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Abstract

Previous studies of the genetic landscape of Ireland have suggested homogeneity, with

population substructure undetectable using single-marker methods. Here we have har-

nessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP data-

set, identifying 23 discrete genetic clusters which segregate with geographical provenance.

Cluster diversity is pronounced in the west of Ireland but reduced in the east where older

structure has been eroded by historical migrations. Accordingly, when populations from the

neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is

revealed along with a particularly striking correlation between haplotypes and geography

across both islands. A strong relationship is revealed between subsets of Northern Irish and

Scottish populations, where discordant genetic and geographic affinities reflect major migra-

tions in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely

reflects older strata of communication across the narrowest inter-island crossing. Using

GLOBETROTTER we detected Irish admixture signals from Britain and Europe and esti-

mated dates for events consistent with the historical migrations of the Norse-Vikings, the

Anglo-Normans and the British Plantations. The influence of the former is greater than previ-

ously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic

landscape of Ireland, revealing structure which should be considered in the design of studies

examining rare genetic variation and its association with traits.

Author summary

A recent genetic study of the UK (People of the British Isles; PoBI) expanded our under-

standing of population history of the islands, using newly-developed, powerful techniques

that harness the rich information embedded in chunks of genetic code called haplotypes.

These methods revealed subtle regional diversity across the UK, and, using genetic data
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alone, timed key migration events into southeast England and Orkney. We have extended

these methods to Ireland, identifying regional differences in genetics across the island that

adhere to geography at a resolution not previously reported. Our study reveals relative

western diversity and eastern homogeneity in Ireland owing to a history of settlement

concentrated on the east coast and longstanding Celtic diversity in the west. We show that

Irish Celtic diversity enriches the findings of PoBI; haplotypes mirror geography across

Britain and Ireland, with relic Celtic populations contributing greatly to haplotypic diver-

sity. Finally, we used genetic information to date migrations into Ireland from Europe

and Britain consistent with historical records of Viking and Norman invasions, demon-

strating the signatures of these migrations the on modern Irish genome. Our findings

demonstrate that genetic structure exists in even small isolated populations, which has

important implications for population-based genetic association studies.

Introduction

Situated at the northwestern edge of Europe, Ireland is the continent’s third largest island,

with a modern-day population of approximately 6.4 million. The island is politically parti-

tioned into the Republic of Ireland and Northern Ireland, with the latter forming part of the

United Kingdom (UK) alongside the neighbouring island of Britain. Alternative divisions sep-

arate Ireland into four provinces reflecting early historical divisions: Ulster to the north,

including Northern Ireland; Leinster (east); Munster (south) and Connacht (west). Humans

have continuously inhabited Ireland for around 10,000 years [1], though it is not until after the

demographic upheavals of the Early Bronze Age (circa 2200 BCE), that strong genetic continu-

ity between ancient and modern Irish populations is observed [2]. Linguistically, the island’s

earliest attested language forms part of the Insular Celtic family, specifically the Gaelic branch,

whose historic range also extended to include many regions of Scotland, via maritime connec-

tions with Ulster [3,4]. A second branch of Insular Celtic, the Brittonic languages, had been

spoken across much of Britain up until the introduction of Anglo-Saxon in the 5th and 6th

centuries, by which time they were diversifying into Cornish, Welsh and Cumbric dialects [5].

Since the establishment of written history, numerous settlements and invasions of Ireland

from the neighbouring island of Britain and continental Europe have been recorded. This

includes Norse-Vikings (9th-12th century), especially in east Leinster, and Anglo-Normans

(12th-14th century), who invaded through Wexford in the southeast and established English

rule mainly from an area later called the Pale in northeast Leinster [6]. There has also been

continuous movement of people from Britain, in particular during the 16-17th century Planta-

tion periods during which Gaelic and Norman lands were systematically colonized by English

and Scottish settlers. These events had a particularly enduring impact in Ulster in comparison

with other planted regions such as Munster. As with the previous Norman invasion, the less

fertile west of the country (Connacht) remained largely untouched during this period.

The genetic contributions of these migratory events cannot be considered mutually inde-

pendent, given that they derive from either related Germanic populations (such as the Vikings

and their purported Norman descendants) or from other Celtic populations inhabiting Britain,

which had themselves been subjected to mass Germanic influx from Anglo-Saxon migrations

and later Viking and Norman invasions [7]. Moreover, each movement of people originated

from northern Europe, a region which had witnessed a mass homogenizing of genetic varia-

tion during the migrations of the Early Bronze Age, possibly linked to Indo-European

Insular Celtic population structure in Ireland and Britain
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language spread. [8,9]. However, each event had a geographic and temporal focal point on the

island, which may be detectable in local population structure.

Previous genome-wide surveys have detected little to no structure in Ireland using methods

such as principal component analysis (PCA) on independent markers, concluding that the

Irish population is genetically homogenous [10]. However, runs of homozygosity are relatively

long and frequent in Ireland [10] and correlate negatively with population density and diver-

sity of grandparental origins [11], suggesting that low ancestral mobility may have preserved

regional genetic legacies within Ireland, which may be detectable in modern genomes as local

population structure embedded within haplotypes. This is further supported by the restricted

regional distributions of certain Y chromosome haplotypes [12,13].

The haplotype-based methods ChromoPainter and fineSTRUCTURE [14] were recently

used to uncover hidden genetic structure among the people of modern Britain [7]. These

approaches exploit the rich information available within haplotypes (usually statistically

phased) to identify clusters of genetically distinct individuals with a resolution that could not

be attained using single-marker methods. In doing so, the People of the British Isles (PoBI)

study was able to identify discrete genetic clusters of individuals that strongly segregate with

geographical regions within Britain, though notably, structure was undetectable across a large

southeastern portion of the island. However, although this study sampled over 2,000 individu-

als, only 44 were from Northern Ireland with none from the remainder of the island. Ireland

was also excluded from admixture and ancestry analyses due to the confounding effects of the

island acting as “a source and a sink for ancestry from the UK”. With this focus on a single

island, the PoBI study has an obvious limit, despite its title.

Here, we have used the methods of the PoBI study to explore fine-grained Irish population

substructure. We first investigate Ireland on its own, then we consider the genetic substructure

observed on the island in the context of Britain and continental Europe. Using modern indi-

viduals from these two sources as surrogates for historical populations, we apply the GLOBE-

TROTTER model to infer admixture events into Ireland and we consider these in the context

of historically recorded invasions and migrations. Our inclusion of Irish data with previously-

published data from Britain presents a more complete representation of genetic ancestry in the

contemporary populations of the British Isles, providing a comprehensive population genetic

perspective of the peopling of these islands.

Results and discussion

Celtic population structure in Ireland

We used ChromoPainter [14] to identify haplotypic similarities within a genome-wide single

nucleotide polymorphism (SNP) dataset of individuals from the Republic of Ireland and

Northern Ireland (n = 1,035, including 44 from the PoBI study), in which local geographic ori-

gin was known for a subset (n = 588). Clustering the resulting coancestry matrix using fineS-

TRUCTURE identified 23 clusters, demonstrating local population structure within Ireland to

a level not previously reported, with apparent geographical, sociopolitical and ancestral corre-

lates (Fig 1). All clusters were robustly defined, with total variation distance (TVD) p-values

less than 0.001 (S1 and S2 Tables). We projected the ChromoPainter coancestry matrix in

lower-dimensional space using principal component analysis (PCA) and, to ease interpretation

and for visual brevity with labels, we defined 9 cluster groups that formed higher order clades

in the fineSTRUCTURE dendrogram, overlapped in PC space and were sampled from geo-

graphically contiguous regions. These cluster groups also showed robust definition by TVD

analysis (S3 Table and S4 Table), suggesting they represent a meaningful grouping of the

data. ChromoPainter PCA revealed a tight relationship between haplotypic similarity and

Insular Celtic population structure in Ireland and Britain
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Fig 1. Fine-grained population structure in Ireland. (A) fineSTRUCTURE clustering dendrogram for 1,035 Irish individuals. Twenty-three clusters are defined, which

are combined into cluster groups for clusters that are neighbouring in the dendrogram, overlapping in principal component space (B) and sampled from regions that are

geographically contiguous. Details for each cluster in the dendrogram are provided in S1 Fig. (B) Principal components analysis (PCA) of haplotypic similarity, based on

ChromoPainter coancestry matrix for Irish individuals. Points are coloured according to cluster groups defined in (A); the median location of each cluster group is

plotted. (C) Map of Ireland showing the sampling location for a subset of 588 individuals analysed in (A) and (B), coloured by cluster group. Points have been randomly

jittered within a radius of 5 km to preserve anonymity. Precise sampling location for 44 Northern Irish individuals from the People of the British Isles dataset was

unknown; these individuals are plotted geometrically in a circle. The map and administrative boundaries were produced using data from the database of Global

Administrative Areas (GADM; https://gadm.org). (D) “British admixture component” (ADMIXTURE estimates; k = 2) for Irish cluster groups. This component has the

largest contribution in ancient Anglo-Saxons and the SEE cluster. (E) Linear regression of principal component 2 (B) versus British admixture component (r2 = 0.43;

p< 2×10−16). Points are coloured by cluster group. (Standard error for ADMIXTURE point estimates presented in S11 Fig.).

https://doi.org/10.1371/journal.pgen.1007152.g001
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geographical proximity, with ChromoPainter principal component (PC) 1 roughly describing

a north to south cline and PC2 largely describing an east to west cline (Fig 1B).

At a high level, both ChromoPainter PCA and fineSTRUCTURE clustering loosely sepa-

rated the historical provinces of Ireland (Ulster, Leinster, Munster and Connacht) suggesting

that these socially constructed territories may have had an impact on genetic structure within

Ireland which is deeply embedded in time. Careful inspection of the tree ordering and the

PCA revealed more nuanced relations between the provinces; for example south Leinster clus-

ters share more haplotypes with those from north Munster than with their central and north

Leinster counterparts. The geographical distribution of this deep subdivision of Leinster

resembles pre-Norman territorial boundaries which divided Ireland into fifths (cúige), with

north Leinster a kingdom of its own known as Meath (Mide) [15]. However interpreted, the

firm implication of the observed clustering is that despite its previously reported homogeneity,

the modern Irish population exhibits genetic structure that is subtly but detectably affected by

ancestral population structure conferred by geographical distance and, possibly, ancestral

social structure.

ChromoPainter PC1 demonstrated high diversity amongst clusters from the west coast,

which may be attributed to longstanding residual ancient (possibly Celtic) structure in regions

largely unaffected by historical migration. Alternatively, genetic clusters may also have

diverged as a consequence of differential influence from outside populations, as this diversity

between western genetic clusters cannot be explained in terms of geographic distance alone.

South Munster (SMN) and Cork (CRK) clusters branch off first in the fineSTRUCTURE tree

and show distinct separation from their neighbouring north Munster clusters (NMN), indicat-

ing that south Munster’s haplotypic makeup is more distinct from its neighbouring regions

and the remaining regions than any other cluster. TVD analysis supports this observation (S1

Table and S3 Table), with the Cork cluster in particular showing strong differentiation from

other clusters. This may reflect the persistent isolating effects of the mountain ranges sur-

rounding the south Munster counties of Cork and Kerry, restricting gene flow with the rest of

Ireland and preserving older structure.

In contrast to the west of Ireland, eastern individuals exhibited relative homogeneity; a sim-

ilar pattern was observed in the PoBI study [7], in which all samples in a large region in south-

east England formed a single indivisible cluster of genetically similar individuals comprising

almost half the dataset. However, while east coast clusters in Ireland are the largest and demon-

strate strong cluster integrity, the largest of these (Central Leinster, CLN) comprises roughly a

fifth of our dataset (S1 Fig), hence they are dwarfed proportionally in both number and geo-

graphical extent by the southeast England cluster (SEE), suggesting that deeper structure per-

sists in eastern Ireland than in southeast England. The overall pattern of western diversity and

eastern homogeneity in Ireland may be explained by increased gene flow and migration into

and across the east coast of Ireland from geographically proximal regions, the closest of which

is the neighbouring island of Britain.

To explore this, we estimated the extent of admixture per individual in the Irish dataset

from Britain, using samples from the PoBI dataset as a reference [7], along with eighteen ancient

British individuals from the Iron Age, Roman and Anglo-Saxon periods in northeast and south-

east England [16,17]. Using an unsupervised ADMIXTURE analysis [18], we observed that one

of the ADMIXTURE clusters (k = 2) comprises the totality of ancestry of several Anglo-Saxon

individuals and forms the largest proportion in British groups, with varying representation

across Irish clusters (S8 Fig). For simplicity we will call this the British component, which was

among the lowest for individuals falling in Irish west coast fineSTRUCTURE clusters, including

the south Munster and Cork cluster groups (Fig 1D), supporting the interpretation that these

regions differ in terms of restricted haplotypic contribution from Britain. Analysis of variance

Insular Celtic population structure in Ireland and Britain
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of the British admixture component in cluster groups showed a significant difference (p<

2×10−16), indicating a role for British Anglo-Saxon admixture in distinguishing clusters, and

ChromoPainter PC2 was correlated with the British component (p< 2×10−16), explaining

approximately 43% of the variance. PC2 therefore captures an east to west Anglo-Celtic cline in

Irish ancestry. This may explain the relative eastern homogeneity observed in Ireland, which

could be a result of the greater English influence in Leinster and the Pale during the period of

British rule in Ireland following the Norman invasion, or simply geographic proximity of the

Irish east coast to Britain. Notably, the Ulster cluster group harboured an exceptionally large

proportion of the British component (Fig 1D and 1E), undoubtedly reflecting the strong influ-

ence of the Ulster Plantations in the 17th century and its residual effect on the ethnically British

population that has remained.

The genetic structure of the British Isles

The genetic substructure observed in Ireland is consistent with long term geographic diversifi-

cation of Celtic populations and the continuity shown between modern and Early Bronze Age

Irish people [2]. However, this diversity is weaker on the east coast in a manner that correlates

with British admixture, suggesting a role for recent migrations in eroding this structure. We

therefore further investigated the relationship between Ireland and Britain by generating a

ChromoPainter coancestry matrix for all Irish and PoBI data combined (n = 3,008). Clustering

with fineSTRUCTURE revealed 50 distinct clusters that segregated geographically, both on a

cohort-wide and local level (Fig 2). Projecting this coancestry matrix in PC space revealed a

striking concordance between haplotypes and geography (sampling regions were defined

using Nomenclature of Territorial Units for Statistics 2010; [19]) for ChromoPainter PCs 1

and 4, reminiscent of previous observations for single marker-based summaries of genetic var-

iation within European populations [20].

The principal split in the combined Irish and British data defined two genetic islands, both

in the fineSTRUCTURE tree and in ChromoPainter PC1 (Fig 2). This distinction between

Irish and British genetic data was particularly pronounced when we applied t-distributed sto-

chastic neighbour embedding (t-SNE) [21] to the ChromoPainter coancestry matrix (Fig 3).

t-SNE is a nonlinear dimensionality reduction method that attempts to provide an optimal

low-dimensional embedding of data by preserving both local and global structure, placing sim-

ilar points close to each other and dissimilar points far apart. In principle, a two-dimensional

t-SNE plot can therefore summarize more of the overall differences between groups than those

described by any two principal components, although the relative group sizes, positions and

distances on the plot are less straightforward to interpret. Applying t-SNE to the Irish and Brit-

ish coancestry matrix captured the salient structure described by ChromoPainter PCA, and

particularly validates that observed in the plot of PC1 vs PC4. This clearly distinguishes the

two islands, discerns their north-south and west-east genetic structure and places Orkney and

north/south Wales, whose variation is captured in PCs 2 and 3 respectively (Fig 4), as indepen-

dent entities from the bulk of the British data.

As observed in Fig 1, ChromoPainter PCA in Ireland and Britain (Fig 2) demonstrates east-

ern homogeneity for each island and relative diversity on the west coast. The southeast

England (SEE) cluster group is centred at zero on PC4, representing a group with predomi-

nantly Anglo-Saxon-like ancestry (S8 Fig). Clusters representing Celtic populations harbour-

ing less Anglo-Saxon influence separate out above and below SEE on PC4. Notably, northern

Irish clusters (NLU), Scottish (NISC, SSC and NSC), Cumbria (CUM) and North Wales

(NWA) all separate out at a mutually similar level, representing northern Celtic populations.

The southern Celtic populations Cornwall (COR), south Wales (SWA) and south Munster

Insular Celtic population structure in Ireland and Britain
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Fig 2. Genes mirror geography in the British Isles. (A) fineSTRUCTURE clustering dendrogram for combined Irish and British data. Data principally split into Irish

and British groups before subdividing into a total of 50 distinct clusters, which are combined into cluster groups for clusters that formed clades in the dendrogram,

overlapped in principal component space (B) and were sampled from regions that are geographically contiguous. Names and labels follow the geographical provenance

for the majority of data within the cluster group. Details for each cluster in the dendrogram are provided in S2 Fig. (B) Principal component analysis (PCA) of haplotypic

similarity based on the ChromoPainter coancestry matrix, coloured by cluster group with their median locations labelled. We have chosen to present PC1 versus PC4

here as these components capture new information regarding correlation between haplotypic variation across Britain and Ireland and geography, while PC2 and PC3 (Fig

4) capture previously reported splitting for Orkney and Wales, respectively, from Britain [7]. A map of Ireland and Britain is shown for comparison, coloured by

sampling regions for cluster groups, the boundaries of which are defined based on the Nomenclature of Territorial Units for Statistics (NUTS 2010), with some regions

combined. Sampling regions are coloured by the cluster group with the majority presence in the sampling region; some sampling regions have significant minority cluster

group representations as well, for example the Northern Ireland sampling region (UKN0; NUTS 2010) is majorly explained by the NICS cluster group but also has

significant representation from the NLU cluster group. The PCA plot has been rotated clockwise by 5 degrees to highlight its similarity with the geographical map of the

Ireland and Britain. NI, Northern Ireland; PC, principal component. Cluster groups that share names with groups from Fig 1 (NLU; SMN; CLN; CNN) have an average

of 80% of their samples shared with the initial cluster groups. The map and administrative boundaries were produced using data from the database of Global

Administrative Areas (GADM; https://gadm.org), note some boundaries have been subsumed or modified to better reflect sampling regions.

https://doi.org/10.1371/journal.pgen.1007152.g002
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(SMN) also separate out on similar levels, indicating some shared haplotypic variation between

geographically proximate Celtic populations across both Islands. It is notable that after the

split of the ancestrally divergent Orkney, successive PCs describe diversity in British popula-

tions where “Anglo-saxonization” was repelled [22]. PC3 is dominated by Welsh variation,

while PC4 in turn splits North and South Wales significantly, placing south Wales adjacent to

Cornwall and north Wales at the other extreme with Cumbria, all enclaves where Brittonic lan-

guages persisted.

Scotland is another region of Britain which successfully retained its Celtic language, how-

ever in contrast to Welsh and Cornish clusters, the majority of Scottish variation is described

Fig 3. t-distributed stochastic neighbour embedding (t-SNE) of Irish and British coancestry matrix. (A) fineSTRUCTURE dendrogram with clusters and cluster

groups defined as in Fig 2. (B) Two-dimensional t-SNE embedding of ChromoPainter coancestry matrix, with median locations for cluster groups plotted. As t-SNE is a

stochastic method, different runs produce different solutions to the 2-dimensional embedding; shown here is a typical result. t-SNE performed significantly better with

the ChromoPainter coancestry matrix than with Hamming distances (identity-by-state) computed over single SNP markers (S9 Fig). The map and administrative

boundaries were produced using data from the database of Global Administrative Areas (GADM; https://gadm.org), note some boundaries have been subsumed or

modified to better reflect sampling regions.

https://doi.org/10.1371/journal.pgen.1007152.g003
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by ChromoPainter PC1. The three definable Scottish groups do not drive any further compo-

nents of variation (up to PC7 considered) and fall away from the bulk of British variation on

PC1 towards Irish clusters. This is most strikingly observed for the southern Scottish cluster

(SSC) which fell amongst Irish branches in the fineSTRUCTURE tree, overlapping with sam-

ples from the north of Ireland in PC space (Fig 2 and Fig 5). In an interesting symmetry, many

Northern Irish samples clustered strongly with southern Scottish and northern English sam-

ples, defining the Northern Irish/Cumbrian/Scottish (NICS) cluster group. More generally, by

modelling Irish genomes as a linear mixture of haplotypes from British clusters, we found that

Fig 4. Principal components 2 and 3 of combined Irish and British coancestry matrix. (A) fineSTRUCTURE clustering dendrogram for combined Irish and British

data, with cluster groups defined as in Fig 2. Immediately following the principal inter-island split, Orkney and Wales branch in sequence, consistent with previous

observations. (B) Principal component analysis (PCA) of haplotypic similarity based on the ChromoPainter coancestry matrix, coloured by cluster group with their

median locations labelled. PC2 captures an Orkney split, while PC3 captures a Welsh split.

https://doi.org/10.1371/journal.pgen.1007152.g004
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Scottish and northern English samples donated more haplotypes to clusters in the north of Ire-

land than to the south, reflecting an overall correlation between Scottish/north English contri-

bution and PC1 position in Fig 1 (Linear regression: p< 2×10−16, r2 = 0.24).

Fig 5. Inter-island exchange of haplotypes between the north of Ireland and northern Britain. The boxplots show the distribution of individuals on principal

component (PC) 1 for each island and for specific sampling regions (Scotland/Northern Ireland) and cluster groups (SSC and NICS; see Fig 2). A substantial proportion of

Northern Irish individuals fall within the expected range for Scottish individuals in PC space and vice versa. This exchange is particularly pronounced for Northern Irish

and Scottish individuals that fall within the NICS and SSC cluster groups (Fig 2), respectively.

https://doi.org/10.1371/journal.pgen.1007152.g005
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North to south variation in Ireland and Britain are therefore not independent, reflecting

major gene flow between the north of Ireland and Scotland (Fig 5) which resonates with three

layers of historical contacts. First, the presence of individuals with strong Irish affinity among

the third generation PoBI Scottish sample can be plausibly attributed to major economic

migration from Ireland in the 19th and 20th centuries [6]. Second, the large proportion of

Northern Irish who retain genomes indistinguishable from those sampled in Scotland accords

with the major settlements (including the Ulster Plantation) of mainly Scottish farmers follow-

ing the 16th Century Elizabethan conquest of Ireland which led to these forming the majority

of the Ulster population. Third, the suspected Irish colonisation of Scotland through the Dál
Riata maritime kingdom, which expanded across Ulster and the west coast of Scotland in the

6th and 7th centuries, linked to the introduction and spread of Gaelic languages [3]. Such a

migratory event could work to homogenise older layers of Scottish population structure, in a

similar manner as noted on the east coasts of Britain and Ireland. Earlier communications and

movements across the Irish Sea are also likely, which at its narrowest point separates Ireland

from Scotland by approximately 20 km.

Genomic footprints of migration into Ireland

To temporally anchor the major historical admixture events into Ireland we used GLOBE-

TROTTER [23] with modern surrogate populations represented by 4,514 Europeans [24] and

1,973 individuals from the PoBI dataset [7], excluding individuals sampled from Northern Ire-

land. Of all the European populations considered, ancestral influence in Irish genomes was

best represented by modern Scandinavians and northern Europeans, with a significant single-

date one-source admixture event overlapping the historical period of the Norse-Viking settle-

ments in Ireland (p< 0.01; fit quality FQB > 0.985; Fig 6). This was recapitulated to varying

degrees in specific genetically- and geographically-defined groups within Ireland, with the

strongest signals in south and central Leinster (the largest recorded Viking settlement in Ire-

land was Dubh linn in present-day Dublin), followed by Connacht and north Leinster/Ulster

(S5 Fig; S6 Table). This suggests a contribution of historical Viking settlement to the contem-

porary Irish genome and contrasts with previous estimates of Viking ancestry in Ireland based

on Y chromosome haplotypes, which have been very low [25]. The modern-day paucity of

Norse-Viking Y chromosome haplotypes may be a consequence of drift with the small patrilin-

eal effective population size, or could have social origins with Norse males having less influ-

ence after their military defeat and demise as an identifiable community in the 11th century,

with persistence of the autosomal signal through recombination.

European admixture date estimates in northwest Ulster did not overlap the Viking age but

did include the Norman period and the Plantations (S5 Fig). This may indicate limited Viking

activity in Ulster, or, that due to the similarity in sources for the Viking and Anglo-Norman

invasions and the Plantations, GLOBETROTTER failed to disentangle the earlier events from

the later. This is not unexpected given the extent of the Plantations in Ulster [26], the relative

timings of the invasions and the degree of Viking involvement in Britain and Europe. Indeed,

when considering Britain as an admixing source using PoBI data, GLOBETROTTER date esti-

mates for northwest Ulster overlapped the Plantations, although for other regions in Ireland

(and for Ireland considered as a whole) these admixture events were less clearly defined, likely

reflecting a history of continuous gene flow between the two islands in the prevailing years (Fig

6; S5 Fig and S7 Table). The all-Ireland point estimate for admixture from Britain spanned the

Norman settlement instead of the Plantations, but GLOBETROTTER was unable to adequately

resolve the model details for this event (fit quality FQB < 0.985; Fig 6), indicating that this esti-

mate is not a good reflection of the true timings and extent of admixture from Britain. As noted
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Fig 6. All-Ireland GLOBETROTTER admixture date estimates for European and British surrogate admixing populations. A summary of the date estimates and

95% confidence intervals for inferred admixture events into Ireland from European and British admixing sources is shown in (A), with ancestry proportion estimates

for each historical source population for the two events and example coancestry curves shown in (B). In the coancestry curves Relative joint probability estimates the

pairwise probability that two haplotype chunks separated by a given genetic distance come from the two modelled source populations respectively (i.e. FRA(8) and

NOR-SG); if a single admixture event occurred, these curves are expected to decay exponentially at a rate corresponding to the number of generations since the event.

The green fitted line describes this GLOBETROTTER fitted exponential decay for the coancestry curve. If the sources come from the same ancestral group the slope of

this curve will be negative (as with FRA(8) vs FRA(8)), while a positive slope indicates that sources come from different admixing groups (as with FRA(8) vs NOR-SG).
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in the PoBI study, the overall influence of British admixture in Ireland (and vice versa) has

involved extensive and constant gene flow before, during and after the major population move-

ments detailed in Fig 6, with particular swells of peopling during the Plantations. The genetic

legacies of the populations of Ireland and Britain are therefore extensively intertwined and,

unlike admixture from northern Europe, too complex to model with GLOBETROTTER.

Conclusions

Our results show that population structure is detectable on the island of Ireland and is consis-

tent with a combination of the homogenizing effect of geographically punctuated admixture

and diversification among Celtic subpopulations. The inclusion of Irish data with British sam-

ples from the PoBI study provides an anchor for Celtic ancestry in the British Isles, filling out

the genetic landscape of the islands. It is also clear that historical migrations into Ireland have

left a greater genomic footprint than previously anticipated; our consideration of autosomal

data escapes the constraints of patrilineal genetics and has allowed us to detect a much greater

Viking influence than previously estimated with Y chromosome data. Although the genetic

imprint of the British Plantations is much harder to delineate, the inter-island exchange and

clustering observed between present-day individuals from Northern Ireland and Scotland sig-

nals the enduring impact of these historical movements of people.

Unlike the PoBI study, Irish data were not specifically selected for longstanding pure ances-

try in each geographic region (for example, having four grandparents in a location), but

instead represent a repurposed medical dataset. Our data are therefore more representative of

those that are typically used in population-based genome-wide surveys for trait-associated

genetic variation; as these studies survey increasingly rare genetic variants in larger popula-

tions, the geospatial segregation of rare haplotypes and variants will become increasingly

important, especially when environmental effects and interactions play a role [27]. Our obser-

vation that these haplotypes are intricately tied to geography in Ireland and Britain highlights

the importance of considering fine-grained population structure in future studies.

Methods

Ethics statement

All Irish subjects provided written informed consent to participate in genetic research and the

study was approved by the Beaumont Hospital Research Ethics Committee in Dublin, Ireland

under approval number 05/49 following guidelines laid out at www.beaumontethics.ie.

Data and quality control

Our study included three datasets of genotype data: a population-based Irish ALS case-control

dataset (n = 991) incorporating existing [28] and newly-genotyped samples, the People of the

British Isles dataset (EGA accession ID EGAD00010000632; n = 2,020) [7] and a pan-Euro-

pean dataset derived from a genome-wide association study (GWAS) for multiple sclerosis

The adjacent bar plot shows the inferred genetic composition of the historical admixing sources modelled as a mixture of the sampled modern populations. A European

admixture event was estimated by GLOBETROTTER corresponding to the historical record of the Viking age, with major contributions from sources similar to modern

Scandinavians and northern Europeans and minor contributions from southern European-like sources. For admixture date estimates from British-like sources the

influence of the Norman settlement and the Plantations could not be disentangled, with the point estimate date for admixture falling between these two eras and

GLOBETROTTER unable to adequately resolve source and proportion details of admixture event (fit quality FQB< 0.985). The relative noise of the coancestry curves

reflects the uncertainty of the British event. Cluster labels (for the European clustering dendrogram, see S4 Fig; for the PoBI clustering dendrogram, see S3 Fig): FRA(8),

France cluster 8; NOR-SG, Norway, with significant minor representations from Sweden and Germany; SE_ENG, southeast England; N_SCOT(4) northern Scotland

cluster 4.

https://doi.org/10.1371/journal.pgen.1007152.g006
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(MS; EGA accession ID EGAD00000000120; n = 4,514) [24] (S1 Text: Populations). All Irish

subjects provided written informed consent to participate in genetic research and the study

was approved by the Beaumont Hospital Research Ethics Committee in Dublin, Ireland. We

applied quality control to each dataset using PLINK 1.9 [29] and merged data as detailed in

Supplementary Methods (S1 Text: Quality Control). Briefly, we excluded both infrequent and

high-missingness SNPs; individuals with high missingness, excessive heterozygosity or cryptic

relationships to other individuals in the data; and finally individuals who had been removed

during QC carried out in the source papers.

As the European dataset included patients and controls from a GWAS for MS, we addition-

ally removed SNPs in a 15 Mb region surrounding the strongly associated HLA locus on chro-

mosome 6 (GRCh37 position chr6:22,915,594–37,945,593), as is consistent with previous

studies using the data [7,30]. This was to avoid haplotypic bias arising from this association.

The final post-QC Irish (n = 991), British (n = 2,020) and European datasets (n = 4,514)

contained 407,750 SNPs, 521,883 SNPs and 363,396 SNPs at zero missingness, respectively.

The final merge of British and Irish data (n = 3,008) and European and Irish data (n = 5,506)

contained 214,632 SNPs and 166,139 SNPs respectively at zero missingness. Further details

regarding samples and QC per dataset are described in Supplementary Methods (S1 Text: Pop-

ulations and S1 Text: QC)

Geographic information was available for 544 of the 991 Irish samples in the form of home

address. To preserve anonymity this was jittered in all maps containing patients (Fig 1 and S5

Fig). For all British and some Northern Irish data, sample location was supplied by the authors

of PoBI [7] as membership of 35 sampling regions. Finally, for European data sampling coun-

try was available [24]. Full details of treatment of samples for mapping are available in Supple-

mentary methods (S1 Text: Mapping.)

Phasing

We phased autosomal genotypes in each dataset and merged dataset with SHAPEIT V2 [31]

using the 1000 Genomes (Phase 3) as a reference panel [32]. A pre-phasing step was carried

out (—check) to remove any SNPs which did not correctly align to the 1000 genomes reference

panel. Samples were then split by chromosome and phased together using default settings and

the GRCh37 build genetic map to estimate linkage disequilibrium.

fineSTRUCTURE analysis

To detect population structure we performed ChromoPainter/fineSTRUCTURE analysis [14]

on each of the population datasets (Irish, British and European) individually, and then sepa-

rately on a merge of the Irish and British datasets. In brief, we used ChromoPainter to paint

each individual using all other individuals (-a 0 0) using default settings with the exception that

the number of “chunks” per region value was set to 50 (-k 50) for all analyses including Irish

and British individuals to account for the longer haplotypes observed in these datasets, in keep-

ing with previous studies [7,30]. The fineSTRUCTURE algorithm was then run on the resulting

coancestry matrix to determine genetic clusters based on patterns of haplotype sharing. Further

details are included in the Supplementary Methods (S1 Text: fineSTRUCTURE analysis).

Cluster robustness

We assessed the robustness of Irish clusters by calculating total variation distance (TVD) as

described in the PoBI study [7]. This metric compares the “copying vectors” of pair of clusters.

Here we define the copying vector for a given cluster A as a vector of the average lengths of

DNA donated by each cluster to individuals within cluster A under the ChromoPainter model.
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Hence the magnitude of differences between copying vectors of two clusters reflects the dis-

tances between those clusters in terms of their haplotypic sharing with other clusters. TVD can

therefore be used to determine whether fineSTRUCTURE clusters detect significant differ-

ences in haplotype sharing, and hence ancestry.

We tested whether the observed clustering performed better than chance by permuting

(1,000 times) the individuals in each of our cluster pairings into clusters of the same size, and

calculating the number of permutations that exceeded our original TVD score. If 1,000 unique

permutations were not possible, the maximum number of unique permutations was used

instead. P-values were calculated based on the number of permutations greater than or equal

to the original TVD statistic. All p-values for Irish clusters were less than or equal to 0.001 indi-

cating robust clustering (S1 Table and S2 Table). We also applied these methods to our Irish

cluster groups (Fig 1) and observed that these are statistically distinct (S3 Table and S4 Table).

To provide an additional measure of population differentiation between “cluster groups”

we calculated mean FST between groups using PLINK 1.9 [29] which is reported in S5 Table.

Estimating admixture dates

We used the GLOBETROTTER method [23] to infer and date admixture events from Europe

and Britain into Ireland separately. GLOBETROTTER uses output from ChromoPainter to

estimate the pairwise likelihood of being painted by any two surrogate populations at a variety

of genetic distances to generate coancestry curves. Assuming a single admixture event, these

curves are expected to follow an exponential decay rate equal to the time in generations since

admixture occurred [23]. As the true admixing sources are modelled as a linear mixture of sur-

rogate sources rather than individual sources this method has the advantage of not requiring

exactly sampled source populations.

For our analysis we ran GLOBETROTTER with default settings twice to detect simple

admixture into the island of Ireland as a whole, as well as into individual genetic clusters from

the Republic of Ireland (S5 Fig). European clusters (S4 Fig) and British clusters (S3 Fig) were

used as surrogate populations to represent the admixing sources in two independent analyses.

Target and donor clusters for this analysis were defined using the fineSTRUCTURE maximum

concordance tree method described in PoBI [7] to ensure homogeneity (Supplementary meth-

ods S1 Text: fineSTRUCTURE analysis); hence, the Irish target clusters that were used differ

slightly from those in Fig 1. Briefly, for each surrogate population separately (Europe and Brit-

ain) we applied ChromoPainter v2 to paint Ireland and the surrogate population using the sur-

rogate population as donors and generated a copying matrix (chunk lengths) for all

individuals, and also 10 painting samples for each Irish individual as recommended. GLOBE-

TROTTER was then run for 5 mixing iterations twice, first using the null.ind:1 setting to test

for any evidence of admixture and then null.ind:0 setting to infer dates and sources. We ran

100 bootstraps for admixture date and calculated the probability of a null model of no admix-

ture as the proportion of nonsensical inferred dates (<1 or >400 generations) produced by the

null.ind:1 model, as in the GLOBETROTTER study [23]. Confidence intervals for the date

were calculated from the bootstraps for the standard model (null.ind: 0) using the empirical

bootstrap method. (See S1 Text: Globetrotter analysis of Admixture Dates for further details).

A generation time of 28 years was assumed as in previous studies of this nature [7,23] for con-

version of all date estimates from generations to years.

Ancestry proportion estimation

We assessed the ancestral make up of Ireland in terms of Europe and Britain for each Republic

of Ireland cluster (see Estimating admixture dates) to explore variation in ancestry across
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Ireland. To do so we modelled each cluster’s average genome as a linear mixture of the Euro-

pean and British donor populations using the method described in the PoBI study [7] and

implemented in GLOBETROTTER (num.mixing.iterations: 0). This approach uses the

ChromoPainter chunk length output to estimate the proportion of DNA which most closely

coalesces with each individual from the donor populations, correcting for noise caused by

similarities between donor populations whose splits may have occurred after the coalescence

event. This is achieved through a multiple linear regression of the form Yp = B1X1 + B2X2 + . . .

+BgXg, where Yp is a vector of the averaged length (cM) of DNA that individuals across cluster

P copy from each donor group, normalised to sum to 1 across all donor groups, and Xg is the

vector describing the average proportion of DNA that individuals in donor group g copy from

other donor groups including their own. The coefficients of this equation B1. . .Bg are thus

interpreted as the “cleaned” proportions of the genome ancestral to each donor group. The

equation is solved using a non-negative-least squares function such that Bg� 0 and the sum of

proportions across groups equals 1.

To assess uncertainty of these ancestry proportion estimates we again follow PoBI [7] and

resample from the ChromoPainter chunk length output to generate Np pseudo individuals for

each cluster P. We achieve this by randomly sampling each of the autosomal chromosome pairs

1–22 with replacement Np times from the pool of all autosomal chromosomes pairs 1–22 across

all individuals within that cluster, and then randomly summing sets of 22 of these chromosome

pairs to generate each pseudo individual. We then use these Np pseudo individuals as a boot-

strap for Yp above and solve for Bg. We resampled 1,000 times per cluster and used the inner

95% quantiles of this sampling distribution to estimate confidence intervals for the sample.

For comparison we implemented an alternative delete one chromosome jack-knife

approach as in Montinaro et al. [33], and estimated the s.e. as in ref. [34] (S6 Fig and S7 Fig).

We also used this linear regression model to determine per-individual ancestry proportion

estimates from different British clusters across Ireland, treating each individual as a cluster to

enable us to assess whether gene flow from northern Britain had a gradient across Ireland.

ADMIXTURE

To estimate the proportion of British admixture into Irish clusters, ADMIXTURE [18] was run

on the combined PoBI and Irish datasets, alongside eighteen ancient individuals from the Iron

Age, Roman and Anglo-Saxon periods of northeast and southeast England [16,17]. Pseudo-hap-

loid genotypes were generated for the ancient genomes at the relevant variant sites, as is standard

for low coverage data, and subsequently merged with the modern diploid dataset. Data were then

pruned for linkage disequilibrium between SNPs using PLINK 1.9 (r2> 0.25 in a sliding window

of 1000 SNPs advancing 50 SNPs each time) resulting in 86,481 remaining SNPs. No missingness

was allowed for modern individuals, with a range of 33,643–85,553 sites used for ancient samples.

Following ADMIXTURE estimation, cross-validation error was calculated using the—cv flag for 5

iterations to determine the K value for which the model has the best predictive accuracy (K = 2).

Additionally 200 bootstraps of the data were run to estimate the standard error of the parameters

using the–B flag. This British admixture component was regressed against PC2 of the Irish Chro-

moPainter coancestry matrix to determine the role of British ancestry in the differentiation of

PC2 in Ireland. We also performed analysis of variance (ANOVA) on British admixture compo-

nent per cluster group to identify if cluster by cluster differences existed.

PCA and t-SNE

ChromoPainter coancestry matrices were projected in lower-dimensional space using princi-

pal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE)
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[21]. PCA was run using the default approach provided as part of the fineSTRUCTURE R

tools [14] (http://www.paintmychromosomes.com). The R package Rtsne (https://github.com/

jkrijthe/Rtsne) was used to construct a 2-dimensional embedding of the ChromoPainter coan-

cestry matrix over 5,000 iterations using a perplexity of 30, a learning rate of 200 and an initial

PCA calculated over 100 dimensions. Several t-SNE runs were performed to assess concor-

dance between embedding solutions.

Other statistical analyses

All linear regressions and ANOVA tests were carried out in base statistics package in R version

3.2.3 [35].

Supporting information

S1 Fig. Irish fineSTRUCTURE tree cluster details. The fineSTRUCTURE tree presented in

Fig 1 for Irish clusters with detailed breakdown of individual clusters. The individual labels for

the clusters describe the geographic location of the majority of samples and the numbers of

individuals within those clusters are provided in brackets. Cluster groups are identical to those

defined in Fig 1.

(PDF)

S2 Fig. PoBI/Irish fineSTRUCTURE tree cluster details. The fineSTRUCTURE tree pre-

sented in Fig 2 for British and Irish clusters with detailed breakdown of individual clusters.

The individual labels for the clusters describe the geographic location of the majority of sam-

ples and the numbers of individuals within those clusters are provided in brackets. Cluster

groups are identical to those defined in Fig 2.

(PDF)

S3 Fig. PoBI maximum concordance fineSTRUCTURE tree cluster details. The fineS-

TRUCTURE maximum concordance tree for British clusters used in GLOBETROTTER analy-

sis with detailed breakdown of individual clusters. The individual labels for the clusters

describe the geographic location of the majority of samples and the numbers of individuals

within those clusters are provided in brackets. Cluster groups describe clusters which are

neighbouring in the tree and geographically adjacent.

(PDF)

S4 Fig. European maximum concordance fineSTRUCTURE tree cluster details. The fineS-

TRUCTURE maximum concordance tree for European clusters used in GLOBETROTTER

analysis with detailed breakdown of individual clusters. Additional individuals from WTCCC

exclusion list have been removed post fineSTRUCTURE clustering but prior to GLOBETROT-

TER analysis and the tree updated to reflect this. The individual labels for the clusters describe

the geographic location of the majority of samples and the numbers of individuals within

those clusters are provided in brackets. Cluster groups describe clusters which are neighbour-

ing in the tree and geographically adjacent.

(PDF)

S5 Fig. GLOBETROTTER breakdown for clusters in the Republic of Ireland. A summary

of the date estimates and 95% confidence intervals for inferred admixture events into Irish

clusters from European (red) and British (blue) admixing sources is shown in (A). Faded lines

highlight clusters in which there was no significant evidence of admixture (P>0.01). (B) Sum-

marises the fineSTRUCTURE maximum concordance tree cluster assignment for the 991 Irish

samples used as target populations in GLOBETROTTER estimates in (A). We present the
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fineSTRUCTURE clustering dendrogram, a PCA of the coancestry matrix coloured by cluster

group and a map of Ireland showing the sampling location for a subset of 544 individuals for

which locational information was available, coloured by cluster group. Points have been ran-

domly jittered within a radius of 5 km to preserve anonymity. The map and administrative

boundaries were produced using data from the database of Global Administrative Areas

(GADM; https://gadm.org).

(PDF)

S6 Fig. British ancestry profile in Irish clusters. Bar charts displaying the GLOBETROTTER

estimated British ancestry profile for Republic of Ireland clusters (Defined in S5 Fig; Only clusters

with 35+ samples displayed) from British clusters inferred from 2,017 individuals using fineS-

TRUCTURE (Defined in S3 Fig). Individuals from Northern Ireland were excluded to prevent

masking of ancestry leaving 1973 individuals. Only donors that make at least a 2.5% contribution

to at least one Irish cluster are displayed with the remaining proportions subsumed into the

“other” category. Error bars represent the bootstrapping procedure with 10000 resamples (Black)

and a jack-knife approach using 22 resamples (Red). Label abbreviations: S_SCOT, south Scot-

land; SE_ENG, southeast England; CHE, Cheshire; KEN, Kent; BWA, border Wales; DEV,

Devon; COR, Cornwall; N_SCOT north Scotland; SWA, south Wales; NWA, north Wales.

(PDF)

S7 Fig. European ancestry profile in Irish clusters. Bar charts displaying the GLOBETROT-

TER estimated European ancestry profile for republic of Ireland clusters (Defined in S5 Fig;

Only samples with 35+ samples displayed) from European clusters inferred from 4,514 indi-

viduals using fineSTRUCTURE (Defined in S4 Fig). Only donors that make at least a 2.5%

contribution to at least one Irish cluster are displayed with the remaining proportions sub-

sumed into the “other” category. Error bars represent the bootstrapping procedure with 10000

resamples (Black) and a jack-knife approach using 22 resamples (Red). Label abbreviations:

NOR-SG, Norway, with significant minor representations from Sweden and Germany; FRA,

France; NOR, Norway; BEL, Belgium.

(PDF)

S8 Fig. ADMIXTURE analysis for PoBI/Irish cluster groups with ancient British samples.

ADMIXTURE component (k = 2) for each cluster group in the PoBI/Irish fineSTRUCTURE

tree (S2 Fig) and 18 Ancient British Samples from the Iron age (IA; n = 4), Anglo-Saxon (AS;

n = 8) and Roman (RM; n = 6) periods. Admixture proportions are averaged across each clus-

ter group (left) for brevity of display, while individual proportions are plotted for ancient sam-

ples. The Anglo-Saxon individuals are best described by the red component. This component

is high in British cluster groups from areas affected by the Anglo-Saxon invasion such as the

large SEE cluster, while relatively low in Celtic populations such as Ireland, Scotland and

Wales.

(PDF)

S9 Fig. t-distributed stochastic neighbour embedding (t-SNE) of Irish and British geno-

types. A t-SNE solution for 2-dimensional embedding is displayed for Irish and British geno-

type data using Hamming distances (identity-by-state). As t-SNE is a stochastic method,

different runs produce different solutions to the 2-dimensional embedding; shown here is a

typical result. Clusters and cluster groups are defined as in Fig 2, with median locations for

cluster groups plotted. t-SNE performed significantly worse with the Hamming distances

(identity-by-state) computed over single SNP markers than with the fineSTRUCTURE coan-

cestry matrix (Fig 3).

(PDF)
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S10 Fig. Comparison of Linked vs Unlinked fineSTRUCTURE in Ireland at 166,139 SNPs.

Displays ChromoPainter PC1 and PC2 alongside a fineSTRUCTURE Maximum Concordance

clustering dendrogram for A.) Linked and B.) Unlinked analysis for 991 Irish individuals at

the 166,139 SNP positions used for our European GLOBETROTTER run. Trees and PCA are

coloured at a k = 11 split for ease of visualisation. Considerably more structure is apparent in

the PCA of the Linked analysis indicating that linkage information defines meaningful haplo-

types even at this resolution. We report “Confidence of ind. assignment” for each method.

This metric is the confidence of individual assignment to their final cluster based on their

assignment across all MCMC samples defined in PoBI [7]. This was on average 84.8% (95%

CI: 83.9–85.7%) for the Linked analysis, while in the Unlinked analysis this was only 8.06%

(95% CI: 8.03–8.09%), suggesting that the final clustering assignment in the unlinked mode is

extremely uncertain and variable.

(PDF)

S11 Fig. Bootstraps for British ADMIXTURE component estimates. Standard error calcu-

lated using 200 bootstrap resamples for each point in linear regression in Fig 1 (E.) are plotted

using error bars to show variability in ADMIXTURE point estimates.

(PDF)

S1 Table. TVD table for Irish clusters. Total Variation Distance (TVD) matrix between Irish

clusters described in Fig 1 and S1 Fig demonstrating the degree of differentiation between clus-

ters.

(ODS)

S2 Table. TVD p-values for Irish clusters. P-values that individuals are assigned randomly to

pairs of clusters based on permutation testing using TVD statistic from S1 Table.

(ODS)

S3 Table. TVD table for Irish cluster groups. Total Variation Distance (TVD) matrix

between Irish cluster groups described in Fig 1 and S1 Fig demonstrating the degree of differ-

entiation between Cluster Groups.

(ODS)

S4 Table. TVD p-values for Irish cluster groups. P-values that individuals are assigned ran-

domly to pairs of cluster groups based on permutation testing using TVD statistic from S3

Table.

(ODS)

S5 Table. FST table for Irish cluster groups. Mean FST statistic between Irish cluster groups

calculated using PLINK 1.9.

(ODS)

S6 Table. European GLOBETROTTER table. Table describing the model fit of GLOBE-

TROTTER for admixture events into Irish clusters from Europe in Fig 6 and S5 Fig.

(ODS)

S7 Table. British GLOBETROTTER table. Table describing the model fit of GLOBETROT-

TER for admixture events into Irish clusters from Britain in Fig 6 and S5 Fig.

(ODS)

S1 Text. Supplementary methods.

(PDF)

Insular Celtic population structure in Ireland and Britain

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007152 January 25, 2018 19 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007152.s019
https://doi.org/10.1371/journal.pgen.1007152


Acknowledgments

We gratefully acknowledge Dr T. Rowan McLaughlin for providing helpful insights and criti-

cal review of the manuscript. A subset of the Irish data was generated as part of Project MinE

(www.projectmine.com) and we acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-

End Computing (ICHEC) for the provision of computational facilities and support. Boundary

data for Britain and Ireland were downloaded from the GADM database (www.gadm.org).

Author Contributions

Conceptualization: Ross P. Byrne, Rui Martiniano, Lara M. Cassidy, Matthew Carrigan, Dan-

iel G. Bradley, Russell L. McLaughlin.

Data curation: Ross P. Byrne, Russell L. McLaughlin.

Formal analysis: Ross P. Byrne, Rui Martiniano, Lara M. Cassidy, Russell L. McLaughlin.

Funding acquisition: Orla Hardiman, Russell L. McLaughlin.

Investigation: Ross P. Byrne, Lara M. Cassidy.

Methodology: Rui Martiniano, Matthew Carrigan, Garrett Hellenthal, Russell L. McLaughlin.

Project administration: Ross P. Byrne, Daniel G. Bradley, Russell L. McLaughlin.

Resources: Garrett Hellenthal, Orla Hardiman, Daniel G. Bradley, Russell L. McLaughlin.

Software: Ross P. Byrne, Rui Martiniano, Lara M. Cassidy, Garrett Hellenthal, Russell L.

McLaughlin.

Supervision: Rui Martiniano, Orla Hardiman, Daniel G. Bradley, Russell L. McLaughlin.

Validation: Ross P. Byrne.

Visualization: Ross P. Byrne, Russell L. McLaughlin.

Writing – original draft: Ross P. Byrne, Lara M. Cassidy, Daniel G. Bradley, Russell L.

McLaughlin.

Writing – review & editing: Ross P. Byrne, Rui Martiniano, Lara M. Cassidy, Matthew Carri-

gan, Garrett Hellenthal, Orla Hardiman, Daniel G. Bradley, Russell L. McLaughlin.

References
1. Bayliss A, Woodman P. A New Bayesian Chronology for Mesolithic Occupation at Mount Sandel, North-

ern Ireland. Proceedings of the Prehistoric Society. 2009; 75: 101–123.

2. Cassidy LM, Martiniano R, Murphy EM, Teasdale MD, Mallory J, Hartwell B, et al. Neolithic and Bronze

Age migration to Ireland and establishment of the insular Atlantic genome. Proc Natl Acad Sci U S A.

2016; 113: 368–373. https://doi.org/10.1073/pnas.1518445113 PMID: 26712024

3. Dillon M, Chadwick NK. The Celtic Realms. Weidenfeld & Nicolson; 1967.

4. Jones C. The Edinburgh History of the Scots Language. Edinburgh University Press; 1997.

5. Koch JT. Celtic culture: a historical encyclopedia. ABC-CLIO; 2006.

6. Duffy S. The concise history of Ireland. Gill & Macmillan; 2000.

7. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, et al. The fine-scale genetic structure

of the British population. Nature. 2015; 519: 309–314. https://doi.org/10.1038/nature14230 PMID:

25788095

8. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the

steppe was a source for Indo-European languages in Europe. Nature. 2015; 522: 207–211. https://doi.

org/10.1038/nature14317 PMID: 25731166

Insular Celtic population structure in Ireland and Britain

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007152 January 25, 2018 20 / 22

http://www.projectmine.com/
http://www.gadm.org/
https://doi.org/10.1073/pnas.1518445113
http://www.ncbi.nlm.nih.gov/pubmed/26712024
https://doi.org/10.1038/nature14230
http://www.ncbi.nlm.nih.gov/pubmed/25788095
https://doi.org/10.1038/nature14317
https://doi.org/10.1038/nature14317
http://www.ncbi.nlm.nih.gov/pubmed/25731166
https://doi.org/10.1371/journal.pgen.1007152


9. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. Genomic insights into the ori-

gin of farming in the ancient Near East. Nature. 2016; 536: 419–424. https://doi.org/10.1038/

nature19310 PMID: 27459054

10. O’Dushlaine CT, Morris D, Moskvina V, Kirov G, International Schizophrenia Consortium, Gill M, et al.

Population structure and genome-wide patterns of variation in Ireland and Britain. Eur J Hum Genet.

2010; 18: 1248–1254. https://doi.org/10.1038/ejhg.2010.87 PMID: 20571510

11. McLaughlin RL, Kenna KP, Vajda A, Heverin M, Byrne S, Donaghy CG, et al. Homozygosity mapping in

an Irish ALS case-control cohort describes local demographic phenomena and points towards potential

recessive risk loci. Genomics. 2015; 105: 237–241. https://doi.org/10.1016/j.ygeno.2015.01.002 PMID:

25620680

12. Moore LT, McEvoy B, Cape E, Simms K, Bradley DG. A Y-chromosome signature of hegemony in

Gaelic Ireland. Am J Hum Genet. 2006; 78: 334–338. https://doi.org/10.1086/500055 PMID: 16358217

13. McEvoy B, Simms K, Bradley DG. Genetic investigation of the patrilineal kinship structure of early medi-

eval Ireland. Am J Phys Anthropol. Wiley Subscription Services, Inc., A Wiley Company; 2008; 136:

415–422. https://doi.org/10.1002/ajpa.20823 PMID: 18350585

14. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype

data. PLoS Genet. 2012; 8: e1002453. https://doi.org/10.1371/journal.pgen.1002453 PMID: 22291602

15. Duffy S. Atlas of Irish History. Gill & MacMillan; 2012.

16. Martiniano R, Caffell A, Holst M, Hunter-Mann K, Montgomery J, Müldner G, et al. Genomic signals of
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