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ABSTRACT

We compute the spherical-sky weak-lensing power spectrum of the shear and convergence.
We discuss various approximations, such as flat-sky, and first- and second-order Limber
equations for the projection. We find that the impact of adopting these approximations is neg-
ligible when constraining cosmological parameters from current weak-lensing surveys. This is
demonstrated using data from the Canada–France–Hawaii Telescope Lensing Survey. We find
that the reported tension with Planck cosmic microwave background temperature anisotropy
results cannot be alleviated. For future large-scale surveys with unprecedented precision, we
show that the spherical second-order Limber approximation will provide sufficient accuracy.
In this case, the cosmic-shear power spectrum is shown to be in agreement with the full pro-
jection at the sub-percent level for � > 3, with the corresponding errors an order of magnitude
below cosmic variance for all �. When computing the two-point shear correlation function,
we show that the flat-sky fast Hankel transformation results in errors below two percent com-
pared to the full spherical transformation. In the spirit of reproducible research, our numerical
implementation of all approximations and the full projection are publicly available within the
package NICAEA at http://www.cosmostat.org/software/nicaea.

Key words: methods: statistical – cosmological parameters.

1 IN T RO D U C T I O N

The measurement of weak gravitational lensing by large-scale structures provides a powerful cosmological probe of dark matter, dark energy
and modifications to gravity. As such, it is the primary science goal of several current (KiDS, DES, HSC1) and future (Euclid, LSST, WFIRST2)
surveys. Interest in the results from these surveys is high as statistically significant deviations have been found between the cosmological
parameter constraints from the cosmic microwave background (CMB) Planck experiment (Planck Collaboration XIII 2016) in comparison
to weak-lensing constraints from both the Kilo-Degree Survey (KiDS; Hildebrandt et al. 2017) and the Canada–France–Hawaii Telescope
Lensing Survey (CFHTLenS; Joudaki et al. 2017). If the source of this tension is not a result of so-far unconsidered sources of systematic
errors in one or all experiments, extensions to the standard flat �CDM cosmological models need to be considered. Joudaki et al. (2016) have
shown, for example, that the tension can be resolved with an evolving dark energy model.

� E-mail: martin.kilbinger@cea.fr
1 KiDS: http://kids.strw.leidenuniv.nl, DES: http://www.darkenergysurvey.org, HSC: http://hsc.mtk.nao.ac.jp/ssp
2 Euclid: http://sci.esa.int/euclid, LSST: http://www.lsst.org, WFIRST: http://wfirst.gsfc.nasa.gov
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In the era of the upcoming large-scale surveys that will provide measurements of cosmic shear with unprecedented precision, one needs
to revisit the theoretical predictions of the observables to ensure that the accuracy of the models meet the accuracy of the observations.
In this paper, we examine the widely used Limber approximation for the projected weak-lensing power spectrum. We consider spherical
coordinates and the flat-sky approximation, and compute the full projection of the lensing power spectrum. The first-order extended Limber
approximation provides sub-percent accuracy for � > 10 and is sufficient for present surveys. The associated errors are sub-dominant even
for future large surveys.

We further show that the second-order Limber approximation is an accurate representation of the full projection, with better than percent
level precision for scales � > 3. Since this approximation involves only 1D integrals over the matter power spectrum, it is very fast to calculate
numerically and can readily be employed in Monte Carlo sampling methods to obtain precision constraints on cosmological parameters. We
also compute the shear correlation function using a spherical transformation, and compare this to the flat-sky approximated, commonly used
fast Hankel transformation.

This paper is organized as follows. In Section 2, we provide a pedagogical introduction to weak gravitational lensing theory, projections
and power spectra for the flat-sky and spherical cases, following the seminal work by Hu (2000; see also Castro, Heavens & Kitching 2005).
In Section 3, we derive weak-lensing observables using a second-order Limber approximation first introduced by Loverde & Afshordi (2008).
We compare the shear power spectrum and the commonly used two-point shear correlation function for the full solution to a range of different
approximations in Section 4, providing cosmological constraints for each case using CFHTLenS data from Kilbinger et al. (2013). This
paper draws from several sources of literature that have previously discussed the full projection, or reviewed the accuracy of the Limber
approximation for weak-lensing studies, namely Schmidt (2008); Bernardeau et al. (2012); Giannantonio et al. (2012) and Kitching et al.
(2016); see also Lemos, Challinor & Efstathiou (2017) for a more recent work. We present a discussion and comparison of our results to these
papers in Appendix B.

2 W E A K - L E N S I N G P RO J E C T I O N S A N D P OW E R SP E C T R A

In this section, we review the basic weak-lensing projection expressions, and compute lensing power spectra for a spherical case, and in the
flat-sky approximation. For completeness, we provide a derivation of the weak-lensing power spectra in Appendix A.

2.1 The lensing potential

The lensing potential ψ at a position on the sky (θ , ϕ) in the Born approximation is defined as the projected 3D metric potential � along the
line of sight of a flat universe (Kaiser 1998; Bartelmann & Schneider 2001),

ψ(θ, ϕ) = 2

c2

∫ ∞

0

dχ

χ
�(χ, χθ, χϕ; χ ) q(χ ), (1)

where the lensing efficiency q is given by

q(χ ) =
∫ χh

χ

dχ ′ n(χ ′)
χ ′ − χ

χ ′ , (2)

corresponding to a population of lensed galaxies with a normalized source redshift distribution nz(z) dz = n(χ ) dχ , with the limit being the
comoving distance to the horizon χh.3 Here, c is the speed of light and the projection is carried out over comoving distances χ . The last
argument of the potential � is not to be understood as coordinate, but rather as a substitute of cosmic time, t(χ ), to express the time at which
the potential is evaluated. This is true in the following for all fields and functions thereof that dynamically change with cosmic epoch.

The form of the lensing efficiency q in equation (2) assumes a homogeneous galaxy distribution without clustering, so that the redshift
distribution in this approximation does not depend on the direction on the sky. Accounting for this position-dependence leads to corrections of
weak-lensing quantities due to clustering of source galaxies with other sources (Schneider, Van Waerbeke & Mellier 2002), and with galaxies
associated with lens structures (Bernardeau 1998; Hamana et al. 2002).

The 3D potential is related to the density contrast δ via the Poisson equation. Assuming General Relativity, this relation is written in
Fourier space as

�̂(k; χ ) = −3

2
�mH 2

0 k−2a−1(χ )δ̂(k; χ ), (3)

where �m is the matter density parameter, H0 the Hubble constant, k a 3D Fourier wave vector with modulus k being the comoving
wavenumber and a the scalefactor with a = 1 today. The Fourier transform of the potential and its inverse are defined as

�̂(k; χ ) =
∫

d3r �(r; χ )eik·r ; (4)

�(r; χ ) =
∫

d3k

(2π)3
�̂(k; χ )e−ir·k, (5)

3 In (1), we have replaced this limit without loss of generality with ∞, since q(χ > χh) = 0.
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2128 M. Kilbinger et al.

where the integration range for both integrals is R3.

2.2 Lensing power spectra in the spherical case

2.2.1 Lensing potential power spectrum

Following Hu (2000), we decompose the lensing potential (equation 1) into spherical harmonics, in analogy to the CMB temperature, both
of which are scalar functions on the sphere. This decomposition and its inverse are

ψ(θ, ϕ) =
∞∑

�=0

�∑
m=−�

ψ�mY�m(θ, ϕ); (6)

ψ�m =
∫

S2
d� ψ(θ, ϕ)Y∗

�m(θ, ϕ). (7)

Complex conjugation is denoted with the superscript ∗. To specify tomographic redshift bins i = 1. . . Nz, we introduce a family of lensing
efficiency functions qi defined by a corresponding family of redshift distributions ni via equation (2). The resulting lensing potential is denoted
by ψ�m, i. The tomographic power spectrum of the lensing potential between two redshift bins i and j, C

ψ
ij (Peebles 1980) is then defined as〈

ψ�m,i ψ∗
�′m′,j

〉 = δ��′δmm′C
ψ
ij (�). (8)

Note that the argument � is a discrete integer variable, and is often written as index, C�. Using the properties of the spherical harmonics (see
Appendix A for details), the power spectrum can be written as

C
ψ
ij (�) = 8

c4π

∫ ∞

0

dχ

χ
qi(χ )

∫ ∞

0

dχ ′

χ ′ qj (χ ′)
∫

dkk2 j�(kχ )j�(kχ ′)P�(k; χ, χ ′) (9)

= 8

π
A2

∫ ∞

0

dχ

χ

qi(χ )

a(χ )

∫ ∞

0

dχ ′

χ ′
qj (χ ′)
a(χ ′)

∫
dk

k2
j�(kχ )j�(kχ ′)Pm(k; χ, χ ′), (10)

where j� is the spherical Bessel function of order �. For convenience, we introduce the normalization constant A as

A = 3

2
�m

(
H0

c

)2

. (11)

The first line expresses C
ψ
ij in terms of the 3D potential power spectrum P�, defined as〈

�̂(k; χ )�̂∗(k′; χ ′)
〉 = (2π)3δD(k − k′)P�(k; χ, χ ′). (12)

The second line uses the 3D matter density power spectrum Pm, which is defined analogously as〈
δ̂(k; χ )δ̂∗(k′; χ ′)

〉 = (2π)3δD(k − k′)Pm(k; χ, χ ′), (13)

and is related to P� via the absolute square of the Poisson equation (3).
This type of cross-power spectrum between different cosmological epochs χ and χ ′ was introduced in Castro et al. (2005). In Sections 3.1.1

and 3.1.2, this unequal-time cross-spectrum (Kitching & Heavens 2016) will be further evaluated and simplified in the context of the Limber
approximation. The oscillating Bessel functions in equation (10) ensure that only relatively close epochs contribute to the lensing potential
correlation. This make sense since observed light rays from two galaxies at different positions on the sky that necessarily converge at the
observer today pick up the density fluctuations at similar times while propagating through the large-scale structure. A similar argument has
been made in Bartelmann & Schneider (2001): since the matter power spectrum scales with k for k → 0, there is decreasing power towards
larger and larger scales. In particular, the correlation of cosmic fields decreases strongly above a coherence scale |χ − χ ′| � Lcoh, which is
significantly smaller than the horizon scale χh.

In the following section, we will discuss the relations between shear and convergence to the lensing potential on the sphere, and derive
the power spectrum of the former two fields.

2.2.2 Shear power spectrum

The shear γ = γ 1 + iγ 2 is related to the potential at linear order by the trace-free part of the Jacobi matrix. The involved differential operator
on the sphere is called the edth derivative, � (see Castro et al. (2005) for an in-depth mathematical discussion of this concept). The edth
operator � ( � ∗) raises (lowers) the spin s of an object. Twice applying this operator to the scalar (spin-0) potential creates the spin-2 shear:

γ (θ, ϕ) = 1

2
ð ð ψ(θ, ϕ);

γ ∗(θ, ϕ) = 1

2
ð

∗
ð

∗ψ(θ, ϕ). (14)
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Precision cosmic-shear projection 2129

Table 1. The shear power spectrum approximations studied in this paper. ‘ID’ is the label used in the text and figures. The sixth (seventh) column indicates
the mode �x such that for � ≤ �x, the approximated power spectrum is more accurate than x, with x = 0.1 (0.01).

Case ID equation p(�) ν(�) �0.1 �0.01 Comment

1st-order standard Limber, flat L1Fl (43)+(i) 1 � 4 60 Pre-2014 CFHTLenS and DLS

1st-order extended Limber, flat ExtL1Fl (43)+(ii) �4

(�+1/2)4 � + 1
2 20 200 Converges only with O(�−1)

1st-order extended Limber, hybrid, flat ExtL1FlHyb (43)+(iii) 1 � + 1
2 4 10 Post-2014 CFHTLenS, DES-SV and KiDS

1st-order extended Limber, spherical ExtL1Sph (38) ł 2(�,2)
(�+1/2)4 � + 1

2 3 12

2st-order extended Limber, flat ExtL2Fl (43)+(44)+(iii) �4

(�+1/2)4 � + 1
2 19 200 Converges only with O(�−1)

2st-order extended Limber, hybrid, flat ExtL2FlHyb (43)+(44)+(iii) 1 � + 1
2 5 16 Best flat-sky approximation

2st-order extended Limber, spherical ExtL2Sph (38)+(42) ł 2(�,2)
(�+1/2)4 � + 1

2 2 5 Best approximation

Full spherical FullSph (21) – – – – Correct projection

To write the shear on the sphere in terms of the lensing potential ψ , we insert the harmonics expansion of the potential (6). This requires
the calculation of second derivatives of the spherical harmonic functions. This operation defines a new object, the spin-weighted spherical
harmonic sY�m. The shear can be written on the sphere in terms of these functions as a spherical harmonics multipole expansion with
coefficients ±2γ �m. This expansion together with its inverse is

(γ1 ± iγ2)(θ, ϕ) =
∑
�m

±2γ�m ±2Y�m(θ, ϕ); (15)

2γ�m =
∫

S2
d� γ (θ, ϕ) 2Y

∗
�m(θ, ϕ); −2γ�m =

∫
S2

d� γ ∗(θ, ϕ) −2Y
∗
�m(θ, ϕ). (16)

The spin-weighted spherical harmonics sY�m that are the basis function in the expansion of the shear (equation 15) can be calculated via the
relations

ł (�, s) sY�m(θ, ϕ) = ð
sY�m(θ, ϕ); ł (�, s) −sY�m(θ, ϕ) = (−1)s

(
ð

∗)s
Y�m(θ, ϕ), (17)

for 0 ≤ s ≤ �, with the spin pre-factor (Bernardeau et al. 2012)

ł (�, s) =
√

(� + s)!

(� − s)!
. (18)

Inserting the lensing potential expansion (equation 6) into the expression for the shear (equation 14), and using equation (17) to compute the
derivatives, we find for the shear expansion coefficients (Hu 2000; Taylor 2001)

±2γ�m = 1

2
ł (�, 2)ψ�m. (19)

The two coefficients +2γ �m and −2γ �m are identical since the potential ψ is a real function.
The tomographic shear power spectrum, in analogy to equation (10), is defined by〈

2γ�m,i 2γ
∗
�′m′,j

〉 = δ��′δmm′C
γ
ij (�). (20)

This is given by

C
γ
ij (�) = 1

4
ł 2(�, 2) C

ψ
ij (�) = 2

π
ł 2(�, 2) A2

∫ ∞

0

dχ

χ

qi(χ )

a(χ )

∫ ∞

0

dχ ′

χ ′
qj (χ ′)
a(χ ′)

∫ ∞

0

dk

k2
Pm(k, χ, χ ′) j�(kχ ) j�(kχ ′), (FullSph) (21)

where we use the label ‘FullSph’ (see Table 1 for a list of cases discussed in this work). The spherical spin pre-factor for the full projection
shear power spectrum is ł 2(�, 2), which will be modified under flat-sky and Limber approximations below.

2.2.3 Convergence power spectrum

The convergence is related to the lensing potential on the sphere via the product of spin-raising and spin-lowering edth operators, which are
identical to the spherical Laplacian differential operator.

κ(θ, ϕ) = 1

2
ð ð

∗ψ(θ, ϕ) = 1

2
∇2ψ(θ, ϕ). (22)

The spherical harmonics are eigenfunctions of the Laplacian,

∇2Y�m(θ, ϕ) = −�(� + 1)Y�m(θ, ϕ) = −ł 2(�, 1)Y�m(θ, ϕ). (23)

MNRAS 472, 2126–2141 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/472/2/2126/4093077 by Liverpool John M
oores U

niversity user on 22 July 2020



2130 M. Kilbinger et al.

The convergence power spectrum is then similar to the shear power spectrum (equation 20) with a different spherical pre-factor (Hu 2000;
Joudaki & Kaplinghat 2012):

Cκ
ij (�) = 1

4
ł 4(�, 1) C

ψ
ij (�) = �(� + 1)

(� − 1)(� + 2)
C

γ
ij (�). (24)

The convergence power spectrum is thus larger than the shear power spectrum, by 10 per cent for � = 4, 1 per cent for � = 14 and less than
0.1 per cent for � > 45.

2.3 Flat-sky approximation

The majority of cosmic shear analyses have used the predicted lensing power spectrum approximated on a flat sky, neglecting the sky
curvature. This is a valid approach for past and current survey areas with an extent less than 10◦. To account for the sky curvature of the
observed data, the shear correlation functions from observed galaxy ellipticities are now routinely computed using spherical coordinates,
since projecting to a Cartesian plane has been shown to cause significant biases of the two-point function on large scales (Fu et al. 2008), and
lead to spurious B-modes (Asgari et al. 2017). Here, we examine the effect of sky curvature on the theoretical models of the power spectrum,
and the effect on cosmological parameter inference (see Section 4.3).

For a flat-sky, the spherical harmonic expansions are approximated by Fourier transforms. The flat-sky equivalents of equations (6) and
(7) are

ψ(ϑ) =
∫

d2�

(2π)2
e−i�·ϑ ψ̂(�), (25)

ψ̂(�) =
∫

d2ϑ ei�·ϑψ(ϑ), (26)

where ϑ = (θ, ϕ) is the vector describing a 2D angle on the sky. Instead of a harmonics coefficients ψ�m, the Fourier representation of the
potential ψ̂ now depends on the vector � ∈ R2.

The flat-sky power spectrum, i.e. the flat-sky analogue of equation (8), is defined by〈
ψ̂i(�)ψ̂∗

j (�′)
〉 = (2π)2δD(� − �′)P ψ

ij (�). (27)

Hu (2000) has shown that for small angles the harmonics expansion (equation 6) can be approximated by the Fourier representation in
equation (25). They also demonstrated that the power spectra are approximately equal, Pψ ≈ Cψ .

For a spin-2 field, Hu (2000) approximates the edth operator by Cartesian derivatives, and approximates equation (17) as

�2 ±2Y�m(θ, ϕ) ≈ e∓2iφ� (∂1 ± i∂2)2 Y�m(θ, ϕ). (28)

The spin pre-factor ł (�, 2) = √
(� − 1)�(� + 1)(� + 2) is replaced by �2 in flat coordinates, an approximation that holds for large �, since sky

curvature can be neglected for small angular scales. We find for the flat-sky shear power spectrum

P
γ
ij (�) = 2

π
�4 A2

∫ ∞

0

dχ

χ

qi(χ )

a(χ )

∫ ∞

0

dχ ′

χ ′
qj (χ ′)
a(χ ′)

∫ ∞

0

dk

k2
Pm(k, χ, χ ′) j�(kχ ) j�(kχ ′), (29)

with flat-sky pre-factor �4. See Appendices B4 and B5 for discussions of alternative expressions for the flat-sky power spectrum.

3 SE C O N D - O R D E R LI M B E R A P P ROX I M AT I O N FO R W E A K - L E N S I N G

3.1 Spherical case

We follow Loverde & Afshordi (2008), who derive the second-order Limber expansion for general projections from 3D to 2D scalar fields
in the spherical, all-sky case. We apply their general derivation to the case of weak lensing, andin contrast to Loverde & Afshordi (2008)
account for a time-dependent power spectrum using two approaches presented in Sections 3.1.1 and 3.1.2.

First, we use the identity of Bessel functions

j�(x) =
√

π

2x
J�+1/2(x) (30)

in equation (21), where Jν is the Bessel function of the first kind and order ν. Next, Loverde & Afshordi (2008) solve integrals of the form∫ ∞

0
dχf (χ )Jν(kχ ) =

∫ ∞

0
dxk−1f (x/k)Jν(x) (31)

by performing a Taylor expansion of an arbitrary differentiable function f around x = kχ = ν = � + 1/2, where the Bessel function has its
approximate maximum.
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3.1.1 Geometric mean cross-correlation power spectrum

To separate the k and χ , χ ′-terms in equation (21), we first approximate the matter power cross-spectrum between two distances by the
geometric mean of the two involved distances (Castro et al. 2005; Kitching & Heavens 2016):

Pm(k; χ, χ ′) =
√

Pm(k; χ )Pm(k; χ ′) . (32)

This form is justified when considering the linear power spectrum, and follows when inserting the linearly evolving density contrast
δ̂(k; χ ) = D+(χ )δ̂0(k) into equation (13), where δ0 is the present-day linearly extrapolated density contrast, and D+ the linear growth factor
with D+(0) = 1. This is a good approximation also in the non-linear case as shown in Kitching & Heavens (2016).

With this, equation (21) is written as

C
γ
ij (�) ≈ ł 2(�, 2) A2

∫ ∞

0

dk

k3

∫ ∞

0

dχ

χ3/2

√
Pm(k; χ )

qi(χ )

a(χ )
J�+1/2(kχ )

∫ ∞

0

dχ ′

χ ′3/2

√
Pm(k; χ ′)

qj (χ ′)
a(χ ′)

J�+1/2(kχ ′). (33)

Note that this equation has a pre-factor ł 2(�, 2) corresponding to a spin-2 field, in contrast to Loverde & Afshordi (2008), who show
calculations for a scalar field.

Following Loverde & Afshordi (2008), we expand to third order

lim
ε→0

∫ ∞

0
dx e−ε(x−ν)g(x)Jν(x) ≈ g(ν) − 1

2

d2g

dx2

∣∣∣∣
x=ν

− ν

6

d3g

dx3

∣∣∣∣
x=ν

, (34)

with g(x) = k−1f(k, χ ), χ = x/k and its derivatives g(n)(x) = k−1 − nf(n)(k, χ ) for a given k, where the derivatives of f are with respect to the
second argument χ . In this series expansion, the replacement of the integral with the evaluation of g and its derivatives at the maximum of
the Bessel function is a good approximation of the integral if g is varying more slowly than the oscillating Bessel function. As we will show
below, f is a slowly varying function of the comoving distance. In our case, the projection kernel is

f (k, χ ) =
√

Pm(k; χ ) a−1(χ )χ−3/2q(χ ). (35)

In the tomographic case, the index i is added to q and f. Replacing both distance integrals in equation (33) by their Taylor-expansions around
the maxima ν(�) = � + 1/2 of the two Bessel functions, which are kχ and kχ ′, respectively, yields

C
γ
ij (�) ≈ ł 2(�, 2) A2

∫ ∞

0

dk

k3
k−2

[
fi(k, χ ) − 1

2k2
f ′′

i (k, χ ) − ν(�)

6k3
f ′′′

i (k, χ ) + · · ·
] [

fj (k, χ ) − 1

2k2
f ′′

j (k, χ ) − ν(�)

6k3
f ′′′

j (k, χ ) + · · ·
]
.

(36)

Changing the integration to χ = ν/k and collecting terms according to their ν-dependence:

C
γ
ij (�) ≈ C

γ
L1,ij (�) + C

γ
L2,ij (�) = ł 2(�, 2)

ν4(�)
A2

∫ ∞

0
dχ χ3

{
(fifj )(ν(�)/χ, χ )

− 1

ν2(�)

[
χ2

2

(
fif

′′
j + f ′′

i fj

)
(ν(�)/χ, χ ) + χ3

6

(
fif

′′′
j + f ′′′

i fj

)
(ν(�)/χ, χ )

]
+ O(ν−4)

}
. (37)

The first term corresponds to the well-known first-order Limber approximation (Limber 1953; Kaiser 1992), which is widely used in weak
gravitational lensing. We retrieve the (spherical) standard expression by inserting back the projection kernel (equation 35),

C
γ
L1,ij (�) = ł 2(�, 2)

ν4(�)
A2

∫
dχ

qi(χ )qj (χ )

a2(χ )
Pm

(
ν(�)

χ
; χ

)
. (ExtL1Sph) (38)

In the Limber approximation, modes between structures at different epochs do not contribute to the single line-of-sight integration.
The second-order Limber term in equation (37) has an additional ν−2-dependence, and is therefore strongly suppressed for large �,

C
γ
L2,ij (�) = − 1

ν2(�)

ł 2(�, 2)

ν4(�)

A2

2

∫
dχ χ7/2a−1P 1/2

m

(
ν(�)

χ
; χ

) [
qif

′′
j + f ′′

i qj + χ

3

(
qif

′′′
j + f ′′′

i qj

)]
(ν(�)/χ, χ ) . (39)

The higher order derivatives of the filter functions have to be computed numerically in the general case. These suffer from numerical noise
and are sensitive to the set-up, for example the step size. The tabulation and interpolation of those derivatives is time-consuming since they
depend on two arguments, ν and χ . In the following section, we will separate the k- and χ -dependent parts of the power spectrum to make
the numerical derivatives faster and more smooth.

3.1.2 Approximation for small �

To further develop equation (32), we divide out the growth factor of the power spectrum,

Pm(k, χ ) =: D2
+(χ )P̃m(k, χ ) ≈ D2

+(χ )P̃m(k). (40)

The function P̃m is, in general, not time-independent, except in the case of a linear matter power spectrum in the absence of massive neutrinos,
and in General Relativity. However, the second-order Limber terms are expected to be important only for small �, since for large �, the
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2132 M. Kilbinger et al.

first-order Limber equation (38) is dominant. Equation (40) becomes a good approximation for small �, since that means either small k,
where the evolution is linear, or small χ , where the lensing efficiency is small. The accuracy of a very nearby tomographic bin with low mean
redshift should be further examined, but this is not the case for CFHTLenS.

With the definition (40), we factor out the function P̃m(k, χ ) from equation (35), and we define the separated kernel function fs as

fs(χ ) = D+(χ )a−1(χ )χ−3/2q(χ ). (41)

The Limber equation up to second order of the shear power spectrum can then be approximated as

C
γ
ij (�) = C

γ
L1,ij (�)

− 1

ν2(�)

ł 2(�, 2)

ν4(�)

A2

2

∫
dχ χ7/2a−1(χ )D−1

+ (χ )Pm

(
ν(�)

χ
; χ

) [
qif

′′
sj + f ′′

si qj + χ

3

(
qif

′′′
sj + f ′′′

si qj

)]
(χ ). (ExtL2Sph) (42)

We compute the numerical higher derivatives as follows. The functions fs(χ ) are fitted as power laws with index ≈−1.5, which is expected if
the growth suppression factor D+(a)/a varies slowly with χ , and the lensing efficiency q ≈ 1 for small and medium χ , given the CFHTLenS
redshift range. The fit is carried out between χmin = 0.001 Mpc h−1 and χmax = 500 Mpc h−1. At larger comoving distances, the kernel
decreases faster than a power law, so we exclude this range from the fit. Even though on those scales the derivatives are larger due to the
steeper decline, the associated errors are very small as these scales are down-weighed by the kernel function fs itself. At χ = 500 Mpc h−1,
the filter function is less than 10−4 of its value at 1 Mpc h−1.

3.2 Flat-sky

The extended flat-sky Limber approximation is readily derived from the spherical case equations (38, 42), by replacing the pre-factor ł 2(�, 2)
with �4,

P
γ
L1,ij (�) = p(�) A2

∫
dχ

qi(χ )qj (χ )

a2(χ )
Pm

(
ν(�)

χ
; χ

)
; (43)

P
γ
L2,ij (�) = − 1

ν2(�)
p(�)

A2

2

∫
dχ χ7/2a−1(χ )D−1

+ (χ )Pm

(
ν(�)

χ
; χ

) [
qif

′′
sj + f ′′

si qj + χ

3

(
qif

′′′
sj + f ′′′

si qj

)]
(χ ) (44)

Further approximations can be made for the pre-factor p(�) = �4/ν4(�) and ν(�):

(i) p(�) = 1. This corresponds to ν(�) = �, which is the standard Limber approximation (L1Fl). Until recently, i.e. for all pre-2014
CFHTLenS results and DLS (Jee et al. 2013) analyses, this was the approximation of choice. Note that we do not discuss the second-order
Limber approximation with p(�) = 1.

(ii) p(�) = �4/(� + 1/2)4. This corresponds to the extended Limber approximation (ExtL1Fl, ExtL2Fl) with ν(�) = � + 1/2; however the
following case is typically employed.

(iii) p(�) = 1, but keeping as argument of the power spectrum ν(�) = � + 1/2. This is a hybrid between standard and extended Limber
approximation (ExtL1FlHyb, ExtL2FlHyb), and the first-order case was used in Hildebrandt et al. (2017); Joudaki et al. (2017, 2016) and
Abbott et al. (2016). As is shown below, this is a better approximation to the full projection than case (ii). In equation (44), the second-order
suppression factor is also left to be ν−2(�) = (� + 1/2)−2, providing a slightly more accurate approximation compared to ν−2(�) = �−2.

4 R ESULTS

4.1 Comparison of the approximations for the lensing power spectrum

In Fig. 1, we present the full spherical projection of the shear power spectrum in comparison to shear power spectra derived assuming the
range of different approximations listed in Table 1. The adopted redshift distribution corresponds to CFHTLenS (Kilbinger et al. 2013) and
we assume their best-fitting flat �CDM cosmology with �m = 0.279, �b = 0.046, σ 8 = 0.79, h = 0.701, ns = 0.96. For � > 100, we find that
all shear power spectra predictions agree with the full spherical solution to better than one percent, with the majority of the approximations
tested accurate to better than 0.1 per cent.

Considering first the flat-sky cases, the standard first-order Limber approximation, L1Fl, that was adopted for all pre-2014 CFHTLenS
analyses and DLS analyses, we find it to be accurate to better than 10 per cent for � > 3, converging slowly to the true projection with percent
level precison at � > 100. For the extended Limber approximations ‘hybrid’ cases (ExtL1FlHyb and ExtL2FlHyb), despite decreased accuracy
for � < 8 in comparison to the standard first-order Limber case, the errors with respect to the true power spectrum decrease much faster, as
�−2, such that percent-level precision is reached at � > 15. The first-order extended Limber approximation ‘hybrid’ cases (ExtL1FlHyb) was
adopted by Joudaki et al. (2017), Joudaki et al. (2016), DES-SV (Abbott et al. 2016) and Hildebrandt et al. (2017).4

4 We confirm that there is a typographical error in equation (4) of Hildebrandt et al. (2017) and in equation (2) of Abbott et al. (2016) (private communication
with Joe Zuntz), which should include the extra term of ‘+0.5’ in ν(�) that was incorporated in both cosmological analyses.
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Precision cosmic-shear projection 2133

Figure 1. The shear power spectrum for different approximations listed in Table 1. Limber to first order: standard with flat-sky (L1Fl), extended for flat sky
(ExtL1Fl), extended hybrid for flat sky (ExtL1FlHyb) and extended in the spherical expansion (ExtL1Sph); second-order Limber approximations: extended
flat sky (ExtL2Fl), extended hybrid flat sky (ExtL2FlHyb) and extended spherical expansion (ExtL2Sph); full (exact) spherical projection (FullSph). The
left-hand panel shows the total shear power spectrum. The right-hand panel shows the fractional difference resulting from each approximation, relative to the
full spherical projection of the shear power spectrum. The two light grey curves on the top show the cosmic variance for KiDS- and Euclid-like surveys with
areas of 1 500 and 15 000 deg2, respectively.

The outlier in the flat-sky cases is the extended Limber approximation (ExtL1Fl), which performs relatively poorly, and reaches
10 per cent precision only at � > 100. The same slow convergence can be observed for the corresponding second-order flat case, ExtL2Fl. To
our knowledge, this form of the flat-sky approximation has not been used in any cosmic shear studies to date, and should not be used in any
future studies given these results. The poor behaviour of this case, in comparison with the ‘hybrid’ case (e.g. ExtL1FlHyb) can be understood
by considering Taylor expansions of the different pre-factors. The spherical pre-factor,

p(�) = (� + 2)(� + 1)�(� − 1)

(� + 0.5)4
= 1 − 5

2�2
+ O(�−3), (45)

can be compared to the flat-sky extended Limber pre-factor

p(�) = �4/(� + 0.5)4 = 1 − 2

�
+ 5

2�2
+ O(�−3), (46)

showing it to be more deviant from the full spherical solution, than the ‘hybrid’ p(�) = 1 case.
Considering now the spherical-sky cases, we find that including the spherical pre-factor decreases the difference between the extended

Limber approximated cases (ExtL1Sph and ExtL2Sph) and the full spherical solution by a factor of a few for � < 5. We find that using the
spherical-sky second-order extended Limber approximation (ExtL2Sph) yields percent accuracy down to � > 3. The numerical calculation
of the second-order extended Limber approximation is a factor of 15 times faster than the calculation of the full spherical solution (averaged
over the first 18 �-modes). We note that the sub-0.1 per cent-fluctuations seen in the right-hand panel of Fig. 1 is due to numerical noise arising
from numerical integration errors in the calculation of the full spherical solution when � > 20.

We note that in all cases the second-order Limber expansion adds power to the first-order term. In the flat hybrid case, which overestimates
the full spherical solution, this results in the second-order expansion being less precise compared to first-order.

Compared to the statistical power of current and future surveys, all approximations discussed here are subdominant to the cosmic
variance, �C(�)/C(�) = [fsky(2� + 1)]−1/2 (Kaiser 1992), where fsky is the fraction of sky observed by the survey. The uncertainties from
the Limber approximation in the case of ExtL2Sph is an order of magnitude below the cosmic variance of a Euclid-like survey (sky area
15 000 deg2) for all �.

4.2 Effects on the shear correlation function

The majority of cosmic shear analyses to date have adopted real-space correlation statistics, since these can be measured directly from an
observed galaxy shape catalogue. The baseline quantity is the two-point correlation function (Miralda-Escude 1991; Kaiser 1992; Bartelmann
& Schneider 2001), given in the flat-sky approximation by

ξ+(θ ) = 〈
γ γ ∗〉 (θ ) = 1

2π

∫
d� � J0(�θ )P γ (�); ξ−(θ ) = 〈γ γ 〉 (θ ) = 1

2π

∫
d� � J4(�θ )P γ (�). (47)
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2134 M. Kilbinger et al.

Figure 2. The difference of the two-point shear correlation functions ξ+ (left) and ξ− (right) of the ExtL2Sph projection relative to the full spherical case
(FullSph). Two cases of the shear correlation function transformation for ExtL2Spha are shown, the full spherical case (equation 48, green solid lines), and the
flat-sky Hankel transform (equation 47, red dashed curves).

The flat-sky shear power spectrum Pγ can be related to the underlying matter power spectrum through equation (43) when adopting a
first-order extended Limber approximation, or equation (44) when adopting a second-order extended Limber approximation.

On a sphere, correlation functions formally cannot be related to the power spectrum by the Hankel transform in equation (47), and should
be replaced by the spherical transform (Ng & Liu 1999; Chon et al. 2004)

ξ+(θ ) = 1

4π

∞∑
�=2

(2� + 1)Cγ (�)d�
2 2(θ ); ξ−(θ ) = 1

4π

∞∑
�=2

(2� + 1)Cγ (�)d�
2 −2(θ ), (48)

where d�
m n are the reduced Wigner D-matrices (see Appendix C for details on their numerical calculation).

The spherical power spectrum is formally not defined for non-integer � (see Castro et al. 2005, for alternative spherical-sky formulae for
the two-point correlation function), as functions defined on the sphere are necessarily periodic. As we have shown in Section 4.1, however,
the spherical second-order extended Limber approximation provides a percent-level precision representation of the full spherical projection
for � > 3. The spherical pre-factor ł (�, 2) (equation 18) can be generalized to non-integer arguments and is positive for � ≥ 2. We can thus use
the spherical power spectrum with the Hankel transformation in equation (47) to compute the two-point correlation functions. This has the
advantage being able to employ fast FFT numerical implementations of the Hankel tranforms (Hamilton 2000), when Monte Carlo sampling.

We compare predictions for the two-point shear correlation function using the Hankel transformation and the full spherical transformation
in Fig. 2. We show the full projection and the best approximation, ExtL2Sph. Note that for the ‘FullSph’ case we replace the full projection
with ExtL2Sph for � > 200 to reduce computation time. We find that the Hankel transform (equation 47) is accurate to better than 5 (0.2)
percent for ξ+ (ξ−). The difference between the second-order Limber and full projection solution using the spherical transform (equation 48)
is well below one (0.03) percent on scales of ϑ < 300 arcmin for ξ+ (ξ−). The red lines in Fig. 2 present the limit of precision that we can
achieve with the current fast Hankel transform implementation for the correlation function. The green lines show the limit of the second-order
Limber approximation on the correlation function.

Fig. 3 shows the two-point correlation functions ξ+ (left) and ξ− (right) using the different cases for the shear power spectrum listed
in Table 1. The component ξ+ is calculated with the appropriate transformation, i.e. Hankel for the flat cases, and spherical involving
Legendre polynomials for the spherical cases. For ξ−, which is less dominated by large scales and thus Limber and flat-sky approximations,
in comparison to ξ+, we use the Hankel transform in all cases. In addition, for ξ−, the approximation ‘ExtL2Sph’ is our reference case. The
adopted CFHTLenS redshift distribution and fiducial cosmological model are the same as in Fig. 1. As is clear by the red dotted curve, using
the Planck cosmology (Planck Collaboration XIII 2016) induces a significant change in the amplitude of the shear correlation function in
comparison to the different projection methods.

4.3 Application to CFHTLenS data

The CFHTLenS represented a major step forward for the field of weak gravitational lensing, in terms of improved accuracy in data reduction
(Erben et al. 2013), the implementation of PSF-Gaussianized matched multiband photometry (Hildebrandt et al. 2012), cross-correlation
clustering analysis between photometric redshift slices to verify tomographic redshift distributions (Benjamin et al. 2013), accurate calibrated
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Precision cosmic-shear projection 2135

Figure 3. The two-point shear correlation functions ξ+ (left) and ξ− (right). In the spherical cases (ExtL1Sph, ExtL2Sph, FullSph), ξ+ and ξ− have been
computed using the spherical transform (equation 48). For the flat cases, the Hankel transform in equation (47) was used. The upper panels show the total
shear correlation functions for the range of cases listed in Table 1. The lower panels show the relative differences to the spherical sky second-order extended
Limber approximation, ExtL2Sph. The theoretical models correspond to the CFHTLenS best-fitting cosmological parameters with �m = 0.279, h = 0.701 and
σ 8 = 0.79 (Kilbinger et al. 2013). For comparison, we also show, in the upper panels, the spherical sky second-order extended Limber approximation model
for the Planck-best fitting cosmology with �m = 0.3, h = 0.67 and σ 8 = 0.83 (Planck Collaboration XIII 2016).

shape measurements (Miller et al. 2013) and a full suite of informative systematic tests to select a clean data set (Heymans et al. 2012).
Since the public release of this survey in 2013, the community has continued to scrutinize and advance our understanding of CFHTLenS by
identifying a number of areas where analyses could improve:

(i) Choi et al. (2016) identified significant biases in the tomographic photometric redshift distributions using a more effective clustering
analysis, in comparison to Benjamin et al. (2013), by incorporating newly overlapping spectroscopic data from the Sloan Digital Sky Survey.
The conclusion of this work was that any re-analysis of CFHTLenS should include systematic error terms to account for bias and scatter,
with a prediction that accounting for these biases would reduce the recovered amplitude of σ 8 by ∼4 per cent. Additional new techniques to
calibrate the redshift distribution of tomographic bins were introduced recently in Hildebrandt et al. (2017).

(ii) The CFHTLenS tomographic cosmological analysis was then revisited by Joudaki et al. (2017) in order to include a full redshift error
analysis based on the results from Choi et al. (2016). The impact of correcting for these biases, including their associated errors, served to
reduce the overall constraining power of the survey and hence also the tension between CFHTLenS and CMB constraints.

(iii) Asgari et al. (2017) used the stringent COSEBI statistic (Schneider, Eifler & Krause 2010) to identify significant non-lensing B-mode
distortions when the CFHTLenS data was split into tomographic slices.
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2136 M. Kilbinger et al.

Table 2. Mean and 68 per cent credible interval for σ 8(�m/0.27)0.6 and
σ 8(�m/0.3)0.6 for various approximations to the lensing power spectrum
projections listed in Table 1.

ID σ 8(�m/0.27)0.6 σ 8(�m/0.3)0.6

L1Fl 0.787+0.031
−0.033 0.739+0.029

−0.031

ExtL1Fl 0.792 ± 0.032 0.744 ± 0.030

ExtL1FlHyb 0.788+0.031
−0.033 0.740+0.029

−0.031

ExtL2FlHyb 0.788+0.031
−0.033 0.740+0.029

−0.031

ExtL2Sph(Hankel) 0.789+0.031
−0.032 0.740+0.029

−0.030

(iv) Kuijken et al. (2015) showed that the CFHTLenS shear calibration corrections derived in Miller et al. (2013) were underestimated as
a result of an imperfect match between the galaxy populations in the data and image simulations.

(v) Fenech Conti et al. (2017) demonstrated that the CFHTLenS data would have been subject to a weight bias that favours galaxies that
are more intrinsically oriented with the point-spread function. They also showed that the impact of calibration selection biases, which were
not considered in Miller et al. (2013), would have lead to the overcorrection of multiplicative shear bias in the CFHTLenS analyses, by a few
percent.

(vi) Joudaki et al. (2017) updated the CFHTLenS covariance matrices using larger box numerical simulations that were less subject to the
lack of power on large scales. A complementary accurate estimate of the covariance matrix using analytical methods will be published soon
(Joachimi et al., in preparation)

(vii) Takahashi et al. (2012) provided a more accurate non-linear power spectrum correction than that used in the original CFHTLenS
analyses, and the halo model from Mead et al. (2015) allowed for simultaneous modelling of baryonic modifications to the non-linear power
spectrum.

All these advances in our understanding were incorporated and accounted for in the recent KiDS cosmic shear analysis (Hildebrandt
et al. 2017), which reports a 2.3σ tension with Planck. Efforts are now underway to fully re-analyse CFHTLenS using the advanced KiDS
analysis pipeline with revised shape measurements and calibrations for the shear and photometric redshifts. Until this analysis is complete,
we note that these known shortcomings with the original CFHTLenS results impact in different ways the cosmological conclusions that one
can draw. As CFHTLenS has similar statistical power to current weak-lensing surveys, however, it nevertheless provides a very useful testbed
with which to demonstrate the impact of adopting different approximations when constraining cosmological parameters.

In this work, we focus on the weak-lensing power spectrum projection, and assess the impact of various approximations on cosmological
constraints from CFHTLenS. For consistency with the original analysis (Kilbinger et al. 2013), we adopt the same priors and non-linear
power spectrum corrections from Smith et al. (2003).

We re-analyse the 2D CFHTLenS measurement of the two-point shear correlation function ξ±(θ ) from Kilbinger et al. (2013), defined
in equation (47). As in Kilbinger et al. (2013), we fit both components ξ+ and ξ− between angular scales θ = 0.8 and 350 arc min, and use a
N-body simulation estimate of the non-Gaussian covariance including the cross-covariance between both components. Bayesian Population
Monte Carlo parameter sampling is performed using the publicly available software COSMOPMC5 (Wraith et al. 2009; Kilbinger et al. 2010).
The cosmological modelling part includes the various lensing projections, calculated using the software library NICAEA.6

For a first-order standard Limber flat-sky approximation (L1Fl), we find σ8(�m/0.27)0.6 = 0.787+0.031
−0.033, the same result that was

published in Kilbinger et al. (2013). Using the second-order extended Limber flat-sky hybrid approximation (ExtL2FlHyb) results in
σ 8(�m/0.27)0.6 = 0.788 ± 0.032, a negligible change of the amplitude that is well within the Monte Carlo sampling noise. The largest
difference is measured with the deprecated case ExtL1Fl, for which the recovered amplitude is larger by 16 per cent of the statistical error.
These negligible changes to the error bars were to be expected owing to the high level of statistical noise and cosmic variance in comparison
to the low-level impact of the various approximations shown in Fig. 1.

Table 2 lists the mean and 68 per cent credible interval for σ8�
0.6
m for the various approximations to the lensing power spectrum projections

listed in Table 1. Note again that these values do not represent the state-of-the-art cosmological results, since many of the above listed analysis
advancements made since 2013 have not been taken into account. As an example of a significant effect, when using the revised non-linear
power spectrum of Takahashi et al. (2012) in place of Smith et al. (2003), there is a decrease of 0.6σ with σ8(�m/0.27)0.6 = 0.768+0.029

−0.031,
using L1Fl.

Considering the cosmological constraints from tomographic Kilo-Degree Survey (KiDS), we conclude that these are robust to flat-sky
and Limber approximations. The case ExtL1FlHyb that was used for the analysis of KiDS data in Hildebrandt et al. (2017) and Joudaki et al.
(2016) introduces errors that are more than an order of magnitude lower than the cosmic variance for that survey, and thus this approximation
has a negligible impact on the cosmological parameters.

5 http://www.cosmostat.org/software/cosmopmc
6 http://www.cosmostat.org/software/nicaea
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Precision cosmic-shear projection 2137

Figure 4. Integrand of ξ+ (upper), ξ− (upper middle), E1 (lower middle, E-COSEBIs) and 〈Map〉2 (lower panel). All integrands are of the form �F(�)P(�),
where F(�) is the corresponding weight-function for each statistic and P(�) is the E-mode convergence power spectrum, with the exception of ξ±, for which
P(�) is equal to the sum of the E and B-mode power spectra. Two cases are shown for each statistic as listed in each caption. For the aperture mass statistic,
θmax = 2θ is shown. Note that higher order COSEBIs modes generally probe larger �-modes, hence here we show only the lowest mode E1. All values are
normalized with respect to their maximum value. This figure illustrates how different two-point cosmic shear statistics have different dependences between the
angular scales sampled and the �-range probed.

4.4 Alternative two-point shear statistics; the mass aperture statistic and COSEBIs

The two-point shear correlation function ξ± represents the current baseline observable for cosmic shear measurements. As shown in Fig. 3,
however, using the standard first-order extended Limber flat-sky approximation (ExtL1FlHyb) can result in errors exceeding 10 per cent, on
angular scales θ > 300 arcmin. This is a result of the weight given to low � modes in the ξ+ statistic, as illustrated in Fig. 4, which shows
the integrand of ξ+ and ξ− (upper two panels) for two cases(θ = 100 and 350 arcmin), normalized to their maximum value. This error does
not impact CFHTLenS analyses, given the low signal to noise of the measurements on these scales. It will however become increasingly
important for upcoming wider field surveys that will accurately probe these scales.

In this paper, we provide a solution in the form of the second-order extended Limber approximation, but another option to consider is
the use of alternative two-point shear statistics that are less sensitive to accuracy in shear power spectrum measurement at low �. Both the
aperture-mass dispersion, 〈M2

ap〉 (Schneider et al. 1998), and the Complete Orthogonal Sets of E/B-mode Integrals (COSEBIs), En (Schneider
et al. 2010) statistics satisfy this requirement and are linearly related to the shear power spectrum in the flat-sky approximation via integrals
of the form

〈M2
ap〉(θ ) = 1

2π

∫ ∞

0
d� � Û 2(θ�)P γ (�), (49)

En = 1

2π

∫ ∞

0
d� � Wn(�)P γ (�), (50)

where the Fourier-space filter functions Û and Wn are defined in Schneider et al. (1998) and Schneider et al. (2010), respectively. Fig. 4 shows
the integrands of these statistics, again normalized to their maximum value, where the integrands are of the form �F(�)Pγ (�). The lower
middle panel in Fig. 4 shows the COSEBIs integrands for two angular ranges, [1′, 100′] and [0.8′, 350′], where we show only the integrands
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for the lowest COSEBIs mode, E1, as the higher modes generally probe larger �-modes. The lowest panel shows the integrands of aperture
mass dispersion statistics, for the same two maximum angular ranges.

Note that the development of the aperture-mass dispersion statistic, 〈M2
ap〉, was initially motivated to enable the separation of the

measured signal into an E-mode (cosmological signal) and B-mode (systematics). This statistic is, however, a lossy conversion and is biased
by small angular separations, where blending of galaxies makes shear measurement challenging (Kilbinger, Schneider & Eifler 2006). The
COSEBIs statistic tackles both these shortcomings. Kilbinger et al. (2013) present a detailed comparison of cosmological constraints obtained
from this range of different two-point shear statistics finding consistent results.

5 C O N C L U S I O N S

In this paper, we evaluate precision theoretical calculations for cosmic shear observables, bringing together different sources from the literature
to provide a pedagogical review of the impact of adopting flat-sky and Limber approximations. We demonstrate that for current surveys, such
as CFHTLenS and KiDS, these approximations have a negligible impact on cosmological parameter constraints.

For future surveys, the decrease in statistical errors places higher requirements on the accuracy of the theoretical modelling. There is also,
however, the need to be able to rapidly sample the multidimensional cosmological parameter likelihoods. This requirement for computational
speed is incompatible with a theoretical analysis that calculates a full spherical solution for the shear power spectrum, without adopting any
approximation. We therefore present alternative solutions, revisiting the work of Bernardeau et al. (2012), who showed that adopting the
second-order extended Limber approximation of Loverde & Afshordi (2008) provides a representation of the full spherical solution for the
shear power spectrum that is accurate at the sub-percent level for � > 3. We have verified this result and provide to the community our fast
numerical implementation of all the approximations studied in this analysis, and the slow calculation of the full projection within the publicly
available package NICAEA at http://www.cosmostat.org/software/nicaea.

Finally, we propose that future surveys seek to optimize the statistical analyses of their cosmic shear data. For example, moving from
the standard two-point shear correlation function statistic to the more stringent ‘COSEBI’ statistic (Schneider et al. 2010) renders the cosmic
shear measurement insensitive to the low-� scales where the Limber and flat-sky approximations have an impact on the precision of the
theoretical modelling.

We have considered a flat universe throughout this paper. To generalize the calculations to non-flat models, one needs to modify the
comoving angular diameter distance to account for the spatial curvature K �= 0. In addition, the spherical Bessel functions are replaced with
hyperspherical Bessel functions (Abbott & Schaefer 1986). In a universe with positive curvature K > 0, the 3D wave modes become discrete
integer variables. For non-flat models, we do however not expect qualitative differences from our results.
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A P P E N D I X A : D E R I VATI O N O F TH E W E A K - L E N S I N G P OW E R SP E C T R A

The following derivations are detailed in Hu (2000) and Castro et al. (2005), and are provided here for completeness.

A1 Spherical case

A1.1 Lensing potential power spectrum

To obtain the power spectrum of the lensing potential, we insert the lensing projection (equation 1) into the inverse harmonics expansion
(equation 7) and write the 3D potential as its Fourier transform (equation 5) to get

ψ�m = 2

c2

∫
d�Y∗

�m(θ, ϕ)
∫ ∞

0

dχ

χ
q(χ )

∫
d3k

(2π)3
�̂(k; χ )e−ik·r . (A1)

The 3D position vector r is a 3D position vector with polar coordinate r = χ and polar angles (θ , ϕ). Similarly, we denote with θ k, ϕk the
polar angles of the 3D Fourier vector k. We insert the expansion of a plane wave into spherical harmonics,

eik·r = 4π

∞∑
�=0

�∑
m=−�

i� j�(kχ )Y�m(θ, ϕ)Y�m(θk, ϕk). (A2)

Making use of the orthogonality of the spherical harmonics∫
d�Y�m(θ, ϕ)Y∗

�′m′ (θ, ϕ) = δ��′δmm′ , (A3)

the expression for ψ�m simplifies to

ψ�m = i�

c2π2

∫ ∞

0

dχ

χ
q(χ )

∫
d3k �̂(k; χ )j�(kχ )Y�m(θk, ϕk). (A4)

To obtain the potential power spectrum, we take the absolute square of the last equation and use the definition of the 3D potential power
spectrum (equation 12). The delta-function resolves one 3D Fourier integral. We split the second integration into radial and spherical
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coordinates, d3k = dkk2d�k and use once again the orthogonality of the spherical harmonics to resolve the spherical integral. This leads to
the potential power spectrum in equation (9).

APPENDIX B: D ISCUSSION AND COMPARI SON TO PREVI OUSLY PUBLI SHED WO RK

In this section, we briefly discuss previously published work on the full projection and second-order Limber equation of the lensing power
spectrum, cross-checking and comparing their results with our independent findings.

B1 Kitching et al. 2016 (version 1)

Kitching et al. (2016) compute the full projection of the weak-lensing power spectrum, which they present as spherical-radial representation
of the 3D shear field. Our results in equation (21) correspond to their equations (7) and (8) assuming a flat universe and the case of perfect
photometric redshifts, with p(z|zp) = δD(z − zp), and for a bin function that selects the redshift bin of z, WSR(z, zp) is unity if zp is in the
redshift bin denoted by z, and zero otherwise. We find that equation (7) in Kitching et al. (2016) is missing a factor 2/π.

Kitching et al. (2016) derive the spherical and extended Limber approximation starting from the full spherical projection in their
Appendix A. We find that the filter function q defined in their equation (31) has an additional factor of comoving distance r, and an additional
factor of π/2.

As shown in this paper, we are unable to reproduce the differences that Kitching et al. (2016) report, between the full spherical solution
and the different approximations, neither for the power spectrum nor for the shear correlation function.

B2 Bernardeau, Bonvin, Van de Rijt, Vernizzi (2012); Van de Rijt (2012)

Bernardeau et al. (2012) present the non-tomographic full projection C(�) in the approximation of the 3D potential power spectrum P�

separating into k- and χ -dependent functions in their equation (44). Their expression holds for a single source redshift.
The PhD thesis of Van De Rijt (2012) presents an explicit calculation of the second-order Limber approximation. They carry out the

derivatives of the kernels f under the assumption of a constant growth-suppression factor D+(a)/a. Then, for a constant source comoving
distance χS, the lensing efficiency in equation (2) is q(χ ) = (χS − χ )χ−1

S , and the derivative of the separated kernel function in equation (41)
can be calculated analytically,

f ′′
s (χ ) + χ

3
f ′′′

s (χ ) = −1

8
χ−5/2

(
5

χ
+ 1

χS

)
D+(χ )

a(χ )
. (B1)

This result confirms the power-law behaviour for χ � χS of the filter function, which we exploited earlier to fit this function.
Inserting equation (B1) into the second-order Limber power spectrum in equation (42) and using the inverse Poisson equation to replace

the matter with the potential power spectrum, we obtain the same expression as Van De Rijt (2012) (their equation 7.19).
In Fig. B1, we reproduce fig. 7.3 from Van De Rijt (2012) using a similar set up, a flat � Universe with �m = 0.3, h = 0.65, �b = 0.0461,

σ 8 = 0.8, ns = 0.96. All source galaxies are at redshift zS = 1. The non-linear 3D matter power spectrum from Takahashi et al. (2012) is used.
The ratio of the first-and second-order Limber approximated power spectra to the full projection shows excellent agreement at the sub-percent
level.

B3 LoVerde & Afshordi (2009)

This paper introduces the extended Limber approximation to second order that we apply in this work. Although they present the specific case
of 2D galaxy clustering, their calculations are general enough to apply to a weak-lensing context. Their equation (5) is a spherical cross-power
spectrum of two scalar fields A and B, projected from 3D to 2D via projection kernels FA and FB defined in their equation (4). Comparing
their expressions with the weak-lensing potential (1), we set FA(χ ) = FB(χ ) = 2c−2D+(χ )q(χ )χ−1. With that, their equation (5) is identical
to equation (9).

The second-order Limber approximation in Loverde & Afshordi (2008) is presented in equation (12). This is consistent with our
first-order (equation 38) and second-order (equation 39) Limber approximation terms, when accounting for the difference between lensing
potential and shear 2D power spectrum, and 3D potential and matter power spectrum.

B4 Schmidt (2009)

Schmidt (2008) derive the lensing power spectrum in the flat-sky limit (see their equation 9). Inserting the Poisson equation and the growth
function, and writing the redshift filter function Wκ (eq. 10) in terms of the lensing efficiency and comoving distances, Wκ [z(χ )] = H(z)−1χq(χ ),
their expression, using our notations, reads

P
γ
ij (�) = 2

π
A2

∫ ∞

0
dχχ

qi(χ )

a(χ )

∫ ∞

0
dχ ′ χ ′ qj (χ ′)

a(χ ′)

∫ ∞

0
dk k2 Pm(k; χ, χ ′) j�(kχ ) j�(kχ ′), (B2)
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Figure B1. The relative differences in percentage of the spherical first- and second-order Limber shear power spectra with respect to the full projection as
function of wave mode � (see Table 1). In this figure, the redshift distribution is chosen to be at a single source plane at zS = 1, with the cosmological parameters
(see text) are chosen to match Van De Rijt (2012, see their fig. 7.3 for comparison).

This is consistent with our equation (29) under the additional assumption that mainly modes with kχ ≈ kχ ′ ≈ � contribute to the integral,
that is modes around the maxima of the Bessel functions. Then, we can draw out of the integral the factor �4 ≈ k4χ2χ ′2, to recover equa-
tion (29). In fact, using the approximation kχ = � seems to go too far, this is already halfway the Limber approximation.

B5 Giannantonio et al. (2012)

Giannantonio et al. (2012) derive the flat-sky lensing power spectrum in their equations (25) and (26). Their window function Wεi defined
in their equation (25) for a flat universe equals Aq(χ )/a(χ ), since dz (dN(z)/dz) = dχn(χ ); however, due to a typo there is a factor rK[r(z)]
missing in the window function, which translates into a missing rK[r]rK[r′] in the full projection integral.7 This also leads to an erroneous
r−2
K (r) in their Limber equation (27). With these factors accounted for, and making the additional approximation kχ ≈ kχ ′ ≈ � (see their

appendix B4), we reproduce the expressions of Giannantonio et al. (2012).

A P P E N D I X C : FA S T EVA L UATI O N O F TH E S H E A R C O R R E L AT I O N F U N C T I O N O N T H E S P H E R E

The calculation of the shear correlation function on the sphere requires the estimation of the reduced Wigner D-matrices d�
2 2 and d�

2 −2. The
general calculation of d�

m n is cumbersome, but there are quick and numerically stable recurrence relations if we are interested in only a subset
of these matrices. In particular, following Blanco, Flórez & Bermejo (1997), we can show that

d�
m n = �(2� − 1)√

[�2 − m2][�2 − n2]

[(
d1

0 0 − m n

�(� − 1)

)
d�−1

m n −
√

[(� − 1)2 − m2][(� − 1)2 − n2]

(� − 1)(2� − 1)
d�−2

m n

]
, (C1)

which allows us to calculate all required reduced Wigner D-matrices from the first two elements.

7 Typo confirmed by T. G., priv. comm.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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