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Species distribution models are popular and widely applied ecological tools. Recent 
increases in data availability have led to opportunities and challenges for species dis-
tribution modelling. Each data source has different qualities, determined by how it 
was collected. As several data sources can inform on a single species, ecologists have 
often analysed just one of the data sources, but this loses information, as some data 
sources are discarded. Integrated distribution models (IDMs) were developed to enable 
inclusion of multiple datasets in a single model, whilst accounting for different data 
collection protocols. This is advantageous because it allows efficient use of all data 
available, can improve estimation and account for biases in data collection. What is 
not yet known is when integrating different data sources does not bring advantages. 
Here, for the first time, we explore the potential limits of IDMs using a simulation 
study integrating a spatially biased, opportunistic, presence-only dataset with a struc-
tured, presence–absence dataset. We explore four scenarios based on real ecological 
problems; small sample sizes, low levels of detection probability, correlations between 
covariates and a lack of knowledge of the drivers of bias in data collection. For each 
scenario we ask; do we see improvements in parameter estimation or the accuracy of 
spatial pattern prediction in the IDM versus modelling either data source alone? We 
found integration alone was unable to correct for spatial bias in presence-only data. 
Including a covariate to explain bias or adding a flexible spatial term improved IDM 
performance beyond single dataset models, with the models including a flexible spatial 
term producing the most accurate and robust estimates. Increasing the sample size of 
presence–absence data and having no correlated covariates also improved estimation. 
These results demonstrate under which conditions integrated models provide benefits 
over modelling single data sources.
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Introduction

Species distribution modelling has many applications in 
ecology and is now a mature discipline. In recent years, data 
mobilization, citizen science and a raft of new monitoring 
technologies have generated enormous growth in the data 
available for such models. Whilst these new data streams 
are welcome, they present challenges for species distribution 
modelling because each data source has different attributes, 
reflecting variation in protocols, spatial extent, sampling 
intensity and the time period over which they were collected. 
Confronted by this heterogeneity, modellers commonly 
face a choice over which data sources to use for a particular 
application.

Until recently, the standard approach was to favor one 
dataset and either discard others or use them in second-
ary analyses (e.g. model validation). Integrated distribution 
models (IDMs) have emerged as a way to avoid this choice 
(Fletcher  et  al. 2019, Isaac  et  al. 2019, Miller  et  al. 2019, 
Zipkin et al. 2019). The key feature of IDMs is that separate 
datasets are modelled in a way that is faithful to how they 
were generated. This is usually achieved by sharing param-
eters between datasets, often by treating each data source as a 
separate realisation of the true distribution (the ‘joint-likeli-
hood approach’ (Pacifici et al. 2017)).

Integrated modelling has some obvious virtues, such as 
allowing us to make efficient use of all available data, but 
additional benefits are now becoming clear. Fithian  et  al. 
(2015) and Peel  et  al. (2019) have shown, in multi-species 
analyses, that information from a highly structured dataset 
(e.g. including non-detections or a standardized protocol) 
can be sufficient to overcome the spatial biases in presence-
only data. Bowler et al. (2019) demonstrated that integrating 
datasets with different spatial footprints allowed predictions 
to be estimated over a wider spatial area, and with greater 
precision, than one dataset alone. Estimation of unbiased 
parameter values, higher precision of estimates and increased 
spatial coverage are some of the primary benefits suggested 
for IDMs. While there is no doubt that IDMs are a useful 
advance for species distribution modelling, it is not clear 
whether an integrated model is always better than analyzing 
datasets independently (Isaac et al. 2019).

Available evidence indicates that IDMs outperform mod-
els based on individual datasets under nearly all scenarios so 
far investigated (Fithian  et  al. 2015, Koshkina  et  al. 2017, 
Peel et al. 2019). However, the advantages of integrated mod-
els are unlikely to be universal, particularly when informa-
tion from repeat surveys or multiple species are not available. 
We consider four challenges that might influence the perfor-
mance of IDMs relative to single dataset models.

Firstly, there has been conflicting evidence on the useful-
ness of IDMs when high quality data (defined in terms of 
minimal error and/or minimal bias) is very limited relative 
to data with high error or bias. Although IDMs have been 
shown to be robust to small sample sizes (Peel et al. 2019), 
other studies have suggested the benefits of IDMs may be 

reduced when high quality data is limited, unless an appro-
priate weighting can be applied (Fletcher  et  al. 2019). In 
practical terms, we might assume that the benefit of integrat-
ing large quantities of opportunistic presence-only data with 
high quality data is most apparent when high quality data is 
low in volume. However, large discrepancies in the size of the 
datasets could also lead to domination of the results by a sin-
gle source and reduce any meaningful gain from integration.

Secondly, if the probability of detection is very low in 
one data source then it may be more challenging to esti-
mate model parameters correctly (Guillera-Arroita  et  al. 
2014). Although IDMs have been shown to be robust to 
low detection compared to using solely presence-only data 
(Koshkina et al. 2017), it is not yet clear whether IDMs pro-
vide any advantage when detection probabilities are very low. 
We might expect low detection probabilities to be a particu-
lar challenge when data from repeat surveys are not available 
to estimate them explicitly.

Thirdly, if covariates that relate to the underlying state and 
those that affect the observation process, are correlated it may 
be impossible for IDMs to correctly identify both processes 
(Fithian et al. 2015).

Finally, many of the approaches demonstrated so far 
assume that any bias in species observations can be esti-
mated with known covariates (Dorazio 2014) or is shared 
between species (Fithian et al. 2015). Here we consider that 
in some situations information on causes of bias may not be  
known or available for modellers, therefore it cannot be mod-
elled explicitly.

We address these four challenges by conducting a simula-
tion study integrating an unbiased presence–absence survey 
with a spatially biased presence-only dataset. We investigate 
under which conditions IDMs provide the greatest or least 
benefit over modelling each data source individually. We 
provide an indication of when IDMs are a useful tool, and 
when they may not improve inference over modelling datas-
ets separately.

Material and methods

Scope of the simulation study

Our simulations assumed two classes of data are available 
to model the spatial distribution of a hypothetical species; 
the first dataset was spatially unbiased across the survey area, 
such as may arise from a spatially-balanced sampling design, 
and recorded both presences and absences (PA dataset). We 
assumed a second source was derived according to citizen–sci-
ence type protocols where only species presence was recorded 
(PO dataset), detection was imperfect and detection prob-
ability was not uniformly distributed across the survey area 
causing a bias towards certain areas. Note that we assumed 
that variation in detection probability could arise from either 
sampling effort or changes in species detectability and did 
not consider these processes separately. The choice of only PA 
and PO data mirrors commonly available data in ecology and 
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allows our results to be comparable to previous simulation 
studies (Fithian et al. 2015, Koshkina et al. 2017, Peel et al. 
2019). However, in contrast to these studies, we assumed 
data were only available for a single species and no repeat 
surveys were conducted. The number of locations surveyed 
in the PA dataset, the detection probability in the PO data-
set and the correlation between the spatial bias in PO data 
and an environmental covariate, were all varied to address the 
challenges above.

The datasets were modelled independently and in an IDM. 
Additionally, for models including the PO data we optionally 
included a covariate explaining spatial variation in detection 
in the PO data. Excluding this covariate simulated a scenario 
where the source of spatial bias in PO data was unknown. 
Finally, we considered a model where the source of bias in 
PO data was unknown, but variation in detection could be 
modelled by a random spatial field.

Generating true species distributions

The first step was to generate a ‘true’ distribution of species 
presences from which to sample data used to parametrize 
our models. This was done in two phases. The first gener-
ated the ‘true’ intensity surface of species abundance. The 
second turned the ‘true’ intensity into a realisation of spe-
cies presences, recreating actual locations of individuals. All 
simulations were conducted on a continuous square domain, 
D (where D Ì 2 ) with dimensions 300 × 300 (Fig. 1) and 
we define s to be the set of all locations within D.

The true species distribution was assumed to come from 
an inhomogeneous Poisson point process, a statistical model 
which describes the distribution of points over space with an 
intensity function (following; Cressie 1993, Dorazio 2014, 
Fithian et al. 2015, Koshkina et al. 2017, Peel et al. 2019). 
This intensity function describes the density of points (in our 

Figure 1. Layout of the simulated data showing (a) the environmental covariate, (b) a species intensity generated from a log-Gaussian Cox 
process, (c) spatial variation in detection probability and (d) simulated PO data (grey points) and PA data (white squares indicating absences 
and black squares indicating presences).
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simulations we make the simplifying assumption that these 
are equivalent to individuals) in a given area. This is shown in 
equation 1, where the number of points in an area A comes 
from a Poisson distribution with the expectation being an inte-
gration of the intensity function λ(s) over A. Conceptualizing 
species distributions as point processes is important to inte-
grated modelling as it allows different currencies of species 
information e.g. counts, presence–absence or presence-only 
data, to be thought of as different ways of observing the same 
phenomena (Isaac et al. 2019, Miller et al. 2019).

Specifically, we assumed that the locations of individuals 
are governed by a log-Gaussian Cox process, which represents 
a doubly stochastic Poisson process as the intensity itself is 
stochastic. The intensity function was defined by Eq. 1:

N A s ds
A

( ) ( )ò Poisson l( )  

log l a b x es x s s sx( )( ) = + ( ) + +( ) ( )0  (1)

where log of the intensity λ(s) was defined by an intercept 
(α0), a linear relationship (βxx(s)) with an environmental 
covariate (x(s)), a Gaussian random field (ξ(s)) which simu-
lated spatial variation not explained by the environmental 
covariate, and some random error (ε(s)). The single environ-
mental covariate (x(s)) was defined as a continuous gradient 
from the bottom to the top of the grid, with values ranging 
from 0 to 1 (Fig. 1a). We used a very simple spatial structure 
for the environmental covariate here to facilitate the inter-
pretation of results. We assumed the spatial variation in the 
random field had a Matérn covariance structure, which was 
governed by three parameters corresponding to the variance, 
scale (κ) and smoothness (ν).

The parameters used to generate the true species distribu-
tion did not vary between scenarios. The intercept (α0) was set 
at −2 and an environmental covariate effect given a value of 2 
(βx). Therefore, at mean level of the environmental covariate 
(x(s) = 0.5) the intensity would have a mean of 0.37 individu-
als per unit area. The variance parameter of the covariance 
was set to 0.5, the scale parameter κ was set at 0.05 and the 
smoothness parameter ν was set to 1 (Fig. 1b). To generate a 
‘true’ species intensity from this model we used the rLGCP 
function in the ‘spatstat’ package (Baddeley et al. 2015).

Simulation of sampling processes

After the ‘true’ intensity had been generated, the next step 
in the simulations was to sample from this truth, mimick-
ing data collection in the field. Two sampling processes were 
simulated, one for the PO data and one for the PA data. A 
separate realisation was generated from the log-Gaussian Cox 
process for each sampling process to represent the fact that 
the individuals sampled by each method were unlikely to be 
the same i.e. data collection were at different points in time.

PO data were generated by thinning a realisation of the 
log-Gaussian Cox process to represent imperfect detection. 
This was done by creating a continuous gradient of detection 
probability p(s), and sampling the individuals with their loca-
tion-specific probability using a Bernoulli trial. The detection 
probability decreased across the spatial gradient to represent 
different levels of sampling effort or detectability e.g. relating 
to density of human populations or surveyor preferences. For 
most scenarios, the gradient of detection probability began at 
0.2 and declined by a factor of ten (to 0.02) across the whole 
gradient and was perpendicular to the environmental covari-
ate (Fig. 1c). All parameters were chosen to balance compu-
tational efficiency and sample size. Excessively large or small 
sample sizes led to slow computing times or inability to draw 
inference (e.g. no presences recorded). In these simulations 
the detection probability combined both the probability of 
visiting a location and the probability of seeing an individual 
if the location was visited. After thinning, an average of 3884 
PO observations remained. Under the lowest detection sce-
nario (Table 1), there were an average of 77 PO observations, 
for a full summary see Supplementary material Appendix 1.

It was assumed that detection probability was never known 
exactly, but was strongly correlated (ρ = 0.99) with a covari-
ate, z(s), available at all locations. As a result, the covariate 
on detection was a very good, but not a perfect, descriptor of 
the sampling process, reflecting the fact that it is unrealistic 
to have perfect knowledge of sampling bias. The difference 
between 0.99 and 1 correlation was detectable and is demon-
strated in the Supplementary material Appendix 4.

To generate PA data the domain was split into 25 strata in 
a five by five grid to represent a stratified random sampling 
design and ensure equal coverage of each stratum. Within 
each stratum 6 ‘quadrats’ (each 1 × 1 in dimension) were 
placed randomly (150 quadrats in total). If a point (assumed 
to represent an individual) was recorded in the quadrat, a 
presence was recorded (i.e. we assume perfect detection). 

Table 1. Details of the scenarios run in this study.

Scenario Number of PA samples
Maximum observation 
probability in PO data

Environmental covariate  
correlated with bias?

Baseline 150 0.2 No
Different sample sizes of PA data 50, 100, 150, 200, 250, 300, 

350, 400, 450, 500
0.2 No

Different levels of observation probability in 
PO data

150 0.2, 0.16, 0.12, 0.8, 0.04, 
0.02, 0.004

No

Environmental covariate correlated with bias 150 0.2 Yes
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As the detection probability was the same in each of the 25 
strata, the stratified design here was effectively the same as 
simple random sampling across the whole domain on aver-
age. None of our scenarios produced a PA sample size of less 
than 10 recorded presences (minimum was approximately 18 
presences on average).

Details of scenarios

Each scenario was run 500 times to account for stochasticity 
in the data generation process. For each of the 500 simula-
tions one ‘true’ intensity was generated and sampled to gener-
ate PO and PA datasets, all models were then run on the same 
datasets to ensure comparability of results.

The scenarios we use here were designed to address each 
of our four questions exploring the influence of; the size of 
the PA dataset, detection probability in the PO data, a cor-
relation between an environmental covariate and detection 
probability in the PO data, and the way bias in PO data is 
modelled on the relative performance of different models. 
Table 1 presents an overview of the 4 scenarios and 17 param-
eter combinations used. Note that changing the maximum 
detection probability of the PO data is equivalent to chang-
ing the quantity of PO data.

Statistical modelling of the simulated data

To estimate the true intensity, as given in Eq. 1, we fitted 
six models with different properties to each data generation 
scenario. In this study, the models fell into two core model 
types; single and integrated. Single models included only a 
single dataset, either PA or PO (Table 2, models A, B and D). 
Integrated models modelled both PA and PO data simultane-
ously, using a joint likelihood (Table 2, models C, E and F). 
Within these model types we fit two groups of models; those 
that included information on bias in the PO data (Table 2, 
models D, E and F), and those that did not (Table 2, mod-
els B and C). We accounted for spatial bias present in the 

data by extending our models in two ways. The first included 
the covariate z(s) to represent the spatial bias in observation 
probability (the combined probability of visiting an area and 
detection probability) in the PO data (Table 2, models D 
and E). The second included a second spatial field ζ(s) which 
was only informed by the PO data and should reflect spa-
tial variation not explained by either the shared spatial field 
or environmental covariate (Illian 2017; Table 2, model F). 
Therefore, we investigate the ability of this second spatial 
field ζ(s) to account for spatial bias in the PO data.

All of the models assumed that the intensity surface (λ(s)) 
resulted in one or more Poisson point patterns which could 
have been observed in different ways (Bowler  et  al. 2019, 
Isaac et al. 2019). For each quadrat (i) where the PA data (Yi) 
were sampled, presence was modelled as a single Bernoulli 
trial with probability of presence pi. γi (within s) is the loca-
tion of quadrat i. A cloglog link was used to link pi to the log 
intensity of the Poisson process (λ(s) evaluated at γi) (Eq. 2 
(Kery and Royle 2016, Bowler  et  al. 2019)). The intercept 
is the baseline expected abundance when the environmental 
covariate equals zero.

Y p

p
i i

i i

 Bernoulli

clog log

( )
( ) = ( )( )log l g

 (2)

We assume the PO data locations come from a Poisson 
point process as detailed in Eq. 3. Where the total num-
ber of presences in a sub-region A (N(A)) are Poisson dis-
tributed with intensity given by integrating λ(s) over A. We 
modelled the locations of the observations of PO data as an  
log-Gaussian Cox point process following Renner  et  al. 
(2015) and Simpson et al. (2016). As a result, both data types 
could be modelled as originating from the same underlying 
state (defined by the intensity which we assume follows the 
form given in Eq. 1), but with different observation pro-
cesses and therefore different intercepts. By fitting separate 
intercepts, we allow unexplained variation in observation 

Table 2. Model types fit in this study parameters are indicated with a hat to distinguish them from the true parameters in Eq. 1. Here all 
parameters are model estimates of the true parameters. Integrated models include two predictors, one for the PA data and one for the PO 
data, each with their own intercept but with shared parameters. The cloglog link was used for PA data and log link for PO data to link the 
response to the predictor.

Model Model description Type Response Predictor

A PA-only Single PA a b xPA xx s s+ ( ) + ( )ˆ ˆ  
B PO-only Single PO a b xPO xx s s+ ( ) + ( )ˆ ˆ

C IDM Integrated PA, PO (1) a b xPA xx s s+ ( ) + ( )ˆ ˆ

(2) a b xPO xx s s+ ( ) + ( )ˆ ˆ  
D PO-only with bias covariate Single PO a b b xPO x zx s z s s+ ( ) + ( ) + ( )ˆ ˆ ˆ

E IDM with bias covariate Integrated PA, PO (1) a b xPA xx s s+ ( ) + ( )ˆ ˆ

(2) a b b xPO x zx s z s s+ ( ) + ( ) + ( )ˆ ˆ ˆ

F IDM with second spatial field Integrated PA, PO (1) a b xPO xx s s+ ( ) + ( )ˆ ˆ

(2) a b x zPO xx s s s+ ( ) + ( ) + ( )ˆ ˆ ˆ
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processes between datasets to be captured in each intercept 
term. We are therefore unable to estimate abundance from 
this integrated model as the intercepts capture more than the 
baseline intensity, however the estimated spatial pattern is 
unaffected.

N A s ds
A

( ) ( )ò Poisson l( )  (3)

For estimating the true intensity λ(s) all models had linear 
predictors (shown in Table 2) that included the environment 
gradient and a Gaussian Markov spatial random field (com-
pare to Eq. 1). For the IDMs, these model terms were shared 
between data sets and predictions were made using the esti-
mated intercept for the PA data as the PA data was assumed to 
have perfect detection. Note that the model fit to the PO data 
is slightly different to the data generation process. We do not 
model the thinning process explicitly (i.e. we do not directly 
estimate p(s)). This is because we allow each data source to 
have separate intercepts, meaning it is not possible to separate 
the intercept of the PO data from the detection probability. 
Instead of modelling the thinning process directly, additional 
components are added to the linear predictor of the intensity 
surface to account for spatial variation in observation prob-
ability: a covariate related to p(s) is included in models D and 
E; and a second spatial field included in model F. This second 
spatial field is a latent spatial effect that should be a spatial 
representation of the observation probability of the PO data 
excluding residual environmental spatial structure.

We fit all models using approximate Bayesian inference 
through integrated nested Laplace approximation (INLA) 

(Rue  et  al. 2009) using the stochastic partial differential 
equation approach (Lindgren et al. 2011). INLA was chosen 
as it is an efficient method for modelling flexible spatial fields. 
Default priors were used for all parameters. Models were fit in 
R using the package R-INLA.

Evaluation of model performance

In this study, we assumed that using PA and PO data for a 
single species, without additional information, cannot return 
an accurate estimate of the intercept of the original ‘true’ 
intensity surface. We assumed this because our models did 
not estimate observation probability in either dataset, which 
is unlikely to be perfect in real ecological datasets. Instead, 
we estimated a relative pattern of occurrence, relative to the 
mean prediction.

Models were evaluated based on three metrics. Firstly, 
the accuracy and precision of the estimate of b̂x x s( )  was 
assessed to check how well model parameters were esti-
mated. Secondly, the predicted intensity was compared to 
the true intensity by calculating the correlation between 
the two. This metric assessed how well each model cap-
tured the spatial pattern in species distributions. Lastly, 
the mean absolute error (MAE) between predicted and 
true intensities was calculated as the unsigned difference. 
Because all validation was conducted relative to the mean 
prediction, the MAE does not inform on the ability of the 
models to return the absolute intensity values. Rather, the 
MAE reflects the ability of the models to capture the varia-
tion in intensity.

Figure 2. Boxplot of the MAE between predicted relative intensity and true relative intensity for all 500 simulations at each sample size of 
PA data. Each boxplot shows the interquartile range (25–75% quartiles), and the median of the simulated results. Whiskers of the boxplots 
extend to the largest or smallest point within 1.5 times the interquartile range from the edge of the boxplot. Outliers are not plotted.
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Congruence between prediction and truth and MAE 
metrics were evaluated at 900-point locations in a regu-
lar 10 by 10 grid across the domain (effectively a stratified  
subsampling design).

Results

Sample size of PA data

There was little evidence that the IDM performed better 
than a model with PO data only in terms of mean abso-
lute error (MAE) (Fig. 2, models B and C) and correlation 
(Supplementary material Appendix 2 Fig. A5) if no infor-
mation on bias in PO data was included. This suggests that 
without repeat visits or multiple species, IDMs cannot com-
pensate for bias in PO data simply by including unbiased PA 
data. The IDM (model C) always had higher MAE than the 
PA-only models (model A), and had lower correlation with 
the truth if the number of PA samples was over 200, indicat-
ing no advantage of joint models when reasonable amounts 
of PA data were available. The number of PA samples relative 
to the number of PO samples ranged from 1% to 13%, (PA 
sample size = 50 or 500, respectively).

Increasing quantities of PA data improved the accuracy 
of PA-only models as expected. IDMs only benefited from 
increased quantities of PA data if some information on bias 
in PO data was included. Both the IDM with a bias covari-
ate (model E) and IDM with a second spatial field (model F) 
showed improvements in performance with more PA data. 
These integrated models performed better than PO-only 

models including the bias covariate (model D), but the 
improvement was quite small at low levels of PA data. This 
suggests integrated models do have improved performance 
over single dataset models in terms of accuracy of spatial pre-
dictions, but that the greatest improvement in performance 
comes from modelling the spatial bias in PO data (e.g. model 
B versus model E or model F) which requires additional 
information beyond the PA data alone (e.g. model C).

The environmental covariate was returned similarly in all 
models (Supplementary material Appendix 2 Fig. A6–A7). 
The PA data alone (model A) had the highest accuracy and 
precision in the estimate of the environmental covariate and 
both improved with more data. All other models did identify 
the correct direction of the covariate effect, but credible inter-
vals frequently spanned zero. Although precision improved 
with greater amounts of PA data for models A, E and F, 
model C showed little change. All models except the PA only 
model tended to slightly overestimate b̂x x s( )  and this was 
largely unaffected by the amount of PA data.

Observation probability of PO data

The second scenario reduced the maximum observation 
probability of the PO data. In all models including the PO 
data the correlation between prediction and truth tended 
to decrease with lower maximum observation probability 
(Supplementary material Appendix 1 Fig. A1), as would be 
expected given fewer data points available to model. The 
MAE generally worsened with lower observation probability, 
but two unexpected patterns were detected (Fig. 3). Firstly, at 
very low observation probability the simple IDM (model C) 

Figure 3. Boxplot of the MAE between predicted relative intensity and true relative intensity for all 500 simulations at each level of maxi-
mum observation probability. Each boxplot shows the interquartile range (25–75% quartiles), and the median of the simulated results. 
Whiskers of the boxplots extend to the largest or smallest point within 1.5 times the interquartile range from the edge of the boxplot. 
Outliers are not plotted.
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without either z(s) or ζ(s) performed slightly better on aver-
age than at higher observation probabilities. This is likely to 
reflect the PA data having a higher relative weighting in the 
joint likelihood when the amount of PO data is low, bringing 
estimates closer to the PA-only model.

Secondly, the variation in MAE tended to increase with 
higher observation probability for models including the 
covariate z(s) to model spatial bias in PO data (models D and 
E). This was attributed to poorer estimation of the coefficient 
b̂z z s( )  with larger amounts of PO data (Supplementary 
material Appendix 1 Fig. A2), a counterintuitive result. 
Overall, IDMs again performed best in terms of accuracy of 
spatial prediction, but only when provided with information 
on bias. If bias was accounted for then increasing amounts 
of PO data provided improved model estimates compared 
to PA-only models. Similar to the first scenario, the maxi-
mum observation probability had little effect on estimation 
of the environmental covariate (Supplementary material 
Appendix 1 Fig. A3–A4), but the effect it did have was coun-
terintuitive. As observation probability decreased the accu-
racy and precision of estimates from models B, C, D and 
E all increased. In contrast, model F showed little response 
to altering observation probability. For IDMs this pattern 
reflects the relative contribution of PA data, which is highest 
at the lowest observation probabilities when PA data makes 
up approximately two thirds of the data input (77 PO sam-
ples to 150 PA samples). For the PO only models, it could be 
driven by a stronger spatial pattern in bias when maximum  
probability of observation is higher, which could mask the 
environmental effect.

Correlated covariates

The final scenario investigated whether correlation between 
the spatial bias in PO data p(s) and the environmental covari-
ate x(s) would affect model performance. All models except 
the PA-only model consistently underestimated the effect of 
the environmental covariate and a lower correlation when 
p(s) and x(s) were correlated (Fig. 4, Supplementary material 
Appendix 3). In this scenario, the IDM with a second spa-
tial field had the highest correlation and lowest MAE, even 
though these models failed to correctly estimate βxx(s). So, 
IDMs with a second spatial field were able to retain robust 
spatial predictions, even if parameter estimation was poor.

Discussion

Our simulation study investigated whether IDMs always per-
formed better than single models of PO and PA data under 
a range of scenarios. We found that IDMs outperformed 
single dataset models in some cases, but if bias in PO data 
was ignored then IDMs did not provide any benefits over 
modelling PA data alone.

Previous work has shown that bias in PO data can 
be accounted for by leveraging information in PA data 
(Fithian  et  al. 2015). These previous applications of IDMs 
have assumed there are covariates, or information, available 
to estimate sampling bias in the PO data. They did not con-
sider cases where bias is unknown or poorly explained by the 
available covariates. Here, we demonstrate that if bias cannot 

Figure 4. Boxplots of the mean estimate of the environmental covariate effect for all 500 simulations at each sample size of the structured 
data. Red horizontal line indicates simulated value of the environmental covariate effect. 95% of the results for each model type are 
plotted.
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be accounted for then there is a risk that IDMs will provide 
estimates that are less accurate and more imprecise than ana-
lyzing PA data alone. However, the IDMs did produce an 
improvement over analyzing PO data alone. Analyzing PO 
data alone is equivalent to data pooling, when two datasets 
are combined by degrading the more detailed dataset (PA 
data) to match the less detailed one (PO data) (Fletcher et al. 
2019, Isaac et al. 2019). One difference between our study 
and previous work is that we did not attempt to estimate p(s), 
the thinning probability of PO data, explicitly.

Our simulations demonstrated that the IDM with a sec-
ond spatial field performed well in all scenarios and was robust 
to correlations between bias and the environmental covariate 
(Supplementary material Appendix 3 Fig. A8–A10). Single 
PO models and the IDM without bias information or with 
a bias covariate all had imprecise and inaccurate estimates 
when bias in the PO data was correlated with the environ-
mental covariate. The good performance of the model with 
two spatial fields may be due to two reasons. Firstly, there was 
evidence that in some cases the bias covariate was poorly esti-
mated, particularly when observation probability was higher 
(Supplementary material Appendix 1 Fig. A2). This may have 
occurred because information related to bias was inappropri-
ately included in the shared spatial field instead of attributed 
to the covariate. In particular, this may explain why poor esti-
mation seemed to be more common with higher volumes of 
PO data. It would be useful to explore further whether varia-
tion due to spatial covariates could be attributed to the shared 
spatial field as this may also influence interpretation of envi-
ronmental covariates. Secondly, high performance of the two 
spatial field model could reflect an overfitting of the highly 
flexible second spatial field. This might explain why the mod-
els with a second spatial field performed well in the correlated 
covariates scenario, even when the environmental covariate 
was incorrectly estimated. Default priors on the spatial fields 
were used in this simulation, but real-world applications 
would require careful selection of spatial priors (Illian et al. 
2012) or use of penalized complexity priors (Fuglstad et al. 
2019) to reduce overfitting.

Fitting a second field may be a useful approach when 
knowledge on potential sources of bias is limited or covari-
ates are not available. In real world applications, understand-
ing if bias is adequately captured by covariates is challenging. 
Therefore, the potential of using the second spatial field, 
instead of a known covariate, could be a mechanism to make 
use of the large amounts of unstructured data we have avail-
able, even without known bias information. Investigating the 
patterns in this field could even provide useful information 
on possible sources of bias (Neyens et al. 2019).

A key assumption we use here is that there is a spatial pat-
tern in the bias associated with PO data which we can estimate 
by using the PA data to constrain the shared spatial pattern. 
In our simulation, the shape of bias in observation probabil-
ity was necessarily simplistic and highly spatially structured 
(Fig. 1c), likely aiding the performance of the second spatial 
field. In reality, not all biases will have such strong spatial pat-
terns. Although some sources of bias are spatially-patterned 

(e.g. human population density) others are not (e.g. time 
spent searching). Unknown non-spatial variation in effort or 
detection cannot be accounted for by a second spatial field 
and may lead to incorrect estimations of species distributions, 
particularly if the volume of PO data is large in relation to PA 
data. An alternative solution to integrate data with suspected 
biases might be to construct IDMs without using the joint 
likelihood framework. Adding the PO dataset via covari-
ates, an informative prior or a correlation structure could be 
more robust to bias in opportunistic data whilst still allow-
ing integration of different data types (Pacifici  et  al. 2017, 
Miller et al. 2019). Exploring the performance of the IDMs 
with a second spatial field against these alternative models for 
datasets where bias is not spatially structured, is an avenue 
that should be pursued.

The models in our study are far simpler than in most of 
the literature on IDMs. We restricted our simulations to 
mimic the minimal amount of data that might be available 
to ecologists seeking to combine datasets to estimate species 
distributions. Conversely, previous work has used multiple 
species (Fithian et al. 2015, Peel et al. 2019) or repeat sur-
veys (Koshkina  et  al. 2017) to provide additional informa-
tion to constrain estimates and reduce bias. In situations 
where only two datasets are available on a single species and 
no information can be provided to the model to determine 
which dataset to prioritize, the likelihood is swamped by the 
larger data source. As a result, in our simulations IDMs did 
not give a meaningful improvement over single models of 
PO data. Fletcher et al. (2019) proposed a weighted likeli-
hood approach as a solution to swamping of the likelihood. 
However, this requires a choice as to which dataset should 
have the highest weight and exactly what that weight should 
be: research towards objective criteria for weighting datasets 
in IDMs is therefore a priority.

This study has demonstrated that integrated distribution 
models can outperform models of single datasets when spatial 
bias in PO data is explicitly included in the model. Second 
spatial fields seem like a potentially exciting tool that could 
quantify spatial bias in PO data, even when knowledge or the 
shape and drivers of this bias is unknown. We have included 
several simplifying assumptions in this study, such as perfect 
detection in PA data. Testing what happens if these assump-
tions are violated would give further insight into the utility 
of IDMs and deepen our understanding of the performance 
of these models.
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