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ABSTRACT
Applying a transformation to a non-Gaussian field can enhance the information content of
the resulting power spectrum, by reducing the correlations between Fourier modes. In the
context of weak gravitational lensing, it has been shown that this gain in information content
is significantly compromised by the presence of shape noise. We apply clipping to mock
convergence fields, a technique which is known to be robust in the presence of noise and has
been successfully applied to galaxy number density fields. When analysed in isolation the
resulting convergence power spectrum returns degraded constraints on cosmological param-
eters. However, substantial gains can be achieved by performing a combined analysis of the
power spectra derived from both the original and transformed fields. Even in the presence of
realistic levels of shape noise, we demonstrate that this approach is capable of reducing the
area of likelihood contours within the �m − σ 8 plane by more than a factor of 3.

Key words: gravitational lensing: weak – cosmological parameters – dark matter – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The extraction of useful information from cosmological fields (such
as galaxy number densities or weak lensing) is often heavily com-
promised by two limiting factors. First the smallest physical scales
are too challenging to model theoretically and are therefore ex-
cluded from the analysis. This is particularly problematic for more
evolved fields where the amplitude of fluctuations are sufficiently
large that the particle dynamics behave in a highly non-linear man-
ner. Secondly, for any non-Gaussian field, the power spectrum fails
to retain all of the statistical information captured by the field’s
configuration. The amplitude of the field’s Fourier modes are corre-
lated, thereby compromising the information content of the power
spectrum. These correlations can be interpreted as originating from
the largest dark matter haloes, which form spikes in the density field.
Each spike in real space translates to a uniform signal in Fourier
space, making a coherent contribution to the power spectrum across
all wavelengths. Both of these issues, the modelling of small scale
clustering and the correlation of Fourier modes, are predominantly
associated with the highest density regions of the field.

� E-mail: fergus2@icc.ub.edu

Manipulating the observed field prior to evaluating the power
spectrum can help alleviate these problems. Suppressing fluctua-
tions within the highest density regions in the field improves the
performance of perturbation theory, allowing a greater number of
Fourier modes to be included in a likelihood analysis. This has been
demonstrated with simulated galaxy fields (Simpson, Heavens &
Heymans 2013) and applied to data from the Galaxy And Mass
Assembly (GAMA) galaxy redshift survey (Simpson et al. 2015).
The suppression of non-Gaussian peaks also leads to a reduction
in the correlation between Fourier modes, thereby enhancing the
amount of information retained by the power spectrum. While pre-
vious applications of clipping involved three-dimensional fields, in
this work we turn our attention to weak gravitational lensing which
involves a projection of the cosmological density field on to two
dimensions.

The apparent alignment of galaxies on the sky arises from the
optical distortion imposed by the intervening distribution of inho-
mogeneous matter. When considering the two-point statistics as-
sociated with this weak gravitational lensing signal, a prominent
degeneracy emerges between two cosmological parameters: the am-
plitude of linear density perturbations σ 8 and the cosmic matter den-
sity �m. For example, the cosmic shear correlation function from
the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS)
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Enhancing the cosmic shear power spectrum 279

has been found to measure the combination σ 8(�m/0.27)0.6 = 0.79
± 0.03 within the context of a standard flat �CDM cosmology (Kil-
binger et al. 2013). There are a number of possible routes to improve
this measurement. Using either tomography (Heymans et al. 2013)
or the full three-dimensional information (Kitching et al. 2014)
could lead to significant gains. Alternatively, further information
can be extracted from the field by analysing the three-point statis-
tics, as demonstrated by Fu et al. (2014), or the abundance of peaks
(White, van Waerbeke & Mackey 2002; Bergé, Amara & Réfrégier
2010; Dietrich & Hartlap 2010; Maturi et al. 2010; Cardone et al.
2015).

Seo et al. (2011) found that by invoking a logarithmic trans-
formation, considerable improvements could be made to the in-
formation content of the convergence power spectrum, while Yu
et al. (2012) demonstrated that further enhancements were achiev-
able by performing a wavelet decomposition of the convergence
field. Joachimi, Taylor & Kiessling (2011) present a comprehen-
sive analysis of applying Box–Cox transformations (among which
the logarithmic transforms form a subset) to the convergence field.
They also reported that significant enhancements to the power spec-
tra were achievable under idealized conditions. However, each study
concluded that realistic levels of shape noise substantially reduce
these gains.

Our work aims to build on these previous studies in two ways.
First of all we shall focus on the clipping transformation which
is well suited to noisy fields. Secondly, we will investigate the
potential benefits of combining the information from both spectra,
before and after the transformation, by taking into account their
cross-covariance.

In Section 2, we briefly review how local transformations may be
applied to weak lensing fields. Methods for estimating the covari-
ance matrices via numerical simulations are detailed in Section 3,
followed by our main results which are presented in Section 4. Our
conclusions are summarized in Section 5.

2 TRANSFORMING W EAK LENSING FIEL DS

Clipping is a local transformation characterized by the application
of a saturation value δ0 to a scalar field δ(x) such that

δc(x) = δ0 (δ(x) > δ0)

δc(x) = δ(x) (δ(x) ≤ δ0) (1)

yielding the clipped field δc(x). The motivation for applying clipping
to cosmological fields is twofold: (1) the potential improvement in
modelling smaller scale clustering, and (2) the introduction of new
information to the power spectrum. In this work, we shall focus on
the latter.

This transformation has the unique property of either eliminating
or unperturbing the existing noise field. Consider a noise field n, de-
fined as the difference between the original field δ(x) and observed
field δn(x)

n(x) = δn(x) − δ(x) , (2)

then the transformed noise field n′(x) is the difference in the trans-
formed fields

n′(x) = f (δn) − f (δ) ,

= n(x)f ′(δ) , (3)

where f ′ is the functional derivative of f. For clipping, as specified
by (1), f ′(δ) can only take two values: zero or unity. Therefore, the

noise contribution is either removed (in regions above the threshold)
or left untouched (in regions below the threshold).

The benefits of decorrelating the Fourier modes within the galaxy
power spectrum are limited since its amplitude is dictated by the
uncertain manner in which galaxies trace the underlying matter dis-
tribution. Conversely, enhancing the weak lensing power spectrum
would be of greater consequence as it acts as a direct measure of
the amplitude of matter fluctuations.

A possible disadvantage of applying clipping to lensing stems
from the fact that lensing involves a projection of the three dimen-
sional density field on to two dimensions. This averaging process
will reduce the level of non-Gaussianity in the field, and so a greater
proportion of the field must be subject to clipping in order to achieve
the desired result.

While the direct observable from weak lensing surveys are the
shapes of galaxies, it is the derived convergence field which directly
relates to the projected mass density. The convergence field κ(θ ) is
therefore the more natural quantity to work with. It may be thought
of as a weighted integral of the matter perturbations along the line
of sight

κ(θ ) � 3

2

(
H0

c

)2

�m

∫
g(χ )fK (χ )

δ(θ, χ )

a(χ )
dχ , (4)

where χ denotes the radial coordinate distance. The lensing ef-
ficiency g(χ ) is determined by the radial distribution of source
galaxies ng(χ ) and the comoving angular diameter distance fK(χ )

g(χ ) =
∫ ∞

χ

dχ ′ng(χ ′)
fK (χ ′ − χ )

fK (χ ′)
. (5)

If we decompose the matter field into linear and non-linear compo-
nents, δ = δGrm + δx, where δG is the underlying Gaussian random
field and the residual term δx incorporates all departures from Gaus-
sianity, then from equation (4) the convergence is separable in the
same manner, yielding κ(θ ) = κG(θ ) + κx(θ ). In the limit that
the non-Gaussian component κx(θ ) only contributes at field values
larger than the chosen threshold, the application of clipping as de-
fined by equation (1) ensures that only the Gaussian component
of the density field δG(θ ) contributes to the resulting convergence
power spectrum Pκ .

For comparison we shall also assess the performance of the log-
arithmic transformation (Joachimi et al. 2011; Seo et al. 2011)

κ̄(θ ) = κ0 ln [1 + κ(θ )/κ0] , (6)

where the parameter κ0 can be adjusted to compensate for the
amplitude of the convergence field, serving a similar purpose to
the clipping threshold δ0. We follow the prescription used in Seo
et al. (2011) and set κ0 = |κmin| + 0.001, where κmin is the most
negative value of the convergence. This small offset ensures that the
transformed field remains finite.

3 M E T H O D O L O G Y

In order to quantify the benefits of clipping the convergence field,
we perform a Fisher matrix analysis to determine the error forecast
in the �m − σ 8 plane for a fiducial survey, and compare the size of
the expected likelihood contours before and after the convergence
field is subject to a local transformation.

It is well known that in circumstances where the posterior is not
well described by a multivariate Gaussian, the Fisher matrix acts as
a poor estimator (see for example Sellentin, Quartin & Amendola
2014; Sellentin & Schäfer 2015). However, when considering fore-
casts for weak lensing surveys in the �m − σ 8 plane, then provided
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the likelihood contours are sufficiently small, comparisons between
Fisher predictions and Markov Chain Monte Carlo (MCMC) out-
puts are found to be highly consistent (see for example fig. 3 of
Taylor & Kitching 2010 and fig. 6 of Wolz et al. 2012).

3.1 Simulations

We make use of mock convergence fields from simulations de-
scribed in Harnois-Déraps & van Waerbeke (2015). We apply a
variety of clipping thresholds to the mock convergence fields as-
sociated with 70 independent lines of sight, each of which spans
60 deg−2. Sources are placed at a redshift of z = 0.8 and the fiducial
amplitude of linear density fluctuations is taken to be σ 8 = 0.826.
These lines of sight serve as our estimator for the covariance of
the angular power spectra Pκ (
). In addition to these, we utilize
a set of five simulations which are seeded with an initial particle
distribution with matching phases, but with small displacements in
the values of �m and σ 8. This allows for a clean extraction of the
partial derivative of the observables with respect to these parame-
ters, as required for estimating the Fisher Matrices, without being
contaminated by cosmic variance. Other cosmological parameters
such as the spectral index ns and global curvature �k are taken to be
fixed, as they can be measured with a much greater precision from
other observations such as the Cosmic Microwave Background.

For each line of sight the convergence field is assigned to a 300 ×
300 grid, such that each grid cell corresponds to approximately 1.5
arcminutes, and the convergence power spectra are evaluated in
eight equally spaced bins for multipoles 
 < 1500. Our results are
largely insensitive to the choice of smoothing length. However, if
very fine grids are used then clipping predominantly acts on noise
spikes rather than true peaks in the projected density field.

When generating each simulated convergence field, the source
redshift plane ought to remain fixed. However, the ray-tracing takes
place across an integer number of simulation boxes, and since the
redshift-distance relation is altered when perturbing �m, there is
inevitably a small unwanted shift in the redshift of the sources.We
compensate for this by rescaling the amplitude of the convergence
field, which accounts for the change in lensing efficiency g(χ ) due to
the small difference between the desired and simulated distances to
the source plane. The magnitude of this correction is approximately
1 per cent and so would not change our results by more than a few
percent if it were neglected.

3.2 Shape noise

Starting from the true convergence field, we use the inverted Kaiser–
Squires method (Kaiser & Squires 1993) to recover the shear field
at each cell location. Then noise is superposed by drawing two
random numbers at each cell location, from a Gaussian distribution
with mean of zero and standard deviation σ̄e/

√
2, which constitute

the real and imaginary parts of the mean intrinsic ellipticity of the
galaxies within that cell. The cell averaged ellipticity σ̄e is given
by σe/

√
n where n is the number of source galaxies per cell, and

we take the rms intrinsic ellipticity σ e = 0.3 throughout this work.
The noisy shear field is then given as a sum of the true and intrinsic
shear fields. The noisy convergence field is recovered by applying
the Kaiser–Squires transformation (Kaiser & Squires 1993) to the
noisy shear field.

The intrinsic shape noise introduces an additive white noise con-
tribution which includes a distortion associated with the window

function of the grid

Pn(k) = σ 2
e

2n̄

〈
1

sinc(kx/2)2

1

sinc(ky/2)2

〉
, (7)

where kx and ky specify the elements of the wavevector in the x and
y dimensions, in units of the Nyquist frequency, and the averaging
takes place within the annulus associated with the wavevector bin.
Clipping reduces the noise contribution to the power spectrum, since
the regions of the field lying above the threshold are smoothed.
This leads to an estimate of the clipped shot noise contribution
Pcn(k), derived from equation (5) of Simpson et al. (2013), where
the leading order term may be expressed as

Pcn(k) � (1 − fc)2Pn(k) , (8)

where fc is the proportion of the field which lies above the clipping
threshold. For the fields considered in this work, the value of fc

required to reduce the large scale power by a factor of 2 is around
20 per cent. By comparison, the proportion of a three-dimensional
galaxy field subject to a comparable clipping strength is typically
2 per cent (Simpson et al. 2015).

3.3 Covariance estimation

Since estimating the covariance matrix is a critical step in this anal-
ysis, and one which can be highly susceptible to the influence of
noise, we compare two different methods for estimating the co-
variance matrix. First, we use the Ledoit–Wolf shrinkage estimator
(Ledoit & Wolf 2004) to evaluate the covariance matrix Ĉ associated
with our binned power spectra

Ĉ = δ�F + (1 − δ�)S . (9)

We use publicly available code1 to estimate the shrinkage target
F and the shrinkage constant δ�. The form of the shrinkage target
is based upon the samples being independent and identically dis-
tributed. The sample covariance matrix S is defined as the ensemble
average over 70 lines of sight

Sij = 〈�P m
κ (i)�P n

κ (j )〉 , (10)

where �P m
κ (i) represents the deviation in power from the sample

mean, and m denotes the particular transformation(s) under consid-
eration. The total number of columns in the covariance matrix is
given by the product of the number of angular bins in Pκ (
) with
the number of transformations included in the analysis, in order to
accommodate their cross-covariance.

The finite number of fields is a source of sampling noise which
will inevitably propagate through to the estimation of our likelihood
contours. In order to confirm that the uncertainty in our likelihood
contours is negligible, we employ a second algorithm to estimate
the covariance matrix. Instead of using a shrinkage estimator, we
simply invert the sample covariance matrix S before applying a
rescaling factor which accounts for the noise-induced bias in the
amplitude (Hartlap, Simon & Schneider 2007)

Ĉ−1 = n − p − 2

n − 1
S−1 , (11)

where p represents the length of the data vector (either 8 or 16),
and n is the number of samples. When all 70 fields are used to
construct the sample covariance S, these two algorithms produce

1 http://www.econ.uzh.ch/faculty/wolf/publications/covCor.m.zip
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Enhancing the cosmic shear power spectrum 281

highly consistent results, the derived likelihood contours differ in
area by less than 5 per cent.

A further validation test for convergence of the covariance matrix
involves repeating this procedure with a small subset of the avail-
able samples. This also proves useful in order to identify which
algorithm produces more consistent results. For example, when us-
ing only 20 samples the rescaling method defined by equation (11)
systematically overestimates the area of the likelihood contour by
more than 40 per cent. By contrast, the shrinkage estimator recovers
likelihood contours which are consistently within 40 per cent of the
area derived from the full sample. This improved stability leads us
to conclude that the shrinkage algorithm likely offers a superior
performance. It also predicts slightly more conservative gains when
combining the clipped and unclipped spectra. For these two reasons,
the shrinkage algorithm defined by equation (9) is the one we adopt
when presenting our main results.

3.4 Constructing the fisher matrix

The precision with which a parameter may be determined is gov-
erned by the rate at which the observable responds to a change in the
parameter. The key observable to consider is the power spectrum of
the convergence field Pκ (
). This may be expressed as

Pκ (
) = 9

4
�2

m

(
H0

c

)4 ∫ ∞

0

g2(χ )

a2(χ )
Pδ

(



fK (χ )
, χ

)
dχ , (12)

where the lensing efficiency g(χ ) is defined in equation (5).
Predicting the power spectrum of a clipped convergence field

poses a significantly more challenging problem. As is apparent
from equation (12), the convergence field can be thought of as aris-
ing from the weighted sum of intervening lens planes. Applying
clipping to a convergence field derived from of a single lens plane
would possess a power spectrum in line with the model presented in
Simpson et al. (2013). However, each of the stacked lens planes is
at a slightly different stage of gravitational evolution. We therefore
resort to using numerical simulations in order to determine the ex-
pected behaviour. In order to define a consistent clipping strength,
independent of smoothing length, we specify the fractional drop in
amplitude of the large scale power. We perform an iterative proce-
dure on the threshold value δ0 to converge upon the desired clipping
strength. Note that this iteration is not performed for each field –
it is performed once, then this threshold value is fixed for all re-
maining fields within the ensemble. Furthermore, prior to applying
any transformation, each convergence field has its mean subtracted.
This reflects the uncertain normalization of a given convergence
field derived from the measurement of a shear field, although this
is less problematic for fields spanning a large area.

Our fiducial survey spans 10 000 square degrees, and involves
a galaxy number density of 20 arcmin−2. For simplicity we only
consider a single redshift bin, rather than using tomography, and
the mock survey is idealized in that there are no holes or masks.

The Fisher information matrix, formally the expectation of the
Hessian matrix of the log likelihood, may be expressed as

F = DTC−1D , (13)

where C is the covariance matrix corresponding to the various bins
in Pκ (
) and is estimated following the methodology in Section
3.3. Where a combined analysis of two spectra is performed, the
covariance matrix incorporates the cross-covariance between the
two spectra. The Jacobian matrix D is comprised of elements Dij

which hold the differential of the ith multipole bin with respect to

Figure 1. The ratio of the convergence power spectrum from the clipped
convergence field, to that of the original field, for three different values of
σ 8. In this example a clipping threshold is chosen such that on the largest
angular scales the power is reduced by a factor of 2, which typically provides
a good balance between the removal of non-linear power while maintaining
a high level of signal to noise.

the jth parameter,

Dij = ∂Pκ (i)

∂pj

. (14)

We expect transformed fields will be susceptible to shape noise and
so D must be re-evaluated for each transformation when noise is
introduced, as discussed in further detail in Seo et al. (2012). We take
the average power derived from twenty different noise realisations
in order to ensure that the above derivatives are stable.

There are two distinct analyses we wish to perform in the �m −σ 8

plane. The first is the constraint which one would achieve from a
conventional interpretation of the weak lensing power spectrum,
without clipping. In this case, the determination of the differential
matrix D can be performed analytically. This is not the case for the
power spectra derived from the clipped convergence fields. In this
case, to determine the differential matrix D we utilize the simula-
tions which were seeded with matching phases in the initial density
fluctuations. Due to the non-linear nature of structure formation, the
smallest density fluctuations exhibit a stochastic behaviour across
the different simulations, but on the angular scales of interest we
find the derivatives to be numerically stable.

4 R ESULTS FROM SI MULATI ONS

Using the simulations outlined in the previous section, we explore
the consequences of applying local transformations to the conver-
gence field, and construct likelihood contours derived from the
resulting convergence power spectra.

4.1 Power spectra

Fig. 1 shows the change in the shape of the convergence power
spectrum for three different cosmologies, after applying a clipping
threshold chosen such that the largest angular bin in C
 is reduced
in amplitude by a factor of 2. Previous studies of clipping cosmo-
logical fields conclude that reducing the linear power by between
40−60 per cent strikes a good balance by suppressing higher or-
der terms, while maintaining a high level of signal to noise. This
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282 F. Simpson et al.

Figure 2. Left: constraints in the �m − σ 8 plane using the angular power spectra (
 < 1500) of the original convergence field (dashed), the clipped field
(thin solid) and the log field (dotted). The thick set of contours relate to the combined analysis of power spectra from the original and clipped fields. These
constraints correspond to a survey of 10 000 deg−2. Right: the same format as the left-hand panel, but we now include the effects of shape noise, with a galaxy
number density of 20 arcmin−2 and an rms intrinsic ellipticity σ e = 0.3.

therefore drives our choice of the threshold value, which for the
central value (σ 8 = 0.831) corresponds to κ0 = 0.026. The three
different values of σ 8 generate significantly different responses, il-
lustrating how clipping can reveal the degree of non-linearity present
in the field. For more evolved density fields, a greater suppression
of power occurs on small angular scales. This response can be un-
derstood by considering the original field to be a superposition of its
linear and non-linear components. The clipped power is then pre-
dominantly comprised of the clipped linear power spectrum and the
clipped non-linear power (Simpson et al. 2013). However, owing to
the positive skewness of the non-linear pdf, the non-linear power
suffers a much stronger loss of power than the Gaussian pdf. Thus,
fields which are more evolved and host a stronger non-linear com-
ponent suffer a greater loss of power on small scales. This behaviour
has previously been observed for the case of the three-dimensional
simulated density fields (Simpson et al. 2013). Applying stronger
clipping with a lower threshold value leads to a more linear power
spectrum with less correlated Fourier modes. This improvement sat-
urates once the amplitude of the linear power spectrum is reduced
by approximately a factor of 2, so there is little to be gained by
adopting a lower threshold.

4.2 Parameter constraints

The left hand panel of Fig. 2 illustrates the 68 and 95 per cent joint
likelihood contours derived from the Fisher matrix of the conver-
gence power spectrum (
 < 1500). The dashed lines are derived
from the standard convergence field, while the dotted lines are de-
rived from the log transform as defined by equation (6). The outer
set of solid contours make use of the clipped convergence field as
defined by equation (1), with a threshold selected such that the large
scale power is reduced to 50 per cent of its original value. These con-
tours are somewhat elongated relative to the original spectrum, but
also exhibit a small clockwise rotation of their degeneracy direc-
tion. The inner set of solid contours result from combining both the
original and clipped power spectra. The minor axes of the combined
contours are not noticeably reduced from those of the original spec-
trum, owing to the strong cross-covariance between the amplitudes
of the two spectra. However, the major axes shrink considerably,

suggestive of a powerful complementarity between the information
held by the two power spectra.

Correlations between data points are often perceived to have a
detrimental impact on the data set’s overall information content.
But there are many circumstances in which this is not the case.
To see why, consider the simple case of two data points, to which
we wish to fit a straight line. The only two free parameters are the
gradient and the amplitude. If the errors on these two data points
are perfectly correlated, the constraint on the amplitude weakens
by a factor of

√
2 relative to the uncorrelated case. However, the

gradients uncertainty vanishes - it is now determined to an arbitrarily
high precision.

This toy model is intimately linked to the case we consider here.
For weak lensing contours in the �m − σ 8 plane, the size of the
minor axis relates to the uncertainty in the amplitude of the weak
lensing power spectrum. This is often quoted as a measurement
of the parameter combination σ8�

α
m. The fact that the clipped and

unclipped spectra are highly correlated means that when a joint
analysis is performed, any improvement in the measurement of this
amplitude is negligible. Hence, the minor axis does not shrink for
the case of the ‘Combined’ contours in Fig. 2. Meanwhile the extent
of the contour’s major axis is governed by how well the shape of
the power spectrum is measured. More evolved fields with higher
values of σ 8 will possess more power on smaller angular scales,
and this helps lift the degeneracy within the �m − σ 8 plane. When
considered separately, the precision with which the shape of each
spectra can be determined is ultimately limited by cosmic variance.
It might be that the large scale power is low by chance, causing a
spurious upward tilt in the lensing power spectrum, thereby mim-
icking a higher value of σ 8. However, this deception can be revealed
with a joint analysis of both spectra. A higher value of σ 8 leads to
a stronger decrement of small scale power in the clipped spectrum
relative to the unclipped. This relative change in power is largely in-
sensitive to the particular cosmic variance realization. The contour’s
major axis therefore shrinks further than would have been possible
if the two spectra were uncorrelated. This is explored further in
Section 4.3 and Fig. 3 below.

Note that this is not the only cosmological example where cor-
relations prove to be beneficial. Performing an analysis of redshift
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Enhancing the cosmic shear power spectrum 283

Figure 3. Simulated constraints for a 200 square degree convergence field,
before (red dashed contours) and after (blue solid contours) applying a log-
arithmic transformation (95 per cent CL). The inner black solid contour
represents a combined analysis of both spectra. The consequence of ignor-
ing the cross-covariance between the original and transformed spectra is
illustrated by the dotted black contour. Shape noise is not included in the
convergence field. The black marker signifies the fiducial cosmology of the
simulation.

space distortions with multiple tracers allow cosmic variance fluctu-
ations to be effectively nulled, permitting an enhanced measurement
of the growth of structure.

These results are consistent with the findings of Joachimi et al.
(2011) who noted that upon performing a Box–Cox transforma-
tion the likelihood contours demonstrate a small clockwise rotation
of the degeneracy direction, and become considerably elongated.
This elongation of the contours for transformed fields occurs be-
cause information regarding the shape of the spectra (as induced by
non-linear structure associated with higher values of σ 8) is erased.
Indeed, the full extent of this elongation effect is likely lost in our
case due to the limitations of the Fisher formalism. None the less the
addition of the original information from the unclipped field trun-
cates the longer contours. The combined contours therefore offer a
faithful representation of the true likelihood.

Our findings differ from Seo et al. (2012) in that even in the
noise-free case, we do not observe significant gains from apply-
ing a logarithmic transform alone. However, there are a number of
differences in our methodologies. They use multiple redshift bins
and explore a broader parameter space – for example we do not
marginalize over the dark energy parameters w0 and wa. Further-
more, the efficacy of the log transform is strongly governed by the
choice of pixel size.

The right-hand panel of Fig. 2 takes the same format as the left-
hand panel, but here we include the impact of shape noise. There
is only a modest degradation of the unclipped contours in this case.
The degeneracy direction of the transformed fields experiences a
slightly reduced rotation, but there is still sufficient complementarity
to yield substantial gains when performing a combined analysis.
The logarithmic contours also show little degradation, which may
appear surprising given the information loss found by Seo et al.
(2011). However, the impact of shape noise is highly sensitive to

the choice of smoothing length used to define the field, particularly
since the amplitude of the convergence fundamentally alters the
transformation defined in (6), and here we are using a considerably
coarser pixel size.

The extent to which the benefits of applying clipping and log-
arithmic transformations are degraded by the presence of shape
noise also depends on the specific choice of transformation chosen.
Higher clipping thresholds lead to a higher power spectrum and thus
a lower susceptibility to shape noise. Yet they are also less efficient
at recovering information to the power spectrum in the low noise
limit.

In order to quantify these gains we can readily compute the
change in the figure of merit such as those previously defined in
Albrecht et al. (2009) and Simpson & Peacock (2010)

FoM =
√

F��Fσσ − F2
�σ , (15)

where the notation Fθθ denotes the elements of the Fisher matrix
associated with the parameter θ . This quantity is inversely propor-
tional to the area enclosed by the likelihood contours. The absolute
value is not of great interest, since it will strongly depend on the
configuration and area of the survey in question, so in Table 1 we
quote in each case the fractional change in the figure of merit rel-
ative to the original power spectrum analysis. We show results for
three different clipping thresholds, corresponding to those which
reduce the large scale power to 40, 60 and 80 per cent of its original
value. In addition we include the original convergence field, and
the log transform as defined by equation (6). The diagonal elements
demonstrate that for each transformation under consideration, the
areas enclosed by the ellipses have enlarged. The off-diagonal ele-
ments in Table 1 quantify the significant gains which can be made
by performing a combined analysis, particularly when combining
the original spectrum with that from a clipped field, where the gain
is more than a factor of 3, despite the presence of shape noise. We
have also evaluated intermediate clipping strengths, finding that the
gain derived from combining two clipped power spectra deterio-
rates rapidly as the difference between their clipping strengths is
reduced.

Thus while the findings of previous related studies (Joachimi
et al. 2011; Seo et al. 2011) are entirely consistent with the results
presented here, our conclusions differ markedly in that we find
substantial gains can be achieved from a local transformation of
the convergence field even in the presence of realistic levels of
shape noise. The source of this difference stems from performing a
combined analysis with the original power spectrum, which holds
complementary information, rather than considering each power
spectrum in isolation.

4.3 Full likelihood model

The posterior in the parameters �m and σ 8 as produced by contem-
porary cosmic shear surveys is not well approximated by a multivari-
ate Gaussian. In order to assess whether our conclusions are affected
by the limitations of the Fisher matrix formalism, we consider the
case of a full mock likelihood analysis following the methodology
presented in Joachimi et al. (2011). In this work, analytical models
for power spectra of convergence fields transformed via Box–Cox
transformations, which include the logarithm, were derived using a
perturbative expansion and recalibration of higher-order contribu-
tions via the third to fifth moments of the convergence measured
from N-body simulations. Joachimi et al. (2011) used a suite of
100 convergence fields at a single source redshift z = 1 simulated
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Table 1. The improvement in the figure of merit as defined in equation (15), for various combinations of power
spectra from transformed convergence fields, relative to that of the original power spectrum. The four local
transformations – three clipping thresholds and the logarithmic transform – all prove detrimental when considered
alone, yet yield substantial gains when coupled with the power spectrum of the original field.

Unclipped Logarithm Clip 40 per cent Clip 60 per cent Clip 80 per cent

Unclipped 1 1.4 3.1 3.3 2.9
Logarithm 0.73 2.6 2.5 1.8
Clip 40 per cent 0.59 0.87 1.5
Clip 60 per cent 0.59 1.2
Clip 80 per cent 0.72

with the SUNGLASS pipeline (Kiessling et al. 2011) for signal and
covariance estimation via equation (11). We adopt these measure-
ments for convergence field without shape noise and smoothed with
a Gaussian of width 1.5 arcmin. Moreover, we rescale the covari-
ance to correspond to a 200 deg2 survey. This toy model setup is
deliberately chosen to yield wide contours with a strong non-linear
degeneracy, which is least well represented by a Gaussian approx-
imation to the posterior. We use the value for the free parameter in
the logarithmic transformation, equivalent to κ0 in equation (5), as
determined by Joachimi et al. (2011) in the Box–Cox optimization.

The resulting parameter constraints for a power spectrum analy-
sis of the original convergence fields, of the log-transformed fields,
and their combined analysis are shown in Fig. 3. We have used 10
angular frequency bins logarithmically spaced in the range 150 to
1500. The contours for the log-transformed fields are slightly biased
high, which is caused by the difficulty of analytically modelling the
transformed power spectrum at high 
 where higher-order correla-
tions become important (see Joachimi et al. 2011 for a more de-
tailed discussion). However, this does not affect our conclusion that
there is excellent qualitative agreement between the full likelihood
analysis and the Fisher forecasts. The dotted contours represent a
joint analysis in which the cross-covariance has been set to zero, as
would arise if the two spectra were taken from fields in different
parts of the sky. This greatly underestimates the achievable con-
straints, demonstrating the importance of the cross-correlations in
suppressing noise contributions.

This independent analysis offers striking confirmation of the con-
siderable gains which are achievable by accounting for the strong
cross-covariance which exists between the power spectra of a lo-
cally transformed field and its original form. In terms of the areas
enclosed by the contours in Fig. 3, the combined analysis offers
a gain in performance of more than a factor of 5 compared to the
transformed field alone.

5 C O N C L U S I O N S

In this work, we have demonstrated how applying a transformation
such as clipping to a convergence field can not only introduce new
information to the resulting power spectrum, but that this new in-
formation helps lift the degeneracy in the �m − σ 8 plane. When
considering moderately large angular scales 
 < 1500, parameter
constraints can be improved by more than a factor of 2, even when
realistic levels of shape noise are included. The loss of performance
reported in previous studies for a single transformed power spec-
trum is largely attributed to the elongation of the contours along
the degeneracy direction, but this elongation is readily truncated by
including the original power spectrum which exhibits a different
degeneracy direction.

A second major advantage of performing a local transformation
such as clipping is that it may also permit smaller angular scales to
be studied, since the resulting power spectrum is more straightfor-
ward to model. We may therefore have significantly underestimated
the gains achievable when clipping convergence fields. The use of
tomography – dividing the source galaxies into discrete redshift
bins – in conjunction with clipping will further enhance the level
of precision attainable, but we leave this topic for the subject of
future work. A suite of N-body cosmological simulations would be
required to adequately model the clipped convergence power spec-
tra. Many simulations will in any case be required for modelling the
conventional power spectrum, or alternatively rescaling methods
could prove effective for exploring a greater volume of parameter
space (Angulo & White 2010; Mead & Peacock 2014).

As found when applying clipping to large scale structure, the
choice of threshold is fairly flexible. Provided the threshold is suf-
ficiently strong to reduce the large scale amplitude of the power
spectrum by over 30 per cent, there is little change in performance.
The optimal choice ultimately rests upon the level of noise within
the particular field under investigation. For the convergence fields
considered in this work we find that in order for clipping to reduce
the large scale power by a factor of 2, a threshold value of κ0 =
0.026 is required, corresponding to approximately 20 per cent of the
field being clipped.

The greatest obstacle to applying a local transformation to weak
lensing data is that the observable field is not a direct tracer of the
matter density, so we must convert the shear field to a convergence
field in order to find a suitable proxy for the projected matter density.
The conversion process is particularly challenging in the presence
of noise and masks, but significant progress is being made (Van
Waerbeke et al. 2013; Chang et al. 2015). We therefore envision that
a combined analysis of clipped and unclipped lensing observations
will help extract more robust and precise information from future
and forthcoming surveys.
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