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Discovering the mass of neutrinos is a principle goal in high energy physics and cosmology. In
addition to cosmological measurements based on two-point statistics, the neutrino mass can also be
estimated by observations of neutrino wakes resulting from the relative motion between dark matter
and neutrinos. Such a detection relies on an accurate reconstruction of the dark matter-neutrino
relative velocity which is affected by non-linear structure growth and galaxy bias. We investigate
our ability to reconstruct this relative velocity using large N-body simulations where we evolve
neutrinos as distinct particles alongside the dark matter. We find that the dark matter velocity
power spectrum is overpredicted by linear theory whereas the neutrino velocity power spectrum is
underpredicted. The magnitude of the relative velocity observed in the simulations is found to be
lower than what is predicted in linear theory. Since neither the dark matter nor the neutrino velocity
fields are directly observable from galaxy or 21 cm surveys, we test the accuracy of a reconstruction
algorithm based on halo density fields and linear theory. Assuming prior knowledge of the halo bias,
we find that the reconstructed relative velocities are highly correlated with the simulated ones with
correlation coefficients of 0.94, 0.93, 0.91 and 0.88 for neutrinos of mass 0.05, 0.1, 0.2 and 0.4 eV.
We confirm that the relative velocity field reconstructed from large scale structure observations such
as galaxy or 21 cm surveys can be accurate in direction and, with appropriate scaling, magnitude.

I. INTRODUCTION

Despite extensive research in the particle physics and
cosmology communities, many properties of neutrinos re-
main elusive. For instance, neutrino oscillation exper-
iments [1] have accurately measured the mass-squared
splittings between neutrino species, but individual neu-
trino masses have yet to be measured. It is also unknown
whether the neutrino masses follow a normal hierarchy
in which there are two light neutrinos and a single heavy
one or an inverted hierarchy with the opposite configura-
tion. Moreover, it is still unknown whether neutrinos are
Dirac or Majorana fermions.

Cosmological techniques for determining neutrino
masses are currently insensitive to individual neutrinos
and instead constrain the sum of all neutrino masses. For
instance, cosmic microwave background (CMB) observa-
tions made by the Plank satellite place

∑
mν < 0.194 eV

[2]. Recently, a new technique for constraining neutrino
mass using large-scale velocity fields was proposed in
[3, 4]. Neutrinos and dark matter are expected to have a
relative velocity arising due to the free streaming of neu-
trinos over large scales. As neutrinos bulk flow over large
scale structures they become focussed into wakes. Such
downstream overdensities introduce a unique dipole dis-
tortion in the matter field in the direction of the neutrino

flow which could be observed via either direct lensing of
the wake or through a dipole component of the correla-
tion function.

Unlike other probes of cosmological neutrinos, this
method is expected to be background free and only relies
on knowledge of the relative velocity field. Determining
velocity fields directly is particularly challenging even for
luminous matter and certainly impossible for neutrinos.
However, the relative velocity is predicted to be coher-
ent over several megaparsecs. We therefore expect linear
theory to be accurate enough to allow for a reconstruc-
tion of the velocity field from the easier to obtain matter
density field.

Our goal is to quantify the accuracy of this linear re-
construction when non-linear structure formation, which
affects both the density and velocity fields, is taken into
account. We furthermore wish to understand whether
the reconstruction procedure is robust when only a tracer
of the dark matter field is used. To achieve this we use
large cosmological simulations. Neutrinos have been im-
plemented in a variety of ways within the framework of
N-body simulations: (i) [5] used a grid-based approach
where an additional neutrino density field is evolved
alongside N-body dark matter; (ii) [6] employed a hybrid
method where neutrinos start as a grid and are converted
to particles as their energy decreases; (iii) [7] evolved
neutrinos as distinct N-body particles; (iv) [8] computed
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the neutrino linear response alongside the evolving dark
matter. In general, the grid-based approaches have been
unable to resolve non-linear neutrino structure formation
while particle-based approaches are hindered by the re-
quirement that many neutrino particles are needed to re-
duce Poisson noise on small scales. In this work, we adopt
the particle based approach since an accurate computa-
tion of non-linear neutrino dynamics is a main focus of
our work.

In §II we discuss our implementation of neutrino par-
ticles into the cosmology code CUBEP3M [9] and our
method for computing density and velocity fields. In §III
we present the results of our simulations and analyse the
accuracy of various reconstruction methods. In §IV we
discuss a practical procedure to estimate cosmic velocity
fields from density tracers.

II. THEORY AND IMPLEMENTATION

A. Neutrino N-body Particles in CUBEP3M

Initial neutrino positions are generated separately from
dark matter using the same Gaussian noise map. We
use neutrino density transfer functions, Tδ, computed
via CAMB [10]. The initial neutrino velocity is com-
posed of two parts: a linear component (analogous to
the Zel’dovich velocity) plus a random thermal compo-
nent. For the linear component, we first compute the
linear neutrino velocity transfer function, Tv, via the
continuity equation under the assumption that initial
conditions are adiabatic and velocities are linear (e.g.

δ(k, z) = Tδ(k, z)δi(k) and ~v(~k, z) = Tv(k, z)δi(k)k̂ for
an initial perturbation δi(k)):

δ̇ +
1

a
~∇ · ~v = 0→ Tv = −iH

k

Tδ(z + δz)− Tδ(z − δz)
2δz

,

(1)
where we convert time derivatives to redshift derivatives
and evaluate numerically using a spacing δz = 0.1. We
have checked that the transfer functions computed via
Eq. 1 are in good agreement with those produced by the
CLASS code [11] in Newtonian gauge1.

From this velocity transfer function, we compute a

velocity potential, φv(k), such that ~v(k) = i~kφv(k) =

(Tv/Tδ)δk̂. When combined with Eq. 1 this yields:

φv(k) = −H
k

Tδ(z + δz)− Tδ(z − δz)
2δz

δ

Tδ
. (2)

1 The CAMB density transfer functions are in the synchronous
gauge whereas the velocity transfer function we desire are in
the longitudinal Newtonian gauge. However, the gauge trans-
formation terms are proportional to the time derivatives of the
Newtonian potentials which we already ignore in the continuity
equation.

This potential is then Fourier transformed and a two-
sided finite difference is taken to obtain the linear ve-
locity. Using a real-space gradient reduces the number
of Fourier transforms to be computed and is consistent
with our calculation of the displacement field.

The random component of the velocity is computed via
the cumulative distribution function, CDF[v, β], which
follows from the relativistic Fermi-Dirac distribution,
PDF[v, β], for neutrinos:

PDF[v, β] =
v2

emνv/kT + 1
=

v2

evβ + 1

CDF[v, β] =
1

CDF[∞, 1]
β3

∫ v

o

PDF[u, β]dv

=
1

CDF[∞, 1]

∫ u=vβ

o

PDF[u, 1]du

= CDF[u, 1] (3)

where mν and T are neutrino mass and temperature,
respectively, and β ≡ mν/kT . Our numerical evalu-
ation of the CDF gives a maximum particle speed of
0.013 (0.2 eV/m) (1 + zi)c. Neutrinos in the mass regime
we are interested in are relativistic at the redshift for
which dark matter initial conditions are generated (zc =
100):

〈v〉 =

∫∞
0
vPDF[v, β]dv∫∞

0
PDF[v, β]dv

≈ 800

(
0.2 eV

mν

)
(1 + z) km/s.

(4)
This thermal motion would dominate the time step con-
straining the maximum distance a particle may travel,
making the simulation impractically slow. To circum-
vent this issue we evolve the dark matter in isolation to
a lower redshift, zν ∼ 10, at which point neutrinos are
added and the two components evolve together.

During their subsequent evolution, dark matter and
neutrino particles are treated identically except for their
masses, which are weighted by their energy fractions as
well as number ratio:

mi =
Ωi
Ωm

Ng
Ni

, (5)

where Ωi is the energy fraction of species i, Ωm is the
total matter energy fraction, Ng is the number of cells in
the simulation grid, and Ni is the number of particles of
species i. These masses are used when adding particles
to the grid for the computation of the long-range grav-
itational force as well as the short-range pairwise force.
The particle type is distinguished within the code using
1 byte particle identification tags.

B. Density and Velocity Fields

We compute dark matter, neutrino, and halo density
fields using a standard cloud-in-cell interpolation method
for both dark matter and neutrinos. Computing velocity
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fields from particle-based simulations has only recently
been studied in depth. This may be related to the am-
biguity associated with defining a velocity field from a
sample of point particles. Unlike quantities such as mass
or momentum, the velocity of a particle cannot be simply
added to a grid. The most obvious method for generat-
ing a velocity field is to divide a gridded momentum field
by its corresponding density field. However, within void
regions it is possible that empty cells exist for which no
well-defined velocity can be assigned. Alternatively, one
may define the velocity at a given grid cell to be the av-
erage velocity of the Nnear nearest particles about this
point. The application of the nearest particle method
was studied by [12] and [13] where it was found that
the velocity power is suppressed for low particle num-
ber densities, n < 1 (Mpc/h)−3, due to the sampling
procedure. In our simulations we use high number den-
sities, ndm ∼ 10 (Mpc/h)−3, and therefore do not expect
this effect to be significant. More advanced methods for
computing velocity fields exist such as phase-space inter-
polation discussed in [14] and more recently in [15].

In what follows we compute the velocity fields of dark
matter and neutrinos in different ways. For dark mat-
ter, we adopt the nearest particle method and take the
Nnear = 1 nearest particle about the centre of each cell
using the same grid resolution as neutrinos. We have
found that the nearest particle method can also be used
for neutrinos albeit with a much larger Nnear = 64 to
smooth the field on small scales. However, searching over
this many particles is a computationally expensive task.
For neutrinos we therefore employ the approach of divid-
ing their momentum field by their density field on grids
coarsened so that there is always at least one neutrino
per cell. This is possible since neutrinos are rather ho-
mogeneously distributed and form voids to a lesser extent
than dark matter.

We treat the velocity fields obtained from the nearest
particle and momentum methods as faithful tracers of the
actual field. However, these fields are not comparable to
observational data since neither dark matter nor neutrino
velocities can be directly measured. For this purpose we
reconstruct velocity fields from density fields using linear
theory:

~v =
Tv
Tδ

~k

k
δ, (6)

where we use dark matter and halo density fields sepa-
rately for δ (although with the same Tδ). In what follows
we treat halos as point particles of unit mass in order to
represent the information available through galaxy sur-
veys.

Poisson noise is a severe hindrance for the neutrinos
(and to a far lesser extent dark matter) due to their large
thermal velocities. For density fields it is possible to sub-
tract out the Poisson noise but this is not possible for
velocities. To remove this noise in the density and veloc-
ity auto-power spectra we instead randomly divide each
species of particles into two groups for which separate

fields – f1
i and f2

i – are computed. The dimensionless
power spectrum is then computed as

∆2
ii(k) =

k3

2π2
〈f1
i f

2
i 〉, (7)

where index i = c, ν, h denotes dark matter, neutrinos,
and halos, respectively. This method effectively removes
noise as the noise in each group is uncorrelated and can-
cels out in the cross term. We note that this method
is only used when computing auto-power since a cross-
power ∆2

ij with i 6= j automatically washes out noise that
is uncorrelated between separate species.

The accuracy of the reconstructed field is measured
using a correlation coefficient:

rij(k) =
∆2
ij(k)√

∆2
ii(k)∆2

jj(k)
(8)

where ∆2
ij is the cross power spectrum between

species i = c, h, ν or rel using reconstruction method
sim,Rec DM,Rec HA (nearest particle/momentum, Eq.
6 with CDM and Eq. 6 with haloes respectively) and
species j (with potentially a different reconstruction
method). We also define the integrated correlation co-
efficient as:

rij =

∫
∆2
ij
dk
k√∫

∆2
ii
dk
k

√∫
∆2
jj
dk
k

(9)

which no longer depends on wavenumber.

III. RESULTS

In this Section we present the results for a suite of four
simulations of dark matter and neutrinos. We simulate
neutrinos of mass mν = 0.4, 0.2, 0.1 and 0.05 eV. Each
simulation contains Nc = 15363 dark matter particles
and Nν = 30723 neutrino particles within a periodic box
of side length L = 500 Mpc/h. In each case dark matter
is started from an initial redshift zc = 100 and gravi-
tational forces are softened below the scale rsoft = 24
kpc/h. Neutrinos are added in at redshift 10 for all
species except 0.05 eV which we add at redshift 5. We
assume a base cosmology compatible with Planck results:
Ωb = 0.05, Ωc = 0.27, σ8 = 0.83, ns = 0.96, h = 0.67,
and compute

Ων =
mν

93.14 h2
(10)

as in [16]. We hold Ωb and Ωc fixed in each simulation
and maintain a flat universe by adjusting ΩΛ = 1−Ωm =
1−Ωb −Ωc −Ων . In what follows we mainly investigate
a fiducial simulation with mν = 0.2 eV. We label our
simulations based on neutrino mass with S05, S1, S2,
and S4 denoting the simulations with mν = 0.05, 0.1, 0.2,
and 0.4 eV respectively.
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Halo catalogues are generated for each simulation at
z = 0 using a spherical overdensity algorithm that consid-
ers all halos with at least 100 dark matter particles. This
corresponds to a minimum halo mass of 3× 1011 M�/h.
Recall, however, that we assign each halo unit mass when
constructing halo density fields in order to emulate the
information available in galaxy surveys. In what follows,
density and velocity fields for dark matter, neutrinos, and
halos are computed on uniform rectilinear grids contain-
ing 15363 mesh cells.

A. Density

Fig. 1 compares slices of the dark matter and halo
density fields at z = 0 from simulation S2 to the neu-
trino density fields from simulations S05, S1, S2, and
S4. It is easy to see that the neutrino density fields are
correlated with the dark matter density field albeit with
much less clumping in the former than the latter as ev-
idenced by their respective colour bars. In addition, we
see that higher mass neutrinos tend to clump more than
lower mass neutrinos as they are more influenced by the
underlying dark matter distribution due to their lower
thermal velocities.

Fig. 2 shows the dimensionless power spectra for dark
matter, halos, and neutrinos at z = 0 from S2. Also
plotted are theoretical predictions for dark matter and
neutrinos, which are computed via

∆2
i (k) =

k3

2π2
Pm

(
Ti
Tm

)2

, (11)

where Ti is the linear transfer function for species i, Tm
is the total matter linear transfer function, and Pm is
either the linear (computed from CAMB) or the non-
linear (computed from HALOFIT) total matter power
spectrum. We first note that the group cross-correlation
method we employ effectively removes the shot noise al-
lowing us to understand statistical properties even of the
noisy neutrino density field. We find that the dark matter
power spectrum agrees well with the non-linear predic-
tion up to large k. The neutrino power spectrum, on the
other hand, is significantly enhanced on small scales com-
pared to the theoretical curve. This trend was previously
observed by [17] and is yet to be understood.

Despite their enhanced power on small scales, neutri-
nos remain highly correlated with the dark matter den-
sity field, as was qualitatively discussed with Fig. 2.
More quantitatively, Fig. 3 shows the z = 0 cross-
correlation coefficient between dark matter and neutri-
nos from S2 as a function of wavenumber. We find that
neutrinos exhibit rcν & .90 correlation with dark matter
on all scales k < 1 h/Mpc and achieve rcν ∼ .85 down to
the smallest scales resolved in the simulation.

The halo power spectrum is also plotted in Fig. 2.
As expected, the halo power follows the general shape
of the dark matter power spectrum, but with a reduced

amplitude, or bias. This bias is defined as:

b ≡
√
Phh
Pcc

, (12)

and is plotted as a function of k in Fig. 4. The bias is
roughly constant on large scales with b ∼ 0.8 and falls off
on small scales as the halo density field does not include
contributions from the “one-halo” term describing the
internal mass profile of halos [18]. Hence, halo power is
suppressed on scales comparable to the typical virial radii
of halos which occurs at k ∼ 0.2 h/Mpc for the largest
halos in the box.

B. Velocity

Fig. 5 compares slices of dark matter, neutrino, and
dark matter-neutrino relative velocity computed from the
simulation particles as well as reconstructed from the
dark matter and halo density fields using Eq. 6. We
observe a similar trend as the density fields with dark
matter and neutrinos highly correlated in velocity. In ad-
dition, we see that the velocity fields reconstructed from
only knowledge of either the dark matter or halo density
field qualitatively agree with the large-scale structure of
the velocity fields obtained within the simulation.

Fig. 6 compares the simulated dark matter and neu-
trino velocity power spectra to the dark matter and halo
reconstructed fields. Note that for the latter we take
δ = δh/b in Eq. 6 to account for the halo bias. We use
a value of b = 0.80 consistent with the large-scale bias
found in Fig. 4. We compute theoretical predictions for
the velocity power using Eq. 11 with Ti being a veloc-
ity transfer function. We note that the groups method
has also effectively removed shot noise from the velocity
power just as for the density.

Fig. 6 demonstrates that the simulated dark matter
velocity field is suppressed on scales 0.2 . k . 4.0h/Mpc
compared to the linear and non-linear expectations. This
suppression was also seen in [14, 15] and may be due to
the thermalization of dark matter within collapsed ob-
jects. The velocity field reconstructed from dark matter
agrees well with the non-linear expectation of Eq. 11.
This is simply a reflection of the agreement between the
dark matter density field and HALOFIT shown in Fig. 2.
If we used the full bias curve, b(k), instead of a constant
then the halo reconstruction method works equally well.
Neutrinos, on the other hand, have a velocity power spec-
trum that agrees well with the non-linear expectation on
scales k . 0.15 h/Mpc. However, we find that they are
underpredicted by linear theory on small scales. It is un-
clear why neutrinos behave in an opposite manner from
dark matter.

The efficacy of reconstructing velocities using Eq. 6
relies on the linearity of the velocity field. To test this we
decompose velocity into divergence and curl components.
We have performed this computation using both real-
space finite differencing of the velocity field as well as
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shows dark matter (left) and halo (right) density slices from the 0.2 eV neutrino simulation. The middle row compares neutrino
density slices from the 0.05 (left) and 0.1 (right) eV simulations while the bottom row shows the 0.2 (left) and 0.4 (right) eV
simulations. It is easy to see by eye that the dark matter and neutrino density fields are highly correlated and that heavier
neutrinos cluster more than lighter ones.



6

10−2 10−1 100 101

k [h/Mpc]

10−4

10−3

10−2

10−1

100

101

102

103
∆

2
(k

)
cc (CAMB)

cc (HALOFIT)

νν (CAMB)

νν (HALOFIT)

cc

hh

νν

FIG. 2: The dimensionless matter power spectra at z = 0 for
dark matter (solid black line), halos (solid blue line) and neu-
trinos (solid red line) from S2. Shot noise has been removed
by computing the cross-spectrum between two randomly cho-
sen groups for each species. Also plotted are the linear and
non-linear dark matter (dotted black and dashed black lines)
and neutrino (dotted red and dashed red lines) power spectra.
Note that there is a small numerical artifact in the linear neu-
trino transfer function just above k = 1 h/Mpc that should
be ignored.
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1
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ν

FIG. 3: The dark matter-neutrino cross correlation coefficient
at z = 0 from S2. As expected, neutrinos are highly correlated
with dark matter over a large range of scales.

Fourier space decomposition:

~vk = k̂(k̂ · ~vk) + k̂ × (k̂ × ~vk)

= k̂D + ~C, (13)

where D is the divergence field and ~C = ~vk − k̂D is the
curl field. Both the real-space and Fourier-space methods
produce equivalent results. In linear theory, the velocity

is parallel to k̂ and therefore has no curl. Hence, the
presence of a curl component of the velocity field allows
us to measure its degree of non-linearity.

10−2 10−1 100

k [h/Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

b

FIG. 4: The halo bias parameter measured from S2 at z = 0.
On scales k . 0.2 h/Mpc the bias is roughly constant with b ∼
0.8. The bias falls off on smaller scales as power is suppressed
within the typical virial radii of halos.

In Fig. 7 we plot the divergence and curl components of
both the dark matter and neutrino velocity fields. In each
case, we see that the velocity is curl-free on scales k .
1 h/Mpc. The only significant curl component occurs
for dark matter on scales k & 5 h/Mpc. This result
highlights that the discrepancy between the simulated
dark matter velocity and theoretical curves in Fig. 6 is
not due to the presence of a curl component but rather
due to non-linear processes affecting the divergence.

C. Relative Velocity

Fig. 8 compares the dark matter-neutrino relative ve-
locity power spectrum to linear and non-linear predic-
tions as well as to the two reconstruction methods. The
relative velocity field from the simulations is roughly sim-
ilar to the linear theory expectation, being within a factor
of 3 on scales k < 5 h/Mpc. The power spectra from the
halo reconstruction method is also similar to the linear
theory result. The field reconstructed from dark matter
looks very different from the previous two but is consis-
tent with the non-linear expectation. This can be made
consistent with the linear theory result by simply mul-
tiplying Eq. 6 by the ratio between the linear and non-
linear dark matter density power spectra.

Fig. 9 shows the correlation coefficient defined in Eq.
8 between the simulated and reconstructed relative ve-
locity fields. We see that both reconstruction methods
reproduce the relative velocity field well over the scales
of interest. In particular, the halo reconstruction achieves
nearly perfect correlation on scales k . 1 h/Mpc. The
velocity correlation coefficient is a measure of how well
the vector fields agree in direction as the denominator in
Eq. 8 divides out the magnitudes. Thus, Fig. 9 demon-
strates that we are able to reconstruct the direction of
the relative velocity field accurately.

Fig. 10 shows the relative velocity power spectra for
each of the four neutrino masses using the nearest par-
ticle/momentum method. We find that they follow the
same trends: lighter neutrinos have less relative veloc-
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page for dark matter (top row), neutrinos (middle row), and the relative velocity between dark matter and neutrinos (bottom
row). Columns show the velocity fields from the simulation particles (left column), reconstructed from the dark matter density
field (middle column), and reconstructed from the halo density field (right column). We see that both of the reconstruction
methods agree well with the large-scale structure of the simulation velocity fields.

ity and the linear prediction is larger than in simulation.
Table I lists the integrated correlation coefficients as a
function of neutrino mass between simulated and halo re-
constructed velocities for dark matter, neutrino and dark
matter-neutrino relative velocities. We find that there is
a large correlation between these methods indicating that
the reconstruction method is accurately reproducing the
simulation velocities.

Finally, in Fig. 11 we show the relative velocity corre-
lation lengths, ξ1/2, defined as in [3] to be the point at
which the relative velocity correlation function,

ξνc(r) =

∫
dk

k
∆2
νc

sin(kr)

kr
(14)

TABLE I: The integrated correlation coefficient defined in Eq.
9 between the simulated velocities and those reconstructed
by halos for dark matter, neutrinos and dark matter-neutrino
relative velocities.

mν Dark Matter Neutrinos Relative

0.05 0.95 0.98 0.94

0.1 0.95 0.97 0.93

0.2 0.95 0.97 0.91

0.4 0.95 0.97 0.88

reaches half its maximum value. This scale can be
thought of as the size of a region with a uniform veloc-
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black line shows the non-linear expectation of Eq. 11, the
solid black line shows the simulation result, and the dashed
blue line (dot-dashed red line) shows the velocity field recon-
structed from Eq. 6 using the dark matter (halo) density
field.

ity field. Lighter neutrinos are less affected by large scale
structure due to their larger thermal velocities and so are
coherent over larger regions. Fig. 11 shows these corre-
lation lengths as a function of neutrino mass. We find
that the simulations exhibit a slightly larger correlation
length for each neutrino mass compared to the theoreti-
cal predictions. The shapes of the curves remain similar,
however, with both having power law slope which we fit
to have an exponent −0.44.

IV. DISCUSSION

We have tested four methods of computing the velocity
field: a nearest particle method, a momentum method,
and reconstruction via dark matter and halo density
fields. Our results are generally consistent with theoreti-
cal expectations and highly correlated among each other.
Specifically we have demonstrated that reconstructing
the velocity from point-particle halos produces a velocity
field highly correlated with that of our N-body particles.
It is the near unit correlation coefficient - a measure of
the angle between the two fields - that ensures that the
reconstructed velocity points in the right direction. The
magnitude of the velocity can then simply be scaled to
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FIG. 7: Relative fraction of the divergence (solid black line)
and curl (dotted black line) components of the dark matter
(top) and neutrino (bottom) velocity power at z = 0 from
S2. In each case, the curl component is negligible on scales
k . 1 h/Mpc. The oscillations seen with the neutrino power
on small scales is indicative of their shot noise.

the correct value as long as the bias is known.
This result allows for a prescription to determine the

actual velocity fields in our own Universe.

1. Reconstruct the galaxy density field from a galaxy
survey catalogue. We expect this reconstruction to
be very comparable to the halo reconstruction we
use here except with the addition of a 1-halo term
to make the bias constant over more wavenumbers.

2. Fourier transform the gridded density field. Then,
use Eq. 6 to compute the dark matter, neutrino
and relative velocity fields in Fourier space. Here, a
non-linear correction can be applied by additionally
multiplying by a factor of ∆Sim

v /∆RecHA
v .

3. Fourier transform back to real space.

We first note that a similar process could be performed
on the density fields produced by 21 cm observations.
We also note that redshift distortions and masking effects
might result in extra biases in the reconstruction scheme.
We intend to investigate these effects in a future paper.

Our results also provide support for the applicability of
the analysis performed in [3, 4]. They used moving back-
ground perturbation theory to study the neutrino rela-
tive velocity effect. The moving background approxima-
tion relies on having a coherent background relative flow



9

10−2 10−1 100 101

k [h/Mpc]

0

1

2

3

4

5

6
∆

2 re
l(
k
)

[(
1
00

k
m
/
s)

2
]

Sim

Rec DM

Rec HA

CAMB

HALOFIT

FIG. 8: The dark matter-neutrino relative velocity power
spectrum at z = 0 for S2 (black line) compared to the dark
matter (dashed blue) and halo (dotted red) reconstructed
fields as well as the linear (solid gray) and non-linear (dashed
gray) predictions. The simulated relative velocity power is
similar to the linear prediction whereas the two reconstructed
fields deviate from the linear curve due to non-linear structure
formation.
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FIG. 9: The dark matter-neutrino relative velocity correlation
coefficient between the simulated field and the field recon-
structed from dark matter (solid black line) and halo (dashed
blue line) density fields. Both methods are highly correlated
over all relevant scales.

and our simulation results indicate that the coherency
scales of such motions are larger than predicted. Thus,
we expect that inaccuracies in the predicted dipole distor-
tion to the correlation function will come from non-linear
evolution rather than the moving background approxi-
mation. We note that we can also directly measure the
dipole correlation function in our simulations and plan
to report on this in a subsequent paper.
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FIG. 10: The dark matter-neutrino relative velocity power
spectra via the nearest particle/momentum method for all
four neutrino masses (solid) along with theoretical predictions
(dashed). The power is clearly suppressed compared to linear
theory but behaves qualitatively similar with varying masses.
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FIG. 11: The correlation length defined to be the distance
for which the correlation function in Eq. 14 drops to half its
maximum value for varying neutrino masses. The simulations
have longer correlation lengths but follow a similar power law
behaviour.

V. CONCLUSION

We performed a set of four large N-body simulations
including cold dark matter and neutrinos of varying mass.
We have accurately measured the dark matter-neutrino
relative velocity. We find that we can accurately recon-
struct this velocity using a linear theory approach and
halo density fields. We have described a simple method
for accurately predicting the relative velocity field via a
galaxy survey or 21 cm observations. Since such a re-
construction allows for an independent measurement of
neutrino masses, we expect this technique to provide sig-
nificant constraints in upcoming astronomical surveys.
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