. Simultaneously, key
enzymes of glycolysis and the synthesis of fatty acids were
induced apparently to assimilate the excess of C and N from
protein breakdown. Uptake of other resources for growth are also
light-regulated: transporters for uptake of phosphate and silica are
higher in the light and nitrate and ammonium transporters are
higher in the dark (Ashworth et al., 2013) (Figure 2). Data from the
literature showing differential expression of proteins, transcripts and
metabolites in light and dark are summarized in Figure 2.

Enzyme Activity, Metabolite
Concentration, and Carbon Storage
Compounds
Gene expression gives important clues on how light (quality,
irradiance, duration) affects metabolism. However, it is also
necessary to measure enzyme activity and metabolite
concentration as these are the ultimate response to environmental
change. For instance, an excess of light modifies lipid biosynthesis in
the coastal marine diatom, Skeletonema marinoi (Norici et al.,
2011). In S. costatum, carbohydrate increased with irradiance
(Hitchcock, 1980) while lipids increased in Chaetoceros calcitrans
(Harrison et al., 1990) and therefore the carbon allocation seems to
be different and species-specific. Under different light-regimes,
different species behave differently and the amount of essential
fatty acids with growth irradiance is also species-specific. These
examples illustrate that although enzyme activities have been
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measured, the mechanism underlying the change in activity is
unknown. For example, PEPCK that converts oxaloacetate into
PEP and CO2 in gluconeogenesis, increased 2.5-fold in cells of S.
marinoi grown under low light (25 µmol.photon.m−2.s−1) vs. high
light (250 µmol.photon.m−2.s−1). The authors suggested that this
enzyme might be involved in the conversion of lipid to
carbohydrates especially under low light (Norici et al., 2011). In
contrast, since energy demand for lipid synthesis is much higher
than for carbohydrate synthesis (Raven et al., 2005; Subramanian
et al., 2013) under excess light, lipids represent a better sink for
excess energy. As a consequence, lipid accumulation in high
irradiance was observed in S. marinoi, although this is not always
the case. In this species, other enzymes are probably not regulated
by light since their activity remains unchanged. For instance, the
activity of PEPC, that catalyzes the addition of bicarbonate (HCO3

−)
to PEP to produce oxaloacetate, was similar for cells grown at low or
high light. This enzyme is involved in C4 metabolism and in
anaplerotic reactions. Similarly, the activity of glutamine
synthetase that is involved in photorespiration did not change in
cells grown at low or high light.
EFFECT OF CO2

Like other algae, diatoms exhibit a range of responses to varying
CO2 concentration, including effects on photophysiology, rate
of photosynthesis and growth, chemical and pigment
composition, and community species composition, but there
are large species- and context-specific variations in the
magnitude and sign of response (Boelen et al., 2011;
Torstensson et al., 2012; Gao and Campbell, 2014; Dutkiewicz
et al., 2015; Bach and Taucher, 2019; Jensen et al., 2019b). At
the ocean surface, the air-equilibrium concentration of CO2

(Dickson, 2010) varies between 5 and 25 µM depending on
temperature (Raven, 1994; Tortell, 2000; Kim et al., 2006;
Matsuda et al., 2011; Maberly and Gontero, 2017). This CO2

concentration is insufficient to saturate the carboxylating
enzyme, RuBisCO (Young et al., 2016) and may not saturate
rates of diatom growth or photosynthesis (Riebesell et al., 1993;
Dutkiewicz et al. , 2015). This is mitigated by CO2-
concentrating mechanisms (CCMs) (Hopkinson et al., 2011)
that are facultative and increase the concentration of CO2

around RuBisCO, and are present in many phytoplankton.
CCMs can involve biophysical or biochemical processes
(Reinfelder et al., 2000; Reinfelder, 2011; Hopkinson et al.,
2016) although the latter is controversial in diatoms (Clement
et al., 2017a). The CCM regulation in diatoms is highly
dependent on light as well as CO2 concentration (Harada
et al., 2006). However, the major determinant of the extent of
CCM expression in P. tricornutum is CO2 concentration, as it is
in green algae (Matsuda and Kroth, 2014) and many
components of CCM are suppressed under elevated CO2

concentrations and induced at atmospheric levels or lower.
The CO2 concentration affects expression, and consequently
the activity, of not only CCMs components but also that of
enzymes from metabolic pathways such as the CBB cycle and
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glycolysis, though this is still understudied. Below, we compile
information on the regulation by CO2 at the transcriptional
and/or the enzyme activity levels of enzymes involved in the
CCM and other metabolic pathways.

CO2-Concentrating Mechanisms (CCMs)
Biochemical CCM
In C4 metabolism, PEPC is the first carboxylating enzyme and
traps bicarbonate into a C4 carbon compound. This compound
is subsequently cleaved by a decarboxylase enzyme to provide a
3-carbon compound and CO2, near the active site of RuBisCO
(Sage, 2004). As mentioned above, the presence of C4 or
biochemical CCM in diatoms does not seem to be universal.
For instance, there is evidence for it in C. weissflogii (Reinfelder
et al., 2000; Reinfelder, 2011; Hopkinson et al., 2016) but it is
absent in P. tricornutum (Haimovich-Dayan et al., 2013;
Clement et al., 2017a; Ewe et al., 2018). In the eustigmatophyte
Nannochloropsis oceanica, a novel type of C4-based CCM was
proposed to occur when cells were shifted from high CO2 (50,000
ppm) to low CO2 (100 ppm) (Wei et al., 2019). In this C4-based
CCM, PEPC and PEPCK have been proposed to be involved in
the primary inorganic carbon fixation steps in mitochondria, and
not in chloroplasts. Subsequent decarboxylation of malate by a
malic enzyme in the chloroplast enriches CO2 in the vicinity of
RuBisCO (Figure 3). Transcripts levels of some C4 enzymes
were not altered by CO2 concentration and do not suggest a
classic C4 metabolism, but activities of PEPC and malic enzyme
increased under low CO2 (Wei et al., 2019). More work is
required to confirm this interesting possibility.

Biophysical CCM
In the genomes of P. tricornutum and T. pseudonana, nine and
thirteen CA gene sequences have been found respectively
(Tachibana et al., 2011; Samukawa et al., 2014). In P.
tricornutum, the two chloroplastic pyrenoidal b-CAs PtCA1
and 2, responded to CO2 (Satoh et al., 2001; Harada and
Matsuda, 2005; Harada et al., 2005) and later this was
confirmed by Tachibana et al. by semi-quantitative RT-PCR
(Tachibana et al., 2011). The activation of both PtCA1 and
PtCA2 under CO2 limitation involves three cis-regulatory
elements, TGACGT, ACGTCA, and TGACGC, at a region
minus 86 to minus 42 upstream of the transcription start site.
These elements, CCRE1 to 3, are critical for the transcriptional
response to ambient CO2 via the level of the second messenger
cAMP (Ohno et al., 2012; Tanaka et al., 2016). The sensing of
CO2 mediated by cAMP has been reported in cyanobacteria,
fungi and mammals (Matsuda et al., 2011) and also in T.
pseudonana (Hennon et al., 2015; Young and Morel, 2015).
The transcriptional activation of PtCA2 in response to the
decrease in CO2 concentration was strongly light-dependent,
such that either CO2 or the absence of light can down-regulate
the promoter. In contrast, CO2 concentration and light have
additive effects on the regulation of PtCA1 (Tanaka et al., 2016).
It is worth remarking that both PtCA1 and PtCA2 were post
translationally regulated by redox modifications via thioredoxins
(Kikutani et al., 2012) (Figure 3).
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Tachibana et al. also showed that three putative CA genes in
T. pseudonana, CA-1, 3, and 7 (a-CA, z-CA, and d-CA,
respectively) were induced by decreasing CO2, and function in
CO2-limited environments (Tachibana et al., 2011). Similarly, in
C. weissflogii, both CO2 and HCO3

− uptake increased in response
to a CO2 decrease and this was accompanied by an increase in
both internal and external CA activity (Burkhardt et al., 2001). A
recent proteomic study on T. pseudonana acclimated to low CO2

(50 ppm) revealed a new uncharacterized protein, later called
LCIP63, for “low-CO2-inducible protein of 63 kDa” that was up-
regulated under low CO2 (50 ppm) or at atmospheric CO2 (400
ppm) (Clement et al., 2017a) but down-regulated when nitrogen,
phosphorus or silicon were limiting conditions (Lin et al., 2017;
Chen et al., 2018). LCIP63 was up-regulated in T. pseudonana
growing at 300 ppm vs. 1,000 ppm CO2 (Valenzuela et al., 2018).
Recently, this protein was identified as a new CA [designed as
iota CA, (Jensen et al., 2019a)] that uses Mn2+ as a co-factor
instead of the more common divalent cation Zn2+ (Tsuji et al.,
2017; Dimario et al., 2018). The gene of iota CA is also present in
bacterial genomes (Jensen et al., 2019a) and recently, the gene
encoding this enzyme from the gram negative bacterium
Burkholderia territorii was cloned and the purified
recombinant protein showed a CA activity using Zn2+ instead
of Mn2+ (Del Prete et al., 2020) indicating that the use of Mn2+ as
a co-factor could be a feature of diatoms.

In N. oceanica, transcriptomic, proteomic and metabolomic
data are available for cells grown at high CO2 (50,000 ppm) and
low CO2 (100 ppm); three of the CA transcripts were up-
regulated (b-CA-2, b-CA-4 and a-CA-5) under low CO2 (Wei
et al., 2019). In addition, the transcripts of bicarbonate
transporters of the SLC4 family and several of the ABC
Frontiers in Plant Science | www.frontiersin.org 8
transporter family were also more abundant at low CO2,
indicating an active biophysical CCM in this organism.
Similarly, in P. tricornutum, beside the regulation of numerous
CAs by CO2, three out of seven SLC4 genes were induced by low
CO2 and were highly inhibited by the anion exchange inhibitor
4,4'-diisothiocyanatostilbene 2,2'-disulphonate (Nakajima et al.,
2013). In T. pseudonana, genes homologous to those in P.
tricornutum have been found (Matsuda et al., 2017); however,
their functionality at the protein level has not yet been studied.
Two chloroplast transporters of the bestrophin family of anion
channels that are permeable to HCO3

− were also more abundant
at low CO2 and may play a role in the biophysical CCM of this
diatom (Kustka et al., 2014). These data are summarized in
Figure 3.

Depending on future CO2 emission scenarios, atmospheric
levels of CO2 are likely to reach 800 ppm by 2,100 (IPCC, 2014;
Gattuso et al., 2015). This relates to a temperature-dependent
dissolved CO2 concentration at the ocean surface of 25 to 50 mM.
At this concentration, cAMP plays a crucial role in down-
regulating CCM genes in T. pseudonana, in particular those
encoding the chloroplastic dCA3, some transporters and some
involved in photorespiration (e.g., glycolate oxidase). These
photorespiration genes and CCM genes interestingly, belong to
a single CO2-responsive cluster that shares the same upstream
cis-regulatory sequences found in P. tricornutum that is also
responsible for down-regulation of the b-CA gene upon
increased CO2 (Ohno et al., 2012). Similarly, genes involved in
photosynthesis, the TCA cycle, oxidative phosphorylation and
protein degradation were down-regulated, while in contrast
other genes involved in signalling mechanisms were up-
regulated at 800 ppm compared to 400 ppm CO2 (Hennon
FIGURE 3 | Location of the CCM components in different diatom species. The carbonic anhydrases (circles) and bicarbonate transporters (arrows) are shown for: N.
oceanica (Wei et al., 2019) (magenta), T. pseudonana (Samukawa et al., 2014; Jensen et al., 2020) (purple), and P. tricornutum (Jensen et al., 2020) (green). The
putative C4-CCM components proposed for N. oceanica (Wei et al., 2019) and C. weissflogii (Reinfelder et al., 2000; Ohno et al., 2012; Hopkinson et al., 2016;
Tanaka et al., 2016). The transport of molecules between the cytoplasm and the chloroplast is represented by a green double-headed arrow across cylinders. Redox
regulation of CA activity has been shown on the isolated P. tricornutum b-CA in vitro. PEPC, Phosphoenolpyruvate Carboxylase; PEPCK, Phosphoenolpyruvate
Carboxykinase; CA, Carbonic Anhydrase; PPS, Periplasmic Space; CER, Chloroplast Endoplasmic Reticulum; PPC, Periplastidial Compartment; Mit, Mitochondrion;
Chlp, Chloroplast; Cyt, Cytoplasm; Nuc, Nucleus. Figure adapted from Jensen et al. (2020).
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et al., 2015). Not all these genes contain the upstream regulatory
region, though they were highly affected. This regulation is likely
an indirect effect linked to the impact of high CO2 on the genes of
structural maintenance of chromosomes (SMC), transcription
factors, and histones.

Sensing a change, either an increase or a decrease, in external
CO2 concentrations through cAMP seems to be a general rule of
gene regulation rather than an exception even in diatoms (Young
and Morel, 2015).

Enzymes From Carbon Metabolism
Many related metabolic pathways are affected by CO2 in addition
to CCM expression. Gamma CA and the NADH-ubiquinone
oxidoreductase complex (C1) are associated in many organisms
(Cardol, 2011) and in N. oceanica, at very low [CO2] (100 ppm),
the genes coding for these two mitochondrial enzymes were up-
regulated (Figure 4). Since they can facilitate transport of CO2

produced by the TCA cycle and photorespiration toward the
chloroplast, in the form of bicarbonate, they contribute to what
is called a basal CCM (Wei et al., 2019). At the enzyme activity
level, T. pseudonana cells grown at high CO2 concentration (20,000
ppm) vs. atmospheric (400 ppm) displayed higher NADPH-
dependent GAPDH and FBPase activity (Figure 4) indicating
that the CBB cycle could be affected even though PRK activity
was unaltered (Clement et al., 2017b). The activity of pyruvate
kinase, a glycolytic enzyme, was also strongly stimulated when cells
were grown at 20,000 ppm (Figure 4) while two other glycolytic
enzymes, NADH-dependent GAPDH and glucose-6-phosphate
dehydrogenase (G6PDH) were unaffected (Clement et al.,
Frontiers in Plant Science | www.frontiersin.org 9
2017b). In this diatom, a model summarizing the effect of
inorganic carbon limitation, based both on activities and protein
expression profiles has been elaborated (Clement et al., 2017b).
This model shows the remodelling of metabolism with a diversion
of energy and resources toward carbon metabolism at high CO2

and toward carbon capture at low CO2. An increase in d-CA gene
expression, to capture as much CO2 as possible, was also observed
by Kutska et al. (2014) in T. pseudonana. Metabolism enzymes, as
well as enzymes responsible for pigment synthesis and indirectly in
light capture (Figure 4), were less abundant, while enzymes
involved in reactive oxygen species (ROS) defence increased in
order to avoid accumulation of ROS that might occur when energy
is in excess. The increased activity of pyruvate kinase (Figure 4),
observed in T. pseudonana seems to be shared by other diatoms, as
it was observed in many diatoms from freshwater to seawater
species grown under high CO2 (20,000 ppm) vs. atmospheric CO2

(400 ppm) (Jensen et al., 2019b). In addition, a modification of
gene expression has been described that allows synthesis of either
PEP or pyruvate under carbon shortage, indicating that pyruvate is
an important hub in these organisms (Heydarizadeh et al., 2017;
Heydarizadeh et al., 2019) (Figure 4).
CONCLUSIONS AND FUTURE
DIRECTIONS

Physiological and genomic data are available for the response of
some chromalveolates, especially diatoms, to light and CO2.
FIGURE 4 | Regulation of pathways by [CO2]. This schematic includes regulatory pathways from different species, including N. oceanica (Wei et al., 2019) and T.
pseudonana (Clement et al., 2017b; Jensen et al., 2019b). Cyclic AMP (cAMP) is a general [CO2] signalling molecule that regulates gene expression (Ohno et al.,
2012; Hennon et al., 2015; Young and Morel, 2015). High CO2 corresponds to 20,000 to 50,000 ppm but in Hennon et al. (2015) it is 800 ppm and low CO2 is 50
to 400 ppm. The transport of molecules between the cytoplasm and the chloroplast is represented by a green double-headed arrow across cylinders. NADH ubiq.,
NADH-ubiquinone oxidoreductase complex; PK, Pyruvate Kinase; pigments synth., pigments synthesis; CA, Carbonic Anhydrase; PPS, Periplasmic Space; CER,
Chloroplast Endoplasmic Reticulum; PPC, Periplastidial Compartment; Mit, Mitochondrion; Chlp, Chloroplast; Cyt, Cytoplasm; Nuc, Nucleus.
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They reveal the multitude and complexity of mechanisms that
these organisms have evolved to cope with environmental
variation. However, chromalveolates are still understudied
compared to the Viridiplantae and more research is needed to
unravel fully how this important group of algae maintain their
productivity under changing conditions. There is a particular
lack of information in diatoms on internal pH, especially in the
chloroplast, on the identity of redox-regulated enzymes, on
regulation by post-translational modification and on protein-
protein interactions. There are existing and new methods that
could be employed to tackle these knowledge gaps. For example,
a range of pH-sensitive fluorescent probes are available to
measure internal pH (Loiselle and Casey, 2010), although their
low ability to penetrate the cell and organelle can be challenging.
However, internal pH has also been measured successfully using
the inorganic phosphate (31P) nuclear magnetic resonance
frequency in other organisms such as fungi (Hesse et al., 2000)
and the anammox bacterium, Kuenenia stuttgartiensis (Van Der
Star et al., 2010), and this could be applied to chromalveolates.

There are a growing number of studies taking advantage of
proteomics to study diatom responses to stress, e.g. Muhseen
et al. (2015) or Chen et al. (2018). Proteomics approaches have
been used successfully in Viridiplantae to identify candidates for
thioredoxin interactions (Montrichard et al., 2009; Perez-Perez
et al., 2017). This could be extended to diatoms where there is a
real challenge to assign specific targets to each of the many
thioredoxins found in diatoms (Weber et al., 2009). Biotin-based
proximity labelling approaches, coupled to quantitative
proteomics, such as APEX BioID, are emerging tools for the
study of protein-protein interactions (Santin et al., 2018;
Beganton et al . , 2019) that could be developed for
chromalveolates. There is evidence for unusual PTMs involved
in the regulation of RuBisCO from an arctic diatom (Valegard
et al., 2018) and proteomics could also be a powerful approach to
analyse these modifications. For instance, a phosphoproteomic
analysis in P. tricornutum confirmed that phosphorylation
occurs in many metabolic pathways (Chen et al., 2014).

Over-expressing or silencing a gene is starting to be applied to
diatoms in order to determine their metabolic role (Hildebrand
et al., 2017; Huang and Daboussi, 2017; Falciatore et al., 2020).
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Recently, tailored TALEN endonucleases and the CRISPR/Cas9
system have been utilized in diatoms (Daboussi et al., 2014;
Hopes et al., 2016; Nymark et al., 2016), allowing knockout
strains with targeted genetic modifications to be produced. An
overview of the genetic toolbox currently available for
performing stable genetic modifications in diatoms is reviewed
in Kroth et al. and Falciatore et al. (Kroth et al., 2018; Falciatore
et al., 2020).

It is clear that the techniques mentioned above in
combination with genome sequencing, “omics” and targeted
approaches, wil l al low the biology of diatoms and
chromalveolates to be understood better. However, since many
responses seem to be species-specific, a wider range of species
need to be studied, especially those from non-marine systems, to
produce a more complete picture of the functioning in this
supergroup with a mosaic of multi-lineage genomes.
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