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Abstract

Background: During the last decade, the analysis of ancient DNA (aDNA) sequence has become a
powerful tool for the study of past human populations. However, the degraded nature of aDNA
means that aDNA molecules are short and frequently mutated by post-mortem chemical
modifications. These features decrease read mapping accuracy and increase reference bias, in which
reads containing non-reference alleles are less likely to be mapped than those containing reference
alleles. Alternative approaches have been developed to replace the linear reference with a variation
graph which includes known alternative variants at each genetic locus. Here, we evaluate the use of
variation graph software vg to avoid reference bias for aDNA and compare with existing methods.

Results: We use vg to align simulated and real aDNA samples to a variation graph containing
1000 Genome Project variants and compare with the same data aligned with bwa to the human
linear reference genome. Using vg leads to a balanced allelic representation at polymorphic sites,
effectively removing reference bias, and more sensitive variant detection in comparison with bwa,
especially for insertions and deletions (indels). Alternative approaches that use relaxed bwa

parameter settings or filter bwa alignments can also reduce bias but can have lower sensitivity than
vg, particularly for indels.

Conclusions: Our findings demonstrate that aligning aDNA sequences to variation graphs
effectively mitigates the impact of reference bias when analysing aDNA, while retaining mapping
sensitivity and allowing detection of variation, in particular indel variation, that was previously
missed.

Keywords: ancient DNA; variation graph; sequence alignment; reference bias

Background
In suitable conditions, DNA can survive for tens or even hundreds of thousands of years ex vivo,

providing a unique window into the history of life [1]. Since the initial application of high-throughput

sequencing to ancient human remains [2], the number of aDNA samples with available sequence data

has been increasing at a fast pace, and currently over 2000 ancient samples have been published [3].

These studies have provided insights into past population history and allow direct tests of hypotheses

raised in archaeology, anthropology and linguistics [4, 5].
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However, aDNA sequence analysis poses several significant challenges. The amount of DNA available

is limited, and often only a small fraction is endogenous, coming from the target individual, with

the rest originating from microbial contamination [6]. Read lengths are limited by the degradation

of DNA due to taphonomic processes and subsequent environmental exposure. Post-mortem damage

(PMD) of the DNA occurs at a high rate, introducing mismatches in DNA molecules, particularly

in their tails which are frequently single-stranded or more exposed. This manifests mostly as the

conversion of cytosine to uracil, but also can lead to depurination [1]. Ancient DNA may be treated

with uracil-DNA-glycosylase (UDG) and endonuclease VIII to fully [7] or partially [8] remove uracil

residues and abasic sites, leaving undamaged portions of the DNA fragments intact. However,

this process results in a reduction of read length and library depth, which is disadvantageous.

Furthermore, a number of unique and irreplaceable samples were sequenced prior to the adoption

of UDG treatment. Taking all these factors into account, ancient DNA data is generally of low

coverage, short length and high intrinsic error rate.

The typical workflow for ancient DNA data processing starts with the alignment of sequencing

reads to a linear reference genome, which contains only the reference allele at polymorphic sites.

Reads containing the alternate allele are less likely to map than reads containing the reference allele,

creating a potentially strong bias against non-reference variation, which can have a significant effect

on population genetic inference and implications for many aDNA studies [9, 10]. For example, a

standard approach to genotyping is to generate pseudo-haploid calls by selecting a random read

crossing each variable site. However, because of reference bias, at heterozygous sites reads containing

the reference allele compose the majority of reads, resulting in a more frequent sampling of the

reference allele than the alternate one.

There have been previous attempts to mitigate the effects of reference bias and low coverage

in aDNA, such as by implementing a model of reference bias in genotyping [11], or by working

with genotype likelihoods throughout all downstream population genetic analyses [12]. The use of

different parameters with bwa aln can modulate the number of accepted mismatches to increase

alignment sensitivity and in particular decreasing the -n edit distance parameter from the default

value of 0.04 to 0.02 [13] or 0.01 [14] allows more mismatches and increases sensitivity. Recently

proposed approaches modify the reference genome [15, 10] and/or the aDNA sequencing reads [10]

in order to account for alternate alleles at polymorphic sites. The authors show that by taking into

account non-reference variation in the alignment process, reference bias can be substantially reduced.

However, a limitation of these approaches is that they have only considered biallelic single nucleotide

polymorphisms (SNPs). Therefore, non-reference alleles at insertion and deletion (indel) loci are not

accounted for, despite there being hundreds of thousands of non-reference indels in a typical human

genome [16], and these having a greater affect on read mapping than SNPs [17].

An alternative way to improve read mapping and avoid reference bias is to map reads to a sequence

graph that represents both reference and alternate alleles at known variable sites [18]. However,

the application of this approach to ancient DNA data has not yet been examined. We recently

introduced the variation graph (vg) software [17], and in Figure 1 show an example of how vg
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can recover the alignment of short aDNA reads to alternate alleles. Here we apply vg and bwa

aln systematically to map both simulated data and 34 previously published ancient human DNA

samples, and demonstrate that mapping with vg can effectively reduce reference bias for ancient

DNA samples, particularly for indels. Furthermore vg increases sensitivity for detection of variation

in aDNA, unlike read modification methods.

Results
Evaluating reference bias in aDNA using simulation

First we used simulation to examine the impact of post-mortem deamination (PMD) in vg and

bwa (aln and mem) read alignment, including assessments after applying sequencing read [10] and

reference genome modification [15]. We generated all possible 50 bp reads spanning variant sites on

chromosome 11 of the Human Origins SNP panel [19, 20], which contains a set of SNPs designed to

be highly informative about the genetic diversity in human populations. In half of the simulated

reads the SNP position was modified to carry the alternate allele. Different levels of ancient DNA

PMD estimated in 102 ancient genomes from [21] were introduced into the reads using gargammel

[22].

We generated a variation graph (1000GP graph) with variants identified as part of the phase 3

of the 1000 Genomes Project [16] above 0.1% MAF (minor allele frequency), to be used for read

mapping with vg. We then mapped simulated reads back to the 1000GP graph or GRCh37 linear

genome using vg map and bwa aln respectively, and filtered the resulting alignments for those above

mapping quality 30 for bwa aln aligned reads and mapping quality 50 for vg (see Additional file 1:

Fig. S1 and Methods for details). The reason for using different mapping quality thresholds is that

mapping qualities are estimated differently in bwa aln and vg, and have different ranges: bwa aln’s

maximum values are capped at 37 and vg’s at 60.

At high levels of simulated PMD, alignment with bwa aln -n 0.02 against the linear reference

prevents the observation of non-reference alleles in a large fraction of cases (Figure 2a). This effect

is notable at deamination rates as low as 10%, and with 30% deamination the rate of alignment to

non-reference alleles is reduced by nearly 15% relative to the total. In contrast, there is no such

reduction for vg map. These observations are maintained across a range of different mapping quality

thresholds (Additional file 1: Fig. S2). Given that we simulated the same number of reads at each

SNP site, one with the reference allele and the other with the alternate, we would expect alternate

and reference reads to be equally represented in the final alignments. However, because of reference

bias, the fraction of alternate reads is on average 0.48267 95% CI [0.48095,0.48438] in bwa aln -n

0.02 but essentially 0.5 in vg 0.49988 95% CI [0.49984,0.49991], supporting that vg alignment is

not affected by reference bias in the same way as bwa aln -n 0.02 (Additional file 1: Table S1).

When relaxing the edit distance parameter in bwa aln from -n 0.02 to -n 0.01 and increasing the

maximum number of gap opens (-o 2), we observe as expected a higher sensitivity of mapping, and

with it a better representation of alternate alleles 0.49702 95% CI [0.49657,0.49747] in the final

alignment, but the bias towards the reference is still slightly higher than with vg (Figure 2b, Figure
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2d and Additional file 1: Fig. S2). Reducing the stringency in the mapping quality filter applied

to the final alignments, further improves the fraction of alternate reads mapped in both bwa aln

(0.49936 95% CI [0.49927,0.49945], -n 0.01 -o 2, mapQ ≥ 25) (Figure 2b) and vg graph (0.50001

95% CI [0.50000,0.50003], mapQ ≥ 30), however, as expected, decreasing mapping quality results in

an increase in error rates (Additional file 1: Table S2).

In terms of sensitivity, using more permissive bwa aln parameters (-n 0.01 -o 2) mapped 99.60%

(at mapQ ≥ 25) and 98.54% (at mapQ ≥ 30) of these reads, while bwa aln -n 0.02 is less sensitive,

resulting in only 98.56% (at mapQ ≥ 25) and 92.19% (at mapQ ≥ 30) mapped reads.

To discern whether these differences between vg and bwa aln are due to the use of a variation

graph or the vg mapper, we also aligned simulated reads with the vg mapper to the human linear

reference genome GRCh37 (’vg linear’) and compared the results obtained with vg alignments to the

1000GP graph (Additional file 1: Fig. S3). In the vg alignment to the linear reference, the fraction

of reads containing the reference allele that are aligned remains constant at increasing rates of

deamination, while, similarly to bwa aln and bwa mem, the percentage of aligned reads with the

alternate allele drops as deamination increases.

We also applied the read modification protocol of Günther & Nettelblad [10] to our bwa aln

-n 0.02 mapping data, in which reads overlapping a biallelic SNP are duplicated with the copy

carrying the other allele. If both reads map to the same region of the genome, then the mapping of

the original, unmodified read is kept. In this case, the bias is removed (alternate allele fraction =

0.50074 95% CI [0.50071,0.50077]), but at the cost of a substantial decrease in sensitivity for reads

containing the reference (91.87%) as well as alternate alleles (92.14%) (Figure 2c, Figure 2d and

Additional file 1: Fig. S4).

Applying the same workflow to less stringent bwa aln parameters (-n 0.01 -o 2, mapQ ≥ 25) greatly

improves sensitivity (99.58% and 99.60%, for the reference and alternate allele, respectively) while

effectively eliminating reference bias (alternate allele fraction = 0.50015 95% CI [0.50014,0.50017])

(Additional file 1: Table S1).

We then processed our simulated data with a different workflow for removing reference bias as

suggested by Peyrégne et al. [15]: reads are mapped to two versions of the human reference genome

with bwa aln, one for each allelic version of the Human Origins SNPs. The resulting alignments are

subsequently merged, keeping one random copy of the read if it maps to same genomic coordinates

in both alignments and keeping also reads which map to one version of the reference genome, but

not the other. This workflow was the most sensitive, mapping 99.90% (bwa aln -n0.01 -o2; mapQ

≥ 25; alternate allele fraction = 0.50011 95% CI [0.50011,0.50011]) and 99.77% (at mapQ ≥ 30;

alternate allele fraction = 0.50009 95% CI [0.50009,0.50009]) of all alternate allele reads vs. 99.69%

(at q≥30) and 99.15% (at mapQ ≥ 50) with vg graph (Figure 2c, Figure 2d and Additional file 1:

Fig. S5). However, despite its superior sensitivity, the Peyrégne et al. strategy comes at a cost of

reduced accuracy in the mapping of reads containing the reference allele, as we demonstrate below.

We next examined the error rates of the various alignment strategies. We considered a given read

to be correctly mapped if there was an exact match between the genomic coordinates from which it
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had been simulated and the ones for a major part of the alignment, taking into account any offsets

introduced by insertions, deletions and soft clips. (Soft clipping is the masking of a number of bases

at the end of the read where they appear to be diverging significantly from the reference; this is

done by read aligners to avoid misalignments around insertions and deletions, or problems with

chimaeric sequences).

In vg graph alignments, 1.2 per million reference allele reads and 2.5 per million alternate allele

reads were incorrectly mapped. In bwa aln alignments, we observed that 0.2 and 2.4 per million

reads containing the reference and the alternate allele, respectively, were incorrectly mapped. With

more relaxed parameters (-n 0.01 -o 2), error fractions are slightly lower: 0.1 per million for reads

carrying the reference allele and 2.0 per million for the ones with the alternate. With vg alignment

to the linear reference sequence, reads containing the reference allele were mapped with similar

accuracy to that observed in vg graph (1.3 per million), but the error in the alignment of reads

with the alternate allele was one order of magnitude higher (11 per million) (Additional file 1:

Table. S2, Additional file 1: Fig. S6). The bwa aln read modification approach only removes excess

reference-allele reads, so does not change the false positive rates for reads containing alternate alleles.

The Peyrégne et al [15] approach, however, requires the alignment of reads to an ‘alternate reference

genome’, which causes an increase in error rates, especially in the mapping of reads containing the

reference allele (11 per million at mapQ ≥ 25 and 5.3 per million at mapQ ≥ 30).

Error rates in all three of vg graph, vg linear and bwa aln were positively correlated with the

amount of deamination (Additional file 1: Fig. S6). There appears to be a qualitative difference

between the types of errors made by vg and bwa aln, in that it makes more scattered errors, whereas

vg tends to make clusters of errors at nearby locations (Additional file 1: Fig. S7). Unsurprisingly,

the majority of errors (≈70%) made by both methods occur in regions of reduced mappability

(Additional file 1: Fig. S8).

To further investigate the false alignment rate of different read mappers, we aligned simulated

microbial short reads (30-100 bp) with vg to the 1000GP graph and with bwa aln and bwa mem to

the human reference genome (Additional file 1: Table. S3, Additional file 1: Fig. S9). We observe

distinct error patterns between the 3 aligners: in terms of short reads, bwa aln -n 0.02 maps

slightly more (0.897%, mapQ ≥ 30) microbial reads to the human genome than vg does to the

graph (0.644%, mapQ ≥ 50), with the lowest percentage shown by bwa mem (0.001%, mapQ ≥
50). Relaxing bwa aln parameters to ’-n 0.01 -o 2’ causes an increase (2.372%, mapQ ≥ 25) in the

percentage of incorrectly mapped microbial reads compared to ’-n 0.02’ (Additional file 1: Table.

S3, Additional file 1: Fig. S9). When mapping longer fragments, both vg graph and bwa mem still

present spurious alignments (0.111% and 0.234%, respectively, at read length of 70 bp), while with

bwa aln with either value of -n virtually no microbial reads longer than 70 bp are aligned to the

reference genome. As expected, the percentage of mapped microbial reads decreases when applying

more stringent mapping quality filters to alignments generated by all three programs. Introducing

different levels of deamination to microbial reads does not show a strong effect in their erroneous

alignment to the human reference genome (Additional file 1: Fig. S10).
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Together, the results of our analysis of simulated data demonstrate that the high degree of reference

bias in ancient DNA read alignment when using bwa with standard parameters is mitigated at

known sites by aligning against a variation graph with vg, or alternatively by relaxing the alignment

parameters for bwa aln. Although read modification in bwa aln also removes bias, it does this at

the cost of decreasing sensitivity for reads containing the reference allele, whereas vg increases the

sensitivity for reads containing the alternate allele. This increase in vg’s sensitivity in mapping reads

containing the alternate allele is achieved at comparable error rates to those observed with bwa aln,

although there is a slight decrease in accuracy in mapping the reference allele.

Aligning ancient samples to the 1000GP variation graph

To evaluate whether the results seen in the previous section carry over to real ancient DNA data,

we selected 34 previously published ancient DNA samples (Table 1 and Additional file 1: Table. S4),

including Iron Age, Roman, and Anglo-Saxon period samples shotgun sequenced to low-medium

coverage [23, 24], high-coverage Yamnaya and Botai culture individuals [25], and target captured

samples from South America [26]. These are representative of the different types of data produced

in the field of aDNA, as they are of variable genomic coverage, they were generated as part of SNP

array target capture or whole-genome shotgun sequencing experiments, and were subject to different

enzymatic treatments.

First we evaluated the effect of using vg on standard quality control metrics used in aDNA

analysis, using mapping quality threshold 50 for vg and 30 for bwa aln as above, except where

stated otherwise. When using ANGSD to estimate sample contamination from the X chromosome

of male samples, vg gave similar but marginally increased values (mean 0.95%, range 0.30-3.36%)

compared to bwa aln -n 0.02 (0.87%, range 0.26-3.32%) (Additional file 1: Fig. S11). In terms of

total endogenous DNA percentage, vg gave slightly lower percentages (Additional file 1: Table. S5

and Additional file 1: Table. S6), though as we will see below, more reads are mapped to alternate

alleles. Finally, reads mapped with vg continue to show terminal deamination damage, which is

used as a standard diagnostic for the presence of true ancient DNA, as seen in mapDamage [27]

plots, although levels are slightly reduced (Additional file 1: Fig. S12). We attribute this reduction

to differences in softclipping by the vg algorithm, which follows bwa mem not bwa aln (Additional

file 1: Fig. S13).

To investigate the effect of using vg and a variation graph on genetic variant calling and genotyping,

we focused on the Yamnaya sample from reference [25], which provides approximately 20-fold coverage

of the genome, thus allowing us to compare results to confident genotype calls, and to downsample

to explore behaviour at different sequencing depths. We called variants on the full depth sample

using bcftools [28] for both vg and bwa aln alignments, and used these callsets as ground truth.

Looking at high quality heterozygous transversion sites, vg has an alternate allele mapped read

fraction of 0.4925 95% CI [0.4914,0.4937] compared to 0.4742 95% CI [0.4731,0.4754] of bwa aln -n

0.02 and to 0.4773 95% CI [0.4761,0.4784] of bwa aln -n 0.01 -o 2. As expected, this difference

was entirely due to mapping to previously identified 1000 Genomes Project sites present in the
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graph: new sites not in the graph showed no difference between the methods (Additional file 1: Fig.

S14 and S15). The restriction to transversions for this analysis is a standard approach in aDNA

analysis to control for noise created by deamination damage, which generates apparent transitions.

We next measured our ability to recover the heterozygous variants in the full coverage set at

lower coverage levels. As seen in Figure 3a, when calling using bcftools, bwa aln recovers fewer

heterozygous SNPs than vg map alignment to the 1000GP graph at all coverage levels, regardless of

the parameters used (’-n 0.02’ or ’-n 0.01 -o 2’). For example at 4x coverage, vg map recovers ≈13%

more heterozygotes as a fraction of the total. Filtering bwa aln alignments using read modification

reduces sensitivity still further. Additionally, relaxing the mapping quality filter from 30 to 25 gave

only a marginally higher sensitivity to bwa aln. We note that if pseudo-haploid calls were made by

selecting a random spanning read as is often done in aDNA analysis [29], then the allele imbalance

described in the previous paragraph will directly lead to undercalling of alternate alleles.

The effect of reference bias in indel detection is even more striking. In Figure 3b, vg graph recovers

many more indels than bwa aln, approximately twice as many at high coverage and an even greater

factor at lower coverage. If reference bias for indels were unrelated to allele length, then the average

coverage of an alternate allele would be approximately constant across allele lengths. This is what

we see with vg graph but not with bwa aln, which was unable to detect variants with allele length

above 7 bp (Figure 4a and Additional file 1: Fig. S16). This means that because of reference bias,

we are missing important variation with bwa aln which is recoverable with vg map.

To illustrate this point, we looked at a clinically important variant associated with HIV-1 resistance

(CCR5 delta 32), whose origins and history have been debated in the literature [30, 31]. This deletion

was not detected in any of the ancient samples using ’-n 0.02’ or ’-n 0.01 -o 2’ bwa aln parameters,

but was clearly present in the 4900 year old Yamnaya sample and three more recent ancient British

samples (Figure 4b). The Yamnaya observation predates the previous oldest direct measurement in

ancient skeletons 2900 years old [32], consistent with older dates of origin of the allele suggested by

population genetic analysis [31]. The ability to detect the variant without bias enables investigation

of the allele frequency trajectory in ancient samples.

Population genetics analyses

In order to evaluate the consequences of reference bias, we applied the ABBA-BABA test of

phylogenetic tree topology based on the D-statistic of population relationship [33, 19]. When

estimating D-statistics of the form D(vg graph, bwa -n 0.02; GRCh37, Chimp), a deviation from zero

indicates an excess of shared alleles between bwa- or vg- aligned samples and the GRCh37 reference

genome. Our results based on pseudo-haploid random-allele calls, summarized in Additional file

1: Fig. S17, show negative D-statistics for all but a handful of samples when we use the -n 0.02

settings, consistent with bwa calls being closer to the reference than vg calls (also observed with

D(vg graph, bwa -n 0.02; GRCh37, Alternate Allele) (Additional file 1: Fig. S18)), but this bias

is removed when the bwa aln -n 0.01 -o 2 settings are used (Additional file 1: Fig. S17). We

observe the same process in D-statistics with simulated data (Additional file 1: Fig. S19). When
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we applied the read modification approach to the bwa-mapped data, we also saw no consistent

deviation from zero in D(vg, bwa-modreads; GRCh37, Chimp), as expected from our earlier results

(Additional file 1: Fig. S20).

We also investigated the effect of vg or bwa aln alignment on Principal Component Analysis

(PCA), another widely used analysis technique in the field of aDNA. Restricting this analysis to

samples from Europe and West/Central Asia, we projected the ancient samples and the reference

genome onto a PCA plot derived from modern samples. We observe modest differences between the

positions of vg and bwa aligned samples in the first two principal components, but these are not

conclusive in terms of the direction of the bias (Additional file 1: Fig. S21 and S22). For example,

the bwa processed Botai sample appears to be slightly closer to the reference than its vg aligned

equivalent, while the opposite pattern is observed for the Yamnaya sample. Given the variability in

our PCA results, it is not possible to make strong conclusions about the effects of removing reference

bias on PCA projection.

Given the strong differences in terms of indel detection observed between vg and bwa aln processed

data, we also investigated the impact of reference bias on PCAs estimated with indels of different

lengths. When restricting our analysis to chromosome 21 alternate alleles called in the vg processed

Yamnaya individual, clear genetic clusters corresponding to the 1000 Genomes super populations

are maintained across all allelic lengths up to 18 bp (Additional file 1: Fig. S23). The same is not

true for bwa aln, which did not recover any indels longer than 7 bp. This confirms that because

of reference bias, when using standard methods for ancient DNA sequence alignment, population

genetic analysis can not reliably make use of indel data, although there is information present which

can be accessed without bias when mapping with vg.

Discussion
The analysis of highly fragmented and damaged ancient DNA sequence data is challenging and

subject to reference bias, leading to a relative under-representation of alternate alleles at polymorphic

sites. The consequences of this in downstream analysis can be real but quite subtle, as has been

noted before [10], and we have seen in our results. Here we have shown that vg can be used to

effectively remove this reference bias, especially in the presence of post-mortem damage. In particular

it makes available unbiased calling of indel polymorphisms, which are frequently ignored in ancient

DNA studies due to very strong reference bias.

Although other methods have recently been introduced to address reference bias in SNPs, all of these

make some compromises. The approach to modify reads [10] reduces sensitivity, while the alternative

to modify the reference [15] increases error rates. Our results suggest that the best approach to

using bwa aln for ancient DNA alignment is probably to use very relaxed parameters, as proposed

by Kircher et al. [14] (-n 0.01 -o 2) in combination with disabling seeding as recommended by

[13] (-l 1024) and mapQ 25 filtering. This had a beneficial impact in terms of sensitivity (99.60%

vs 97.34% for the mapping of reads containing the alternate allele) and a more balanced alternate

allele representation (0.49936) but also increases error rates, for example increasing the rate of false

mapping short microbial reads (Additional file 1: Fig. S9).
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We have shown that vg effectively removes reference bias at known variants in its graph (both

SNPs and indels), and its spurious alignment of microbial contaminants at short lengths can be

controlled more effectively than for bwa aln with relaxed parameters by increasing the mapping

quality threshold. Erroneous mapping of short contaminant sequences is a known issue in ancient

DNA, and strategies are continuously being developed to address it [34]. The vg approach also uses

alignment information efficiently for variant calling, which can be important at low read coverage

(Figure 3).

One complication of our analysis is that mapping qualities are not directly comparable between

vg and bwa aln. Because of this, we presented comparisons between vg and bwa aln at different

mapping quality filter thresholds. For vg in particular, we recommend imposing a minimum mapping

quality filter of 50 for obtaining error rates comparable to those of bwa aln (albeit slightly higher),

while maintaining high sensitivity and minimizing the spurious alignment of microbial reads.

More generally, we note that different mapping programs and parameters, and different procedures

for data pre-processing such as adapter trimming, or the imposition of a minimum read length

threshold prior alignment, will all affect how ancient samples compare to each other. For any given

analysis, it is important to standardize these settings and to remap all ancient samples in the same

way to reduce spurious findings.

An additional drawback of vg is the slightly lower sensitivity when compared to bwa aln in the

mapping of reads in repetitive regions, as shown in [17]. When aligned to the linear reference, they

map to a unique place in the linear reference, but in variation graphs they may map to more than

one place. This becomes worse as more variants are introduced into the graph, which is why we

included only variants with 0.1% minor allele frequency or more in our graph, as recommended by

Garrison et al. [17].

Furthermore, read alignment with vg takes approximately 5x longer than with bwa aln -n 0.01

-o 2 and 29x than bwa mem (Additional file 1: Table. S7), and the memory requirements for both

indexing the graph and read mapping can be much more substantial than for indexing a linear

reference genome, depending on the number of variants included.

One possible concern with the use of vg as proposed is that it depends on a reference graph

constructed from present day human variation. For modern human samples from the last 50,000

years, this is not a major issue, since almost all common variation is shared with extant populations

on that time frame. For example, 96.99% of high quality variants called de novo in Ust’Ishim

chromosome 1 accessible regions are found in the 1000 Genomes Project variant set [35]. However

this approach would not be appropriate for samples from archaic populations such as Neanderthals

and Denisovans, for which we do not yet have substantial collections of genetic variation. Introgressed

material from archaic humans within modern humans can provide a partial source of information on

genetic variation in those parts of the genome where it persists, but for graph alignment approaches

to work effectively across the whole genome in archaic samples we will have to wait until sufficient

archaic genomes have been sequenced to high depth to enable construction of a representative

archaic variation graph. A related advantage of working with graph genomes is that, as multiple
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independently assembled human genomes (modern or ancient) are added into the reference variation

graph, we will be able to assign ancient DNA sequence to human sequences not in the current

reference graph, which are currently hidden from standard analyses of ancient DNA.

Beyond studies of human genetic history, ancient DNA is also increasingly used to study the

history and evolution of other species, from bacterial pathogens to domesticated crops and extinct

megafauna [3]. In many of these cases natural diversity is higher than in humans, and ”pangenomic”

approaches that are equivalent to sequence variation graphs are becoming more widely used, often

including more complex structural variation [36, 37]. Ancient DNA analyses in such species and

systems are expected to benefit from a variation graph mapping approach proportionately to the

increased diversity represented in the pangenome variation graph.

Finally, as shown in our analyses, indel variants have the potential to be ancestry informative, but

have been almost totally ignored in the aDNA field because of difficulties in aligning reads containing

these variants, particularly when above a few base pairs length. Variation graph approaches offer

a way of accessing this variation, and open new avenues for aDNA research both at the level of

population history but also by enabling probing of clinically relevant indel mutations in ancient

individuals across the archaeological record, as demonstrated for the CCR5 deletion allele.

Methods

Datasets and sequence data processing

In order to compare read mapping between vg and bwa aln, we compiled a dataset of sequencing

reads from previously published ancient individuals (Table 1). Adapter trimming was done with

AdapterRemoval [38] for paired reads (merging overlapping reads) and cutadapt [39] for single

ended reads. Unaligned FASTQ data from the other two datasets [24, 26] were already provided

with trimmed adapters. We aligned trimmed reads to the human linear reference genome (hs37d5)

using bwa aln [28] with parameters -l1024 (for disabling seeding) and -n 0.02 [13] or -n 0.01 -o

2, with minimum base quality -q 15. We constructed the index file for vg [17] with hs37d5 and

variants from the 1000 Genomes Project phase 3 dataset [16] above 0.1% MAF. In total, the graph

contained 27,485,419 SNPs, 2,662,263 indels and 4,753 other small complex variants. Trimmed

reads were aligned to the variation graph using vg (v1.16.0-137-ge544284) map with parameters

‘–surject-to bam -k 15 -w 1024’. Duplicate reads were removed with sambamba markdup [40] using

the ‘–remove-duplicates’ parameter. BAM files were subsequently filtered with samtools view [28],

selecting reads with different mapping qualities thresholds (bwa aln and vg: mapQ > 0; ≥ 25, ≥
30; vg only: ≥ 50; ≥ 60). The reason for using different mapping quality thresholds is that bwa uses

a different mapping quality estimation process with maximum around 37 than vg with maximum

60. Coverage was estimated with qualimap [41] bamqc utility. We present read number, endogenous

DNA content and coverage for samples aligned with vg and

bwa aln in Additional file 1: Table S5 and Additional file 1: Table S6.
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Simulations

We simulated all possible reads overlapping chromosome 11 SNPs in the Human Origins dataset

[19, 20]. In half of the simulated reads, the alternate allele was introduced. We then added different

levels of deamination into simulated reads using gargammel [22], based on empirically estimated

post-mortem damage in a dataset of 102 ancient genomes [21]. We aligned these simulated reads to

the 1000GP graph with the vg mapper or to the linear human reference genome (GRCh37) with bwa

aln, with parameters -n 0.02 or -n 0.01 -o 2 [14], bwa mem and vg (here referred to as ’vg linear’).

Read mapping with vg to the 1000GP graph took approximately four (2.12-7.57) times longer than

with bwa aln -n 0.02. The resulting alignments were sorted with sambamba sort, converted to

bam with samtools view, and filtered with different mapping qualities thresholds. We estimated

read alignment accuracy by comparing the genome coordinate from where each read originates and

the coordinate obtained after mapping, accounting for offsets between these caused by softclips,

deletions and insertions. Read mapping errors were visualized using the R [42] package circlize [43].

To investigate the impact of different read lengths and deamination in the false alignment rates of

the three read mappers (vg, bwa aln and bwa mem), we simulated 100,000 reads of different sizes

(35-100 bp) from a set of microbial reference genomes identified in the Clovis sequence data [44]

using gargammel [22]. Additionally, we introduced post-mortem changes in a subset of this data (30,

50, 70 and 90 bp) based on [21]. We processed all simulated microbial read data as described above.

Authenticity and contamination estimates

Post-mortem deamination plots were generated with mapDamage v2 [27], sampling one million

reads per sample. We estimated X-chromosome contamination in all male samples with ANGSD

[45], with the parameters ’-r X:5000000-154900000 -doCounts 1 -iCounts 1 -minQ 20’ and using

polymorphic sites identified in the HapMap Project.

Variant calling and population genetics analyses

For population genetics analyses, we used the Human Origins dataset distributed with Lazaridis et

al. [46]. In order to estimate D-statistics and Principal Component Analyses, we generated pileups

for each individual [47] at 1233553 SNPs from the Human Origins dataset using samtools mpileup,

disabling base quality score recalibration and imposing a minimum base quality filter of q20. We note

that pileups were generated from bam files filtered with a minimum mapping quality threshold of 30

for bwa aln or 50 for vg. We generated pseudo-haploid genotypes by randomly sampling one allele

at each SNP site and converted resulting pseudo-haploid genotypes to PLINK format using PLINK

1.9 [48]. These were subsequently merged with the Chimp and Href (the human reference genome)

samples from the Human Origins dataset and converted to eigenstrat format using convertf. We

estimated D-statistics with qpDstat [19], passing the parameter ’printsd: YES’ to obtain standard

deviation estimates.

For the Principal Component Analysis estimated with SNP sites, we first filtered the Human

Origins dataset, removing variants with minor allele frequency below 0.02 and genotyping missingness
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of 0.05, and selecting West Eurasian individuals. We merged this dataset with the pseudo-haploid

genotypes belonging to the ancient samples as described above and ran smartpca [49, 50], restricting

the analysis to transversion SNPs, using the parameters ’lsqproject: YES’ to project ancient samples

into the PCA coordinates estimated with present-day populations, ’killr2: YES’ to exclude SNPs

in high linkage disequilibrium (r2thresh: 0.2) and performing two iterations for outlier removal

(numoutlieriter: 2).

We used PLINK to estimate PCAs with indels. We prepared our datasets by first calling indels in

the Yamnaya sample processed with vg and bwa, as described below, keeping variants with quality

equal or greater than 30 and keeping biallelic indels only. We used vt [51] for variant normalization,

taking the human reference genome as input, and duplicate removal. Then, we generated two

datasets, based on the 1000 Genomes chromosome 21 indels, restricting by variants with alternate

alleles identified in the vg- or in the bwa-aligned Yamnaya sample.

Downsampling experiment

We downsampled bwa aln and vg alignments belonging to the high-coverage Yamnaya individual

from 1 to 10x using samtools. We then called 1,054,447 biallelic SNPs present in the 1000 Genomes

chr21 VCF from all alignments using bcftools v. 1.8, requiring a base quality of at least 20. From

the resulting variant calls, we kept only biallelic SNPs and selected heterozygous genotypes. We

removed potential deamination SNPs and excluded variant calls with quality score below 30. Finally,

we estimated the proportion of variants correctly recovered by comparing the genotypes obtained

from the downsampled alignments with those obtained at full coverage. Comparison with the read

modification method was done by modifying the downsampled and full coverage bwa-aligned reads

with the 1000 Genomes SNP alleles and calling variants as described above.

Alternate allele support and allele balance

In order to compare alternate allele support between vg and bwa aln alignments, we called chro-

mosome 1 SNPs from the Yamnaya alignments with bcftools. We then filtered these by variant

quality greater or equal than 30, with depth of coverage above 8, and selected heterozygous variants.

From these genotype calls, we obtained reference and alternate allelic depth and compared alternate

allele support between the vg and bwa aligned sample. To investigate reference bias at the level of

indels, we called variants with FreeBayes [52] from the Yamnaya sample processed with both vg and

bwa aln with default parameters, which we subsequently filtered for the sites present in the 1000

Genomes variation graph used for alignment.

Comparison with additional methods for reducing reference bias

We compared vg with the workflow proposed by [10] to reduce reference bias. The following method

was applied to both real and simulated data. First, for each bwa-aligned sample, we selected reads

overlapping with the Human Origins SNPs or with the 1000 Genomes dataset. We then modified

the allele in these reads using the ’modify read alternative.py’ script, distributed with [10], and
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remapped them with bwa aln to GRCh37 as described above. We then kept the original reads which

mapped to the same location of the modified reads with ’filter sam startpos dict.py’. We estimated

D-statistics from the resulting filtered alignments as described above.

We also compared vg with a second workflow for removing reference bias [15]. Simu-

lated sequence reads were aligned with bwa aln to two versions of the reference genome,

one containing reference alleles and the other alternate alleles. We used ’bam-mergeRef’

(https://github.com/StephanePeyregne/bam-mergeRef) to merge the resulting alignments, keeping

one version of a read if it maps to the same region in both alignments, and also keeping reads

mapped in one alignment but not in the other.
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Origins and genetic legacy of neolithic farmers and hunter-gatherers in europe. Science 336(6080), 466–469 (2012)

30. Novembre, J., Galvani, A.P., Slatkin, M.: The geographic spread of the ccr5 δ32 hiv-resistance allele. PLoS biology 3(11) (2005)

31. Sabeti, P.C., Walsh, E., Schaffner, S.F., Varilly, P., Fry, B., Hutcheson, H.B., Cullen, M., Mikkelsen, T.S., Roy, J., Patterson, N., et

al.: The case for selection at ccr5-δ32. PLoS biology 3(11) (2005)

32. Hummel, S., Schmidt, D., Kremeyer, B., Herrmann, B., Oppermann, M.: Detection of the ccr5-δ32 hiv resistance gene in bronze age

skeletons. Genes & Immunity 6(4), 371–374 (2005)

33. Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.-Y., et al.: A

draft sequence of the Neandertal genome. Science 328(5979), 710–722 (2010)
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Figures

Table 1: Datasets analysed in the present study.
Dataset Number of individuals Genomic coverage Treatment Type Region

Damgaard et al. 2018 2 11.24-18.95x untreated whole-genome shotgun sequencing Kazakhstan
Martiniano et al. 2016 9 0.54-1.63x untreated whole-genome shotgun sequencing United Kingdom
Schiffels et al., 2016 10 0.47-7.86x partial UDG/USER whole-genome shotgun sequencing United Kingdom

Posth et al. 2018 13 0.02-0.40x partial UDG target capture South America
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Figure 1: Sequence tube maps. Sequence tube maps [54] of a small region of the human genome

with aDNA reads from the Yamnaya individual aligned with a) bwa aln to a linear reference sequence

and b) vg map to a graph containing 1000 Genomes variants. The individual is heterozygous for

both an indel (GTTTGAG/-) and a SNP (A/C) in this region, with insertion and alternate allele on

the same haplotype. The two underlying haplotypes in this region are coloured in grey, and red and

blue lines indicate forward and reverse reads respectively. None of the 6 reads across the insertion

and only 2 of 12 reads across the SNP were mapped by bwa. Reads were locally realigned with vg

map to the graph for the purpose of visualization.
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Figure 2: Comparing vg graph, bwa aln and bwa mem using simulated ancient DNA. Com-

paring bwa aln and vg map performance when aligning reads simulated from chromosome 11 of

the Human Origins panel. Lines represent ordinary least squares (OLS) regression results for the

allele/aligner conditions corresponding to their colors. a) Comparison between vg graph and bwa

aln -n 0.02. b) Comparison between vg graph and bwa aln -n 0.01 -o 2. c) Comparison of

the mean percentage (and 95% CI) of mapped reads in simulated data by vg graph, bwa aln and

bwa mem using different alignment parameters and minimum mapping quality filtering thresholds. d)

Mean alternate allele fraction (and 95% CI) of simulated reads after alignment with the different

methods and minimum mapping quality filtering thresholds. We also show results obtained after

processing simulated data with two previously published workflows for addressing reference bias:

modified reads (’modreads’) [10] and modified reference genome (’altref genome’) [15].



Martiniano et al. Page 18 of 19

0
20

00
40

00
60

00
80

00
10

00
0

Coverage

C
ou

nt
 o

f c
or

re
ct

 H
E

T
 g

en
ot

yp
es

 c
al

le
d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x

high−coverage vg

high−coverage bwa

high−coverage bwa aln −n0.02 modreads

high−coverage bwa aln −0.01 −o2 modreads

downsampled vg
downsampled bwa

downsampled
bwa aln −n0.02
modreads

downsampled
bwa aln −n0.01 −o2
modreads

●

●

●

●

●

●

●

●

●

vg 1000GP graph q30
vg 1000GP graph q50
vg 1000GP graph q60
bwa aln −n0.01 −o2 q25
bwa aln −n0.01 −o2 q30
bwa aln −n0.02 q25
bwa aln −n0.02 q30
bwa aln −n0.02 q30 modreads
bwa aln −n0.01 −o2 q25 modreads

a
SNPs

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Coverage

C
ou

nt
 o

f c
or

re
ct

 H
E

T
 g

en
ot

yp
es

 c
al

le
d

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x

high−coverage vg

high−coverage bwa

downsampled vg

downsampled bwa

●

●

●

●

●

●

●

vg 1000GP graph q30
vg 1000GP graph q50
vg 1000GP graph q60
bwa aln −n0.01 −o2 q25
bwa aln −n0.01 −o2 q30
bwa aln −n0.02 q25
bwa aln −n0.02 q30

b
Indels

Figure 3: Downsampling a high-coverage aDNA sample. The comparative effect of downsam-

pling on heterozygous variant calling following bwa aln and vg map alignment of reads from the

ancient Yamnaya sample [25] with different parameters and mapping quality filtering thresholds,

and including post-processing of bwa aln with the modified read filter [10]. a) SNPs; b) Indels (the

modified read filter does not apply in this case).
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Figure 4: Comparison between vg and bwa aln for indel detection. a) Alternate allele

observations at indels. b) Comparison between vg graph and bwa aln in the detection of the CCR5

delta 32 deletion associated with HIV-1 resistance. Reads containing the deletion were mapped with

vg in four ancient samples, but not with bwa.


