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Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic
chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through
different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity.
Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS
compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial
activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium
perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial
activities within a 10mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same
time.The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and
the nature of the pathogens. Conclusions.ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity
of EOs thus improving their use in CAM.

1. Introduction

Essential oils (EOs) are endowed with potent, antioxidant,
antimicrobial, and anti-inflammatory properties [1, 2], mak-
ing them convenient “3-in-1” active ingredients in a plethora
of Complementary and Alternative Medicine preparations.
These properties underpin active research and development
resulting in an ever-increasing number of works reporting
on both their composition and bioactivity. However research
on essential oils suffers from their inherent intraspecific vari-
ability composition which depends—among other factors—
on the location, altitude, meteorology, and type of soil, thus
resulting in a high rate of irreproducible reports. Further-
more, the evaluation of the bioactivities of EOs cannot be
always attributed to one single compound in the mixture.
Synergisms and antagonisms have been consistently reported
between the constituents of EOs [3, 4].

In fact, the prediction of the bioactivity of EOs after
their unique chemical composition is an idea already well

established among the scientific community [3] but not sys-
tematically explored yet, due to the experimental complexity
of characterising all possible chemical interactions between
dozens of EOs components and the microbes.

A computational tool allowing for the selection of EOs
with similar antimicrobial effects, regardless of their chem-
ical variations and without the need of laboratory analysis,
would result in savings and an enhanced consistency of the
final product. This tool should also be able to take into
account possible (bio)chemical interactions, synergisms, and
antagonisms between the oil’s components and the microbes.
The use of computational models such as artificial neural
networks (ANNs) holds potential to overcome all these chal-
lenges. In fact, we already demonstrated that the prediction
of the antioxidant properties of EOs in two experimental
biochemical models is possible [5].

ANNs are composed by a set of computer-generated
virtual/artificial neurons organized in interconnected layers.
Each neuron has a specific weight in the processing of
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the information. The optimal weights are calculated with
available pairs of input and output data constituting the
training set. Using these pairs, the ANN is able to minimize
output error modifying weights as required. While two of
these layers are connected to the “outside world” (input layer,
where data is presented and output layer, where a prediction
value is obtained), the rest (hidden layers) are defined
by neurons connected to each other, avoiding connections
between neurons of the same layer. In our case the inputs are
the different proportions of each chemical in the EO whilst
the output is the inhibition zone provided by the whole EO.

To our knowledge, the use of ANNs in microbiology
has been quite restricted to the modelling of microorganism
growth [6–8]. In this workwe aim at using this computational
approach to predict the antimicrobial properties of complex
chemical mixtures on a panel of microorganisms.

2. Materials and Methods

2.1. Data Retrieval. We selected scientific reports using
the National Committee for Clinical Laboratory Standards
[9] standardized method for zone diameter measurements
reporting similar inhibitory values for the same antibiotics of
reference.

A total of 18 articles [10–27] meeting these criteria were
found, providing 49 couples of inputs (composition) and
outputs (antimicrobial activity) data against one ormore of 14
pathogens (see Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/561024) of which we
only selected Staphylococcus aureus ATCC 25923 (facultative
anaerobic Gram+ cocci), Escherichia coli ATCC 25922 (fac-
ultative anaerobic Gram− bacillus), Clostridium perfringens
Kukens Turkey (anaerobic Gram+ bacillus) (abbreviated in
the tables as S. perfringens KT), and Candida albicans ATCC
10239 (yeast).

2.2. Selection of Inputs. The chemical composition of the
selected EOs included up to 179 different compounds. In
order to avoid excessive complexity of the neural network
and minimize the associated structural problems, it was
necessary to reduce the number of inputs. Two considerations
were made: either to retain the compounds with known
antimicrobial properties only (small data set, Figure 1) or
to eliminate the compounds without known antimicrobial
activity and/or present at very low percentages (≤ 5%) (larger
input data set, Table S2, Supplementary Data).

Using the first strategy, only 22 volatile compounds with
proven antimicrobial activity were retained (Figure 1): (E)-
anethole (1), syn-7-hydroxy-7-anisylnorbornene (2), borneol
(3), camphor (4), carvacrol (5), p-cymene (6), eucalyptol
(7), geijerene (8), limonene (9), Linalool (10), menthone
(11), nerolidol or peruviol (12), 𝛼-pinene (13), 𝛽-pinene
(14), piperitone (15), pregeijerene (16), pulegone (17), g-
terpinene (18), terpinen-4-ol (19), 𝛼-terpineol (20), thymol
(21), and thymol methyl ether (22). In addition we included
palmitic acid (23). This is not an EOs component, but its
presence is reported in some plant extracts together with
volatiles components. Its antimicrobial properties against a
wide arrays of microbes have been recently reviewed [28].

On the other hand, by eliminating the minor compounds
without known/reported antimicrobial activity, we brought
the input components down to 75 for S. aureus, 78 for E.
coli, 47 for C. albicans, and 51 for C. perfringens. This option
assumes that their contribution to the global antimicrobial
activity and potential synergistic/antagonistic effects could
be neglected a priori, just because they are in too low
quantity. In this way, the 23 principal antimicrobial agents
forming the previous set are still present in this one, escorted
by other major compounds which characterize the EOs.
The minimum concentration was set up to 5% of the EO
composition (see Table S2 in Supplementary Data for a list
of the retained chemicals).

2.3. Design of the ANN. ANNs were developed and run
on a personal computer using fast artificial neural network
software ver. 1.2.0-1. This package was downloaded from its
original repository (http://leenissen.dk/fann/) and installed
following the guidelines provided by the developers in a Dell
OptiPlex GX620 under Ubuntu 7.04 andMicrosoftWindows
XP Professional SP2.

FANN is a free, open source neural network library,
which implements multilayer artificial neural networks in C
language with support for both fully connected and sparsely
connected networks. Cross-platform execution in both fixed
and floating point is supported [29]. We chose this software
because it is versatile, well documented, and fast as well as
including a framework for easy handling of training data sets.

Several different designs of feed forward, multilayer, and
back-propagation ANNs with a variable number of input
neurons depending on different choice criteria of the EOs
components, a variable number and topology of hidden lay-
ers, and one or more neurons in the output layer were tested
(see Figure S3, SupplementaryData).The internal parameters
were as described in our previous paper [5]: activation
functions were set to FANN SIGMOID SYMETRIC for both
hidden and output neurons, and training was based on a
supervised method with back-propagation strategy, learning
rate 0.7, minimum error 0.0001, and maximum epochs to
500000.

The data were transformed into a suitable interval (0 to 1)
for input and output neurons by dividing their value by 100.
The training-validating tests were run in automated manner
by using an in-house program in C language developed
by one of the authors (Cortes-Cabrera). The most accurate
networks were selected as potential candidates and further
validated.

We used the following criteria in the interpretation of
the accuracy of the predictions, based on their deviations
from the real inhibitory diameters (ΔID): ΔID ≤ 5mm
was considered as very accurate, ΔID ≤ 10mm represent
accurate predictions, andΔID> 10mmwouldmeanmistaken
predictions.

In addition, we compared the results of ANNs designed
with FANN with the results obtained using a commercial
software. For this purpose, NeuralWorks Predict was chosen.
This is an integrated, state-of-the-art tool for rapidly creating
and deploying prediction and classification applications. It
incorporates years of modelling and analysis experience
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Figure 1: Chemical structures of the chemicals with proven antimicrobial activity present in selected EOs and plant extracts.

gained from working with a wide variety of analysis and
interpretation problems. Conveniently, this software is fully
integrated within the Microsoft Office environment, run-
ning as an Add-in of Microsoft Excel. NeuralWorks Predict
claims to combine neural network technology with genetic
algorithms, statistics, and fuzzy logic to automatically find
optimal or near-optimal solutions for a wide range of
problems [29]. An evaluation copy of NeuralWorks Predict
(PredictDemo) was downloaded from its official repository
(http://www.neuralware.com/). PredictDemo has the same
functionality of NeuralWorks Predict although limited to a
maximum of 32 input neurons. Therefore we used this tool
with the small input data set (𝑛 = 23) shown in Figure 1. All

the available parameters for the type of input data namely
“noise,” “data transformation,” and “network search” were
tested and the best options kept for further work.

3. Results

3.1. Optimisation of the ANN Design and Input Data Set in
FANN. In PredictDemo the ANN is internally designed by
the software as to better predict the data and its topology
is not accessible to the user. Contrarily, in FANN the user
has to design the topology, so a preliminary study of the
performance of different network topologies had to be done.
For this purpose when using the small input data set of 23



4 Evidence-Based Complementary and Alternative Medicine

Table 1: Prediction by PredictDemo of the inhibition diameter in disk diffusion assays for a specific microorganism (1 output) using the
small data input set (𝑛 = 23). Accuracy is expressed in the percentage of predictions within the given error margin. In parenthesis, total of
validating sets correctly predicted within the corresponding error margin.

Strains Accuracy %
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

S. aureus ATCC 25923 72.2 (13) 88.9 (16) 94.4 (17) 5.6 (1)
E. coli ATCC 25922 33.3 (7) 71.4 (15) 81.0 (17) 19.0 (4)
C. perfringens KT 72.2 (13) 83.3 (15) 100.0 (18) 0 (0)
C. albicans ATCC 10239 20.0 (3) 33.3 (5) 60.0 (9) 40.0 (6)

Table 2: Prediction by an artificial neural network (FANN) of the inhibition diameter in disk diffusion assays for a specific microorganism
(1 output) using the small data input set (𝑛 = 23). Accuracy is expressed in the percentage of predictions within the given error margin. In
parenthesis, total of validating sets correctly predicted within the corresponding error margin.

Strains Accuracy %
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

S. aureus ATCC 25923 61.1 (11) 83.3 (15) 100 (18) 0 (0)
E. coli ATCC 25922 47.6 (10) 71.4 (15) 81.0 (17) 19.0 (4)
C. perfringens KT 38.9 (7) 61.1 (11) 81.0 (17) 19 (4)
C. albicans ATCC 10239 26.7 (4) 66.7 (10) 86.7 (13) 13.3 (2)

components we kept the same topology for the hidden layers,
namely, 20→ 15→ 7, as described in our previous work [5].

Whenusing the large input data set, we preliminary tested
different topologies with 51 input components predicting the
antimicrobial activity against C. perfringens. The network
with the most accurate predictions for each topology has
been chosen among ten, and the average of three different
predictions led to the following results: 30→ 15→ 5 (43%
accuracy), 40→ 30→ 20→ 10 (28% accuracy), 20→ 30→ 5
(18% accuracy), 20→ 20→ 20 (7% accuracy), and 10→ 20→
30 (4% accuracy). Therefore the 30→ 15→ 5 topology was
kept for the rest of the experiments with this input data set.

3.2. Prediction of the Antimicrobial Activities of Essential Oils
(1 Output). Theability of open source and commercial ANNs
to predict the antimicrobial activity of very complex natural
products on selected microorganisms was compared using
the same inputs (small input data set of 23 components) and
the same learning/validating sets: 30/6 for S. aureus; 32/7
for E. coli; 31/6 for C. perfringens; and 30/5 for C. albicans.
The overall accuracy of the predictions is shown in Table 1
(PredictDemo) and Table 2 (FANN). The Linear Regression
Analysis for all the experiments using PredictDemo is pre-
sented in Figures and Tables S4–S8 (Supplementary Data)
whilst those corresponding to experiments using FANN
are presented in Figures and Tables S9–S11 (Supplementary
Data).

The influence of the different input data set on the accu-
racy of the predictions can be discussed by comparing Table 2
(FANN, small data set) and Table 5 (FANN, large data set).

Three different experiments per microorganism, each
with different learning sets, were run in both types of
software. Conditions for FANN are described in Material
and Methods and only the best of 10 different networks was
chosen for each test. For PredictDemo the most accurate
predictions have been observed with this combination of

parameters: very noisy data, comprehensive data transforma-
tion, exhaustive variable selection, and exhaustive network
search.

During the training, PredictDemo was able to create
artificial neural networks from the input data and to establish
a reliable correlation between the inputs and the outputs:
10 of the 12 ANNs created present a regression coefficient
𝑅
2
> 0.90 (Figure S2, Supplementary information). Also the

inhibition diameters predicted by the software for all selected
microorganisms are not incongruous; that is, the predicted
inhibitory diameters stay in the same range of values than
the real ones, namely, between 0 and 60mm (Table S3, Sup-
plementary information). Although the correlation obtained
in the validating set was lower than for the learning set
(Figure S4, Supplementary information), the prediction for
the validating sets was “very accurate” (ΔID< 5mm) in 36 out
of 72 cases and “accurate” (ΔID < 10mm) for more than two-
thirds. However, nearly one-third of the predictions done by
this software were far from the real values (ΔID > 10mm).
Overall, PredictDemowasmore able to predict the inhibition
diameters for S. aureus and C. perfringens than for E. coli and
C. albicans.

The first learning set, consisting of EOs on which the 23
compounds with known antimicrobial activity represented
the higher percentage within the oil, allowed the ANN to bet-
ter predict antimicrobial activities, even if the validating set
consisted of EOs in which the same components accounted
for a low percentage of the total composition.

Overall, the predictions made by the two different com-
putational approaches were similar, with nearly half of the
predictions less than 5mm away from the real inhibition
disk diameters; exactly the same percentage (70%) could be
considered as accurate (ΔID < 10mm) and nearly one-third
inaccurate (ΔID> 10mm).A closer look to their performance
per microorganism reveals that the prediction of antimicro-
bial properties of EOs against S. aureus is the most accurate
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Table 3: Effect of different learning sets on the prediction by an artificial neural network (PredictDemo) of the inhibition diameter in disk
diffusion assays for S. aureus (1 output, small data input set). Accuracy is expressed in the percentage of predictions within the given error
margin.

Learning set Accuracy (%)
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

Higher % 54.2 75.0 87.5 8.3
Lower % 41.2 62.5 79.2 20.8
Random 50.0 70.8 87.5 16.7

Table 4: Effect of different learning sets on the prediction by an artificial neural network (FANN) of the inhibition diameter in disk diffusion
assays for S. aureus (1 output, small data input set). Accuracy is expressed in the percentage of predictions within the given error margin.

Learning set Accuracy (%)
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

Higher % 50.0 66.7 83.3 16.7
Lower % 37.5 66.7 91.7 8.3
Random 45.8 79.2 91.7 8.3

Table 5: Prediction by an artificial neural network (FANN) of the inhibition diameter in disk diffusion assays for a specific microorganism
(1 output) using the large data input set. Accuracy is expressed in the percentage of predictions within the given error margin. In parenthesis,
total of validating sets correctly predicted within the corresponding error margin.

Strains Accuracy (%)
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

S. aureus ATCC 25923 66.7 (12) 88.9 (16) 100.0 (18) 0 (0)
E. coli ATCC 25922 81.0 (17) 85.7 (18) 95.2 (20) 4.8 (1)
C. perfringens KT 61.1 (11) 72.2 (13) 88.9 (16) 11.1 (2)
C. albicans ATCC 10239 33.3 (5) 73.3 (11) 86.7 (13) 13.3 (2)

regardless of the software, closely followed by predictions
against C. perfringens. However there is a higher degree
of error in the predictions of the antimicrobial properties
against E. coli and C. albicans. Therefore, in order to analyse
the influence of the different choices of learning sets in the
training and performance of the ANNs, we compared their
predictions against S. aureus. This shows that PredictDemo
performed better when trained with the set of oils containing
the highest percentage of known antimicrobial compounds,
whilst FANNperformed better if a random choice of EOswas
used for the training (Tables 3 and 4).

Predictions were now attempted with the large input data
set in FANN. This required a change of the topology of the
ANN as to accommodate chemicals between 47 and 78 in the
input layer. In this case, 3 different learning and validating sets
were created randomly for each microorganism and ANN.

Overall the predictions of the inhibition disk diameter
were more accurate with this new compound selection than
in the previous experiments with both PredictDemo and
FANN using the small input data set (Table 5). It can be
seen that the larger input data set allowed for nearly two-
thirds of the predictions to be less than 5mm away from the
real values, whilst more than 80% were in a range of ΔID
< 10mm. Almost all the predictions could be considered in
agreement with the antimicrobial activities reported by the
selected literature (93% with ΔID < 15mm).

These results may indicate that this choice of chemicals is
more representative in terms of the antimicrobial activity of

the EOs. An interesting outcome is also the higher accuracy
for E. coli (81% ΔID ≤ 5mm) when compared with the
previous experiments (47.6% with FANN and 33.3% with
PredictDemo). Predictions against C. albicans are also very
much improved, but the difficulty inmodelling the sensitivity
of this microorganism within 5mm of error is still evident.

3.3. Simultaneous Prediction of the Antimicrobial Activities of
Essential Oils in Two orMoreMicroorganisms (2 or 3Outputs).
ANNs with 2 or 3 outputs were used to test the ability of
the FANN software to predict antimicrobial activity of two or
more pathogens at the same time, respectively. Consequently,
the learning and validating sets of data came from articles
in which the antimicrobial activity had been tested on the
2 or 3 pathogens of interest. The availability of such papers
determined the choice of S. aureus and E. coli as outputs for
the first test and S. aureus,E. coli, andC. perfringens as outputs
for the second one. The number of available data allowed
for 3 different learning and validating sets randomly selected,
giving 17 “two-outputs” experiments, and 12 “three-outputs”
experiments.The L/V sets followed the same 5 : 1 split used in
the “one output” experiments.

The results show that two outputs (= simultaneous pre-
dictions) did not significantly limit the prediction ability of
the artificial neural network (see Table 6 for summary and
Figures and Tables S12-S13 in Supplementary Data for all
results). Overall, the predictions were even more accurate
than those of ANNs with one output only: predictions of
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Table 6: Simultaneous prediction by an artificial neural network (FANN) of the inhibition diameter in disk diffusion assays for two
microorganisms using the large data input set. Accuracy is expressed in the percentage of predictions within the given error margin. In
parenthesis, total of inputs correctly predicted within the corresponding error margin.

Strains Accuracy %
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

S. aureus ATCC 25923 94.1 (16) 100.0 (17) 100 (17) 0 (0)
E. coli ATCC 25922 58.8 (10) 100.0 (17) 100 (17) 0 (0)

Table 7: Simultaneous prediction by an artificial neural network (FANN) of the inhibition diameter in disk diffusion assays for three
microorganisms using the large data input set. Accuracy is expressed in the percentage of predictions within the given error margin. In
parenthesis, total of inputs correctly predicted within the corresponding error margin.

Strains Accuracy %
ΔID ≤ 5mm ΔID ≤ 10mm ΔID ≤ 15mm ΔID > 15mm

S. aureus ATCC 25923 83.3 (10) 91.7 (12) 100.0 (12) 0 (0)
E. coli ATCC 25922 50.0 (6) 91.7 (11) 91.7 (11) 0 (0)
C. perfringens KT 58.3 (7) 83.3 (10) 91.7 (11) 8.3 (1)

the antimicrobial activity on S. aureus were again very accu-
rate. For E. coli, a less significant correlation was obtained.
However, still 58.8% of the predictions were accurate (ΔID ≤
5mm) and none more than 10mm far from the real value.
Here we need to take into consideration that the learning
and validating sets were different, so we cannot draw any
conclusion about the FANN software being more or less able
to predict antimicrobial activity with 1 or 2 outputs at the
same time. Whether these particularly accurate predictions
observed in these experiments could be due to amore reliable
data selection, which may limit the variability due to the
common sources or error in calculating the antimicrobial
activity, needs to be ascertained as soon as a larger number
of available data in literature is made available.

In Table 7 we show clearly that FANN is still able to make
accurate predictions of antimicrobial activity against three
pathogens at the same time. The most accurate predictions
are still observed for S. aureus whilst the prediction accuracy
for the other pathogens was in the average of the previous
predictions.

4. Discussion

4.1. Suitability of ANNs for the Prediction of Antimicrobial
Activities. EOs act upon microorganisms through a not
yet well defined mixture of both specific and unspecific
mechanisms. In this regard, ANNs are a very good option as
they have been successfully applied to processeswith complex
or poorly characterised mechanisms, as they only take into
account the causing agent and its final effect [8, 30].

Indeed, the antibiotic activities of EOs depend on a
complex chemistry and a poorly characterised mechanism of
action. Different monoterpenes penetrate through cell wall
and cell membrane structures at different rates, ultimately
disrupting the permeability barrier of cell membrane struc-
tures and compromising the chemiosmotic control [31]. It is
therefore conceivable that differences in the gram staining
would be related to the relative sensitivity of microorganism
to EOs. However, this generalisation is controversial as

illustrated by conflicting reports in the literature. Nakatani
[32] found that Gram-positive bacteria were more sensitive
to EOs than Gram-negative bacteria, whereas Deans and
Ritchie [33] could not find any differences related to the
reaction. The permeability of the membrane is only one
factor and the same EO may act by different mechanisms
upon different microorganisms. As an example, the EO of
Melaleuca alternifolia (tea tree), which inhibited respiration
and increased the permeability of bacterial cytoplasmic and
yeast plasma membranes, also caused potassium ion leakage
in the case of E. coli and S. aureus [34].

In addition, ANNs are theoretically able to take into
account synergies and antagonisms between inputs. There is
a consistent body of data on many crude essential oils being
more active than their separated fractions or components,
reported on synergies. In some cases synergistic activity
between two or three components could be experimentally
demonstrated [35, 36], but to do so with dozens of chemicals
is beyond reach.

Our results reflect the variability in the susceptibility of
different microorganisms to the same EOs, but more impor-
tantly point towards some general trends. The antimicrobial
effects of EOs upon S. aureus and C. perfringens (Gram+)
were accurately modelled by our ANNs, thus meaning a
clear relationship between the chemistry of EOs and their
susceptibility, perhaps suggesting a more additive, physical,
rather than pharmacological, mechanism of action. This also
opens the prospect for further studies in order to ascertain
the best set of volatile components providing optimum
antimicrobial activity against these two pathogens and/or
Gram+ in general. On the other hand, the lower accuracy of
the predictions against E. coli (Gram−) andC. albicans (yeast)
may suggest more complex pharmacological actions of the
chemicals. In this case the activitymay be pinned down to one
or few active principles acting individually or in synergies.

4.2. Internal Factors Influencing the Accuracy of the Predic-
tions. The challenge in modelling the activity of essential oils
is mainly the selection of inputs and the topology. Ideally
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the data set would necessarily include all components of
all essential oils. This adds a tremendous complexity to the
network and, in fact, the number of inputs used in other ANN
models is classically far lower than the set we had to deal
with. On the other hand, the restriction of the input data set
inevitability leads to a bias, but it is the only way forward in
order to overcome this problem. Also the restricted number
of comparable data present in the literature results in a low
number of learning and validating sets. These factors do not
invalidate the use of ANNs but limit any generalisation of
the results [8]. Then again, we here aim at exploring the
potential of ANNs to predict complex biological activities
and the strategies to select the input data only as well as
encouraging other researchers to apply ANNs to the field
of CAM and microbiology in general. Achieving a critical
mass of L/V sets to overcome these shortfalls would only
be possible with the collaboration of a network of partners
working towards creating an ANN dedicated to a particular
product/task. Considering this, our contribution to the future
use of ANNs in this area is that (1) selection of the inputs
should consider all chemicals present above the threshold
value of 5%of the total EO regardless if they are reported to be
endowed with antimicrobial properties, and (2) feed forward
back propagation ANNs using SIGMOID functions and one
or more outputs are valid starting points for future works.

4.3. External Factors Influencing the Accuracy of the Predic-
tions. In quantitative terms, the overall performance of the
ANNs in this work (Antimicrobial activity of EOs) is lower
than the one achieved in our previous work [5] (IC

50
s in

biochemical assays).This could be explained by the following
factors: (a) the highest degree of variability in the response of
whole living organisms versus the higher reproducibility of
biochemical reactions, (b) the intrinsic variability of the disk
diffusion assays, (c) the difficulty in finding comparable data
in the literature, and (d) the physicochemical incompatibility
of EOs and microbiological media.

As discussed above, the variability of the biological
response is mirrored by the fact that ANNs achieve better
performance in predicting antimicrobial activities against
microbes than yeasts. However, this may be also linked
to the existence of more abusive reports (ΔID > 60mm)
for C. albicans which contributed to a higher error in the
outputs. It is however true that the disk diffusion assay seems
to be particularly suitable for S. aureus, as they show a
higher interlaboratory reproducibility of the inhibitory areas
reported for this microorganism [37].

Regarding the variability in the results, the National
Committee for Clinical Laboratory Standards [9] recognises
that an important number of factors may induce errors in
the popular disk diffusion assays. These factors include con-
tamination or other changes in the control strain, inoculum
suspensions that are too heavy or too light, incorrect incuba-
tion temperature or atmosphere, loss of disk potency during
handling or storage in the laboratory, and even clerical error
in transcribing the quality control data/reader error in mea-
suring zone diameters. Our first aim was to model the Mini-
mum Inhibitory Concentration test rather than the inhibition

zones one. Surprisingly, there are a very limited number of
them. To complicate matters further, there is an apparent lack
of agreement in the standard antibiotic of choice, resulting
in yet fewer comparable papers. These technical limitations
together with a worrying lack of consensus in terms of adher-
ence to reference antibiotics renders much of the literature
data on natural products research invalid for meta-analysis.
In any case the volatility and poor solubility of most essential
oils are problematic in methods that rely on diffusion or
dilution of the test substance in a microbiological medium.

4.4. Concluding Remarks. The variability in composition and
activity inherent to crude essential oils affect their appli-
cation as antimicrobials. Delaquis and coworkers proposed
to increase their reliability by adjusting the levels of their
components to provide the required strength and spectrum
of inhibition. These authors experimented with mixing indi-
vidual fractions to consistently achieve a desired level of
activity [38]. However, this strategy implies adding previous
steps—and cost—to their manufacture and eventually do
not avoid the need of laboratory analysis to ascertain their
actual antimicrobial activity. We report here on an opposite
strategy: using AI tools the manufacturer would be able
to choose among all crude EOs offered in the market and
the one providing the same functional activity of previous
batches, regardless of their seasonal or geographical variation
in composition, by predicting in seconds their effectiveness
against a range of microorganisms.

Our results demonstrate the potential of ANNs as a tool
to accomplish this aim and suggest strategies on the selection
of inputs and conditions for the in silico experiments. They
also gain insight into the limitations of the scientific data
so far available—suffering from little standardization of the
conditions in terms of reference antibiotics—as well as the
shortfalls of the disk diffusion assay as an analytical tool.

Commercial AI tools may offer convenience and perfor-
mance if properly trained and validated. They have a user
friendly interface, which may be their only asset because in
our hands similar free, open access tools are able to perform
at the same level of accuracy. Perhaps this accuracy may
be improved by ANNs dedicated to a reduced number of
essential oils from a phylogenetically related group of plants
only. Artificial intelligence holds promise as fast, cheap, and
reliable tools to model the functional properties of complex
natural products such as EOs, ensuring their activity batch
after batch despite differences in composition thus resulting
in a better evidence-based medical use.
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